1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "CodeGenTarget.h" 99 #include "SubtargetFeatureInfo.h" 100 #include "Types.h" 101 #include "llvm/ADT/CachedHashString.h" 102 #include "llvm/ADT/PointerUnion.h" 103 #include "llvm/ADT/STLExtras.h" 104 #include "llvm/ADT/SmallPtrSet.h" 105 #include "llvm/ADT/SmallVector.h" 106 #include "llvm/ADT/StringExtras.h" 107 #include "llvm/Config/llvm-config.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/TableGen/Error.h" 112 #include "llvm/TableGen/Record.h" 113 #include "llvm/TableGen/StringMatcher.h" 114 #include "llvm/TableGen/StringToOffsetTable.h" 115 #include "llvm/TableGen/TableGenBackend.h" 116 #include <cassert> 117 #include <cctype> 118 #include <forward_list> 119 #include <map> 120 #include <set> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "asm-matcher-emitter" 125 126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 127 128 static cl::opt<std::string> 129 MatchPrefix("match-prefix", cl::init(""), 130 cl::desc("Only match instructions with the given prefix"), 131 cl::cat(AsmMatcherEmitterCat)); 132 133 namespace { 134 class AsmMatcherInfo; 135 136 // Register sets are used as keys in some second-order sets TableGen creates 137 // when generating its data structures. This means that the order of two 138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 139 // can even affect compiler output (at least seen in diagnostics produced when 140 // all matches fail). So we use a type that sorts them consistently. 141 typedef std::set<Record*, LessRecordByID> RegisterSet; 142 143 class AsmMatcherEmitter { 144 RecordKeeper &Records; 145 public: 146 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 147 148 void run(raw_ostream &o); 149 }; 150 151 /// ClassInfo - Helper class for storing the information about a particular 152 /// class of operands which can be matched. 153 struct ClassInfo { 154 enum ClassInfoKind { 155 /// Invalid kind, for use as a sentinel value. 156 Invalid = 0, 157 158 /// The class for a particular token. 159 Token, 160 161 /// The (first) register class, subsequent register classes are 162 /// RegisterClass0+1, and so on. 163 RegisterClass0, 164 165 /// The (first) user defined class, subsequent user defined classes are 166 /// UserClass0+1, and so on. 167 UserClass0 = 1<<16 168 }; 169 170 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 171 /// N) for the Nth user defined class. 172 unsigned Kind; 173 174 /// SuperClasses - The super classes of this class. Note that for simplicities 175 /// sake user operands only record their immediate super class, while register 176 /// operands include all superclasses. 177 std::vector<ClassInfo*> SuperClasses; 178 179 /// Name - The full class name, suitable for use in an enum. 180 std::string Name; 181 182 /// ClassName - The unadorned generic name for this class (e.g., Token). 183 std::string ClassName; 184 185 /// ValueName - The name of the value this class represents; for a token this 186 /// is the literal token string, for an operand it is the TableGen class (or 187 /// empty if this is a derived class). 188 std::string ValueName; 189 190 /// PredicateMethod - The name of the operand method to test whether the 191 /// operand matches this class; this is not valid for Token or register kinds. 192 std::string PredicateMethod; 193 194 /// RenderMethod - The name of the operand method to add this operand to an 195 /// MCInst; this is not valid for Token or register kinds. 196 std::string RenderMethod; 197 198 /// ParserMethod - The name of the operand method to do a target specific 199 /// parsing on the operand. 200 std::string ParserMethod; 201 202 /// For register classes: the records for all the registers in this class. 203 RegisterSet Registers; 204 205 /// For custom match classes: the diagnostic kind for when the predicate fails. 206 std::string DiagnosticType; 207 208 /// For custom match classes: the diagnostic string for when the predicate fails. 209 std::string DiagnosticString; 210 211 /// Is this operand optional and not always required. 212 bool IsOptional; 213 214 /// DefaultMethod - The name of the method that returns the default operand 215 /// for optional operand 216 std::string DefaultMethod; 217 218 public: 219 /// isRegisterClass() - Check if this is a register class. 220 bool isRegisterClass() const { 221 return Kind >= RegisterClass0 && Kind < UserClass0; 222 } 223 224 /// isUserClass() - Check if this is a user defined class. 225 bool isUserClass() const { 226 return Kind >= UserClass0; 227 } 228 229 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 230 /// are related if they are in the same class hierarchy. 231 bool isRelatedTo(const ClassInfo &RHS) const { 232 // Tokens are only related to tokens. 233 if (Kind == Token || RHS.Kind == Token) 234 return Kind == Token && RHS.Kind == Token; 235 236 // Registers classes are only related to registers classes, and only if 237 // their intersection is non-empty. 238 if (isRegisterClass() || RHS.isRegisterClass()) { 239 if (!isRegisterClass() || !RHS.isRegisterClass()) 240 return false; 241 242 RegisterSet Tmp; 243 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 244 std::set_intersection(Registers.begin(), Registers.end(), 245 RHS.Registers.begin(), RHS.Registers.end(), 246 II, LessRecordByID()); 247 248 return !Tmp.empty(); 249 } 250 251 // Otherwise we have two users operands; they are related if they are in the 252 // same class hierarchy. 253 // 254 // FIXME: This is an oversimplification, they should only be related if they 255 // intersect, however we don't have that information. 256 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 257 const ClassInfo *Root = this; 258 while (!Root->SuperClasses.empty()) 259 Root = Root->SuperClasses.front(); 260 261 const ClassInfo *RHSRoot = &RHS; 262 while (!RHSRoot->SuperClasses.empty()) 263 RHSRoot = RHSRoot->SuperClasses.front(); 264 265 return Root == RHSRoot; 266 } 267 268 /// isSubsetOf - Test whether this class is a subset of \p RHS. 269 bool isSubsetOf(const ClassInfo &RHS) const { 270 // This is a subset of RHS if it is the same class... 271 if (this == &RHS) 272 return true; 273 274 // ... or if any of its super classes are a subset of RHS. 275 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 276 SuperClasses.end()); 277 SmallPtrSet<const ClassInfo *, 16> Visited; 278 while (!Worklist.empty()) { 279 auto *CI = Worklist.pop_back_val(); 280 if (CI == &RHS) 281 return true; 282 for (auto *Super : CI->SuperClasses) 283 if (Visited.insert(Super).second) 284 Worklist.push_back(Super); 285 } 286 287 return false; 288 } 289 290 int getTreeDepth() const { 291 int Depth = 0; 292 const ClassInfo *Root = this; 293 while (!Root->SuperClasses.empty()) { 294 Depth++; 295 Root = Root->SuperClasses.front(); 296 } 297 return Depth; 298 } 299 300 const ClassInfo *findRoot() const { 301 const ClassInfo *Root = this; 302 while (!Root->SuperClasses.empty()) 303 Root = Root->SuperClasses.front(); 304 return Root; 305 } 306 307 /// Compare two classes. This does not produce a total ordering, but does 308 /// guarantee that subclasses are sorted before their parents, and that the 309 /// ordering is transitive. 310 bool operator<(const ClassInfo &RHS) const { 311 if (this == &RHS) 312 return false; 313 314 // First, enforce the ordering between the three different types of class. 315 // Tokens sort before registers, which sort before user classes. 316 if (Kind == Token) { 317 if (RHS.Kind != Token) 318 return true; 319 assert(RHS.Kind == Token); 320 } else if (isRegisterClass()) { 321 if (RHS.Kind == Token) 322 return false; 323 else if (RHS.isUserClass()) 324 return true; 325 assert(RHS.isRegisterClass()); 326 } else if (isUserClass()) { 327 if (!RHS.isUserClass()) 328 return false; 329 assert(RHS.isUserClass()); 330 } else { 331 llvm_unreachable("Unknown ClassInfoKind"); 332 } 333 334 if (Kind == Token || isUserClass()) { 335 // Related tokens and user classes get sorted by depth in the inheritence 336 // tree (so that subclasses are before their parents). 337 if (isRelatedTo(RHS)) { 338 if (getTreeDepth() > RHS.getTreeDepth()) 339 return true; 340 if (getTreeDepth() < RHS.getTreeDepth()) 341 return false; 342 } else { 343 // Unrelated tokens and user classes are ordered by the name of their 344 // root nodes, so that there is a consistent ordering between 345 // unconnected trees. 346 return findRoot()->ValueName < RHS.findRoot()->ValueName; 347 } 348 } else if (isRegisterClass()) { 349 // For register sets, sort by number of registers. This guarantees that 350 // a set will always sort before all of it's strict supersets. 351 if (Registers.size() != RHS.Registers.size()) 352 return Registers.size() < RHS.Registers.size(); 353 } else { 354 llvm_unreachable("Unknown ClassInfoKind"); 355 } 356 357 // FIXME: We should be able to just return false here, as we only need a 358 // partial order (we use stable sorts, so this is deterministic) and the 359 // name of a class shouldn't be significant. However, some of the backends 360 // accidentally rely on this behaviour, so it will have to stay like this 361 // until they are fixed. 362 return ValueName < RHS.ValueName; 363 } 364 }; 365 366 class AsmVariantInfo { 367 public: 368 StringRef RegisterPrefix; 369 StringRef TokenizingCharacters; 370 StringRef SeparatorCharacters; 371 StringRef BreakCharacters; 372 StringRef Name; 373 int AsmVariantNo; 374 }; 375 376 /// MatchableInfo - Helper class for storing the necessary information for an 377 /// instruction or alias which is capable of being matched. 378 struct MatchableInfo { 379 struct AsmOperand { 380 /// Token - This is the token that the operand came from. 381 StringRef Token; 382 383 /// The unique class instance this operand should match. 384 ClassInfo *Class; 385 386 /// The operand name this is, if anything. 387 StringRef SrcOpName; 388 389 /// The operand name this is, before renaming for tied operands. 390 StringRef OrigSrcOpName; 391 392 /// The suboperand index within SrcOpName, or -1 for the entire operand. 393 int SubOpIdx; 394 395 /// Whether the token is "isolated", i.e., it is preceded and followed 396 /// by separators. 397 bool IsIsolatedToken; 398 399 /// Register record if this token is singleton register. 400 Record *SingletonReg; 401 402 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 403 : Token(T), Class(nullptr), SubOpIdx(-1), 404 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 405 }; 406 407 /// ResOperand - This represents a single operand in the result instruction 408 /// generated by the match. In cases (like addressing modes) where a single 409 /// assembler operand expands to multiple MCOperands, this represents the 410 /// single assembler operand, not the MCOperand. 411 struct ResOperand { 412 enum { 413 /// RenderAsmOperand - This represents an operand result that is 414 /// generated by calling the render method on the assembly operand. The 415 /// corresponding AsmOperand is specified by AsmOperandNum. 416 RenderAsmOperand, 417 418 /// TiedOperand - This represents a result operand that is a duplicate of 419 /// a previous result operand. 420 TiedOperand, 421 422 /// ImmOperand - This represents an immediate value that is dumped into 423 /// the operand. 424 ImmOperand, 425 426 /// RegOperand - This represents a fixed register that is dumped in. 427 RegOperand 428 } Kind; 429 430 /// Tuple containing the index of the (earlier) result operand that should 431 /// be copied from, as well as the indices of the corresponding (parsed) 432 /// operands in the asm string. 433 struct TiedOperandsTuple { 434 unsigned ResOpnd; 435 unsigned SrcOpnd1Idx; 436 unsigned SrcOpnd2Idx; 437 }; 438 439 union { 440 /// This is the operand # in the AsmOperands list that this should be 441 /// copied from. 442 unsigned AsmOperandNum; 443 444 /// Description of tied operands. 445 TiedOperandsTuple TiedOperands; 446 447 /// ImmVal - This is the immediate value added to the instruction. 448 int64_t ImmVal; 449 450 /// Register - This is the register record. 451 Record *Register; 452 }; 453 454 /// MINumOperands - The number of MCInst operands populated by this 455 /// operand. 456 unsigned MINumOperands; 457 458 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 459 ResOperand X; 460 X.Kind = RenderAsmOperand; 461 X.AsmOperandNum = AsmOpNum; 462 X.MINumOperands = NumOperands; 463 return X; 464 } 465 466 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 467 unsigned SrcOperand2) { 468 ResOperand X; 469 X.Kind = TiedOperand; 470 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 471 X.MINumOperands = 1; 472 return X; 473 } 474 475 static ResOperand getImmOp(int64_t Val) { 476 ResOperand X; 477 X.Kind = ImmOperand; 478 X.ImmVal = Val; 479 X.MINumOperands = 1; 480 return X; 481 } 482 483 static ResOperand getRegOp(Record *Reg) { 484 ResOperand X; 485 X.Kind = RegOperand; 486 X.Register = Reg; 487 X.MINumOperands = 1; 488 return X; 489 } 490 }; 491 492 /// AsmVariantID - Target's assembly syntax variant no. 493 int AsmVariantID; 494 495 /// AsmString - The assembly string for this instruction (with variants 496 /// removed), e.g. "movsx $src, $dst". 497 std::string AsmString; 498 499 /// TheDef - This is the definition of the instruction or InstAlias that this 500 /// matchable came from. 501 Record *const TheDef; 502 503 /// DefRec - This is the definition that it came from. 504 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 505 506 const CodeGenInstruction *getResultInst() const { 507 if (DefRec.is<const CodeGenInstruction*>()) 508 return DefRec.get<const CodeGenInstruction*>(); 509 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 510 } 511 512 /// ResOperands - This is the operand list that should be built for the result 513 /// MCInst. 514 SmallVector<ResOperand, 8> ResOperands; 515 516 /// Mnemonic - This is the first token of the matched instruction, its 517 /// mnemonic. 518 StringRef Mnemonic; 519 520 /// AsmOperands - The textual operands that this instruction matches, 521 /// annotated with a class and where in the OperandList they were defined. 522 /// This directly corresponds to the tokenized AsmString after the mnemonic is 523 /// removed. 524 SmallVector<AsmOperand, 8> AsmOperands; 525 526 /// Predicates - The required subtarget features to match this instruction. 527 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 528 529 /// ConversionFnKind - The enum value which is passed to the generated 530 /// convertToMCInst to convert parsed operands into an MCInst for this 531 /// function. 532 std::string ConversionFnKind; 533 534 /// If this instruction is deprecated in some form. 535 bool HasDeprecation; 536 537 /// If this is an alias, this is use to determine whether or not to using 538 /// the conversion function defined by the instruction's AsmMatchConverter 539 /// or to use the function generated by the alias. 540 bool UseInstAsmMatchConverter; 541 542 MatchableInfo(const CodeGenInstruction &CGI) 543 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 544 UseInstAsmMatchConverter(true) { 545 } 546 547 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 548 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 549 DefRec(Alias.release()), 550 UseInstAsmMatchConverter( 551 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 552 } 553 554 // Could remove this and the dtor if PointerUnion supported unique_ptr 555 // elements with a dynamic failure/assertion (like the one below) in the case 556 // where it was copied while being in an owning state. 557 MatchableInfo(const MatchableInfo &RHS) 558 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 559 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 560 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 561 RequiredFeatures(RHS.RequiredFeatures), 562 ConversionFnKind(RHS.ConversionFnKind), 563 HasDeprecation(RHS.HasDeprecation), 564 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 565 assert(!DefRec.is<const CodeGenInstAlias *>()); 566 } 567 568 ~MatchableInfo() { 569 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 570 } 571 572 // Two-operand aliases clone from the main matchable, but mark the second 573 // operand as a tied operand of the first for purposes of the assembler. 574 void formTwoOperandAlias(StringRef Constraint); 575 576 void initialize(const AsmMatcherInfo &Info, 577 SmallPtrSetImpl<Record*> &SingletonRegisters, 578 AsmVariantInfo const &Variant, 579 bool HasMnemonicFirst); 580 581 /// validate - Return true if this matchable is a valid thing to match against 582 /// and perform a bunch of validity checking. 583 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 584 585 /// findAsmOperand - Find the AsmOperand with the specified name and 586 /// suboperand index. 587 int findAsmOperand(StringRef N, int SubOpIdx) const { 588 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 589 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 590 }); 591 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 592 } 593 594 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 595 /// This does not check the suboperand index. 596 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 597 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), 598 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 599 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 600 } 601 602 int findAsmOperandOriginallyNamed(StringRef N) const { 603 auto I = 604 find_if(AsmOperands, 605 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 606 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 607 } 608 609 void buildInstructionResultOperands(); 610 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 611 612 /// operator< - Compare two matchables. 613 bool operator<(const MatchableInfo &RHS) const { 614 // The primary comparator is the instruction mnemonic. 615 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic)) 616 return Cmp == -1; 617 618 if (AsmOperands.size() != RHS.AsmOperands.size()) 619 return AsmOperands.size() < RHS.AsmOperands.size(); 620 621 // Compare lexicographically by operand. The matcher validates that other 622 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 623 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 624 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 625 return true; 626 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 627 return false; 628 } 629 630 // Give matches that require more features higher precedence. This is useful 631 // because we cannot define AssemblerPredicates with the negation of 632 // processor features. For example, ARM v6 "nop" may be either a HINT or 633 // MOV. With v6, we want to match HINT. The assembler has no way to 634 // predicate MOV under "NoV6", but HINT will always match first because it 635 // requires V6 while MOV does not. 636 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 637 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 638 639 return false; 640 } 641 642 /// couldMatchAmbiguouslyWith - Check whether this matchable could 643 /// ambiguously match the same set of operands as \p RHS (without being a 644 /// strictly superior match). 645 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 646 // The primary comparator is the instruction mnemonic. 647 if (Mnemonic != RHS.Mnemonic) 648 return false; 649 650 // Different variants can't conflict. 651 if (AsmVariantID != RHS.AsmVariantID) 652 return false; 653 654 // The number of operands is unambiguous. 655 if (AsmOperands.size() != RHS.AsmOperands.size()) 656 return false; 657 658 // Otherwise, make sure the ordering of the two instructions is unambiguous 659 // by checking that either (a) a token or operand kind discriminates them, 660 // or (b) the ordering among equivalent kinds is consistent. 661 662 // Tokens and operand kinds are unambiguous (assuming a correct target 663 // specific parser). 664 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 665 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 666 AsmOperands[i].Class->Kind == ClassInfo::Token) 667 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 668 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 669 return false; 670 671 // Otherwise, this operand could commute if all operands are equivalent, or 672 // there is a pair of operands that compare less than and a pair that 673 // compare greater than. 674 bool HasLT = false, HasGT = false; 675 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 676 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 677 HasLT = true; 678 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 679 HasGT = true; 680 } 681 682 return HasLT == HasGT; 683 } 684 685 void dump() const; 686 687 private: 688 void tokenizeAsmString(AsmMatcherInfo const &Info, 689 AsmVariantInfo const &Variant); 690 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 691 }; 692 693 struct OperandMatchEntry { 694 unsigned OperandMask; 695 const MatchableInfo* MI; 696 ClassInfo *CI; 697 698 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 699 unsigned opMask) { 700 OperandMatchEntry X; 701 X.OperandMask = opMask; 702 X.CI = ci; 703 X.MI = mi; 704 return X; 705 } 706 }; 707 708 class AsmMatcherInfo { 709 public: 710 /// Tracked Records 711 RecordKeeper &Records; 712 713 /// The tablegen AsmParser record. 714 Record *AsmParser; 715 716 /// Target - The target information. 717 CodeGenTarget &Target; 718 719 /// The classes which are needed for matching. 720 std::forward_list<ClassInfo> Classes; 721 722 /// The information on the matchables to match. 723 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 724 725 /// Info for custom matching operands by user defined methods. 726 std::vector<OperandMatchEntry> OperandMatchInfo; 727 728 /// Map of Register records to their class information. 729 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 730 RegisterClassesTy RegisterClasses; 731 732 /// Map of Predicate records to their subtarget information. 733 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 734 735 /// Map of AsmOperandClass records to their class information. 736 std::map<Record*, ClassInfo*> AsmOperandClasses; 737 738 /// Map of RegisterClass records to their class information. 739 std::map<Record*, ClassInfo*> RegisterClassClasses; 740 741 private: 742 /// Map of token to class information which has already been constructed. 743 std::map<std::string, ClassInfo*> TokenClasses; 744 745 private: 746 /// getTokenClass - Lookup or create the class for the given token. 747 ClassInfo *getTokenClass(StringRef Token); 748 749 /// getOperandClass - Lookup or create the class for the given operand. 750 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 751 int SubOpIdx); 752 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 753 754 /// buildRegisterClasses - Build the ClassInfo* instances for register 755 /// classes. 756 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 757 758 /// buildOperandClasses - Build the ClassInfo* instances for user defined 759 /// operand classes. 760 void buildOperandClasses(); 761 762 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 763 unsigned AsmOpIdx); 764 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 765 MatchableInfo::AsmOperand &Op); 766 767 public: 768 AsmMatcherInfo(Record *AsmParser, 769 CodeGenTarget &Target, 770 RecordKeeper &Records); 771 772 /// Construct the various tables used during matching. 773 void buildInfo(); 774 775 /// buildOperandMatchInfo - Build the necessary information to handle user 776 /// defined operand parsing methods. 777 void buildOperandMatchInfo(); 778 779 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 780 /// given operand. 781 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 782 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 783 const auto &I = SubtargetFeatures.find(Def); 784 return I == SubtargetFeatures.end() ? nullptr : &I->second; 785 } 786 787 RecordKeeper &getRecords() const { 788 return Records; 789 } 790 791 bool hasOptionalOperands() const { 792 return any_of(Classes, 793 [](const ClassInfo &Class) { return Class.IsOptional; }); 794 } 795 }; 796 797 } // end anonymous namespace 798 799 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 800 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 801 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 802 803 errs() << " variant: " << AsmVariantID << "\n"; 804 805 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 806 const AsmOperand &Op = AsmOperands[i]; 807 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 808 errs() << '\"' << Op.Token << "\"\n"; 809 } 810 } 811 #endif 812 813 static std::pair<StringRef, StringRef> 814 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 815 // Split via the '='. 816 std::pair<StringRef, StringRef> Ops = S.split('='); 817 if (Ops.second == "") 818 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 819 // Trim whitespace and the leading '$' on the operand names. 820 size_t start = Ops.first.find_first_of('$'); 821 if (start == std::string::npos) 822 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 823 Ops.first = Ops.first.slice(start + 1, std::string::npos); 824 size_t end = Ops.first.find_last_of(" \t"); 825 Ops.first = Ops.first.slice(0, end); 826 // Now the second operand. 827 start = Ops.second.find_first_of('$'); 828 if (start == std::string::npos) 829 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 830 Ops.second = Ops.second.slice(start + 1, std::string::npos); 831 end = Ops.second.find_last_of(" \t"); 832 Ops.first = Ops.first.slice(0, end); 833 return Ops; 834 } 835 836 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 837 // Figure out which operands are aliased and mark them as tied. 838 std::pair<StringRef, StringRef> Ops = 839 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 840 841 // Find the AsmOperands that refer to the operands we're aliasing. 842 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 843 int DstAsmOperand = findAsmOperandNamed(Ops.second); 844 if (SrcAsmOperand == -1) 845 PrintFatalError(TheDef->getLoc(), 846 "unknown source two-operand alias operand '" + Ops.first + 847 "'."); 848 if (DstAsmOperand == -1) 849 PrintFatalError(TheDef->getLoc(), 850 "unknown destination two-operand alias operand '" + 851 Ops.second + "'."); 852 853 // Find the ResOperand that refers to the operand we're aliasing away 854 // and update it to refer to the combined operand instead. 855 for (ResOperand &Op : ResOperands) { 856 if (Op.Kind == ResOperand::RenderAsmOperand && 857 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 858 Op.AsmOperandNum = DstAsmOperand; 859 break; 860 } 861 } 862 // Remove the AsmOperand for the alias operand. 863 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 864 // Adjust the ResOperand references to any AsmOperands that followed 865 // the one we just deleted. 866 for (ResOperand &Op : ResOperands) { 867 switch(Op.Kind) { 868 default: 869 // Nothing to do for operands that don't reference AsmOperands. 870 break; 871 case ResOperand::RenderAsmOperand: 872 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 873 --Op.AsmOperandNum; 874 break; 875 } 876 } 877 } 878 879 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 880 /// if present, from specified token. 881 static void 882 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 883 const AsmMatcherInfo &Info, 884 StringRef RegisterPrefix) { 885 StringRef Tok = Op.Token; 886 887 // If this token is not an isolated token, i.e., it isn't separated from 888 // other tokens (e.g. with whitespace), don't interpret it as a register name. 889 if (!Op.IsIsolatedToken) 890 return; 891 892 if (RegisterPrefix.empty()) { 893 std::string LoweredTok = Tok.lower(); 894 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 895 Op.SingletonReg = Reg->TheDef; 896 return; 897 } 898 899 if (!Tok.startswith(RegisterPrefix)) 900 return; 901 902 StringRef RegName = Tok.substr(RegisterPrefix.size()); 903 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 904 Op.SingletonReg = Reg->TheDef; 905 906 // If there is no register prefix (i.e. "%" in "%eax"), then this may 907 // be some random non-register token, just ignore it. 908 } 909 910 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 911 SmallPtrSetImpl<Record*> &SingletonRegisters, 912 AsmVariantInfo const &Variant, 913 bool HasMnemonicFirst) { 914 AsmVariantID = Variant.AsmVariantNo; 915 AsmString = 916 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 917 Variant.AsmVariantNo); 918 919 tokenizeAsmString(Info, Variant); 920 921 // The first token of the instruction is the mnemonic, which must be a 922 // simple string, not a $foo variable or a singleton register. 923 if (AsmOperands.empty()) 924 PrintFatalError(TheDef->getLoc(), 925 "Instruction '" + TheDef->getName() + "' has no tokens"); 926 927 assert(!AsmOperands[0].Token.empty()); 928 if (HasMnemonicFirst) { 929 Mnemonic = AsmOperands[0].Token; 930 if (Mnemonic[0] == '$') 931 PrintFatalError(TheDef->getLoc(), 932 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 933 934 // Remove the first operand, it is tracked in the mnemonic field. 935 AsmOperands.erase(AsmOperands.begin()); 936 } else if (AsmOperands[0].Token[0] != '$') 937 Mnemonic = AsmOperands[0].Token; 938 939 // Compute the require features. 940 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 941 if (const SubtargetFeatureInfo *Feature = 942 Info.getSubtargetFeature(Predicate)) 943 RequiredFeatures.push_back(Feature); 944 945 // Collect singleton registers, if used. 946 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 947 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 948 if (Record *Reg = Op.SingletonReg) 949 SingletonRegisters.insert(Reg); 950 } 951 952 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 953 if (!DepMask) 954 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 955 956 HasDeprecation = 957 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 958 } 959 960 /// Append an AsmOperand for the given substring of AsmString. 961 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 962 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 963 } 964 965 /// tokenizeAsmString - Tokenize a simplified assembly string. 966 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 967 AsmVariantInfo const &Variant) { 968 StringRef String = AsmString; 969 size_t Prev = 0; 970 bool InTok = false; 971 bool IsIsolatedToken = true; 972 for (size_t i = 0, e = String.size(); i != e; ++i) { 973 char Char = String[i]; 974 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 975 if (InTok) { 976 addAsmOperand(String.slice(Prev, i), false); 977 Prev = i; 978 IsIsolatedToken = false; 979 } 980 InTok = true; 981 continue; 982 } 983 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 984 if (InTok) { 985 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 986 InTok = false; 987 IsIsolatedToken = false; 988 } 989 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 990 Prev = i + 1; 991 IsIsolatedToken = true; 992 continue; 993 } 994 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 995 if (InTok) { 996 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 997 InTok = false; 998 } 999 Prev = i + 1; 1000 IsIsolatedToken = true; 1001 continue; 1002 } 1003 1004 switch (Char) { 1005 case '\\': 1006 if (InTok) { 1007 addAsmOperand(String.slice(Prev, i), false); 1008 InTok = false; 1009 IsIsolatedToken = false; 1010 } 1011 ++i; 1012 assert(i != String.size() && "Invalid quoted character"); 1013 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1014 Prev = i + 1; 1015 IsIsolatedToken = false; 1016 break; 1017 1018 case '$': { 1019 if (InTok) { 1020 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1021 InTok = false; 1022 IsIsolatedToken = false; 1023 } 1024 1025 // If this isn't "${", start new identifier looking like "$xxx" 1026 if (i + 1 == String.size() || String[i + 1] != '{') { 1027 Prev = i; 1028 break; 1029 } 1030 1031 size_t EndPos = String.find('}', i); 1032 assert(EndPos != StringRef::npos && 1033 "Missing brace in operand reference!"); 1034 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1035 Prev = EndPos + 1; 1036 i = EndPos; 1037 IsIsolatedToken = false; 1038 break; 1039 } 1040 1041 default: 1042 InTok = true; 1043 break; 1044 } 1045 } 1046 if (InTok && Prev != String.size()) 1047 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1048 } 1049 1050 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1051 // Reject matchables with no .s string. 1052 if (AsmString.empty()) 1053 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1054 1055 // Reject any matchables with a newline in them, they should be marked 1056 // isCodeGenOnly if they are pseudo instructions. 1057 if (AsmString.find('\n') != std::string::npos) 1058 PrintFatalError(TheDef->getLoc(), 1059 "multiline instruction is not valid for the asmparser, " 1060 "mark it isCodeGenOnly"); 1061 1062 // Remove comments from the asm string. We know that the asmstring only 1063 // has one line. 1064 if (!CommentDelimiter.empty() && 1065 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) 1066 PrintFatalError(TheDef->getLoc(), 1067 "asmstring for instruction has comment character in it, " 1068 "mark it isCodeGenOnly"); 1069 1070 // Reject matchables with operand modifiers, these aren't something we can 1071 // handle, the target should be refactored to use operands instead of 1072 // modifiers. 1073 // 1074 // Also, check for instructions which reference the operand multiple times, 1075 // if they don't define a custom AsmMatcher: this implies a constraint that 1076 // the built-in matching code would not honor. 1077 std::set<std::string> OperandNames; 1078 for (const AsmOperand &Op : AsmOperands) { 1079 StringRef Tok = Op.Token; 1080 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) 1081 PrintFatalError(TheDef->getLoc(), 1082 "matchable with operand modifier '" + Tok + 1083 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1084 // Verify that any operand is only mentioned once. 1085 // We reject aliases and ignore instructions for now. 1086 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1087 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { 1088 LLVM_DEBUG({ 1089 errs() << "warning: '" << TheDef->getName() << "': " 1090 << "ignoring instruction with tied operand '" 1091 << Tok << "'\n"; 1092 }); 1093 return false; 1094 } 1095 } 1096 1097 return true; 1098 } 1099 1100 static std::string getEnumNameForToken(StringRef Str) { 1101 std::string Res; 1102 1103 for (char C : Str) { 1104 switch (C) { 1105 case '*': Res += "_STAR_"; break; 1106 case '%': Res += "_PCT_"; break; 1107 case ':': Res += "_COLON_"; break; 1108 case '!': Res += "_EXCLAIM_"; break; 1109 case '.': Res += "_DOT_"; break; 1110 case '<': Res += "_LT_"; break; 1111 case '>': Res += "_GT_"; break; 1112 case '-': Res += "_MINUS_"; break; 1113 case '#': Res += "_HASH_"; break; 1114 default: 1115 if (isAlnum(C)) 1116 Res += C; 1117 else 1118 Res += "_" + utostr((unsigned)C) + "_"; 1119 } 1120 } 1121 1122 return Res; 1123 } 1124 1125 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1126 ClassInfo *&Entry = TokenClasses[std::string(Token)]; 1127 1128 if (!Entry) { 1129 Classes.emplace_front(); 1130 Entry = &Classes.front(); 1131 Entry->Kind = ClassInfo::Token; 1132 Entry->ClassName = "Token"; 1133 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1134 Entry->ValueName = std::string(Token); 1135 Entry->PredicateMethod = "<invalid>"; 1136 Entry->RenderMethod = "<invalid>"; 1137 Entry->ParserMethod = ""; 1138 Entry->DiagnosticType = ""; 1139 Entry->IsOptional = false; 1140 Entry->DefaultMethod = "<invalid>"; 1141 } 1142 1143 return Entry; 1144 } 1145 1146 ClassInfo * 1147 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1148 int SubOpIdx) { 1149 Record *Rec = OI.Rec; 1150 if (SubOpIdx != -1) 1151 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1152 return getOperandClass(Rec, SubOpIdx); 1153 } 1154 1155 ClassInfo * 1156 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1157 if (Rec->isSubClassOf("RegisterOperand")) { 1158 // RegisterOperand may have an associated ParserMatchClass. If it does, 1159 // use it, else just fall back to the underlying register class. 1160 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1161 if (!R || !R->getValue()) 1162 PrintFatalError(Rec->getLoc(), 1163 "Record `" + Rec->getName() + 1164 "' does not have a ParserMatchClass!\n"); 1165 1166 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1167 Record *MatchClass = DI->getDef(); 1168 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1169 return CI; 1170 } 1171 1172 // No custom match class. Just use the register class. 1173 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1174 if (!ClassRec) 1175 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1176 "' has no associated register class!\n"); 1177 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1178 return CI; 1179 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1180 } 1181 1182 if (Rec->isSubClassOf("RegisterClass")) { 1183 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1184 return CI; 1185 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1186 } 1187 1188 if (!Rec->isSubClassOf("Operand")) 1189 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1190 "' does not derive from class Operand!\n"); 1191 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1192 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1193 return CI; 1194 1195 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1196 } 1197 1198 struct LessRegisterSet { 1199 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1200 // std::set<T> defines its own compariso "operator<", but it 1201 // performs a lexicographical comparison by T's innate comparison 1202 // for some reason. We don't want non-deterministic pointer 1203 // comparisons so use this instead. 1204 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1205 RHS.begin(), RHS.end(), 1206 LessRecordByID()); 1207 } 1208 }; 1209 1210 void AsmMatcherInfo:: 1211 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1212 const auto &Registers = Target.getRegBank().getRegisters(); 1213 auto &RegClassList = Target.getRegBank().getRegClasses(); 1214 1215 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1216 1217 // The register sets used for matching. 1218 RegisterSetSet RegisterSets; 1219 1220 // Gather the defined sets. 1221 for (const CodeGenRegisterClass &RC : RegClassList) 1222 RegisterSets.insert( 1223 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1224 1225 // Add any required singleton sets. 1226 for (Record *Rec : SingletonRegisters) { 1227 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1228 } 1229 1230 // Introduce derived sets where necessary (when a register does not determine 1231 // a unique register set class), and build the mapping of registers to the set 1232 // they should classify to. 1233 std::map<Record*, RegisterSet> RegisterMap; 1234 for (const CodeGenRegister &CGR : Registers) { 1235 // Compute the intersection of all sets containing this register. 1236 RegisterSet ContainingSet; 1237 1238 for (const RegisterSet &RS : RegisterSets) { 1239 if (!RS.count(CGR.TheDef)) 1240 continue; 1241 1242 if (ContainingSet.empty()) { 1243 ContainingSet = RS; 1244 continue; 1245 } 1246 1247 RegisterSet Tmp; 1248 std::swap(Tmp, ContainingSet); 1249 std::insert_iterator<RegisterSet> II(ContainingSet, 1250 ContainingSet.begin()); 1251 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1252 LessRecordByID()); 1253 } 1254 1255 if (!ContainingSet.empty()) { 1256 RegisterSets.insert(ContainingSet); 1257 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1258 } 1259 } 1260 1261 // Construct the register classes. 1262 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1263 unsigned Index = 0; 1264 for (const RegisterSet &RS : RegisterSets) { 1265 Classes.emplace_front(); 1266 ClassInfo *CI = &Classes.front(); 1267 CI->Kind = ClassInfo::RegisterClass0 + Index; 1268 CI->ClassName = "Reg" + utostr(Index); 1269 CI->Name = "MCK_Reg" + utostr(Index); 1270 CI->ValueName = ""; 1271 CI->PredicateMethod = ""; // unused 1272 CI->RenderMethod = "addRegOperands"; 1273 CI->Registers = RS; 1274 // FIXME: diagnostic type. 1275 CI->DiagnosticType = ""; 1276 CI->IsOptional = false; 1277 CI->DefaultMethod = ""; // unused 1278 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1279 ++Index; 1280 } 1281 1282 // Find the superclasses; we could compute only the subgroup lattice edges, 1283 // but there isn't really a point. 1284 for (const RegisterSet &RS : RegisterSets) { 1285 ClassInfo *CI = RegisterSetClasses[RS]; 1286 for (const RegisterSet &RS2 : RegisterSets) 1287 if (RS != RS2 && 1288 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1289 LessRecordByID())) 1290 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1291 } 1292 1293 // Name the register classes which correspond to a user defined RegisterClass. 1294 for (const CodeGenRegisterClass &RC : RegClassList) { 1295 // Def will be NULL for non-user defined register classes. 1296 Record *Def = RC.getDef(); 1297 if (!Def) 1298 continue; 1299 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1300 RC.getOrder().end())]; 1301 if (CI->ValueName.empty()) { 1302 CI->ClassName = RC.getName(); 1303 CI->Name = "MCK_" + RC.getName(); 1304 CI->ValueName = RC.getName(); 1305 } else 1306 CI->ValueName = CI->ValueName + "," + RC.getName(); 1307 1308 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1309 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1310 CI->DiagnosticType = std::string(SI->getValue()); 1311 1312 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1313 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1314 CI->DiagnosticString = std::string(SI->getValue()); 1315 1316 // If we have a diagnostic string but the diagnostic type is not specified 1317 // explicitly, create an anonymous diagnostic type. 1318 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1319 CI->DiagnosticType = RC.getName(); 1320 1321 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1322 } 1323 1324 // Populate the map for individual registers. 1325 for (auto &It : RegisterMap) 1326 RegisterClasses[It.first] = RegisterSetClasses[It.second]; 1327 1328 // Name the register classes which correspond to singleton registers. 1329 for (Record *Rec : SingletonRegisters) { 1330 ClassInfo *CI = RegisterClasses[Rec]; 1331 assert(CI && "Missing singleton register class info!"); 1332 1333 if (CI->ValueName.empty()) { 1334 CI->ClassName = std::string(Rec->getName()); 1335 CI->Name = "MCK_" + Rec->getName().str(); 1336 CI->ValueName = std::string(Rec->getName()); 1337 } else 1338 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1339 } 1340 } 1341 1342 void AsmMatcherInfo::buildOperandClasses() { 1343 std::vector<Record*> AsmOperands = 1344 Records.getAllDerivedDefinitions("AsmOperandClass"); 1345 1346 // Pre-populate AsmOperandClasses map. 1347 for (Record *Rec : AsmOperands) { 1348 Classes.emplace_front(); 1349 AsmOperandClasses[Rec] = &Classes.front(); 1350 } 1351 1352 unsigned Index = 0; 1353 for (Record *Rec : AsmOperands) { 1354 ClassInfo *CI = AsmOperandClasses[Rec]; 1355 CI->Kind = ClassInfo::UserClass0 + Index; 1356 1357 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1358 for (Init *I : Supers->getValues()) { 1359 DefInit *DI = dyn_cast<DefInit>(I); 1360 if (!DI) { 1361 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1362 continue; 1363 } 1364 1365 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1366 if (!SC) 1367 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1368 else 1369 CI->SuperClasses.push_back(SC); 1370 } 1371 CI->ClassName = std::string(Rec->getValueAsString("Name")); 1372 CI->Name = "MCK_" + CI->ClassName; 1373 CI->ValueName = std::string(Rec->getName()); 1374 1375 // Get or construct the predicate method name. 1376 Init *PMName = Rec->getValueInit("PredicateMethod"); 1377 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1378 CI->PredicateMethod = std::string(SI->getValue()); 1379 } else { 1380 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1381 CI->PredicateMethod = "is" + CI->ClassName; 1382 } 1383 1384 // Get or construct the render method name. 1385 Init *RMName = Rec->getValueInit("RenderMethod"); 1386 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1387 CI->RenderMethod = std::string(SI->getValue()); 1388 } else { 1389 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1390 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1391 } 1392 1393 // Get the parse method name or leave it as empty. 1394 Init *PRMName = Rec->getValueInit("ParserMethod"); 1395 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1396 CI->ParserMethod = std::string(SI->getValue()); 1397 1398 // Get the diagnostic type and string or leave them as empty. 1399 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1400 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1401 CI->DiagnosticType = std::string(SI->getValue()); 1402 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1403 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1404 CI->DiagnosticString = std::string(SI->getValue()); 1405 // If we have a DiagnosticString, we need a DiagnosticType for use within 1406 // the matcher. 1407 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1408 CI->DiagnosticType = CI->ClassName; 1409 1410 Init *IsOptional = Rec->getValueInit("IsOptional"); 1411 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1412 CI->IsOptional = BI->getValue(); 1413 1414 // Get or construct the default method name. 1415 Init *DMName = Rec->getValueInit("DefaultMethod"); 1416 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1417 CI->DefaultMethod = std::string(SI->getValue()); 1418 } else { 1419 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1420 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1421 } 1422 1423 ++Index; 1424 } 1425 } 1426 1427 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1428 CodeGenTarget &target, 1429 RecordKeeper &records) 1430 : Records(records), AsmParser(asmParser), Target(target) { 1431 } 1432 1433 /// buildOperandMatchInfo - Build the necessary information to handle user 1434 /// defined operand parsing methods. 1435 void AsmMatcherInfo::buildOperandMatchInfo() { 1436 1437 /// Map containing a mask with all operands indices that can be found for 1438 /// that class inside a instruction. 1439 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1440 OpClassMaskTy OpClassMask; 1441 1442 for (const auto &MI : Matchables) { 1443 OpClassMask.clear(); 1444 1445 // Keep track of all operands of this instructions which belong to the 1446 // same class. 1447 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1448 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1449 if (Op.Class->ParserMethod.empty()) 1450 continue; 1451 unsigned &OperandMask = OpClassMask[Op.Class]; 1452 OperandMask |= (1 << i); 1453 } 1454 1455 // Generate operand match info for each mnemonic/operand class pair. 1456 for (const auto &OCM : OpClassMask) { 1457 unsigned OpMask = OCM.second; 1458 ClassInfo *CI = OCM.first; 1459 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1460 OpMask)); 1461 } 1462 } 1463 } 1464 1465 void AsmMatcherInfo::buildInfo() { 1466 // Build information about all of the AssemblerPredicates. 1467 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1468 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1469 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1470 SubtargetFeaturePairs.end()); 1471 #ifndef NDEBUG 1472 for (const auto &Pair : SubtargetFeatures) 1473 LLVM_DEBUG(Pair.second.dump()); 1474 #endif // NDEBUG 1475 1476 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1477 bool ReportMultipleNearMisses = 1478 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1479 1480 // Parse the instructions; we need to do this first so that we can gather the 1481 // singleton register classes. 1482 SmallPtrSet<Record*, 16> SingletonRegisters; 1483 unsigned VariantCount = Target.getAsmParserVariantCount(); 1484 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1485 Record *AsmVariant = Target.getAsmParserVariant(VC); 1486 StringRef CommentDelimiter = 1487 AsmVariant->getValueAsString("CommentDelimiter"); 1488 AsmVariantInfo Variant; 1489 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1490 Variant.TokenizingCharacters = 1491 AsmVariant->getValueAsString("TokenizingCharacters"); 1492 Variant.SeparatorCharacters = 1493 AsmVariant->getValueAsString("SeparatorCharacters"); 1494 Variant.BreakCharacters = 1495 AsmVariant->getValueAsString("BreakCharacters"); 1496 Variant.Name = AsmVariant->getValueAsString("Name"); 1497 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1498 1499 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1500 1501 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1502 // filter the set of instructions we consider. 1503 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1504 continue; 1505 1506 // Ignore "codegen only" instructions. 1507 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1508 continue; 1509 1510 // Ignore instructions for different instructions 1511 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1512 if (!V.empty() && V != Variant.Name) 1513 continue; 1514 1515 auto II = std::make_unique<MatchableInfo>(*CGI); 1516 1517 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1518 1519 // Ignore instructions which shouldn't be matched and diagnose invalid 1520 // instruction definitions with an error. 1521 if (!II->validate(CommentDelimiter, false)) 1522 continue; 1523 1524 Matchables.push_back(std::move(II)); 1525 } 1526 1527 // Parse all of the InstAlias definitions and stick them in the list of 1528 // matchables. 1529 std::vector<Record*> AllInstAliases = 1530 Records.getAllDerivedDefinitions("InstAlias"); 1531 for (Record *InstAlias : AllInstAliases) { 1532 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target); 1533 1534 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1535 // filter the set of instruction aliases we consider, based on the target 1536 // instruction. 1537 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1538 .startswith( MatchPrefix)) 1539 continue; 1540 1541 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1542 if (!V.empty() && V != Variant.Name) 1543 continue; 1544 1545 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1546 1547 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1548 1549 // Validate the alias definitions. 1550 II->validate(CommentDelimiter, true); 1551 1552 Matchables.push_back(std::move(II)); 1553 } 1554 } 1555 1556 // Build info for the register classes. 1557 buildRegisterClasses(SingletonRegisters); 1558 1559 // Build info for the user defined assembly operand classes. 1560 buildOperandClasses(); 1561 1562 // Build the information about matchables, now that we have fully formed 1563 // classes. 1564 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1565 for (auto &II : Matchables) { 1566 // Parse the tokens after the mnemonic. 1567 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1568 // don't precompute the loop bound. 1569 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1570 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1571 StringRef Token = Op.Token; 1572 1573 // Check for singleton registers. 1574 if (Record *RegRecord = Op.SingletonReg) { 1575 Op.Class = RegisterClasses[RegRecord]; 1576 assert(Op.Class && Op.Class->Registers.size() == 1 && 1577 "Unexpected class for singleton register"); 1578 continue; 1579 } 1580 1581 // Check for simple tokens. 1582 if (Token[0] != '$') { 1583 Op.Class = getTokenClass(Token); 1584 continue; 1585 } 1586 1587 if (Token.size() > 1 && isdigit(Token[1])) { 1588 Op.Class = getTokenClass(Token); 1589 continue; 1590 } 1591 1592 // Otherwise this is an operand reference. 1593 StringRef OperandName; 1594 if (Token[1] == '{') 1595 OperandName = Token.substr(2, Token.size() - 3); 1596 else 1597 OperandName = Token.substr(1); 1598 1599 if (II->DefRec.is<const CodeGenInstruction*>()) 1600 buildInstructionOperandReference(II.get(), OperandName, i); 1601 else 1602 buildAliasOperandReference(II.get(), OperandName, Op); 1603 } 1604 1605 if (II->DefRec.is<const CodeGenInstruction*>()) { 1606 II->buildInstructionResultOperands(); 1607 // If the instruction has a two-operand alias, build up the 1608 // matchable here. We'll add them in bulk at the end to avoid 1609 // confusing this loop. 1610 StringRef Constraint = 1611 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1612 if (Constraint != "") { 1613 // Start by making a copy of the original matchable. 1614 auto AliasII = std::make_unique<MatchableInfo>(*II); 1615 1616 // Adjust it to be a two-operand alias. 1617 AliasII->formTwoOperandAlias(Constraint); 1618 1619 // Add the alias to the matchables list. 1620 NewMatchables.push_back(std::move(AliasII)); 1621 } 1622 } else 1623 // FIXME: The tied operands checking is not yet integrated with the 1624 // framework for reporting multiple near misses. To prevent invalid 1625 // formats from being matched with an alias if a tied-operands check 1626 // would otherwise have disallowed it, we just disallow such constructs 1627 // in TableGen completely. 1628 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1629 } 1630 if (!NewMatchables.empty()) 1631 Matchables.insert(Matchables.end(), 1632 std::make_move_iterator(NewMatchables.begin()), 1633 std::make_move_iterator(NewMatchables.end())); 1634 1635 // Process token alias definitions and set up the associated superclass 1636 // information. 1637 std::vector<Record*> AllTokenAliases = 1638 Records.getAllDerivedDefinitions("TokenAlias"); 1639 for (Record *Rec : AllTokenAliases) { 1640 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1641 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1642 if (FromClass == ToClass) 1643 PrintFatalError(Rec->getLoc(), 1644 "error: Destination value identical to source value."); 1645 FromClass->SuperClasses.push_back(ToClass); 1646 } 1647 1648 // Reorder classes so that classes precede super classes. 1649 Classes.sort(); 1650 1651 #ifdef EXPENSIVE_CHECKS 1652 // Verify that the table is sorted and operator < works transitively. 1653 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1654 for (auto J = I; J != E; ++J) { 1655 assert(!(*J < *I)); 1656 assert(I == J || !J->isSubsetOf(*I)); 1657 } 1658 } 1659 #endif 1660 } 1661 1662 /// buildInstructionOperandReference - The specified operand is a reference to a 1663 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1664 void AsmMatcherInfo:: 1665 buildInstructionOperandReference(MatchableInfo *II, 1666 StringRef OperandName, 1667 unsigned AsmOpIdx) { 1668 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1669 const CGIOperandList &Operands = CGI.Operands; 1670 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1671 1672 // Map this token to an operand. 1673 unsigned Idx; 1674 if (!Operands.hasOperandNamed(OperandName, Idx)) 1675 PrintFatalError(II->TheDef->getLoc(), 1676 "error: unable to find operand: '" + OperandName + "'"); 1677 1678 // If the instruction operand has multiple suboperands, but the parser 1679 // match class for the asm operand is still the default "ImmAsmOperand", 1680 // then handle each suboperand separately. 1681 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1682 Record *Rec = Operands[Idx].Rec; 1683 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1684 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1685 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1686 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1687 StringRef Token = Op->Token; // save this in case Op gets moved 1688 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1689 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1690 NewAsmOp.SubOpIdx = SI; 1691 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1692 } 1693 // Replace Op with first suboperand. 1694 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1695 Op->SubOpIdx = 0; 1696 } 1697 } 1698 1699 // Set up the operand class. 1700 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1701 Op->OrigSrcOpName = OperandName; 1702 1703 // If the named operand is tied, canonicalize it to the untied operand. 1704 // For example, something like: 1705 // (outs GPR:$dst), (ins GPR:$src) 1706 // with an asmstring of 1707 // "inc $src" 1708 // we want to canonicalize to: 1709 // "inc $dst" 1710 // so that we know how to provide the $dst operand when filling in the result. 1711 int OITied = -1; 1712 if (Operands[Idx].MINumOperands == 1) 1713 OITied = Operands[Idx].getTiedRegister(); 1714 if (OITied != -1) { 1715 // The tied operand index is an MIOperand index, find the operand that 1716 // contains it. 1717 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1718 OperandName = Operands[Idx.first].Name; 1719 Op->SubOpIdx = Idx.second; 1720 } 1721 1722 Op->SrcOpName = OperandName; 1723 } 1724 1725 /// buildAliasOperandReference - When parsing an operand reference out of the 1726 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1727 /// operand reference is by looking it up in the result pattern definition. 1728 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1729 StringRef OperandName, 1730 MatchableInfo::AsmOperand &Op) { 1731 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1732 1733 // Set up the operand class. 1734 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1735 if (CGA.ResultOperands[i].isRecord() && 1736 CGA.ResultOperands[i].getName() == OperandName) { 1737 // It's safe to go with the first one we find, because CodeGenInstAlias 1738 // validates that all operands with the same name have the same record. 1739 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1740 // Use the match class from the Alias definition, not the 1741 // destination instruction, as we may have an immediate that's 1742 // being munged by the match class. 1743 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1744 Op.SubOpIdx); 1745 Op.SrcOpName = OperandName; 1746 Op.OrigSrcOpName = OperandName; 1747 return; 1748 } 1749 1750 PrintFatalError(II->TheDef->getLoc(), 1751 "error: unable to find operand: '" + OperandName + "'"); 1752 } 1753 1754 void MatchableInfo::buildInstructionResultOperands() { 1755 const CodeGenInstruction *ResultInst = getResultInst(); 1756 1757 // Loop over all operands of the result instruction, determining how to 1758 // populate them. 1759 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1760 // If this is a tied operand, just copy from the previously handled operand. 1761 int TiedOp = -1; 1762 if (OpInfo.MINumOperands == 1) 1763 TiedOp = OpInfo.getTiedRegister(); 1764 if (TiedOp != -1) { 1765 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1766 if (TiedSrcOperand != -1 && 1767 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1768 ResOperands.push_back(ResOperand::getTiedOp( 1769 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1770 else 1771 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1772 continue; 1773 } 1774 1775 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1776 if (OpInfo.Name.empty() || SrcOperand == -1) { 1777 // This may happen for operands that are tied to a suboperand of a 1778 // complex operand. Simply use a dummy value here; nobody should 1779 // use this operand slot. 1780 // FIXME: The long term goal is for the MCOperand list to not contain 1781 // tied operands at all. 1782 ResOperands.push_back(ResOperand::getImmOp(0)); 1783 continue; 1784 } 1785 1786 // Check if the one AsmOperand populates the entire operand. 1787 unsigned NumOperands = OpInfo.MINumOperands; 1788 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1789 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1790 continue; 1791 } 1792 1793 // Add a separate ResOperand for each suboperand. 1794 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1795 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1796 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1797 "unexpected AsmOperands for suboperands"); 1798 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1799 } 1800 } 1801 } 1802 1803 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1804 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1805 const CodeGenInstruction *ResultInst = getResultInst(); 1806 1807 // Map of: $reg -> #lastref 1808 // where $reg is the name of the operand in the asm string 1809 // where #lastref is the last processed index where $reg was referenced in 1810 // the asm string. 1811 SmallDenseMap<StringRef, int> OperandRefs; 1812 1813 // Loop over all operands of the result instruction, determining how to 1814 // populate them. 1815 unsigned AliasOpNo = 0; 1816 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1817 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1818 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1819 1820 // If this is a tied operand, just copy from the previously handled operand. 1821 int TiedOp = -1; 1822 if (OpInfo->MINumOperands == 1) 1823 TiedOp = OpInfo->getTiedRegister(); 1824 if (TiedOp != -1) { 1825 unsigned SrcOp1 = 0; 1826 unsigned SrcOp2 = 0; 1827 1828 // If an operand has been specified twice in the asm string, 1829 // add the two source operand's indices to the TiedOp so that 1830 // at runtime the 'tied' constraint is checked. 1831 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1832 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1833 1834 // Find the next operand (similarly named operand) in the string. 1835 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1836 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1837 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1838 1839 // Not updating the record in OperandRefs will cause TableGen 1840 // to fail with an error at the end of this function. 1841 if (AliasConstraintsAreChecked) 1842 Insert.first->second = SrcOp2; 1843 1844 // In case it only has one reference in the asm string, 1845 // it doesn't need to be checked for tied constraints. 1846 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1847 } 1848 1849 // If the alias operand is of a different operand class, we only want 1850 // to benefit from the tied-operands check and just match the operand 1851 // as a normal, but not copy the original (TiedOp) to the result 1852 // instruction. We do this by passing -1 as the tied operand to copy. 1853 if (ResultInst->Operands[i].Rec->getName() != 1854 ResultInst->Operands[TiedOp].Rec->getName()) { 1855 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1856 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1857 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1858 SrcOp2 = findAsmOperand(Name, SubIdx); 1859 ResOperands.push_back( 1860 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1861 } else { 1862 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1863 continue; 1864 } 1865 } 1866 1867 // Handle all the suboperands for this operand. 1868 const std::string &OpName = OpInfo->Name; 1869 for ( ; AliasOpNo < LastOpNo && 1870 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1871 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1872 1873 // Find out what operand from the asmparser that this MCInst operand 1874 // comes from. 1875 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1876 case CodeGenInstAlias::ResultOperand::K_Record: { 1877 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1878 int SrcOperand = findAsmOperand(Name, SubIdx); 1879 if (SrcOperand == -1) 1880 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1881 TheDef->getName() + "' has operand '" + OpName + 1882 "' that doesn't appear in asm string!"); 1883 1884 // Add it to the operand references. If it is added a second time, the 1885 // record won't be updated and it will fail later on. 1886 OperandRefs.try_emplace(Name, SrcOperand); 1887 1888 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1889 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1890 NumOperands)); 1891 break; 1892 } 1893 case CodeGenInstAlias::ResultOperand::K_Imm: { 1894 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1895 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1896 break; 1897 } 1898 case CodeGenInstAlias::ResultOperand::K_Reg: { 1899 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1900 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1901 break; 1902 } 1903 } 1904 } 1905 } 1906 1907 // Check that operands are not repeated more times than is supported. 1908 for (auto &T : OperandRefs) { 1909 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1910 PrintFatalError(TheDef->getLoc(), 1911 "Operand '" + T.first + "' can never be matched"); 1912 } 1913 } 1914 1915 static unsigned 1916 getConverterOperandID(const std::string &Name, 1917 SmallSetVector<CachedHashString, 16> &Table, 1918 bool &IsNew) { 1919 IsNew = Table.insert(CachedHashString(Name)); 1920 1921 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1922 1923 assert(ID < Table.size()); 1924 1925 return ID; 1926 } 1927 1928 static unsigned 1929 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1930 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1931 bool HasMnemonicFirst, bool HasOptionalOperands, 1932 raw_ostream &OS) { 1933 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1934 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1935 std::vector<std::vector<uint8_t> > ConversionTable; 1936 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1937 1938 // TargetOperandClass - This is the target's operand class, like X86Operand. 1939 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1940 1941 // Write the convert function to a separate stream, so we can drop it after 1942 // the enum. We'll build up the conversion handlers for the individual 1943 // operand types opportunistically as we encounter them. 1944 std::string ConvertFnBody; 1945 raw_string_ostream CvtOS(ConvertFnBody); 1946 // Start the unified conversion function. 1947 if (HasOptionalOperands) { 1948 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1949 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1950 << "unsigned Opcode,\n" 1951 << " const OperandVector &Operands,\n" 1952 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1953 } else { 1954 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1955 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1956 << "unsigned Opcode,\n" 1957 << " const OperandVector &Operands) {\n"; 1958 } 1959 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1960 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1961 if (HasOptionalOperands) { 1962 size_t MaxNumOperands = 0; 1963 for (const auto &MI : Infos) { 1964 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1965 } 1966 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1967 << "] = { 0 };\n"; 1968 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1969 << ");\n"; 1970 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1971 << "; ++i) {\n"; 1972 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1973 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1974 CvtOS << " }\n"; 1975 } 1976 CvtOS << " unsigned OpIdx;\n"; 1977 CvtOS << " Inst.setOpcode(Opcode);\n"; 1978 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 1979 if (HasOptionalOperands) { 1980 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1981 } else { 1982 CvtOS << " OpIdx = *(p + 1);\n"; 1983 } 1984 CvtOS << " switch (*p) {\n"; 1985 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1986 CvtOS << " case CVT_Reg:\n"; 1987 CvtOS << " static_cast<" << TargetOperandClass 1988 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1989 CvtOS << " break;\n"; 1990 CvtOS << " case CVT_Tied: {\n"; 1991 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 1992 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 1993 CvtOS << " \"Tied operand not found\");\n"; 1994 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 1995 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n"; 1996 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 1997 CvtOS << " break;\n"; 1998 CvtOS << " }\n"; 1999 2000 std::string OperandFnBody; 2001 raw_string_ostream OpOS(OperandFnBody); 2002 // Start the operand number lookup function. 2003 OpOS << "void " << Target.getName() << ClassName << "::\n" 2004 << "convertToMapAndConstraints(unsigned Kind,\n"; 2005 OpOS.indent(27); 2006 OpOS << "const OperandVector &Operands) {\n" 2007 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2008 << " unsigned NumMCOperands = 0;\n" 2009 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2010 << " for (const uint8_t *p = Converter; *p; p += 2) {\n" 2011 << " switch (*p) {\n" 2012 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2013 << " case CVT_Reg:\n" 2014 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2015 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2016 << " ++NumMCOperands;\n" 2017 << " break;\n" 2018 << " case CVT_Tied:\n" 2019 << " ++NumMCOperands;\n" 2020 << " break;\n"; 2021 2022 // Pre-populate the operand conversion kinds with the standard always 2023 // available entries. 2024 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2025 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2026 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2027 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2028 2029 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2030 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2031 TiedOperandsEnumMap; 2032 2033 for (auto &II : Infos) { 2034 // Check if we have a custom match function. 2035 StringRef AsmMatchConverter = 2036 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2037 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2038 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2039 II->ConversionFnKind = Signature; 2040 2041 // Check if we have already generated this signature. 2042 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2043 continue; 2044 2045 // Remember this converter for the kind enum. 2046 unsigned KindID = OperandConversionKinds.size(); 2047 OperandConversionKinds.insert( 2048 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2049 2050 // Add the converter row for this instruction. 2051 ConversionTable.emplace_back(); 2052 ConversionTable.back().push_back(KindID); 2053 ConversionTable.back().push_back(CVT_Done); 2054 2055 // Add the handler to the conversion driver function. 2056 CvtOS << " case CVT_" 2057 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2058 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2059 << " break;\n"; 2060 2061 // FIXME: Handle the operand number lookup for custom match functions. 2062 continue; 2063 } 2064 2065 // Build the conversion function signature. 2066 std::string Signature = "Convert"; 2067 2068 std::vector<uint8_t> ConversionRow; 2069 2070 // Compute the convert enum and the case body. 2071 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2072 2073 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2074 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2075 2076 // Generate code to populate each result operand. 2077 switch (OpInfo.Kind) { 2078 case MatchableInfo::ResOperand::RenderAsmOperand: { 2079 // This comes from something we parsed. 2080 const MatchableInfo::AsmOperand &Op = 2081 II->AsmOperands[OpInfo.AsmOperandNum]; 2082 2083 // Registers are always converted the same, don't duplicate the 2084 // conversion function based on them. 2085 Signature += "__"; 2086 std::string Class; 2087 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2088 Signature += Class; 2089 Signature += utostr(OpInfo.MINumOperands); 2090 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2091 2092 // Add the conversion kind, if necessary, and get the associated ID 2093 // the index of its entry in the vector). 2094 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2095 Op.Class->RenderMethod); 2096 if (Op.Class->IsOptional) { 2097 // For optional operands we must also care about DefaultMethod 2098 assert(HasOptionalOperands); 2099 Name += "_" + Op.Class->DefaultMethod; 2100 } 2101 Name = getEnumNameForToken(Name); 2102 2103 bool IsNewConverter = false; 2104 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2105 IsNewConverter); 2106 2107 // Add the operand entry to the instruction kind conversion row. 2108 ConversionRow.push_back(ID); 2109 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2110 2111 if (!IsNewConverter) 2112 break; 2113 2114 // This is a new operand kind. Add a handler for it to the 2115 // converter driver. 2116 CvtOS << " case " << Name << ":\n"; 2117 if (Op.Class->IsOptional) { 2118 // If optional operand is not present in actual instruction then we 2119 // should call its DefaultMethod before RenderMethod 2120 assert(HasOptionalOperands); 2121 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2122 << " " << Op.Class->DefaultMethod << "()" 2123 << "->" << Op.Class->RenderMethod << "(Inst, " 2124 << OpInfo.MINumOperands << ");\n" 2125 << " } else {\n" 2126 << " static_cast<" << TargetOperandClass 2127 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2128 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2129 << " }\n"; 2130 } else { 2131 CvtOS << " static_cast<" << TargetOperandClass 2132 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2133 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2134 } 2135 CvtOS << " break;\n"; 2136 2137 // Add a handler for the operand number lookup. 2138 OpOS << " case " << Name << ":\n" 2139 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2140 2141 if (Op.Class->isRegisterClass()) 2142 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2143 else 2144 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2145 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2146 << " break;\n"; 2147 break; 2148 } 2149 case MatchableInfo::ResOperand::TiedOperand: { 2150 // If this operand is tied to a previous one, just copy the MCInst 2151 // operand from the earlier one.We can only tie single MCOperand values. 2152 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2153 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2154 uint8_t SrcOp1 = 2155 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2156 uint8_t SrcOp2 = 2157 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2158 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2159 "Tied operand precedes its target!"); 2160 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2161 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2162 Signature += "__" + TiedTupleName; 2163 ConversionRow.push_back(CVT_Tied); 2164 ConversionRow.push_back(TiedOp); 2165 ConversionRow.push_back(SrcOp1); 2166 ConversionRow.push_back(SrcOp2); 2167 2168 // Also create an 'enum' for this combination of tied operands. 2169 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2170 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2171 break; 2172 } 2173 case MatchableInfo::ResOperand::ImmOperand: { 2174 int64_t Val = OpInfo.ImmVal; 2175 std::string Ty = "imm_" + itostr(Val); 2176 Ty = getEnumNameForToken(Ty); 2177 Signature += "__" + Ty; 2178 2179 std::string Name = "CVT_" + Ty; 2180 bool IsNewConverter = false; 2181 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2182 IsNewConverter); 2183 // Add the operand entry to the instruction kind conversion row. 2184 ConversionRow.push_back(ID); 2185 ConversionRow.push_back(0); 2186 2187 if (!IsNewConverter) 2188 break; 2189 2190 CvtOS << " case " << Name << ":\n" 2191 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2192 << " break;\n"; 2193 2194 OpOS << " case " << Name << ":\n" 2195 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2196 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2197 << " ++NumMCOperands;\n" 2198 << " break;\n"; 2199 break; 2200 } 2201 case MatchableInfo::ResOperand::RegOperand: { 2202 std::string Reg, Name; 2203 if (!OpInfo.Register) { 2204 Name = "reg0"; 2205 Reg = "0"; 2206 } else { 2207 Reg = getQualifiedName(OpInfo.Register); 2208 Name = "reg" + OpInfo.Register->getName().str(); 2209 } 2210 Signature += "__" + Name; 2211 Name = "CVT_" + Name; 2212 bool IsNewConverter = false; 2213 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2214 IsNewConverter); 2215 // Add the operand entry to the instruction kind conversion row. 2216 ConversionRow.push_back(ID); 2217 ConversionRow.push_back(0); 2218 2219 if (!IsNewConverter) 2220 break; 2221 CvtOS << " case " << Name << ":\n" 2222 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2223 << " break;\n"; 2224 2225 OpOS << " case " << Name << ":\n" 2226 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2227 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2228 << " ++NumMCOperands;\n" 2229 << " break;\n"; 2230 } 2231 } 2232 } 2233 2234 // If there were no operands, add to the signature to that effect 2235 if (Signature == "Convert") 2236 Signature += "_NoOperands"; 2237 2238 II->ConversionFnKind = Signature; 2239 2240 // Save the signature. If we already have it, don't add a new row 2241 // to the table. 2242 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2243 continue; 2244 2245 // Add the row to the table. 2246 ConversionTable.push_back(std::move(ConversionRow)); 2247 } 2248 2249 // Finish up the converter driver function. 2250 CvtOS << " }\n }\n}\n\n"; 2251 2252 // Finish up the operand number lookup function. 2253 OpOS << " }\n }\n}\n\n"; 2254 2255 // Output a static table for tied operands. 2256 if (TiedOperandsEnumMap.size()) { 2257 // The number of tied operand combinations will be small in practice, 2258 // but just add the assert to be sure. 2259 assert(TiedOperandsEnumMap.size() <= 254 && 2260 "Too many tied-operand combinations to reference with " 2261 "an 8bit offset from the conversion table, where index " 2262 "'255' is reserved as operand not to be copied."); 2263 2264 OS << "enum {\n"; 2265 for (auto &KV : TiedOperandsEnumMap) { 2266 OS << " " << KV.second << ",\n"; 2267 } 2268 OS << "};\n\n"; 2269 2270 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2271 for (auto &KV : TiedOperandsEnumMap) { 2272 OS << " /* " << KV.second << " */ { " 2273 << utostr(std::get<0>(KV.first)) << ", " 2274 << utostr(std::get<1>(KV.first)) << ", " 2275 << utostr(std::get<2>(KV.first)) << " },\n"; 2276 } 2277 OS << "};\n\n"; 2278 } else 2279 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2280 "{ /* empty */ {0, 0, 0} };\n\n"; 2281 2282 OS << "namespace {\n"; 2283 2284 // Output the operand conversion kind enum. 2285 OS << "enum OperatorConversionKind {\n"; 2286 for (const auto &Converter : OperandConversionKinds) 2287 OS << " " << Converter << ",\n"; 2288 OS << " CVT_NUM_CONVERTERS\n"; 2289 OS << "};\n\n"; 2290 2291 // Output the instruction conversion kind enum. 2292 OS << "enum InstructionConversionKind {\n"; 2293 for (const auto &Signature : InstructionConversionKinds) 2294 OS << " " << Signature << ",\n"; 2295 OS << " CVT_NUM_SIGNATURES\n"; 2296 OS << "};\n\n"; 2297 2298 OS << "} // end anonymous namespace\n\n"; 2299 2300 // Output the conversion table. 2301 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2302 << MaxRowLength << "] = {\n"; 2303 2304 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2305 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2306 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2307 OS << " { "; 2308 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2309 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2310 if (OperandConversionKinds[ConversionTable[Row][i]] != 2311 CachedHashString("CVT_Tied")) { 2312 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2313 continue; 2314 } 2315 2316 // For a tied operand, emit a reference to the TiedAsmOperandTable 2317 // that contains the operand to copy, and the parsed operands to 2318 // check for their tied constraints. 2319 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2320 (uint8_t)ConversionTable[Row][i + 2], 2321 (uint8_t)ConversionTable[Row][i + 3]); 2322 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2323 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2324 "No record for tied operand pair"); 2325 OS << TiedOpndEnum->second << ", "; 2326 i += 2; 2327 } 2328 OS << "CVT_Done },\n"; 2329 } 2330 2331 OS << "};\n\n"; 2332 2333 // Spit out the conversion driver function. 2334 OS << CvtOS.str(); 2335 2336 // Spit out the operand number lookup function. 2337 OS << OpOS.str(); 2338 2339 return ConversionTable.size(); 2340 } 2341 2342 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2343 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2344 std::forward_list<ClassInfo> &Infos, 2345 raw_ostream &OS) { 2346 OS << "namespace {\n\n"; 2347 2348 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2349 << "/// instruction matching.\n"; 2350 OS << "enum MatchClassKind {\n"; 2351 OS << " InvalidMatchClass = 0,\n"; 2352 OS << " OptionalMatchClass = 1,\n"; 2353 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2354 StringRef LastName = "OptionalMatchClass"; 2355 for (const auto &CI : Infos) { 2356 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2357 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2358 } else if (LastKind < ClassInfo::UserClass0 && 2359 CI.Kind >= ClassInfo::UserClass0) { 2360 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2361 } 2362 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2363 LastName = CI.Name; 2364 2365 OS << " " << CI.Name << ", // "; 2366 if (CI.Kind == ClassInfo::Token) { 2367 OS << "'" << CI.ValueName << "'\n"; 2368 } else if (CI.isRegisterClass()) { 2369 if (!CI.ValueName.empty()) 2370 OS << "register class '" << CI.ValueName << "'\n"; 2371 else 2372 OS << "derived register class\n"; 2373 } else { 2374 OS << "user defined class '" << CI.ValueName << "'\n"; 2375 } 2376 } 2377 OS << " NumMatchClassKinds\n"; 2378 OS << "};\n\n"; 2379 2380 OS << "} // end anonymous namespace\n\n"; 2381 } 2382 2383 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2384 /// used when an assembly operand does not match the expected operand class. 2385 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2386 // If the target does not use DiagnosticString for any operands, don't emit 2387 // an unused function. 2388 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) { 2389 return CI.DiagnosticString.empty(); 2390 })) 2391 return; 2392 2393 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2394 << "AsmParser::" << Info.Target.getName() 2395 << "MatchResultTy MatchResult) {\n"; 2396 OS << " switch (MatchResult) {\n"; 2397 2398 for (const auto &CI: Info.Classes) { 2399 if (!CI.DiagnosticString.empty()) { 2400 assert(!CI.DiagnosticType.empty() && 2401 "DiagnosticString set without DiagnosticType"); 2402 OS << " case " << Info.Target.getName() 2403 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2404 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2405 } 2406 } 2407 2408 OS << " default:\n"; 2409 OS << " return nullptr;\n"; 2410 2411 OS << " }\n"; 2412 OS << "}\n\n"; 2413 } 2414 2415 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2416 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2417 "RegisterClass) {\n"; 2418 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2419 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2420 })) { 2421 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2422 } else { 2423 OS << " switch (RegisterClass) {\n"; 2424 for (const auto &CI: Info.Classes) { 2425 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2426 OS << " case " << CI.Name << ":\n"; 2427 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2428 << CI.DiagnosticType << ";\n"; 2429 } 2430 } 2431 2432 OS << " default:\n"; 2433 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2434 2435 OS << " }\n"; 2436 } 2437 OS << "}\n\n"; 2438 } 2439 2440 /// emitValidateOperandClass - Emit the function to validate an operand class. 2441 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2442 raw_ostream &OS) { 2443 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2444 << "MatchClassKind Kind) {\n"; 2445 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2446 << Info.Target.getName() << "Operand &)GOp;\n"; 2447 2448 // The InvalidMatchClass is not to match any operand. 2449 OS << " if (Kind == InvalidMatchClass)\n"; 2450 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2451 2452 // Check for Token operands first. 2453 // FIXME: Use a more specific diagnostic type. 2454 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2455 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2456 << " MCTargetAsmParser::Match_Success :\n" 2457 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2458 2459 // Check the user classes. We don't care what order since we're only 2460 // actually matching against one of them. 2461 OS << " switch (Kind) {\n" 2462 " default: break;\n"; 2463 for (const auto &CI : Info.Classes) { 2464 if (!CI.isUserClass()) 2465 continue; 2466 2467 OS << " // '" << CI.ClassName << "' class\n"; 2468 OS << " case " << CI.Name << ": {\n"; 2469 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2470 << "());\n"; 2471 OS << " if (DP.isMatch())\n"; 2472 OS << " return MCTargetAsmParser::Match_Success;\n"; 2473 if (!CI.DiagnosticType.empty()) { 2474 OS << " if (DP.isNearMatch())\n"; 2475 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2476 << CI.DiagnosticType << ";\n"; 2477 OS << " break;\n"; 2478 } 2479 else 2480 OS << " break;\n"; 2481 OS << " }\n"; 2482 } 2483 OS << " } // end switch (Kind)\n\n"; 2484 2485 // Check for register operands, including sub-classes. 2486 OS << " if (Operand.isReg()) {\n"; 2487 OS << " MatchClassKind OpKind;\n"; 2488 OS << " switch (Operand.getReg()) {\n"; 2489 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2490 for (const auto &RC : Info.RegisterClasses) 2491 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2492 << RC.first->getName() << ": OpKind = " << RC.second->Name 2493 << "; break;\n"; 2494 OS << " }\n"; 2495 OS << " return isSubclass(OpKind, Kind) ? " 2496 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2497 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2498 2499 // Expected operand is a register, but actual is not. 2500 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2501 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2502 2503 // Generic fallthrough match failure case for operands that don't have 2504 // specialized diagnostic types. 2505 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2506 OS << "}\n\n"; 2507 } 2508 2509 /// emitIsSubclass - Emit the subclass predicate function. 2510 static void emitIsSubclass(CodeGenTarget &Target, 2511 std::forward_list<ClassInfo> &Infos, 2512 raw_ostream &OS) { 2513 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2514 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2515 OS << " if (A == B)\n"; 2516 OS << " return true;\n\n"; 2517 2518 bool EmittedSwitch = false; 2519 for (const auto &A : Infos) { 2520 std::vector<StringRef> SuperClasses; 2521 if (A.IsOptional) 2522 SuperClasses.push_back("OptionalMatchClass"); 2523 for (const auto &B : Infos) { 2524 if (&A != &B && A.isSubsetOf(B)) 2525 SuperClasses.push_back(B.Name); 2526 } 2527 2528 if (SuperClasses.empty()) 2529 continue; 2530 2531 // If this is the first SuperClass, emit the switch header. 2532 if (!EmittedSwitch) { 2533 OS << " switch (A) {\n"; 2534 OS << " default:\n"; 2535 OS << " return false;\n"; 2536 EmittedSwitch = true; 2537 } 2538 2539 OS << "\n case " << A.Name << ":\n"; 2540 2541 if (SuperClasses.size() == 1) { 2542 OS << " return B == " << SuperClasses.back() << ";\n"; 2543 continue; 2544 } 2545 2546 if (!SuperClasses.empty()) { 2547 OS << " switch (B) {\n"; 2548 OS << " default: return false;\n"; 2549 for (StringRef SC : SuperClasses) 2550 OS << " case " << SC << ": return true;\n"; 2551 OS << " }\n"; 2552 } else { 2553 // No case statement to emit 2554 OS << " return false;\n"; 2555 } 2556 } 2557 2558 // If there were case statements emitted into the string stream write the 2559 // default. 2560 if (EmittedSwitch) 2561 OS << " }\n"; 2562 else 2563 OS << " return false;\n"; 2564 2565 OS << "}\n\n"; 2566 } 2567 2568 /// emitMatchTokenString - Emit the function to match a token string to the 2569 /// appropriate match class value. 2570 static void emitMatchTokenString(CodeGenTarget &Target, 2571 std::forward_list<ClassInfo> &Infos, 2572 raw_ostream &OS) { 2573 // Construct the match list. 2574 std::vector<StringMatcher::StringPair> Matches; 2575 for (const auto &CI : Infos) { 2576 if (CI.Kind == ClassInfo::Token) 2577 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2578 } 2579 2580 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2581 2582 StringMatcher("Name", Matches, OS).Emit(); 2583 2584 OS << " return InvalidMatchClass;\n"; 2585 OS << "}\n\n"; 2586 } 2587 2588 /// emitMatchRegisterName - Emit the function to match a string to the target 2589 /// specific register enum. 2590 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2591 raw_ostream &OS) { 2592 // Construct the match list. 2593 std::vector<StringMatcher::StringPair> Matches; 2594 const auto &Regs = Target.getRegBank().getRegisters(); 2595 for (const CodeGenRegister &Reg : Regs) { 2596 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2597 continue; 2598 2599 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")), 2600 "return " + utostr(Reg.EnumValue) + ";"); 2601 } 2602 2603 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2604 2605 bool IgnoreDuplicates = 2606 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2607 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2608 2609 OS << " return 0;\n"; 2610 OS << "}\n\n"; 2611 } 2612 2613 /// Emit the function to match a string to the target 2614 /// specific register enum. 2615 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2616 raw_ostream &OS) { 2617 // Construct the match list. 2618 std::vector<StringMatcher::StringPair> Matches; 2619 const auto &Regs = Target.getRegBank().getRegisters(); 2620 for (const CodeGenRegister &Reg : Regs) { 2621 2622 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2623 2624 for (auto AltName : AltNames) { 2625 AltName = StringRef(AltName).trim(); 2626 2627 // don't handle empty alternative names 2628 if (AltName.empty()) 2629 continue; 2630 2631 Matches.emplace_back(std::string(AltName), 2632 "return " + utostr(Reg.EnumValue) + ";"); 2633 } 2634 } 2635 2636 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2637 2638 bool IgnoreDuplicates = 2639 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2640 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2641 2642 OS << " return 0;\n"; 2643 OS << "}\n\n"; 2644 } 2645 2646 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2647 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2648 // Get the set of diagnostic types from all of the operand classes. 2649 std::set<StringRef> Types; 2650 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2651 if (!OpClassEntry.second->DiagnosticType.empty()) 2652 Types.insert(OpClassEntry.second->DiagnosticType); 2653 } 2654 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2655 if (!OpClassEntry.second->DiagnosticType.empty()) 2656 Types.insert(OpClassEntry.second->DiagnosticType); 2657 } 2658 2659 if (Types.empty()) return; 2660 2661 // Now emit the enum entries. 2662 for (StringRef Type : Types) 2663 OS << " Match_" << Type << ",\n"; 2664 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2665 } 2666 2667 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2668 /// user-level name for a subtarget feature. 2669 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2670 OS << "// User-level names for subtarget features that participate in\n" 2671 << "// instruction matching.\n" 2672 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2673 if (!Info.SubtargetFeatures.empty()) { 2674 OS << " switch(Val) {\n"; 2675 for (const auto &SF : Info.SubtargetFeatures) { 2676 const SubtargetFeatureInfo &SFI = SF.second; 2677 // FIXME: Totally just a placeholder name to get the algorithm working. 2678 OS << " case " << SFI.getEnumBitName() << ": return \"" 2679 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2680 } 2681 OS << " default: return \"(unknown)\";\n"; 2682 OS << " }\n"; 2683 } else { 2684 // Nothing to emit, so skip the switch 2685 OS << " return \"(unknown)\";\n"; 2686 } 2687 OS << "}\n\n"; 2688 } 2689 2690 static std::string GetAliasRequiredFeatures(Record *R, 2691 const AsmMatcherInfo &Info) { 2692 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2693 std::string Result; 2694 2695 if (ReqFeatures.empty()) 2696 return Result; 2697 2698 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2699 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2700 2701 if (!F) 2702 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2703 "' is not marked as an AssemblerPredicate!"); 2704 2705 if (i) 2706 Result += " && "; 2707 2708 Result += "Features.test(" + F->getEnumBitName() + ')'; 2709 } 2710 2711 return Result; 2712 } 2713 2714 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2715 std::vector<Record*> &Aliases, 2716 unsigned Indent = 0, 2717 StringRef AsmParserVariantName = StringRef()){ 2718 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2719 // iteration order of the map is stable. 2720 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2721 2722 for (Record *R : Aliases) { 2723 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2724 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2725 if (AsmVariantName != AsmParserVariantName) 2726 continue; 2727 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()] 2728 .push_back(R); 2729 } 2730 if (AliasesFromMnemonic.empty()) 2731 return; 2732 2733 // Process each alias a "from" mnemonic at a time, building the code executed 2734 // by the string remapper. 2735 std::vector<StringMatcher::StringPair> Cases; 2736 for (const auto &AliasEntry : AliasesFromMnemonic) { 2737 const std::vector<Record*> &ToVec = AliasEntry.second; 2738 2739 // Loop through each alias and emit code that handles each case. If there 2740 // are two instructions without predicates, emit an error. If there is one, 2741 // emit it last. 2742 std::string MatchCode; 2743 int AliasWithNoPredicate = -1; 2744 2745 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2746 Record *R = ToVec[i]; 2747 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2748 2749 // If this unconditionally matches, remember it for later and diagnose 2750 // duplicates. 2751 if (FeatureMask.empty()) { 2752 if (AliasWithNoPredicate != -1 && 2753 R->getValueAsString("ToMnemonic") != 2754 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) { 2755 // We can't have two different aliases from the same mnemonic with no 2756 // predicate. 2757 PrintError( 2758 ToVec[AliasWithNoPredicate]->getLoc(), 2759 "two different MnemonicAliases with the same 'from' mnemonic!"); 2760 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2761 } 2762 2763 AliasWithNoPredicate = i; 2764 continue; 2765 } 2766 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2767 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2768 2769 if (!MatchCode.empty()) 2770 MatchCode += "else "; 2771 MatchCode += "if (" + FeatureMask + ")\n"; 2772 MatchCode += " Mnemonic = \""; 2773 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2774 MatchCode += "\";\n"; 2775 } 2776 2777 if (AliasWithNoPredicate != -1) { 2778 Record *R = ToVec[AliasWithNoPredicate]; 2779 if (!MatchCode.empty()) 2780 MatchCode += "else\n "; 2781 MatchCode += "Mnemonic = \""; 2782 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2783 MatchCode += "\";\n"; 2784 } 2785 2786 MatchCode += "return;"; 2787 2788 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2789 } 2790 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2791 } 2792 2793 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2794 /// emit a function for them and return true, otherwise return false. 2795 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2796 CodeGenTarget &Target) { 2797 // Ignore aliases when match-prefix is set. 2798 if (!MatchPrefix.empty()) 2799 return false; 2800 2801 std::vector<Record*> Aliases = 2802 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2803 if (Aliases.empty()) return false; 2804 2805 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2806 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2807 OS << " switch (VariantID) {\n"; 2808 unsigned VariantCount = Target.getAsmParserVariantCount(); 2809 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2810 Record *AsmVariant = Target.getAsmParserVariant(VC); 2811 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2812 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2813 OS << " case " << AsmParserVariantNo << ":\n"; 2814 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2815 AsmParserVariantName); 2816 OS << " break;\n"; 2817 } 2818 OS << " }\n"; 2819 2820 // Emit aliases that apply to all variants. 2821 emitMnemonicAliasVariant(OS, Info, Aliases); 2822 2823 OS << "}\n\n"; 2824 2825 return true; 2826 } 2827 2828 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2829 const AsmMatcherInfo &Info, StringRef ClassName, 2830 StringToOffsetTable &StringTable, 2831 unsigned MaxMnemonicIndex, 2832 unsigned MaxFeaturesIndex, 2833 bool HasMnemonicFirst) { 2834 unsigned MaxMask = 0; 2835 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2836 MaxMask |= OMI.OperandMask; 2837 } 2838 2839 // Emit the static custom operand parsing table; 2840 OS << "namespace {\n"; 2841 OS << " struct OperandMatchEntry {\n"; 2842 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2843 << " Mnemonic;\n"; 2844 OS << " " << getMinimalTypeForRange(MaxMask) 2845 << " OperandMask;\n"; 2846 OS << " " << getMinimalTypeForRange(std::distance( 2847 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2848 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2849 << " RequiredFeaturesIdx;\n\n"; 2850 OS << " StringRef getMnemonic() const {\n"; 2851 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2852 OS << " MnemonicTable[Mnemonic]);\n"; 2853 OS << " }\n"; 2854 OS << " };\n\n"; 2855 2856 OS << " // Predicate for searching for an opcode.\n"; 2857 OS << " struct LessOpcodeOperand {\n"; 2858 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2859 OS << " return LHS.getMnemonic() < RHS;\n"; 2860 OS << " }\n"; 2861 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2862 OS << " return LHS < RHS.getMnemonic();\n"; 2863 OS << " }\n"; 2864 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2865 OS << " const OperandMatchEntry &RHS) {\n"; 2866 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2867 OS << " }\n"; 2868 OS << " };\n"; 2869 2870 OS << "} // end anonymous namespace\n\n"; 2871 2872 OS << "static const OperandMatchEntry OperandMatchTable[" 2873 << Info.OperandMatchInfo.size() << "] = {\n"; 2874 2875 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2876 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2877 const MatchableInfo &II = *OMI.MI; 2878 2879 OS << " { "; 2880 2881 // Store a pascal-style length byte in the mnemonic. 2882 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower(); 2883 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2884 << " /* " << II.Mnemonic << " */, "; 2885 2886 OS << OMI.OperandMask; 2887 OS << " /* "; 2888 ListSeparator LS; 2889 for (int i = 0, e = 31; i !=e; ++i) 2890 if (OMI.OperandMask & (1 << i)) 2891 OS << LS << i; 2892 OS << " */, "; 2893 2894 OS << OMI.CI->Name; 2895 2896 // Write the required features mask. 2897 OS << ", AMFBS"; 2898 if (II.RequiredFeatures.empty()) 2899 OS << "_None"; 2900 else 2901 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2902 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2903 2904 OS << " },\n"; 2905 } 2906 OS << "};\n\n"; 2907 2908 // Emit the operand class switch to call the correct custom parser for 2909 // the found operand class. 2910 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2911 << "tryCustomParseOperand(OperandVector" 2912 << " &Operands,\n unsigned MCK) {\n\n" 2913 << " switch(MCK) {\n"; 2914 2915 for (const auto &CI : Info.Classes) { 2916 if (CI.ParserMethod.empty()) 2917 continue; 2918 OS << " case " << CI.Name << ":\n" 2919 << " return " << CI.ParserMethod << "(Operands);\n"; 2920 } 2921 2922 OS << " default:\n"; 2923 OS << " return MatchOperand_NoMatch;\n"; 2924 OS << " }\n"; 2925 OS << " return MatchOperand_NoMatch;\n"; 2926 OS << "}\n\n"; 2927 2928 // Emit the static custom operand parser. This code is very similar with 2929 // the other matcher. Also use MatchResultTy here just in case we go for 2930 // a better error handling. 2931 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2932 << "MatchOperandParserImpl(OperandVector" 2933 << " &Operands,\n StringRef Mnemonic,\n" 2934 << " bool ParseForAllFeatures) {\n"; 2935 2936 // Emit code to get the available features. 2937 OS << " // Get the current feature set.\n"; 2938 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 2939 2940 OS << " // Get the next operand index.\n"; 2941 OS << " unsigned NextOpNum = Operands.size()" 2942 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2943 2944 // Emit code to search the table. 2945 OS << " // Search the table.\n"; 2946 if (HasMnemonicFirst) { 2947 OS << " auto MnemonicRange =\n"; 2948 OS << " std::equal_range(std::begin(OperandMatchTable), " 2949 "std::end(OperandMatchTable),\n"; 2950 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2951 } else { 2952 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2953 " std::end(OperandMatchTable));\n"; 2954 OS << " if (!Mnemonic.empty())\n"; 2955 OS << " MnemonicRange =\n"; 2956 OS << " std::equal_range(std::begin(OperandMatchTable), " 2957 "std::end(OperandMatchTable),\n"; 2958 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2959 } 2960 2961 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2962 OS << " return MatchOperand_NoMatch;\n\n"; 2963 2964 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2965 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2966 2967 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2968 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2969 2970 // Emit check that the required features are available. 2971 OS << " // check if the available features match\n"; 2972 OS << " const FeatureBitset &RequiredFeatures = " 2973 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 2974 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2975 "RequiredFeatures) != RequiredFeatures)\n"; 2976 OS << " continue;\n\n"; 2977 2978 // Emit check to ensure the operand number matches. 2979 OS << " // check if the operand in question has a custom parser.\n"; 2980 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2981 OS << " continue;\n\n"; 2982 2983 // Emit call to the custom parser method 2984 OS << " // call custom parse method to handle the operand\n"; 2985 OS << " OperandMatchResultTy Result = "; 2986 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2987 OS << " if (Result != MatchOperand_NoMatch)\n"; 2988 OS << " return Result;\n"; 2989 OS << " }\n\n"; 2990 2991 OS << " // Okay, we had no match.\n"; 2992 OS << " return MatchOperand_NoMatch;\n"; 2993 OS << "}\n\n"; 2994 } 2995 2996 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 2997 AsmMatcherInfo &Info, 2998 raw_ostream &OS) { 2999 std::string AsmParserName = 3000 std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); 3001 OS << "static bool "; 3002 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3003 << AsmParserName << "&AsmParser,\n"; 3004 OS << " unsigned Kind,\n"; 3005 OS << " const OperandVector &Operands,\n"; 3006 OS << " uint64_t &ErrorInfo) {\n"; 3007 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3008 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3009 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 3010 OS << " switch (*p) {\n"; 3011 OS << " case CVT_Tied: {\n"; 3012 OS << " unsigned OpIdx = *(p + 1);\n"; 3013 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3014 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3015 OS << " \"Tied operand not found\");\n"; 3016 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3017 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3018 OS << " if (OpndNum1 != OpndNum2) {\n"; 3019 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3020 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3021 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; 3022 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; 3023 OS << " ErrorInfo = OpndNum2;\n"; 3024 OS << " return false;\n"; 3025 OS << " }\n"; 3026 OS << " }\n"; 3027 OS << " }\n"; 3028 OS << " break;\n"; 3029 OS << " }\n"; 3030 OS << " default:\n"; 3031 OS << " break;\n"; 3032 OS << " }\n"; 3033 OS << " }\n"; 3034 OS << " return true;\n"; 3035 OS << "}\n\n"; 3036 } 3037 3038 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3039 unsigned VariantCount) { 3040 OS << "static std::string " << Target.getName() 3041 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3042 << " unsigned VariantID) {\n"; 3043 if (!VariantCount) 3044 OS << " return \"\";"; 3045 else { 3046 OS << " const unsigned MaxEditDist = 2;\n"; 3047 OS << " std::vector<StringRef> Candidates;\n"; 3048 OS << " StringRef Prev = \"\";\n\n"; 3049 3050 OS << " // Find the appropriate table for this asm variant.\n"; 3051 OS << " const MatchEntry *Start, *End;\n"; 3052 OS << " switch (VariantID) {\n"; 3053 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3054 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3055 Record *AsmVariant = Target.getAsmParserVariant(VC); 3056 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3057 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3058 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3059 } 3060 OS << " }\n\n"; 3061 OS << " for (auto I = Start; I < End; I++) {\n"; 3062 OS << " // Ignore unsupported instructions.\n"; 3063 OS << " const FeatureBitset &RequiredFeatures = " 3064 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3065 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3066 OS << " continue;\n"; 3067 OS << "\n"; 3068 OS << " StringRef T = I->getMnemonic();\n"; 3069 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3070 OS << " if (T.equals(Prev))\n"; 3071 OS << " continue;\n"; 3072 OS << "\n"; 3073 OS << " Prev = T;\n"; 3074 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3075 OS << " if (Dist <= MaxEditDist)\n"; 3076 OS << " Candidates.push_back(T);\n"; 3077 OS << " }\n"; 3078 OS << "\n"; 3079 OS << " if (Candidates.empty())\n"; 3080 OS << " return \"\";\n"; 3081 OS << "\n"; 3082 OS << " std::string Res = \", did you mean: \";\n"; 3083 OS << " unsigned i = 0;\n"; 3084 OS << " for (; i < Candidates.size() - 1; i++)\n"; 3085 OS << " Res += Candidates[i].str() + \", \";\n"; 3086 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3087 } 3088 OS << "}\n"; 3089 OS << "\n"; 3090 } 3091 3092 static void emitMnemonicChecker(raw_ostream &OS, 3093 CodeGenTarget &Target, 3094 unsigned VariantCount, 3095 bool HasMnemonicFirst, 3096 bool HasMnemonicAliases) { 3097 OS << "static bool " << Target.getName() 3098 << "CheckMnemonic(StringRef Mnemonic,\n"; 3099 OS << " " 3100 << "const FeatureBitset &AvailableFeatures,\n"; 3101 OS << " " 3102 << "unsigned VariantID) {\n"; 3103 3104 if (!VariantCount) { 3105 OS << " return false;\n"; 3106 } else { 3107 if (HasMnemonicAliases) { 3108 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3109 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);"; 3110 OS << "\n\n"; 3111 } 3112 OS << " // Find the appropriate table for this asm variant.\n"; 3113 OS << " const MatchEntry *Start, *End;\n"; 3114 OS << " switch (VariantID) {\n"; 3115 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3116 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3117 Record *AsmVariant = Target.getAsmParserVariant(VC); 3118 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3119 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3120 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3121 } 3122 OS << " }\n\n"; 3123 3124 OS << " // Search the table.\n"; 3125 if (HasMnemonicFirst) { 3126 OS << " auto MnemonicRange = " 3127 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3128 } else { 3129 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3130 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3131 OS << " if (!Mnemonic.empty())\n"; 3132 OS << " MnemonicRange = " 3133 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3134 } 3135 3136 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3137 OS << " return false;\n\n"; 3138 3139 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3140 << "*ie = MnemonicRange.second;\n"; 3141 OS << " it != ie; ++it) {\n"; 3142 OS << " const FeatureBitset &RequiredFeatures =\n"; 3143 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3144 OS << " if ((AvailableFeatures & RequiredFeatures) == "; 3145 OS << "RequiredFeatures)\n"; 3146 OS << " return true;\n"; 3147 OS << " }\n"; 3148 OS << " return false;\n"; 3149 } 3150 OS << "}\n"; 3151 OS << "\n"; 3152 } 3153 3154 // Emit a function mapping match classes to strings, for debugging. 3155 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3156 raw_ostream &OS) { 3157 OS << "#ifndef NDEBUG\n"; 3158 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3159 OS << " switch (Kind) {\n"; 3160 3161 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3162 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3163 for (const auto &CI : Infos) { 3164 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3165 } 3166 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3167 3168 OS << " }\n"; 3169 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3170 OS << "}\n\n"; 3171 OS << "#endif // NDEBUG\n"; 3172 } 3173 3174 static std::string 3175 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3176 std::string Name = "AMFBS"; 3177 for (const auto &Feature : FeatureBitset) 3178 Name += ("_" + Feature->getName()).str(); 3179 return Name; 3180 } 3181 3182 void AsmMatcherEmitter::run(raw_ostream &OS) { 3183 CodeGenTarget Target(Records); 3184 Record *AsmParser = Target.getAsmParser(); 3185 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3186 3187 // Compute the information on the instructions to match. 3188 AsmMatcherInfo Info(AsmParser, Target, Records); 3189 Info.buildInfo(); 3190 3191 // Sort the instruction table using the partial order on classes. We use 3192 // stable_sort to ensure that ambiguous instructions are still 3193 // deterministically ordered. 3194 llvm::stable_sort( 3195 Info.Matchables, 3196 [](const std::unique_ptr<MatchableInfo> &a, 3197 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); 3198 3199 #ifdef EXPENSIVE_CHECKS 3200 // Verify that the table is sorted and operator < works transitively. 3201 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3202 ++I) { 3203 for (auto J = I; J != E; ++J) { 3204 assert(!(**J < **I)); 3205 } 3206 } 3207 #endif 3208 3209 DEBUG_WITH_TYPE("instruction_info", { 3210 for (const auto &MI : Info.Matchables) 3211 MI->dump(); 3212 }); 3213 3214 // Check for ambiguous matchables. 3215 DEBUG_WITH_TYPE("ambiguous_instrs", { 3216 unsigned NumAmbiguous = 0; 3217 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3218 ++I) { 3219 for (auto J = std::next(I); J != E; ++J) { 3220 const MatchableInfo &A = **I; 3221 const MatchableInfo &B = **J; 3222 3223 if (A.couldMatchAmbiguouslyWith(B)) { 3224 errs() << "warning: ambiguous matchables:\n"; 3225 A.dump(); 3226 errs() << "\nis incomparable with:\n"; 3227 B.dump(); 3228 errs() << "\n\n"; 3229 ++NumAmbiguous; 3230 } 3231 } 3232 } 3233 if (NumAmbiguous) 3234 errs() << "warning: " << NumAmbiguous 3235 << " ambiguous matchables!\n"; 3236 }); 3237 3238 // Compute the information on the custom operand parsing. 3239 Info.buildOperandMatchInfo(); 3240 3241 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3242 bool HasOptionalOperands = Info.hasOptionalOperands(); 3243 bool ReportMultipleNearMisses = 3244 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3245 3246 // Write the output. 3247 3248 // Information for the class declaration. 3249 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3250 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3251 OS << " // This should be included into the middle of the declaration of\n"; 3252 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3253 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n"; 3254 if (HasOptionalOperands) { 3255 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3256 << "unsigned Opcode,\n" 3257 << " const OperandVector &Operands,\n" 3258 << " const SmallBitVector &OptionalOperandsMask);\n"; 3259 } else { 3260 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3261 << "unsigned Opcode,\n" 3262 << " const OperandVector &Operands);\n"; 3263 } 3264 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3265 OS << " const OperandVector &Operands) override;\n"; 3266 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3267 << " MCInst &Inst,\n"; 3268 if (ReportMultipleNearMisses) 3269 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3270 else 3271 OS << " uint64_t &ErrorInfo,\n" 3272 << " FeatureBitset &MissingFeatures,\n"; 3273 OS << " bool matchingInlineAsm,\n" 3274 << " unsigned VariantID = 0);\n"; 3275 if (!ReportMultipleNearMisses) 3276 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3277 << " MCInst &Inst,\n" 3278 << " uint64_t &ErrorInfo,\n" 3279 << " bool matchingInlineAsm,\n" 3280 << " unsigned VariantID = 0) {\n" 3281 << " FeatureBitset MissingFeatures;\n" 3282 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" 3283 << " matchingInlineAsm, VariantID);\n" 3284 << " }\n\n"; 3285 3286 3287 if (!Info.OperandMatchInfo.empty()) { 3288 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3289 OS << " OperandVector &Operands,\n"; 3290 OS << " StringRef Mnemonic,\n"; 3291 OS << " bool ParseForAllFeatures = false);\n"; 3292 3293 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3294 OS << " OperandVector &Operands,\n"; 3295 OS << " unsigned MCK);\n\n"; 3296 } 3297 3298 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3299 3300 // Emit the operand match diagnostic enum names. 3301 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3302 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3303 emitOperandDiagnosticTypes(Info, OS); 3304 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3305 3306 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3307 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3308 3309 // Emit the subtarget feature enumeration. 3310 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3311 Info.SubtargetFeatures, OS); 3312 3313 // Emit the function to match a register name to number. 3314 // This should be omitted for Mips target 3315 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3316 emitMatchRegisterName(Target, AsmParser, OS); 3317 3318 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3319 emitMatchRegisterAltName(Target, AsmParser, OS); 3320 3321 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3322 3323 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3324 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3325 3326 // Generate the helper function to get the names for subtarget features. 3327 emitGetSubtargetFeatureName(Info, OS); 3328 3329 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3330 3331 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3332 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3333 3334 // Generate the function that remaps for mnemonic aliases. 3335 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3336 3337 // Generate the convertToMCInst function to convert operands into an MCInst. 3338 // Also, generate the convertToMapAndConstraints function for MS-style inline 3339 // assembly. The latter doesn't actually generate a MCInst. 3340 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, 3341 HasMnemonicFirst, 3342 HasOptionalOperands, OS); 3343 3344 // Emit the enumeration for classes which participate in matching. 3345 emitMatchClassEnumeration(Target, Info.Classes, OS); 3346 3347 // Emit a function to get the user-visible string to describe an operand 3348 // match failure in diagnostics. 3349 emitOperandMatchErrorDiagStrings(Info, OS); 3350 3351 // Emit a function to map register classes to operand match failure codes. 3352 emitRegisterMatchErrorFunc(Info, OS); 3353 3354 // Emit the routine to match token strings to their match class. 3355 emitMatchTokenString(Target, Info.Classes, OS); 3356 3357 // Emit the subclass predicate routine. 3358 emitIsSubclass(Target, Info.Classes, OS); 3359 3360 // Emit the routine to validate an operand against a match class. 3361 emitValidateOperandClass(Info, OS); 3362 3363 emitMatchClassKindNames(Info.Classes, OS); 3364 3365 // Emit the available features compute function. 3366 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3367 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3368 Info.SubtargetFeatures, OS); 3369 3370 if (!ReportMultipleNearMisses) 3371 emitAsmTiedOperandConstraints(Target, Info, OS); 3372 3373 StringToOffsetTable StringTable; 3374 3375 size_t MaxNumOperands = 0; 3376 unsigned MaxMnemonicIndex = 0; 3377 bool HasDeprecation = false; 3378 for (const auto &MI : Info.Matchables) { 3379 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3380 HasDeprecation |= MI->HasDeprecation; 3381 3382 // Store a pascal-style length byte in the mnemonic. 3383 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3384 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3385 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3386 } 3387 3388 OS << "static const char *const MnemonicTable =\n"; 3389 StringTable.EmitString(OS); 3390 OS << ";\n\n"; 3391 3392 std::vector<std::vector<Record *>> FeatureBitsets; 3393 for (const auto &MI : Info.Matchables) { 3394 if (MI->RequiredFeatures.empty()) 3395 continue; 3396 FeatureBitsets.emplace_back(); 3397 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3398 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3399 } 3400 3401 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3402 const std::vector<Record *> &B) { 3403 if (A.size() < B.size()) 3404 return true; 3405 if (A.size() > B.size()) 3406 return false; 3407 for (auto Pair : zip(A, B)) { 3408 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3409 return true; 3410 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3411 return false; 3412 } 3413 return false; 3414 }); 3415 FeatureBitsets.erase( 3416 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 3417 FeatureBitsets.end()); 3418 OS << "// Feature bitsets.\n" 3419 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3420 << " AMFBS_None,\n"; 3421 for (const auto &FeatureBitset : FeatureBitsets) { 3422 if (FeatureBitset.empty()) 3423 continue; 3424 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3425 } 3426 OS << "};\n\n" 3427 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3428 << " {}, // AMFBS_None\n"; 3429 for (const auto &FeatureBitset : FeatureBitsets) { 3430 if (FeatureBitset.empty()) 3431 continue; 3432 OS << " {"; 3433 for (const auto &Feature : FeatureBitset) { 3434 const auto &I = Info.SubtargetFeatures.find(Feature); 3435 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3436 OS << I->second.getEnumBitName() << ", "; 3437 } 3438 OS << "},\n"; 3439 } 3440 OS << "};\n\n"; 3441 3442 // Emit the static match table; unused classes get initialized to 0 which is 3443 // guaranteed to be InvalidMatchClass. 3444 // 3445 // FIXME: We can reduce the size of this table very easily. First, we change 3446 // it so that store the kinds in separate bit-fields for each index, which 3447 // only needs to be the max width used for classes at that index (we also need 3448 // to reject based on this during classification). If we then make sure to 3449 // order the match kinds appropriately (putting mnemonics last), then we 3450 // should only end up using a few bits for each class, especially the ones 3451 // following the mnemonic. 3452 OS << "namespace {\n"; 3453 OS << " struct MatchEntry {\n"; 3454 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3455 << " Mnemonic;\n"; 3456 OS << " uint16_t Opcode;\n"; 3457 OS << " " << getMinimalTypeForRange(NumConverters) 3458 << " ConvertFn;\n"; 3459 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3460 << " RequiredFeaturesIdx;\n"; 3461 OS << " " << getMinimalTypeForRange( 3462 std::distance(Info.Classes.begin(), Info.Classes.end())) 3463 << " Classes[" << MaxNumOperands << "];\n"; 3464 OS << " StringRef getMnemonic() const {\n"; 3465 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3466 OS << " MnemonicTable[Mnemonic]);\n"; 3467 OS << " }\n"; 3468 OS << " };\n\n"; 3469 3470 OS << " // Predicate for searching for an opcode.\n"; 3471 OS << " struct LessOpcode {\n"; 3472 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3473 OS << " return LHS.getMnemonic() < RHS;\n"; 3474 OS << " }\n"; 3475 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3476 OS << " return LHS < RHS.getMnemonic();\n"; 3477 OS << " }\n"; 3478 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3479 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3480 OS << " }\n"; 3481 OS << " };\n"; 3482 3483 OS << "} // end anonymous namespace\n\n"; 3484 3485 unsigned VariantCount = Target.getAsmParserVariantCount(); 3486 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3487 Record *AsmVariant = Target.getAsmParserVariant(VC); 3488 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3489 3490 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3491 3492 for (const auto &MI : Info.Matchables) { 3493 if (MI->AsmVariantID != AsmVariantNo) 3494 continue; 3495 3496 // Store a pascal-style length byte in the mnemonic. 3497 std::string LenMnemonic = 3498 char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3499 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3500 << " /* " << MI->Mnemonic << " */, " 3501 << Target.getInstNamespace() << "::" 3502 << MI->getResultInst()->TheDef->getName() << ", " 3503 << MI->ConversionFnKind << ", "; 3504 3505 // Write the required features mask. 3506 OS << "AMFBS"; 3507 if (MI->RequiredFeatures.empty()) 3508 OS << "_None"; 3509 else 3510 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3511 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3512 3513 OS << ", { "; 3514 ListSeparator LS; 3515 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands) 3516 OS << LS << Op.Class->Name; 3517 OS << " }, },\n"; 3518 } 3519 3520 OS << "};\n\n"; 3521 } 3522 3523 OS << "#include \"llvm/Support/Debug.h\"\n"; 3524 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3525 3526 // Finally, build the match function. 3527 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3528 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3529 OS << " MCInst &Inst,\n"; 3530 if (ReportMultipleNearMisses) 3531 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3532 else 3533 OS << " uint64_t &ErrorInfo,\n" 3534 << " FeatureBitset &MissingFeatures,\n"; 3535 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3536 3537 if (!ReportMultipleNearMisses) { 3538 OS << " // Eliminate obvious mismatches.\n"; 3539 OS << " if (Operands.size() > " 3540 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3541 OS << " ErrorInfo = " 3542 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3543 OS << " return Match_InvalidOperand;\n"; 3544 OS << " }\n\n"; 3545 } 3546 3547 // Emit code to get the available features. 3548 OS << " // Get the current feature set.\n"; 3549 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 3550 3551 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3552 if (HasMnemonicFirst) { 3553 OS << " StringRef Mnemonic = ((" << Target.getName() 3554 << "Operand &)*Operands[0]).getToken();\n\n"; 3555 } else { 3556 OS << " StringRef Mnemonic;\n"; 3557 OS << " if (Operands[0]->isToken())\n"; 3558 OS << " Mnemonic = ((" << Target.getName() 3559 << "Operand &)*Operands[0]).getToken();\n\n"; 3560 } 3561 3562 if (HasMnemonicAliases) { 3563 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3564 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3565 } 3566 3567 // Emit code to compute the class list for this operand vector. 3568 if (!ReportMultipleNearMisses) { 3569 OS << " // Some state to try to produce better error messages.\n"; 3570 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3571 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3572 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3573 OS << " MissingFeatures.set();\n"; 3574 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3575 OS << " // wrong for all instances of the instruction.\n"; 3576 OS << " ErrorInfo = ~0ULL;\n"; 3577 } 3578 3579 if (HasOptionalOperands) { 3580 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3581 } 3582 3583 // Emit code to search the table. 3584 OS << " // Find the appropriate table for this asm variant.\n"; 3585 OS << " const MatchEntry *Start, *End;\n"; 3586 OS << " switch (VariantID) {\n"; 3587 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3588 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3589 Record *AsmVariant = Target.getAsmParserVariant(VC); 3590 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3591 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3592 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3593 } 3594 OS << " }\n"; 3595 3596 OS << " // Search the table.\n"; 3597 if (HasMnemonicFirst) { 3598 OS << " auto MnemonicRange = " 3599 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3600 } else { 3601 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3602 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3603 OS << " if (!Mnemonic.empty())\n"; 3604 OS << " MnemonicRange = " 3605 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3606 } 3607 3608 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3609 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n" 3610 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3611 3612 OS << " // Return a more specific error code if no mnemonics match.\n"; 3613 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3614 OS << " return Match_MnemonicFail;\n\n"; 3615 3616 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3617 << "*ie = MnemonicRange.second;\n"; 3618 OS << " it != ie; ++it) {\n"; 3619 OS << " const FeatureBitset &RequiredFeatures = " 3620 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3621 OS << " bool HasRequiredFeatures =\n"; 3622 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3623 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3624 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3625 3626 if (ReportMultipleNearMisses) { 3627 OS << " // Some state to record ways in which this instruction did not match.\n"; 3628 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3629 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3630 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3631 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3632 OS << " bool MultipleInvalidOperands = false;\n"; 3633 } 3634 3635 if (HasMnemonicFirst) { 3636 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3637 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3638 } 3639 3640 // Emit check that the subclasses match. 3641 if (!ReportMultipleNearMisses) 3642 OS << " bool OperandsValid = true;\n"; 3643 if (HasOptionalOperands) { 3644 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3645 } 3646 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3647 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3648 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3649 OS << " auto Formal = " 3650 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3651 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3652 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3653 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3654 OS << " if (ActualIdx < Operands.size())\n"; 3655 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3656 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3657 OS << " else\n"; 3658 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3659 OS << " if (ActualIdx >= Operands.size()) {\n"; 3660 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; 3661 if (ReportMultipleNearMisses) { 3662 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3663 "isSubclass(Formal, OptionalMatchClass);\n"; 3664 OS << " if (!ThisOperandValid) {\n"; 3665 OS << " if (!OperandNearMiss) {\n"; 3666 OS << " // Record info about match failure for later use.\n"; 3667 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3668 OS << " OperandNearMiss =\n"; 3669 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3670 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3671 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3672 OS << " DEBUG_WITH_TYPE(\n"; 3673 OS << " \"asm-matcher\",\n"; 3674 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3675 OS << " MultipleInvalidOperands = true;\n"; 3676 OS << " break;\n"; 3677 OS << " }\n"; 3678 OS << " } else {\n"; 3679 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; 3680 OS << " break;\n"; 3681 OS << " }\n"; 3682 OS << " continue;\n"; 3683 } else { 3684 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; 3685 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3686 if (HasOptionalOperands) { 3687 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3688 << ");\n"; 3689 } 3690 OS << " break;\n"; 3691 } 3692 OS << " }\n"; 3693 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3694 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3695 OS << " if (Diag == Match_Success) {\n"; 3696 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3697 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3698 OS << " ++ActualIdx;\n"; 3699 OS << " continue;\n"; 3700 OS << " }\n"; 3701 OS << " // If the generic handler indicates an invalid operand\n"; 3702 OS << " // failure, check for a special case.\n"; 3703 OS << " if (Diag != Match_Success) {\n"; 3704 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3705 OS << " if (TargetDiag == Match_Success) {\n"; 3706 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3707 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3708 OS << " ++ActualIdx;\n"; 3709 OS << " continue;\n"; 3710 OS << " }\n"; 3711 OS << " // If the target matcher returned a specific error code use\n"; 3712 OS << " // that, else use the one from the generic matcher.\n"; 3713 OS << " if (TargetDiag != Match_InvalidOperand && " 3714 "HasRequiredFeatures)\n"; 3715 OS << " Diag = TargetDiag;\n"; 3716 OS << " }\n"; 3717 OS << " // If current formal operand wasn't matched and it is optional\n" 3718 << " // then try to match next formal operand\n"; 3719 OS << " if (Diag == Match_InvalidOperand " 3720 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3721 if (HasOptionalOperands) { 3722 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3723 } 3724 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3725 OS << " continue;\n"; 3726 OS << " }\n"; 3727 3728 if (ReportMultipleNearMisses) { 3729 OS << " if (!OperandNearMiss) {\n"; 3730 OS << " // If this is the first invalid operand we have seen, record some\n"; 3731 OS << " // information about it.\n"; 3732 OS << " DEBUG_WITH_TYPE(\n"; 3733 OS << " \"asm-matcher\",\n"; 3734 OS << " dbgs()\n"; 3735 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3736 OS << " << Diag << \"\\n\");\n"; 3737 OS << " OperandNearMiss =\n"; 3738 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3739 OS << " ++ActualIdx;\n"; 3740 OS << " } else {\n"; 3741 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3742 OS << " DEBUG_WITH_TYPE(\n"; 3743 OS << " \"asm-matcher\",\n"; 3744 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3745 OS << " MultipleInvalidOperands = true;\n"; 3746 OS << " break;\n"; 3747 OS << " }\n"; 3748 OS << " }\n\n"; 3749 } else { 3750 OS << " // If this operand is broken for all of the instances of this\n"; 3751 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3752 OS << " // If we already had a match that only failed due to a\n"; 3753 OS << " // target predicate, that diagnostic is preferred.\n"; 3754 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3755 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3756 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3757 "!= Match_InvalidOperand))\n"; 3758 OS << " RetCode = Diag;\n"; 3759 OS << " ErrorInfo = ActualIdx;\n"; 3760 OS << " }\n"; 3761 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3762 OS << " OperandsValid = false;\n"; 3763 OS << " break;\n"; 3764 OS << " }\n\n"; 3765 } 3766 3767 if (ReportMultipleNearMisses) 3768 OS << " if (MultipleInvalidOperands) {\n"; 3769 else 3770 OS << " if (!OperandsValid) {\n"; 3771 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3772 OS << " \"operand mismatches, ignoring \"\n"; 3773 OS << " \"this opcode\\n\");\n"; 3774 OS << " continue;\n"; 3775 OS << " }\n"; 3776 3777 // Emit check that the required features are available. 3778 OS << " if (!HasRequiredFeatures) {\n"; 3779 if (!ReportMultipleNearMisses) 3780 OS << " HadMatchOtherThanFeatures = true;\n"; 3781 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3782 "~AvailableFeatures;\n"; 3783 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; 3784 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; 3785 OS << " if (NewMissingFeatures[I])\n"; 3786 OS << " dbgs() << ' ' << I;\n"; 3787 OS << " dbgs() << \"\\n\");\n"; 3788 if (ReportMultipleNearMisses) { 3789 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3790 } else { 3791 OS << " if (NewMissingFeatures.count() <=\n" 3792 " MissingFeatures.count())\n"; 3793 OS << " MissingFeatures = NewMissingFeatures;\n"; 3794 OS << " continue;\n"; 3795 } 3796 OS << " }\n"; 3797 OS << "\n"; 3798 OS << " Inst.clear();\n\n"; 3799 OS << " Inst.setOpcode(it->Opcode);\n"; 3800 // Verify the instruction with the target-specific match predicate function. 3801 OS << " // We have a potential match but have not rendered the operands.\n" 3802 << " // Check the target predicate to handle any context sensitive\n" 3803 " // constraints.\n" 3804 << " // For example, Ties that are referenced multiple times must be\n" 3805 " // checked here to ensure the input is the same for each match\n" 3806 " // constraints. If we leave it any later the ties will have been\n" 3807 " // canonicalized\n" 3808 << " unsigned MatchResult;\n" 3809 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3810 "Operands)) != Match_Success) {\n" 3811 << " Inst.clear();\n"; 3812 OS << " DEBUG_WITH_TYPE(\n"; 3813 OS << " \"asm-matcher\",\n"; 3814 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3815 OS << " << MatchResult << \"\\n\");\n"; 3816 if (ReportMultipleNearMisses) { 3817 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3818 } else { 3819 OS << " RetCode = MatchResult;\n" 3820 << " HadMatchOtherThanPredicate = true;\n" 3821 << " continue;\n"; 3822 } 3823 OS << " }\n\n"; 3824 3825 if (ReportMultipleNearMisses) { 3826 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3827 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3828 OS << " if (OperandNearMiss) {\n"; 3829 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3830 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3831 OS << " DEBUG_WITH_TYPE(\n"; 3832 OS << " \"asm-matcher\",\n"; 3833 OS << " dbgs()\n"; 3834 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3835 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3836 OS << " } else {\n"; 3837 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3838 OS << " \"types of mismatch, so not \"\n"; 3839 OS << " \"reporting near-miss\\n\");\n"; 3840 OS << " }\n"; 3841 OS << " continue;\n"; 3842 OS << " }\n\n"; 3843 } 3844 3845 OS << " if (matchingInlineAsm) {\n"; 3846 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3847 if (!ReportMultipleNearMisses) { 3848 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3849 "Operands, ErrorInfo))\n"; 3850 OS << " return Match_InvalidTiedOperand;\n"; 3851 OS << "\n"; 3852 } 3853 OS << " return Match_Success;\n"; 3854 OS << " }\n\n"; 3855 OS << " // We have selected a definite instruction, convert the parsed\n" 3856 << " // operands into the appropriate MCInst.\n"; 3857 if (HasOptionalOperands) { 3858 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3859 << " OptionalOperandsMask);\n"; 3860 } else { 3861 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3862 } 3863 OS << "\n"; 3864 3865 // Verify the instruction with the target-specific match predicate function. 3866 OS << " // We have a potential match. Check the target predicate to\n" 3867 << " // handle any context sensitive constraints.\n" 3868 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3869 << " Match_Success) {\n" 3870 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3871 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3872 << " << MatchResult << \"\\n\");\n" 3873 << " Inst.clear();\n"; 3874 if (ReportMultipleNearMisses) { 3875 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3876 } else { 3877 OS << " RetCode = MatchResult;\n" 3878 << " HadMatchOtherThanPredicate = true;\n" 3879 << " continue;\n"; 3880 } 3881 OS << " }\n\n"; 3882 3883 if (ReportMultipleNearMisses) { 3884 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3885 OS << " (int)(bool)FeaturesNearMiss +\n"; 3886 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3887 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3888 OS << " if (NumNearMisses == 1) {\n"; 3889 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3890 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3891 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3892 OS << " \"mismatch, so reporting a \"\n"; 3893 OS << " \"near-miss\\n\");\n"; 3894 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3895 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3896 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3897 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3898 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3899 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3900 OS << "\n"; 3901 OS << " continue;\n"; 3902 OS << " } else if (NumNearMisses > 1) {\n"; 3903 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3904 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3905 OS << " \"types of mismatch, so not \"\n"; 3906 OS << " \"reporting near-miss\\n\");\n"; 3907 OS << " continue;\n"; 3908 OS << " }\n"; 3909 } 3910 3911 // Call the post-processing function, if used. 3912 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3913 if (!InsnCleanupFn.empty()) 3914 OS << " " << InsnCleanupFn << "(Inst);\n"; 3915 3916 if (HasDeprecation) { 3917 OS << " std::string Info;\n"; 3918 OS << " if (!getParser().getTargetParser().\n"; 3919 OS << " getTargetOptions().MCNoDeprecatedWarn &&\n"; 3920 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3921 OS << " SMLoc Loc = ((" << Target.getName() 3922 << "Operand &)*Operands[0]).getStartLoc();\n"; 3923 OS << " getParser().Warning(Loc, Info, None);\n"; 3924 OS << " }\n"; 3925 } 3926 3927 if (!ReportMultipleNearMisses) { 3928 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3929 "Operands, ErrorInfo))\n"; 3930 OS << " return Match_InvalidTiedOperand;\n"; 3931 OS << "\n"; 3932 } 3933 3934 OS << " DEBUG_WITH_TYPE(\n"; 3935 OS << " \"asm-matcher\",\n"; 3936 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3937 OS << " return Match_Success;\n"; 3938 OS << " }\n\n"; 3939 3940 if (ReportMultipleNearMisses) { 3941 OS << " // No instruction variants matched exactly.\n"; 3942 OS << " return Match_NearMisses;\n"; 3943 } else { 3944 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3945 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3946 OS << " return RetCode;\n\n"; 3947 OS << " ErrorInfo = 0;\n"; 3948 OS << " return Match_MissingFeature;\n"; 3949 } 3950 OS << "}\n\n"; 3951 3952 if (!Info.OperandMatchInfo.empty()) 3953 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3954 MaxMnemonicIndex, FeatureBitsets.size(), 3955 HasMnemonicFirst); 3956 3957 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3958 3959 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3960 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3961 3962 emitMnemonicSpellChecker(OS, Target, VariantCount); 3963 3964 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3965 3966 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n"; 3967 OS << "#undef GET_MNEMONIC_CHECKER\n\n"; 3968 3969 emitMnemonicChecker(OS, Target, VariantCount, 3970 HasMnemonicFirst, HasMnemonicAliases); 3971 3972 OS << "#endif // GET_MNEMONIC_CHECKER\n\n"; 3973 } 3974 3975 namespace llvm { 3976 3977 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3978 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3979 AsmMatcherEmitter(RK).run(OS); 3980 } 3981 3982 } // end namespace llvm 3983