xref: /freebsd/contrib/llvm-project/llvm/utils/TableGen/AsmMatcherEmitter.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits a target specifier matcher for converting parsed
10 // assembly operands in the MCInst structures. It also emits a matcher for
11 // custom operand parsing.
12 //
13 // Converting assembly operands into MCInst structures
14 // ---------------------------------------------------
15 //
16 // The input to the target specific matcher is a list of literal tokens and
17 // operands. The target specific parser should generally eliminate any syntax
18 // which is not relevant for matching; for example, comma tokens should have
19 // already been consumed and eliminated by the parser. Most instructions will
20 // end up with a single literal token (the instruction name) and some number of
21 // operands.
22 //
23 // Some example inputs, for X86:
24 //   'addl' (immediate ...) (register ...)
25 //   'add' (immediate ...) (memory ...)
26 //   'call' '*' %epc
27 //
28 // The assembly matcher is responsible for converting this input into a precise
29 // machine instruction (i.e., an instruction with a well defined encoding). This
30 // mapping has several properties which complicate matching:
31 //
32 //  - It may be ambiguous; many architectures can legally encode particular
33 //    variants of an instruction in different ways (for example, using a smaller
34 //    encoding for small immediates). Such ambiguities should never be
35 //    arbitrarily resolved by the assembler, the assembler is always responsible
36 //    for choosing the "best" available instruction.
37 //
38 //  - It may depend on the subtarget or the assembler context. Instructions
39 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
40 //    an SSE instruction in a file being assembled for i486) should be accepted
41 //    and rejected by the assembler front end. However, if the proper encoding
42 //    for an instruction is dependent on the assembler context then the matcher
43 //    is responsible for selecting the correct machine instruction for the
44 //    current mode.
45 //
46 // The core matching algorithm attempts to exploit the regularity in most
47 // instruction sets to quickly determine the set of possibly matching
48 // instructions, and the simplify the generated code. Additionally, this helps
49 // to ensure that the ambiguities are intentionally resolved by the user.
50 //
51 // The matching is divided into two distinct phases:
52 //
53 //   1. Classification: Each operand is mapped to the unique set which (a)
54 //      contains it, and (b) is the largest such subset for which a single
55 //      instruction could match all members.
56 //
57 //      For register classes, we can generate these subgroups automatically. For
58 //      arbitrary operands, we expect the user to define the classes and their
59 //      relations to one another (for example, 8-bit signed immediates as a
60 //      subset of 32-bit immediates).
61 //
62 //      By partitioning the operands in this way, we guarantee that for any
63 //      tuple of classes, any single instruction must match either all or none
64 //      of the sets of operands which could classify to that tuple.
65 //
66 //      In addition, the subset relation amongst classes induces a partial order
67 //      on such tuples, which we use to resolve ambiguities.
68 //
69 //   2. The input can now be treated as a tuple of classes (static tokens are
70 //      simple singleton sets). Each such tuple should generally map to a single
71 //      instruction (we currently ignore cases where this isn't true, whee!!!),
72 //      which we can emit a simple matcher for.
73 //
74 // Custom Operand Parsing
75 // ----------------------
76 //
77 //  Some targets need a custom way to parse operands, some specific instructions
78 //  can contain arguments that can represent processor flags and other kinds of
79 //  identifiers that need to be mapped to specific values in the final encoded
80 //  instructions. The target specific custom operand parsing works in the
81 //  following way:
82 //
83 //   1. A operand match table is built, each entry contains a mnemonic, an
84 //      operand class, a mask for all operand positions for that same
85 //      class/mnemonic and target features to be checked while trying to match.
86 //
87 //   2. The operand matcher will try every possible entry with the same
88 //      mnemonic and will check if the target feature for this mnemonic also
89 //      matches. After that, if the operand to be matched has its index
90 //      present in the mask, a successful match occurs. Otherwise, fallback
91 //      to the regular operand parsing.
92 //
93 //   3. For a match success, each operand class that has a 'ParserMethod'
94 //      becomes part of a switch from where the custom method is called.
95 //
96 //===----------------------------------------------------------------------===//
97 
98 #include "CodeGenTarget.h"
99 #include "SubtargetFeatureInfo.h"
100 #include "Types.h"
101 #include "llvm/ADT/CachedHashString.h"
102 #include "llvm/ADT/PointerUnion.h"
103 #include "llvm/ADT/STLExtras.h"
104 #include "llvm/ADT/SmallPtrSet.h"
105 #include "llvm/ADT/SmallVector.h"
106 #include "llvm/ADT/StringExtras.h"
107 #include "llvm/Config/llvm-config.h"
108 #include "llvm/Support/CommandLine.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/TableGen/Error.h"
112 #include "llvm/TableGen/Record.h"
113 #include "llvm/TableGen/StringMatcher.h"
114 #include "llvm/TableGen/StringToOffsetTable.h"
115 #include "llvm/TableGen/TableGenBackend.h"
116 #include <cassert>
117 #include <cctype>
118 #include <forward_list>
119 #include <map>
120 #include <set>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "asm-matcher-emitter"
125 
126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher");
127 
128 static cl::opt<std::string>
129     MatchPrefix("match-prefix", cl::init(""),
130                 cl::desc("Only match instructions with the given prefix"),
131                 cl::cat(AsmMatcherEmitterCat));
132 
133 namespace {
134 class AsmMatcherInfo;
135 
136 // Register sets are used as keys in some second-order sets TableGen creates
137 // when generating its data structures. This means that the order of two
138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and
139 // can even affect compiler output (at least seen in diagnostics produced when
140 // all matches fail). So we use a type that sorts them consistently.
141 typedef std::set<Record*, LessRecordByID> RegisterSet;
142 
143 class AsmMatcherEmitter {
144   RecordKeeper &Records;
145 public:
146   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
147 
148   void run(raw_ostream &o);
149 };
150 
151 /// ClassInfo - Helper class for storing the information about a particular
152 /// class of operands which can be matched.
153 struct ClassInfo {
154   enum ClassInfoKind {
155     /// Invalid kind, for use as a sentinel value.
156     Invalid = 0,
157 
158     /// The class for a particular token.
159     Token,
160 
161     /// The (first) register class, subsequent register classes are
162     /// RegisterClass0+1, and so on.
163     RegisterClass0,
164 
165     /// The (first) user defined class, subsequent user defined classes are
166     /// UserClass0+1, and so on.
167     UserClass0 = 1<<16
168   };
169 
170   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
171   /// N) for the Nth user defined class.
172   unsigned Kind;
173 
174   /// SuperClasses - The super classes of this class. Note that for simplicities
175   /// sake user operands only record their immediate super class, while register
176   /// operands include all superclasses.
177   std::vector<ClassInfo*> SuperClasses;
178 
179   /// Name - The full class name, suitable for use in an enum.
180   std::string Name;
181 
182   /// ClassName - The unadorned generic name for this class (e.g., Token).
183   std::string ClassName;
184 
185   /// ValueName - The name of the value this class represents; for a token this
186   /// is the literal token string, for an operand it is the TableGen class (or
187   /// empty if this is a derived class).
188   std::string ValueName;
189 
190   /// PredicateMethod - The name of the operand method to test whether the
191   /// operand matches this class; this is not valid for Token or register kinds.
192   std::string PredicateMethod;
193 
194   /// RenderMethod - The name of the operand method to add this operand to an
195   /// MCInst; this is not valid for Token or register kinds.
196   std::string RenderMethod;
197 
198   /// ParserMethod - The name of the operand method to do a target specific
199   /// parsing on the operand.
200   std::string ParserMethod;
201 
202   /// For register classes: the records for all the registers in this class.
203   RegisterSet Registers;
204 
205   /// For custom match classes: the diagnostic kind for when the predicate fails.
206   std::string DiagnosticType;
207 
208   /// For custom match classes: the diagnostic string for when the predicate fails.
209   std::string DiagnosticString;
210 
211   /// Is this operand optional and not always required.
212   bool IsOptional;
213 
214   /// DefaultMethod - The name of the method that returns the default operand
215   /// for optional operand
216   std::string DefaultMethod;
217 
218 public:
219   /// isRegisterClass() - Check if this is a register class.
220   bool isRegisterClass() const {
221     return Kind >= RegisterClass0 && Kind < UserClass0;
222   }
223 
224   /// isUserClass() - Check if this is a user defined class.
225   bool isUserClass() const {
226     return Kind >= UserClass0;
227   }
228 
229   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
230   /// are related if they are in the same class hierarchy.
231   bool isRelatedTo(const ClassInfo &RHS) const {
232     // Tokens are only related to tokens.
233     if (Kind == Token || RHS.Kind == Token)
234       return Kind == Token && RHS.Kind == Token;
235 
236     // Registers classes are only related to registers classes, and only if
237     // their intersection is non-empty.
238     if (isRegisterClass() || RHS.isRegisterClass()) {
239       if (!isRegisterClass() || !RHS.isRegisterClass())
240         return false;
241 
242       RegisterSet Tmp;
243       std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin());
244       std::set_intersection(Registers.begin(), Registers.end(),
245                             RHS.Registers.begin(), RHS.Registers.end(),
246                             II, LessRecordByID());
247 
248       return !Tmp.empty();
249     }
250 
251     // Otherwise we have two users operands; they are related if they are in the
252     // same class hierarchy.
253     //
254     // FIXME: This is an oversimplification, they should only be related if they
255     // intersect, however we don't have that information.
256     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
257     const ClassInfo *Root = this;
258     while (!Root->SuperClasses.empty())
259       Root = Root->SuperClasses.front();
260 
261     const ClassInfo *RHSRoot = &RHS;
262     while (!RHSRoot->SuperClasses.empty())
263       RHSRoot = RHSRoot->SuperClasses.front();
264 
265     return Root == RHSRoot;
266   }
267 
268   /// isSubsetOf - Test whether this class is a subset of \p RHS.
269   bool isSubsetOf(const ClassInfo &RHS) const {
270     // This is a subset of RHS if it is the same class...
271     if (this == &RHS)
272       return true;
273 
274     // ... or if any of its super classes are a subset of RHS.
275     SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(),
276                                                 SuperClasses.end());
277     SmallPtrSet<const ClassInfo *, 16> Visited;
278     while (!Worklist.empty()) {
279       auto *CI = Worklist.pop_back_val();
280       if (CI == &RHS)
281         return true;
282       for (auto *Super : CI->SuperClasses)
283         if (Visited.insert(Super).second)
284           Worklist.push_back(Super);
285     }
286 
287     return false;
288   }
289 
290   int getTreeDepth() const {
291     int Depth = 0;
292     const ClassInfo *Root = this;
293     while (!Root->SuperClasses.empty()) {
294       Depth++;
295       Root = Root->SuperClasses.front();
296     }
297     return Depth;
298   }
299 
300   const ClassInfo *findRoot() const {
301     const ClassInfo *Root = this;
302     while (!Root->SuperClasses.empty())
303       Root = Root->SuperClasses.front();
304     return Root;
305   }
306 
307   /// Compare two classes. This does not produce a total ordering, but does
308   /// guarantee that subclasses are sorted before their parents, and that the
309   /// ordering is transitive.
310   bool operator<(const ClassInfo &RHS) const {
311     if (this == &RHS)
312       return false;
313 
314     // First, enforce the ordering between the three different types of class.
315     // Tokens sort before registers, which sort before user classes.
316     if (Kind == Token) {
317       if (RHS.Kind != Token)
318         return true;
319       assert(RHS.Kind == Token);
320     } else if (isRegisterClass()) {
321       if (RHS.Kind == Token)
322         return false;
323       else if (RHS.isUserClass())
324         return true;
325       assert(RHS.isRegisterClass());
326     } else if (isUserClass()) {
327       if (!RHS.isUserClass())
328         return false;
329       assert(RHS.isUserClass());
330     } else {
331       llvm_unreachable("Unknown ClassInfoKind");
332     }
333 
334     if (Kind == Token || isUserClass()) {
335       // Related tokens and user classes get sorted by depth in the inheritence
336       // tree (so that subclasses are before their parents).
337       if (isRelatedTo(RHS)) {
338         if (getTreeDepth() > RHS.getTreeDepth())
339           return true;
340         if (getTreeDepth() < RHS.getTreeDepth())
341           return false;
342       } else {
343         // Unrelated tokens and user classes are ordered by the name of their
344         // root nodes, so that there is a consistent ordering between
345         // unconnected trees.
346         return findRoot()->ValueName < RHS.findRoot()->ValueName;
347       }
348     } else if (isRegisterClass()) {
349       // For register sets, sort by number of registers. This guarantees that
350       // a set will always sort before all of it's strict supersets.
351       if (Registers.size() != RHS.Registers.size())
352         return Registers.size() < RHS.Registers.size();
353     } else {
354       llvm_unreachable("Unknown ClassInfoKind");
355     }
356 
357     // FIXME: We should be able to just return false here, as we only need a
358     // partial order (we use stable sorts, so this is deterministic) and the
359     // name of a class shouldn't be significant. However, some of the backends
360     // accidentally rely on this behaviour, so it will have to stay like this
361     // until they are fixed.
362     return ValueName < RHS.ValueName;
363   }
364 };
365 
366 class AsmVariantInfo {
367 public:
368   StringRef RegisterPrefix;
369   StringRef TokenizingCharacters;
370   StringRef SeparatorCharacters;
371   StringRef BreakCharacters;
372   StringRef Name;
373   int AsmVariantNo;
374 };
375 
376 /// MatchableInfo - Helper class for storing the necessary information for an
377 /// instruction or alias which is capable of being matched.
378 struct MatchableInfo {
379   struct AsmOperand {
380     /// Token - This is the token that the operand came from.
381     StringRef Token;
382 
383     /// The unique class instance this operand should match.
384     ClassInfo *Class;
385 
386     /// The operand name this is, if anything.
387     StringRef SrcOpName;
388 
389     /// The operand name this is, before renaming for tied operands.
390     StringRef OrigSrcOpName;
391 
392     /// The suboperand index within SrcOpName, or -1 for the entire operand.
393     int SubOpIdx;
394 
395     /// Whether the token is "isolated", i.e., it is preceded and followed
396     /// by separators.
397     bool IsIsolatedToken;
398 
399     /// Register record if this token is singleton register.
400     Record *SingletonReg;
401 
402     explicit AsmOperand(bool IsIsolatedToken, StringRef T)
403         : Token(T), Class(nullptr), SubOpIdx(-1),
404           IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {}
405   };
406 
407   /// ResOperand - This represents a single operand in the result instruction
408   /// generated by the match.  In cases (like addressing modes) where a single
409   /// assembler operand expands to multiple MCOperands, this represents the
410   /// single assembler operand, not the MCOperand.
411   struct ResOperand {
412     enum {
413       /// RenderAsmOperand - This represents an operand result that is
414       /// generated by calling the render method on the assembly operand.  The
415       /// corresponding AsmOperand is specified by AsmOperandNum.
416       RenderAsmOperand,
417 
418       /// TiedOperand - This represents a result operand that is a duplicate of
419       /// a previous result operand.
420       TiedOperand,
421 
422       /// ImmOperand - This represents an immediate value that is dumped into
423       /// the operand.
424       ImmOperand,
425 
426       /// RegOperand - This represents a fixed register that is dumped in.
427       RegOperand
428     } Kind;
429 
430     /// Tuple containing the index of the (earlier) result operand that should
431     /// be copied from, as well as the indices of the corresponding (parsed)
432     /// operands in the asm string.
433     struct TiedOperandsTuple {
434       unsigned ResOpnd;
435       unsigned SrcOpnd1Idx;
436       unsigned SrcOpnd2Idx;
437     };
438 
439     union {
440       /// This is the operand # in the AsmOperands list that this should be
441       /// copied from.
442       unsigned AsmOperandNum;
443 
444       /// Description of tied operands.
445       TiedOperandsTuple TiedOperands;
446 
447       /// ImmVal - This is the immediate value added to the instruction.
448       int64_t ImmVal;
449 
450       /// Register - This is the register record.
451       Record *Register;
452     };
453 
454     /// MINumOperands - The number of MCInst operands populated by this
455     /// operand.
456     unsigned MINumOperands;
457 
458     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
459       ResOperand X;
460       X.Kind = RenderAsmOperand;
461       X.AsmOperandNum = AsmOpNum;
462       X.MINumOperands = NumOperands;
463       return X;
464     }
465 
466     static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1,
467                                 unsigned SrcOperand2) {
468       ResOperand X;
469       X.Kind = TiedOperand;
470       X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 };
471       X.MINumOperands = 1;
472       return X;
473     }
474 
475     static ResOperand getImmOp(int64_t Val) {
476       ResOperand X;
477       X.Kind = ImmOperand;
478       X.ImmVal = Val;
479       X.MINumOperands = 1;
480       return X;
481     }
482 
483     static ResOperand getRegOp(Record *Reg) {
484       ResOperand X;
485       X.Kind = RegOperand;
486       X.Register = Reg;
487       X.MINumOperands = 1;
488       return X;
489     }
490   };
491 
492   /// AsmVariantID - Target's assembly syntax variant no.
493   int AsmVariantID;
494 
495   /// AsmString - The assembly string for this instruction (with variants
496   /// removed), e.g. "movsx $src, $dst".
497   std::string AsmString;
498 
499   /// TheDef - This is the definition of the instruction or InstAlias that this
500   /// matchable came from.
501   Record *const TheDef;
502 
503   /// DefRec - This is the definition that it came from.
504   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
505 
506   const CodeGenInstruction *getResultInst() const {
507     if (DefRec.is<const CodeGenInstruction*>())
508       return DefRec.get<const CodeGenInstruction*>();
509     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
510   }
511 
512   /// ResOperands - This is the operand list that should be built for the result
513   /// MCInst.
514   SmallVector<ResOperand, 8> ResOperands;
515 
516   /// Mnemonic - This is the first token of the matched instruction, its
517   /// mnemonic.
518   StringRef Mnemonic;
519 
520   /// AsmOperands - The textual operands that this instruction matches,
521   /// annotated with a class and where in the OperandList they were defined.
522   /// This directly corresponds to the tokenized AsmString after the mnemonic is
523   /// removed.
524   SmallVector<AsmOperand, 8> AsmOperands;
525 
526   /// Predicates - The required subtarget features to match this instruction.
527   SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures;
528 
529   /// ConversionFnKind - The enum value which is passed to the generated
530   /// convertToMCInst to convert parsed operands into an MCInst for this
531   /// function.
532   std::string ConversionFnKind;
533 
534   /// If this instruction is deprecated in some form.
535   bool HasDeprecation;
536 
537   /// If this is an alias, this is use to determine whether or not to using
538   /// the conversion function defined by the instruction's AsmMatchConverter
539   /// or to use the function generated by the alias.
540   bool UseInstAsmMatchConverter;
541 
542   MatchableInfo(const CodeGenInstruction &CGI)
543     : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI),
544       UseInstAsmMatchConverter(true) {
545   }
546 
547   MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias)
548     : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef),
549       DefRec(Alias.release()),
550       UseInstAsmMatchConverter(
551         TheDef->getValueAsBit("UseInstAsmMatchConverter")) {
552   }
553 
554   // Could remove this and the dtor if PointerUnion supported unique_ptr
555   // elements with a dynamic failure/assertion (like the one below) in the case
556   // where it was copied while being in an owning state.
557   MatchableInfo(const MatchableInfo &RHS)
558       : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString),
559         TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands),
560         Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands),
561         RequiredFeatures(RHS.RequiredFeatures),
562         ConversionFnKind(RHS.ConversionFnKind),
563         HasDeprecation(RHS.HasDeprecation),
564         UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) {
565     assert(!DefRec.is<const CodeGenInstAlias *>());
566   }
567 
568   ~MatchableInfo() {
569     delete DefRec.dyn_cast<const CodeGenInstAlias*>();
570   }
571 
572   // Two-operand aliases clone from the main matchable, but mark the second
573   // operand as a tied operand of the first for purposes of the assembler.
574   void formTwoOperandAlias(StringRef Constraint);
575 
576   void initialize(const AsmMatcherInfo &Info,
577                   SmallPtrSetImpl<Record*> &SingletonRegisters,
578                   AsmVariantInfo const &Variant,
579                   bool HasMnemonicFirst);
580 
581   /// validate - Return true if this matchable is a valid thing to match against
582   /// and perform a bunch of validity checking.
583   bool validate(StringRef CommentDelimiter, bool IsAlias) const;
584 
585   /// findAsmOperand - Find the AsmOperand with the specified name and
586   /// suboperand index.
587   int findAsmOperand(StringRef N, int SubOpIdx) const {
588     auto I = find_if(AsmOperands, [&](const AsmOperand &Op) {
589       return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx;
590     });
591     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
592   }
593 
594   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
595   /// This does not check the suboperand index.
596   int findAsmOperandNamed(StringRef N, int LastIdx = -1) const {
597     auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(),
598                      [&](const AsmOperand &Op) { return Op.SrcOpName == N; });
599     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
600   }
601 
602   int findAsmOperandOriginallyNamed(StringRef N) const {
603     auto I =
604         find_if(AsmOperands,
605                 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; });
606     return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1;
607   }
608 
609   void buildInstructionResultOperands();
610   void buildAliasResultOperands(bool AliasConstraintsAreChecked);
611 
612   /// operator< - Compare two matchables.
613   bool operator<(const MatchableInfo &RHS) const {
614     // The primary comparator is the instruction mnemonic.
615     if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic))
616       return Cmp == -1;
617 
618     if (AsmOperands.size() != RHS.AsmOperands.size())
619       return AsmOperands.size() < RHS.AsmOperands.size();
620 
621     // Compare lexicographically by operand. The matcher validates that other
622     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
623     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
624       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
625         return true;
626       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
627         return false;
628     }
629 
630     // Give matches that require more features higher precedence. This is useful
631     // because we cannot define AssemblerPredicates with the negation of
632     // processor features. For example, ARM v6 "nop" may be either a HINT or
633     // MOV. With v6, we want to match HINT. The assembler has no way to
634     // predicate MOV under "NoV6", but HINT will always match first because it
635     // requires V6 while MOV does not.
636     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
637       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
638 
639     return false;
640   }
641 
642   /// couldMatchAmbiguouslyWith - Check whether this matchable could
643   /// ambiguously match the same set of operands as \p RHS (without being a
644   /// strictly superior match).
645   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const {
646     // The primary comparator is the instruction mnemonic.
647     if (Mnemonic != RHS.Mnemonic)
648       return false;
649 
650     // Different variants can't conflict.
651     if (AsmVariantID != RHS.AsmVariantID)
652       return false;
653 
654     // The number of operands is unambiguous.
655     if (AsmOperands.size() != RHS.AsmOperands.size())
656       return false;
657 
658     // Otherwise, make sure the ordering of the two instructions is unambiguous
659     // by checking that either (a) a token or operand kind discriminates them,
660     // or (b) the ordering among equivalent kinds is consistent.
661 
662     // Tokens and operand kinds are unambiguous (assuming a correct target
663     // specific parser).
664     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
665       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
666           AsmOperands[i].Class->Kind == ClassInfo::Token)
667         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
668             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
669           return false;
670 
671     // Otherwise, this operand could commute if all operands are equivalent, or
672     // there is a pair of operands that compare less than and a pair that
673     // compare greater than.
674     bool HasLT = false, HasGT = false;
675     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
676       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
677         HasLT = true;
678       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
679         HasGT = true;
680     }
681 
682     return HasLT == HasGT;
683   }
684 
685   void dump() const;
686 
687 private:
688   void tokenizeAsmString(AsmMatcherInfo const &Info,
689                          AsmVariantInfo const &Variant);
690   void addAsmOperand(StringRef Token, bool IsIsolatedToken = false);
691 };
692 
693 struct OperandMatchEntry {
694   unsigned OperandMask;
695   const MatchableInfo* MI;
696   ClassInfo *CI;
697 
698   static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci,
699                                   unsigned opMask) {
700     OperandMatchEntry X;
701     X.OperandMask = opMask;
702     X.CI = ci;
703     X.MI = mi;
704     return X;
705   }
706 };
707 
708 class AsmMatcherInfo {
709 public:
710   /// Tracked Records
711   RecordKeeper &Records;
712 
713   /// The tablegen AsmParser record.
714   Record *AsmParser;
715 
716   /// Target - The target information.
717   CodeGenTarget &Target;
718 
719   /// The classes which are needed for matching.
720   std::forward_list<ClassInfo> Classes;
721 
722   /// The information on the matchables to match.
723   std::vector<std::unique_ptr<MatchableInfo>> Matchables;
724 
725   /// Info for custom matching operands by user defined methods.
726   std::vector<OperandMatchEntry> OperandMatchInfo;
727 
728   /// Map of Register records to their class information.
729   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
730   RegisterClassesTy RegisterClasses;
731 
732   /// Map of Predicate records to their subtarget information.
733   std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
734 
735   /// Map of AsmOperandClass records to their class information.
736   std::map<Record*, ClassInfo*> AsmOperandClasses;
737 
738   /// Map of RegisterClass records to their class information.
739   std::map<Record*, ClassInfo*> RegisterClassClasses;
740 
741 private:
742   /// Map of token to class information which has already been constructed.
743   std::map<std::string, ClassInfo*> TokenClasses;
744 
745 private:
746   /// getTokenClass - Lookup or create the class for the given token.
747   ClassInfo *getTokenClass(StringRef Token);
748 
749   /// getOperandClass - Lookup or create the class for the given operand.
750   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
751                              int SubOpIdx);
752   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
753 
754   /// buildRegisterClasses - Build the ClassInfo* instances for register
755   /// classes.
756   void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters);
757 
758   /// buildOperandClasses - Build the ClassInfo* instances for user defined
759   /// operand classes.
760   void buildOperandClasses();
761 
762   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
763                                         unsigned AsmOpIdx);
764   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
765                                   MatchableInfo::AsmOperand &Op);
766 
767 public:
768   AsmMatcherInfo(Record *AsmParser,
769                  CodeGenTarget &Target,
770                  RecordKeeper &Records);
771 
772   /// Construct the various tables used during matching.
773   void buildInfo();
774 
775   /// buildOperandMatchInfo - Build the necessary information to handle user
776   /// defined operand parsing methods.
777   void buildOperandMatchInfo();
778 
779   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
780   /// given operand.
781   const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
782     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
783     const auto &I = SubtargetFeatures.find(Def);
784     return I == SubtargetFeatures.end() ? nullptr : &I->second;
785   }
786 
787   RecordKeeper &getRecords() const {
788     return Records;
789   }
790 
791   bool hasOptionalOperands() const {
792     return any_of(Classes,
793                   [](const ClassInfo &Class) { return Class.IsOptional; });
794   }
795 };
796 
797 } // end anonymous namespace
798 
799 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
800 LLVM_DUMP_METHOD void MatchableInfo::dump() const {
801   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
802 
803   errs() << "  variant: " << AsmVariantID << "\n";
804 
805   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
806     const AsmOperand &Op = AsmOperands[i];
807     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
808     errs() << '\"' << Op.Token << "\"\n";
809   }
810 }
811 #endif
812 
813 static std::pair<StringRef, StringRef>
814 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
815   // Split via the '='.
816   std::pair<StringRef, StringRef> Ops = S.split('=');
817   if (Ops.second == "")
818     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
819   // Trim whitespace and the leading '$' on the operand names.
820   size_t start = Ops.first.find_first_of('$');
821   if (start == std::string::npos)
822     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
823   Ops.first = Ops.first.slice(start + 1, std::string::npos);
824   size_t end = Ops.first.find_last_of(" \t");
825   Ops.first = Ops.first.slice(0, end);
826   // Now the second operand.
827   start = Ops.second.find_first_of('$');
828   if (start == std::string::npos)
829     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
830   Ops.second = Ops.second.slice(start + 1, std::string::npos);
831   end = Ops.second.find_last_of(" \t");
832   Ops.first = Ops.first.slice(0, end);
833   return Ops;
834 }
835 
836 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
837   // Figure out which operands are aliased and mark them as tied.
838   std::pair<StringRef, StringRef> Ops =
839     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
840 
841   // Find the AsmOperands that refer to the operands we're aliasing.
842   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
843   int DstAsmOperand = findAsmOperandNamed(Ops.second);
844   if (SrcAsmOperand == -1)
845     PrintFatalError(TheDef->getLoc(),
846                     "unknown source two-operand alias operand '" + Ops.first +
847                     "'.");
848   if (DstAsmOperand == -1)
849     PrintFatalError(TheDef->getLoc(),
850                     "unknown destination two-operand alias operand '" +
851                     Ops.second + "'.");
852 
853   // Find the ResOperand that refers to the operand we're aliasing away
854   // and update it to refer to the combined operand instead.
855   for (ResOperand &Op : ResOperands) {
856     if (Op.Kind == ResOperand::RenderAsmOperand &&
857         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
858       Op.AsmOperandNum = DstAsmOperand;
859       break;
860     }
861   }
862   // Remove the AsmOperand for the alias operand.
863   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
864   // Adjust the ResOperand references to any AsmOperands that followed
865   // the one we just deleted.
866   for (ResOperand &Op : ResOperands) {
867     switch(Op.Kind) {
868     default:
869       // Nothing to do for operands that don't reference AsmOperands.
870       break;
871     case ResOperand::RenderAsmOperand:
872       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
873         --Op.AsmOperandNum;
874       break;
875     }
876   }
877 }
878 
879 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
880 /// if present, from specified token.
881 static void
882 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op,
883                                       const AsmMatcherInfo &Info,
884                                       StringRef RegisterPrefix) {
885   StringRef Tok = Op.Token;
886 
887   // If this token is not an isolated token, i.e., it isn't separated from
888   // other tokens (e.g. with whitespace), don't interpret it as a register name.
889   if (!Op.IsIsolatedToken)
890     return;
891 
892   if (RegisterPrefix.empty()) {
893     std::string LoweredTok = Tok.lower();
894     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
895       Op.SingletonReg = Reg->TheDef;
896     return;
897   }
898 
899   if (!Tok.startswith(RegisterPrefix))
900     return;
901 
902   StringRef RegName = Tok.substr(RegisterPrefix.size());
903   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
904     Op.SingletonReg = Reg->TheDef;
905 
906   // If there is no register prefix (i.e. "%" in "%eax"), then this may
907   // be some random non-register token, just ignore it.
908 }
909 
910 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
911                                SmallPtrSetImpl<Record*> &SingletonRegisters,
912                                AsmVariantInfo const &Variant,
913                                bool HasMnemonicFirst) {
914   AsmVariantID = Variant.AsmVariantNo;
915   AsmString =
916     CodeGenInstruction::FlattenAsmStringVariants(AsmString,
917                                                  Variant.AsmVariantNo);
918 
919   tokenizeAsmString(Info, Variant);
920 
921   // The first token of the instruction is the mnemonic, which must be a
922   // simple string, not a $foo variable or a singleton register.
923   if (AsmOperands.empty())
924     PrintFatalError(TheDef->getLoc(),
925                   "Instruction '" + TheDef->getName() + "' has no tokens");
926 
927   assert(!AsmOperands[0].Token.empty());
928   if (HasMnemonicFirst) {
929     Mnemonic = AsmOperands[0].Token;
930     if (Mnemonic[0] == '$')
931       PrintFatalError(TheDef->getLoc(),
932                       "Invalid instruction mnemonic '" + Mnemonic + "'!");
933 
934     // Remove the first operand, it is tracked in the mnemonic field.
935     AsmOperands.erase(AsmOperands.begin());
936   } else if (AsmOperands[0].Token[0] != '$')
937     Mnemonic = AsmOperands[0].Token;
938 
939   // Compute the require features.
940   for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates"))
941     if (const SubtargetFeatureInfo *Feature =
942             Info.getSubtargetFeature(Predicate))
943       RequiredFeatures.push_back(Feature);
944 
945   // Collect singleton registers, if used.
946   for (MatchableInfo::AsmOperand &Op : AsmOperands) {
947     extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix);
948     if (Record *Reg = Op.SingletonReg)
949       SingletonRegisters.insert(Reg);
950   }
951 
952   const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask");
953   if (!DepMask)
954     DepMask = TheDef->getValue("ComplexDeprecationPredicate");
955 
956   HasDeprecation =
957       DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false;
958 }
959 
960 /// Append an AsmOperand for the given substring of AsmString.
961 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) {
962   AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token));
963 }
964 
965 /// tokenizeAsmString - Tokenize a simplified assembly string.
966 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info,
967                                       AsmVariantInfo const &Variant) {
968   StringRef String = AsmString;
969   size_t Prev = 0;
970   bool InTok = false;
971   bool IsIsolatedToken = true;
972   for (size_t i = 0, e = String.size(); i != e; ++i) {
973     char Char = String[i];
974     if (Variant.BreakCharacters.find(Char) != std::string::npos) {
975       if (InTok) {
976         addAsmOperand(String.slice(Prev, i), false);
977         Prev = i;
978         IsIsolatedToken = false;
979       }
980       InTok = true;
981       continue;
982     }
983     if (Variant.TokenizingCharacters.find(Char) != std::string::npos) {
984       if (InTok) {
985         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
986         InTok = false;
987         IsIsolatedToken = false;
988       }
989       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
990       Prev = i + 1;
991       IsIsolatedToken = true;
992       continue;
993     }
994     if (Variant.SeparatorCharacters.find(Char) != std::string::npos) {
995       if (InTok) {
996         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
997         InTok = false;
998       }
999       Prev = i + 1;
1000       IsIsolatedToken = true;
1001       continue;
1002     }
1003 
1004     switch (Char) {
1005     case '\\':
1006       if (InTok) {
1007         addAsmOperand(String.slice(Prev, i), false);
1008         InTok = false;
1009         IsIsolatedToken = false;
1010       }
1011       ++i;
1012       assert(i != String.size() && "Invalid quoted character");
1013       addAsmOperand(String.slice(i, i + 1), IsIsolatedToken);
1014       Prev = i + 1;
1015       IsIsolatedToken = false;
1016       break;
1017 
1018     case '$': {
1019       if (InTok) {
1020         addAsmOperand(String.slice(Prev, i), IsIsolatedToken);
1021         InTok = false;
1022         IsIsolatedToken = false;
1023       }
1024 
1025       // If this isn't "${", start new identifier looking like "$xxx"
1026       if (i + 1 == String.size() || String[i + 1] != '{') {
1027         Prev = i;
1028         break;
1029       }
1030 
1031       size_t EndPos = String.find('}', i);
1032       assert(EndPos != StringRef::npos &&
1033              "Missing brace in operand reference!");
1034       addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken);
1035       Prev = EndPos + 1;
1036       i = EndPos;
1037       IsIsolatedToken = false;
1038       break;
1039     }
1040 
1041     default:
1042       InTok = true;
1043       break;
1044     }
1045   }
1046   if (InTok && Prev != String.size())
1047     addAsmOperand(String.substr(Prev), IsIsolatedToken);
1048 }
1049 
1050 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const {
1051   // Reject matchables with no .s string.
1052   if (AsmString.empty())
1053     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
1054 
1055   // Reject any matchables with a newline in them, they should be marked
1056   // isCodeGenOnly if they are pseudo instructions.
1057   if (AsmString.find('\n') != std::string::npos)
1058     PrintFatalError(TheDef->getLoc(),
1059                   "multiline instruction is not valid for the asmparser, "
1060                   "mark it isCodeGenOnly");
1061 
1062   // Remove comments from the asm string.  We know that the asmstring only
1063   // has one line.
1064   if (!CommentDelimiter.empty() &&
1065       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
1066     PrintFatalError(TheDef->getLoc(),
1067                   "asmstring for instruction has comment character in it, "
1068                   "mark it isCodeGenOnly");
1069 
1070   // Reject matchables with operand modifiers, these aren't something we can
1071   // handle, the target should be refactored to use operands instead of
1072   // modifiers.
1073   //
1074   // Also, check for instructions which reference the operand multiple times,
1075   // if they don't define a custom AsmMatcher: this implies a constraint that
1076   // the built-in matching code would not honor.
1077   std::set<std::string> OperandNames;
1078   for (const AsmOperand &Op : AsmOperands) {
1079     StringRef Tok = Op.Token;
1080     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
1081       PrintFatalError(TheDef->getLoc(),
1082                       "matchable with operand modifier '" + Tok +
1083                       "' not supported by asm matcher.  Mark isCodeGenOnly!");
1084     // Verify that any operand is only mentioned once.
1085     // We reject aliases and ignore instructions for now.
1086     if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() &&
1087         Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) {
1088       LLVM_DEBUG({
1089         errs() << "warning: '" << TheDef->getName() << "': "
1090                << "ignoring instruction with tied operand '"
1091                << Tok << "'\n";
1092       });
1093       return false;
1094     }
1095   }
1096 
1097   return true;
1098 }
1099 
1100 static std::string getEnumNameForToken(StringRef Str) {
1101   std::string Res;
1102 
1103   for (char C : Str) {
1104     switch (C) {
1105     case '*': Res += "_STAR_"; break;
1106     case '%': Res += "_PCT_"; break;
1107     case ':': Res += "_COLON_"; break;
1108     case '!': Res += "_EXCLAIM_"; break;
1109     case '.': Res += "_DOT_"; break;
1110     case '<': Res += "_LT_"; break;
1111     case '>': Res += "_GT_"; break;
1112     case '-': Res += "_MINUS_"; break;
1113     case '#': Res += "_HASH_"; break;
1114     default:
1115       if (isAlnum(C))
1116         Res += C;
1117       else
1118         Res += "_" + utostr((unsigned)C) + "_";
1119     }
1120   }
1121 
1122   return Res;
1123 }
1124 
1125 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
1126   ClassInfo *&Entry = TokenClasses[std::string(Token)];
1127 
1128   if (!Entry) {
1129     Classes.emplace_front();
1130     Entry = &Classes.front();
1131     Entry->Kind = ClassInfo::Token;
1132     Entry->ClassName = "Token";
1133     Entry->Name = "MCK_" + getEnumNameForToken(Token);
1134     Entry->ValueName = std::string(Token);
1135     Entry->PredicateMethod = "<invalid>";
1136     Entry->RenderMethod = "<invalid>";
1137     Entry->ParserMethod = "";
1138     Entry->DiagnosticType = "";
1139     Entry->IsOptional = false;
1140     Entry->DefaultMethod = "<invalid>";
1141   }
1142 
1143   return Entry;
1144 }
1145 
1146 ClassInfo *
1147 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
1148                                 int SubOpIdx) {
1149   Record *Rec = OI.Rec;
1150   if (SubOpIdx != -1)
1151     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
1152   return getOperandClass(Rec, SubOpIdx);
1153 }
1154 
1155 ClassInfo *
1156 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1157   if (Rec->isSubClassOf("RegisterOperand")) {
1158     // RegisterOperand may have an associated ParserMatchClass. If it does,
1159     // use it, else just fall back to the underlying register class.
1160     const RecordVal *R = Rec->getValue("ParserMatchClass");
1161     if (!R || !R->getValue())
1162       PrintFatalError(Rec->getLoc(),
1163                       "Record `" + Rec->getName() +
1164                           "' does not have a ParserMatchClass!\n");
1165 
1166     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
1167       Record *MatchClass = DI->getDef();
1168       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1169         return CI;
1170     }
1171 
1172     // No custom match class. Just use the register class.
1173     Record *ClassRec = Rec->getValueAsDef("RegClass");
1174     if (!ClassRec)
1175       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1176                     "' has no associated register class!\n");
1177     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1178       return CI;
1179     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1180   }
1181 
1182   if (Rec->isSubClassOf("RegisterClass")) {
1183     if (ClassInfo *CI = RegisterClassClasses[Rec])
1184       return CI;
1185     PrintFatalError(Rec->getLoc(), "register class has no class info!");
1186   }
1187 
1188   if (!Rec->isSubClassOf("Operand"))
1189     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
1190                   "' does not derive from class Operand!\n");
1191   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1192   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1193     return CI;
1194 
1195   PrintFatalError(Rec->getLoc(), "operand has no match class!");
1196 }
1197 
1198 struct LessRegisterSet {
1199   bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const {
1200     // std::set<T> defines its own compariso "operator<", but it
1201     // performs a lexicographical comparison by T's innate comparison
1202     // for some reason. We don't want non-deterministic pointer
1203     // comparisons so use this instead.
1204     return std::lexicographical_compare(LHS.begin(), LHS.end(),
1205                                         RHS.begin(), RHS.end(),
1206                                         LessRecordByID());
1207   }
1208 };
1209 
1210 void AsmMatcherInfo::
1211 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) {
1212   const auto &Registers = Target.getRegBank().getRegisters();
1213   auto &RegClassList = Target.getRegBank().getRegClasses();
1214 
1215   typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet;
1216 
1217   // The register sets used for matching.
1218   RegisterSetSet RegisterSets;
1219 
1220   // Gather the defined sets.
1221   for (const CodeGenRegisterClass &RC : RegClassList)
1222     RegisterSets.insert(
1223         RegisterSet(RC.getOrder().begin(), RC.getOrder().end()));
1224 
1225   // Add any required singleton sets.
1226   for (Record *Rec : SingletonRegisters) {
1227     RegisterSets.insert(RegisterSet(&Rec, &Rec + 1));
1228   }
1229 
1230   // Introduce derived sets where necessary (when a register does not determine
1231   // a unique register set class), and build the mapping of registers to the set
1232   // they should classify to.
1233   std::map<Record*, RegisterSet> RegisterMap;
1234   for (const CodeGenRegister &CGR : Registers) {
1235     // Compute the intersection of all sets containing this register.
1236     RegisterSet ContainingSet;
1237 
1238     for (const RegisterSet &RS : RegisterSets) {
1239       if (!RS.count(CGR.TheDef))
1240         continue;
1241 
1242       if (ContainingSet.empty()) {
1243         ContainingSet = RS;
1244         continue;
1245       }
1246 
1247       RegisterSet Tmp;
1248       std::swap(Tmp, ContainingSet);
1249       std::insert_iterator<RegisterSet> II(ContainingSet,
1250                                            ContainingSet.begin());
1251       std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II,
1252                             LessRecordByID());
1253     }
1254 
1255     if (!ContainingSet.empty()) {
1256       RegisterSets.insert(ContainingSet);
1257       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1258     }
1259   }
1260 
1261   // Construct the register classes.
1262   std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses;
1263   unsigned Index = 0;
1264   for (const RegisterSet &RS : RegisterSets) {
1265     Classes.emplace_front();
1266     ClassInfo *CI = &Classes.front();
1267     CI->Kind = ClassInfo::RegisterClass0 + Index;
1268     CI->ClassName = "Reg" + utostr(Index);
1269     CI->Name = "MCK_Reg" + utostr(Index);
1270     CI->ValueName = "";
1271     CI->PredicateMethod = ""; // unused
1272     CI->RenderMethod = "addRegOperands";
1273     CI->Registers = RS;
1274     // FIXME: diagnostic type.
1275     CI->DiagnosticType = "";
1276     CI->IsOptional = false;
1277     CI->DefaultMethod = ""; // unused
1278     RegisterSetClasses.insert(std::make_pair(RS, CI));
1279     ++Index;
1280   }
1281 
1282   // Find the superclasses; we could compute only the subgroup lattice edges,
1283   // but there isn't really a point.
1284   for (const RegisterSet &RS : RegisterSets) {
1285     ClassInfo *CI = RegisterSetClasses[RS];
1286     for (const RegisterSet &RS2 : RegisterSets)
1287       if (RS != RS2 &&
1288           std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(),
1289                         LessRecordByID()))
1290         CI->SuperClasses.push_back(RegisterSetClasses[RS2]);
1291   }
1292 
1293   // Name the register classes which correspond to a user defined RegisterClass.
1294   for (const CodeGenRegisterClass &RC : RegClassList) {
1295     // Def will be NULL for non-user defined register classes.
1296     Record *Def = RC.getDef();
1297     if (!Def)
1298       continue;
1299     ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(),
1300                                                    RC.getOrder().end())];
1301     if (CI->ValueName.empty()) {
1302       CI->ClassName = RC.getName();
1303       CI->Name = "MCK_" + RC.getName();
1304       CI->ValueName = RC.getName();
1305     } else
1306       CI->ValueName = CI->ValueName + "," + RC.getName();
1307 
1308     Init *DiagnosticType = Def->getValueInit("DiagnosticType");
1309     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1310       CI->DiagnosticType = std::string(SI->getValue());
1311 
1312     Init *DiagnosticString = Def->getValueInit("DiagnosticString");
1313     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1314       CI->DiagnosticString = std::string(SI->getValue());
1315 
1316     // If we have a diagnostic string but the diagnostic type is not specified
1317     // explicitly, create an anonymous diagnostic type.
1318     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1319       CI->DiagnosticType = RC.getName();
1320 
1321     RegisterClassClasses.insert(std::make_pair(Def, CI));
1322   }
1323 
1324   // Populate the map for individual registers.
1325   for (auto &It : RegisterMap)
1326     RegisterClasses[It.first] = RegisterSetClasses[It.second];
1327 
1328   // Name the register classes which correspond to singleton registers.
1329   for (Record *Rec : SingletonRegisters) {
1330     ClassInfo *CI = RegisterClasses[Rec];
1331     assert(CI && "Missing singleton register class info!");
1332 
1333     if (CI->ValueName.empty()) {
1334       CI->ClassName = std::string(Rec->getName());
1335       CI->Name = "MCK_" + Rec->getName().str();
1336       CI->ValueName = std::string(Rec->getName());
1337     } else
1338       CI->ValueName = CI->ValueName + "," + Rec->getName().str();
1339   }
1340 }
1341 
1342 void AsmMatcherInfo::buildOperandClasses() {
1343   std::vector<Record*> AsmOperands =
1344     Records.getAllDerivedDefinitions("AsmOperandClass");
1345 
1346   // Pre-populate AsmOperandClasses map.
1347   for (Record *Rec : AsmOperands) {
1348     Classes.emplace_front();
1349     AsmOperandClasses[Rec] = &Classes.front();
1350   }
1351 
1352   unsigned Index = 0;
1353   for (Record *Rec : AsmOperands) {
1354     ClassInfo *CI = AsmOperandClasses[Rec];
1355     CI->Kind = ClassInfo::UserClass0 + Index;
1356 
1357     ListInit *Supers = Rec->getValueAsListInit("SuperClasses");
1358     for (Init *I : Supers->getValues()) {
1359       DefInit *DI = dyn_cast<DefInit>(I);
1360       if (!DI) {
1361         PrintError(Rec->getLoc(), "Invalid super class reference!");
1362         continue;
1363       }
1364 
1365       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1366       if (!SC)
1367         PrintError(Rec->getLoc(), "Invalid super class reference!");
1368       else
1369         CI->SuperClasses.push_back(SC);
1370     }
1371     CI->ClassName = std::string(Rec->getValueAsString("Name"));
1372     CI->Name = "MCK_" + CI->ClassName;
1373     CI->ValueName = std::string(Rec->getName());
1374 
1375     // Get or construct the predicate method name.
1376     Init *PMName = Rec->getValueInit("PredicateMethod");
1377     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
1378       CI->PredicateMethod = std::string(SI->getValue());
1379     } else {
1380       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
1381       CI->PredicateMethod = "is" + CI->ClassName;
1382     }
1383 
1384     // Get or construct the render method name.
1385     Init *RMName = Rec->getValueInit("RenderMethod");
1386     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
1387       CI->RenderMethod = std::string(SI->getValue());
1388     } else {
1389       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
1390       CI->RenderMethod = "add" + CI->ClassName + "Operands";
1391     }
1392 
1393     // Get the parse method name or leave it as empty.
1394     Init *PRMName = Rec->getValueInit("ParserMethod");
1395     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
1396       CI->ParserMethod = std::string(SI->getValue());
1397 
1398     // Get the diagnostic type and string or leave them as empty.
1399     Init *DiagnosticType = Rec->getValueInit("DiagnosticType");
1400     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
1401       CI->DiagnosticType = std::string(SI->getValue());
1402     Init *DiagnosticString = Rec->getValueInit("DiagnosticString");
1403     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString))
1404       CI->DiagnosticString = std::string(SI->getValue());
1405     // If we have a DiagnosticString, we need a DiagnosticType for use within
1406     // the matcher.
1407     if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty())
1408       CI->DiagnosticType = CI->ClassName;
1409 
1410     Init *IsOptional = Rec->getValueInit("IsOptional");
1411     if (BitInit *BI = dyn_cast<BitInit>(IsOptional))
1412       CI->IsOptional = BI->getValue();
1413 
1414     // Get or construct the default method name.
1415     Init *DMName = Rec->getValueInit("DefaultMethod");
1416     if (StringInit *SI = dyn_cast<StringInit>(DMName)) {
1417       CI->DefaultMethod = std::string(SI->getValue());
1418     } else {
1419       assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!");
1420       CI->DefaultMethod = "default" + CI->ClassName + "Operands";
1421     }
1422 
1423     ++Index;
1424   }
1425 }
1426 
1427 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1428                                CodeGenTarget &target,
1429                                RecordKeeper &records)
1430   : Records(records), AsmParser(asmParser), Target(target) {
1431 }
1432 
1433 /// buildOperandMatchInfo - Build the necessary information to handle user
1434 /// defined operand parsing methods.
1435 void AsmMatcherInfo::buildOperandMatchInfo() {
1436 
1437   /// Map containing a mask with all operands indices that can be found for
1438   /// that class inside a instruction.
1439   typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy;
1440   OpClassMaskTy OpClassMask;
1441 
1442   for (const auto &MI : Matchables) {
1443     OpClassMask.clear();
1444 
1445     // Keep track of all operands of this instructions which belong to the
1446     // same class.
1447     for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) {
1448       const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i];
1449       if (Op.Class->ParserMethod.empty())
1450         continue;
1451       unsigned &OperandMask = OpClassMask[Op.Class];
1452       OperandMask |= (1 << i);
1453     }
1454 
1455     // Generate operand match info for each mnemonic/operand class pair.
1456     for (const auto &OCM : OpClassMask) {
1457       unsigned OpMask = OCM.second;
1458       ClassInfo *CI = OCM.first;
1459       OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI,
1460                                                            OpMask));
1461     }
1462   }
1463 }
1464 
1465 void AsmMatcherInfo::buildInfo() {
1466   // Build information about all of the AssemblerPredicates.
1467   const std::vector<std::pair<Record *, SubtargetFeatureInfo>>
1468       &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records);
1469   SubtargetFeatures.insert(SubtargetFeaturePairs.begin(),
1470                            SubtargetFeaturePairs.end());
1471 #ifndef NDEBUG
1472   for (const auto &Pair : SubtargetFeatures)
1473     LLVM_DEBUG(Pair.second.dump());
1474 #endif // NDEBUG
1475 
1476   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
1477   bool ReportMultipleNearMisses =
1478       AsmParser->getValueAsBit("ReportMultipleNearMisses");
1479 
1480   // Parse the instructions; we need to do this first so that we can gather the
1481   // singleton register classes.
1482   SmallPtrSet<Record*, 16> SingletonRegisters;
1483   unsigned VariantCount = Target.getAsmParserVariantCount();
1484   for (unsigned VC = 0; VC != VariantCount; ++VC) {
1485     Record *AsmVariant = Target.getAsmParserVariant(VC);
1486     StringRef CommentDelimiter =
1487         AsmVariant->getValueAsString("CommentDelimiter");
1488     AsmVariantInfo Variant;
1489     Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1490     Variant.TokenizingCharacters =
1491         AsmVariant->getValueAsString("TokenizingCharacters");
1492     Variant.SeparatorCharacters =
1493         AsmVariant->getValueAsString("SeparatorCharacters");
1494     Variant.BreakCharacters =
1495         AsmVariant->getValueAsString("BreakCharacters");
1496     Variant.Name = AsmVariant->getValueAsString("Name");
1497     Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1498 
1499     for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) {
1500 
1501       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1502       // filter the set of instructions we consider.
1503       if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix))
1504         continue;
1505 
1506       // Ignore "codegen only" instructions.
1507       if (CGI->TheDef->getValueAsBit("isCodeGenOnly"))
1508         continue;
1509 
1510       // Ignore instructions for different instructions
1511       StringRef V = CGI->TheDef->getValueAsString("AsmVariantName");
1512       if (!V.empty() && V != Variant.Name)
1513         continue;
1514 
1515       auto II = std::make_unique<MatchableInfo>(*CGI);
1516 
1517       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1518 
1519       // Ignore instructions which shouldn't be matched and diagnose invalid
1520       // instruction definitions with an error.
1521       if (!II->validate(CommentDelimiter, false))
1522         continue;
1523 
1524       Matchables.push_back(std::move(II));
1525     }
1526 
1527     // Parse all of the InstAlias definitions and stick them in the list of
1528     // matchables.
1529     std::vector<Record*> AllInstAliases =
1530       Records.getAllDerivedDefinitions("InstAlias");
1531     for (Record *InstAlias : AllInstAliases) {
1532       auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target);
1533 
1534       // If the tblgen -match-prefix option is specified (for tblgen hackers),
1535       // filter the set of instruction aliases we consider, based on the target
1536       // instruction.
1537       if (!StringRef(Alias->ResultInst->TheDef->getName())
1538             .startswith( MatchPrefix))
1539         continue;
1540 
1541       StringRef V = Alias->TheDef->getValueAsString("AsmVariantName");
1542       if (!V.empty() && V != Variant.Name)
1543         continue;
1544 
1545       auto II = std::make_unique<MatchableInfo>(std::move(Alias));
1546 
1547       II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst);
1548 
1549       // Validate the alias definitions.
1550       II->validate(CommentDelimiter, true);
1551 
1552       Matchables.push_back(std::move(II));
1553     }
1554   }
1555 
1556   // Build info for the register classes.
1557   buildRegisterClasses(SingletonRegisters);
1558 
1559   // Build info for the user defined assembly operand classes.
1560   buildOperandClasses();
1561 
1562   // Build the information about matchables, now that we have fully formed
1563   // classes.
1564   std::vector<std::unique_ptr<MatchableInfo>> NewMatchables;
1565   for (auto &II : Matchables) {
1566     // Parse the tokens after the mnemonic.
1567     // Note: buildInstructionOperandReference may insert new AsmOperands, so
1568     // don't precompute the loop bound.
1569     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1570       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1571       StringRef Token = Op.Token;
1572 
1573       // Check for singleton registers.
1574       if (Record *RegRecord = Op.SingletonReg) {
1575         Op.Class = RegisterClasses[RegRecord];
1576         assert(Op.Class && Op.Class->Registers.size() == 1 &&
1577                "Unexpected class for singleton register");
1578         continue;
1579       }
1580 
1581       // Check for simple tokens.
1582       if (Token[0] != '$') {
1583         Op.Class = getTokenClass(Token);
1584         continue;
1585       }
1586 
1587       if (Token.size() > 1 && isdigit(Token[1])) {
1588         Op.Class = getTokenClass(Token);
1589         continue;
1590       }
1591 
1592       // Otherwise this is an operand reference.
1593       StringRef OperandName;
1594       if (Token[1] == '{')
1595         OperandName = Token.substr(2, Token.size() - 3);
1596       else
1597         OperandName = Token.substr(1);
1598 
1599       if (II->DefRec.is<const CodeGenInstruction*>())
1600         buildInstructionOperandReference(II.get(), OperandName, i);
1601       else
1602         buildAliasOperandReference(II.get(), OperandName, Op);
1603     }
1604 
1605     if (II->DefRec.is<const CodeGenInstruction*>()) {
1606       II->buildInstructionResultOperands();
1607       // If the instruction has a two-operand alias, build up the
1608       // matchable here. We'll add them in bulk at the end to avoid
1609       // confusing this loop.
1610       StringRef Constraint =
1611           II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1612       if (Constraint != "") {
1613         // Start by making a copy of the original matchable.
1614         auto AliasII = std::make_unique<MatchableInfo>(*II);
1615 
1616         // Adjust it to be a two-operand alias.
1617         AliasII->formTwoOperandAlias(Constraint);
1618 
1619         // Add the alias to the matchables list.
1620         NewMatchables.push_back(std::move(AliasII));
1621       }
1622     } else
1623       // FIXME: The tied operands checking is not yet integrated with the
1624       // framework for reporting multiple near misses. To prevent invalid
1625       // formats from being matched with an alias if a tied-operands check
1626       // would otherwise have disallowed it, we just disallow such constructs
1627       // in TableGen completely.
1628       II->buildAliasResultOperands(!ReportMultipleNearMisses);
1629   }
1630   if (!NewMatchables.empty())
1631     Matchables.insert(Matchables.end(),
1632                       std::make_move_iterator(NewMatchables.begin()),
1633                       std::make_move_iterator(NewMatchables.end()));
1634 
1635   // Process token alias definitions and set up the associated superclass
1636   // information.
1637   std::vector<Record*> AllTokenAliases =
1638     Records.getAllDerivedDefinitions("TokenAlias");
1639   for (Record *Rec : AllTokenAliases) {
1640     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1641     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1642     if (FromClass == ToClass)
1643       PrintFatalError(Rec->getLoc(),
1644                     "error: Destination value identical to source value.");
1645     FromClass->SuperClasses.push_back(ToClass);
1646   }
1647 
1648   // Reorder classes so that classes precede super classes.
1649   Classes.sort();
1650 
1651 #ifdef EXPENSIVE_CHECKS
1652   // Verify that the table is sorted and operator < works transitively.
1653   for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) {
1654     for (auto J = I; J != E; ++J) {
1655       assert(!(*J < *I));
1656       assert(I == J || !J->isSubsetOf(*I));
1657     }
1658   }
1659 #endif
1660 }
1661 
1662 /// buildInstructionOperandReference - The specified operand is a reference to a
1663 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1664 void AsmMatcherInfo::
1665 buildInstructionOperandReference(MatchableInfo *II,
1666                                  StringRef OperandName,
1667                                  unsigned AsmOpIdx) {
1668   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1669   const CGIOperandList &Operands = CGI.Operands;
1670   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1671 
1672   // Map this token to an operand.
1673   unsigned Idx;
1674   if (!Operands.hasOperandNamed(OperandName, Idx))
1675     PrintFatalError(II->TheDef->getLoc(),
1676                     "error: unable to find operand: '" + OperandName + "'");
1677 
1678   // If the instruction operand has multiple suboperands, but the parser
1679   // match class for the asm operand is still the default "ImmAsmOperand",
1680   // then handle each suboperand separately.
1681   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1682     Record *Rec = Operands[Idx].Rec;
1683     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1684     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1685     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1686       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1687       StringRef Token = Op->Token; // save this in case Op gets moved
1688       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1689         MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token);
1690         NewAsmOp.SubOpIdx = SI;
1691         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1692       }
1693       // Replace Op with first suboperand.
1694       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1695       Op->SubOpIdx = 0;
1696     }
1697   }
1698 
1699   // Set up the operand class.
1700   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1701   Op->OrigSrcOpName = OperandName;
1702 
1703   // If the named operand is tied, canonicalize it to the untied operand.
1704   // For example, something like:
1705   //   (outs GPR:$dst), (ins GPR:$src)
1706   // with an asmstring of
1707   //   "inc $src"
1708   // we want to canonicalize to:
1709   //   "inc $dst"
1710   // so that we know how to provide the $dst operand when filling in the result.
1711   int OITied = -1;
1712   if (Operands[Idx].MINumOperands == 1)
1713     OITied = Operands[Idx].getTiedRegister();
1714   if (OITied != -1) {
1715     // The tied operand index is an MIOperand index, find the operand that
1716     // contains it.
1717     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1718     OperandName = Operands[Idx.first].Name;
1719     Op->SubOpIdx = Idx.second;
1720   }
1721 
1722   Op->SrcOpName = OperandName;
1723 }
1724 
1725 /// buildAliasOperandReference - When parsing an operand reference out of the
1726 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1727 /// operand reference is by looking it up in the result pattern definition.
1728 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1729                                                 StringRef OperandName,
1730                                                 MatchableInfo::AsmOperand &Op) {
1731   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1732 
1733   // Set up the operand class.
1734   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1735     if (CGA.ResultOperands[i].isRecord() &&
1736         CGA.ResultOperands[i].getName() == OperandName) {
1737       // It's safe to go with the first one we find, because CodeGenInstAlias
1738       // validates that all operands with the same name have the same record.
1739       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1740       // Use the match class from the Alias definition, not the
1741       // destination instruction, as we may have an immediate that's
1742       // being munged by the match class.
1743       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1744                                  Op.SubOpIdx);
1745       Op.SrcOpName = OperandName;
1746       Op.OrigSrcOpName = OperandName;
1747       return;
1748     }
1749 
1750   PrintFatalError(II->TheDef->getLoc(),
1751                   "error: unable to find operand: '" + OperandName + "'");
1752 }
1753 
1754 void MatchableInfo::buildInstructionResultOperands() {
1755   const CodeGenInstruction *ResultInst = getResultInst();
1756 
1757   // Loop over all operands of the result instruction, determining how to
1758   // populate them.
1759   for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) {
1760     // If this is a tied operand, just copy from the previously handled operand.
1761     int TiedOp = -1;
1762     if (OpInfo.MINumOperands == 1)
1763       TiedOp = OpInfo.getTiedRegister();
1764     if (TiedOp != -1) {
1765       int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name);
1766       if (TiedSrcOperand != -1 &&
1767           ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand)
1768         ResOperands.push_back(ResOperand::getTiedOp(
1769             TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand));
1770       else
1771         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0));
1772       continue;
1773     }
1774 
1775     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1776     if (OpInfo.Name.empty() || SrcOperand == -1) {
1777       // This may happen for operands that are tied to a suboperand of a
1778       // complex operand.  Simply use a dummy value here; nobody should
1779       // use this operand slot.
1780       // FIXME: The long term goal is for the MCOperand list to not contain
1781       // tied operands at all.
1782       ResOperands.push_back(ResOperand::getImmOp(0));
1783       continue;
1784     }
1785 
1786     // Check if the one AsmOperand populates the entire operand.
1787     unsigned NumOperands = OpInfo.MINumOperands;
1788     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1789       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1790       continue;
1791     }
1792 
1793     // Add a separate ResOperand for each suboperand.
1794     for (unsigned AI = 0; AI < NumOperands; ++AI) {
1795       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1796              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1797              "unexpected AsmOperands for suboperands");
1798       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1799     }
1800   }
1801 }
1802 
1803 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) {
1804   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1805   const CodeGenInstruction *ResultInst = getResultInst();
1806 
1807   // Map of:  $reg -> #lastref
1808   //   where $reg is the name of the operand in the asm string
1809   //   where #lastref is the last processed index where $reg was referenced in
1810   //   the asm string.
1811   SmallDenseMap<StringRef, int> OperandRefs;
1812 
1813   // Loop over all operands of the result instruction, determining how to
1814   // populate them.
1815   unsigned AliasOpNo = 0;
1816   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1817   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1818     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1819 
1820     // If this is a tied operand, just copy from the previously handled operand.
1821     int TiedOp = -1;
1822     if (OpInfo->MINumOperands == 1)
1823       TiedOp = OpInfo->getTiedRegister();
1824     if (TiedOp != -1) {
1825       unsigned SrcOp1 = 0;
1826       unsigned SrcOp2 = 0;
1827 
1828       // If an operand has been specified twice in the asm string,
1829       // add the two source operand's indices to the TiedOp so that
1830       // at runtime the 'tied' constraint is checked.
1831       if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) {
1832         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1833 
1834         // Find the next operand (similarly named operand) in the string.
1835         StringRef Name = AsmOperands[SrcOp1].SrcOpName;
1836         auto Insert = OperandRefs.try_emplace(Name, SrcOp1);
1837         SrcOp2 = findAsmOperandNamed(Name, Insert.first->second);
1838 
1839         // Not updating the record in OperandRefs will cause TableGen
1840         // to fail with an error at the end of this function.
1841         if (AliasConstraintsAreChecked)
1842           Insert.first->second = SrcOp2;
1843 
1844         // In case it only has one reference in the asm string,
1845         // it doesn't need to be checked for tied constraints.
1846         SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2;
1847       }
1848 
1849       // If the alias operand is of a different operand class, we only want
1850       // to benefit from the tied-operands check and just match the operand
1851       // as a normal, but not copy the original (TiedOp) to the result
1852       // instruction. We do this by passing -1 as the tied operand to copy.
1853       if (ResultInst->Operands[i].Rec->getName() !=
1854           ResultInst->Operands[TiedOp].Rec->getName()) {
1855         SrcOp1 = ResOperands[TiedOp].AsmOperandNum;
1856         int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1857         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1858         SrcOp2 = findAsmOperand(Name, SubIdx);
1859         ResOperands.push_back(
1860             ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2));
1861       } else {
1862         ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2));
1863         continue;
1864       }
1865     }
1866 
1867     // Handle all the suboperands for this operand.
1868     const std::string &OpName = OpInfo->Name;
1869     for ( ; AliasOpNo <  LastOpNo &&
1870             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1871       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1872 
1873       // Find out what operand from the asmparser that this MCInst operand
1874       // comes from.
1875       switch (CGA.ResultOperands[AliasOpNo].Kind) {
1876       case CodeGenInstAlias::ResultOperand::K_Record: {
1877         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1878         int SrcOperand = findAsmOperand(Name, SubIdx);
1879         if (SrcOperand == -1)
1880           PrintFatalError(TheDef->getLoc(), "Instruction '" +
1881                         TheDef->getName() + "' has operand '" + OpName +
1882                         "' that doesn't appear in asm string!");
1883 
1884         // Add it to the operand references. If it is added a second time, the
1885         // record won't be updated and it will fail later on.
1886         OperandRefs.try_emplace(Name, SrcOperand);
1887 
1888         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1889         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1890                                                         NumOperands));
1891         break;
1892       }
1893       case CodeGenInstAlias::ResultOperand::K_Imm: {
1894         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1895         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1896         break;
1897       }
1898       case CodeGenInstAlias::ResultOperand::K_Reg: {
1899         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1900         ResOperands.push_back(ResOperand::getRegOp(Reg));
1901         break;
1902       }
1903       }
1904     }
1905   }
1906 
1907   // Check that operands are not repeated more times than is supported.
1908   for (auto &T : OperandRefs) {
1909     if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1)
1910       PrintFatalError(TheDef->getLoc(),
1911                       "Operand '" + T.first + "' can never be matched");
1912   }
1913 }
1914 
1915 static unsigned
1916 getConverterOperandID(const std::string &Name,
1917                       SmallSetVector<CachedHashString, 16> &Table,
1918                       bool &IsNew) {
1919   IsNew = Table.insert(CachedHashString(Name));
1920 
1921   unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin();
1922 
1923   assert(ID < Table.size());
1924 
1925   return ID;
1926 }
1927 
1928 static unsigned
1929 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1930                  std::vector<std::unique_ptr<MatchableInfo>> &Infos,
1931                  bool HasMnemonicFirst, bool HasOptionalOperands,
1932                  raw_ostream &OS) {
1933   SmallSetVector<CachedHashString, 16> OperandConversionKinds;
1934   SmallSetVector<CachedHashString, 16> InstructionConversionKinds;
1935   std::vector<std::vector<uint8_t> > ConversionTable;
1936   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1937 
1938   // TargetOperandClass - This is the target's operand class, like X86Operand.
1939   std::string TargetOperandClass = Target.getName().str() + "Operand";
1940 
1941   // Write the convert function to a separate stream, so we can drop it after
1942   // the enum. We'll build up the conversion handlers for the individual
1943   // operand types opportunistically as we encounter them.
1944   std::string ConvertFnBody;
1945   raw_string_ostream CvtOS(ConvertFnBody);
1946   // Start the unified conversion function.
1947   if (HasOptionalOperands) {
1948     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1949           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1950           << "unsigned Opcode,\n"
1951           << "                const OperandVector &Operands,\n"
1952           << "                const SmallBitVector &OptionalOperandsMask) {\n";
1953   } else {
1954     CvtOS << "void " << Target.getName() << ClassName << "::\n"
1955           << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1956           << "unsigned Opcode,\n"
1957           << "                const OperandVector &Operands) {\n";
1958   }
1959   CvtOS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
1960   CvtOS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
1961   if (HasOptionalOperands) {
1962     size_t MaxNumOperands = 0;
1963     for (const auto &MI : Infos) {
1964       MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
1965     }
1966     CvtOS << "  unsigned DefaultsOffset[" << (MaxNumOperands + 1)
1967           << "] = { 0 };\n";
1968     CvtOS << "  assert(OptionalOperandsMask.size() == " << (MaxNumOperands)
1969           << ");\n";
1970     CvtOS << "  for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands)
1971           << "; ++i) {\n";
1972     CvtOS << "    DefaultsOffset[i + 1] = NumDefaults;\n";
1973     CvtOS << "    NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n";
1974     CvtOS << "  }\n";
1975   }
1976   CvtOS << "  unsigned OpIdx;\n";
1977   CvtOS << "  Inst.setOpcode(Opcode);\n";
1978   CvtOS << "  for (const uint8_t *p = Converter; *p; p += 2) {\n";
1979   if (HasOptionalOperands) {
1980     CvtOS << "    OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n";
1981   } else {
1982     CvtOS << "    OpIdx = *(p + 1);\n";
1983   }
1984   CvtOS << "    switch (*p) {\n";
1985   CvtOS << "    default: llvm_unreachable(\"invalid conversion entry!\");\n";
1986   CvtOS << "    case CVT_Reg:\n";
1987   CvtOS << "      static_cast<" << TargetOperandClass
1988         << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n";
1989   CvtOS << "      break;\n";
1990   CvtOS << "    case CVT_Tied: {\n";
1991   CvtOS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
1992   CvtOS << "                              std::begin(TiedAsmOperandTable)) &&\n";
1993   CvtOS << "             \"Tied operand not found\");\n";
1994   CvtOS << "      unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n";
1995   CvtOS << "      if (TiedResOpnd != (uint8_t)-1)\n";
1996   CvtOS << "        Inst.addOperand(Inst.getOperand(TiedResOpnd));\n";
1997   CvtOS << "      break;\n";
1998   CvtOS << "    }\n";
1999 
2000   std::string OperandFnBody;
2001   raw_string_ostream OpOS(OperandFnBody);
2002   // Start the operand number lookup function.
2003   OpOS << "void " << Target.getName() << ClassName << "::\n"
2004        << "convertToMapAndConstraints(unsigned Kind,\n";
2005   OpOS.indent(27);
2006   OpOS << "const OperandVector &Operands) {\n"
2007        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
2008        << "  unsigned NumMCOperands = 0;\n"
2009        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
2010        << "  for (const uint8_t *p = Converter; *p; p += 2) {\n"
2011        << "    switch (*p) {\n"
2012        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
2013        << "    case CVT_Reg:\n"
2014        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2015        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
2016        << "      ++NumMCOperands;\n"
2017        << "      break;\n"
2018        << "    case CVT_Tied:\n"
2019        << "      ++NumMCOperands;\n"
2020        << "      break;\n";
2021 
2022   // Pre-populate the operand conversion kinds with the standard always
2023   // available entries.
2024   OperandConversionKinds.insert(CachedHashString("CVT_Done"));
2025   OperandConversionKinds.insert(CachedHashString("CVT_Reg"));
2026   OperandConversionKinds.insert(CachedHashString("CVT_Tied"));
2027   enum { CVT_Done, CVT_Reg, CVT_Tied };
2028 
2029   // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label.
2030   std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string>
2031   TiedOperandsEnumMap;
2032 
2033   for (auto &II : Infos) {
2034     // Check if we have a custom match function.
2035     StringRef AsmMatchConverter =
2036         II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
2037     if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) {
2038       std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str();
2039       II->ConversionFnKind = Signature;
2040 
2041       // Check if we have already generated this signature.
2042       if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2043         continue;
2044 
2045       // Remember this converter for the kind enum.
2046       unsigned KindID = OperandConversionKinds.size();
2047       OperandConversionKinds.insert(
2048           CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter)));
2049 
2050       // Add the converter row for this instruction.
2051       ConversionTable.emplace_back();
2052       ConversionTable.back().push_back(KindID);
2053       ConversionTable.back().push_back(CVT_Done);
2054 
2055       // Add the handler to the conversion driver function.
2056       CvtOS << "    case CVT_"
2057             << getEnumNameForToken(AsmMatchConverter) << ":\n"
2058             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
2059             << "      break;\n";
2060 
2061       // FIXME: Handle the operand number lookup for custom match functions.
2062       continue;
2063     }
2064 
2065     // Build the conversion function signature.
2066     std::string Signature = "Convert";
2067 
2068     std::vector<uint8_t> ConversionRow;
2069 
2070     // Compute the convert enum and the case body.
2071     MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 );
2072 
2073     for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) {
2074       const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i];
2075 
2076       // Generate code to populate each result operand.
2077       switch (OpInfo.Kind) {
2078       case MatchableInfo::ResOperand::RenderAsmOperand: {
2079         // This comes from something we parsed.
2080         const MatchableInfo::AsmOperand &Op =
2081           II->AsmOperands[OpInfo.AsmOperandNum];
2082 
2083         // Registers are always converted the same, don't duplicate the
2084         // conversion function based on them.
2085         Signature += "__";
2086         std::string Class;
2087         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
2088         Signature += Class;
2089         Signature += utostr(OpInfo.MINumOperands);
2090         Signature += "_" + itostr(OpInfo.AsmOperandNum);
2091 
2092         // Add the conversion kind, if necessary, and get the associated ID
2093         // the index of its entry in the vector).
2094         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
2095                                      Op.Class->RenderMethod);
2096         if (Op.Class->IsOptional) {
2097           // For optional operands we must also care about DefaultMethod
2098           assert(HasOptionalOperands);
2099           Name += "_" + Op.Class->DefaultMethod;
2100         }
2101         Name = getEnumNameForToken(Name);
2102 
2103         bool IsNewConverter = false;
2104         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2105                                             IsNewConverter);
2106 
2107         // Add the operand entry to the instruction kind conversion row.
2108         ConversionRow.push_back(ID);
2109         ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst);
2110 
2111         if (!IsNewConverter)
2112           break;
2113 
2114         // This is a new operand kind. Add a handler for it to the
2115         // converter driver.
2116         CvtOS << "    case " << Name << ":\n";
2117         if (Op.Class->IsOptional) {
2118           // If optional operand is not present in actual instruction then we
2119           // should call its DefaultMethod before RenderMethod
2120           assert(HasOptionalOperands);
2121           CvtOS << "      if (OptionalOperandsMask[*(p + 1) - 1]) {\n"
2122                 << "        " << Op.Class->DefaultMethod << "()"
2123                 << "->" << Op.Class->RenderMethod << "(Inst, "
2124                 << OpInfo.MINumOperands << ");\n"
2125                 << "      } else {\n"
2126                 << "        static_cast<" << TargetOperandClass
2127                 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2128                 << "(Inst, " << OpInfo.MINumOperands << ");\n"
2129                 << "      }\n";
2130         } else {
2131           CvtOS << "      static_cast<" << TargetOperandClass
2132                 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod
2133                 << "(Inst, " << OpInfo.MINumOperands << ");\n";
2134         }
2135         CvtOS << "      break;\n";
2136 
2137         // Add a handler for the operand number lookup.
2138         OpOS << "    case " << Name << ":\n"
2139              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
2140 
2141         if (Op.Class->isRegisterClass())
2142           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
2143         else
2144           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
2145         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
2146              << "      break;\n";
2147         break;
2148       }
2149       case MatchableInfo::ResOperand::TiedOperand: {
2150         // If this operand is tied to a previous one, just copy the MCInst
2151         // operand from the earlier one.We can only tie single MCOperand values.
2152         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
2153         uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd;
2154         uint8_t SrcOp1 =
2155             OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst;
2156         uint8_t SrcOp2 =
2157             OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst;
2158         assert((i > TiedOp || TiedOp == (uint8_t)-1) &&
2159                "Tied operand precedes its target!");
2160         auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' +
2161                              utostr(SrcOp1) + '_' + utostr(SrcOp2);
2162         Signature += "__" + TiedTupleName;
2163         ConversionRow.push_back(CVT_Tied);
2164         ConversionRow.push_back(TiedOp);
2165         ConversionRow.push_back(SrcOp1);
2166         ConversionRow.push_back(SrcOp2);
2167 
2168         // Also create an 'enum' for this combination of tied operands.
2169         auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2);
2170         TiedOperandsEnumMap.emplace(Key, TiedTupleName);
2171         break;
2172       }
2173       case MatchableInfo::ResOperand::ImmOperand: {
2174         int64_t Val = OpInfo.ImmVal;
2175         std::string Ty = "imm_" + itostr(Val);
2176         Ty = getEnumNameForToken(Ty);
2177         Signature += "__" + Ty;
2178 
2179         std::string Name = "CVT_" + Ty;
2180         bool IsNewConverter = false;
2181         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2182                                             IsNewConverter);
2183         // Add the operand entry to the instruction kind conversion row.
2184         ConversionRow.push_back(ID);
2185         ConversionRow.push_back(0);
2186 
2187         if (!IsNewConverter)
2188           break;
2189 
2190         CvtOS << "    case " << Name << ":\n"
2191               << "      Inst.addOperand(MCOperand::createImm(" << Val << "));\n"
2192               << "      break;\n";
2193 
2194         OpOS << "    case " << Name << ":\n"
2195              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2196              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
2197              << "      ++NumMCOperands;\n"
2198              << "      break;\n";
2199         break;
2200       }
2201       case MatchableInfo::ResOperand::RegOperand: {
2202         std::string Reg, Name;
2203         if (!OpInfo.Register) {
2204           Name = "reg0";
2205           Reg = "0";
2206         } else {
2207           Reg = getQualifiedName(OpInfo.Register);
2208           Name = "reg" + OpInfo.Register->getName().str();
2209         }
2210         Signature += "__" + Name;
2211         Name = "CVT_" + Name;
2212         bool IsNewConverter = false;
2213         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
2214                                             IsNewConverter);
2215         // Add the operand entry to the instruction kind conversion row.
2216         ConversionRow.push_back(ID);
2217         ConversionRow.push_back(0);
2218 
2219         if (!IsNewConverter)
2220           break;
2221         CvtOS << "    case " << Name << ":\n"
2222               << "      Inst.addOperand(MCOperand::createReg(" << Reg << "));\n"
2223               << "      break;\n";
2224 
2225         OpOS << "    case " << Name << ":\n"
2226              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
2227              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
2228              << "      ++NumMCOperands;\n"
2229              << "      break;\n";
2230       }
2231       }
2232     }
2233 
2234     // If there were no operands, add to the signature to that effect
2235     if (Signature == "Convert")
2236       Signature += "_NoOperands";
2237 
2238     II->ConversionFnKind = Signature;
2239 
2240     // Save the signature. If we already have it, don't add a new row
2241     // to the table.
2242     if (!InstructionConversionKinds.insert(CachedHashString(Signature)))
2243       continue;
2244 
2245     // Add the row to the table.
2246     ConversionTable.push_back(std::move(ConversionRow));
2247   }
2248 
2249   // Finish up the converter driver function.
2250   CvtOS << "    }\n  }\n}\n\n";
2251 
2252   // Finish up the operand number lookup function.
2253   OpOS << "    }\n  }\n}\n\n";
2254 
2255   // Output a static table for tied operands.
2256   if (TiedOperandsEnumMap.size()) {
2257     // The number of tied operand combinations will be small in practice,
2258     // but just add the assert to be sure.
2259     assert(TiedOperandsEnumMap.size() <= 254 &&
2260            "Too many tied-operand combinations to reference with "
2261            "an 8bit offset from the conversion table, where index "
2262            "'255' is reserved as operand not to be copied.");
2263 
2264     OS << "enum {\n";
2265     for (auto &KV : TiedOperandsEnumMap) {
2266       OS << "  " << KV.second << ",\n";
2267     }
2268     OS << "};\n\n";
2269 
2270     OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n";
2271     for (auto &KV : TiedOperandsEnumMap) {
2272       OS << "  /* " << KV.second << " */ { "
2273          << utostr(std::get<0>(KV.first)) << ", "
2274          << utostr(std::get<1>(KV.first)) << ", "
2275          << utostr(std::get<2>(KV.first)) << " },\n";
2276     }
2277     OS << "};\n\n";
2278   } else
2279     OS << "static const uint8_t TiedAsmOperandTable[][3] = "
2280           "{ /* empty  */ {0, 0, 0} };\n\n";
2281 
2282   OS << "namespace {\n";
2283 
2284   // Output the operand conversion kind enum.
2285   OS << "enum OperatorConversionKind {\n";
2286   for (const auto &Converter : OperandConversionKinds)
2287     OS << "  " << Converter << ",\n";
2288   OS << "  CVT_NUM_CONVERTERS\n";
2289   OS << "};\n\n";
2290 
2291   // Output the instruction conversion kind enum.
2292   OS << "enum InstructionConversionKind {\n";
2293   for (const auto &Signature : InstructionConversionKinds)
2294     OS << "  " << Signature << ",\n";
2295   OS << "  CVT_NUM_SIGNATURES\n";
2296   OS << "};\n\n";
2297 
2298   OS << "} // end anonymous namespace\n\n";
2299 
2300   // Output the conversion table.
2301   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
2302      << MaxRowLength << "] = {\n";
2303 
2304   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
2305     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
2306     OS << "  // " << InstructionConversionKinds[Row] << "\n";
2307     OS << "  { ";
2308     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) {
2309       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", ";
2310       if (OperandConversionKinds[ConversionTable[Row][i]] !=
2311           CachedHashString("CVT_Tied")) {
2312         OS << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
2313         continue;
2314       }
2315 
2316       // For a tied operand, emit a reference to the TiedAsmOperandTable
2317       // that contains the operand to copy, and the parsed operands to
2318       // check for their tied constraints.
2319       auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1],
2320                                  (uint8_t)ConversionTable[Row][i + 2],
2321                                  (uint8_t)ConversionTable[Row][i + 3]);
2322       auto TiedOpndEnum = TiedOperandsEnumMap.find(Key);
2323       assert(TiedOpndEnum != TiedOperandsEnumMap.end() &&
2324              "No record for tied operand pair");
2325       OS << TiedOpndEnum->second << ", ";
2326       i += 2;
2327     }
2328     OS << "CVT_Done },\n";
2329   }
2330 
2331   OS << "};\n\n";
2332 
2333   // Spit out the conversion driver function.
2334   OS << CvtOS.str();
2335 
2336   // Spit out the operand number lookup function.
2337   OS << OpOS.str();
2338 
2339   return ConversionTable.size();
2340 }
2341 
2342 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
2343 static void emitMatchClassEnumeration(CodeGenTarget &Target,
2344                                       std::forward_list<ClassInfo> &Infos,
2345                                       raw_ostream &OS) {
2346   OS << "namespace {\n\n";
2347 
2348   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
2349      << "/// instruction matching.\n";
2350   OS << "enum MatchClassKind {\n";
2351   OS << "  InvalidMatchClass = 0,\n";
2352   OS << "  OptionalMatchClass = 1,\n";
2353   ClassInfo::ClassInfoKind LastKind = ClassInfo::Token;
2354   StringRef LastName = "OptionalMatchClass";
2355   for (const auto &CI : Infos) {
2356     if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) {
2357       OS << "  MCK_LAST_TOKEN = " << LastName << ",\n";
2358     } else if (LastKind < ClassInfo::UserClass0 &&
2359                CI.Kind >= ClassInfo::UserClass0) {
2360       OS << "  MCK_LAST_REGISTER = " << LastName << ",\n";
2361     }
2362     LastKind = (ClassInfo::ClassInfoKind)CI.Kind;
2363     LastName = CI.Name;
2364 
2365     OS << "  " << CI.Name << ", // ";
2366     if (CI.Kind == ClassInfo::Token) {
2367       OS << "'" << CI.ValueName << "'\n";
2368     } else if (CI.isRegisterClass()) {
2369       if (!CI.ValueName.empty())
2370         OS << "register class '" << CI.ValueName << "'\n";
2371       else
2372         OS << "derived register class\n";
2373     } else {
2374       OS << "user defined class '" << CI.ValueName << "'\n";
2375     }
2376   }
2377   OS << "  NumMatchClassKinds\n";
2378   OS << "};\n\n";
2379 
2380   OS << "} // end anonymous namespace\n\n";
2381 }
2382 
2383 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be
2384 /// used when an assembly operand does not match the expected operand class.
2385 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) {
2386   // If the target does not use DiagnosticString for any operands, don't emit
2387   // an unused function.
2388   if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) {
2389         return CI.DiagnosticString.empty();
2390       }))
2391     return;
2392 
2393   OS << "static const char *getMatchKindDiag(" << Info.Target.getName()
2394      << "AsmParser::" << Info.Target.getName()
2395      << "MatchResultTy MatchResult) {\n";
2396   OS << "  switch (MatchResult) {\n";
2397 
2398   for (const auto &CI: Info.Classes) {
2399     if (!CI.DiagnosticString.empty()) {
2400       assert(!CI.DiagnosticType.empty() &&
2401              "DiagnosticString set without DiagnosticType");
2402       OS << "  case " << Info.Target.getName()
2403          << "AsmParser::Match_" << CI.DiagnosticType << ":\n";
2404       OS << "    return \"" << CI.DiagnosticString << "\";\n";
2405     }
2406   }
2407 
2408   OS << "  default:\n";
2409   OS << "    return nullptr;\n";
2410 
2411   OS << "  }\n";
2412   OS << "}\n\n";
2413 }
2414 
2415 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) {
2416   OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind "
2417         "RegisterClass) {\n";
2418   if (none_of(Info.Classes, [](const ClassInfo &CI) {
2419         return CI.isRegisterClass() && !CI.DiagnosticType.empty();
2420       })) {
2421     OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2422   } else {
2423     OS << "  switch (RegisterClass) {\n";
2424     for (const auto &CI: Info.Classes) {
2425       if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) {
2426         OS << "  case " << CI.Name << ":\n";
2427         OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2428            << CI.DiagnosticType << ";\n";
2429       }
2430     }
2431 
2432     OS << "  default:\n";
2433     OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n";
2434 
2435     OS << "  }\n";
2436   }
2437   OS << "}\n\n";
2438 }
2439 
2440 /// emitValidateOperandClass - Emit the function to validate an operand class.
2441 static void emitValidateOperandClass(AsmMatcherInfo &Info,
2442                                      raw_ostream &OS) {
2443   OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, "
2444      << "MatchClassKind Kind) {\n";
2445   OS << "  " << Info.Target.getName() << "Operand &Operand = ("
2446      << Info.Target.getName() << "Operand &)GOp;\n";
2447 
2448   // The InvalidMatchClass is not to match any operand.
2449   OS << "  if (Kind == InvalidMatchClass)\n";
2450   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2451 
2452   // Check for Token operands first.
2453   // FIXME: Use a more specific diagnostic type.
2454   OS << "  if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n";
2455   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2456      << "             MCTargetAsmParser::Match_Success :\n"
2457      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2458 
2459   // Check the user classes. We don't care what order since we're only
2460   // actually matching against one of them.
2461   OS << "  switch (Kind) {\n"
2462         "  default: break;\n";
2463   for (const auto &CI : Info.Classes) {
2464     if (!CI.isUserClass())
2465       continue;
2466 
2467     OS << "  // '" << CI.ClassName << "' class\n";
2468     OS << "  case " << CI.Name << ": {\n";
2469     OS << "    DiagnosticPredicate DP(Operand." << CI.PredicateMethod
2470        << "());\n";
2471     OS << "    if (DP.isMatch())\n";
2472     OS << "      return MCTargetAsmParser::Match_Success;\n";
2473     if (!CI.DiagnosticType.empty()) {
2474       OS << "    if (DP.isNearMatch())\n";
2475       OS << "      return " << Info.Target.getName() << "AsmParser::Match_"
2476          << CI.DiagnosticType << ";\n";
2477       OS << "    break;\n";
2478     }
2479     else
2480       OS << "    break;\n";
2481     OS << "    }\n";
2482   }
2483   OS << "  } // end switch (Kind)\n\n";
2484 
2485   // Check for register operands, including sub-classes.
2486   OS << "  if (Operand.isReg()) {\n";
2487   OS << "    MatchClassKind OpKind;\n";
2488   OS << "    switch (Operand.getReg()) {\n";
2489   OS << "    default: OpKind = InvalidMatchClass; break;\n";
2490   for (const auto &RC : Info.RegisterClasses)
2491     OS << "    case " << RC.first->getValueAsString("Namespace") << "::"
2492        << RC.first->getName() << ": OpKind = " << RC.second->Name
2493        << "; break;\n";
2494   OS << "    }\n";
2495   OS << "    return isSubclass(OpKind, Kind) ? "
2496      << "(unsigned)MCTargetAsmParser::Match_Success :\n                     "
2497      << "                 getDiagKindFromRegisterClass(Kind);\n  }\n\n";
2498 
2499   // Expected operand is a register, but actual is not.
2500   OS << "  if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n";
2501   OS << "    return getDiagKindFromRegisterClass(Kind);\n\n";
2502 
2503   // Generic fallthrough match failure case for operands that don't have
2504   // specialized diagnostic types.
2505   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2506   OS << "}\n\n";
2507 }
2508 
2509 /// emitIsSubclass - Emit the subclass predicate function.
2510 static void emitIsSubclass(CodeGenTarget &Target,
2511                            std::forward_list<ClassInfo> &Infos,
2512                            raw_ostream &OS) {
2513   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2514   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2515   OS << "  if (A == B)\n";
2516   OS << "    return true;\n\n";
2517 
2518   bool EmittedSwitch = false;
2519   for (const auto &A : Infos) {
2520     std::vector<StringRef> SuperClasses;
2521     if (A.IsOptional)
2522       SuperClasses.push_back("OptionalMatchClass");
2523     for (const auto &B : Infos) {
2524       if (&A != &B && A.isSubsetOf(B))
2525         SuperClasses.push_back(B.Name);
2526     }
2527 
2528     if (SuperClasses.empty())
2529       continue;
2530 
2531     // If this is the first SuperClass, emit the switch header.
2532     if (!EmittedSwitch) {
2533       OS << "  switch (A) {\n";
2534       OS << "  default:\n";
2535       OS << "    return false;\n";
2536       EmittedSwitch = true;
2537     }
2538 
2539     OS << "\n  case " << A.Name << ":\n";
2540 
2541     if (SuperClasses.size() == 1) {
2542       OS << "    return B == " << SuperClasses.back() << ";\n";
2543       continue;
2544     }
2545 
2546     if (!SuperClasses.empty()) {
2547       OS << "    switch (B) {\n";
2548       OS << "    default: return false;\n";
2549       for (StringRef SC : SuperClasses)
2550         OS << "    case " << SC << ": return true;\n";
2551       OS << "    }\n";
2552     } else {
2553       // No case statement to emit
2554       OS << "    return false;\n";
2555     }
2556   }
2557 
2558   // If there were case statements emitted into the string stream write the
2559   // default.
2560   if (EmittedSwitch)
2561     OS << "  }\n";
2562   else
2563     OS << "  return false;\n";
2564 
2565   OS << "}\n\n";
2566 }
2567 
2568 /// emitMatchTokenString - Emit the function to match a token string to the
2569 /// appropriate match class value.
2570 static void emitMatchTokenString(CodeGenTarget &Target,
2571                                  std::forward_list<ClassInfo> &Infos,
2572                                  raw_ostream &OS) {
2573   // Construct the match list.
2574   std::vector<StringMatcher::StringPair> Matches;
2575   for (const auto &CI : Infos) {
2576     if (CI.Kind == ClassInfo::Token)
2577       Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";");
2578   }
2579 
2580   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2581 
2582   StringMatcher("Name", Matches, OS).Emit();
2583 
2584   OS << "  return InvalidMatchClass;\n";
2585   OS << "}\n\n";
2586 }
2587 
2588 /// emitMatchRegisterName - Emit the function to match a string to the target
2589 /// specific register enum.
2590 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2591                                   raw_ostream &OS) {
2592   // Construct the match list.
2593   std::vector<StringMatcher::StringPair> Matches;
2594   const auto &Regs = Target.getRegBank().getRegisters();
2595   for (const CodeGenRegister &Reg : Regs) {
2596     if (Reg.TheDef->getValueAsString("AsmName").empty())
2597       continue;
2598 
2599     Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")),
2600                          "return " + utostr(Reg.EnumValue) + ";");
2601   }
2602 
2603   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2604 
2605   bool IgnoreDuplicates =
2606       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2607   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2608 
2609   OS << "  return 0;\n";
2610   OS << "}\n\n";
2611 }
2612 
2613 /// Emit the function to match a string to the target
2614 /// specific register enum.
2615 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser,
2616                                      raw_ostream &OS) {
2617   // Construct the match list.
2618   std::vector<StringMatcher::StringPair> Matches;
2619   const auto &Regs = Target.getRegBank().getRegisters();
2620   for (const CodeGenRegister &Reg : Regs) {
2621 
2622     auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames");
2623 
2624     for (auto AltName : AltNames) {
2625       AltName = StringRef(AltName).trim();
2626 
2627       // don't handle empty alternative names
2628       if (AltName.empty())
2629         continue;
2630 
2631       Matches.emplace_back(std::string(AltName),
2632                            "return " + utostr(Reg.EnumValue) + ";");
2633     }
2634   }
2635 
2636   OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n";
2637 
2638   bool IgnoreDuplicates =
2639       AsmParser->getValueAsBit("AllowDuplicateRegisterNames");
2640   StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates);
2641 
2642   OS << "  return 0;\n";
2643   OS << "}\n\n";
2644 }
2645 
2646 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2647 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2648   // Get the set of diagnostic types from all of the operand classes.
2649   std::set<StringRef> Types;
2650   for (const auto &OpClassEntry : Info.AsmOperandClasses) {
2651     if (!OpClassEntry.second->DiagnosticType.empty())
2652       Types.insert(OpClassEntry.second->DiagnosticType);
2653   }
2654   for (const auto &OpClassEntry : Info.RegisterClassClasses) {
2655     if (!OpClassEntry.second->DiagnosticType.empty())
2656       Types.insert(OpClassEntry.second->DiagnosticType);
2657   }
2658 
2659   if (Types.empty()) return;
2660 
2661   // Now emit the enum entries.
2662   for (StringRef Type : Types)
2663     OS << "  Match_" << Type << ",\n";
2664   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2665 }
2666 
2667 /// emitGetSubtargetFeatureName - Emit the helper function to get the
2668 /// user-level name for a subtarget feature.
2669 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2670   OS << "// User-level names for subtarget features that participate in\n"
2671      << "// instruction matching.\n"
2672      << "static const char *getSubtargetFeatureName(uint64_t Val) {\n";
2673   if (!Info.SubtargetFeatures.empty()) {
2674     OS << "  switch(Val) {\n";
2675     for (const auto &SF : Info.SubtargetFeatures) {
2676       const SubtargetFeatureInfo &SFI = SF.second;
2677       // FIXME: Totally just a placeholder name to get the algorithm working.
2678       OS << "  case " << SFI.getEnumBitName() << ": return \""
2679          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2680     }
2681     OS << "  default: return \"(unknown)\";\n";
2682     OS << "  }\n";
2683   } else {
2684     // Nothing to emit, so skip the switch
2685     OS << "  return \"(unknown)\";\n";
2686   }
2687   OS << "}\n\n";
2688 }
2689 
2690 static std::string GetAliasRequiredFeatures(Record *R,
2691                                             const AsmMatcherInfo &Info) {
2692   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2693   std::string Result;
2694 
2695   if (ReqFeatures.empty())
2696     return Result;
2697 
2698   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2699     const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2700 
2701     if (!F)
2702       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2703                     "' is not marked as an AssemblerPredicate!");
2704 
2705     if (i)
2706       Result += " && ";
2707 
2708     Result += "Features.test(" + F->getEnumBitName() + ')';
2709   }
2710 
2711   return Result;
2712 }
2713 
2714 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
2715                                      std::vector<Record*> &Aliases,
2716                                      unsigned Indent = 0,
2717                                   StringRef AsmParserVariantName = StringRef()){
2718   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2719   // iteration order of the map is stable.
2720   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2721 
2722   for (Record *R : Aliases) {
2723     // FIXME: Allow AssemblerVariantName to be a comma separated list.
2724     StringRef AsmVariantName = R->getValueAsString("AsmVariantName");
2725     if (AsmVariantName != AsmParserVariantName)
2726       continue;
2727     AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()]
2728         .push_back(R);
2729   }
2730   if (AliasesFromMnemonic.empty())
2731     return;
2732 
2733   // Process each alias a "from" mnemonic at a time, building the code executed
2734   // by the string remapper.
2735   std::vector<StringMatcher::StringPair> Cases;
2736   for (const auto &AliasEntry : AliasesFromMnemonic) {
2737     const std::vector<Record*> &ToVec = AliasEntry.second;
2738 
2739     // Loop through each alias and emit code that handles each case.  If there
2740     // are two instructions without predicates, emit an error.  If there is one,
2741     // emit it last.
2742     std::string MatchCode;
2743     int AliasWithNoPredicate = -1;
2744 
2745     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2746       Record *R = ToVec[i];
2747       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2748 
2749       // If this unconditionally matches, remember it for later and diagnose
2750       // duplicates.
2751       if (FeatureMask.empty()) {
2752         if (AliasWithNoPredicate != -1 &&
2753             R->getValueAsString("ToMnemonic") !=
2754                 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) {
2755           // We can't have two different aliases from the same mnemonic with no
2756           // predicate.
2757           PrintError(
2758               ToVec[AliasWithNoPredicate]->getLoc(),
2759               "two different MnemonicAliases with the same 'from' mnemonic!");
2760           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
2761         }
2762 
2763         AliasWithNoPredicate = i;
2764         continue;
2765       }
2766       if (R->getValueAsString("ToMnemonic") == AliasEntry.first)
2767         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
2768 
2769       if (!MatchCode.empty())
2770         MatchCode += "else ";
2771       MatchCode += "if (" + FeatureMask + ")\n";
2772       MatchCode += "  Mnemonic = \"";
2773       MatchCode += R->getValueAsString("ToMnemonic").lower();
2774       MatchCode += "\";\n";
2775     }
2776 
2777     if (AliasWithNoPredicate != -1) {
2778       Record *R = ToVec[AliasWithNoPredicate];
2779       if (!MatchCode.empty())
2780         MatchCode += "else\n  ";
2781       MatchCode += "Mnemonic = \"";
2782       MatchCode += R->getValueAsString("ToMnemonic").lower();
2783       MatchCode += "\";\n";
2784     }
2785 
2786     MatchCode += "return;";
2787 
2788     Cases.push_back(std::make_pair(AliasEntry.first, MatchCode));
2789   }
2790   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
2791 }
2792 
2793 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2794 /// emit a function for them and return true, otherwise return false.
2795 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
2796                                 CodeGenTarget &Target) {
2797   // Ignore aliases when match-prefix is set.
2798   if (!MatchPrefix.empty())
2799     return false;
2800 
2801   std::vector<Record*> Aliases =
2802     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2803   if (Aliases.empty()) return false;
2804 
2805   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2806     "const FeatureBitset &Features, unsigned VariantID) {\n";
2807   OS << "  switch (VariantID) {\n";
2808   unsigned VariantCount = Target.getAsmParserVariantCount();
2809   for (unsigned VC = 0; VC != VariantCount; ++VC) {
2810     Record *AsmVariant = Target.getAsmParserVariant(VC);
2811     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
2812     StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name");
2813     OS << "  case " << AsmParserVariantNo << ":\n";
2814     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
2815                              AsmParserVariantName);
2816     OS << "    break;\n";
2817   }
2818   OS << "  }\n";
2819 
2820   // Emit aliases that apply to all variants.
2821   emitMnemonicAliasVariant(OS, Info, Aliases);
2822 
2823   OS << "}\n\n";
2824 
2825   return true;
2826 }
2827 
2828 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2829                               const AsmMatcherInfo &Info, StringRef ClassName,
2830                               StringToOffsetTable &StringTable,
2831                               unsigned MaxMnemonicIndex,
2832                               unsigned MaxFeaturesIndex,
2833                               bool HasMnemonicFirst) {
2834   unsigned MaxMask = 0;
2835   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2836     MaxMask |= OMI.OperandMask;
2837   }
2838 
2839   // Emit the static custom operand parsing table;
2840   OS << "namespace {\n";
2841   OS << "  struct OperandMatchEntry {\n";
2842   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2843                << " Mnemonic;\n";
2844   OS << "    " << getMinimalTypeForRange(MaxMask)
2845                << " OperandMask;\n";
2846   OS << "    " << getMinimalTypeForRange(std::distance(
2847                       Info.Classes.begin(), Info.Classes.end())) << " Class;\n";
2848   OS << "    " << getMinimalTypeForRange(MaxFeaturesIndex)
2849                << " RequiredFeaturesIdx;\n\n";
2850   OS << "    StringRef getMnemonic() const {\n";
2851   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2852   OS << "                       MnemonicTable[Mnemonic]);\n";
2853   OS << "    }\n";
2854   OS << "  };\n\n";
2855 
2856   OS << "  // Predicate for searching for an opcode.\n";
2857   OS << "  struct LessOpcodeOperand {\n";
2858   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2859   OS << "      return LHS.getMnemonic()  < RHS;\n";
2860   OS << "    }\n";
2861   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2862   OS << "      return LHS < RHS.getMnemonic();\n";
2863   OS << "    }\n";
2864   OS << "    bool operator()(const OperandMatchEntry &LHS,";
2865   OS << " const OperandMatchEntry &RHS) {\n";
2866   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2867   OS << "    }\n";
2868   OS << "  };\n";
2869 
2870   OS << "} // end anonymous namespace\n\n";
2871 
2872   OS << "static const OperandMatchEntry OperandMatchTable["
2873      << Info.OperandMatchInfo.size() << "] = {\n";
2874 
2875   OS << "  /* Operand List Mnemonic, Mask, Operand Class, Features */\n";
2876   for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) {
2877     const MatchableInfo &II = *OMI.MI;
2878 
2879     OS << "  { ";
2880 
2881     // Store a pascal-style length byte in the mnemonic.
2882     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower();
2883     OS << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2884        << " /* " << II.Mnemonic << " */, ";
2885 
2886     OS << OMI.OperandMask;
2887     OS << " /* ";
2888     ListSeparator LS;
2889     for (int i = 0, e = 31; i !=e; ++i)
2890       if (OMI.OperandMask & (1 << i))
2891         OS << LS << i;
2892     OS << " */, ";
2893 
2894     OS << OMI.CI->Name;
2895 
2896     // Write the required features mask.
2897     OS << ", AMFBS";
2898     if (II.RequiredFeatures.empty())
2899       OS << "_None";
2900     else
2901       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i)
2902         OS << '_' << II.RequiredFeatures[i]->TheDef->getName();
2903 
2904     OS << " },\n";
2905   }
2906   OS << "};\n\n";
2907 
2908   // Emit the operand class switch to call the correct custom parser for
2909   // the found operand class.
2910   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2911      << "tryCustomParseOperand(OperandVector"
2912      << " &Operands,\n                      unsigned MCK) {\n\n"
2913      << "  switch(MCK) {\n";
2914 
2915   for (const auto &CI : Info.Classes) {
2916     if (CI.ParserMethod.empty())
2917       continue;
2918     OS << "  case " << CI.Name << ":\n"
2919        << "    return " << CI.ParserMethod << "(Operands);\n";
2920   }
2921 
2922   OS << "  default:\n";
2923   OS << "    return MatchOperand_NoMatch;\n";
2924   OS << "  }\n";
2925   OS << "  return MatchOperand_NoMatch;\n";
2926   OS << "}\n\n";
2927 
2928   // Emit the static custom operand parser. This code is very similar with
2929   // the other matcher. Also use MatchResultTy here just in case we go for
2930   // a better error handling.
2931   OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n"
2932      << "MatchOperandParserImpl(OperandVector"
2933      << " &Operands,\n                       StringRef Mnemonic,\n"
2934      << "                       bool ParseForAllFeatures) {\n";
2935 
2936   // Emit code to get the available features.
2937   OS << "  // Get the current feature set.\n";
2938   OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
2939 
2940   OS << "  // Get the next operand index.\n";
2941   OS << "  unsigned NextOpNum = Operands.size()"
2942      << (HasMnemonicFirst ? " - 1" : "") << ";\n";
2943 
2944   // Emit code to search the table.
2945   OS << "  // Search the table.\n";
2946   if (HasMnemonicFirst) {
2947     OS << "  auto MnemonicRange =\n";
2948     OS << "    std::equal_range(std::begin(OperandMatchTable), "
2949           "std::end(OperandMatchTable),\n";
2950     OS << "                     Mnemonic, LessOpcodeOperand());\n\n";
2951   } else {
2952     OS << "  auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable),"
2953           " std::end(OperandMatchTable));\n";
2954     OS << "  if (!Mnemonic.empty())\n";
2955     OS << "    MnemonicRange =\n";
2956     OS << "      std::equal_range(std::begin(OperandMatchTable), "
2957           "std::end(OperandMatchTable),\n";
2958     OS << "                       Mnemonic, LessOpcodeOperand());\n\n";
2959   }
2960 
2961   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2962   OS << "    return MatchOperand_NoMatch;\n\n";
2963 
2964   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2965      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2966 
2967   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2968   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2969 
2970   // Emit check that the required features are available.
2971   OS << "    // check if the available features match\n";
2972   OS << "    const FeatureBitset &RequiredFeatures = "
2973         "FeatureBitsets[it->RequiredFeaturesIdx];\n";
2974   OS << "    if (!ParseForAllFeatures && (AvailableFeatures & "
2975         "RequiredFeatures) != RequiredFeatures)\n";
2976   OS << "      continue;\n\n";
2977 
2978   // Emit check to ensure the operand number matches.
2979   OS << "    // check if the operand in question has a custom parser.\n";
2980   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2981   OS << "      continue;\n\n";
2982 
2983   // Emit call to the custom parser method
2984   OS << "    // call custom parse method to handle the operand\n";
2985   OS << "    OperandMatchResultTy Result = ";
2986   OS << "tryCustomParseOperand(Operands, it->Class);\n";
2987   OS << "    if (Result != MatchOperand_NoMatch)\n";
2988   OS << "      return Result;\n";
2989   OS << "  }\n\n";
2990 
2991   OS << "  // Okay, we had no match.\n";
2992   OS << "  return MatchOperand_NoMatch;\n";
2993   OS << "}\n\n";
2994 }
2995 
2996 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target,
2997                                           AsmMatcherInfo &Info,
2998                                           raw_ostream &OS) {
2999   std::string AsmParserName =
3000       std::string(Info.AsmParser->getValueAsString("AsmParserClassName"));
3001   OS << "static bool ";
3002   OS << "checkAsmTiedOperandConstraints(const " << Target.getName()
3003      << AsmParserName << "&AsmParser,\n";
3004   OS << "                               unsigned Kind,\n";
3005   OS << "                               const OperandVector &Operands,\n";
3006   OS << "                               uint64_t &ErrorInfo) {\n";
3007   OS << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n";
3008   OS << "  const uint8_t *Converter = ConversionTable[Kind];\n";
3009   OS << "  for (const uint8_t *p = Converter; *p; p += 2) {\n";
3010   OS << "    switch (*p) {\n";
3011   OS << "    case CVT_Tied: {\n";
3012   OS << "      unsigned OpIdx = *(p + 1);\n";
3013   OS << "      assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n";
3014   OS << "                              std::begin(TiedAsmOperandTable)) &&\n";
3015   OS << "             \"Tied operand not found\");\n";
3016   OS << "      unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n";
3017   OS << "      unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n";
3018   OS << "      if (OpndNum1 != OpndNum2) {\n";
3019   OS << "        auto &SrcOp1 = Operands[OpndNum1];\n";
3020   OS << "        auto &SrcOp2 = Operands[OpndNum2];\n";
3021   OS << "        if (SrcOp1->isReg() && SrcOp2->isReg()) {\n";
3022   OS << "          if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n";
3023   OS << "            ErrorInfo = OpndNum2;\n";
3024   OS << "            return false;\n";
3025   OS << "          }\n";
3026   OS << "        }\n";
3027   OS << "      }\n";
3028   OS << "      break;\n";
3029   OS << "    }\n";
3030   OS << "    default:\n";
3031   OS << "      break;\n";
3032   OS << "    }\n";
3033   OS << "  }\n";
3034   OS << "  return true;\n";
3035   OS << "}\n\n";
3036 }
3037 
3038 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target,
3039                                      unsigned VariantCount) {
3040   OS << "static std::string " << Target.getName()
3041      << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS,"
3042      << " unsigned VariantID) {\n";
3043   if (!VariantCount)
3044     OS <<  "  return \"\";";
3045   else {
3046     OS << "  const unsigned MaxEditDist = 2;\n";
3047     OS << "  std::vector<StringRef> Candidates;\n";
3048     OS << "  StringRef Prev = \"\";\n\n";
3049 
3050     OS << "  // Find the appropriate table for this asm variant.\n";
3051     OS << "  const MatchEntry *Start, *End;\n";
3052     OS << "  switch (VariantID) {\n";
3053     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3054     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3055       Record *AsmVariant = Target.getAsmParserVariant(VC);
3056       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3057       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3058          << "); End = std::end(MatchTable" << VC << "); break;\n";
3059     }
3060     OS << "  }\n\n";
3061     OS << "  for (auto I = Start; I < End; I++) {\n";
3062     OS << "    // Ignore unsupported instructions.\n";
3063     OS << "    const FeatureBitset &RequiredFeatures = "
3064           "FeatureBitsets[I->RequiredFeaturesIdx];\n";
3065     OS << "    if ((FBS & RequiredFeatures) != RequiredFeatures)\n";
3066     OS << "      continue;\n";
3067     OS << "\n";
3068     OS << "    StringRef T = I->getMnemonic();\n";
3069     OS << "    // Avoid recomputing the edit distance for the same string.\n";
3070     OS << "    if (T.equals(Prev))\n";
3071     OS << "      continue;\n";
3072     OS << "\n";
3073     OS << "    Prev = T;\n";
3074     OS << "    unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n";
3075     OS << "    if (Dist <= MaxEditDist)\n";
3076     OS << "      Candidates.push_back(T);\n";
3077     OS << "  }\n";
3078     OS << "\n";
3079     OS << "  if (Candidates.empty())\n";
3080     OS << "    return \"\";\n";
3081     OS << "\n";
3082     OS << "  std::string Res = \", did you mean: \";\n";
3083     OS << "  unsigned i = 0;\n";
3084     OS << "  for (; i < Candidates.size() - 1; i++)\n";
3085     OS << "    Res += Candidates[i].str() + \", \";\n";
3086     OS << "  return Res + Candidates[i].str() + \"?\";\n";
3087   }
3088   OS << "}\n";
3089   OS << "\n";
3090 }
3091 
3092 static void emitMnemonicChecker(raw_ostream &OS,
3093                                 CodeGenTarget &Target,
3094                                 unsigned VariantCount,
3095                                 bool HasMnemonicFirst,
3096                                 bool HasMnemonicAliases) {
3097   OS << "static bool " << Target.getName()
3098      << "CheckMnemonic(StringRef Mnemonic,\n";
3099   OS << "                                "
3100      << "const FeatureBitset &AvailableFeatures,\n";
3101   OS << "                                "
3102      << "unsigned VariantID) {\n";
3103 
3104   if (!VariantCount) {
3105     OS <<  "  return false;\n";
3106   } else {
3107     if (HasMnemonicAliases) {
3108       OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3109       OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);";
3110       OS << "\n\n";
3111     }
3112     OS << "  // Find the appropriate table for this asm variant.\n";
3113     OS << "  const MatchEntry *Start, *End;\n";
3114     OS << "  switch (VariantID) {\n";
3115     OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3116     for (unsigned VC = 0; VC != VariantCount; ++VC) {
3117       Record *AsmVariant = Target.getAsmParserVariant(VC);
3118       int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3119       OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3120          << "); End = std::end(MatchTable" << VC << "); break;\n";
3121     }
3122     OS << "  }\n\n";
3123 
3124     OS << "  // Search the table.\n";
3125     if (HasMnemonicFirst) {
3126       OS << "  auto MnemonicRange = "
3127             "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3128     } else {
3129       OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3130       OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3131       OS << "  if (!Mnemonic.empty())\n";
3132       OS << "    MnemonicRange = "
3133          << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3134     }
3135 
3136     OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3137     OS << "    return false;\n\n";
3138 
3139     OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3140        << "*ie = MnemonicRange.second;\n";
3141     OS << "       it != ie; ++it) {\n";
3142     OS << "    const FeatureBitset &RequiredFeatures =\n";
3143     OS << "      FeatureBitsets[it->RequiredFeaturesIdx];\n";
3144     OS << "    if ((AvailableFeatures & RequiredFeatures) == ";
3145     OS << "RequiredFeatures)\n";
3146     OS << "      return true;\n";
3147     OS << "  }\n";
3148     OS << "  return false;\n";
3149   }
3150   OS << "}\n";
3151   OS << "\n";
3152 }
3153 
3154 // Emit a function mapping match classes to strings, for debugging.
3155 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos,
3156                                     raw_ostream &OS) {
3157   OS << "#ifndef NDEBUG\n";
3158   OS << "const char *getMatchClassName(MatchClassKind Kind) {\n";
3159   OS << "  switch (Kind) {\n";
3160 
3161   OS << "  case InvalidMatchClass: return \"InvalidMatchClass\";\n";
3162   OS << "  case OptionalMatchClass: return \"OptionalMatchClass\";\n";
3163   for (const auto &CI : Infos) {
3164     OS << "  case " << CI.Name << ": return \"" << CI.Name << "\";\n";
3165   }
3166   OS << "  case NumMatchClassKinds: return \"NumMatchClassKinds\";\n";
3167 
3168   OS << "  }\n";
3169   OS << "  llvm_unreachable(\"unhandled MatchClassKind!\");\n";
3170   OS << "}\n\n";
3171   OS << "#endif // NDEBUG\n";
3172 }
3173 
3174 static std::string
3175 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
3176   std::string Name = "AMFBS";
3177   for (const auto &Feature : FeatureBitset)
3178     Name += ("_" + Feature->getName()).str();
3179   return Name;
3180 }
3181 
3182 void AsmMatcherEmitter::run(raw_ostream &OS) {
3183   CodeGenTarget Target(Records);
3184   Record *AsmParser = Target.getAsmParser();
3185   StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName");
3186 
3187   // Compute the information on the instructions to match.
3188   AsmMatcherInfo Info(AsmParser, Target, Records);
3189   Info.buildInfo();
3190 
3191   // Sort the instruction table using the partial order on classes. We use
3192   // stable_sort to ensure that ambiguous instructions are still
3193   // deterministically ordered.
3194   llvm::stable_sort(
3195       Info.Matchables,
3196       [](const std::unique_ptr<MatchableInfo> &a,
3197          const std::unique_ptr<MatchableInfo> &b) { return *a < *b; });
3198 
3199 #ifdef EXPENSIVE_CHECKS
3200   // Verify that the table is sorted and operator < works transitively.
3201   for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3202        ++I) {
3203     for (auto J = I; J != E; ++J) {
3204       assert(!(**J < **I));
3205     }
3206   }
3207 #endif
3208 
3209   DEBUG_WITH_TYPE("instruction_info", {
3210       for (const auto &MI : Info.Matchables)
3211         MI->dump();
3212     });
3213 
3214   // Check for ambiguous matchables.
3215   DEBUG_WITH_TYPE("ambiguous_instrs", {
3216     unsigned NumAmbiguous = 0;
3217     for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E;
3218          ++I) {
3219       for (auto J = std::next(I); J != E; ++J) {
3220         const MatchableInfo &A = **I;
3221         const MatchableInfo &B = **J;
3222 
3223         if (A.couldMatchAmbiguouslyWith(B)) {
3224           errs() << "warning: ambiguous matchables:\n";
3225           A.dump();
3226           errs() << "\nis incomparable with:\n";
3227           B.dump();
3228           errs() << "\n\n";
3229           ++NumAmbiguous;
3230         }
3231       }
3232     }
3233     if (NumAmbiguous)
3234       errs() << "warning: " << NumAmbiguous
3235              << " ambiguous matchables!\n";
3236   });
3237 
3238   // Compute the information on the custom operand parsing.
3239   Info.buildOperandMatchInfo();
3240 
3241   bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst");
3242   bool HasOptionalOperands = Info.hasOptionalOperands();
3243   bool ReportMultipleNearMisses =
3244       AsmParser->getValueAsBit("ReportMultipleNearMisses");
3245 
3246   // Write the output.
3247 
3248   // Information for the class declaration.
3249   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
3250   OS << "#undef GET_ASSEMBLER_HEADER\n";
3251   OS << "  // This should be included into the middle of the declaration of\n";
3252   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
3253   OS << "  FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n";
3254   if (HasOptionalOperands) {
3255     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3256        << "unsigned Opcode,\n"
3257        << "                       const OperandVector &Operands,\n"
3258        << "                       const SmallBitVector &OptionalOperandsMask);\n";
3259   } else {
3260     OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
3261        << "unsigned Opcode,\n"
3262        << "                       const OperandVector &Operands);\n";
3263   }
3264   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
3265   OS << "           const OperandVector &Operands) override;\n";
3266   OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3267      << "                                MCInst &Inst,\n";
3268   if (ReportMultipleNearMisses)
3269     OS << "                                SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3270   else
3271     OS << "                                uint64_t &ErrorInfo,\n"
3272        << "                                FeatureBitset &MissingFeatures,\n";
3273   OS << "                                bool matchingInlineAsm,\n"
3274      << "                                unsigned VariantID = 0);\n";
3275   if (!ReportMultipleNearMisses)
3276     OS << "  unsigned MatchInstructionImpl(const OperandVector &Operands,\n"
3277        << "                                MCInst &Inst,\n"
3278        << "                                uint64_t &ErrorInfo,\n"
3279        << "                                bool matchingInlineAsm,\n"
3280        << "                                unsigned VariantID = 0) {\n"
3281        << "    FeatureBitset MissingFeatures;\n"
3282        << "    return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n"
3283        << "                                matchingInlineAsm, VariantID);\n"
3284        << "  }\n\n";
3285 
3286 
3287   if (!Info.OperandMatchInfo.empty()) {
3288     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
3289     OS << "    OperandVector &Operands,\n";
3290     OS << "    StringRef Mnemonic,\n";
3291     OS << "    bool ParseForAllFeatures = false);\n";
3292 
3293     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
3294     OS << "    OperandVector &Operands,\n";
3295     OS << "    unsigned MCK);\n\n";
3296   }
3297 
3298   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
3299 
3300   // Emit the operand match diagnostic enum names.
3301   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
3302   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3303   emitOperandDiagnosticTypes(Info, OS);
3304   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
3305 
3306   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
3307   OS << "#undef GET_REGISTER_MATCHER\n\n";
3308 
3309   // Emit the subtarget feature enumeration.
3310   SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(
3311       Info.SubtargetFeatures, OS);
3312 
3313   // Emit the function to match a register name to number.
3314   // This should be omitted for Mips target
3315   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
3316     emitMatchRegisterName(Target, AsmParser, OS);
3317 
3318   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName"))
3319     emitMatchRegisterAltName(Target, AsmParser, OS);
3320 
3321   OS << "#endif // GET_REGISTER_MATCHER\n\n";
3322 
3323   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
3324   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
3325 
3326   // Generate the helper function to get the names for subtarget features.
3327   emitGetSubtargetFeatureName(Info, OS);
3328 
3329   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
3330 
3331   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
3332   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
3333 
3334   // Generate the function that remaps for mnemonic aliases.
3335   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
3336 
3337   // Generate the convertToMCInst function to convert operands into an MCInst.
3338   // Also, generate the convertToMapAndConstraints function for MS-style inline
3339   // assembly.  The latter doesn't actually generate a MCInst.
3340   unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables,
3341                                             HasMnemonicFirst,
3342                                             HasOptionalOperands, OS);
3343 
3344   // Emit the enumeration for classes which participate in matching.
3345   emitMatchClassEnumeration(Target, Info.Classes, OS);
3346 
3347   // Emit a function to get the user-visible string to describe an operand
3348   // match failure in diagnostics.
3349   emitOperandMatchErrorDiagStrings(Info, OS);
3350 
3351   // Emit a function to map register classes to operand match failure codes.
3352   emitRegisterMatchErrorFunc(Info, OS);
3353 
3354   // Emit the routine to match token strings to their match class.
3355   emitMatchTokenString(Target, Info.Classes, OS);
3356 
3357   // Emit the subclass predicate routine.
3358   emitIsSubclass(Target, Info.Classes, OS);
3359 
3360   // Emit the routine to validate an operand against a match class.
3361   emitValidateOperandClass(Info, OS);
3362 
3363   emitMatchClassKindNames(Info.Classes, OS);
3364 
3365   // Emit the available features compute function.
3366   SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
3367       Info.Target.getName(), ClassName, "ComputeAvailableFeatures",
3368       Info.SubtargetFeatures, OS);
3369 
3370   if (!ReportMultipleNearMisses)
3371     emitAsmTiedOperandConstraints(Target, Info, OS);
3372 
3373   StringToOffsetTable StringTable;
3374 
3375   size_t MaxNumOperands = 0;
3376   unsigned MaxMnemonicIndex = 0;
3377   bool HasDeprecation = false;
3378   for (const auto &MI : Info.Matchables) {
3379     MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size());
3380     HasDeprecation |= MI->HasDeprecation;
3381 
3382     // Store a pascal-style length byte in the mnemonic.
3383     std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3384     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
3385                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
3386   }
3387 
3388   OS << "static const char *const MnemonicTable =\n";
3389   StringTable.EmitString(OS);
3390   OS << ";\n\n";
3391 
3392   std::vector<std::vector<Record *>> FeatureBitsets;
3393   for (const auto &MI : Info.Matchables) {
3394     if (MI->RequiredFeatures.empty())
3395       continue;
3396     FeatureBitsets.emplace_back();
3397     for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I)
3398       FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef);
3399   }
3400 
3401   llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A,
3402                                  const std::vector<Record *> &B) {
3403     if (A.size() < B.size())
3404       return true;
3405     if (A.size() > B.size())
3406       return false;
3407     for (auto Pair : zip(A, B)) {
3408       if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
3409         return true;
3410       if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
3411         return false;
3412     }
3413     return false;
3414   });
3415   FeatureBitsets.erase(
3416       std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
3417       FeatureBitsets.end());
3418   OS << "// Feature bitsets.\n"
3419      << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n"
3420      << "  AMFBS_None,\n";
3421   for (const auto &FeatureBitset : FeatureBitsets) {
3422     if (FeatureBitset.empty())
3423       continue;
3424     OS << "  " << getNameForFeatureBitset(FeatureBitset) << ",\n";
3425   }
3426   OS << "};\n\n"
3427      << "static constexpr FeatureBitset FeatureBitsets[] = {\n"
3428      << "  {}, // AMFBS_None\n";
3429   for (const auto &FeatureBitset : FeatureBitsets) {
3430     if (FeatureBitset.empty())
3431       continue;
3432     OS << "  {";
3433     for (const auto &Feature : FeatureBitset) {
3434       const auto &I = Info.SubtargetFeatures.find(Feature);
3435       assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?");
3436       OS << I->second.getEnumBitName() << ", ";
3437     }
3438     OS << "},\n";
3439   }
3440   OS << "};\n\n";
3441 
3442   // Emit the static match table; unused classes get initialized to 0 which is
3443   // guaranteed to be InvalidMatchClass.
3444   //
3445   // FIXME: We can reduce the size of this table very easily. First, we change
3446   // it so that store the kinds in separate bit-fields for each index, which
3447   // only needs to be the max width used for classes at that index (we also need
3448   // to reject based on this during classification). If we then make sure to
3449   // order the match kinds appropriately (putting mnemonics last), then we
3450   // should only end up using a few bits for each class, especially the ones
3451   // following the mnemonic.
3452   OS << "namespace {\n";
3453   OS << "  struct MatchEntry {\n";
3454   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
3455                << " Mnemonic;\n";
3456   OS << "    uint16_t Opcode;\n";
3457   OS << "    " << getMinimalTypeForRange(NumConverters)
3458                << " ConvertFn;\n";
3459   OS << "    " << getMinimalTypeForRange(FeatureBitsets.size())
3460                << " RequiredFeaturesIdx;\n";
3461   OS << "    " << getMinimalTypeForRange(
3462                       std::distance(Info.Classes.begin(), Info.Classes.end()))
3463      << " Classes[" << MaxNumOperands << "];\n";
3464   OS << "    StringRef getMnemonic() const {\n";
3465   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
3466   OS << "                       MnemonicTable[Mnemonic]);\n";
3467   OS << "    }\n";
3468   OS << "  };\n\n";
3469 
3470   OS << "  // Predicate for searching for an opcode.\n";
3471   OS << "  struct LessOpcode {\n";
3472   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
3473   OS << "      return LHS.getMnemonic() < RHS;\n";
3474   OS << "    }\n";
3475   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
3476   OS << "      return LHS < RHS.getMnemonic();\n";
3477   OS << "    }\n";
3478   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
3479   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
3480   OS << "    }\n";
3481   OS << "  };\n";
3482 
3483   OS << "} // end anonymous namespace\n\n";
3484 
3485   unsigned VariantCount = Target.getAsmParserVariantCount();
3486   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3487     Record *AsmVariant = Target.getAsmParserVariant(VC);
3488     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3489 
3490     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
3491 
3492     for (const auto &MI : Info.Matchables) {
3493       if (MI->AsmVariantID != AsmVariantNo)
3494         continue;
3495 
3496       // Store a pascal-style length byte in the mnemonic.
3497       std::string LenMnemonic =
3498           char(MI->Mnemonic.size()) + MI->Mnemonic.lower();
3499       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
3500          << " /* " << MI->Mnemonic << " */, "
3501          << Target.getInstNamespace() << "::"
3502          << MI->getResultInst()->TheDef->getName() << ", "
3503          << MI->ConversionFnKind << ", ";
3504 
3505       // Write the required features mask.
3506       OS << "AMFBS";
3507       if (MI->RequiredFeatures.empty())
3508         OS << "_None";
3509       else
3510         for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i)
3511           OS << '_' << MI->RequiredFeatures[i]->TheDef->getName();
3512 
3513       OS << ", { ";
3514       ListSeparator LS;
3515       for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands)
3516         OS << LS << Op.Class->Name;
3517       OS << " }, },\n";
3518     }
3519 
3520     OS << "};\n\n";
3521   }
3522 
3523   OS << "#include \"llvm/Support/Debug.h\"\n";
3524   OS << "#include \"llvm/Support/Format.h\"\n\n";
3525 
3526   // Finally, build the match function.
3527   OS << "unsigned " << Target.getName() << ClassName << "::\n"
3528      << "MatchInstructionImpl(const OperandVector &Operands,\n";
3529   OS << "                     MCInst &Inst,\n";
3530   if (ReportMultipleNearMisses)
3531     OS << "                     SmallVectorImpl<NearMissInfo> *NearMisses,\n";
3532   else
3533     OS << "                     uint64_t &ErrorInfo,\n"
3534        << "                     FeatureBitset &MissingFeatures,\n";
3535   OS << "                     bool matchingInlineAsm, unsigned VariantID) {\n";
3536 
3537   if (!ReportMultipleNearMisses) {
3538     OS << "  // Eliminate obvious mismatches.\n";
3539     OS << "  if (Operands.size() > "
3540        << (MaxNumOperands + HasMnemonicFirst) << ") {\n";
3541     OS << "    ErrorInfo = "
3542        << (MaxNumOperands + HasMnemonicFirst) << ";\n";
3543     OS << "    return Match_InvalidOperand;\n";
3544     OS << "  }\n\n";
3545   }
3546 
3547   // Emit code to get the available features.
3548   OS << "  // Get the current feature set.\n";
3549   OS << "  const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n";
3550 
3551   OS << "  // Get the instruction mnemonic, which is the first token.\n";
3552   if (HasMnemonicFirst) {
3553     OS << "  StringRef Mnemonic = ((" << Target.getName()
3554        << "Operand &)*Operands[0]).getToken();\n\n";
3555   } else {
3556     OS << "  StringRef Mnemonic;\n";
3557     OS << "  if (Operands[0]->isToken())\n";
3558     OS << "    Mnemonic = ((" << Target.getName()
3559        << "Operand &)*Operands[0]).getToken();\n\n";
3560   }
3561 
3562   if (HasMnemonicAliases) {
3563     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
3564     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
3565   }
3566 
3567   // Emit code to compute the class list for this operand vector.
3568   if (!ReportMultipleNearMisses) {
3569     OS << "  // Some state to try to produce better error messages.\n";
3570     OS << "  bool HadMatchOtherThanFeatures = false;\n";
3571     OS << "  bool HadMatchOtherThanPredicate = false;\n";
3572     OS << "  unsigned RetCode = Match_InvalidOperand;\n";
3573     OS << "  MissingFeatures.set();\n";
3574     OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
3575     OS << "  // wrong for all instances of the instruction.\n";
3576     OS << "  ErrorInfo = ~0ULL;\n";
3577   }
3578 
3579   if (HasOptionalOperands) {
3580     OS << "  SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n";
3581   }
3582 
3583   // Emit code to search the table.
3584   OS << "  // Find the appropriate table for this asm variant.\n";
3585   OS << "  const MatchEntry *Start, *End;\n";
3586   OS << "  switch (VariantID) {\n";
3587   OS << "  default: llvm_unreachable(\"invalid variant!\");\n";
3588   for (unsigned VC = 0; VC != VariantCount; ++VC) {
3589     Record *AsmVariant = Target.getAsmParserVariant(VC);
3590     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
3591     OS << "  case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC
3592        << "); End = std::end(MatchTable" << VC << "); break;\n";
3593   }
3594   OS << "  }\n";
3595 
3596   OS << "  // Search the table.\n";
3597   if (HasMnemonicFirst) {
3598     OS << "  auto MnemonicRange = "
3599           "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
3600   } else {
3601     OS << "  auto MnemonicRange = std::make_pair(Start, End);\n";
3602     OS << "  unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n";
3603     OS << "  if (!Mnemonic.empty())\n";
3604     OS << "    MnemonicRange = "
3605           "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n";
3606   }
3607 
3608   OS << "  DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n"
3609      << "  std::distance(MnemonicRange.first, MnemonicRange.second) <<\n"
3610      << "  \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n";
3611 
3612   OS << "  // Return a more specific error code if no mnemonics match.\n";
3613   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
3614   OS << "    return Match_MnemonicFail;\n\n";
3615 
3616   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
3617      << "*ie = MnemonicRange.second;\n";
3618   OS << "       it != ie; ++it) {\n";
3619   OS << "    const FeatureBitset &RequiredFeatures = "
3620         "FeatureBitsets[it->RequiredFeaturesIdx];\n";
3621   OS << "    bool HasRequiredFeatures =\n";
3622   OS << "      (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n";
3623   OS << "    DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n";
3624   OS << "                                          << MII.getName(it->Opcode) << \"\\n\");\n";
3625 
3626   if (ReportMultipleNearMisses) {
3627     OS << "    // Some state to record ways in which this instruction did not match.\n";
3628     OS << "    NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n";
3629     OS << "    NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n";
3630     OS << "    NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n";
3631     OS << "    NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n";
3632     OS << "    bool MultipleInvalidOperands = false;\n";
3633   }
3634 
3635   if (HasMnemonicFirst) {
3636     OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
3637     OS << "    assert(Mnemonic == it->getMnemonic());\n";
3638   }
3639 
3640   // Emit check that the subclasses match.
3641   if (!ReportMultipleNearMisses)
3642     OS << "    bool OperandsValid = true;\n";
3643   if (HasOptionalOperands) {
3644     OS << "    OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n";
3645   }
3646   OS << "    for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex")
3647      << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex")
3648      << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n";
3649   OS << "      auto Formal = "
3650      << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n";
3651   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3652   OS << "                      dbgs() << \"  Matching formal operand class \" << getMatchClassName(Formal)\n";
3653   OS << "                             << \" against actual operand at index \" << ActualIdx);\n";
3654   OS << "      if (ActualIdx < Operands.size())\n";
3655   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n";
3656   OS << "                        Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n";
3657   OS << "      else\n";
3658   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n";
3659   OS << "      if (ActualIdx >= Operands.size()) {\n";
3660   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n";
3661   if (ReportMultipleNearMisses) {
3662     OS << "        bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || "
3663                                    "isSubclass(Formal, OptionalMatchClass);\n";
3664     OS << "        if (!ThisOperandValid) {\n";
3665     OS << "          if (!OperandNearMiss) {\n";
3666     OS << "            // Record info about match failure for later use.\n";
3667     OS << "            DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n";
3668     OS << "            OperandNearMiss =\n";
3669     OS << "                NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n";
3670     OS << "          } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n";
3671     OS << "            // If more than one operand is invalid, give up on this match entry.\n";
3672     OS << "            DEBUG_WITH_TYPE(\n";
3673     OS << "                \"asm-matcher\",\n";
3674     OS << "                dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n";
3675     OS << "            MultipleInvalidOperands = true;\n";
3676     OS << "            break;\n";
3677     OS << "          }\n";
3678     OS << "        } else {\n";
3679     OS << "          DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n";
3680     OS << "          break;\n";
3681     OS << "        }\n";
3682     OS << "        continue;\n";
3683   } else {
3684     OS << "        OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n";
3685     OS << "        if (!OperandsValid) ErrorInfo = ActualIdx;\n";
3686     if (HasOptionalOperands) {
3687       OS << "        OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands
3688          << ");\n";
3689     }
3690     OS << "        break;\n";
3691   }
3692   OS << "      }\n";
3693   OS << "      MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n";
3694   OS << "      unsigned Diag = validateOperandClass(Actual, Formal);\n";
3695   OS << "      if (Diag == Match_Success) {\n";
3696   OS << "        DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3697   OS << "                        dbgs() << \"match success using generic matcher\\n\");\n";
3698   OS << "        ++ActualIdx;\n";
3699   OS << "        continue;\n";
3700   OS << "      }\n";
3701   OS << "      // If the generic handler indicates an invalid operand\n";
3702   OS << "      // failure, check for a special case.\n";
3703   OS << "      if (Diag != Match_Success) {\n";
3704   OS << "        unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n";
3705   OS << "        if (TargetDiag == Match_Success) {\n";
3706   OS << "          DEBUG_WITH_TYPE(\"asm-matcher\",\n";
3707   OS << "                          dbgs() << \"match success using target matcher\\n\");\n";
3708   OS << "          ++ActualIdx;\n";
3709   OS << "          continue;\n";
3710   OS << "        }\n";
3711   OS << "        // If the target matcher returned a specific error code use\n";
3712   OS << "        // that, else use the one from the generic matcher.\n";
3713   OS << "        if (TargetDiag != Match_InvalidOperand && "
3714         "HasRequiredFeatures)\n";
3715   OS << "          Diag = TargetDiag;\n";
3716   OS << "      }\n";
3717   OS << "      // If current formal operand wasn't matched and it is optional\n"
3718      << "      // then try to match next formal operand\n";
3719   OS << "      if (Diag == Match_InvalidOperand "
3720      << "&& isSubclass(Formal, OptionalMatchClass)) {\n";
3721   if (HasOptionalOperands) {
3722     OS << "        OptionalOperandsMask.set(FormalIdx);\n";
3723   }
3724     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n";
3725   OS << "        continue;\n";
3726   OS << "      }\n";
3727 
3728   if (ReportMultipleNearMisses) {
3729     OS << "      if (!OperandNearMiss) {\n";
3730     OS << "        // If this is the first invalid operand we have seen, record some\n";
3731     OS << "        // information about it.\n";
3732     OS << "        DEBUG_WITH_TYPE(\n";
3733     OS << "            \"asm-matcher\",\n";
3734     OS << "            dbgs()\n";
3735     OS << "                << \"operand match failed, recording near-miss with diag code \"\n";
3736     OS << "                << Diag << \"\\n\");\n";
3737     OS << "        OperandNearMiss =\n";
3738     OS << "            NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n";
3739     OS << "        ++ActualIdx;\n";
3740     OS << "      } else {\n";
3741     OS << "        // If more than one operand is invalid, give up on this match entry.\n";
3742     OS << "        DEBUG_WITH_TYPE(\n";
3743     OS << "            \"asm-matcher\",\n";
3744     OS << "            dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n";
3745     OS << "        MultipleInvalidOperands = true;\n";
3746     OS << "        break;\n";
3747     OS << "      }\n";
3748     OS << "    }\n\n";
3749   } else {
3750     OS << "      // If this operand is broken for all of the instances of this\n";
3751     OS << "      // mnemonic, keep track of it so we can report loc info.\n";
3752     OS << "      // If we already had a match that only failed due to a\n";
3753     OS << "      // target predicate, that diagnostic is preferred.\n";
3754     OS << "      if (!HadMatchOtherThanPredicate &&\n";
3755     OS << "          (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n";
3756     OS << "        if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag "
3757           "!= Match_InvalidOperand))\n";
3758     OS << "          RetCode = Diag;\n";
3759     OS << "        ErrorInfo = ActualIdx;\n";
3760     OS << "      }\n";
3761     OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
3762     OS << "      OperandsValid = false;\n";
3763     OS << "      break;\n";
3764     OS << "    }\n\n";
3765   }
3766 
3767   if (ReportMultipleNearMisses)
3768     OS << "    if (MultipleInvalidOperands) {\n";
3769   else
3770     OS << "    if (!OperandsValid) {\n";
3771   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3772   OS << "                                               \"operand mismatches, ignoring \"\n";
3773   OS << "                                               \"this opcode\\n\");\n";
3774   OS << "      continue;\n";
3775   OS << "    }\n";
3776 
3777   // Emit check that the required features are available.
3778   OS << "    if (!HasRequiredFeatures) {\n";
3779   if (!ReportMultipleNearMisses)
3780     OS << "      HadMatchOtherThanFeatures = true;\n";
3781   OS << "      FeatureBitset NewMissingFeatures = RequiredFeatures & "
3782         "~AvailableFeatures;\n";
3783   OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n";
3784   OS << "                      for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n";
3785   OS << "                        if (NewMissingFeatures[I])\n";
3786   OS << "                          dbgs() << ' ' << I;\n";
3787   OS << "                      dbgs() << \"\\n\");\n";
3788   if (ReportMultipleNearMisses) {
3789     OS << "      FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n";
3790   } else {
3791     OS << "      if (NewMissingFeatures.count() <=\n"
3792           "          MissingFeatures.count())\n";
3793     OS << "        MissingFeatures = NewMissingFeatures;\n";
3794     OS << "      continue;\n";
3795   }
3796   OS << "    }\n";
3797   OS << "\n";
3798   OS << "    Inst.clear();\n\n";
3799   OS << "    Inst.setOpcode(it->Opcode);\n";
3800   // Verify the instruction with the target-specific match predicate function.
3801   OS << "    // We have a potential match but have not rendered the operands.\n"
3802      << "    // Check the target predicate to handle any context sensitive\n"
3803         "    // constraints.\n"
3804      << "    // For example, Ties that are referenced multiple times must be\n"
3805         "    // checked here to ensure the input is the same for each match\n"
3806         "    // constraints. If we leave it any later the ties will have been\n"
3807         "    // canonicalized\n"
3808      << "    unsigned MatchResult;\n"
3809      << "    if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, "
3810         "Operands)) != Match_Success) {\n"
3811      << "      Inst.clear();\n";
3812   OS << "      DEBUG_WITH_TYPE(\n";
3813   OS << "          \"asm-matcher\",\n";
3814   OS << "          dbgs() << \"Early target match predicate failed with diag code \"\n";
3815   OS << "                 << MatchResult << \"\\n\");\n";
3816   if (ReportMultipleNearMisses) {
3817     OS << "      EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3818   } else {
3819     OS << "      RetCode = MatchResult;\n"
3820        << "      HadMatchOtherThanPredicate = true;\n"
3821        << "      continue;\n";
3822   }
3823   OS << "    }\n\n";
3824 
3825   if (ReportMultipleNearMisses) {
3826     OS << "    // If we did not successfully match the operands, then we can't convert to\n";
3827     OS << "    // an MCInst, so bail out on this instruction variant now.\n";
3828     OS << "    if (OperandNearMiss) {\n";
3829     OS << "      // If the operand mismatch was the only problem, reprrt it as a near-miss.\n";
3830     OS << "      if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n";
3831     OS << "        DEBUG_WITH_TYPE(\n";
3832     OS << "            \"asm-matcher\",\n";
3833     OS << "            dbgs()\n";
3834     OS << "                << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n";
3835     OS << "        NearMisses->push_back(OperandNearMiss);\n";
3836     OS << "      } else {\n";
3837     OS << "        DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3838     OS << "                                                 \"types of mismatch, so not \"\n";
3839     OS << "                                                 \"reporting near-miss\\n\");\n";
3840     OS << "      }\n";
3841     OS << "      continue;\n";
3842     OS << "    }\n\n";
3843   }
3844 
3845   OS << "    if (matchingInlineAsm) {\n";
3846   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
3847   if (!ReportMultipleNearMisses) {
3848     OS << "      if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3849           "Operands, ErrorInfo))\n";
3850     OS << "        return Match_InvalidTiedOperand;\n";
3851     OS << "\n";
3852   }
3853   OS << "      return Match_Success;\n";
3854   OS << "    }\n\n";
3855   OS << "    // We have selected a definite instruction, convert the parsed\n"
3856      << "    // operands into the appropriate MCInst.\n";
3857   if (HasOptionalOperands) {
3858     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n"
3859        << "                    OptionalOperandsMask);\n";
3860   } else {
3861     OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
3862   }
3863   OS << "\n";
3864 
3865   // Verify the instruction with the target-specific match predicate function.
3866   OS << "    // We have a potential match. Check the target predicate to\n"
3867      << "    // handle any context sensitive constraints.\n"
3868      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
3869      << " Match_Success) {\n"
3870      << "      DEBUG_WITH_TYPE(\"asm-matcher\",\n"
3871      << "                      dbgs() << \"Target match predicate failed with diag code \"\n"
3872      << "                             << MatchResult << \"\\n\");\n"
3873      << "      Inst.clear();\n";
3874   if (ReportMultipleNearMisses) {
3875     OS << "      LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n";
3876   } else {
3877     OS << "      RetCode = MatchResult;\n"
3878        << "      HadMatchOtherThanPredicate = true;\n"
3879        << "      continue;\n";
3880   }
3881   OS << "    }\n\n";
3882 
3883   if (ReportMultipleNearMisses) {
3884     OS << "    int NumNearMisses = ((int)(bool)OperandNearMiss +\n";
3885     OS << "                         (int)(bool)FeaturesNearMiss +\n";
3886     OS << "                         (int)(bool)EarlyPredicateNearMiss +\n";
3887     OS << "                         (int)(bool)LatePredicateNearMiss);\n";
3888     OS << "    if (NumNearMisses == 1) {\n";
3889     OS << "      // We had exactly one type of near-miss, so add that to the list.\n";
3890     OS << "      assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n";
3891     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n";
3892     OS << "                                            \"mismatch, so reporting a \"\n";
3893     OS << "                                            \"near-miss\\n\");\n";
3894     OS << "      if (NearMisses && FeaturesNearMiss)\n";
3895     OS << "        NearMisses->push_back(FeaturesNearMiss);\n";
3896     OS << "      else if (NearMisses && EarlyPredicateNearMiss)\n";
3897     OS << "        NearMisses->push_back(EarlyPredicateNearMiss);\n";
3898     OS << "      else if (NearMisses && LatePredicateNearMiss)\n";
3899     OS << "        NearMisses->push_back(LatePredicateNearMiss);\n";
3900     OS << "\n";
3901     OS << "      continue;\n";
3902     OS << "    } else if (NumNearMisses > 1) {\n";
3903     OS << "      // This instruction missed in more than one way, so ignore it.\n";
3904     OS << "      DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n";
3905     OS << "                                               \"types of mismatch, so not \"\n";
3906     OS << "                                               \"reporting near-miss\\n\");\n";
3907     OS << "      continue;\n";
3908     OS << "    }\n";
3909   }
3910 
3911   // Call the post-processing function, if used.
3912   StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup");
3913   if (!InsnCleanupFn.empty())
3914     OS << "    " << InsnCleanupFn << "(Inst);\n";
3915 
3916   if (HasDeprecation) {
3917     OS << "    std::string Info;\n";
3918     OS << "    if (!getParser().getTargetParser().\n";
3919     OS << "        getTargetOptions().MCNoDeprecatedWarn &&\n";
3920     OS << "        MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n";
3921     OS << "      SMLoc Loc = ((" << Target.getName()
3922        << "Operand &)*Operands[0]).getStartLoc();\n";
3923     OS << "      getParser().Warning(Loc, Info, None);\n";
3924     OS << "    }\n";
3925   }
3926 
3927   if (!ReportMultipleNearMisses) {
3928     OS << "    if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, "
3929           "Operands, ErrorInfo))\n";
3930     OS << "      return Match_InvalidTiedOperand;\n";
3931     OS << "\n";
3932   }
3933 
3934   OS << "    DEBUG_WITH_TYPE(\n";
3935   OS << "        \"asm-matcher\",\n";
3936   OS << "        dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n";
3937   OS << "    return Match_Success;\n";
3938   OS << "  }\n\n";
3939 
3940   if (ReportMultipleNearMisses) {
3941     OS << "  // No instruction variants matched exactly.\n";
3942     OS << "  return Match_NearMisses;\n";
3943   } else {
3944     OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
3945     OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
3946     OS << "    return RetCode;\n\n";
3947     OS << "  ErrorInfo = 0;\n";
3948     OS << "  return Match_MissingFeature;\n";
3949   }
3950   OS << "}\n\n";
3951 
3952   if (!Info.OperandMatchInfo.empty())
3953     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
3954                              MaxMnemonicIndex, FeatureBitsets.size(),
3955                              HasMnemonicFirst);
3956 
3957   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
3958 
3959   OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n";
3960   OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n";
3961 
3962   emitMnemonicSpellChecker(OS, Target, VariantCount);
3963 
3964   OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n";
3965 
3966   OS << "\n#ifdef GET_MNEMONIC_CHECKER\n";
3967   OS << "#undef GET_MNEMONIC_CHECKER\n\n";
3968 
3969   emitMnemonicChecker(OS, Target, VariantCount,
3970                       HasMnemonicFirst, HasMnemonicAliases);
3971 
3972   OS << "#endif // GET_MNEMONIC_CHECKER\n\n";
3973 }
3974 
3975 namespace llvm {
3976 
3977 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
3978   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
3979   AsmMatcherEmitter(RK).run(OS);
3980 }
3981 
3982 } // end namespace llvm
3983