1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "CodeGenInstruction.h" 99 #include "CodeGenTarget.h" 100 #include "SubtargetFeatureInfo.h" 101 #include "Types.h" 102 #include "llvm/ADT/CachedHashString.h" 103 #include "llvm/ADT/PointerUnion.h" 104 #include "llvm/ADT/STLExtras.h" 105 #include "llvm/ADT/SmallPtrSet.h" 106 #include "llvm/ADT/SmallVector.h" 107 #include "llvm/ADT/StringExtras.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/Support/CommandLine.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/TableGen/Error.h" 113 #include "llvm/TableGen/Record.h" 114 #include "llvm/TableGen/StringMatcher.h" 115 #include "llvm/TableGen/StringToOffsetTable.h" 116 #include "llvm/TableGen/TableGenBackend.h" 117 #include <cassert> 118 #include <cctype> 119 #include <forward_list> 120 #include <map> 121 #include <set> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-matcher-emitter" 126 127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 128 129 static cl::opt<std::string> 130 MatchPrefix("match-prefix", cl::init(""), 131 cl::desc("Only match instructions with the given prefix"), 132 cl::cat(AsmMatcherEmitterCat)); 133 134 namespace { 135 class AsmMatcherInfo; 136 137 // Register sets are used as keys in some second-order sets TableGen creates 138 // when generating its data structures. This means that the order of two 139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 140 // can even affect compiler output (at least seen in diagnostics produced when 141 // all matches fail). So we use a type that sorts them consistently. 142 typedef std::set<Record*, LessRecordByID> RegisterSet; 143 144 class AsmMatcherEmitter { 145 RecordKeeper &Records; 146 public: 147 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 148 149 void run(raw_ostream &o); 150 }; 151 152 /// ClassInfo - Helper class for storing the information about a particular 153 /// class of operands which can be matched. 154 struct ClassInfo { 155 enum ClassInfoKind { 156 /// Invalid kind, for use as a sentinel value. 157 Invalid = 0, 158 159 /// The class for a particular token. 160 Token, 161 162 /// The (first) register class, subsequent register classes are 163 /// RegisterClass0+1, and so on. 164 RegisterClass0, 165 166 /// The (first) user defined class, subsequent user defined classes are 167 /// UserClass0+1, and so on. 168 UserClass0 = 1<<16 169 }; 170 171 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 172 /// N) for the Nth user defined class. 173 unsigned Kind; 174 175 /// SuperClasses - The super classes of this class. Note that for simplicities 176 /// sake user operands only record their immediate super class, while register 177 /// operands include all superclasses. 178 std::vector<ClassInfo*> SuperClasses; 179 180 /// Name - The full class name, suitable for use in an enum. 181 std::string Name; 182 183 /// ClassName - The unadorned generic name for this class (e.g., Token). 184 std::string ClassName; 185 186 /// ValueName - The name of the value this class represents; for a token this 187 /// is the literal token string, for an operand it is the TableGen class (or 188 /// empty if this is a derived class). 189 std::string ValueName; 190 191 /// PredicateMethod - The name of the operand method to test whether the 192 /// operand matches this class; this is not valid for Token or register kinds. 193 std::string PredicateMethod; 194 195 /// RenderMethod - The name of the operand method to add this operand to an 196 /// MCInst; this is not valid for Token or register kinds. 197 std::string RenderMethod; 198 199 /// ParserMethod - The name of the operand method to do a target specific 200 /// parsing on the operand. 201 std::string ParserMethod; 202 203 /// For register classes: the records for all the registers in this class. 204 RegisterSet Registers; 205 206 /// For custom match classes: the diagnostic kind for when the predicate fails. 207 std::string DiagnosticType; 208 209 /// For custom match classes: the diagnostic string for when the predicate fails. 210 std::string DiagnosticString; 211 212 /// Is this operand optional and not always required. 213 bool IsOptional; 214 215 /// DefaultMethod - The name of the method that returns the default operand 216 /// for optional operand 217 std::string DefaultMethod; 218 219 public: 220 /// isRegisterClass() - Check if this is a register class. 221 bool isRegisterClass() const { 222 return Kind >= RegisterClass0 && Kind < UserClass0; 223 } 224 225 /// isUserClass() - Check if this is a user defined class. 226 bool isUserClass() const { 227 return Kind >= UserClass0; 228 } 229 230 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 231 /// are related if they are in the same class hierarchy. 232 bool isRelatedTo(const ClassInfo &RHS) const { 233 // Tokens are only related to tokens. 234 if (Kind == Token || RHS.Kind == Token) 235 return Kind == Token && RHS.Kind == Token; 236 237 // Registers classes are only related to registers classes, and only if 238 // their intersection is non-empty. 239 if (isRegisterClass() || RHS.isRegisterClass()) { 240 if (!isRegisterClass() || !RHS.isRegisterClass()) 241 return false; 242 243 RegisterSet Tmp; 244 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 245 std::set_intersection(Registers.begin(), Registers.end(), 246 RHS.Registers.begin(), RHS.Registers.end(), 247 II, LessRecordByID()); 248 249 return !Tmp.empty(); 250 } 251 252 // Otherwise we have two users operands; they are related if they are in the 253 // same class hierarchy. 254 // 255 // FIXME: This is an oversimplification, they should only be related if they 256 // intersect, however we don't have that information. 257 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 258 const ClassInfo *Root = this; 259 while (!Root->SuperClasses.empty()) 260 Root = Root->SuperClasses.front(); 261 262 const ClassInfo *RHSRoot = &RHS; 263 while (!RHSRoot->SuperClasses.empty()) 264 RHSRoot = RHSRoot->SuperClasses.front(); 265 266 return Root == RHSRoot; 267 } 268 269 /// isSubsetOf - Test whether this class is a subset of \p RHS. 270 bool isSubsetOf(const ClassInfo &RHS) const { 271 // This is a subset of RHS if it is the same class... 272 if (this == &RHS) 273 return true; 274 275 // ... or if any of its super classes are a subset of RHS. 276 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 277 SuperClasses.end()); 278 SmallPtrSet<const ClassInfo *, 16> Visited; 279 while (!Worklist.empty()) { 280 auto *CI = Worklist.pop_back_val(); 281 if (CI == &RHS) 282 return true; 283 for (auto *Super : CI->SuperClasses) 284 if (Visited.insert(Super).second) 285 Worklist.push_back(Super); 286 } 287 288 return false; 289 } 290 291 int getTreeDepth() const { 292 int Depth = 0; 293 const ClassInfo *Root = this; 294 while (!Root->SuperClasses.empty()) { 295 Depth++; 296 Root = Root->SuperClasses.front(); 297 } 298 return Depth; 299 } 300 301 const ClassInfo *findRoot() const { 302 const ClassInfo *Root = this; 303 while (!Root->SuperClasses.empty()) 304 Root = Root->SuperClasses.front(); 305 return Root; 306 } 307 308 /// Compare two classes. This does not produce a total ordering, but does 309 /// guarantee that subclasses are sorted before their parents, and that the 310 /// ordering is transitive. 311 bool operator<(const ClassInfo &RHS) const { 312 if (this == &RHS) 313 return false; 314 315 // First, enforce the ordering between the three different types of class. 316 // Tokens sort before registers, which sort before user classes. 317 if (Kind == Token) { 318 if (RHS.Kind != Token) 319 return true; 320 assert(RHS.Kind == Token); 321 } else if (isRegisterClass()) { 322 if (RHS.Kind == Token) 323 return false; 324 else if (RHS.isUserClass()) 325 return true; 326 assert(RHS.isRegisterClass()); 327 } else if (isUserClass()) { 328 if (!RHS.isUserClass()) 329 return false; 330 assert(RHS.isUserClass()); 331 } else { 332 llvm_unreachable("Unknown ClassInfoKind"); 333 } 334 335 if (Kind == Token || isUserClass()) { 336 // Related tokens and user classes get sorted by depth in the inheritence 337 // tree (so that subclasses are before their parents). 338 if (isRelatedTo(RHS)) { 339 if (getTreeDepth() > RHS.getTreeDepth()) 340 return true; 341 if (getTreeDepth() < RHS.getTreeDepth()) 342 return false; 343 } else { 344 // Unrelated tokens and user classes are ordered by the name of their 345 // root nodes, so that there is a consistent ordering between 346 // unconnected trees. 347 return findRoot()->ValueName < RHS.findRoot()->ValueName; 348 } 349 } else if (isRegisterClass()) { 350 // For register sets, sort by number of registers. This guarantees that 351 // a set will always sort before all of it's strict supersets. 352 if (Registers.size() != RHS.Registers.size()) 353 return Registers.size() < RHS.Registers.size(); 354 } else { 355 llvm_unreachable("Unknown ClassInfoKind"); 356 } 357 358 // FIXME: We should be able to just return false here, as we only need a 359 // partial order (we use stable sorts, so this is deterministic) and the 360 // name of a class shouldn't be significant. However, some of the backends 361 // accidentally rely on this behaviour, so it will have to stay like this 362 // until they are fixed. 363 return ValueName < RHS.ValueName; 364 } 365 }; 366 367 class AsmVariantInfo { 368 public: 369 StringRef RegisterPrefix; 370 StringRef TokenizingCharacters; 371 StringRef SeparatorCharacters; 372 StringRef BreakCharacters; 373 StringRef Name; 374 int AsmVariantNo; 375 }; 376 377 /// MatchableInfo - Helper class for storing the necessary information for an 378 /// instruction or alias which is capable of being matched. 379 struct MatchableInfo { 380 struct AsmOperand { 381 /// Token - This is the token that the operand came from. 382 StringRef Token; 383 384 /// The unique class instance this operand should match. 385 ClassInfo *Class; 386 387 /// The operand name this is, if anything. 388 StringRef SrcOpName; 389 390 /// The operand name this is, before renaming for tied operands. 391 StringRef OrigSrcOpName; 392 393 /// The suboperand index within SrcOpName, or -1 for the entire operand. 394 int SubOpIdx; 395 396 /// Whether the token is "isolated", i.e., it is preceded and followed 397 /// by separators. 398 bool IsIsolatedToken; 399 400 /// Register record if this token is singleton register. 401 Record *SingletonReg; 402 403 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 404 : Token(T), Class(nullptr), SubOpIdx(-1), 405 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 406 }; 407 408 /// ResOperand - This represents a single operand in the result instruction 409 /// generated by the match. In cases (like addressing modes) where a single 410 /// assembler operand expands to multiple MCOperands, this represents the 411 /// single assembler operand, not the MCOperand. 412 struct ResOperand { 413 enum { 414 /// RenderAsmOperand - This represents an operand result that is 415 /// generated by calling the render method on the assembly operand. The 416 /// corresponding AsmOperand is specified by AsmOperandNum. 417 RenderAsmOperand, 418 419 /// TiedOperand - This represents a result operand that is a duplicate of 420 /// a previous result operand. 421 TiedOperand, 422 423 /// ImmOperand - This represents an immediate value that is dumped into 424 /// the operand. 425 ImmOperand, 426 427 /// RegOperand - This represents a fixed register that is dumped in. 428 RegOperand 429 } Kind; 430 431 /// Tuple containing the index of the (earlier) result operand that should 432 /// be copied from, as well as the indices of the corresponding (parsed) 433 /// operands in the asm string. 434 struct TiedOperandsTuple { 435 unsigned ResOpnd; 436 unsigned SrcOpnd1Idx; 437 unsigned SrcOpnd2Idx; 438 }; 439 440 union { 441 /// This is the operand # in the AsmOperands list that this should be 442 /// copied from. 443 unsigned AsmOperandNum; 444 445 /// Description of tied operands. 446 TiedOperandsTuple TiedOperands; 447 448 /// ImmVal - This is the immediate value added to the instruction. 449 int64_t ImmVal; 450 451 /// Register - This is the register record. 452 Record *Register; 453 }; 454 455 /// MINumOperands - The number of MCInst operands populated by this 456 /// operand. 457 unsigned MINumOperands; 458 459 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 460 ResOperand X; 461 X.Kind = RenderAsmOperand; 462 X.AsmOperandNum = AsmOpNum; 463 X.MINumOperands = NumOperands; 464 return X; 465 } 466 467 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 468 unsigned SrcOperand2) { 469 ResOperand X; 470 X.Kind = TiedOperand; 471 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 472 X.MINumOperands = 1; 473 return X; 474 } 475 476 static ResOperand getImmOp(int64_t Val) { 477 ResOperand X; 478 X.Kind = ImmOperand; 479 X.ImmVal = Val; 480 X.MINumOperands = 1; 481 return X; 482 } 483 484 static ResOperand getRegOp(Record *Reg) { 485 ResOperand X; 486 X.Kind = RegOperand; 487 X.Register = Reg; 488 X.MINumOperands = 1; 489 return X; 490 } 491 }; 492 493 /// AsmVariantID - Target's assembly syntax variant no. 494 int AsmVariantID; 495 496 /// AsmString - The assembly string for this instruction (with variants 497 /// removed), e.g. "movsx $src, $dst". 498 std::string AsmString; 499 500 /// TheDef - This is the definition of the instruction or InstAlias that this 501 /// matchable came from. 502 Record *const TheDef; 503 504 /// DefRec - This is the definition that it came from. 505 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 506 507 const CodeGenInstruction *getResultInst() const { 508 if (DefRec.is<const CodeGenInstruction*>()) 509 return DefRec.get<const CodeGenInstruction*>(); 510 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 511 } 512 513 /// ResOperands - This is the operand list that should be built for the result 514 /// MCInst. 515 SmallVector<ResOperand, 8> ResOperands; 516 517 /// Mnemonic - This is the first token of the matched instruction, its 518 /// mnemonic. 519 StringRef Mnemonic; 520 521 /// AsmOperands - The textual operands that this instruction matches, 522 /// annotated with a class and where in the OperandList they were defined. 523 /// This directly corresponds to the tokenized AsmString after the mnemonic is 524 /// removed. 525 SmallVector<AsmOperand, 8> AsmOperands; 526 527 /// Predicates - The required subtarget features to match this instruction. 528 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 529 530 /// ConversionFnKind - The enum value which is passed to the generated 531 /// convertToMCInst to convert parsed operands into an MCInst for this 532 /// function. 533 std::string ConversionFnKind; 534 535 /// If this instruction is deprecated in some form. 536 bool HasDeprecation; 537 538 /// If this is an alias, this is use to determine whether or not to using 539 /// the conversion function defined by the instruction's AsmMatchConverter 540 /// or to use the function generated by the alias. 541 bool UseInstAsmMatchConverter; 542 543 MatchableInfo(const CodeGenInstruction &CGI) 544 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 545 UseInstAsmMatchConverter(true) { 546 } 547 548 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 549 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 550 DefRec(Alias.release()), 551 UseInstAsmMatchConverter( 552 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 553 } 554 555 // Could remove this and the dtor if PointerUnion supported unique_ptr 556 // elements with a dynamic failure/assertion (like the one below) in the case 557 // where it was copied while being in an owning state. 558 MatchableInfo(const MatchableInfo &RHS) 559 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 560 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 561 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 562 RequiredFeatures(RHS.RequiredFeatures), 563 ConversionFnKind(RHS.ConversionFnKind), 564 HasDeprecation(RHS.HasDeprecation), 565 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 566 assert(!DefRec.is<const CodeGenInstAlias *>()); 567 } 568 569 ~MatchableInfo() { 570 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 571 } 572 573 // Two-operand aliases clone from the main matchable, but mark the second 574 // operand as a tied operand of the first for purposes of the assembler. 575 void formTwoOperandAlias(StringRef Constraint); 576 577 void initialize(const AsmMatcherInfo &Info, 578 SmallPtrSetImpl<Record*> &SingletonRegisters, 579 AsmVariantInfo const &Variant, 580 bool HasMnemonicFirst); 581 582 /// validate - Return true if this matchable is a valid thing to match against 583 /// and perform a bunch of validity checking. 584 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 585 586 /// findAsmOperand - Find the AsmOperand with the specified name and 587 /// suboperand index. 588 int findAsmOperand(StringRef N, int SubOpIdx) const { 589 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 590 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 591 }); 592 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 593 } 594 595 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 596 /// This does not check the suboperand index. 597 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 598 auto I = 599 llvm::find_if(llvm::drop_begin(AsmOperands, LastIdx + 1), 600 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 601 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 602 } 603 604 int findAsmOperandOriginallyNamed(StringRef N) const { 605 auto I = 606 find_if(AsmOperands, 607 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 608 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 609 } 610 611 void buildInstructionResultOperands(); 612 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 613 614 /// operator< - Compare two matchables. 615 bool operator<(const MatchableInfo &RHS) const { 616 // The primary comparator is the instruction mnemonic. 617 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic)) 618 return Cmp == -1; 619 620 if (AsmOperands.size() != RHS.AsmOperands.size()) 621 return AsmOperands.size() < RHS.AsmOperands.size(); 622 623 // Compare lexicographically by operand. The matcher validates that other 624 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 625 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 626 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 627 return true; 628 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 629 return false; 630 } 631 632 // Give matches that require more features higher precedence. This is useful 633 // because we cannot define AssemblerPredicates with the negation of 634 // processor features. For example, ARM v6 "nop" may be either a HINT or 635 // MOV. With v6, we want to match HINT. The assembler has no way to 636 // predicate MOV under "NoV6", but HINT will always match first because it 637 // requires V6 while MOV does not. 638 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 639 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 640 641 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the 642 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead 643 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID. 644 // We use the ID to sort AVX instruction before AVX512 instruction in 645 // matching table. 646 if (TheDef->isSubClassOf("Instruction") && 647 TheDef->getValueAsBit("HasPositionOrder")) 648 return TheDef->getID() < RHS.TheDef->getID(); 649 650 return false; 651 } 652 653 /// couldMatchAmbiguouslyWith - Check whether this matchable could 654 /// ambiguously match the same set of operands as \p RHS (without being a 655 /// strictly superior match). 656 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 657 // The primary comparator is the instruction mnemonic. 658 if (Mnemonic != RHS.Mnemonic) 659 return false; 660 661 // Different variants can't conflict. 662 if (AsmVariantID != RHS.AsmVariantID) 663 return false; 664 665 // The number of operands is unambiguous. 666 if (AsmOperands.size() != RHS.AsmOperands.size()) 667 return false; 668 669 // Otherwise, make sure the ordering of the two instructions is unambiguous 670 // by checking that either (a) a token or operand kind discriminates them, 671 // or (b) the ordering among equivalent kinds is consistent. 672 673 // Tokens and operand kinds are unambiguous (assuming a correct target 674 // specific parser). 675 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 676 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 677 AsmOperands[i].Class->Kind == ClassInfo::Token) 678 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 679 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 680 return false; 681 682 // Otherwise, this operand could commute if all operands are equivalent, or 683 // there is a pair of operands that compare less than and a pair that 684 // compare greater than. 685 bool HasLT = false, HasGT = false; 686 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 687 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 688 HasLT = true; 689 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 690 HasGT = true; 691 } 692 693 return HasLT == HasGT; 694 } 695 696 void dump() const; 697 698 private: 699 void tokenizeAsmString(AsmMatcherInfo const &Info, 700 AsmVariantInfo const &Variant); 701 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 702 }; 703 704 struct OperandMatchEntry { 705 unsigned OperandMask; 706 const MatchableInfo* MI; 707 ClassInfo *CI; 708 709 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 710 unsigned opMask) { 711 OperandMatchEntry X; 712 X.OperandMask = opMask; 713 X.CI = ci; 714 X.MI = mi; 715 return X; 716 } 717 }; 718 719 class AsmMatcherInfo { 720 public: 721 /// Tracked Records 722 RecordKeeper &Records; 723 724 /// The tablegen AsmParser record. 725 Record *AsmParser; 726 727 /// Target - The target information. 728 CodeGenTarget &Target; 729 730 /// The classes which are needed for matching. 731 std::forward_list<ClassInfo> Classes; 732 733 /// The information on the matchables to match. 734 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 735 736 /// Info for custom matching operands by user defined methods. 737 std::vector<OperandMatchEntry> OperandMatchInfo; 738 739 /// Map of Register records to their class information. 740 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 741 RegisterClassesTy RegisterClasses; 742 743 /// Map of Predicate records to their subtarget information. 744 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 745 746 /// Map of AsmOperandClass records to their class information. 747 std::map<Record*, ClassInfo*> AsmOperandClasses; 748 749 /// Map of RegisterClass records to their class information. 750 std::map<Record*, ClassInfo*> RegisterClassClasses; 751 752 private: 753 /// Map of token to class information which has already been constructed. 754 std::map<std::string, ClassInfo*> TokenClasses; 755 756 private: 757 /// getTokenClass - Lookup or create the class for the given token. 758 ClassInfo *getTokenClass(StringRef Token); 759 760 /// getOperandClass - Lookup or create the class for the given operand. 761 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 762 int SubOpIdx); 763 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 764 765 /// buildRegisterClasses - Build the ClassInfo* instances for register 766 /// classes. 767 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 768 769 /// buildOperandClasses - Build the ClassInfo* instances for user defined 770 /// operand classes. 771 void buildOperandClasses(); 772 773 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 774 unsigned AsmOpIdx); 775 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 776 MatchableInfo::AsmOperand &Op); 777 778 public: 779 AsmMatcherInfo(Record *AsmParser, 780 CodeGenTarget &Target, 781 RecordKeeper &Records); 782 783 /// Construct the various tables used during matching. 784 void buildInfo(); 785 786 /// buildOperandMatchInfo - Build the necessary information to handle user 787 /// defined operand parsing methods. 788 void buildOperandMatchInfo(); 789 790 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 791 /// given operand. 792 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 793 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 794 const auto &I = SubtargetFeatures.find(Def); 795 return I == SubtargetFeatures.end() ? nullptr : &I->second; 796 } 797 798 RecordKeeper &getRecords() const { 799 return Records; 800 } 801 802 bool hasOptionalOperands() const { 803 return any_of(Classes, 804 [](const ClassInfo &Class) { return Class.IsOptional; }); 805 } 806 }; 807 808 } // end anonymous namespace 809 810 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 811 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 812 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 813 814 errs() << " variant: " << AsmVariantID << "\n"; 815 816 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 817 const AsmOperand &Op = AsmOperands[i]; 818 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 819 errs() << '\"' << Op.Token << "\"\n"; 820 } 821 } 822 #endif 823 824 static std::pair<StringRef, StringRef> 825 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 826 // Split via the '='. 827 std::pair<StringRef, StringRef> Ops = S.split('='); 828 if (Ops.second == "") 829 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 830 // Trim whitespace and the leading '$' on the operand names. 831 size_t start = Ops.first.find_first_of('$'); 832 if (start == std::string::npos) 833 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 834 Ops.first = Ops.first.slice(start + 1, std::string::npos); 835 size_t end = Ops.first.find_last_of(" \t"); 836 Ops.first = Ops.first.slice(0, end); 837 // Now the second operand. 838 start = Ops.second.find_first_of('$'); 839 if (start == std::string::npos) 840 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 841 Ops.second = Ops.second.slice(start + 1, std::string::npos); 842 end = Ops.second.find_last_of(" \t"); 843 Ops.first = Ops.first.slice(0, end); 844 return Ops; 845 } 846 847 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 848 // Figure out which operands are aliased and mark them as tied. 849 std::pair<StringRef, StringRef> Ops = 850 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 851 852 // Find the AsmOperands that refer to the operands we're aliasing. 853 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 854 int DstAsmOperand = findAsmOperandNamed(Ops.second); 855 if (SrcAsmOperand == -1) 856 PrintFatalError(TheDef->getLoc(), 857 "unknown source two-operand alias operand '" + Ops.first + 858 "'."); 859 if (DstAsmOperand == -1) 860 PrintFatalError(TheDef->getLoc(), 861 "unknown destination two-operand alias operand '" + 862 Ops.second + "'."); 863 864 // Find the ResOperand that refers to the operand we're aliasing away 865 // and update it to refer to the combined operand instead. 866 for (ResOperand &Op : ResOperands) { 867 if (Op.Kind == ResOperand::RenderAsmOperand && 868 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 869 Op.AsmOperandNum = DstAsmOperand; 870 break; 871 } 872 } 873 // Remove the AsmOperand for the alias operand. 874 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 875 // Adjust the ResOperand references to any AsmOperands that followed 876 // the one we just deleted. 877 for (ResOperand &Op : ResOperands) { 878 switch(Op.Kind) { 879 default: 880 // Nothing to do for operands that don't reference AsmOperands. 881 break; 882 case ResOperand::RenderAsmOperand: 883 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 884 --Op.AsmOperandNum; 885 break; 886 } 887 } 888 } 889 890 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 891 /// if present, from specified token. 892 static void 893 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 894 const AsmMatcherInfo &Info, 895 StringRef RegisterPrefix) { 896 StringRef Tok = Op.Token; 897 898 // If this token is not an isolated token, i.e., it isn't separated from 899 // other tokens (e.g. with whitespace), don't interpret it as a register name. 900 if (!Op.IsIsolatedToken) 901 return; 902 903 if (RegisterPrefix.empty()) { 904 std::string LoweredTok = Tok.lower(); 905 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 906 Op.SingletonReg = Reg->TheDef; 907 return; 908 } 909 910 if (!Tok.startswith(RegisterPrefix)) 911 return; 912 913 StringRef RegName = Tok.substr(RegisterPrefix.size()); 914 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 915 Op.SingletonReg = Reg->TheDef; 916 917 // If there is no register prefix (i.e. "%" in "%eax"), then this may 918 // be some random non-register token, just ignore it. 919 } 920 921 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 922 SmallPtrSetImpl<Record*> &SingletonRegisters, 923 AsmVariantInfo const &Variant, 924 bool HasMnemonicFirst) { 925 AsmVariantID = Variant.AsmVariantNo; 926 AsmString = 927 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 928 Variant.AsmVariantNo); 929 930 tokenizeAsmString(Info, Variant); 931 932 // The first token of the instruction is the mnemonic, which must be a 933 // simple string, not a $foo variable or a singleton register. 934 if (AsmOperands.empty()) 935 PrintFatalError(TheDef->getLoc(), 936 "Instruction '" + TheDef->getName() + "' has no tokens"); 937 938 assert(!AsmOperands[0].Token.empty()); 939 if (HasMnemonicFirst) { 940 Mnemonic = AsmOperands[0].Token; 941 if (Mnemonic[0] == '$') 942 PrintFatalError(TheDef->getLoc(), 943 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 944 945 // Remove the first operand, it is tracked in the mnemonic field. 946 AsmOperands.erase(AsmOperands.begin()); 947 } else if (AsmOperands[0].Token[0] != '$') 948 Mnemonic = AsmOperands[0].Token; 949 950 // Compute the require features. 951 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 952 if (const SubtargetFeatureInfo *Feature = 953 Info.getSubtargetFeature(Predicate)) 954 RequiredFeatures.push_back(Feature); 955 956 // Collect singleton registers, if used. 957 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 958 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 959 if (Record *Reg = Op.SingletonReg) 960 SingletonRegisters.insert(Reg); 961 } 962 963 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 964 if (!DepMask) 965 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 966 967 HasDeprecation = 968 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 969 } 970 971 /// Append an AsmOperand for the given substring of AsmString. 972 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 973 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 974 } 975 976 /// tokenizeAsmString - Tokenize a simplified assembly string. 977 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 978 AsmVariantInfo const &Variant) { 979 StringRef String = AsmString; 980 size_t Prev = 0; 981 bool InTok = false; 982 bool IsIsolatedToken = true; 983 for (size_t i = 0, e = String.size(); i != e; ++i) { 984 char Char = String[i]; 985 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 986 if (InTok) { 987 addAsmOperand(String.slice(Prev, i), false); 988 Prev = i; 989 IsIsolatedToken = false; 990 } 991 InTok = true; 992 continue; 993 } 994 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 995 if (InTok) { 996 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 997 InTok = false; 998 IsIsolatedToken = false; 999 } 1000 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1001 Prev = i + 1; 1002 IsIsolatedToken = true; 1003 continue; 1004 } 1005 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 1006 if (InTok) { 1007 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1008 InTok = false; 1009 } 1010 Prev = i + 1; 1011 IsIsolatedToken = true; 1012 continue; 1013 } 1014 1015 switch (Char) { 1016 case '\\': 1017 if (InTok) { 1018 addAsmOperand(String.slice(Prev, i), false); 1019 InTok = false; 1020 IsIsolatedToken = false; 1021 } 1022 ++i; 1023 assert(i != String.size() && "Invalid quoted character"); 1024 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1025 Prev = i + 1; 1026 IsIsolatedToken = false; 1027 break; 1028 1029 case '$': { 1030 if (InTok) { 1031 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1032 InTok = false; 1033 IsIsolatedToken = false; 1034 } 1035 1036 // If this isn't "${", start new identifier looking like "$xxx" 1037 if (i + 1 == String.size() || String[i + 1] != '{') { 1038 Prev = i; 1039 break; 1040 } 1041 1042 size_t EndPos = String.find('}', i); 1043 assert(EndPos != StringRef::npos && 1044 "Missing brace in operand reference!"); 1045 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1046 Prev = EndPos + 1; 1047 i = EndPos; 1048 IsIsolatedToken = false; 1049 break; 1050 } 1051 1052 default: 1053 InTok = true; 1054 break; 1055 } 1056 } 1057 if (InTok && Prev != String.size()) 1058 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1059 } 1060 1061 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1062 // Reject matchables with no .s string. 1063 if (AsmString.empty()) 1064 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1065 1066 // Reject any matchables with a newline in them, they should be marked 1067 // isCodeGenOnly if they are pseudo instructions. 1068 if (AsmString.find('\n') != std::string::npos) 1069 PrintFatalError(TheDef->getLoc(), 1070 "multiline instruction is not valid for the asmparser, " 1071 "mark it isCodeGenOnly"); 1072 1073 // Remove comments from the asm string. We know that the asmstring only 1074 // has one line. 1075 if (!CommentDelimiter.empty() && 1076 StringRef(AsmString).contains(CommentDelimiter)) 1077 PrintFatalError(TheDef->getLoc(), 1078 "asmstring for instruction has comment character in it, " 1079 "mark it isCodeGenOnly"); 1080 1081 // Reject matchables with operand modifiers, these aren't something we can 1082 // handle, the target should be refactored to use operands instead of 1083 // modifiers. 1084 // 1085 // Also, check for instructions which reference the operand multiple times, 1086 // if they don't define a custom AsmMatcher: this implies a constraint that 1087 // the built-in matching code would not honor. 1088 std::set<std::string> OperandNames; 1089 for (const AsmOperand &Op : AsmOperands) { 1090 StringRef Tok = Op.Token; 1091 if (Tok[0] == '$' && Tok.contains(':')) 1092 PrintFatalError(TheDef->getLoc(), 1093 "matchable with operand modifier '" + Tok + 1094 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1095 // Verify that any operand is only mentioned once. 1096 // We reject aliases and ignore instructions for now. 1097 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1098 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { 1099 LLVM_DEBUG({ 1100 errs() << "warning: '" << TheDef->getName() << "': " 1101 << "ignoring instruction with tied operand '" 1102 << Tok << "'\n"; 1103 }); 1104 return false; 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 static std::string getEnumNameForToken(StringRef Str) { 1112 std::string Res; 1113 1114 for (char C : Str) { 1115 switch (C) { 1116 case '*': Res += "_STAR_"; break; 1117 case '%': Res += "_PCT_"; break; 1118 case ':': Res += "_COLON_"; break; 1119 case '!': Res += "_EXCLAIM_"; break; 1120 case '.': Res += "_DOT_"; break; 1121 case '<': Res += "_LT_"; break; 1122 case '>': Res += "_GT_"; break; 1123 case '-': Res += "_MINUS_"; break; 1124 case '#': Res += "_HASH_"; break; 1125 default: 1126 if (isAlnum(C)) 1127 Res += C; 1128 else 1129 Res += "_" + utostr((unsigned)C) + "_"; 1130 } 1131 } 1132 1133 return Res; 1134 } 1135 1136 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1137 ClassInfo *&Entry = TokenClasses[std::string(Token)]; 1138 1139 if (!Entry) { 1140 Classes.emplace_front(); 1141 Entry = &Classes.front(); 1142 Entry->Kind = ClassInfo::Token; 1143 Entry->ClassName = "Token"; 1144 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1145 Entry->ValueName = std::string(Token); 1146 Entry->PredicateMethod = "<invalid>"; 1147 Entry->RenderMethod = "<invalid>"; 1148 Entry->ParserMethod = ""; 1149 Entry->DiagnosticType = ""; 1150 Entry->IsOptional = false; 1151 Entry->DefaultMethod = "<invalid>"; 1152 } 1153 1154 return Entry; 1155 } 1156 1157 ClassInfo * 1158 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1159 int SubOpIdx) { 1160 Record *Rec = OI.Rec; 1161 if (SubOpIdx != -1) 1162 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1163 return getOperandClass(Rec, SubOpIdx); 1164 } 1165 1166 ClassInfo * 1167 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1168 if (Rec->isSubClassOf("RegisterOperand")) { 1169 // RegisterOperand may have an associated ParserMatchClass. If it does, 1170 // use it, else just fall back to the underlying register class. 1171 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1172 if (!R || !R->getValue()) 1173 PrintFatalError(Rec->getLoc(), 1174 "Record `" + Rec->getName() + 1175 "' does not have a ParserMatchClass!\n"); 1176 1177 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1178 Record *MatchClass = DI->getDef(); 1179 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1180 return CI; 1181 } 1182 1183 // No custom match class. Just use the register class. 1184 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1185 if (!ClassRec) 1186 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1187 "' has no associated register class!\n"); 1188 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1189 return CI; 1190 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1191 } 1192 1193 if (Rec->isSubClassOf("RegisterClass")) { 1194 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1195 return CI; 1196 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1197 } 1198 1199 if (!Rec->isSubClassOf("Operand")) 1200 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1201 "' does not derive from class Operand!\n"); 1202 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1203 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1204 return CI; 1205 1206 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1207 } 1208 1209 struct LessRegisterSet { 1210 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1211 // std::set<T> defines its own compariso "operator<", but it 1212 // performs a lexicographical comparison by T's innate comparison 1213 // for some reason. We don't want non-deterministic pointer 1214 // comparisons so use this instead. 1215 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1216 RHS.begin(), RHS.end(), 1217 LessRecordByID()); 1218 } 1219 }; 1220 1221 void AsmMatcherInfo:: 1222 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1223 const auto &Registers = Target.getRegBank().getRegisters(); 1224 auto &RegClassList = Target.getRegBank().getRegClasses(); 1225 1226 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1227 1228 // The register sets used for matching. 1229 RegisterSetSet RegisterSets; 1230 1231 // Gather the defined sets. 1232 for (const CodeGenRegisterClass &RC : RegClassList) 1233 RegisterSets.insert( 1234 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1235 1236 // Add any required singleton sets. 1237 for (Record *Rec : SingletonRegisters) { 1238 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1239 } 1240 1241 // Introduce derived sets where necessary (when a register does not determine 1242 // a unique register set class), and build the mapping of registers to the set 1243 // they should classify to. 1244 std::map<Record*, RegisterSet> RegisterMap; 1245 for (const CodeGenRegister &CGR : Registers) { 1246 // Compute the intersection of all sets containing this register. 1247 RegisterSet ContainingSet; 1248 1249 for (const RegisterSet &RS : RegisterSets) { 1250 if (!RS.count(CGR.TheDef)) 1251 continue; 1252 1253 if (ContainingSet.empty()) { 1254 ContainingSet = RS; 1255 continue; 1256 } 1257 1258 RegisterSet Tmp; 1259 std::swap(Tmp, ContainingSet); 1260 std::insert_iterator<RegisterSet> II(ContainingSet, 1261 ContainingSet.begin()); 1262 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1263 LessRecordByID()); 1264 } 1265 1266 if (!ContainingSet.empty()) { 1267 RegisterSets.insert(ContainingSet); 1268 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1269 } 1270 } 1271 1272 // Construct the register classes. 1273 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1274 unsigned Index = 0; 1275 for (const RegisterSet &RS : RegisterSets) { 1276 Classes.emplace_front(); 1277 ClassInfo *CI = &Classes.front(); 1278 CI->Kind = ClassInfo::RegisterClass0 + Index; 1279 CI->ClassName = "Reg" + utostr(Index); 1280 CI->Name = "MCK_Reg" + utostr(Index); 1281 CI->ValueName = ""; 1282 CI->PredicateMethod = ""; // unused 1283 CI->RenderMethod = "addRegOperands"; 1284 CI->Registers = RS; 1285 // FIXME: diagnostic type. 1286 CI->DiagnosticType = ""; 1287 CI->IsOptional = false; 1288 CI->DefaultMethod = ""; // unused 1289 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1290 ++Index; 1291 } 1292 1293 // Find the superclasses; we could compute only the subgroup lattice edges, 1294 // but there isn't really a point. 1295 for (const RegisterSet &RS : RegisterSets) { 1296 ClassInfo *CI = RegisterSetClasses[RS]; 1297 for (const RegisterSet &RS2 : RegisterSets) 1298 if (RS != RS2 && 1299 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1300 LessRecordByID())) 1301 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1302 } 1303 1304 // Name the register classes which correspond to a user defined RegisterClass. 1305 for (const CodeGenRegisterClass &RC : RegClassList) { 1306 // Def will be NULL for non-user defined register classes. 1307 Record *Def = RC.getDef(); 1308 if (!Def) 1309 continue; 1310 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1311 RC.getOrder().end())]; 1312 if (CI->ValueName.empty()) { 1313 CI->ClassName = RC.getName(); 1314 CI->Name = "MCK_" + RC.getName(); 1315 CI->ValueName = RC.getName(); 1316 } else 1317 CI->ValueName = CI->ValueName + "," + RC.getName(); 1318 1319 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1320 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1321 CI->DiagnosticType = std::string(SI->getValue()); 1322 1323 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1324 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1325 CI->DiagnosticString = std::string(SI->getValue()); 1326 1327 // If we have a diagnostic string but the diagnostic type is not specified 1328 // explicitly, create an anonymous diagnostic type. 1329 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1330 CI->DiagnosticType = RC.getName(); 1331 1332 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1333 } 1334 1335 // Populate the map for individual registers. 1336 for (auto &It : RegisterMap) 1337 RegisterClasses[It.first] = RegisterSetClasses[It.second]; 1338 1339 // Name the register classes which correspond to singleton registers. 1340 for (Record *Rec : SingletonRegisters) { 1341 ClassInfo *CI = RegisterClasses[Rec]; 1342 assert(CI && "Missing singleton register class info!"); 1343 1344 if (CI->ValueName.empty()) { 1345 CI->ClassName = std::string(Rec->getName()); 1346 CI->Name = "MCK_" + Rec->getName().str(); 1347 CI->ValueName = std::string(Rec->getName()); 1348 } else 1349 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1350 } 1351 } 1352 1353 void AsmMatcherInfo::buildOperandClasses() { 1354 std::vector<Record*> AsmOperands = 1355 Records.getAllDerivedDefinitions("AsmOperandClass"); 1356 1357 // Pre-populate AsmOperandClasses map. 1358 for (Record *Rec : AsmOperands) { 1359 Classes.emplace_front(); 1360 AsmOperandClasses[Rec] = &Classes.front(); 1361 } 1362 1363 unsigned Index = 0; 1364 for (Record *Rec : AsmOperands) { 1365 ClassInfo *CI = AsmOperandClasses[Rec]; 1366 CI->Kind = ClassInfo::UserClass0 + Index; 1367 1368 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1369 for (Init *I : Supers->getValues()) { 1370 DefInit *DI = dyn_cast<DefInit>(I); 1371 if (!DI) { 1372 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1373 continue; 1374 } 1375 1376 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1377 if (!SC) 1378 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1379 else 1380 CI->SuperClasses.push_back(SC); 1381 } 1382 CI->ClassName = std::string(Rec->getValueAsString("Name")); 1383 CI->Name = "MCK_" + CI->ClassName; 1384 CI->ValueName = std::string(Rec->getName()); 1385 1386 // Get or construct the predicate method name. 1387 Init *PMName = Rec->getValueInit("PredicateMethod"); 1388 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1389 CI->PredicateMethod = std::string(SI->getValue()); 1390 } else { 1391 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1392 CI->PredicateMethod = "is" + CI->ClassName; 1393 } 1394 1395 // Get or construct the render method name. 1396 Init *RMName = Rec->getValueInit("RenderMethod"); 1397 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1398 CI->RenderMethod = std::string(SI->getValue()); 1399 } else { 1400 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1401 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1402 } 1403 1404 // Get the parse method name or leave it as empty. 1405 Init *PRMName = Rec->getValueInit("ParserMethod"); 1406 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1407 CI->ParserMethod = std::string(SI->getValue()); 1408 1409 // Get the diagnostic type and string or leave them as empty. 1410 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1411 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1412 CI->DiagnosticType = std::string(SI->getValue()); 1413 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1414 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1415 CI->DiagnosticString = std::string(SI->getValue()); 1416 // If we have a DiagnosticString, we need a DiagnosticType for use within 1417 // the matcher. 1418 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1419 CI->DiagnosticType = CI->ClassName; 1420 1421 Init *IsOptional = Rec->getValueInit("IsOptional"); 1422 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1423 CI->IsOptional = BI->getValue(); 1424 1425 // Get or construct the default method name. 1426 Init *DMName = Rec->getValueInit("DefaultMethod"); 1427 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1428 CI->DefaultMethod = std::string(SI->getValue()); 1429 } else { 1430 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1431 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1432 } 1433 1434 ++Index; 1435 } 1436 } 1437 1438 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1439 CodeGenTarget &target, 1440 RecordKeeper &records) 1441 : Records(records), AsmParser(asmParser), Target(target) { 1442 } 1443 1444 /// buildOperandMatchInfo - Build the necessary information to handle user 1445 /// defined operand parsing methods. 1446 void AsmMatcherInfo::buildOperandMatchInfo() { 1447 1448 /// Map containing a mask with all operands indices that can be found for 1449 /// that class inside a instruction. 1450 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1451 OpClassMaskTy OpClassMask; 1452 1453 bool CallCustomParserForAllOperands = 1454 AsmParser->getValueAsBit("CallCustomParserForAllOperands"); 1455 for (const auto &MI : Matchables) { 1456 OpClassMask.clear(); 1457 1458 // Keep track of all operands of this instructions which belong to the 1459 // same class. 1460 unsigned NumOptionalOps = 0; 1461 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1462 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1463 if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) { 1464 unsigned &OperandMask = OpClassMask[Op.Class]; 1465 OperandMask |= maskTrailingOnes<unsigned>(NumOptionalOps + 1) 1466 << (i - NumOptionalOps); 1467 } 1468 if (Op.Class->IsOptional) 1469 ++NumOptionalOps; 1470 } 1471 1472 // Generate operand match info for each mnemonic/operand class pair. 1473 for (const auto &OCM : OpClassMask) { 1474 unsigned OpMask = OCM.second; 1475 ClassInfo *CI = OCM.first; 1476 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1477 OpMask)); 1478 } 1479 } 1480 } 1481 1482 void AsmMatcherInfo::buildInfo() { 1483 // Build information about all of the AssemblerPredicates. 1484 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1485 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1486 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1487 SubtargetFeaturePairs.end()); 1488 #ifndef NDEBUG 1489 for (const auto &Pair : SubtargetFeatures) 1490 LLVM_DEBUG(Pair.second.dump()); 1491 #endif // NDEBUG 1492 1493 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1494 bool ReportMultipleNearMisses = 1495 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1496 1497 // Parse the instructions; we need to do this first so that we can gather the 1498 // singleton register classes. 1499 SmallPtrSet<Record*, 16> SingletonRegisters; 1500 unsigned VariantCount = Target.getAsmParserVariantCount(); 1501 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1502 Record *AsmVariant = Target.getAsmParserVariant(VC); 1503 StringRef CommentDelimiter = 1504 AsmVariant->getValueAsString("CommentDelimiter"); 1505 AsmVariantInfo Variant; 1506 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1507 Variant.TokenizingCharacters = 1508 AsmVariant->getValueAsString("TokenizingCharacters"); 1509 Variant.SeparatorCharacters = 1510 AsmVariant->getValueAsString("SeparatorCharacters"); 1511 Variant.BreakCharacters = 1512 AsmVariant->getValueAsString("BreakCharacters"); 1513 Variant.Name = AsmVariant->getValueAsString("Name"); 1514 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1515 1516 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1517 1518 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1519 // filter the set of instructions we consider. 1520 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1521 continue; 1522 1523 // Ignore "codegen only" instructions. 1524 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1525 continue; 1526 1527 // Ignore instructions for different instructions 1528 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1529 if (!V.empty() && V != Variant.Name) 1530 continue; 1531 1532 auto II = std::make_unique<MatchableInfo>(*CGI); 1533 1534 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1535 1536 // Ignore instructions which shouldn't be matched and diagnose invalid 1537 // instruction definitions with an error. 1538 if (!II->validate(CommentDelimiter, false)) 1539 continue; 1540 1541 Matchables.push_back(std::move(II)); 1542 } 1543 1544 // Parse all of the InstAlias definitions and stick them in the list of 1545 // matchables. 1546 std::vector<Record*> AllInstAliases = 1547 Records.getAllDerivedDefinitions("InstAlias"); 1548 for (Record *InstAlias : AllInstAliases) { 1549 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target); 1550 1551 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1552 // filter the set of instruction aliases we consider, based on the target 1553 // instruction. 1554 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1555 .startswith( MatchPrefix)) 1556 continue; 1557 1558 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1559 if (!V.empty() && V != Variant.Name) 1560 continue; 1561 1562 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1563 1564 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1565 1566 // Validate the alias definitions. 1567 II->validate(CommentDelimiter, true); 1568 1569 Matchables.push_back(std::move(II)); 1570 } 1571 } 1572 1573 // Build info for the register classes. 1574 buildRegisterClasses(SingletonRegisters); 1575 1576 // Build info for the user defined assembly operand classes. 1577 buildOperandClasses(); 1578 1579 // Build the information about matchables, now that we have fully formed 1580 // classes. 1581 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1582 for (auto &II : Matchables) { 1583 // Parse the tokens after the mnemonic. 1584 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1585 // don't precompute the loop bound. 1586 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1587 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1588 StringRef Token = Op.Token; 1589 1590 // Check for singleton registers. 1591 if (Record *RegRecord = Op.SingletonReg) { 1592 Op.Class = RegisterClasses[RegRecord]; 1593 assert(Op.Class && Op.Class->Registers.size() == 1 && 1594 "Unexpected class for singleton register"); 1595 continue; 1596 } 1597 1598 // Check for simple tokens. 1599 if (Token[0] != '$') { 1600 Op.Class = getTokenClass(Token); 1601 continue; 1602 } 1603 1604 if (Token.size() > 1 && isdigit(Token[1])) { 1605 Op.Class = getTokenClass(Token); 1606 continue; 1607 } 1608 1609 // Otherwise this is an operand reference. 1610 StringRef OperandName; 1611 if (Token[1] == '{') 1612 OperandName = Token.substr(2, Token.size() - 3); 1613 else 1614 OperandName = Token.substr(1); 1615 1616 if (II->DefRec.is<const CodeGenInstruction*>()) 1617 buildInstructionOperandReference(II.get(), OperandName, i); 1618 else 1619 buildAliasOperandReference(II.get(), OperandName, Op); 1620 } 1621 1622 if (II->DefRec.is<const CodeGenInstruction*>()) { 1623 II->buildInstructionResultOperands(); 1624 // If the instruction has a two-operand alias, build up the 1625 // matchable here. We'll add them in bulk at the end to avoid 1626 // confusing this loop. 1627 StringRef Constraint = 1628 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1629 if (Constraint != "") { 1630 // Start by making a copy of the original matchable. 1631 auto AliasII = std::make_unique<MatchableInfo>(*II); 1632 1633 // Adjust it to be a two-operand alias. 1634 AliasII->formTwoOperandAlias(Constraint); 1635 1636 // Add the alias to the matchables list. 1637 NewMatchables.push_back(std::move(AliasII)); 1638 } 1639 } else 1640 // FIXME: The tied operands checking is not yet integrated with the 1641 // framework for reporting multiple near misses. To prevent invalid 1642 // formats from being matched with an alias if a tied-operands check 1643 // would otherwise have disallowed it, we just disallow such constructs 1644 // in TableGen completely. 1645 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1646 } 1647 if (!NewMatchables.empty()) 1648 Matchables.insert(Matchables.end(), 1649 std::make_move_iterator(NewMatchables.begin()), 1650 std::make_move_iterator(NewMatchables.end())); 1651 1652 // Process token alias definitions and set up the associated superclass 1653 // information. 1654 std::vector<Record*> AllTokenAliases = 1655 Records.getAllDerivedDefinitions("TokenAlias"); 1656 for (Record *Rec : AllTokenAliases) { 1657 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1658 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1659 if (FromClass == ToClass) 1660 PrintFatalError(Rec->getLoc(), 1661 "error: Destination value identical to source value."); 1662 FromClass->SuperClasses.push_back(ToClass); 1663 } 1664 1665 // Reorder classes so that classes precede super classes. 1666 Classes.sort(); 1667 1668 #ifdef EXPENSIVE_CHECKS 1669 // Verify that the table is sorted and operator < works transitively. 1670 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1671 for (auto J = I; J != E; ++J) { 1672 assert(!(*J < *I)); 1673 assert(I == J || !J->isSubsetOf(*I)); 1674 } 1675 } 1676 #endif 1677 } 1678 1679 /// buildInstructionOperandReference - The specified operand is a reference to a 1680 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1681 void AsmMatcherInfo:: 1682 buildInstructionOperandReference(MatchableInfo *II, 1683 StringRef OperandName, 1684 unsigned AsmOpIdx) { 1685 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1686 const CGIOperandList &Operands = CGI.Operands; 1687 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1688 1689 // Map this token to an operand. 1690 unsigned Idx; 1691 if (!Operands.hasOperandNamed(OperandName, Idx)) 1692 PrintFatalError(II->TheDef->getLoc(), 1693 "error: unable to find operand: '" + OperandName + "'"); 1694 1695 // If the instruction operand has multiple suboperands, but the parser 1696 // match class for the asm operand is still the default "ImmAsmOperand", 1697 // then handle each suboperand separately. 1698 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1699 Record *Rec = Operands[Idx].Rec; 1700 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1701 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1702 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1703 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1704 StringRef Token = Op->Token; // save this in case Op gets moved 1705 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1706 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1707 NewAsmOp.SubOpIdx = SI; 1708 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1709 } 1710 // Replace Op with first suboperand. 1711 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1712 Op->SubOpIdx = 0; 1713 } 1714 } 1715 1716 // Set up the operand class. 1717 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1718 Op->OrigSrcOpName = OperandName; 1719 1720 // If the named operand is tied, canonicalize it to the untied operand. 1721 // For example, something like: 1722 // (outs GPR:$dst), (ins GPR:$src) 1723 // with an asmstring of 1724 // "inc $src" 1725 // we want to canonicalize to: 1726 // "inc $dst" 1727 // so that we know how to provide the $dst operand when filling in the result. 1728 int OITied = -1; 1729 if (Operands[Idx].MINumOperands == 1) 1730 OITied = Operands[Idx].getTiedRegister(); 1731 if (OITied != -1) { 1732 // The tied operand index is an MIOperand index, find the operand that 1733 // contains it. 1734 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1735 OperandName = Operands[Idx.first].Name; 1736 Op->SubOpIdx = Idx.second; 1737 } 1738 1739 Op->SrcOpName = OperandName; 1740 } 1741 1742 /// buildAliasOperandReference - When parsing an operand reference out of the 1743 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1744 /// operand reference is by looking it up in the result pattern definition. 1745 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1746 StringRef OperandName, 1747 MatchableInfo::AsmOperand &Op) { 1748 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1749 1750 // Set up the operand class. 1751 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1752 if (CGA.ResultOperands[i].isRecord() && 1753 CGA.ResultOperands[i].getName() == OperandName) { 1754 // It's safe to go with the first one we find, because CodeGenInstAlias 1755 // validates that all operands with the same name have the same record. 1756 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1757 // Use the match class from the Alias definition, not the 1758 // destination instruction, as we may have an immediate that's 1759 // being munged by the match class. 1760 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1761 Op.SubOpIdx); 1762 Op.SrcOpName = OperandName; 1763 Op.OrigSrcOpName = OperandName; 1764 return; 1765 } 1766 1767 PrintFatalError(II->TheDef->getLoc(), 1768 "error: unable to find operand: '" + OperandName + "'"); 1769 } 1770 1771 void MatchableInfo::buildInstructionResultOperands() { 1772 const CodeGenInstruction *ResultInst = getResultInst(); 1773 1774 // Loop over all operands of the result instruction, determining how to 1775 // populate them. 1776 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1777 // If this is a tied operand, just copy from the previously handled operand. 1778 int TiedOp = -1; 1779 if (OpInfo.MINumOperands == 1) 1780 TiedOp = OpInfo.getTiedRegister(); 1781 if (TiedOp != -1) { 1782 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1783 if (TiedSrcOperand != -1 && 1784 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1785 ResOperands.push_back(ResOperand::getTiedOp( 1786 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1787 else 1788 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1789 continue; 1790 } 1791 1792 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1793 if (OpInfo.Name.empty() || SrcOperand == -1) { 1794 // This may happen for operands that are tied to a suboperand of a 1795 // complex operand. Simply use a dummy value here; nobody should 1796 // use this operand slot. 1797 // FIXME: The long term goal is for the MCOperand list to not contain 1798 // tied operands at all. 1799 ResOperands.push_back(ResOperand::getImmOp(0)); 1800 continue; 1801 } 1802 1803 // Check if the one AsmOperand populates the entire operand. 1804 unsigned NumOperands = OpInfo.MINumOperands; 1805 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1806 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1807 continue; 1808 } 1809 1810 // Add a separate ResOperand for each suboperand. 1811 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1812 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1813 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1814 "unexpected AsmOperands for suboperands"); 1815 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1816 } 1817 } 1818 } 1819 1820 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1821 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1822 const CodeGenInstruction *ResultInst = getResultInst(); 1823 1824 // Map of: $reg -> #lastref 1825 // where $reg is the name of the operand in the asm string 1826 // where #lastref is the last processed index where $reg was referenced in 1827 // the asm string. 1828 SmallDenseMap<StringRef, int> OperandRefs; 1829 1830 // Loop over all operands of the result instruction, determining how to 1831 // populate them. 1832 unsigned AliasOpNo = 0; 1833 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1834 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1835 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1836 1837 // If this is a tied operand, just copy from the previously handled operand. 1838 int TiedOp = -1; 1839 if (OpInfo->MINumOperands == 1) 1840 TiedOp = OpInfo->getTiedRegister(); 1841 if (TiedOp != -1) { 1842 unsigned SrcOp1 = 0; 1843 unsigned SrcOp2 = 0; 1844 1845 // If an operand has been specified twice in the asm string, 1846 // add the two source operand's indices to the TiedOp so that 1847 // at runtime the 'tied' constraint is checked. 1848 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1849 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1850 1851 // Find the next operand (similarly named operand) in the string. 1852 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1853 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1854 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1855 1856 // Not updating the record in OperandRefs will cause TableGen 1857 // to fail with an error at the end of this function. 1858 if (AliasConstraintsAreChecked) 1859 Insert.first->second = SrcOp2; 1860 1861 // In case it only has one reference in the asm string, 1862 // it doesn't need to be checked for tied constraints. 1863 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1864 } 1865 1866 // If the alias operand is of a different operand class, we only want 1867 // to benefit from the tied-operands check and just match the operand 1868 // as a normal, but not copy the original (TiedOp) to the result 1869 // instruction. We do this by passing -1 as the tied operand to copy. 1870 if (ResultInst->Operands[i].Rec->getName() != 1871 ResultInst->Operands[TiedOp].Rec->getName()) { 1872 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1873 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1874 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1875 SrcOp2 = findAsmOperand(Name, SubIdx); 1876 ResOperands.push_back( 1877 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1878 } else { 1879 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1880 continue; 1881 } 1882 } 1883 1884 // Handle all the suboperands for this operand. 1885 const std::string &OpName = OpInfo->Name; 1886 for ( ; AliasOpNo < LastOpNo && 1887 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1888 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1889 1890 // Find out what operand from the asmparser that this MCInst operand 1891 // comes from. 1892 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1893 case CodeGenInstAlias::ResultOperand::K_Record: { 1894 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1895 int SrcOperand = findAsmOperand(Name, SubIdx); 1896 if (SrcOperand == -1) 1897 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1898 TheDef->getName() + "' has operand '" + OpName + 1899 "' that doesn't appear in asm string!"); 1900 1901 // Add it to the operand references. If it is added a second time, the 1902 // record won't be updated and it will fail later on. 1903 OperandRefs.try_emplace(Name, SrcOperand); 1904 1905 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1906 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1907 NumOperands)); 1908 break; 1909 } 1910 case CodeGenInstAlias::ResultOperand::K_Imm: { 1911 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1912 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1913 break; 1914 } 1915 case CodeGenInstAlias::ResultOperand::K_Reg: { 1916 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1917 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1918 break; 1919 } 1920 } 1921 } 1922 } 1923 1924 // Check that operands are not repeated more times than is supported. 1925 for (auto &T : OperandRefs) { 1926 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1927 PrintFatalError(TheDef->getLoc(), 1928 "Operand '" + T.first + "' can never be matched"); 1929 } 1930 } 1931 1932 static unsigned 1933 getConverterOperandID(const std::string &Name, 1934 SmallSetVector<CachedHashString, 16> &Table, 1935 bool &IsNew) { 1936 IsNew = Table.insert(CachedHashString(Name)); 1937 1938 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1939 1940 assert(ID < Table.size()); 1941 1942 return ID; 1943 } 1944 1945 static unsigned 1946 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1947 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1948 bool HasMnemonicFirst, bool HasOptionalOperands, 1949 raw_ostream &OS) { 1950 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1951 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1952 std::vector<std::vector<uint8_t> > ConversionTable; 1953 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1954 1955 // TargetOperandClass - This is the target's operand class, like X86Operand. 1956 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1957 1958 // Write the convert function to a separate stream, so we can drop it after 1959 // the enum. We'll build up the conversion handlers for the individual 1960 // operand types opportunistically as we encounter them. 1961 std::string ConvertFnBody; 1962 raw_string_ostream CvtOS(ConvertFnBody); 1963 // Start the unified conversion function. 1964 if (HasOptionalOperands) { 1965 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1966 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1967 << "unsigned Opcode,\n" 1968 << " const OperandVector &Operands,\n" 1969 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1970 } else { 1971 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1972 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1973 << "unsigned Opcode,\n" 1974 << " const OperandVector &Operands) {\n"; 1975 } 1976 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1977 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1978 if (HasOptionalOperands) { 1979 size_t MaxNumOperands = 0; 1980 for (const auto &MI : Infos) { 1981 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1982 } 1983 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1984 << "] = { 0 };\n"; 1985 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1986 << ");\n"; 1987 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1988 << "; ++i) {\n"; 1989 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1990 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1991 CvtOS << " }\n"; 1992 } 1993 CvtOS << " unsigned OpIdx;\n"; 1994 CvtOS << " Inst.setOpcode(Opcode);\n"; 1995 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 1996 if (HasOptionalOperands) { 1997 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1998 } else { 1999 CvtOS << " OpIdx = *(p + 1);\n"; 2000 } 2001 CvtOS << " switch (*p) {\n"; 2002 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 2003 CvtOS << " case CVT_Reg:\n"; 2004 CvtOS << " static_cast<" << TargetOperandClass 2005 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 2006 CvtOS << " break;\n"; 2007 CvtOS << " case CVT_Tied: {\n"; 2008 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 2009 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 2010 CvtOS << " \"Tied operand not found\");\n"; 2011 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 2012 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n"; 2013 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 2014 CvtOS << " break;\n"; 2015 CvtOS << " }\n"; 2016 2017 std::string OperandFnBody; 2018 raw_string_ostream OpOS(OperandFnBody); 2019 // Start the operand number lookup function. 2020 OpOS << "void " << Target.getName() << ClassName << "::\n" 2021 << "convertToMapAndConstraints(unsigned Kind,\n"; 2022 OpOS.indent(27); 2023 OpOS << "const OperandVector &Operands) {\n" 2024 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2025 << " unsigned NumMCOperands = 0;\n" 2026 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2027 << " for (const uint8_t *p = Converter; *p; p += 2) {\n" 2028 << " switch (*p) {\n" 2029 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2030 << " case CVT_Reg:\n" 2031 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2032 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2033 << " ++NumMCOperands;\n" 2034 << " break;\n" 2035 << " case CVT_Tied:\n" 2036 << " ++NumMCOperands;\n" 2037 << " break;\n"; 2038 2039 // Pre-populate the operand conversion kinds with the standard always 2040 // available entries. 2041 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2042 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2043 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2044 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2045 2046 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2047 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2048 TiedOperandsEnumMap; 2049 2050 for (auto &II : Infos) { 2051 // Check if we have a custom match function. 2052 StringRef AsmMatchConverter = 2053 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2054 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2055 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2056 II->ConversionFnKind = Signature; 2057 2058 // Check if we have already generated this signature. 2059 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2060 continue; 2061 2062 // Remember this converter for the kind enum. 2063 unsigned KindID = OperandConversionKinds.size(); 2064 OperandConversionKinds.insert( 2065 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2066 2067 // Add the converter row for this instruction. 2068 ConversionTable.emplace_back(); 2069 ConversionTable.back().push_back(KindID); 2070 ConversionTable.back().push_back(CVT_Done); 2071 2072 // Add the handler to the conversion driver function. 2073 CvtOS << " case CVT_" 2074 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2075 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2076 << " break;\n"; 2077 2078 // FIXME: Handle the operand number lookup for custom match functions. 2079 continue; 2080 } 2081 2082 // Build the conversion function signature. 2083 std::string Signature = "Convert"; 2084 2085 std::vector<uint8_t> ConversionRow; 2086 2087 // Compute the convert enum and the case body. 2088 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2089 2090 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2091 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2092 2093 // Generate code to populate each result operand. 2094 switch (OpInfo.Kind) { 2095 case MatchableInfo::ResOperand::RenderAsmOperand: { 2096 // This comes from something we parsed. 2097 const MatchableInfo::AsmOperand &Op = 2098 II->AsmOperands[OpInfo.AsmOperandNum]; 2099 2100 // Registers are always converted the same, don't duplicate the 2101 // conversion function based on them. 2102 Signature += "__"; 2103 std::string Class; 2104 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2105 Signature += Class; 2106 Signature += utostr(OpInfo.MINumOperands); 2107 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2108 2109 // Add the conversion kind, if necessary, and get the associated ID 2110 // the index of its entry in the vector). 2111 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2112 Op.Class->RenderMethod); 2113 if (Op.Class->IsOptional) { 2114 // For optional operands we must also care about DefaultMethod 2115 assert(HasOptionalOperands); 2116 Name += "_" + Op.Class->DefaultMethod; 2117 } 2118 Name = getEnumNameForToken(Name); 2119 2120 bool IsNewConverter = false; 2121 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2122 IsNewConverter); 2123 2124 // Add the operand entry to the instruction kind conversion row. 2125 ConversionRow.push_back(ID); 2126 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2127 2128 if (!IsNewConverter) 2129 break; 2130 2131 // This is a new operand kind. Add a handler for it to the 2132 // converter driver. 2133 CvtOS << " case " << Name << ":\n"; 2134 if (Op.Class->IsOptional) { 2135 // If optional operand is not present in actual instruction then we 2136 // should call its DefaultMethod before RenderMethod 2137 assert(HasOptionalOperands); 2138 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2139 << " " << Op.Class->DefaultMethod << "()" 2140 << "->" << Op.Class->RenderMethod << "(Inst, " 2141 << OpInfo.MINumOperands << ");\n" 2142 << " } else {\n" 2143 << " static_cast<" << TargetOperandClass 2144 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2145 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2146 << " }\n"; 2147 } else { 2148 CvtOS << " static_cast<" << TargetOperandClass 2149 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2150 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2151 } 2152 CvtOS << " break;\n"; 2153 2154 // Add a handler for the operand number lookup. 2155 OpOS << " case " << Name << ":\n" 2156 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2157 2158 if (Op.Class->isRegisterClass()) 2159 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2160 else 2161 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2162 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2163 << " break;\n"; 2164 break; 2165 } 2166 case MatchableInfo::ResOperand::TiedOperand: { 2167 // If this operand is tied to a previous one, just copy the MCInst 2168 // operand from the earlier one.We can only tie single MCOperand values. 2169 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2170 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2171 uint8_t SrcOp1 = 2172 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2173 uint8_t SrcOp2 = 2174 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2175 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2176 "Tied operand precedes its target!"); 2177 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2178 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2179 Signature += "__" + TiedTupleName; 2180 ConversionRow.push_back(CVT_Tied); 2181 ConversionRow.push_back(TiedOp); 2182 ConversionRow.push_back(SrcOp1); 2183 ConversionRow.push_back(SrcOp2); 2184 2185 // Also create an 'enum' for this combination of tied operands. 2186 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2187 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2188 break; 2189 } 2190 case MatchableInfo::ResOperand::ImmOperand: { 2191 int64_t Val = OpInfo.ImmVal; 2192 std::string Ty = "imm_" + itostr(Val); 2193 Ty = getEnumNameForToken(Ty); 2194 Signature += "__" + Ty; 2195 2196 std::string Name = "CVT_" + Ty; 2197 bool IsNewConverter = false; 2198 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2199 IsNewConverter); 2200 // Add the operand entry to the instruction kind conversion row. 2201 ConversionRow.push_back(ID); 2202 ConversionRow.push_back(0); 2203 2204 if (!IsNewConverter) 2205 break; 2206 2207 CvtOS << " case " << Name << ":\n" 2208 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2209 << " break;\n"; 2210 2211 OpOS << " case " << Name << ":\n" 2212 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2213 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2214 << " ++NumMCOperands;\n" 2215 << " break;\n"; 2216 break; 2217 } 2218 case MatchableInfo::ResOperand::RegOperand: { 2219 std::string Reg, Name; 2220 if (!OpInfo.Register) { 2221 Name = "reg0"; 2222 Reg = "0"; 2223 } else { 2224 Reg = getQualifiedName(OpInfo.Register); 2225 Name = "reg" + OpInfo.Register->getName().str(); 2226 } 2227 Signature += "__" + Name; 2228 Name = "CVT_" + Name; 2229 bool IsNewConverter = false; 2230 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2231 IsNewConverter); 2232 // Add the operand entry to the instruction kind conversion row. 2233 ConversionRow.push_back(ID); 2234 ConversionRow.push_back(0); 2235 2236 if (!IsNewConverter) 2237 break; 2238 CvtOS << " case " << Name << ":\n" 2239 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2240 << " break;\n"; 2241 2242 OpOS << " case " << Name << ":\n" 2243 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2244 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2245 << " ++NumMCOperands;\n" 2246 << " break;\n"; 2247 } 2248 } 2249 } 2250 2251 // If there were no operands, add to the signature to that effect 2252 if (Signature == "Convert") 2253 Signature += "_NoOperands"; 2254 2255 II->ConversionFnKind = Signature; 2256 2257 // Save the signature. If we already have it, don't add a new row 2258 // to the table. 2259 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2260 continue; 2261 2262 // Add the row to the table. 2263 ConversionTable.push_back(std::move(ConversionRow)); 2264 } 2265 2266 // Finish up the converter driver function. 2267 CvtOS << " }\n }\n}\n\n"; 2268 2269 // Finish up the operand number lookup function. 2270 OpOS << " }\n }\n}\n\n"; 2271 2272 // Output a static table for tied operands. 2273 if (TiedOperandsEnumMap.size()) { 2274 // The number of tied operand combinations will be small in practice, 2275 // but just add the assert to be sure. 2276 assert(TiedOperandsEnumMap.size() <= 254 && 2277 "Too many tied-operand combinations to reference with " 2278 "an 8bit offset from the conversion table, where index " 2279 "'255' is reserved as operand not to be copied."); 2280 2281 OS << "enum {\n"; 2282 for (auto &KV : TiedOperandsEnumMap) { 2283 OS << " " << KV.second << ",\n"; 2284 } 2285 OS << "};\n\n"; 2286 2287 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2288 for (auto &KV : TiedOperandsEnumMap) { 2289 OS << " /* " << KV.second << " */ { " 2290 << utostr(std::get<0>(KV.first)) << ", " 2291 << utostr(std::get<1>(KV.first)) << ", " 2292 << utostr(std::get<2>(KV.first)) << " },\n"; 2293 } 2294 OS << "};\n\n"; 2295 } else 2296 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2297 "{ /* empty */ {0, 0, 0} };\n\n"; 2298 2299 OS << "namespace {\n"; 2300 2301 // Output the operand conversion kind enum. 2302 OS << "enum OperatorConversionKind {\n"; 2303 for (const auto &Converter : OperandConversionKinds) 2304 OS << " " << Converter << ",\n"; 2305 OS << " CVT_NUM_CONVERTERS\n"; 2306 OS << "};\n\n"; 2307 2308 // Output the instruction conversion kind enum. 2309 OS << "enum InstructionConversionKind {\n"; 2310 for (const auto &Signature : InstructionConversionKinds) 2311 OS << " " << Signature << ",\n"; 2312 OS << " CVT_NUM_SIGNATURES\n"; 2313 OS << "};\n\n"; 2314 2315 OS << "} // end anonymous namespace\n\n"; 2316 2317 // Output the conversion table. 2318 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2319 << MaxRowLength << "] = {\n"; 2320 2321 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2322 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2323 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2324 OS << " { "; 2325 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2326 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2327 if (OperandConversionKinds[ConversionTable[Row][i]] != 2328 CachedHashString("CVT_Tied")) { 2329 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2330 continue; 2331 } 2332 2333 // For a tied operand, emit a reference to the TiedAsmOperandTable 2334 // that contains the operand to copy, and the parsed operands to 2335 // check for their tied constraints. 2336 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2337 (uint8_t)ConversionTable[Row][i + 2], 2338 (uint8_t)ConversionTable[Row][i + 3]); 2339 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2340 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2341 "No record for tied operand pair"); 2342 OS << TiedOpndEnum->second << ", "; 2343 i += 2; 2344 } 2345 OS << "CVT_Done },\n"; 2346 } 2347 2348 OS << "};\n\n"; 2349 2350 // Spit out the conversion driver function. 2351 OS << CvtOS.str(); 2352 2353 // Spit out the operand number lookup function. 2354 OS << OpOS.str(); 2355 2356 return ConversionTable.size(); 2357 } 2358 2359 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2360 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2361 std::forward_list<ClassInfo> &Infos, 2362 raw_ostream &OS) { 2363 OS << "namespace {\n\n"; 2364 2365 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2366 << "/// instruction matching.\n"; 2367 OS << "enum MatchClassKind {\n"; 2368 OS << " InvalidMatchClass = 0,\n"; 2369 OS << " OptionalMatchClass = 1,\n"; 2370 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2371 StringRef LastName = "OptionalMatchClass"; 2372 for (const auto &CI : Infos) { 2373 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2374 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2375 } else if (LastKind < ClassInfo::UserClass0 && 2376 CI.Kind >= ClassInfo::UserClass0) { 2377 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2378 } 2379 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2380 LastName = CI.Name; 2381 2382 OS << " " << CI.Name << ", // "; 2383 if (CI.Kind == ClassInfo::Token) { 2384 OS << "'" << CI.ValueName << "'\n"; 2385 } else if (CI.isRegisterClass()) { 2386 if (!CI.ValueName.empty()) 2387 OS << "register class '" << CI.ValueName << "'\n"; 2388 else 2389 OS << "derived register class\n"; 2390 } else { 2391 OS << "user defined class '" << CI.ValueName << "'\n"; 2392 } 2393 } 2394 OS << " NumMatchClassKinds\n"; 2395 OS << "};\n\n"; 2396 2397 OS << "} // end anonymous namespace\n\n"; 2398 } 2399 2400 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2401 /// used when an assembly operand does not match the expected operand class. 2402 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2403 // If the target does not use DiagnosticString for any operands, don't emit 2404 // an unused function. 2405 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) { 2406 return CI.DiagnosticString.empty(); 2407 })) 2408 return; 2409 2410 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2411 << "AsmParser::" << Info.Target.getName() 2412 << "MatchResultTy MatchResult) {\n"; 2413 OS << " switch (MatchResult) {\n"; 2414 2415 for (const auto &CI: Info.Classes) { 2416 if (!CI.DiagnosticString.empty()) { 2417 assert(!CI.DiagnosticType.empty() && 2418 "DiagnosticString set without DiagnosticType"); 2419 OS << " case " << Info.Target.getName() 2420 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2421 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2422 } 2423 } 2424 2425 OS << " default:\n"; 2426 OS << " return nullptr;\n"; 2427 2428 OS << " }\n"; 2429 OS << "}\n\n"; 2430 } 2431 2432 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2433 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2434 "RegisterClass) {\n"; 2435 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2436 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2437 })) { 2438 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2439 } else { 2440 OS << " switch (RegisterClass) {\n"; 2441 for (const auto &CI: Info.Classes) { 2442 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2443 OS << " case " << CI.Name << ":\n"; 2444 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2445 << CI.DiagnosticType << ";\n"; 2446 } 2447 } 2448 2449 OS << " default:\n"; 2450 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2451 2452 OS << " }\n"; 2453 } 2454 OS << "}\n\n"; 2455 } 2456 2457 /// emitValidateOperandClass - Emit the function to validate an operand class. 2458 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2459 raw_ostream &OS) { 2460 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2461 << "MatchClassKind Kind) {\n"; 2462 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2463 << Info.Target.getName() << "Operand &)GOp;\n"; 2464 2465 // The InvalidMatchClass is not to match any operand. 2466 OS << " if (Kind == InvalidMatchClass)\n"; 2467 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2468 2469 // Check for Token operands first. 2470 // FIXME: Use a more specific diagnostic type. 2471 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2472 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2473 << " MCTargetAsmParser::Match_Success :\n" 2474 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2475 2476 // Check the user classes. We don't care what order since we're only 2477 // actually matching against one of them. 2478 OS << " switch (Kind) {\n" 2479 " default: break;\n"; 2480 for (const auto &CI : Info.Classes) { 2481 if (!CI.isUserClass()) 2482 continue; 2483 2484 OS << " // '" << CI.ClassName << "' class\n"; 2485 OS << " case " << CI.Name << ": {\n"; 2486 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2487 << "());\n"; 2488 OS << " if (DP.isMatch())\n"; 2489 OS << " return MCTargetAsmParser::Match_Success;\n"; 2490 if (!CI.DiagnosticType.empty()) { 2491 OS << " if (DP.isNearMatch())\n"; 2492 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2493 << CI.DiagnosticType << ";\n"; 2494 OS << " break;\n"; 2495 } 2496 else 2497 OS << " break;\n"; 2498 OS << " }\n"; 2499 } 2500 OS << " } // end switch (Kind)\n\n"; 2501 2502 // Check for register operands, including sub-classes. 2503 OS << " if (Operand.isReg()) {\n"; 2504 OS << " MatchClassKind OpKind;\n"; 2505 OS << " switch (Operand.getReg()) {\n"; 2506 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2507 for (const auto &RC : Info.RegisterClasses) 2508 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2509 << RC.first->getName() << ": OpKind = " << RC.second->Name 2510 << "; break;\n"; 2511 OS << " }\n"; 2512 OS << " return isSubclass(OpKind, Kind) ? " 2513 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2514 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2515 2516 // Expected operand is a register, but actual is not. 2517 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2518 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2519 2520 // Generic fallthrough match failure case for operands that don't have 2521 // specialized diagnostic types. 2522 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2523 OS << "}\n\n"; 2524 } 2525 2526 /// emitIsSubclass - Emit the subclass predicate function. 2527 static void emitIsSubclass(CodeGenTarget &Target, 2528 std::forward_list<ClassInfo> &Infos, 2529 raw_ostream &OS) { 2530 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2531 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2532 OS << " if (A == B)\n"; 2533 OS << " return true;\n\n"; 2534 2535 bool EmittedSwitch = false; 2536 for (const auto &A : Infos) { 2537 std::vector<StringRef> SuperClasses; 2538 if (A.IsOptional) 2539 SuperClasses.push_back("OptionalMatchClass"); 2540 for (const auto &B : Infos) { 2541 if (&A != &B && A.isSubsetOf(B)) 2542 SuperClasses.push_back(B.Name); 2543 } 2544 2545 if (SuperClasses.empty()) 2546 continue; 2547 2548 // If this is the first SuperClass, emit the switch header. 2549 if (!EmittedSwitch) { 2550 OS << " switch (A) {\n"; 2551 OS << " default:\n"; 2552 OS << " return false;\n"; 2553 EmittedSwitch = true; 2554 } 2555 2556 OS << "\n case " << A.Name << ":\n"; 2557 2558 if (SuperClasses.size() == 1) { 2559 OS << " return B == " << SuperClasses.back() << ";\n"; 2560 continue; 2561 } 2562 2563 if (!SuperClasses.empty()) { 2564 OS << " switch (B) {\n"; 2565 OS << " default: return false;\n"; 2566 for (StringRef SC : SuperClasses) 2567 OS << " case " << SC << ": return true;\n"; 2568 OS << " }\n"; 2569 } else { 2570 // No case statement to emit 2571 OS << " return false;\n"; 2572 } 2573 } 2574 2575 // If there were case statements emitted into the string stream write the 2576 // default. 2577 if (EmittedSwitch) 2578 OS << " }\n"; 2579 else 2580 OS << " return false;\n"; 2581 2582 OS << "}\n\n"; 2583 } 2584 2585 /// emitMatchTokenString - Emit the function to match a token string to the 2586 /// appropriate match class value. 2587 static void emitMatchTokenString(CodeGenTarget &Target, 2588 std::forward_list<ClassInfo> &Infos, 2589 raw_ostream &OS) { 2590 // Construct the match list. 2591 std::vector<StringMatcher::StringPair> Matches; 2592 for (const auto &CI : Infos) { 2593 if (CI.Kind == ClassInfo::Token) 2594 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2595 } 2596 2597 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2598 2599 StringMatcher("Name", Matches, OS).Emit(); 2600 2601 OS << " return InvalidMatchClass;\n"; 2602 OS << "}\n\n"; 2603 } 2604 2605 /// emitMatchRegisterName - Emit the function to match a string to the target 2606 /// specific register enum. 2607 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2608 raw_ostream &OS) { 2609 // Construct the match list. 2610 std::vector<StringMatcher::StringPair> Matches; 2611 const auto &Regs = Target.getRegBank().getRegisters(); 2612 for (const CodeGenRegister &Reg : Regs) { 2613 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2614 continue; 2615 2616 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")), 2617 "return " + utostr(Reg.EnumValue) + ";"); 2618 } 2619 2620 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2621 2622 bool IgnoreDuplicates = 2623 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2624 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2625 2626 OS << " return 0;\n"; 2627 OS << "}\n\n"; 2628 } 2629 2630 /// Emit the function to match a string to the target 2631 /// specific register enum. 2632 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2633 raw_ostream &OS) { 2634 // Construct the match list. 2635 std::vector<StringMatcher::StringPair> Matches; 2636 const auto &Regs = Target.getRegBank().getRegisters(); 2637 for (const CodeGenRegister &Reg : Regs) { 2638 2639 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2640 2641 for (auto AltName : AltNames) { 2642 AltName = StringRef(AltName).trim(); 2643 2644 // don't handle empty alternative names 2645 if (AltName.empty()) 2646 continue; 2647 2648 Matches.emplace_back(std::string(AltName), 2649 "return " + utostr(Reg.EnumValue) + ";"); 2650 } 2651 } 2652 2653 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2654 2655 bool IgnoreDuplicates = 2656 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2657 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2658 2659 OS << " return 0;\n"; 2660 OS << "}\n\n"; 2661 } 2662 2663 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2664 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2665 // Get the set of diagnostic types from all of the operand classes. 2666 std::set<StringRef> Types; 2667 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2668 if (!OpClassEntry.second->DiagnosticType.empty()) 2669 Types.insert(OpClassEntry.second->DiagnosticType); 2670 } 2671 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2672 if (!OpClassEntry.second->DiagnosticType.empty()) 2673 Types.insert(OpClassEntry.second->DiagnosticType); 2674 } 2675 2676 if (Types.empty()) return; 2677 2678 // Now emit the enum entries. 2679 for (StringRef Type : Types) 2680 OS << " Match_" << Type << ",\n"; 2681 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2682 } 2683 2684 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2685 /// user-level name for a subtarget feature. 2686 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2687 OS << "// User-level names for subtarget features that participate in\n" 2688 << "// instruction matching.\n" 2689 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2690 if (!Info.SubtargetFeatures.empty()) { 2691 OS << " switch(Val) {\n"; 2692 for (const auto &SF : Info.SubtargetFeatures) { 2693 const SubtargetFeatureInfo &SFI = SF.second; 2694 // FIXME: Totally just a placeholder name to get the algorithm working. 2695 OS << " case " << SFI.getEnumBitName() << ": return \"" 2696 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2697 } 2698 OS << " default: return \"(unknown)\";\n"; 2699 OS << " }\n"; 2700 } else { 2701 // Nothing to emit, so skip the switch 2702 OS << " return \"(unknown)\";\n"; 2703 } 2704 OS << "}\n\n"; 2705 } 2706 2707 static std::string GetAliasRequiredFeatures(Record *R, 2708 const AsmMatcherInfo &Info) { 2709 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2710 std::string Result; 2711 2712 if (ReqFeatures.empty()) 2713 return Result; 2714 2715 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2716 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2717 2718 if (!F) 2719 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2720 "' is not marked as an AssemblerPredicate!"); 2721 2722 if (i) 2723 Result += " && "; 2724 2725 Result += "Features.test(" + F->getEnumBitName() + ')'; 2726 } 2727 2728 return Result; 2729 } 2730 2731 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2732 std::vector<Record*> &Aliases, 2733 unsigned Indent = 0, 2734 StringRef AsmParserVariantName = StringRef()){ 2735 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2736 // iteration order of the map is stable. 2737 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2738 2739 for (Record *R : Aliases) { 2740 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2741 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2742 if (AsmVariantName != AsmParserVariantName) 2743 continue; 2744 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()] 2745 .push_back(R); 2746 } 2747 if (AliasesFromMnemonic.empty()) 2748 return; 2749 2750 // Process each alias a "from" mnemonic at a time, building the code executed 2751 // by the string remapper. 2752 std::vector<StringMatcher::StringPair> Cases; 2753 for (const auto &AliasEntry : AliasesFromMnemonic) { 2754 const std::vector<Record*> &ToVec = AliasEntry.second; 2755 2756 // Loop through each alias and emit code that handles each case. If there 2757 // are two instructions without predicates, emit an error. If there is one, 2758 // emit it last. 2759 std::string MatchCode; 2760 int AliasWithNoPredicate = -1; 2761 2762 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2763 Record *R = ToVec[i]; 2764 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2765 2766 // If this unconditionally matches, remember it for later and diagnose 2767 // duplicates. 2768 if (FeatureMask.empty()) { 2769 if (AliasWithNoPredicate != -1 && 2770 R->getValueAsString("ToMnemonic") != 2771 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) { 2772 // We can't have two different aliases from the same mnemonic with no 2773 // predicate. 2774 PrintError( 2775 ToVec[AliasWithNoPredicate]->getLoc(), 2776 "two different MnemonicAliases with the same 'from' mnemonic!"); 2777 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2778 } 2779 2780 AliasWithNoPredicate = i; 2781 continue; 2782 } 2783 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2784 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2785 2786 if (!MatchCode.empty()) 2787 MatchCode += "else "; 2788 MatchCode += "if (" + FeatureMask + ")\n"; 2789 MatchCode += " Mnemonic = \""; 2790 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2791 MatchCode += "\";\n"; 2792 } 2793 2794 if (AliasWithNoPredicate != -1) { 2795 Record *R = ToVec[AliasWithNoPredicate]; 2796 if (!MatchCode.empty()) 2797 MatchCode += "else\n "; 2798 MatchCode += "Mnemonic = \""; 2799 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2800 MatchCode += "\";\n"; 2801 } 2802 2803 MatchCode += "return;"; 2804 2805 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2806 } 2807 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2808 } 2809 2810 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2811 /// emit a function for them and return true, otherwise return false. 2812 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2813 CodeGenTarget &Target) { 2814 // Ignore aliases when match-prefix is set. 2815 if (!MatchPrefix.empty()) 2816 return false; 2817 2818 std::vector<Record*> Aliases = 2819 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2820 if (Aliases.empty()) return false; 2821 2822 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2823 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2824 OS << " switch (VariantID) {\n"; 2825 unsigned VariantCount = Target.getAsmParserVariantCount(); 2826 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2827 Record *AsmVariant = Target.getAsmParserVariant(VC); 2828 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2829 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2830 OS << " case " << AsmParserVariantNo << ":\n"; 2831 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2832 AsmParserVariantName); 2833 OS << " break;\n"; 2834 } 2835 OS << " }\n"; 2836 2837 // Emit aliases that apply to all variants. 2838 emitMnemonicAliasVariant(OS, Info, Aliases); 2839 2840 OS << "}\n\n"; 2841 2842 return true; 2843 } 2844 2845 static void 2846 emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2847 const AsmMatcherInfo &Info, StringRef ClassName, 2848 StringToOffsetTable &StringTable, 2849 unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex, 2850 bool HasMnemonicFirst, const Record &AsmParser) { 2851 unsigned MaxMask = 0; 2852 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2853 MaxMask |= OMI.OperandMask; 2854 } 2855 2856 // Emit the static custom operand parsing table; 2857 OS << "namespace {\n"; 2858 OS << " struct OperandMatchEntry {\n"; 2859 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2860 << " Mnemonic;\n"; 2861 OS << " " << getMinimalTypeForRange(MaxMask) 2862 << " OperandMask;\n"; 2863 OS << " " << getMinimalTypeForRange(std::distance( 2864 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2865 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2866 << " RequiredFeaturesIdx;\n\n"; 2867 OS << " StringRef getMnemonic() const {\n"; 2868 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2869 OS << " MnemonicTable[Mnemonic]);\n"; 2870 OS << " }\n"; 2871 OS << " };\n\n"; 2872 2873 OS << " // Predicate for searching for an opcode.\n"; 2874 OS << " struct LessOpcodeOperand {\n"; 2875 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2876 OS << " return LHS.getMnemonic() < RHS;\n"; 2877 OS << " }\n"; 2878 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2879 OS << " return LHS < RHS.getMnemonic();\n"; 2880 OS << " }\n"; 2881 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2882 OS << " const OperandMatchEntry &RHS) {\n"; 2883 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2884 OS << " }\n"; 2885 OS << " };\n"; 2886 2887 OS << "} // end anonymous namespace\n\n"; 2888 2889 OS << "static const OperandMatchEntry OperandMatchTable[" 2890 << Info.OperandMatchInfo.size() << "] = {\n"; 2891 2892 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2893 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2894 const MatchableInfo &II = *OMI.MI; 2895 2896 OS << " { "; 2897 2898 // Store a pascal-style length byte in the mnemonic. 2899 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower(); 2900 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2901 << " /* " << II.Mnemonic << " */, "; 2902 2903 OS << OMI.OperandMask; 2904 OS << " /* "; 2905 ListSeparator LS; 2906 for (int i = 0, e = 31; i !=e; ++i) 2907 if (OMI.OperandMask & (1 << i)) 2908 OS << LS << i; 2909 OS << " */, "; 2910 2911 OS << OMI.CI->Name; 2912 2913 // Write the required features mask. 2914 OS << ", AMFBS"; 2915 if (II.RequiredFeatures.empty()) 2916 OS << "_None"; 2917 else 2918 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2919 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2920 2921 OS << " },\n"; 2922 } 2923 OS << "};\n\n"; 2924 2925 // Emit the operand class switch to call the correct custom parser for 2926 // the found operand class. 2927 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2928 << "tryCustomParseOperand(OperandVector" 2929 << " &Operands,\n unsigned MCK) {\n\n" 2930 << " switch(MCK) {\n"; 2931 2932 for (const auto &CI : Info.Classes) { 2933 if (CI.ParserMethod.empty()) 2934 continue; 2935 OS << " case " << CI.Name << ":\n" 2936 << " return " << CI.ParserMethod << "(Operands);\n"; 2937 } 2938 2939 OS << " default:\n"; 2940 OS << " return MatchOperand_NoMatch;\n"; 2941 OS << " }\n"; 2942 OS << " return MatchOperand_NoMatch;\n"; 2943 OS << "}\n\n"; 2944 2945 // Emit the static custom operand parser. This code is very similar with 2946 // the other matcher. Also use MatchResultTy here just in case we go for 2947 // a better error handling. 2948 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2949 << "MatchOperandParserImpl(OperandVector" 2950 << " &Operands,\n StringRef Mnemonic,\n" 2951 << " bool ParseForAllFeatures) {\n"; 2952 2953 // Emit code to get the available features. 2954 OS << " // Get the current feature set.\n"; 2955 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 2956 2957 OS << " // Get the next operand index.\n"; 2958 OS << " unsigned NextOpNum = Operands.size()" 2959 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2960 2961 // Emit code to search the table. 2962 OS << " // Search the table.\n"; 2963 if (HasMnemonicFirst) { 2964 OS << " auto MnemonicRange =\n"; 2965 OS << " std::equal_range(std::begin(OperandMatchTable), " 2966 "std::end(OperandMatchTable),\n"; 2967 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2968 } else { 2969 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2970 " std::end(OperandMatchTable));\n"; 2971 OS << " if (!Mnemonic.empty())\n"; 2972 OS << " MnemonicRange =\n"; 2973 OS << " std::equal_range(std::begin(OperandMatchTable), " 2974 "std::end(OperandMatchTable),\n"; 2975 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2976 } 2977 2978 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2979 OS << " return MatchOperand_NoMatch;\n\n"; 2980 2981 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2982 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2983 2984 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2985 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2986 2987 // Emit check that the required features are available. 2988 OS << " // check if the available features match\n"; 2989 OS << " const FeatureBitset &RequiredFeatures = " 2990 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 2991 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2992 "RequiredFeatures) != RequiredFeatures)\n"; 2993 OS << " continue;\n\n"; 2994 2995 // Emit check to ensure the operand number matches. 2996 OS << " // check if the operand in question has a custom parser.\n"; 2997 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2998 OS << " continue;\n\n"; 2999 3000 // Emit call to the custom parser method 3001 StringRef ParserName = AsmParser.getValueAsString("OperandParserMethod"); 3002 if (ParserName.empty()) 3003 ParserName = "tryCustomParseOperand"; 3004 OS << " // call custom parse method to handle the operand\n"; 3005 OS << " OperandMatchResultTy Result = " << ParserName 3006 << "(Operands, it->Class);\n"; 3007 OS << " if (Result != MatchOperand_NoMatch)\n"; 3008 OS << " return Result;\n"; 3009 OS << " }\n\n"; 3010 3011 OS << " // Okay, we had no match.\n"; 3012 OS << " return MatchOperand_NoMatch;\n"; 3013 OS << "}\n\n"; 3014 } 3015 3016 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 3017 AsmMatcherInfo &Info, 3018 raw_ostream &OS) { 3019 std::string AsmParserName = 3020 std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); 3021 OS << "static bool "; 3022 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3023 << AsmParserName << "&AsmParser,\n"; 3024 OS << " unsigned Kind,\n"; 3025 OS << " const OperandVector &Operands,\n"; 3026 OS << " uint64_t &ErrorInfo) {\n"; 3027 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3028 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3029 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 3030 OS << " switch (*p) {\n"; 3031 OS << " case CVT_Tied: {\n"; 3032 OS << " unsigned OpIdx = *(p + 1);\n"; 3033 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3034 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3035 OS << " \"Tied operand not found\");\n"; 3036 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3037 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3038 OS << " if (OpndNum1 != OpndNum2) {\n"; 3039 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3040 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3041 OS << " if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n"; 3042 OS << " ErrorInfo = OpndNum2;\n"; 3043 OS << " return false;\n"; 3044 OS << " }\n"; 3045 OS << " }\n"; 3046 OS << " break;\n"; 3047 OS << " }\n"; 3048 OS << " default:\n"; 3049 OS << " break;\n"; 3050 OS << " }\n"; 3051 OS << " }\n"; 3052 OS << " return true;\n"; 3053 OS << "}\n\n"; 3054 } 3055 3056 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3057 unsigned VariantCount) { 3058 OS << "static std::string " << Target.getName() 3059 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3060 << " unsigned VariantID) {\n"; 3061 if (!VariantCount) 3062 OS << " return \"\";"; 3063 else { 3064 OS << " const unsigned MaxEditDist = 2;\n"; 3065 OS << " std::vector<StringRef> Candidates;\n"; 3066 OS << " StringRef Prev = \"\";\n\n"; 3067 3068 OS << " // Find the appropriate table for this asm variant.\n"; 3069 OS << " const MatchEntry *Start, *End;\n"; 3070 OS << " switch (VariantID) {\n"; 3071 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3072 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3073 Record *AsmVariant = Target.getAsmParserVariant(VC); 3074 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3075 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3076 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3077 } 3078 OS << " }\n\n"; 3079 OS << " for (auto I = Start; I < End; I++) {\n"; 3080 OS << " // Ignore unsupported instructions.\n"; 3081 OS << " const FeatureBitset &RequiredFeatures = " 3082 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3083 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3084 OS << " continue;\n"; 3085 OS << "\n"; 3086 OS << " StringRef T = I->getMnemonic();\n"; 3087 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3088 OS << " if (T.equals(Prev))\n"; 3089 OS << " continue;\n"; 3090 OS << "\n"; 3091 OS << " Prev = T;\n"; 3092 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3093 OS << " if (Dist <= MaxEditDist)\n"; 3094 OS << " Candidates.push_back(T);\n"; 3095 OS << " }\n"; 3096 OS << "\n"; 3097 OS << " if (Candidates.empty())\n"; 3098 OS << " return \"\";\n"; 3099 OS << "\n"; 3100 OS << " std::string Res = \", did you mean: \";\n"; 3101 OS << " unsigned i = 0;\n"; 3102 OS << " for (; i < Candidates.size() - 1; i++)\n"; 3103 OS << " Res += Candidates[i].str() + \", \";\n"; 3104 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3105 } 3106 OS << "}\n"; 3107 OS << "\n"; 3108 } 3109 3110 static void emitMnemonicChecker(raw_ostream &OS, 3111 CodeGenTarget &Target, 3112 unsigned VariantCount, 3113 bool HasMnemonicFirst, 3114 bool HasMnemonicAliases) { 3115 OS << "static bool " << Target.getName() 3116 << "CheckMnemonic(StringRef Mnemonic,\n"; 3117 OS << " " 3118 << "const FeatureBitset &AvailableFeatures,\n"; 3119 OS << " " 3120 << "unsigned VariantID) {\n"; 3121 3122 if (!VariantCount) { 3123 OS << " return false;\n"; 3124 } else { 3125 if (HasMnemonicAliases) { 3126 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3127 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);"; 3128 OS << "\n\n"; 3129 } 3130 OS << " // Find the appropriate table for this asm variant.\n"; 3131 OS << " const MatchEntry *Start, *End;\n"; 3132 OS << " switch (VariantID) {\n"; 3133 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3134 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3135 Record *AsmVariant = Target.getAsmParserVariant(VC); 3136 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3137 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3138 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3139 } 3140 OS << " }\n\n"; 3141 3142 OS << " // Search the table.\n"; 3143 if (HasMnemonicFirst) { 3144 OS << " auto MnemonicRange = " 3145 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3146 } else { 3147 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3148 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3149 OS << " if (!Mnemonic.empty())\n"; 3150 OS << " MnemonicRange = " 3151 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3152 } 3153 3154 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3155 OS << " return false;\n\n"; 3156 3157 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3158 << "*ie = MnemonicRange.second;\n"; 3159 OS << " it != ie; ++it) {\n"; 3160 OS << " const FeatureBitset &RequiredFeatures =\n"; 3161 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3162 OS << " if ((AvailableFeatures & RequiredFeatures) == "; 3163 OS << "RequiredFeatures)\n"; 3164 OS << " return true;\n"; 3165 OS << " }\n"; 3166 OS << " return false;\n"; 3167 } 3168 OS << "}\n"; 3169 OS << "\n"; 3170 } 3171 3172 // Emit a function mapping match classes to strings, for debugging. 3173 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3174 raw_ostream &OS) { 3175 OS << "#ifndef NDEBUG\n"; 3176 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3177 OS << " switch (Kind) {\n"; 3178 3179 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3180 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3181 for (const auto &CI : Infos) { 3182 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3183 } 3184 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3185 3186 OS << " }\n"; 3187 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3188 OS << "}\n\n"; 3189 OS << "#endif // NDEBUG\n"; 3190 } 3191 3192 static std::string 3193 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3194 std::string Name = "AMFBS"; 3195 for (const auto &Feature : FeatureBitset) 3196 Name += ("_" + Feature->getName()).str(); 3197 return Name; 3198 } 3199 3200 void AsmMatcherEmitter::run(raw_ostream &OS) { 3201 CodeGenTarget Target(Records); 3202 Record *AsmParser = Target.getAsmParser(); 3203 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3204 3205 // Compute the information on the instructions to match. 3206 AsmMatcherInfo Info(AsmParser, Target, Records); 3207 Info.buildInfo(); 3208 3209 // Sort the instruction table using the partial order on classes. We use 3210 // stable_sort to ensure that ambiguous instructions are still 3211 // deterministically ordered. 3212 llvm::stable_sort( 3213 Info.Matchables, 3214 [](const std::unique_ptr<MatchableInfo> &a, 3215 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); 3216 3217 #ifdef EXPENSIVE_CHECKS 3218 // Verify that the table is sorted and operator < works transitively. 3219 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3220 ++I) { 3221 for (auto J = I; J != E; ++J) { 3222 assert(!(**J < **I)); 3223 } 3224 } 3225 #endif 3226 3227 DEBUG_WITH_TYPE("instruction_info", { 3228 for (const auto &MI : Info.Matchables) 3229 MI->dump(); 3230 }); 3231 3232 // Check for ambiguous matchables. 3233 DEBUG_WITH_TYPE("ambiguous_instrs", { 3234 unsigned NumAmbiguous = 0; 3235 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3236 ++I) { 3237 for (auto J = std::next(I); J != E; ++J) { 3238 const MatchableInfo &A = **I; 3239 const MatchableInfo &B = **J; 3240 3241 if (A.couldMatchAmbiguouslyWith(B)) { 3242 errs() << "warning: ambiguous matchables:\n"; 3243 A.dump(); 3244 errs() << "\nis incomparable with:\n"; 3245 B.dump(); 3246 errs() << "\n\n"; 3247 ++NumAmbiguous; 3248 } 3249 } 3250 } 3251 if (NumAmbiguous) 3252 errs() << "warning: " << NumAmbiguous 3253 << " ambiguous matchables!\n"; 3254 }); 3255 3256 // Compute the information on the custom operand parsing. 3257 Info.buildOperandMatchInfo(); 3258 3259 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3260 bool HasOptionalOperands = Info.hasOptionalOperands(); 3261 bool ReportMultipleNearMisses = 3262 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3263 3264 // Write the output. 3265 3266 // Information for the class declaration. 3267 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3268 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3269 OS << " // This should be included into the middle of the declaration of\n"; 3270 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3271 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n"; 3272 if (HasOptionalOperands) { 3273 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3274 << "unsigned Opcode,\n" 3275 << " const OperandVector &Operands,\n" 3276 << " const SmallBitVector &OptionalOperandsMask);\n"; 3277 } else { 3278 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3279 << "unsigned Opcode,\n" 3280 << " const OperandVector &Operands);\n"; 3281 } 3282 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3283 OS << " const OperandVector &Operands) override;\n"; 3284 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3285 << " MCInst &Inst,\n"; 3286 if (ReportMultipleNearMisses) 3287 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3288 else 3289 OS << " uint64_t &ErrorInfo,\n" 3290 << " FeatureBitset &MissingFeatures,\n"; 3291 OS << " bool matchingInlineAsm,\n" 3292 << " unsigned VariantID = 0);\n"; 3293 if (!ReportMultipleNearMisses) 3294 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3295 << " MCInst &Inst,\n" 3296 << " uint64_t &ErrorInfo,\n" 3297 << " bool matchingInlineAsm,\n" 3298 << " unsigned VariantID = 0) {\n" 3299 << " FeatureBitset MissingFeatures;\n" 3300 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" 3301 << " matchingInlineAsm, VariantID);\n" 3302 << " }\n\n"; 3303 3304 3305 if (!Info.OperandMatchInfo.empty()) { 3306 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3307 OS << " OperandVector &Operands,\n"; 3308 OS << " StringRef Mnemonic,\n"; 3309 OS << " bool ParseForAllFeatures = false);\n"; 3310 3311 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3312 OS << " OperandVector &Operands,\n"; 3313 OS << " unsigned MCK);\n\n"; 3314 } 3315 3316 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3317 3318 // Emit the operand match diagnostic enum names. 3319 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3320 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3321 emitOperandDiagnosticTypes(Info, OS); 3322 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3323 3324 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3325 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3326 3327 // Emit the subtarget feature enumeration. 3328 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3329 Info.SubtargetFeatures, OS); 3330 3331 // Emit the function to match a register name to number. 3332 // This should be omitted for Mips target 3333 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3334 emitMatchRegisterName(Target, AsmParser, OS); 3335 3336 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3337 emitMatchRegisterAltName(Target, AsmParser, OS); 3338 3339 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3340 3341 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3342 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3343 3344 // Generate the helper function to get the names for subtarget features. 3345 emitGetSubtargetFeatureName(Info, OS); 3346 3347 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3348 3349 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3350 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3351 3352 // Generate the function that remaps for mnemonic aliases. 3353 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3354 3355 // Generate the convertToMCInst function to convert operands into an MCInst. 3356 // Also, generate the convertToMapAndConstraints function for MS-style inline 3357 // assembly. The latter doesn't actually generate a MCInst. 3358 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, 3359 HasMnemonicFirst, 3360 HasOptionalOperands, OS); 3361 3362 // Emit the enumeration for classes which participate in matching. 3363 emitMatchClassEnumeration(Target, Info.Classes, OS); 3364 3365 // Emit a function to get the user-visible string to describe an operand 3366 // match failure in diagnostics. 3367 emitOperandMatchErrorDiagStrings(Info, OS); 3368 3369 // Emit a function to map register classes to operand match failure codes. 3370 emitRegisterMatchErrorFunc(Info, OS); 3371 3372 // Emit the routine to match token strings to their match class. 3373 emitMatchTokenString(Target, Info.Classes, OS); 3374 3375 // Emit the subclass predicate routine. 3376 emitIsSubclass(Target, Info.Classes, OS); 3377 3378 // Emit the routine to validate an operand against a match class. 3379 emitValidateOperandClass(Info, OS); 3380 3381 emitMatchClassKindNames(Info.Classes, OS); 3382 3383 // Emit the available features compute function. 3384 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3385 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3386 Info.SubtargetFeatures, OS); 3387 3388 if (!ReportMultipleNearMisses) 3389 emitAsmTiedOperandConstraints(Target, Info, OS); 3390 3391 StringToOffsetTable StringTable; 3392 3393 size_t MaxNumOperands = 0; 3394 unsigned MaxMnemonicIndex = 0; 3395 bool HasDeprecation = false; 3396 for (const auto &MI : Info.Matchables) { 3397 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3398 HasDeprecation |= MI->HasDeprecation; 3399 3400 // Store a pascal-style length byte in the mnemonic. 3401 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3402 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3403 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3404 } 3405 3406 OS << "static const char MnemonicTable[] =\n"; 3407 StringTable.EmitString(OS); 3408 OS << ";\n\n"; 3409 3410 std::vector<std::vector<Record *>> FeatureBitsets; 3411 for (const auto &MI : Info.Matchables) { 3412 if (MI->RequiredFeatures.empty()) 3413 continue; 3414 FeatureBitsets.emplace_back(); 3415 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3416 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3417 } 3418 3419 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3420 const std::vector<Record *> &B) { 3421 if (A.size() < B.size()) 3422 return true; 3423 if (A.size() > B.size()) 3424 return false; 3425 for (auto Pair : zip(A, B)) { 3426 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3427 return true; 3428 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3429 return false; 3430 } 3431 return false; 3432 }); 3433 FeatureBitsets.erase( 3434 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 3435 FeatureBitsets.end()); 3436 OS << "// Feature bitsets.\n" 3437 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3438 << " AMFBS_None,\n"; 3439 for (const auto &FeatureBitset : FeatureBitsets) { 3440 if (FeatureBitset.empty()) 3441 continue; 3442 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3443 } 3444 OS << "};\n\n" 3445 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3446 << " {}, // AMFBS_None\n"; 3447 for (const auto &FeatureBitset : FeatureBitsets) { 3448 if (FeatureBitset.empty()) 3449 continue; 3450 OS << " {"; 3451 for (const auto &Feature : FeatureBitset) { 3452 const auto &I = Info.SubtargetFeatures.find(Feature); 3453 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3454 OS << I->second.getEnumBitName() << ", "; 3455 } 3456 OS << "},\n"; 3457 } 3458 OS << "};\n\n"; 3459 3460 // Emit the static match table; unused classes get initialized to 0 which is 3461 // guaranteed to be InvalidMatchClass. 3462 // 3463 // FIXME: We can reduce the size of this table very easily. First, we change 3464 // it so that store the kinds in separate bit-fields for each index, which 3465 // only needs to be the max width used for classes at that index (we also need 3466 // to reject based on this during classification). If we then make sure to 3467 // order the match kinds appropriately (putting mnemonics last), then we 3468 // should only end up using a few bits for each class, especially the ones 3469 // following the mnemonic. 3470 OS << "namespace {\n"; 3471 OS << " struct MatchEntry {\n"; 3472 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3473 << " Mnemonic;\n"; 3474 OS << " uint16_t Opcode;\n"; 3475 OS << " " << getMinimalTypeForRange(NumConverters) 3476 << " ConvertFn;\n"; 3477 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3478 << " RequiredFeaturesIdx;\n"; 3479 OS << " " << getMinimalTypeForRange( 3480 std::distance(Info.Classes.begin(), Info.Classes.end())) 3481 << " Classes[" << MaxNumOperands << "];\n"; 3482 OS << " StringRef getMnemonic() const {\n"; 3483 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3484 OS << " MnemonicTable[Mnemonic]);\n"; 3485 OS << " }\n"; 3486 OS << " };\n\n"; 3487 3488 OS << " // Predicate for searching for an opcode.\n"; 3489 OS << " struct LessOpcode {\n"; 3490 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3491 OS << " return LHS.getMnemonic() < RHS;\n"; 3492 OS << " }\n"; 3493 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3494 OS << " return LHS < RHS.getMnemonic();\n"; 3495 OS << " }\n"; 3496 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3497 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3498 OS << " }\n"; 3499 OS << " };\n"; 3500 3501 OS << "} // end anonymous namespace\n\n"; 3502 3503 unsigned VariantCount = Target.getAsmParserVariantCount(); 3504 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3505 Record *AsmVariant = Target.getAsmParserVariant(VC); 3506 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3507 3508 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3509 3510 for (const auto &MI : Info.Matchables) { 3511 if (MI->AsmVariantID != AsmVariantNo) 3512 continue; 3513 3514 // Store a pascal-style length byte in the mnemonic. 3515 std::string LenMnemonic = 3516 char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3517 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3518 << " /* " << MI->Mnemonic << " */, " 3519 << Target.getInstNamespace() << "::" 3520 << MI->getResultInst()->TheDef->getName() << ", " 3521 << MI->ConversionFnKind << ", "; 3522 3523 // Write the required features mask. 3524 OS << "AMFBS"; 3525 if (MI->RequiredFeatures.empty()) 3526 OS << "_None"; 3527 else 3528 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3529 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3530 3531 OS << ", { "; 3532 ListSeparator LS; 3533 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands) 3534 OS << LS << Op.Class->Name; 3535 OS << " }, },\n"; 3536 } 3537 3538 OS << "};\n\n"; 3539 } 3540 3541 OS << "#include \"llvm/Support/Debug.h\"\n"; 3542 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3543 3544 // Finally, build the match function. 3545 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3546 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3547 OS << " MCInst &Inst,\n"; 3548 if (ReportMultipleNearMisses) 3549 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3550 else 3551 OS << " uint64_t &ErrorInfo,\n" 3552 << " FeatureBitset &MissingFeatures,\n"; 3553 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3554 3555 if (!ReportMultipleNearMisses) { 3556 OS << " // Eliminate obvious mismatches.\n"; 3557 OS << " if (Operands.size() > " 3558 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3559 OS << " ErrorInfo = " 3560 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3561 OS << " return Match_InvalidOperand;\n"; 3562 OS << " }\n\n"; 3563 } 3564 3565 // Emit code to get the available features. 3566 OS << " // Get the current feature set.\n"; 3567 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 3568 3569 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3570 if (HasMnemonicFirst) { 3571 OS << " StringRef Mnemonic = ((" << Target.getName() 3572 << "Operand &)*Operands[0]).getToken();\n\n"; 3573 } else { 3574 OS << " StringRef Mnemonic;\n"; 3575 OS << " if (Operands[0]->isToken())\n"; 3576 OS << " Mnemonic = ((" << Target.getName() 3577 << "Operand &)*Operands[0]).getToken();\n\n"; 3578 } 3579 3580 if (HasMnemonicAliases) { 3581 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3582 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3583 } 3584 3585 // Emit code to compute the class list for this operand vector. 3586 if (!ReportMultipleNearMisses) { 3587 OS << " // Some state to try to produce better error messages.\n"; 3588 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3589 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3590 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3591 OS << " MissingFeatures.set();\n"; 3592 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3593 OS << " // wrong for all instances of the instruction.\n"; 3594 OS << " ErrorInfo = ~0ULL;\n"; 3595 } 3596 3597 if (HasOptionalOperands) { 3598 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3599 } 3600 3601 // Emit code to search the table. 3602 OS << " // Find the appropriate table for this asm variant.\n"; 3603 OS << " const MatchEntry *Start, *End;\n"; 3604 OS << " switch (VariantID) {\n"; 3605 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3606 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3607 Record *AsmVariant = Target.getAsmParserVariant(VC); 3608 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3609 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3610 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3611 } 3612 OS << " }\n"; 3613 3614 OS << " // Search the table.\n"; 3615 if (HasMnemonicFirst) { 3616 OS << " auto MnemonicRange = " 3617 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3618 } else { 3619 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3620 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3621 OS << " if (!Mnemonic.empty())\n"; 3622 OS << " MnemonicRange = " 3623 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3624 } 3625 3626 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3627 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n" 3628 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3629 3630 OS << " // Return a more specific error code if no mnemonics match.\n"; 3631 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3632 OS << " return Match_MnemonicFail;\n\n"; 3633 3634 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3635 << "*ie = MnemonicRange.second;\n"; 3636 OS << " it != ie; ++it) {\n"; 3637 OS << " const FeatureBitset &RequiredFeatures = " 3638 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3639 OS << " bool HasRequiredFeatures =\n"; 3640 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3641 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3642 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3643 3644 if (ReportMultipleNearMisses) { 3645 OS << " // Some state to record ways in which this instruction did not match.\n"; 3646 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3647 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3648 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3649 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3650 OS << " bool MultipleInvalidOperands = false;\n"; 3651 } 3652 3653 if (HasMnemonicFirst) { 3654 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3655 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3656 } 3657 3658 // Emit check that the subclasses match. 3659 if (!ReportMultipleNearMisses) 3660 OS << " bool OperandsValid = true;\n"; 3661 if (HasOptionalOperands) { 3662 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3663 } 3664 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3665 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3666 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3667 OS << " auto Formal = " 3668 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3669 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3670 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3671 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3672 OS << " if (ActualIdx < Operands.size())\n"; 3673 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3674 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3675 OS << " else\n"; 3676 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3677 OS << " if (ActualIdx >= Operands.size()) {\n"; 3678 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand " 3679 "index out of range\\n\");\n"; 3680 if (ReportMultipleNearMisses) { 3681 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3682 "isSubclass(Formal, OptionalMatchClass);\n"; 3683 OS << " if (!ThisOperandValid) {\n"; 3684 OS << " if (!OperandNearMiss) {\n"; 3685 OS << " // Record info about match failure for later use.\n"; 3686 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3687 OS << " OperandNearMiss =\n"; 3688 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3689 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3690 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3691 OS << " DEBUG_WITH_TYPE(\n"; 3692 OS << " \"asm-matcher\",\n"; 3693 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3694 OS << " MultipleInvalidOperands = true;\n"; 3695 OS << " break;\n"; 3696 OS << " }\n"; 3697 OS << " } else {\n"; 3698 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal " 3699 "operand not required\\n\");\n"; 3700 OS << " }\n"; 3701 OS << " continue;\n"; 3702 } else { 3703 OS << " if (Formal == InvalidMatchClass) {\n"; 3704 if (HasOptionalOperands) { 3705 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3706 << ");\n"; 3707 } 3708 OS << " break;\n"; 3709 OS << " }\n"; 3710 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n"; 3711 if (HasOptionalOperands) { 3712 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3713 } 3714 OS << " continue;\n"; 3715 OS << " }\n"; 3716 OS << " OperandsValid = false;\n"; 3717 OS << " ErrorInfo = ActualIdx;\n"; 3718 OS << " break;\n"; 3719 } 3720 OS << " }\n"; 3721 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3722 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3723 OS << " if (Diag == Match_Success) {\n"; 3724 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3725 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3726 OS << " ++ActualIdx;\n"; 3727 OS << " continue;\n"; 3728 OS << " }\n"; 3729 OS << " // If the generic handler indicates an invalid operand\n"; 3730 OS << " // failure, check for a special case.\n"; 3731 OS << " if (Diag != Match_Success) {\n"; 3732 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3733 OS << " if (TargetDiag == Match_Success) {\n"; 3734 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3735 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3736 OS << " ++ActualIdx;\n"; 3737 OS << " continue;\n"; 3738 OS << " }\n"; 3739 OS << " // If the target matcher returned a specific error code use\n"; 3740 OS << " // that, else use the one from the generic matcher.\n"; 3741 OS << " if (TargetDiag != Match_InvalidOperand && " 3742 "HasRequiredFeatures)\n"; 3743 OS << " Diag = TargetDiag;\n"; 3744 OS << " }\n"; 3745 OS << " // If current formal operand wasn't matched and it is optional\n" 3746 << " // then try to match next formal operand\n"; 3747 OS << " if (Diag == Match_InvalidOperand " 3748 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3749 if (HasOptionalOperands) { 3750 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3751 } 3752 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3753 OS << " continue;\n"; 3754 OS << " }\n"; 3755 3756 if (ReportMultipleNearMisses) { 3757 OS << " if (!OperandNearMiss) {\n"; 3758 OS << " // If this is the first invalid operand we have seen, record some\n"; 3759 OS << " // information about it.\n"; 3760 OS << " DEBUG_WITH_TYPE(\n"; 3761 OS << " \"asm-matcher\",\n"; 3762 OS << " dbgs()\n"; 3763 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3764 OS << " << Diag << \"\\n\");\n"; 3765 OS << " OperandNearMiss =\n"; 3766 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3767 OS << " ++ActualIdx;\n"; 3768 OS << " } else {\n"; 3769 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3770 OS << " DEBUG_WITH_TYPE(\n"; 3771 OS << " \"asm-matcher\",\n"; 3772 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3773 OS << " MultipleInvalidOperands = true;\n"; 3774 OS << " break;\n"; 3775 OS << " }\n"; 3776 OS << " }\n\n"; 3777 } else { 3778 OS << " // If this operand is broken for all of the instances of this\n"; 3779 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3780 OS << " // If we already had a match that only failed due to a\n"; 3781 OS << " // target predicate, that diagnostic is preferred.\n"; 3782 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3783 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3784 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3785 "!= Match_InvalidOperand))\n"; 3786 OS << " RetCode = Diag;\n"; 3787 OS << " ErrorInfo = ActualIdx;\n"; 3788 OS << " }\n"; 3789 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3790 OS << " OperandsValid = false;\n"; 3791 OS << " break;\n"; 3792 OS << " }\n\n"; 3793 } 3794 3795 if (ReportMultipleNearMisses) 3796 OS << " if (MultipleInvalidOperands) {\n"; 3797 else 3798 OS << " if (!OperandsValid) {\n"; 3799 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3800 OS << " \"operand mismatches, ignoring \"\n"; 3801 OS << " \"this opcode\\n\");\n"; 3802 OS << " continue;\n"; 3803 OS << " }\n"; 3804 3805 // Emit check that the required features are available. 3806 OS << " if (!HasRequiredFeatures) {\n"; 3807 if (!ReportMultipleNearMisses) 3808 OS << " HadMatchOtherThanFeatures = true;\n"; 3809 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3810 "~AvailableFeatures;\n"; 3811 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; 3812 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; 3813 OS << " if (NewMissingFeatures[I])\n"; 3814 OS << " dbgs() << ' ' << I;\n"; 3815 OS << " dbgs() << \"\\n\");\n"; 3816 if (ReportMultipleNearMisses) { 3817 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3818 } else { 3819 OS << " if (NewMissingFeatures.count() <=\n" 3820 " MissingFeatures.count())\n"; 3821 OS << " MissingFeatures = NewMissingFeatures;\n"; 3822 OS << " continue;\n"; 3823 } 3824 OS << " }\n"; 3825 OS << "\n"; 3826 OS << " Inst.clear();\n\n"; 3827 OS << " Inst.setOpcode(it->Opcode);\n"; 3828 // Verify the instruction with the target-specific match predicate function. 3829 OS << " // We have a potential match but have not rendered the operands.\n" 3830 << " // Check the target predicate to handle any context sensitive\n" 3831 " // constraints.\n" 3832 << " // For example, Ties that are referenced multiple times must be\n" 3833 " // checked here to ensure the input is the same for each match\n" 3834 " // constraints. If we leave it any later the ties will have been\n" 3835 " // canonicalized\n" 3836 << " unsigned MatchResult;\n" 3837 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3838 "Operands)) != Match_Success) {\n" 3839 << " Inst.clear();\n"; 3840 OS << " DEBUG_WITH_TYPE(\n"; 3841 OS << " \"asm-matcher\",\n"; 3842 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3843 OS << " << MatchResult << \"\\n\");\n"; 3844 if (ReportMultipleNearMisses) { 3845 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3846 } else { 3847 OS << " RetCode = MatchResult;\n" 3848 << " HadMatchOtherThanPredicate = true;\n" 3849 << " continue;\n"; 3850 } 3851 OS << " }\n\n"; 3852 3853 if (ReportMultipleNearMisses) { 3854 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3855 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3856 OS << " if (OperandNearMiss) {\n"; 3857 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3858 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3859 OS << " DEBUG_WITH_TYPE(\n"; 3860 OS << " \"asm-matcher\",\n"; 3861 OS << " dbgs()\n"; 3862 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3863 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3864 OS << " } else {\n"; 3865 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3866 OS << " \"types of mismatch, so not \"\n"; 3867 OS << " \"reporting near-miss\\n\");\n"; 3868 OS << " }\n"; 3869 OS << " continue;\n"; 3870 OS << " }\n\n"; 3871 } 3872 3873 OS << " if (matchingInlineAsm) {\n"; 3874 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3875 if (!ReportMultipleNearMisses) { 3876 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3877 "Operands, ErrorInfo))\n"; 3878 OS << " return Match_InvalidTiedOperand;\n"; 3879 OS << "\n"; 3880 } 3881 OS << " return Match_Success;\n"; 3882 OS << " }\n\n"; 3883 OS << " // We have selected a definite instruction, convert the parsed\n" 3884 << " // operands into the appropriate MCInst.\n"; 3885 if (HasOptionalOperands) { 3886 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3887 << " OptionalOperandsMask);\n"; 3888 } else { 3889 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3890 } 3891 OS << "\n"; 3892 3893 // Verify the instruction with the target-specific match predicate function. 3894 OS << " // We have a potential match. Check the target predicate to\n" 3895 << " // handle any context sensitive constraints.\n" 3896 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3897 << " Match_Success) {\n" 3898 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3899 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3900 << " << MatchResult << \"\\n\");\n" 3901 << " Inst.clear();\n"; 3902 if (ReportMultipleNearMisses) { 3903 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3904 } else { 3905 OS << " RetCode = MatchResult;\n" 3906 << " HadMatchOtherThanPredicate = true;\n" 3907 << " continue;\n"; 3908 } 3909 OS << " }\n\n"; 3910 3911 if (ReportMultipleNearMisses) { 3912 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3913 OS << " (int)(bool)FeaturesNearMiss +\n"; 3914 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3915 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3916 OS << " if (NumNearMisses == 1) {\n"; 3917 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3918 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3919 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3920 OS << " \"mismatch, so reporting a \"\n"; 3921 OS << " \"near-miss\\n\");\n"; 3922 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3923 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3924 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3925 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3926 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3927 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3928 OS << "\n"; 3929 OS << " continue;\n"; 3930 OS << " } else if (NumNearMisses > 1) {\n"; 3931 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3932 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3933 OS << " \"types of mismatch, so not \"\n"; 3934 OS << " \"reporting near-miss\\n\");\n"; 3935 OS << " continue;\n"; 3936 OS << " }\n"; 3937 } 3938 3939 // Call the post-processing function, if used. 3940 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3941 if (!InsnCleanupFn.empty()) 3942 OS << " " << InsnCleanupFn << "(Inst);\n"; 3943 3944 if (HasDeprecation) { 3945 OS << " std::string Info;\n"; 3946 OS << " if (!getParser().getTargetParser().getTargetOptions().MCNoDeprecatedWarn &&\n"; 3947 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3948 OS << " SMLoc Loc = ((" << Target.getName() 3949 << "Operand &)*Operands[0]).getStartLoc();\n"; 3950 OS << " getParser().Warning(Loc, Info, std::nullopt);\n"; 3951 OS << " }\n"; 3952 } 3953 3954 if (!ReportMultipleNearMisses) { 3955 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3956 "Operands, ErrorInfo))\n"; 3957 OS << " return Match_InvalidTiedOperand;\n"; 3958 OS << "\n"; 3959 } 3960 3961 OS << " DEBUG_WITH_TYPE(\n"; 3962 OS << " \"asm-matcher\",\n"; 3963 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3964 OS << " return Match_Success;\n"; 3965 OS << " }\n\n"; 3966 3967 if (ReportMultipleNearMisses) { 3968 OS << " // No instruction variants matched exactly.\n"; 3969 OS << " return Match_NearMisses;\n"; 3970 } else { 3971 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3972 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3973 OS << " return RetCode;\n\n"; 3974 OS << " ErrorInfo = 0;\n"; 3975 OS << " return Match_MissingFeature;\n"; 3976 } 3977 OS << "}\n\n"; 3978 3979 if (!Info.OperandMatchInfo.empty()) 3980 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3981 MaxMnemonicIndex, FeatureBitsets.size(), 3982 HasMnemonicFirst, *AsmParser); 3983 3984 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3985 3986 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3987 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3988 3989 emitMnemonicSpellChecker(OS, Target, VariantCount); 3990 3991 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3992 3993 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n"; 3994 OS << "#undef GET_MNEMONIC_CHECKER\n\n"; 3995 3996 emitMnemonicChecker(OS, Target, VariantCount, 3997 HasMnemonicFirst, HasMnemonicAliases); 3998 3999 OS << "#endif // GET_MNEMONIC_CHECKER\n\n"; 4000 } 4001 4002 namespace llvm { 4003 4004 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 4005 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 4006 AsmMatcherEmitter(RK).run(OS); 4007 } 4008 4009 } // end namespace llvm 4010