1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "CodeGenTarget.h" 99 #include "SubtargetFeatureInfo.h" 100 #include "Types.h" 101 #include "llvm/ADT/CachedHashString.h" 102 #include "llvm/ADT/PointerUnion.h" 103 #include "llvm/ADT/STLExtras.h" 104 #include "llvm/ADT/SmallPtrSet.h" 105 #include "llvm/ADT/SmallVector.h" 106 #include "llvm/ADT/StringExtras.h" 107 #include "llvm/Config/llvm-config.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/TableGen/Error.h" 112 #include "llvm/TableGen/Record.h" 113 #include "llvm/TableGen/StringMatcher.h" 114 #include "llvm/TableGen/StringToOffsetTable.h" 115 #include "llvm/TableGen/TableGenBackend.h" 116 #include <cassert> 117 #include <cctype> 118 #include <forward_list> 119 #include <map> 120 #include <set> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "asm-matcher-emitter" 125 126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 127 128 static cl::opt<std::string> 129 MatchPrefix("match-prefix", cl::init(""), 130 cl::desc("Only match instructions with the given prefix"), 131 cl::cat(AsmMatcherEmitterCat)); 132 133 namespace { 134 class AsmMatcherInfo; 135 136 // Register sets are used as keys in some second-order sets TableGen creates 137 // when generating its data structures. This means that the order of two 138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 139 // can even affect compiler output (at least seen in diagnostics produced when 140 // all matches fail). So we use a type that sorts them consistently. 141 typedef std::set<Record*, LessRecordByID> RegisterSet; 142 143 class AsmMatcherEmitter { 144 RecordKeeper &Records; 145 public: 146 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 147 148 void run(raw_ostream &o); 149 }; 150 151 /// ClassInfo - Helper class for storing the information about a particular 152 /// class of operands which can be matched. 153 struct ClassInfo { 154 enum ClassInfoKind { 155 /// Invalid kind, for use as a sentinel value. 156 Invalid = 0, 157 158 /// The class for a particular token. 159 Token, 160 161 /// The (first) register class, subsequent register classes are 162 /// RegisterClass0+1, and so on. 163 RegisterClass0, 164 165 /// The (first) user defined class, subsequent user defined classes are 166 /// UserClass0+1, and so on. 167 UserClass0 = 1<<16 168 }; 169 170 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 171 /// N) for the Nth user defined class. 172 unsigned Kind; 173 174 /// SuperClasses - The super classes of this class. Note that for simplicities 175 /// sake user operands only record their immediate super class, while register 176 /// operands include all superclasses. 177 std::vector<ClassInfo*> SuperClasses; 178 179 /// Name - The full class name, suitable for use in an enum. 180 std::string Name; 181 182 /// ClassName - The unadorned generic name for this class (e.g., Token). 183 std::string ClassName; 184 185 /// ValueName - The name of the value this class represents; for a token this 186 /// is the literal token string, for an operand it is the TableGen class (or 187 /// empty if this is a derived class). 188 std::string ValueName; 189 190 /// PredicateMethod - The name of the operand method to test whether the 191 /// operand matches this class; this is not valid for Token or register kinds. 192 std::string PredicateMethod; 193 194 /// RenderMethod - The name of the operand method to add this operand to an 195 /// MCInst; this is not valid for Token or register kinds. 196 std::string RenderMethod; 197 198 /// ParserMethod - The name of the operand method to do a target specific 199 /// parsing on the operand. 200 std::string ParserMethod; 201 202 /// For register classes: the records for all the registers in this class. 203 RegisterSet Registers; 204 205 /// For custom match classes: the diagnostic kind for when the predicate fails. 206 std::string DiagnosticType; 207 208 /// For custom match classes: the diagnostic string for when the predicate fails. 209 std::string DiagnosticString; 210 211 /// Is this operand optional and not always required. 212 bool IsOptional; 213 214 /// DefaultMethod - The name of the method that returns the default operand 215 /// for optional operand 216 std::string DefaultMethod; 217 218 public: 219 /// isRegisterClass() - Check if this is a register class. 220 bool isRegisterClass() const { 221 return Kind >= RegisterClass0 && Kind < UserClass0; 222 } 223 224 /// isUserClass() - Check if this is a user defined class. 225 bool isUserClass() const { 226 return Kind >= UserClass0; 227 } 228 229 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 230 /// are related if they are in the same class hierarchy. 231 bool isRelatedTo(const ClassInfo &RHS) const { 232 // Tokens are only related to tokens. 233 if (Kind == Token || RHS.Kind == Token) 234 return Kind == Token && RHS.Kind == Token; 235 236 // Registers classes are only related to registers classes, and only if 237 // their intersection is non-empty. 238 if (isRegisterClass() || RHS.isRegisterClass()) { 239 if (!isRegisterClass() || !RHS.isRegisterClass()) 240 return false; 241 242 RegisterSet Tmp; 243 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 244 std::set_intersection(Registers.begin(), Registers.end(), 245 RHS.Registers.begin(), RHS.Registers.end(), 246 II, LessRecordByID()); 247 248 return !Tmp.empty(); 249 } 250 251 // Otherwise we have two users operands; they are related if they are in the 252 // same class hierarchy. 253 // 254 // FIXME: This is an oversimplification, they should only be related if they 255 // intersect, however we don't have that information. 256 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 257 const ClassInfo *Root = this; 258 while (!Root->SuperClasses.empty()) 259 Root = Root->SuperClasses.front(); 260 261 const ClassInfo *RHSRoot = &RHS; 262 while (!RHSRoot->SuperClasses.empty()) 263 RHSRoot = RHSRoot->SuperClasses.front(); 264 265 return Root == RHSRoot; 266 } 267 268 /// isSubsetOf - Test whether this class is a subset of \p RHS. 269 bool isSubsetOf(const ClassInfo &RHS) const { 270 // This is a subset of RHS if it is the same class... 271 if (this == &RHS) 272 return true; 273 274 // ... or if any of its super classes are a subset of RHS. 275 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 276 SuperClasses.end()); 277 SmallPtrSet<const ClassInfo *, 16> Visited; 278 while (!Worklist.empty()) { 279 auto *CI = Worklist.pop_back_val(); 280 if (CI == &RHS) 281 return true; 282 for (auto *Super : CI->SuperClasses) 283 if (Visited.insert(Super).second) 284 Worklist.push_back(Super); 285 } 286 287 return false; 288 } 289 290 int getTreeDepth() const { 291 int Depth = 0; 292 const ClassInfo *Root = this; 293 while (!Root->SuperClasses.empty()) { 294 Depth++; 295 Root = Root->SuperClasses.front(); 296 } 297 return Depth; 298 } 299 300 const ClassInfo *findRoot() const { 301 const ClassInfo *Root = this; 302 while (!Root->SuperClasses.empty()) 303 Root = Root->SuperClasses.front(); 304 return Root; 305 } 306 307 /// Compare two classes. This does not produce a total ordering, but does 308 /// guarantee that subclasses are sorted before their parents, and that the 309 /// ordering is transitive. 310 bool operator<(const ClassInfo &RHS) const { 311 if (this == &RHS) 312 return false; 313 314 // First, enforce the ordering between the three different types of class. 315 // Tokens sort before registers, which sort before user classes. 316 if (Kind == Token) { 317 if (RHS.Kind != Token) 318 return true; 319 assert(RHS.Kind == Token); 320 } else if (isRegisterClass()) { 321 if (RHS.Kind == Token) 322 return false; 323 else if (RHS.isUserClass()) 324 return true; 325 assert(RHS.isRegisterClass()); 326 } else if (isUserClass()) { 327 if (!RHS.isUserClass()) 328 return false; 329 assert(RHS.isUserClass()); 330 } else { 331 llvm_unreachable("Unknown ClassInfoKind"); 332 } 333 334 if (Kind == Token || isUserClass()) { 335 // Related tokens and user classes get sorted by depth in the inheritence 336 // tree (so that subclasses are before their parents). 337 if (isRelatedTo(RHS)) { 338 if (getTreeDepth() > RHS.getTreeDepth()) 339 return true; 340 if (getTreeDepth() < RHS.getTreeDepth()) 341 return false; 342 } else { 343 // Unrelated tokens and user classes are ordered by the name of their 344 // root nodes, so that there is a consistent ordering between 345 // unconnected trees. 346 return findRoot()->ValueName < RHS.findRoot()->ValueName; 347 } 348 } else if (isRegisterClass()) { 349 // For register sets, sort by number of registers. This guarantees that 350 // a set will always sort before all of it's strict supersets. 351 if (Registers.size() != RHS.Registers.size()) 352 return Registers.size() < RHS.Registers.size(); 353 } else { 354 llvm_unreachable("Unknown ClassInfoKind"); 355 } 356 357 // FIXME: We should be able to just return false here, as we only need a 358 // partial order (we use stable sorts, so this is deterministic) and the 359 // name of a class shouldn't be significant. However, some of the backends 360 // accidentally rely on this behaviour, so it will have to stay like this 361 // until they are fixed. 362 return ValueName < RHS.ValueName; 363 } 364 }; 365 366 class AsmVariantInfo { 367 public: 368 StringRef RegisterPrefix; 369 StringRef TokenizingCharacters; 370 StringRef SeparatorCharacters; 371 StringRef BreakCharacters; 372 StringRef Name; 373 int AsmVariantNo; 374 }; 375 376 /// MatchableInfo - Helper class for storing the necessary information for an 377 /// instruction or alias which is capable of being matched. 378 struct MatchableInfo { 379 struct AsmOperand { 380 /// Token - This is the token that the operand came from. 381 StringRef Token; 382 383 /// The unique class instance this operand should match. 384 ClassInfo *Class; 385 386 /// The operand name this is, if anything. 387 StringRef SrcOpName; 388 389 /// The operand name this is, before renaming for tied operands. 390 StringRef OrigSrcOpName; 391 392 /// The suboperand index within SrcOpName, or -1 for the entire operand. 393 int SubOpIdx; 394 395 /// Whether the token is "isolated", i.e., it is preceded and followed 396 /// by separators. 397 bool IsIsolatedToken; 398 399 /// Register record if this token is singleton register. 400 Record *SingletonReg; 401 402 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 403 : Token(T), Class(nullptr), SubOpIdx(-1), 404 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 405 }; 406 407 /// ResOperand - This represents a single operand in the result instruction 408 /// generated by the match. In cases (like addressing modes) where a single 409 /// assembler operand expands to multiple MCOperands, this represents the 410 /// single assembler operand, not the MCOperand. 411 struct ResOperand { 412 enum { 413 /// RenderAsmOperand - This represents an operand result that is 414 /// generated by calling the render method on the assembly operand. The 415 /// corresponding AsmOperand is specified by AsmOperandNum. 416 RenderAsmOperand, 417 418 /// TiedOperand - This represents a result operand that is a duplicate of 419 /// a previous result operand. 420 TiedOperand, 421 422 /// ImmOperand - This represents an immediate value that is dumped into 423 /// the operand. 424 ImmOperand, 425 426 /// RegOperand - This represents a fixed register that is dumped in. 427 RegOperand 428 } Kind; 429 430 /// Tuple containing the index of the (earlier) result operand that should 431 /// be copied from, as well as the indices of the corresponding (parsed) 432 /// operands in the asm string. 433 struct TiedOperandsTuple { 434 unsigned ResOpnd; 435 unsigned SrcOpnd1Idx; 436 unsigned SrcOpnd2Idx; 437 }; 438 439 union { 440 /// This is the operand # in the AsmOperands list that this should be 441 /// copied from. 442 unsigned AsmOperandNum; 443 444 /// Description of tied operands. 445 TiedOperandsTuple TiedOperands; 446 447 /// ImmVal - This is the immediate value added to the instruction. 448 int64_t ImmVal; 449 450 /// Register - This is the register record. 451 Record *Register; 452 }; 453 454 /// MINumOperands - The number of MCInst operands populated by this 455 /// operand. 456 unsigned MINumOperands; 457 458 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 459 ResOperand X; 460 X.Kind = RenderAsmOperand; 461 X.AsmOperandNum = AsmOpNum; 462 X.MINumOperands = NumOperands; 463 return X; 464 } 465 466 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 467 unsigned SrcOperand2) { 468 ResOperand X; 469 X.Kind = TiedOperand; 470 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 471 X.MINumOperands = 1; 472 return X; 473 } 474 475 static ResOperand getImmOp(int64_t Val) { 476 ResOperand X; 477 X.Kind = ImmOperand; 478 X.ImmVal = Val; 479 X.MINumOperands = 1; 480 return X; 481 } 482 483 static ResOperand getRegOp(Record *Reg) { 484 ResOperand X; 485 X.Kind = RegOperand; 486 X.Register = Reg; 487 X.MINumOperands = 1; 488 return X; 489 } 490 }; 491 492 /// AsmVariantID - Target's assembly syntax variant no. 493 int AsmVariantID; 494 495 /// AsmString - The assembly string for this instruction (with variants 496 /// removed), e.g. "movsx $src, $dst". 497 std::string AsmString; 498 499 /// TheDef - This is the definition of the instruction or InstAlias that this 500 /// matchable came from. 501 Record *const TheDef; 502 503 /// DefRec - This is the definition that it came from. 504 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 505 506 const CodeGenInstruction *getResultInst() const { 507 if (DefRec.is<const CodeGenInstruction*>()) 508 return DefRec.get<const CodeGenInstruction*>(); 509 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 510 } 511 512 /// ResOperands - This is the operand list that should be built for the result 513 /// MCInst. 514 SmallVector<ResOperand, 8> ResOperands; 515 516 /// Mnemonic - This is the first token of the matched instruction, its 517 /// mnemonic. 518 StringRef Mnemonic; 519 520 /// AsmOperands - The textual operands that this instruction matches, 521 /// annotated with a class and where in the OperandList they were defined. 522 /// This directly corresponds to the tokenized AsmString after the mnemonic is 523 /// removed. 524 SmallVector<AsmOperand, 8> AsmOperands; 525 526 /// Predicates - The required subtarget features to match this instruction. 527 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 528 529 /// ConversionFnKind - The enum value which is passed to the generated 530 /// convertToMCInst to convert parsed operands into an MCInst for this 531 /// function. 532 std::string ConversionFnKind; 533 534 /// If this instruction is deprecated in some form. 535 bool HasDeprecation; 536 537 /// If this is an alias, this is use to determine whether or not to using 538 /// the conversion function defined by the instruction's AsmMatchConverter 539 /// or to use the function generated by the alias. 540 bool UseInstAsmMatchConverter; 541 542 MatchableInfo(const CodeGenInstruction &CGI) 543 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 544 UseInstAsmMatchConverter(true) { 545 } 546 547 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 548 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 549 DefRec(Alias.release()), 550 UseInstAsmMatchConverter( 551 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 552 } 553 554 // Could remove this and the dtor if PointerUnion supported unique_ptr 555 // elements with a dynamic failure/assertion (like the one below) in the case 556 // where it was copied while being in an owning state. 557 MatchableInfo(const MatchableInfo &RHS) 558 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 559 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 560 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 561 RequiredFeatures(RHS.RequiredFeatures), 562 ConversionFnKind(RHS.ConversionFnKind), 563 HasDeprecation(RHS.HasDeprecation), 564 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 565 assert(!DefRec.is<const CodeGenInstAlias *>()); 566 } 567 568 ~MatchableInfo() { 569 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 570 } 571 572 // Two-operand aliases clone from the main matchable, but mark the second 573 // operand as a tied operand of the first for purposes of the assembler. 574 void formTwoOperandAlias(StringRef Constraint); 575 576 void initialize(const AsmMatcherInfo &Info, 577 SmallPtrSetImpl<Record*> &SingletonRegisters, 578 AsmVariantInfo const &Variant, 579 bool HasMnemonicFirst); 580 581 /// validate - Return true if this matchable is a valid thing to match against 582 /// and perform a bunch of validity checking. 583 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 584 585 /// findAsmOperand - Find the AsmOperand with the specified name and 586 /// suboperand index. 587 int findAsmOperand(StringRef N, int SubOpIdx) const { 588 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 589 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 590 }); 591 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 592 } 593 594 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 595 /// This does not check the suboperand index. 596 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 597 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), 598 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 599 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 600 } 601 602 int findAsmOperandOriginallyNamed(StringRef N) const { 603 auto I = 604 find_if(AsmOperands, 605 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 606 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 607 } 608 609 void buildInstructionResultOperands(); 610 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 611 612 /// operator< - Compare two matchables. 613 bool operator<(const MatchableInfo &RHS) const { 614 // The primary comparator is the instruction mnemonic. 615 if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) 616 return Cmp == -1; 617 618 if (AsmOperands.size() != RHS.AsmOperands.size()) 619 return AsmOperands.size() < RHS.AsmOperands.size(); 620 621 // Compare lexicographically by operand. The matcher validates that other 622 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 623 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 624 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 625 return true; 626 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 627 return false; 628 } 629 630 // Give matches that require more features higher precedence. This is useful 631 // because we cannot define AssemblerPredicates with the negation of 632 // processor features. For example, ARM v6 "nop" may be either a HINT or 633 // MOV. With v6, we want to match HINT. The assembler has no way to 634 // predicate MOV under "NoV6", but HINT will always match first because it 635 // requires V6 while MOV does not. 636 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 637 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 638 639 return false; 640 } 641 642 /// couldMatchAmbiguouslyWith - Check whether this matchable could 643 /// ambiguously match the same set of operands as \p RHS (without being a 644 /// strictly superior match). 645 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 646 // The primary comparator is the instruction mnemonic. 647 if (Mnemonic != RHS.Mnemonic) 648 return false; 649 650 // Different variants can't conflict. 651 if (AsmVariantID != RHS.AsmVariantID) 652 return false; 653 654 // The number of operands is unambiguous. 655 if (AsmOperands.size() != RHS.AsmOperands.size()) 656 return false; 657 658 // Otherwise, make sure the ordering of the two instructions is unambiguous 659 // by checking that either (a) a token or operand kind discriminates them, 660 // or (b) the ordering among equivalent kinds is consistent. 661 662 // Tokens and operand kinds are unambiguous (assuming a correct target 663 // specific parser). 664 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 665 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 666 AsmOperands[i].Class->Kind == ClassInfo::Token) 667 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 668 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 669 return false; 670 671 // Otherwise, this operand could commute if all operands are equivalent, or 672 // there is a pair of operands that compare less than and a pair that 673 // compare greater than. 674 bool HasLT = false, HasGT = false; 675 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 676 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 677 HasLT = true; 678 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 679 HasGT = true; 680 } 681 682 return HasLT == HasGT; 683 } 684 685 void dump() const; 686 687 private: 688 void tokenizeAsmString(AsmMatcherInfo const &Info, 689 AsmVariantInfo const &Variant); 690 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 691 }; 692 693 struct OperandMatchEntry { 694 unsigned OperandMask; 695 const MatchableInfo* MI; 696 ClassInfo *CI; 697 698 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 699 unsigned opMask) { 700 OperandMatchEntry X; 701 X.OperandMask = opMask; 702 X.CI = ci; 703 X.MI = mi; 704 return X; 705 } 706 }; 707 708 class AsmMatcherInfo { 709 public: 710 /// Tracked Records 711 RecordKeeper &Records; 712 713 /// The tablegen AsmParser record. 714 Record *AsmParser; 715 716 /// Target - The target information. 717 CodeGenTarget &Target; 718 719 /// The classes which are needed for matching. 720 std::forward_list<ClassInfo> Classes; 721 722 /// The information on the matchables to match. 723 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 724 725 /// Info for custom matching operands by user defined methods. 726 std::vector<OperandMatchEntry> OperandMatchInfo; 727 728 /// Map of Register records to their class information. 729 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 730 RegisterClassesTy RegisterClasses; 731 732 /// Map of Predicate records to their subtarget information. 733 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 734 735 /// Map of AsmOperandClass records to their class information. 736 std::map<Record*, ClassInfo*> AsmOperandClasses; 737 738 /// Map of RegisterClass records to their class information. 739 std::map<Record*, ClassInfo*> RegisterClassClasses; 740 741 private: 742 /// Map of token to class information which has already been constructed. 743 std::map<std::string, ClassInfo*> TokenClasses; 744 745 private: 746 /// getTokenClass - Lookup or create the class for the given token. 747 ClassInfo *getTokenClass(StringRef Token); 748 749 /// getOperandClass - Lookup or create the class for the given operand. 750 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 751 int SubOpIdx); 752 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 753 754 /// buildRegisterClasses - Build the ClassInfo* instances for register 755 /// classes. 756 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 757 758 /// buildOperandClasses - Build the ClassInfo* instances for user defined 759 /// operand classes. 760 void buildOperandClasses(); 761 762 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 763 unsigned AsmOpIdx); 764 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 765 MatchableInfo::AsmOperand &Op); 766 767 public: 768 AsmMatcherInfo(Record *AsmParser, 769 CodeGenTarget &Target, 770 RecordKeeper &Records); 771 772 /// Construct the various tables used during matching. 773 void buildInfo(); 774 775 /// buildOperandMatchInfo - Build the necessary information to handle user 776 /// defined operand parsing methods. 777 void buildOperandMatchInfo(); 778 779 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 780 /// given operand. 781 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 782 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 783 const auto &I = SubtargetFeatures.find(Def); 784 return I == SubtargetFeatures.end() ? nullptr : &I->second; 785 } 786 787 RecordKeeper &getRecords() const { 788 return Records; 789 } 790 791 bool hasOptionalOperands() const { 792 return find_if(Classes, [](const ClassInfo &Class) { 793 return Class.IsOptional; 794 }) != Classes.end(); 795 } 796 }; 797 798 } // end anonymous namespace 799 800 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 801 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 802 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 803 804 errs() << " variant: " << AsmVariantID << "\n"; 805 806 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 807 const AsmOperand &Op = AsmOperands[i]; 808 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 809 errs() << '\"' << Op.Token << "\"\n"; 810 } 811 } 812 #endif 813 814 static std::pair<StringRef, StringRef> 815 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 816 // Split via the '='. 817 std::pair<StringRef, StringRef> Ops = S.split('='); 818 if (Ops.second == "") 819 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 820 // Trim whitespace and the leading '$' on the operand names. 821 size_t start = Ops.first.find_first_of('$'); 822 if (start == std::string::npos) 823 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 824 Ops.first = Ops.first.slice(start + 1, std::string::npos); 825 size_t end = Ops.first.find_last_of(" \t"); 826 Ops.first = Ops.first.slice(0, end); 827 // Now the second operand. 828 start = Ops.second.find_first_of('$'); 829 if (start == std::string::npos) 830 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 831 Ops.second = Ops.second.slice(start + 1, std::string::npos); 832 end = Ops.second.find_last_of(" \t"); 833 Ops.first = Ops.first.slice(0, end); 834 return Ops; 835 } 836 837 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 838 // Figure out which operands are aliased and mark them as tied. 839 std::pair<StringRef, StringRef> Ops = 840 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 841 842 // Find the AsmOperands that refer to the operands we're aliasing. 843 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 844 int DstAsmOperand = findAsmOperandNamed(Ops.second); 845 if (SrcAsmOperand == -1) 846 PrintFatalError(TheDef->getLoc(), 847 "unknown source two-operand alias operand '" + Ops.first + 848 "'."); 849 if (DstAsmOperand == -1) 850 PrintFatalError(TheDef->getLoc(), 851 "unknown destination two-operand alias operand '" + 852 Ops.second + "'."); 853 854 // Find the ResOperand that refers to the operand we're aliasing away 855 // and update it to refer to the combined operand instead. 856 for (ResOperand &Op : ResOperands) { 857 if (Op.Kind == ResOperand::RenderAsmOperand && 858 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 859 Op.AsmOperandNum = DstAsmOperand; 860 break; 861 } 862 } 863 // Remove the AsmOperand for the alias operand. 864 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 865 // Adjust the ResOperand references to any AsmOperands that followed 866 // the one we just deleted. 867 for (ResOperand &Op : ResOperands) { 868 switch(Op.Kind) { 869 default: 870 // Nothing to do for operands that don't reference AsmOperands. 871 break; 872 case ResOperand::RenderAsmOperand: 873 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 874 --Op.AsmOperandNum; 875 break; 876 } 877 } 878 } 879 880 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 881 /// if present, from specified token. 882 static void 883 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 884 const AsmMatcherInfo &Info, 885 StringRef RegisterPrefix) { 886 StringRef Tok = Op.Token; 887 888 // If this token is not an isolated token, i.e., it isn't separated from 889 // other tokens (e.g. with whitespace), don't interpret it as a register name. 890 if (!Op.IsIsolatedToken) 891 return; 892 893 if (RegisterPrefix.empty()) { 894 std::string LoweredTok = Tok.lower(); 895 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 896 Op.SingletonReg = Reg->TheDef; 897 return; 898 } 899 900 if (!Tok.startswith(RegisterPrefix)) 901 return; 902 903 StringRef RegName = Tok.substr(RegisterPrefix.size()); 904 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 905 Op.SingletonReg = Reg->TheDef; 906 907 // If there is no register prefix (i.e. "%" in "%eax"), then this may 908 // be some random non-register token, just ignore it. 909 } 910 911 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 912 SmallPtrSetImpl<Record*> &SingletonRegisters, 913 AsmVariantInfo const &Variant, 914 bool HasMnemonicFirst) { 915 AsmVariantID = Variant.AsmVariantNo; 916 AsmString = 917 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 918 Variant.AsmVariantNo); 919 920 tokenizeAsmString(Info, Variant); 921 922 // The first token of the instruction is the mnemonic, which must be a 923 // simple string, not a $foo variable or a singleton register. 924 if (AsmOperands.empty()) 925 PrintFatalError(TheDef->getLoc(), 926 "Instruction '" + TheDef->getName() + "' has no tokens"); 927 928 assert(!AsmOperands[0].Token.empty()); 929 if (HasMnemonicFirst) { 930 Mnemonic = AsmOperands[0].Token; 931 if (Mnemonic[0] == '$') 932 PrintFatalError(TheDef->getLoc(), 933 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 934 935 // Remove the first operand, it is tracked in the mnemonic field. 936 AsmOperands.erase(AsmOperands.begin()); 937 } else if (AsmOperands[0].Token[0] != '$') 938 Mnemonic = AsmOperands[0].Token; 939 940 // Compute the require features. 941 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 942 if (const SubtargetFeatureInfo *Feature = 943 Info.getSubtargetFeature(Predicate)) 944 RequiredFeatures.push_back(Feature); 945 946 // Collect singleton registers, if used. 947 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 948 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 949 if (Record *Reg = Op.SingletonReg) 950 SingletonRegisters.insert(Reg); 951 } 952 953 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 954 if (!DepMask) 955 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 956 957 HasDeprecation = 958 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 959 } 960 961 /// Append an AsmOperand for the given substring of AsmString. 962 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 963 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 964 } 965 966 /// tokenizeAsmString - Tokenize a simplified assembly string. 967 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 968 AsmVariantInfo const &Variant) { 969 StringRef String = AsmString; 970 size_t Prev = 0; 971 bool InTok = false; 972 bool IsIsolatedToken = true; 973 for (size_t i = 0, e = String.size(); i != e; ++i) { 974 char Char = String[i]; 975 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 976 if (InTok) { 977 addAsmOperand(String.slice(Prev, i), false); 978 Prev = i; 979 IsIsolatedToken = false; 980 } 981 InTok = true; 982 continue; 983 } 984 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 985 if (InTok) { 986 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 987 InTok = false; 988 IsIsolatedToken = false; 989 } 990 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 991 Prev = i + 1; 992 IsIsolatedToken = true; 993 continue; 994 } 995 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 996 if (InTok) { 997 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 998 InTok = false; 999 } 1000 Prev = i + 1; 1001 IsIsolatedToken = true; 1002 continue; 1003 } 1004 1005 switch (Char) { 1006 case '\\': 1007 if (InTok) { 1008 addAsmOperand(String.slice(Prev, i), false); 1009 InTok = false; 1010 IsIsolatedToken = false; 1011 } 1012 ++i; 1013 assert(i != String.size() && "Invalid quoted character"); 1014 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1015 Prev = i + 1; 1016 IsIsolatedToken = false; 1017 break; 1018 1019 case '$': { 1020 if (InTok) { 1021 addAsmOperand(String.slice(Prev, i), false); 1022 InTok = false; 1023 IsIsolatedToken = false; 1024 } 1025 1026 // If this isn't "${", start new identifier looking like "$xxx" 1027 if (i + 1 == String.size() || String[i + 1] != '{') { 1028 Prev = i; 1029 break; 1030 } 1031 1032 size_t EndPos = String.find('}', i); 1033 assert(EndPos != StringRef::npos && 1034 "Missing brace in operand reference!"); 1035 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1036 Prev = EndPos + 1; 1037 i = EndPos; 1038 IsIsolatedToken = false; 1039 break; 1040 } 1041 1042 default: 1043 InTok = true; 1044 break; 1045 } 1046 } 1047 if (InTok && Prev != String.size()) 1048 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1049 } 1050 1051 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1052 // Reject matchables with no .s string. 1053 if (AsmString.empty()) 1054 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1055 1056 // Reject any matchables with a newline in them, they should be marked 1057 // isCodeGenOnly if they are pseudo instructions. 1058 if (AsmString.find('\n') != std::string::npos) 1059 PrintFatalError(TheDef->getLoc(), 1060 "multiline instruction is not valid for the asmparser, " 1061 "mark it isCodeGenOnly"); 1062 1063 // Remove comments from the asm string. We know that the asmstring only 1064 // has one line. 1065 if (!CommentDelimiter.empty() && 1066 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) 1067 PrintFatalError(TheDef->getLoc(), 1068 "asmstring for instruction has comment character in it, " 1069 "mark it isCodeGenOnly"); 1070 1071 // Reject matchables with operand modifiers, these aren't something we can 1072 // handle, the target should be refactored to use operands instead of 1073 // modifiers. 1074 // 1075 // Also, check for instructions which reference the operand multiple times, 1076 // if they don't define a custom AsmMatcher: this implies a constraint that 1077 // the built-in matching code would not honor. 1078 std::set<std::string> OperandNames; 1079 for (const AsmOperand &Op : AsmOperands) { 1080 StringRef Tok = Op.Token; 1081 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) 1082 PrintFatalError(TheDef->getLoc(), 1083 "matchable with operand modifier '" + Tok + 1084 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1085 // Verify that any operand is only mentioned once. 1086 // We reject aliases and ignore instructions for now. 1087 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1088 Tok[0] == '$' && !OperandNames.insert(Tok).second) { 1089 LLVM_DEBUG({ 1090 errs() << "warning: '" << TheDef->getName() << "': " 1091 << "ignoring instruction with tied operand '" 1092 << Tok << "'\n"; 1093 }); 1094 return false; 1095 } 1096 } 1097 1098 return true; 1099 } 1100 1101 static std::string getEnumNameForToken(StringRef Str) { 1102 std::string Res; 1103 1104 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { 1105 switch (*it) { 1106 case '*': Res += "_STAR_"; break; 1107 case '%': Res += "_PCT_"; break; 1108 case ':': Res += "_COLON_"; break; 1109 case '!': Res += "_EXCLAIM_"; break; 1110 case '.': Res += "_DOT_"; break; 1111 case '<': Res += "_LT_"; break; 1112 case '>': Res += "_GT_"; break; 1113 case '-': Res += "_MINUS_"; break; 1114 case '#': Res += "_HASH_"; break; 1115 default: 1116 if ((*it >= 'A' && *it <= 'Z') || 1117 (*it >= 'a' && *it <= 'z') || 1118 (*it >= '0' && *it <= '9')) 1119 Res += *it; 1120 else 1121 Res += "_" + utostr((unsigned) *it) + "_"; 1122 } 1123 } 1124 1125 return Res; 1126 } 1127 1128 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1129 ClassInfo *&Entry = TokenClasses[Token]; 1130 1131 if (!Entry) { 1132 Classes.emplace_front(); 1133 Entry = &Classes.front(); 1134 Entry->Kind = ClassInfo::Token; 1135 Entry->ClassName = "Token"; 1136 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1137 Entry->ValueName = Token; 1138 Entry->PredicateMethod = "<invalid>"; 1139 Entry->RenderMethod = "<invalid>"; 1140 Entry->ParserMethod = ""; 1141 Entry->DiagnosticType = ""; 1142 Entry->IsOptional = false; 1143 Entry->DefaultMethod = "<invalid>"; 1144 } 1145 1146 return Entry; 1147 } 1148 1149 ClassInfo * 1150 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1151 int SubOpIdx) { 1152 Record *Rec = OI.Rec; 1153 if (SubOpIdx != -1) 1154 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1155 return getOperandClass(Rec, SubOpIdx); 1156 } 1157 1158 ClassInfo * 1159 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1160 if (Rec->isSubClassOf("RegisterOperand")) { 1161 // RegisterOperand may have an associated ParserMatchClass. If it does, 1162 // use it, else just fall back to the underlying register class. 1163 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1164 if (!R || !R->getValue()) 1165 PrintFatalError(Rec->getLoc(), 1166 "Record `" + Rec->getName() + 1167 "' does not have a ParserMatchClass!\n"); 1168 1169 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1170 Record *MatchClass = DI->getDef(); 1171 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1172 return CI; 1173 } 1174 1175 // No custom match class. Just use the register class. 1176 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1177 if (!ClassRec) 1178 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1179 "' has no associated register class!\n"); 1180 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1181 return CI; 1182 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1183 } 1184 1185 if (Rec->isSubClassOf("RegisterClass")) { 1186 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1187 return CI; 1188 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1189 } 1190 1191 if (!Rec->isSubClassOf("Operand")) 1192 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1193 "' does not derive from class Operand!\n"); 1194 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1195 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1196 return CI; 1197 1198 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1199 } 1200 1201 struct LessRegisterSet { 1202 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1203 // std::set<T> defines its own compariso "operator<", but it 1204 // performs a lexicographical comparison by T's innate comparison 1205 // for some reason. We don't want non-deterministic pointer 1206 // comparisons so use this instead. 1207 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1208 RHS.begin(), RHS.end(), 1209 LessRecordByID()); 1210 } 1211 }; 1212 1213 void AsmMatcherInfo:: 1214 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1215 const auto &Registers = Target.getRegBank().getRegisters(); 1216 auto &RegClassList = Target.getRegBank().getRegClasses(); 1217 1218 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1219 1220 // The register sets used for matching. 1221 RegisterSetSet RegisterSets; 1222 1223 // Gather the defined sets. 1224 for (const CodeGenRegisterClass &RC : RegClassList) 1225 RegisterSets.insert( 1226 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1227 1228 // Add any required singleton sets. 1229 for (Record *Rec : SingletonRegisters) { 1230 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1231 } 1232 1233 // Introduce derived sets where necessary (when a register does not determine 1234 // a unique register set class), and build the mapping of registers to the set 1235 // they should classify to. 1236 std::map<Record*, RegisterSet> RegisterMap; 1237 for (const CodeGenRegister &CGR : Registers) { 1238 // Compute the intersection of all sets containing this register. 1239 RegisterSet ContainingSet; 1240 1241 for (const RegisterSet &RS : RegisterSets) { 1242 if (!RS.count(CGR.TheDef)) 1243 continue; 1244 1245 if (ContainingSet.empty()) { 1246 ContainingSet = RS; 1247 continue; 1248 } 1249 1250 RegisterSet Tmp; 1251 std::swap(Tmp, ContainingSet); 1252 std::insert_iterator<RegisterSet> II(ContainingSet, 1253 ContainingSet.begin()); 1254 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1255 LessRecordByID()); 1256 } 1257 1258 if (!ContainingSet.empty()) { 1259 RegisterSets.insert(ContainingSet); 1260 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1261 } 1262 } 1263 1264 // Construct the register classes. 1265 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1266 unsigned Index = 0; 1267 for (const RegisterSet &RS : RegisterSets) { 1268 Classes.emplace_front(); 1269 ClassInfo *CI = &Classes.front(); 1270 CI->Kind = ClassInfo::RegisterClass0 + Index; 1271 CI->ClassName = "Reg" + utostr(Index); 1272 CI->Name = "MCK_Reg" + utostr(Index); 1273 CI->ValueName = ""; 1274 CI->PredicateMethod = ""; // unused 1275 CI->RenderMethod = "addRegOperands"; 1276 CI->Registers = RS; 1277 // FIXME: diagnostic type. 1278 CI->DiagnosticType = ""; 1279 CI->IsOptional = false; 1280 CI->DefaultMethod = ""; // unused 1281 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1282 ++Index; 1283 } 1284 1285 // Find the superclasses; we could compute only the subgroup lattice edges, 1286 // but there isn't really a point. 1287 for (const RegisterSet &RS : RegisterSets) { 1288 ClassInfo *CI = RegisterSetClasses[RS]; 1289 for (const RegisterSet &RS2 : RegisterSets) 1290 if (RS != RS2 && 1291 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1292 LessRecordByID())) 1293 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1294 } 1295 1296 // Name the register classes which correspond to a user defined RegisterClass. 1297 for (const CodeGenRegisterClass &RC : RegClassList) { 1298 // Def will be NULL for non-user defined register classes. 1299 Record *Def = RC.getDef(); 1300 if (!Def) 1301 continue; 1302 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1303 RC.getOrder().end())]; 1304 if (CI->ValueName.empty()) { 1305 CI->ClassName = RC.getName(); 1306 CI->Name = "MCK_" + RC.getName(); 1307 CI->ValueName = RC.getName(); 1308 } else 1309 CI->ValueName = CI->ValueName + "," + RC.getName(); 1310 1311 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1312 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1313 CI->DiagnosticType = SI->getValue(); 1314 1315 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1316 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1317 CI->DiagnosticString = SI->getValue(); 1318 1319 // If we have a diagnostic string but the diagnostic type is not specified 1320 // explicitly, create an anonymous diagnostic type. 1321 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1322 CI->DiagnosticType = RC.getName(); 1323 1324 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1325 } 1326 1327 // Populate the map for individual registers. 1328 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), 1329 ie = RegisterMap.end(); it != ie; ++it) 1330 RegisterClasses[it->first] = RegisterSetClasses[it->second]; 1331 1332 // Name the register classes which correspond to singleton registers. 1333 for (Record *Rec : SingletonRegisters) { 1334 ClassInfo *CI = RegisterClasses[Rec]; 1335 assert(CI && "Missing singleton register class info!"); 1336 1337 if (CI->ValueName.empty()) { 1338 CI->ClassName = Rec->getName(); 1339 CI->Name = "MCK_" + Rec->getName().str(); 1340 CI->ValueName = Rec->getName(); 1341 } else 1342 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1343 } 1344 } 1345 1346 void AsmMatcherInfo::buildOperandClasses() { 1347 std::vector<Record*> AsmOperands = 1348 Records.getAllDerivedDefinitions("AsmOperandClass"); 1349 1350 // Pre-populate AsmOperandClasses map. 1351 for (Record *Rec : AsmOperands) { 1352 Classes.emplace_front(); 1353 AsmOperandClasses[Rec] = &Classes.front(); 1354 } 1355 1356 unsigned Index = 0; 1357 for (Record *Rec : AsmOperands) { 1358 ClassInfo *CI = AsmOperandClasses[Rec]; 1359 CI->Kind = ClassInfo::UserClass0 + Index; 1360 1361 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1362 for (Init *I : Supers->getValues()) { 1363 DefInit *DI = dyn_cast<DefInit>(I); 1364 if (!DI) { 1365 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1366 continue; 1367 } 1368 1369 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1370 if (!SC) 1371 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1372 else 1373 CI->SuperClasses.push_back(SC); 1374 } 1375 CI->ClassName = Rec->getValueAsString("Name"); 1376 CI->Name = "MCK_" + CI->ClassName; 1377 CI->ValueName = Rec->getName(); 1378 1379 // Get or construct the predicate method name. 1380 Init *PMName = Rec->getValueInit("PredicateMethod"); 1381 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1382 CI->PredicateMethod = SI->getValue(); 1383 } else { 1384 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1385 CI->PredicateMethod = "is" + CI->ClassName; 1386 } 1387 1388 // Get or construct the render method name. 1389 Init *RMName = Rec->getValueInit("RenderMethod"); 1390 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1391 CI->RenderMethod = SI->getValue(); 1392 } else { 1393 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1394 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1395 } 1396 1397 // Get the parse method name or leave it as empty. 1398 Init *PRMName = Rec->getValueInit("ParserMethod"); 1399 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1400 CI->ParserMethod = SI->getValue(); 1401 1402 // Get the diagnostic type and string or leave them as empty. 1403 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1404 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1405 CI->DiagnosticType = SI->getValue(); 1406 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1407 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1408 CI->DiagnosticString = SI->getValue(); 1409 // If we have a DiagnosticString, we need a DiagnosticType for use within 1410 // the matcher. 1411 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1412 CI->DiagnosticType = CI->ClassName; 1413 1414 Init *IsOptional = Rec->getValueInit("IsOptional"); 1415 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1416 CI->IsOptional = BI->getValue(); 1417 1418 // Get or construct the default method name. 1419 Init *DMName = Rec->getValueInit("DefaultMethod"); 1420 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1421 CI->DefaultMethod = SI->getValue(); 1422 } else { 1423 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1424 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1425 } 1426 1427 ++Index; 1428 } 1429 } 1430 1431 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1432 CodeGenTarget &target, 1433 RecordKeeper &records) 1434 : Records(records), AsmParser(asmParser), Target(target) { 1435 } 1436 1437 /// buildOperandMatchInfo - Build the necessary information to handle user 1438 /// defined operand parsing methods. 1439 void AsmMatcherInfo::buildOperandMatchInfo() { 1440 1441 /// Map containing a mask with all operands indices that can be found for 1442 /// that class inside a instruction. 1443 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1444 OpClassMaskTy OpClassMask; 1445 1446 for (const auto &MI : Matchables) { 1447 OpClassMask.clear(); 1448 1449 // Keep track of all operands of this instructions which belong to the 1450 // same class. 1451 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1452 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1453 if (Op.Class->ParserMethod.empty()) 1454 continue; 1455 unsigned &OperandMask = OpClassMask[Op.Class]; 1456 OperandMask |= (1 << i); 1457 } 1458 1459 // Generate operand match info for each mnemonic/operand class pair. 1460 for (const auto &OCM : OpClassMask) { 1461 unsigned OpMask = OCM.second; 1462 ClassInfo *CI = OCM.first; 1463 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1464 OpMask)); 1465 } 1466 } 1467 } 1468 1469 void AsmMatcherInfo::buildInfo() { 1470 // Build information about all of the AssemblerPredicates. 1471 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1472 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1473 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1474 SubtargetFeaturePairs.end()); 1475 #ifndef NDEBUG 1476 for (const auto &Pair : SubtargetFeatures) 1477 LLVM_DEBUG(Pair.second.dump()); 1478 #endif // NDEBUG 1479 1480 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1481 bool ReportMultipleNearMisses = 1482 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1483 1484 // Parse the instructions; we need to do this first so that we can gather the 1485 // singleton register classes. 1486 SmallPtrSet<Record*, 16> SingletonRegisters; 1487 unsigned VariantCount = Target.getAsmParserVariantCount(); 1488 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1489 Record *AsmVariant = Target.getAsmParserVariant(VC); 1490 StringRef CommentDelimiter = 1491 AsmVariant->getValueAsString("CommentDelimiter"); 1492 AsmVariantInfo Variant; 1493 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1494 Variant.TokenizingCharacters = 1495 AsmVariant->getValueAsString("TokenizingCharacters"); 1496 Variant.SeparatorCharacters = 1497 AsmVariant->getValueAsString("SeparatorCharacters"); 1498 Variant.BreakCharacters = 1499 AsmVariant->getValueAsString("BreakCharacters"); 1500 Variant.Name = AsmVariant->getValueAsString("Name"); 1501 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1502 1503 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1504 1505 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1506 // filter the set of instructions we consider. 1507 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1508 continue; 1509 1510 // Ignore "codegen only" instructions. 1511 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1512 continue; 1513 1514 // Ignore instructions for different instructions 1515 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1516 if (!V.empty() && V != Variant.Name) 1517 continue; 1518 1519 auto II = std::make_unique<MatchableInfo>(*CGI); 1520 1521 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1522 1523 // Ignore instructions which shouldn't be matched and diagnose invalid 1524 // instruction definitions with an error. 1525 if (!II->validate(CommentDelimiter, false)) 1526 continue; 1527 1528 Matchables.push_back(std::move(II)); 1529 } 1530 1531 // Parse all of the InstAlias definitions and stick them in the list of 1532 // matchables. 1533 std::vector<Record*> AllInstAliases = 1534 Records.getAllDerivedDefinitions("InstAlias"); 1535 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { 1536 auto Alias = std::make_unique<CodeGenInstAlias>(AllInstAliases[i], 1537 Target); 1538 1539 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1540 // filter the set of instruction aliases we consider, based on the target 1541 // instruction. 1542 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1543 .startswith( MatchPrefix)) 1544 continue; 1545 1546 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1547 if (!V.empty() && V != Variant.Name) 1548 continue; 1549 1550 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1551 1552 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1553 1554 // Validate the alias definitions. 1555 II->validate(CommentDelimiter, true); 1556 1557 Matchables.push_back(std::move(II)); 1558 } 1559 } 1560 1561 // Build info for the register classes. 1562 buildRegisterClasses(SingletonRegisters); 1563 1564 // Build info for the user defined assembly operand classes. 1565 buildOperandClasses(); 1566 1567 // Build the information about matchables, now that we have fully formed 1568 // classes. 1569 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1570 for (auto &II : Matchables) { 1571 // Parse the tokens after the mnemonic. 1572 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1573 // don't precompute the loop bound. 1574 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1575 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1576 StringRef Token = Op.Token; 1577 1578 // Check for singleton registers. 1579 if (Record *RegRecord = Op.SingletonReg) { 1580 Op.Class = RegisterClasses[RegRecord]; 1581 assert(Op.Class && Op.Class->Registers.size() == 1 && 1582 "Unexpected class for singleton register"); 1583 continue; 1584 } 1585 1586 // Check for simple tokens. 1587 if (Token[0] != '$') { 1588 Op.Class = getTokenClass(Token); 1589 continue; 1590 } 1591 1592 if (Token.size() > 1 && isdigit(Token[1])) { 1593 Op.Class = getTokenClass(Token); 1594 continue; 1595 } 1596 1597 // Otherwise this is an operand reference. 1598 StringRef OperandName; 1599 if (Token[1] == '{') 1600 OperandName = Token.substr(2, Token.size() - 3); 1601 else 1602 OperandName = Token.substr(1); 1603 1604 if (II->DefRec.is<const CodeGenInstruction*>()) 1605 buildInstructionOperandReference(II.get(), OperandName, i); 1606 else 1607 buildAliasOperandReference(II.get(), OperandName, Op); 1608 } 1609 1610 if (II->DefRec.is<const CodeGenInstruction*>()) { 1611 II->buildInstructionResultOperands(); 1612 // If the instruction has a two-operand alias, build up the 1613 // matchable here. We'll add them in bulk at the end to avoid 1614 // confusing this loop. 1615 StringRef Constraint = 1616 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1617 if (Constraint != "") { 1618 // Start by making a copy of the original matchable. 1619 auto AliasII = std::make_unique<MatchableInfo>(*II); 1620 1621 // Adjust it to be a two-operand alias. 1622 AliasII->formTwoOperandAlias(Constraint); 1623 1624 // Add the alias to the matchables list. 1625 NewMatchables.push_back(std::move(AliasII)); 1626 } 1627 } else 1628 // FIXME: The tied operands checking is not yet integrated with the 1629 // framework for reporting multiple near misses. To prevent invalid 1630 // formats from being matched with an alias if a tied-operands check 1631 // would otherwise have disallowed it, we just disallow such constructs 1632 // in TableGen completely. 1633 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1634 } 1635 if (!NewMatchables.empty()) 1636 Matchables.insert(Matchables.end(), 1637 std::make_move_iterator(NewMatchables.begin()), 1638 std::make_move_iterator(NewMatchables.end())); 1639 1640 // Process token alias definitions and set up the associated superclass 1641 // information. 1642 std::vector<Record*> AllTokenAliases = 1643 Records.getAllDerivedDefinitions("TokenAlias"); 1644 for (Record *Rec : AllTokenAliases) { 1645 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1646 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1647 if (FromClass == ToClass) 1648 PrintFatalError(Rec->getLoc(), 1649 "error: Destination value identical to source value."); 1650 FromClass->SuperClasses.push_back(ToClass); 1651 } 1652 1653 // Reorder classes so that classes precede super classes. 1654 Classes.sort(); 1655 1656 #ifdef EXPENSIVE_CHECKS 1657 // Verify that the table is sorted and operator < works transitively. 1658 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1659 for (auto J = I; J != E; ++J) { 1660 assert(!(*J < *I)); 1661 assert(I == J || !J->isSubsetOf(*I)); 1662 } 1663 } 1664 #endif 1665 } 1666 1667 /// buildInstructionOperandReference - The specified operand is a reference to a 1668 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1669 void AsmMatcherInfo:: 1670 buildInstructionOperandReference(MatchableInfo *II, 1671 StringRef OperandName, 1672 unsigned AsmOpIdx) { 1673 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1674 const CGIOperandList &Operands = CGI.Operands; 1675 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1676 1677 // Map this token to an operand. 1678 unsigned Idx; 1679 if (!Operands.hasOperandNamed(OperandName, Idx)) 1680 PrintFatalError(II->TheDef->getLoc(), 1681 "error: unable to find operand: '" + OperandName + "'"); 1682 1683 // If the instruction operand has multiple suboperands, but the parser 1684 // match class for the asm operand is still the default "ImmAsmOperand", 1685 // then handle each suboperand separately. 1686 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1687 Record *Rec = Operands[Idx].Rec; 1688 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1689 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1690 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1691 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1692 StringRef Token = Op->Token; // save this in case Op gets moved 1693 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1694 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1695 NewAsmOp.SubOpIdx = SI; 1696 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1697 } 1698 // Replace Op with first suboperand. 1699 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1700 Op->SubOpIdx = 0; 1701 } 1702 } 1703 1704 // Set up the operand class. 1705 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1706 Op->OrigSrcOpName = OperandName; 1707 1708 // If the named operand is tied, canonicalize it to the untied operand. 1709 // For example, something like: 1710 // (outs GPR:$dst), (ins GPR:$src) 1711 // with an asmstring of 1712 // "inc $src" 1713 // we want to canonicalize to: 1714 // "inc $dst" 1715 // so that we know how to provide the $dst operand when filling in the result. 1716 int OITied = -1; 1717 if (Operands[Idx].MINumOperands == 1) 1718 OITied = Operands[Idx].getTiedRegister(); 1719 if (OITied != -1) { 1720 // The tied operand index is an MIOperand index, find the operand that 1721 // contains it. 1722 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1723 OperandName = Operands[Idx.first].Name; 1724 Op->SubOpIdx = Idx.second; 1725 } 1726 1727 Op->SrcOpName = OperandName; 1728 } 1729 1730 /// buildAliasOperandReference - When parsing an operand reference out of the 1731 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1732 /// operand reference is by looking it up in the result pattern definition. 1733 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1734 StringRef OperandName, 1735 MatchableInfo::AsmOperand &Op) { 1736 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1737 1738 // Set up the operand class. 1739 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1740 if (CGA.ResultOperands[i].isRecord() && 1741 CGA.ResultOperands[i].getName() == OperandName) { 1742 // It's safe to go with the first one we find, because CodeGenInstAlias 1743 // validates that all operands with the same name have the same record. 1744 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1745 // Use the match class from the Alias definition, not the 1746 // destination instruction, as we may have an immediate that's 1747 // being munged by the match class. 1748 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1749 Op.SubOpIdx); 1750 Op.SrcOpName = OperandName; 1751 Op.OrigSrcOpName = OperandName; 1752 return; 1753 } 1754 1755 PrintFatalError(II->TheDef->getLoc(), 1756 "error: unable to find operand: '" + OperandName + "'"); 1757 } 1758 1759 void MatchableInfo::buildInstructionResultOperands() { 1760 const CodeGenInstruction *ResultInst = getResultInst(); 1761 1762 // Loop over all operands of the result instruction, determining how to 1763 // populate them. 1764 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1765 // If this is a tied operand, just copy from the previously handled operand. 1766 int TiedOp = -1; 1767 if (OpInfo.MINumOperands == 1) 1768 TiedOp = OpInfo.getTiedRegister(); 1769 if (TiedOp != -1) { 1770 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1771 if (TiedSrcOperand != -1 && 1772 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1773 ResOperands.push_back(ResOperand::getTiedOp( 1774 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1775 else 1776 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1777 continue; 1778 } 1779 1780 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1781 if (OpInfo.Name.empty() || SrcOperand == -1) { 1782 // This may happen for operands that are tied to a suboperand of a 1783 // complex operand. Simply use a dummy value here; nobody should 1784 // use this operand slot. 1785 // FIXME: The long term goal is for the MCOperand list to not contain 1786 // tied operands at all. 1787 ResOperands.push_back(ResOperand::getImmOp(0)); 1788 continue; 1789 } 1790 1791 // Check if the one AsmOperand populates the entire operand. 1792 unsigned NumOperands = OpInfo.MINumOperands; 1793 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1794 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1795 continue; 1796 } 1797 1798 // Add a separate ResOperand for each suboperand. 1799 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1800 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1801 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1802 "unexpected AsmOperands for suboperands"); 1803 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1804 } 1805 } 1806 } 1807 1808 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1809 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1810 const CodeGenInstruction *ResultInst = getResultInst(); 1811 1812 // Map of: $reg -> #lastref 1813 // where $reg is the name of the operand in the asm string 1814 // where #lastref is the last processed index where $reg was referenced in 1815 // the asm string. 1816 SmallDenseMap<StringRef, int> OperandRefs; 1817 1818 // Loop over all operands of the result instruction, determining how to 1819 // populate them. 1820 unsigned AliasOpNo = 0; 1821 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1822 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1823 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1824 1825 // If this is a tied operand, just copy from the previously handled operand. 1826 int TiedOp = -1; 1827 if (OpInfo->MINumOperands == 1) 1828 TiedOp = OpInfo->getTiedRegister(); 1829 if (TiedOp != -1) { 1830 unsigned SrcOp1 = 0; 1831 unsigned SrcOp2 = 0; 1832 1833 // If an operand has been specified twice in the asm string, 1834 // add the two source operand's indices to the TiedOp so that 1835 // at runtime the 'tied' constraint is checked. 1836 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1837 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1838 1839 // Find the next operand (similarly named operand) in the string. 1840 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1841 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1842 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1843 1844 // Not updating the record in OperandRefs will cause TableGen 1845 // to fail with an error at the end of this function. 1846 if (AliasConstraintsAreChecked) 1847 Insert.first->second = SrcOp2; 1848 1849 // In case it only has one reference in the asm string, 1850 // it doesn't need to be checked for tied constraints. 1851 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1852 } 1853 1854 // If the alias operand is of a different operand class, we only want 1855 // to benefit from the tied-operands check and just match the operand 1856 // as a normal, but not copy the original (TiedOp) to the result 1857 // instruction. We do this by passing -1 as the tied operand to copy. 1858 if (ResultInst->Operands[i].Rec->getName() != 1859 ResultInst->Operands[TiedOp].Rec->getName()) { 1860 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1861 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1862 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1863 SrcOp2 = findAsmOperand(Name, SubIdx); 1864 ResOperands.push_back( 1865 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1866 } else { 1867 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1868 continue; 1869 } 1870 } 1871 1872 // Handle all the suboperands for this operand. 1873 const std::string &OpName = OpInfo->Name; 1874 for ( ; AliasOpNo < LastOpNo && 1875 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1876 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1877 1878 // Find out what operand from the asmparser that this MCInst operand 1879 // comes from. 1880 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1881 case CodeGenInstAlias::ResultOperand::K_Record: { 1882 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1883 int SrcOperand = findAsmOperand(Name, SubIdx); 1884 if (SrcOperand == -1) 1885 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1886 TheDef->getName() + "' has operand '" + OpName + 1887 "' that doesn't appear in asm string!"); 1888 1889 // Add it to the operand references. If it is added a second time, the 1890 // record won't be updated and it will fail later on. 1891 OperandRefs.try_emplace(Name, SrcOperand); 1892 1893 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1894 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1895 NumOperands)); 1896 break; 1897 } 1898 case CodeGenInstAlias::ResultOperand::K_Imm: { 1899 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1900 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1901 break; 1902 } 1903 case CodeGenInstAlias::ResultOperand::K_Reg: { 1904 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1905 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1906 break; 1907 } 1908 } 1909 } 1910 } 1911 1912 // Check that operands are not repeated more times than is supported. 1913 for (auto &T : OperandRefs) { 1914 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1915 PrintFatalError(TheDef->getLoc(), 1916 "Operand '" + T.first + "' can never be matched"); 1917 } 1918 } 1919 1920 static unsigned 1921 getConverterOperandID(const std::string &Name, 1922 SmallSetVector<CachedHashString, 16> &Table, 1923 bool &IsNew) { 1924 IsNew = Table.insert(CachedHashString(Name)); 1925 1926 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1927 1928 assert(ID < Table.size()); 1929 1930 return ID; 1931 } 1932 1933 static unsigned 1934 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1935 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1936 bool HasMnemonicFirst, bool HasOptionalOperands, 1937 raw_ostream &OS) { 1938 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1939 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1940 std::vector<std::vector<uint8_t> > ConversionTable; 1941 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1942 1943 // TargetOperandClass - This is the target's operand class, like X86Operand. 1944 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1945 1946 // Write the convert function to a separate stream, so we can drop it after 1947 // the enum. We'll build up the conversion handlers for the individual 1948 // operand types opportunistically as we encounter them. 1949 std::string ConvertFnBody; 1950 raw_string_ostream CvtOS(ConvertFnBody); 1951 // Start the unified conversion function. 1952 if (HasOptionalOperands) { 1953 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1954 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1955 << "unsigned Opcode,\n" 1956 << " const OperandVector &Operands,\n" 1957 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1958 } else { 1959 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1960 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1961 << "unsigned Opcode,\n" 1962 << " const OperandVector &Operands) {\n"; 1963 } 1964 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1965 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1966 if (HasOptionalOperands) { 1967 size_t MaxNumOperands = 0; 1968 for (const auto &MI : Infos) { 1969 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1970 } 1971 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1972 << "] = { 0 };\n"; 1973 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1974 << ");\n"; 1975 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1976 << "; ++i) {\n"; 1977 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1978 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1979 CvtOS << " }\n"; 1980 } 1981 CvtOS << " unsigned OpIdx;\n"; 1982 CvtOS << " Inst.setOpcode(Opcode);\n"; 1983 CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 1984 if (HasOptionalOperands) { 1985 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1986 } else { 1987 CvtOS << " OpIdx = *(p + 1);\n"; 1988 } 1989 CvtOS << " switch (*p) {\n"; 1990 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1991 CvtOS << " case CVT_Reg:\n"; 1992 CvtOS << " static_cast<" << TargetOperandClass 1993 << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1994 CvtOS << " break;\n"; 1995 CvtOS << " case CVT_Tied: {\n"; 1996 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 1997 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 1998 CvtOS << " \"Tied operand not found\");\n"; 1999 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 2000 CvtOS << " if (TiedResOpnd != (uint8_t) -1)\n"; 2001 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 2002 CvtOS << " break;\n"; 2003 CvtOS << " }\n"; 2004 2005 std::string OperandFnBody; 2006 raw_string_ostream OpOS(OperandFnBody); 2007 // Start the operand number lookup function. 2008 OpOS << "void " << Target.getName() << ClassName << "::\n" 2009 << "convertToMapAndConstraints(unsigned Kind,\n"; 2010 OpOS.indent(27); 2011 OpOS << "const OperandVector &Operands) {\n" 2012 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2013 << " unsigned NumMCOperands = 0;\n" 2014 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2015 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" 2016 << " switch (*p) {\n" 2017 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2018 << " case CVT_Reg:\n" 2019 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2020 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2021 << " ++NumMCOperands;\n" 2022 << " break;\n" 2023 << " case CVT_Tied:\n" 2024 << " ++NumMCOperands;\n" 2025 << " break;\n"; 2026 2027 // Pre-populate the operand conversion kinds with the standard always 2028 // available entries. 2029 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2030 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2031 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2032 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2033 2034 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2035 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2036 TiedOperandsEnumMap; 2037 2038 for (auto &II : Infos) { 2039 // Check if we have a custom match function. 2040 StringRef AsmMatchConverter = 2041 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2042 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2043 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2044 II->ConversionFnKind = Signature; 2045 2046 // Check if we have already generated this signature. 2047 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2048 continue; 2049 2050 // Remember this converter for the kind enum. 2051 unsigned KindID = OperandConversionKinds.size(); 2052 OperandConversionKinds.insert( 2053 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2054 2055 // Add the converter row for this instruction. 2056 ConversionTable.emplace_back(); 2057 ConversionTable.back().push_back(KindID); 2058 ConversionTable.back().push_back(CVT_Done); 2059 2060 // Add the handler to the conversion driver function. 2061 CvtOS << " case CVT_" 2062 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2063 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2064 << " break;\n"; 2065 2066 // FIXME: Handle the operand number lookup for custom match functions. 2067 continue; 2068 } 2069 2070 // Build the conversion function signature. 2071 std::string Signature = "Convert"; 2072 2073 std::vector<uint8_t> ConversionRow; 2074 2075 // Compute the convert enum and the case body. 2076 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2077 2078 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2079 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2080 2081 // Generate code to populate each result operand. 2082 switch (OpInfo.Kind) { 2083 case MatchableInfo::ResOperand::RenderAsmOperand: { 2084 // This comes from something we parsed. 2085 const MatchableInfo::AsmOperand &Op = 2086 II->AsmOperands[OpInfo.AsmOperandNum]; 2087 2088 // Registers are always converted the same, don't duplicate the 2089 // conversion function based on them. 2090 Signature += "__"; 2091 std::string Class; 2092 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2093 Signature += Class; 2094 Signature += utostr(OpInfo.MINumOperands); 2095 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2096 2097 // Add the conversion kind, if necessary, and get the associated ID 2098 // the index of its entry in the vector). 2099 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2100 Op.Class->RenderMethod); 2101 if (Op.Class->IsOptional) { 2102 // For optional operands we must also care about DefaultMethod 2103 assert(HasOptionalOperands); 2104 Name += "_" + Op.Class->DefaultMethod; 2105 } 2106 Name = getEnumNameForToken(Name); 2107 2108 bool IsNewConverter = false; 2109 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2110 IsNewConverter); 2111 2112 // Add the operand entry to the instruction kind conversion row. 2113 ConversionRow.push_back(ID); 2114 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2115 2116 if (!IsNewConverter) 2117 break; 2118 2119 // This is a new operand kind. Add a handler for it to the 2120 // converter driver. 2121 CvtOS << " case " << Name << ":\n"; 2122 if (Op.Class->IsOptional) { 2123 // If optional operand is not present in actual instruction then we 2124 // should call its DefaultMethod before RenderMethod 2125 assert(HasOptionalOperands); 2126 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2127 << " " << Op.Class->DefaultMethod << "()" 2128 << "->" << Op.Class->RenderMethod << "(Inst, " 2129 << OpInfo.MINumOperands << ");\n" 2130 << " } else {\n" 2131 << " static_cast<" << TargetOperandClass 2132 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2133 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2134 << " }\n"; 2135 } else { 2136 CvtOS << " static_cast<" << TargetOperandClass 2137 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2138 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2139 } 2140 CvtOS << " break;\n"; 2141 2142 // Add a handler for the operand number lookup. 2143 OpOS << " case " << Name << ":\n" 2144 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2145 2146 if (Op.Class->isRegisterClass()) 2147 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2148 else 2149 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2150 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2151 << " break;\n"; 2152 break; 2153 } 2154 case MatchableInfo::ResOperand::TiedOperand: { 2155 // If this operand is tied to a previous one, just copy the MCInst 2156 // operand from the earlier one.We can only tie single MCOperand values. 2157 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2158 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2159 uint8_t SrcOp1 = 2160 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2161 uint8_t SrcOp2 = 2162 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2163 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2164 "Tied operand precedes its target!"); 2165 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2166 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2167 Signature += "__" + TiedTupleName; 2168 ConversionRow.push_back(CVT_Tied); 2169 ConversionRow.push_back(TiedOp); 2170 ConversionRow.push_back(SrcOp1); 2171 ConversionRow.push_back(SrcOp2); 2172 2173 // Also create an 'enum' for this combination of tied operands. 2174 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2175 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2176 break; 2177 } 2178 case MatchableInfo::ResOperand::ImmOperand: { 2179 int64_t Val = OpInfo.ImmVal; 2180 std::string Ty = "imm_" + itostr(Val); 2181 Ty = getEnumNameForToken(Ty); 2182 Signature += "__" + Ty; 2183 2184 std::string Name = "CVT_" + Ty; 2185 bool IsNewConverter = false; 2186 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2187 IsNewConverter); 2188 // Add the operand entry to the instruction kind conversion row. 2189 ConversionRow.push_back(ID); 2190 ConversionRow.push_back(0); 2191 2192 if (!IsNewConverter) 2193 break; 2194 2195 CvtOS << " case " << Name << ":\n" 2196 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2197 << " break;\n"; 2198 2199 OpOS << " case " << Name << ":\n" 2200 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2201 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2202 << " ++NumMCOperands;\n" 2203 << " break;\n"; 2204 break; 2205 } 2206 case MatchableInfo::ResOperand::RegOperand: { 2207 std::string Reg, Name; 2208 if (!OpInfo.Register) { 2209 Name = "reg0"; 2210 Reg = "0"; 2211 } else { 2212 Reg = getQualifiedName(OpInfo.Register); 2213 Name = "reg" + OpInfo.Register->getName().str(); 2214 } 2215 Signature += "__" + Name; 2216 Name = "CVT_" + Name; 2217 bool IsNewConverter = false; 2218 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2219 IsNewConverter); 2220 // Add the operand entry to the instruction kind conversion row. 2221 ConversionRow.push_back(ID); 2222 ConversionRow.push_back(0); 2223 2224 if (!IsNewConverter) 2225 break; 2226 CvtOS << " case " << Name << ":\n" 2227 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2228 << " break;\n"; 2229 2230 OpOS << " case " << Name << ":\n" 2231 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2232 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2233 << " ++NumMCOperands;\n" 2234 << " break;\n"; 2235 } 2236 } 2237 } 2238 2239 // If there were no operands, add to the signature to that effect 2240 if (Signature == "Convert") 2241 Signature += "_NoOperands"; 2242 2243 II->ConversionFnKind = Signature; 2244 2245 // Save the signature. If we already have it, don't add a new row 2246 // to the table. 2247 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2248 continue; 2249 2250 // Add the row to the table. 2251 ConversionTable.push_back(std::move(ConversionRow)); 2252 } 2253 2254 // Finish up the converter driver function. 2255 CvtOS << " }\n }\n}\n\n"; 2256 2257 // Finish up the operand number lookup function. 2258 OpOS << " }\n }\n}\n\n"; 2259 2260 // Output a static table for tied operands. 2261 if (TiedOperandsEnumMap.size()) { 2262 // The number of tied operand combinations will be small in practice, 2263 // but just add the assert to be sure. 2264 assert(TiedOperandsEnumMap.size() <= 254 && 2265 "Too many tied-operand combinations to reference with " 2266 "an 8bit offset from the conversion table, where index " 2267 "'255' is reserved as operand not to be copied."); 2268 2269 OS << "enum {\n"; 2270 for (auto &KV : TiedOperandsEnumMap) { 2271 OS << " " << KV.second << ",\n"; 2272 } 2273 OS << "};\n\n"; 2274 2275 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2276 for (auto &KV : TiedOperandsEnumMap) { 2277 OS << " /* " << KV.second << " */ { " 2278 << utostr(std::get<0>(KV.first)) << ", " 2279 << utostr(std::get<1>(KV.first)) << ", " 2280 << utostr(std::get<2>(KV.first)) << " },\n"; 2281 } 2282 OS << "};\n\n"; 2283 } else 2284 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2285 "{ /* empty */ {0, 0, 0} };\n\n"; 2286 2287 OS << "namespace {\n"; 2288 2289 // Output the operand conversion kind enum. 2290 OS << "enum OperatorConversionKind {\n"; 2291 for (const auto &Converter : OperandConversionKinds) 2292 OS << " " << Converter << ",\n"; 2293 OS << " CVT_NUM_CONVERTERS\n"; 2294 OS << "};\n\n"; 2295 2296 // Output the instruction conversion kind enum. 2297 OS << "enum InstructionConversionKind {\n"; 2298 for (const auto &Signature : InstructionConversionKinds) 2299 OS << " " << Signature << ",\n"; 2300 OS << " CVT_NUM_SIGNATURES\n"; 2301 OS << "};\n\n"; 2302 2303 OS << "} // end anonymous namespace\n\n"; 2304 2305 // Output the conversion table. 2306 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2307 << MaxRowLength << "] = {\n"; 2308 2309 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2310 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2311 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2312 OS << " { "; 2313 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2314 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2315 if (OperandConversionKinds[ConversionTable[Row][i]] != 2316 CachedHashString("CVT_Tied")) { 2317 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2318 continue; 2319 } 2320 2321 // For a tied operand, emit a reference to the TiedAsmOperandTable 2322 // that contains the operand to copy, and the parsed operands to 2323 // check for their tied constraints. 2324 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2325 (uint8_t)ConversionTable[Row][i + 2], 2326 (uint8_t)ConversionTable[Row][i + 3]); 2327 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2328 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2329 "No record for tied operand pair"); 2330 OS << TiedOpndEnum->second << ", "; 2331 i += 2; 2332 } 2333 OS << "CVT_Done },\n"; 2334 } 2335 2336 OS << "};\n\n"; 2337 2338 // Spit out the conversion driver function. 2339 OS << CvtOS.str(); 2340 2341 // Spit out the operand number lookup function. 2342 OS << OpOS.str(); 2343 2344 return ConversionTable.size(); 2345 } 2346 2347 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2348 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2349 std::forward_list<ClassInfo> &Infos, 2350 raw_ostream &OS) { 2351 OS << "namespace {\n\n"; 2352 2353 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2354 << "/// instruction matching.\n"; 2355 OS << "enum MatchClassKind {\n"; 2356 OS << " InvalidMatchClass = 0,\n"; 2357 OS << " OptionalMatchClass = 1,\n"; 2358 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2359 StringRef LastName = "OptionalMatchClass"; 2360 for (const auto &CI : Infos) { 2361 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2362 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2363 } else if (LastKind < ClassInfo::UserClass0 && 2364 CI.Kind >= ClassInfo::UserClass0) { 2365 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2366 } 2367 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2368 LastName = CI.Name; 2369 2370 OS << " " << CI.Name << ", // "; 2371 if (CI.Kind == ClassInfo::Token) { 2372 OS << "'" << CI.ValueName << "'\n"; 2373 } else if (CI.isRegisterClass()) { 2374 if (!CI.ValueName.empty()) 2375 OS << "register class '" << CI.ValueName << "'\n"; 2376 else 2377 OS << "derived register class\n"; 2378 } else { 2379 OS << "user defined class '" << CI.ValueName << "'\n"; 2380 } 2381 } 2382 OS << " NumMatchClassKinds\n"; 2383 OS << "};\n\n"; 2384 2385 OS << "} // end anonymous namespace\n\n"; 2386 } 2387 2388 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2389 /// used when an assembly operand does not match the expected operand class. 2390 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2391 // If the target does not use DiagnosticString for any operands, don't emit 2392 // an unused function. 2393 if (std::all_of( 2394 Info.Classes.begin(), Info.Classes.end(), 2395 [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); })) 2396 return; 2397 2398 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2399 << "AsmParser::" << Info.Target.getName() 2400 << "MatchResultTy MatchResult) {\n"; 2401 OS << " switch (MatchResult) {\n"; 2402 2403 for (const auto &CI: Info.Classes) { 2404 if (!CI.DiagnosticString.empty()) { 2405 assert(!CI.DiagnosticType.empty() && 2406 "DiagnosticString set without DiagnosticType"); 2407 OS << " case " << Info.Target.getName() 2408 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2409 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2410 } 2411 } 2412 2413 OS << " default:\n"; 2414 OS << " return nullptr;\n"; 2415 2416 OS << " }\n"; 2417 OS << "}\n\n"; 2418 } 2419 2420 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2421 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2422 "RegisterClass) {\n"; 2423 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2424 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2425 })) { 2426 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2427 } else { 2428 OS << " switch (RegisterClass) {\n"; 2429 for (const auto &CI: Info.Classes) { 2430 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2431 OS << " case " << CI.Name << ":\n"; 2432 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2433 << CI.DiagnosticType << ";\n"; 2434 } 2435 } 2436 2437 OS << " default:\n"; 2438 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2439 2440 OS << " }\n"; 2441 } 2442 OS << "}\n\n"; 2443 } 2444 2445 /// emitValidateOperandClass - Emit the function to validate an operand class. 2446 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2447 raw_ostream &OS) { 2448 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2449 << "MatchClassKind Kind) {\n"; 2450 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2451 << Info.Target.getName() << "Operand&)GOp;\n"; 2452 2453 // The InvalidMatchClass is not to match any operand. 2454 OS << " if (Kind == InvalidMatchClass)\n"; 2455 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2456 2457 // Check for Token operands first. 2458 // FIXME: Use a more specific diagnostic type. 2459 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2460 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2461 << " MCTargetAsmParser::Match_Success :\n" 2462 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2463 2464 // Check the user classes. We don't care what order since we're only 2465 // actually matching against one of them. 2466 OS << " switch (Kind) {\n" 2467 " default: break;\n"; 2468 for (const auto &CI : Info.Classes) { 2469 if (!CI.isUserClass()) 2470 continue; 2471 2472 OS << " // '" << CI.ClassName << "' class\n"; 2473 OS << " case " << CI.Name << ": {\n"; 2474 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2475 << "());\n"; 2476 OS << " if (DP.isMatch())\n"; 2477 OS << " return MCTargetAsmParser::Match_Success;\n"; 2478 if (!CI.DiagnosticType.empty()) { 2479 OS << " if (DP.isNearMatch())\n"; 2480 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2481 << CI.DiagnosticType << ";\n"; 2482 OS << " break;\n"; 2483 } 2484 else 2485 OS << " break;\n"; 2486 OS << " }\n"; 2487 } 2488 OS << " } // end switch (Kind)\n\n"; 2489 2490 // Check for register operands, including sub-classes. 2491 OS << " if (Operand.isReg()) {\n"; 2492 OS << " MatchClassKind OpKind;\n"; 2493 OS << " switch (Operand.getReg()) {\n"; 2494 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2495 for (const auto &RC : Info.RegisterClasses) 2496 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2497 << RC.first->getName() << ": OpKind = " << RC.second->Name 2498 << "; break;\n"; 2499 OS << " }\n"; 2500 OS << " return isSubclass(OpKind, Kind) ? " 2501 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2502 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2503 2504 // Expected operand is a register, but actual is not. 2505 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2506 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2507 2508 // Generic fallthrough match failure case for operands that don't have 2509 // specialized diagnostic types. 2510 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2511 OS << "}\n\n"; 2512 } 2513 2514 /// emitIsSubclass - Emit the subclass predicate function. 2515 static void emitIsSubclass(CodeGenTarget &Target, 2516 std::forward_list<ClassInfo> &Infos, 2517 raw_ostream &OS) { 2518 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2519 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2520 OS << " if (A == B)\n"; 2521 OS << " return true;\n\n"; 2522 2523 bool EmittedSwitch = false; 2524 for (const auto &A : Infos) { 2525 std::vector<StringRef> SuperClasses; 2526 if (A.IsOptional) 2527 SuperClasses.push_back("OptionalMatchClass"); 2528 for (const auto &B : Infos) { 2529 if (&A != &B && A.isSubsetOf(B)) 2530 SuperClasses.push_back(B.Name); 2531 } 2532 2533 if (SuperClasses.empty()) 2534 continue; 2535 2536 // If this is the first SuperClass, emit the switch header. 2537 if (!EmittedSwitch) { 2538 OS << " switch (A) {\n"; 2539 OS << " default:\n"; 2540 OS << " return false;\n"; 2541 EmittedSwitch = true; 2542 } 2543 2544 OS << "\n case " << A.Name << ":\n"; 2545 2546 if (SuperClasses.size() == 1) { 2547 OS << " return B == " << SuperClasses.back() << ";\n"; 2548 continue; 2549 } 2550 2551 if (!SuperClasses.empty()) { 2552 OS << " switch (B) {\n"; 2553 OS << " default: return false;\n"; 2554 for (StringRef SC : SuperClasses) 2555 OS << " case " << SC << ": return true;\n"; 2556 OS << " }\n"; 2557 } else { 2558 // No case statement to emit 2559 OS << " return false;\n"; 2560 } 2561 } 2562 2563 // If there were case statements emitted into the string stream write the 2564 // default. 2565 if (EmittedSwitch) 2566 OS << " }\n"; 2567 else 2568 OS << " return false;\n"; 2569 2570 OS << "}\n\n"; 2571 } 2572 2573 /// emitMatchTokenString - Emit the function to match a token string to the 2574 /// appropriate match class value. 2575 static void emitMatchTokenString(CodeGenTarget &Target, 2576 std::forward_list<ClassInfo> &Infos, 2577 raw_ostream &OS) { 2578 // Construct the match list. 2579 std::vector<StringMatcher::StringPair> Matches; 2580 for (const auto &CI : Infos) { 2581 if (CI.Kind == ClassInfo::Token) 2582 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2583 } 2584 2585 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2586 2587 StringMatcher("Name", Matches, OS).Emit(); 2588 2589 OS << " return InvalidMatchClass;\n"; 2590 OS << "}\n\n"; 2591 } 2592 2593 /// emitMatchRegisterName - Emit the function to match a string to the target 2594 /// specific register enum. 2595 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2596 raw_ostream &OS) { 2597 // Construct the match list. 2598 std::vector<StringMatcher::StringPair> Matches; 2599 const auto &Regs = Target.getRegBank().getRegisters(); 2600 for (const CodeGenRegister &Reg : Regs) { 2601 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2602 continue; 2603 2604 Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), 2605 "return " + utostr(Reg.EnumValue) + ";"); 2606 } 2607 2608 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2609 2610 bool IgnoreDuplicates = 2611 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2612 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2613 2614 OS << " return 0;\n"; 2615 OS << "}\n\n"; 2616 } 2617 2618 /// Emit the function to match a string to the target 2619 /// specific register enum. 2620 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2621 raw_ostream &OS) { 2622 // Construct the match list. 2623 std::vector<StringMatcher::StringPair> Matches; 2624 const auto &Regs = Target.getRegBank().getRegisters(); 2625 for (const CodeGenRegister &Reg : Regs) { 2626 2627 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2628 2629 for (auto AltName : AltNames) { 2630 AltName = StringRef(AltName).trim(); 2631 2632 // don't handle empty alternative names 2633 if (AltName.empty()) 2634 continue; 2635 2636 Matches.emplace_back(AltName, 2637 "return " + utostr(Reg.EnumValue) + ";"); 2638 } 2639 } 2640 2641 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2642 2643 bool IgnoreDuplicates = 2644 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2645 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2646 2647 OS << " return 0;\n"; 2648 OS << "}\n\n"; 2649 } 2650 2651 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2652 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2653 // Get the set of diagnostic types from all of the operand classes. 2654 std::set<StringRef> Types; 2655 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2656 if (!OpClassEntry.second->DiagnosticType.empty()) 2657 Types.insert(OpClassEntry.second->DiagnosticType); 2658 } 2659 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2660 if (!OpClassEntry.second->DiagnosticType.empty()) 2661 Types.insert(OpClassEntry.second->DiagnosticType); 2662 } 2663 2664 if (Types.empty()) return; 2665 2666 // Now emit the enum entries. 2667 for (StringRef Type : Types) 2668 OS << " Match_" << Type << ",\n"; 2669 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2670 } 2671 2672 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2673 /// user-level name for a subtarget feature. 2674 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2675 OS << "// User-level names for subtarget features that participate in\n" 2676 << "// instruction matching.\n" 2677 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2678 if (!Info.SubtargetFeatures.empty()) { 2679 OS << " switch(Val) {\n"; 2680 for (const auto &SF : Info.SubtargetFeatures) { 2681 const SubtargetFeatureInfo &SFI = SF.second; 2682 // FIXME: Totally just a placeholder name to get the algorithm working. 2683 OS << " case " << SFI.getEnumBitName() << ": return \"" 2684 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2685 } 2686 OS << " default: return \"(unknown)\";\n"; 2687 OS << " }\n"; 2688 } else { 2689 // Nothing to emit, so skip the switch 2690 OS << " return \"(unknown)\";\n"; 2691 } 2692 OS << "}\n\n"; 2693 } 2694 2695 static std::string GetAliasRequiredFeatures(Record *R, 2696 const AsmMatcherInfo &Info) { 2697 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2698 std::string Result; 2699 2700 if (ReqFeatures.empty()) 2701 return Result; 2702 2703 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2704 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2705 2706 if (!F) 2707 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2708 "' is not marked as an AssemblerPredicate!"); 2709 2710 if (i) 2711 Result += " && "; 2712 2713 Result += "Features.test(" + F->getEnumBitName() + ')'; 2714 } 2715 2716 return Result; 2717 } 2718 2719 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2720 std::vector<Record*> &Aliases, 2721 unsigned Indent = 0, 2722 StringRef AsmParserVariantName = StringRef()){ 2723 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2724 // iteration order of the map is stable. 2725 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2726 2727 for (Record *R : Aliases) { 2728 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2729 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2730 if (AsmVariantName != AsmParserVariantName) 2731 continue; 2732 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); 2733 } 2734 if (AliasesFromMnemonic.empty()) 2735 return; 2736 2737 // Process each alias a "from" mnemonic at a time, building the code executed 2738 // by the string remapper. 2739 std::vector<StringMatcher::StringPair> Cases; 2740 for (const auto &AliasEntry : AliasesFromMnemonic) { 2741 const std::vector<Record*> &ToVec = AliasEntry.second; 2742 2743 // Loop through each alias and emit code that handles each case. If there 2744 // are two instructions without predicates, emit an error. If there is one, 2745 // emit it last. 2746 std::string MatchCode; 2747 int AliasWithNoPredicate = -1; 2748 2749 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2750 Record *R = ToVec[i]; 2751 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2752 2753 // If this unconditionally matches, remember it for later and diagnose 2754 // duplicates. 2755 if (FeatureMask.empty()) { 2756 if (AliasWithNoPredicate != -1) { 2757 // We can't have two aliases from the same mnemonic with no predicate. 2758 PrintError(ToVec[AliasWithNoPredicate]->getLoc(), 2759 "two MnemonicAliases with the same 'from' mnemonic!"); 2760 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2761 } 2762 2763 AliasWithNoPredicate = i; 2764 continue; 2765 } 2766 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2767 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2768 2769 if (!MatchCode.empty()) 2770 MatchCode += "else "; 2771 MatchCode += "if (" + FeatureMask + ")\n"; 2772 MatchCode += " Mnemonic = \""; 2773 MatchCode += R->getValueAsString("ToMnemonic"); 2774 MatchCode += "\";\n"; 2775 } 2776 2777 if (AliasWithNoPredicate != -1) { 2778 Record *R = ToVec[AliasWithNoPredicate]; 2779 if (!MatchCode.empty()) 2780 MatchCode += "else\n "; 2781 MatchCode += "Mnemonic = \""; 2782 MatchCode += R->getValueAsString("ToMnemonic"); 2783 MatchCode += "\";\n"; 2784 } 2785 2786 MatchCode += "return;"; 2787 2788 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2789 } 2790 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2791 } 2792 2793 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2794 /// emit a function for them and return true, otherwise return false. 2795 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2796 CodeGenTarget &Target) { 2797 // Ignore aliases when match-prefix is set. 2798 if (!MatchPrefix.empty()) 2799 return false; 2800 2801 std::vector<Record*> Aliases = 2802 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2803 if (Aliases.empty()) return false; 2804 2805 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2806 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2807 OS << " switch (VariantID) {\n"; 2808 unsigned VariantCount = Target.getAsmParserVariantCount(); 2809 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2810 Record *AsmVariant = Target.getAsmParserVariant(VC); 2811 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2812 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2813 OS << " case " << AsmParserVariantNo << ":\n"; 2814 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2815 AsmParserVariantName); 2816 OS << " break;\n"; 2817 } 2818 OS << " }\n"; 2819 2820 // Emit aliases that apply to all variants. 2821 emitMnemonicAliasVariant(OS, Info, Aliases); 2822 2823 OS << "}\n\n"; 2824 2825 return true; 2826 } 2827 2828 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2829 const AsmMatcherInfo &Info, StringRef ClassName, 2830 StringToOffsetTable &StringTable, 2831 unsigned MaxMnemonicIndex, 2832 unsigned MaxFeaturesIndex, 2833 bool HasMnemonicFirst) { 2834 unsigned MaxMask = 0; 2835 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2836 MaxMask |= OMI.OperandMask; 2837 } 2838 2839 // Emit the static custom operand parsing table; 2840 OS << "namespace {\n"; 2841 OS << " struct OperandMatchEntry {\n"; 2842 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2843 << " Mnemonic;\n"; 2844 OS << " " << getMinimalTypeForRange(MaxMask) 2845 << " OperandMask;\n"; 2846 OS << " " << getMinimalTypeForRange(std::distance( 2847 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2848 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2849 << " RequiredFeaturesIdx;\n\n"; 2850 OS << " StringRef getMnemonic() const {\n"; 2851 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2852 OS << " MnemonicTable[Mnemonic]);\n"; 2853 OS << " }\n"; 2854 OS << " };\n\n"; 2855 2856 OS << " // Predicate for searching for an opcode.\n"; 2857 OS << " struct LessOpcodeOperand {\n"; 2858 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2859 OS << " return LHS.getMnemonic() < RHS;\n"; 2860 OS << " }\n"; 2861 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2862 OS << " return LHS < RHS.getMnemonic();\n"; 2863 OS << " }\n"; 2864 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2865 OS << " const OperandMatchEntry &RHS) {\n"; 2866 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2867 OS << " }\n"; 2868 OS << " };\n"; 2869 2870 OS << "} // end anonymous namespace\n\n"; 2871 2872 OS << "static const OperandMatchEntry OperandMatchTable[" 2873 << Info.OperandMatchInfo.size() << "] = {\n"; 2874 2875 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2876 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2877 const MatchableInfo &II = *OMI.MI; 2878 2879 OS << " { "; 2880 2881 // Store a pascal-style length byte in the mnemonic. 2882 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); 2883 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2884 << " /* " << II.Mnemonic << " */, "; 2885 2886 OS << OMI.OperandMask; 2887 OS << " /* "; 2888 bool printComma = false; 2889 for (int i = 0, e = 31; i !=e; ++i) 2890 if (OMI.OperandMask & (1 << i)) { 2891 if (printComma) 2892 OS << ", "; 2893 OS << i; 2894 printComma = true; 2895 } 2896 OS << " */, "; 2897 2898 OS << OMI.CI->Name; 2899 2900 // Write the required features mask. 2901 OS << ", AMFBS"; 2902 if (II.RequiredFeatures.empty()) 2903 OS << "_None"; 2904 else 2905 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2906 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2907 2908 OS << " },\n"; 2909 } 2910 OS << "};\n\n"; 2911 2912 // Emit the operand class switch to call the correct custom parser for 2913 // the found operand class. 2914 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2915 << "tryCustomParseOperand(OperandVector" 2916 << " &Operands,\n unsigned MCK) {\n\n" 2917 << " switch(MCK) {\n"; 2918 2919 for (const auto &CI : Info.Classes) { 2920 if (CI.ParserMethod.empty()) 2921 continue; 2922 OS << " case " << CI.Name << ":\n" 2923 << " return " << CI.ParserMethod << "(Operands);\n"; 2924 } 2925 2926 OS << " default:\n"; 2927 OS << " return MatchOperand_NoMatch;\n"; 2928 OS << " }\n"; 2929 OS << " return MatchOperand_NoMatch;\n"; 2930 OS << "}\n\n"; 2931 2932 // Emit the static custom operand parser. This code is very similar with 2933 // the other matcher. Also use MatchResultTy here just in case we go for 2934 // a better error handling. 2935 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2936 << "MatchOperandParserImpl(OperandVector" 2937 << " &Operands,\n StringRef Mnemonic,\n" 2938 << " bool ParseForAllFeatures) {\n"; 2939 2940 // Emit code to get the available features. 2941 OS << " // Get the current feature set.\n"; 2942 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 2943 2944 OS << " // Get the next operand index.\n"; 2945 OS << " unsigned NextOpNum = Operands.size()" 2946 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2947 2948 // Emit code to search the table. 2949 OS << " // Search the table.\n"; 2950 if (HasMnemonicFirst) { 2951 OS << " auto MnemonicRange =\n"; 2952 OS << " std::equal_range(std::begin(OperandMatchTable), " 2953 "std::end(OperandMatchTable),\n"; 2954 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2955 } else { 2956 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2957 " std::end(OperandMatchTable));\n"; 2958 OS << " if (!Mnemonic.empty())\n"; 2959 OS << " MnemonicRange =\n"; 2960 OS << " std::equal_range(std::begin(OperandMatchTable), " 2961 "std::end(OperandMatchTable),\n"; 2962 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2963 } 2964 2965 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2966 OS << " return MatchOperand_NoMatch;\n\n"; 2967 2968 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2969 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2970 2971 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2972 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2973 2974 // Emit check that the required features are available. 2975 OS << " // check if the available features match\n"; 2976 OS << " const FeatureBitset &RequiredFeatures = " 2977 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 2978 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2979 "RequiredFeatures) != RequiredFeatures)\n"; 2980 OS << " continue;\n\n"; 2981 2982 // Emit check to ensure the operand number matches. 2983 OS << " // check if the operand in question has a custom parser.\n"; 2984 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2985 OS << " continue;\n\n"; 2986 2987 // Emit call to the custom parser method 2988 OS << " // call custom parse method to handle the operand\n"; 2989 OS << " OperandMatchResultTy Result = "; 2990 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2991 OS << " if (Result != MatchOperand_NoMatch)\n"; 2992 OS << " return Result;\n"; 2993 OS << " }\n\n"; 2994 2995 OS << " // Okay, we had no match.\n"; 2996 OS << " return MatchOperand_NoMatch;\n"; 2997 OS << "}\n\n"; 2998 } 2999 3000 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 3001 AsmMatcherInfo &Info, 3002 raw_ostream &OS) { 3003 std::string AsmParserName = 3004 Info.AsmParser->getValueAsString("AsmParserClassName"); 3005 OS << "static bool "; 3006 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3007 << AsmParserName << "&AsmParser,\n"; 3008 OS << " unsigned Kind,\n"; 3009 OS << " const OperandVector &Operands,\n"; 3010 OS << " uint64_t &ErrorInfo) {\n"; 3011 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3012 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3013 OS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 3014 OS << " switch (*p) {\n"; 3015 OS << " case CVT_Tied: {\n"; 3016 OS << " unsigned OpIdx = *(p+1);\n"; 3017 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3018 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3019 OS << " \"Tied operand not found\");\n"; 3020 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3021 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3022 OS << " if (OpndNum1 != OpndNum2) {\n"; 3023 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3024 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3025 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; 3026 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; 3027 OS << " ErrorInfo = OpndNum2;\n"; 3028 OS << " return false;\n"; 3029 OS << " }\n"; 3030 OS << " }\n"; 3031 OS << " }\n"; 3032 OS << " break;\n"; 3033 OS << " }\n"; 3034 OS << " default:\n"; 3035 OS << " break;\n"; 3036 OS << " }\n"; 3037 OS << " }\n"; 3038 OS << " return true;\n"; 3039 OS << "}\n\n"; 3040 } 3041 3042 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3043 unsigned VariantCount) { 3044 OS << "static std::string " << Target.getName() 3045 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3046 << " unsigned VariantID) {\n"; 3047 if (!VariantCount) 3048 OS << " return \"\";"; 3049 else { 3050 OS << " const unsigned MaxEditDist = 2;\n"; 3051 OS << " std::vector<StringRef> Candidates;\n"; 3052 OS << " StringRef Prev = \"\";\n\n"; 3053 3054 OS << " // Find the appropriate table for this asm variant.\n"; 3055 OS << " const MatchEntry *Start, *End;\n"; 3056 OS << " switch (VariantID) {\n"; 3057 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3058 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3059 Record *AsmVariant = Target.getAsmParserVariant(VC); 3060 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3061 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3062 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3063 } 3064 OS << " }\n\n"; 3065 OS << " for (auto I = Start; I < End; I++) {\n"; 3066 OS << " // Ignore unsupported instructions.\n"; 3067 OS << " const FeatureBitset &RequiredFeatures = " 3068 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3069 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3070 OS << " continue;\n"; 3071 OS << "\n"; 3072 OS << " StringRef T = I->getMnemonic();\n"; 3073 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3074 OS << " if (T.equals(Prev))\n"; 3075 OS << " continue;\n"; 3076 OS << "\n"; 3077 OS << " Prev = T;\n"; 3078 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3079 OS << " if (Dist <= MaxEditDist)\n"; 3080 OS << " Candidates.push_back(T);\n"; 3081 OS << " }\n"; 3082 OS << "\n"; 3083 OS << " if (Candidates.empty())\n"; 3084 OS << " return \"\";\n"; 3085 OS << "\n"; 3086 OS << " std::string Res = \", did you mean: \";\n"; 3087 OS << " unsigned i = 0;\n"; 3088 OS << " for( ; i < Candidates.size() - 1; i++)\n"; 3089 OS << " Res += Candidates[i].str() + \", \";\n"; 3090 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3091 } 3092 OS << "}\n"; 3093 OS << "\n"; 3094 } 3095 3096 3097 // Emit a function mapping match classes to strings, for debugging. 3098 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3099 raw_ostream &OS) { 3100 OS << "#ifndef NDEBUG\n"; 3101 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3102 OS << " switch (Kind) {\n"; 3103 3104 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3105 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3106 for (const auto &CI : Infos) { 3107 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3108 } 3109 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3110 3111 OS << " }\n"; 3112 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3113 OS << "}\n\n"; 3114 OS << "#endif // NDEBUG\n"; 3115 } 3116 3117 static std::string 3118 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3119 std::string Name = "AMFBS"; 3120 for (const auto &Feature : FeatureBitset) 3121 Name += ("_" + Feature->getName()).str(); 3122 return Name; 3123 } 3124 3125 void AsmMatcherEmitter::run(raw_ostream &OS) { 3126 CodeGenTarget Target(Records); 3127 Record *AsmParser = Target.getAsmParser(); 3128 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3129 3130 // Compute the information on the instructions to match. 3131 AsmMatcherInfo Info(AsmParser, Target, Records); 3132 Info.buildInfo(); 3133 3134 // Sort the instruction table using the partial order on classes. We use 3135 // stable_sort to ensure that ambiguous instructions are still 3136 // deterministically ordered. 3137 llvm::stable_sort( 3138 Info.Matchables, 3139 [](const std::unique_ptr<MatchableInfo> &a, 3140 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); 3141 3142 #ifdef EXPENSIVE_CHECKS 3143 // Verify that the table is sorted and operator < works transitively. 3144 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3145 ++I) { 3146 for (auto J = I; J != E; ++J) { 3147 assert(!(**J < **I)); 3148 } 3149 } 3150 #endif 3151 3152 DEBUG_WITH_TYPE("instruction_info", { 3153 for (const auto &MI : Info.Matchables) 3154 MI->dump(); 3155 }); 3156 3157 // Check for ambiguous matchables. 3158 DEBUG_WITH_TYPE("ambiguous_instrs", { 3159 unsigned NumAmbiguous = 0; 3160 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3161 ++I) { 3162 for (auto J = std::next(I); J != E; ++J) { 3163 const MatchableInfo &A = **I; 3164 const MatchableInfo &B = **J; 3165 3166 if (A.couldMatchAmbiguouslyWith(B)) { 3167 errs() << "warning: ambiguous matchables:\n"; 3168 A.dump(); 3169 errs() << "\nis incomparable with:\n"; 3170 B.dump(); 3171 errs() << "\n\n"; 3172 ++NumAmbiguous; 3173 } 3174 } 3175 } 3176 if (NumAmbiguous) 3177 errs() << "warning: " << NumAmbiguous 3178 << " ambiguous matchables!\n"; 3179 }); 3180 3181 // Compute the information on the custom operand parsing. 3182 Info.buildOperandMatchInfo(); 3183 3184 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3185 bool HasOptionalOperands = Info.hasOptionalOperands(); 3186 bool ReportMultipleNearMisses = 3187 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3188 3189 // Write the output. 3190 3191 // Information for the class declaration. 3192 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3193 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3194 OS << " // This should be included into the middle of the declaration of\n"; 3195 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3196 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; 3197 if (HasOptionalOperands) { 3198 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3199 << "unsigned Opcode,\n" 3200 << " const OperandVector &Operands,\n" 3201 << " const SmallBitVector &OptionalOperandsMask);\n"; 3202 } else { 3203 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3204 << "unsigned Opcode,\n" 3205 << " const OperandVector &Operands);\n"; 3206 } 3207 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3208 OS << " const OperandVector &Operands) override;\n"; 3209 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3210 << " MCInst &Inst,\n"; 3211 if (ReportMultipleNearMisses) 3212 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3213 else 3214 OS << " uint64_t &ErrorInfo,\n" 3215 << " FeatureBitset &MissingFeatures,\n"; 3216 OS << " bool matchingInlineAsm,\n" 3217 << " unsigned VariantID = 0);\n"; 3218 if (!ReportMultipleNearMisses) 3219 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3220 << " MCInst &Inst,\n" 3221 << " uint64_t &ErrorInfo,\n" 3222 << " bool matchingInlineAsm,\n" 3223 << " unsigned VariantID = 0) {\n" 3224 << " FeatureBitset MissingFeatures;\n" 3225 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" 3226 << " matchingInlineAsm, VariantID);\n" 3227 << " }\n\n"; 3228 3229 3230 if (!Info.OperandMatchInfo.empty()) { 3231 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3232 OS << " OperandVector &Operands,\n"; 3233 OS << " StringRef Mnemonic,\n"; 3234 OS << " bool ParseForAllFeatures = false);\n"; 3235 3236 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3237 OS << " OperandVector &Operands,\n"; 3238 OS << " unsigned MCK);\n\n"; 3239 } 3240 3241 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3242 3243 // Emit the operand match diagnostic enum names. 3244 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3245 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3246 emitOperandDiagnosticTypes(Info, OS); 3247 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3248 3249 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3250 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3251 3252 // Emit the subtarget feature enumeration. 3253 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3254 Info.SubtargetFeatures, OS); 3255 3256 // Emit the function to match a register name to number. 3257 // This should be omitted for Mips target 3258 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3259 emitMatchRegisterName(Target, AsmParser, OS); 3260 3261 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3262 emitMatchRegisterAltName(Target, AsmParser, OS); 3263 3264 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3265 3266 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3267 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3268 3269 // Generate the helper function to get the names for subtarget features. 3270 emitGetSubtargetFeatureName(Info, OS); 3271 3272 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3273 3274 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3275 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3276 3277 // Generate the function that remaps for mnemonic aliases. 3278 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3279 3280 // Generate the convertToMCInst function to convert operands into an MCInst. 3281 // Also, generate the convertToMapAndConstraints function for MS-style inline 3282 // assembly. The latter doesn't actually generate a MCInst. 3283 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, 3284 HasMnemonicFirst, 3285 HasOptionalOperands, OS); 3286 3287 // Emit the enumeration for classes which participate in matching. 3288 emitMatchClassEnumeration(Target, Info.Classes, OS); 3289 3290 // Emit a function to get the user-visible string to describe an operand 3291 // match failure in diagnostics. 3292 emitOperandMatchErrorDiagStrings(Info, OS); 3293 3294 // Emit a function to map register classes to operand match failure codes. 3295 emitRegisterMatchErrorFunc(Info, OS); 3296 3297 // Emit the routine to match token strings to their match class. 3298 emitMatchTokenString(Target, Info.Classes, OS); 3299 3300 // Emit the subclass predicate routine. 3301 emitIsSubclass(Target, Info.Classes, OS); 3302 3303 // Emit the routine to validate an operand against a match class. 3304 emitValidateOperandClass(Info, OS); 3305 3306 emitMatchClassKindNames(Info.Classes, OS); 3307 3308 // Emit the available features compute function. 3309 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3310 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3311 Info.SubtargetFeatures, OS); 3312 3313 if (!ReportMultipleNearMisses) 3314 emitAsmTiedOperandConstraints(Target, Info, OS); 3315 3316 StringToOffsetTable StringTable; 3317 3318 size_t MaxNumOperands = 0; 3319 unsigned MaxMnemonicIndex = 0; 3320 bool HasDeprecation = false; 3321 for (const auto &MI : Info.Matchables) { 3322 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3323 HasDeprecation |= MI->HasDeprecation; 3324 3325 // Store a pascal-style length byte in the mnemonic. 3326 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 3327 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3328 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3329 } 3330 3331 OS << "static const char *const MnemonicTable =\n"; 3332 StringTable.EmitString(OS); 3333 OS << ";\n\n"; 3334 3335 std::vector<std::vector<Record *>> FeatureBitsets; 3336 for (const auto &MI : Info.Matchables) { 3337 if (MI->RequiredFeatures.empty()) 3338 continue; 3339 FeatureBitsets.emplace_back(); 3340 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3341 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3342 } 3343 3344 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3345 const std::vector<Record *> &B) { 3346 if (A.size() < B.size()) 3347 return true; 3348 if (A.size() > B.size()) 3349 return false; 3350 for (const auto &Pair : zip(A, B)) { 3351 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3352 return true; 3353 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3354 return false; 3355 } 3356 return false; 3357 }); 3358 FeatureBitsets.erase( 3359 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 3360 FeatureBitsets.end()); 3361 OS << "// Feature bitsets.\n" 3362 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3363 << " AMFBS_None,\n"; 3364 for (const auto &FeatureBitset : FeatureBitsets) { 3365 if (FeatureBitset.empty()) 3366 continue; 3367 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3368 } 3369 OS << "};\n\n" 3370 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3371 << " {}, // AMFBS_None\n"; 3372 for (const auto &FeatureBitset : FeatureBitsets) { 3373 if (FeatureBitset.empty()) 3374 continue; 3375 OS << " {"; 3376 for (const auto &Feature : FeatureBitset) { 3377 const auto &I = Info.SubtargetFeatures.find(Feature); 3378 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3379 OS << I->second.getEnumBitName() << ", "; 3380 } 3381 OS << "},\n"; 3382 } 3383 OS << "};\n\n"; 3384 3385 // Emit the static match table; unused classes get initialized to 0 which is 3386 // guaranteed to be InvalidMatchClass. 3387 // 3388 // FIXME: We can reduce the size of this table very easily. First, we change 3389 // it so that store the kinds in separate bit-fields for each index, which 3390 // only needs to be the max width used for classes at that index (we also need 3391 // to reject based on this during classification). If we then make sure to 3392 // order the match kinds appropriately (putting mnemonics last), then we 3393 // should only end up using a few bits for each class, especially the ones 3394 // following the mnemonic. 3395 OS << "namespace {\n"; 3396 OS << " struct MatchEntry {\n"; 3397 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3398 << " Mnemonic;\n"; 3399 OS << " uint16_t Opcode;\n"; 3400 OS << " " << getMinimalTypeForRange(NumConverters) 3401 << " ConvertFn;\n"; 3402 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3403 << " RequiredFeaturesIdx;\n"; 3404 OS << " " << getMinimalTypeForRange( 3405 std::distance(Info.Classes.begin(), Info.Classes.end())) 3406 << " Classes[" << MaxNumOperands << "];\n"; 3407 OS << " StringRef getMnemonic() const {\n"; 3408 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3409 OS << " MnemonicTable[Mnemonic]);\n"; 3410 OS << " }\n"; 3411 OS << " };\n\n"; 3412 3413 OS << " // Predicate for searching for an opcode.\n"; 3414 OS << " struct LessOpcode {\n"; 3415 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3416 OS << " return LHS.getMnemonic() < RHS;\n"; 3417 OS << " }\n"; 3418 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3419 OS << " return LHS < RHS.getMnemonic();\n"; 3420 OS << " }\n"; 3421 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3422 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3423 OS << " }\n"; 3424 OS << " };\n"; 3425 3426 OS << "} // end anonymous namespace\n\n"; 3427 3428 unsigned VariantCount = Target.getAsmParserVariantCount(); 3429 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3430 Record *AsmVariant = Target.getAsmParserVariant(VC); 3431 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3432 3433 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3434 3435 for (const auto &MI : Info.Matchables) { 3436 if (MI->AsmVariantID != AsmVariantNo) 3437 continue; 3438 3439 // Store a pascal-style length byte in the mnemonic. 3440 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 3441 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3442 << " /* " << MI->Mnemonic << " */, " 3443 << Target.getInstNamespace() << "::" 3444 << MI->getResultInst()->TheDef->getName() << ", " 3445 << MI->ConversionFnKind << ", "; 3446 3447 // Write the required features mask. 3448 OS << "AMFBS"; 3449 if (MI->RequiredFeatures.empty()) 3450 OS << "_None"; 3451 else 3452 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3453 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3454 3455 OS << ", { "; 3456 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 3457 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 3458 3459 if (i) OS << ", "; 3460 OS << Op.Class->Name; 3461 } 3462 OS << " }, },\n"; 3463 } 3464 3465 OS << "};\n\n"; 3466 } 3467 3468 OS << "#include \"llvm/Support/Debug.h\"\n"; 3469 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3470 3471 // Finally, build the match function. 3472 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3473 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3474 OS << " MCInst &Inst,\n"; 3475 if (ReportMultipleNearMisses) 3476 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3477 else 3478 OS << " uint64_t &ErrorInfo,\n" 3479 << " FeatureBitset &MissingFeatures,\n"; 3480 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3481 3482 if (!ReportMultipleNearMisses) { 3483 OS << " // Eliminate obvious mismatches.\n"; 3484 OS << " if (Operands.size() > " 3485 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3486 OS << " ErrorInfo = " 3487 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3488 OS << " return Match_InvalidOperand;\n"; 3489 OS << " }\n\n"; 3490 } 3491 3492 // Emit code to get the available features. 3493 OS << " // Get the current feature set.\n"; 3494 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 3495 3496 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3497 if (HasMnemonicFirst) { 3498 OS << " StringRef Mnemonic = ((" << Target.getName() 3499 << "Operand&)*Operands[0]).getToken();\n\n"; 3500 } else { 3501 OS << " StringRef Mnemonic;\n"; 3502 OS << " if (Operands[0]->isToken())\n"; 3503 OS << " Mnemonic = ((" << Target.getName() 3504 << "Operand&)*Operands[0]).getToken();\n\n"; 3505 } 3506 3507 if (HasMnemonicAliases) { 3508 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3509 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3510 } 3511 3512 // Emit code to compute the class list for this operand vector. 3513 if (!ReportMultipleNearMisses) { 3514 OS << " // Some state to try to produce better error messages.\n"; 3515 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3516 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3517 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3518 OS << " MissingFeatures.set();\n"; 3519 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3520 OS << " // wrong for all instances of the instruction.\n"; 3521 OS << " ErrorInfo = ~0ULL;\n"; 3522 } 3523 3524 if (HasOptionalOperands) { 3525 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3526 } 3527 3528 // Emit code to search the table. 3529 OS << " // Find the appropriate table for this asm variant.\n"; 3530 OS << " const MatchEntry *Start, *End;\n"; 3531 OS << " switch (VariantID) {\n"; 3532 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3533 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3534 Record *AsmVariant = Target.getAsmParserVariant(VC); 3535 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3536 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3537 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3538 } 3539 OS << " }\n"; 3540 3541 OS << " // Search the table.\n"; 3542 if (HasMnemonicFirst) { 3543 OS << " auto MnemonicRange = " 3544 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3545 } else { 3546 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3547 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3548 OS << " if (!Mnemonic.empty())\n"; 3549 OS << " MnemonicRange = " 3550 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3551 } 3552 3553 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3554 << " std::distance(MnemonicRange.first, MnemonicRange.second) << \n" 3555 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3556 3557 OS << " // Return a more specific error code if no mnemonics match.\n"; 3558 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3559 OS << " return Match_MnemonicFail;\n\n"; 3560 3561 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3562 << "*ie = MnemonicRange.second;\n"; 3563 OS << " it != ie; ++it) {\n"; 3564 OS << " const FeatureBitset &RequiredFeatures = " 3565 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3566 OS << " bool HasRequiredFeatures =\n"; 3567 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3568 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3569 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3570 3571 if (ReportMultipleNearMisses) { 3572 OS << " // Some state to record ways in which this instruction did not match.\n"; 3573 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3574 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3575 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3576 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3577 OS << " bool MultipleInvalidOperands = false;\n"; 3578 } 3579 3580 if (HasMnemonicFirst) { 3581 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3582 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3583 } 3584 3585 // Emit check that the subclasses match. 3586 if (!ReportMultipleNearMisses) 3587 OS << " bool OperandsValid = true;\n"; 3588 if (HasOptionalOperands) { 3589 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3590 } 3591 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3592 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3593 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3594 OS << " auto Formal = " 3595 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3596 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3597 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3598 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3599 OS << " if (ActualIdx < Operands.size())\n"; 3600 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3601 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3602 OS << " else\n"; 3603 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3604 OS << " if (ActualIdx >= Operands.size()) {\n"; 3605 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; 3606 if (ReportMultipleNearMisses) { 3607 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3608 "isSubclass(Formal, OptionalMatchClass);\n"; 3609 OS << " if (!ThisOperandValid) {\n"; 3610 OS << " if (!OperandNearMiss) {\n"; 3611 OS << " // Record info about match failure for later use.\n"; 3612 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3613 OS << " OperandNearMiss =\n"; 3614 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3615 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3616 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3617 OS << " DEBUG_WITH_TYPE(\n"; 3618 OS << " \"asm-matcher\",\n"; 3619 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3620 OS << " MultipleInvalidOperands = true;\n"; 3621 OS << " break;\n"; 3622 OS << " }\n"; 3623 OS << " } else {\n"; 3624 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; 3625 OS << " break;\n"; 3626 OS << " }\n"; 3627 OS << " continue;\n"; 3628 } else { 3629 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; 3630 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3631 if (HasOptionalOperands) { 3632 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3633 << ");\n"; 3634 } 3635 OS << " break;\n"; 3636 } 3637 OS << " }\n"; 3638 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3639 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3640 OS << " if (Diag == Match_Success) {\n"; 3641 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3642 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3643 OS << " ++ActualIdx;\n"; 3644 OS << " continue;\n"; 3645 OS << " }\n"; 3646 OS << " // If the generic handler indicates an invalid operand\n"; 3647 OS << " // failure, check for a special case.\n"; 3648 OS << " if (Diag != Match_Success) {\n"; 3649 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3650 OS << " if (TargetDiag == Match_Success) {\n"; 3651 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3652 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3653 OS << " ++ActualIdx;\n"; 3654 OS << " continue;\n"; 3655 OS << " }\n"; 3656 OS << " // If the target matcher returned a specific error code use\n"; 3657 OS << " // that, else use the one from the generic matcher.\n"; 3658 OS << " if (TargetDiag != Match_InvalidOperand && " 3659 "HasRequiredFeatures)\n"; 3660 OS << " Diag = TargetDiag;\n"; 3661 OS << " }\n"; 3662 OS << " // If current formal operand wasn't matched and it is optional\n" 3663 << " // then try to match next formal operand\n"; 3664 OS << " if (Diag == Match_InvalidOperand " 3665 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3666 if (HasOptionalOperands) { 3667 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3668 } 3669 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3670 OS << " continue;\n"; 3671 OS << " }\n"; 3672 3673 if (ReportMultipleNearMisses) { 3674 OS << " if (!OperandNearMiss) {\n"; 3675 OS << " // If this is the first invalid operand we have seen, record some\n"; 3676 OS << " // information about it.\n"; 3677 OS << " DEBUG_WITH_TYPE(\n"; 3678 OS << " \"asm-matcher\",\n"; 3679 OS << " dbgs()\n"; 3680 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3681 OS << " << Diag << \"\\n\");\n"; 3682 OS << " OperandNearMiss =\n"; 3683 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3684 OS << " ++ActualIdx;\n"; 3685 OS << " } else {\n"; 3686 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3687 OS << " DEBUG_WITH_TYPE(\n"; 3688 OS << " \"asm-matcher\",\n"; 3689 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3690 OS << " MultipleInvalidOperands = true;\n"; 3691 OS << " break;\n"; 3692 OS << " }\n"; 3693 OS << " }\n\n"; 3694 } else { 3695 OS << " // If this operand is broken for all of the instances of this\n"; 3696 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3697 OS << " // If we already had a match that only failed due to a\n"; 3698 OS << " // target predicate, that diagnostic is preferred.\n"; 3699 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3700 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3701 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3702 "!= Match_InvalidOperand))\n"; 3703 OS << " RetCode = Diag;\n"; 3704 OS << " ErrorInfo = ActualIdx;\n"; 3705 OS << " }\n"; 3706 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3707 OS << " OperandsValid = false;\n"; 3708 OS << " break;\n"; 3709 OS << " }\n\n"; 3710 } 3711 3712 if (ReportMultipleNearMisses) 3713 OS << " if (MultipleInvalidOperands) {\n"; 3714 else 3715 OS << " if (!OperandsValid) {\n"; 3716 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3717 OS << " \"operand mismatches, ignoring \"\n"; 3718 OS << " \"this opcode\\n\");\n"; 3719 OS << " continue;\n"; 3720 OS << " }\n"; 3721 3722 // Emit check that the required features are available. 3723 OS << " if (!HasRequiredFeatures) {\n"; 3724 if (!ReportMultipleNearMisses) 3725 OS << " HadMatchOtherThanFeatures = true;\n"; 3726 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3727 "~AvailableFeatures;\n"; 3728 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; 3729 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; 3730 OS << " if (NewMissingFeatures[I])\n"; 3731 OS << " dbgs() << ' ' << I;\n"; 3732 OS << " dbgs() << \"\\n\");\n"; 3733 if (ReportMultipleNearMisses) { 3734 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3735 } else { 3736 OS << " if (NewMissingFeatures.count() <=\n" 3737 " MissingFeatures.count())\n"; 3738 OS << " MissingFeatures = NewMissingFeatures;\n"; 3739 OS << " continue;\n"; 3740 } 3741 OS << " }\n"; 3742 OS << "\n"; 3743 OS << " Inst.clear();\n\n"; 3744 OS << " Inst.setOpcode(it->Opcode);\n"; 3745 // Verify the instruction with the target-specific match predicate function. 3746 OS << " // We have a potential match but have not rendered the operands.\n" 3747 << " // Check the target predicate to handle any context sensitive\n" 3748 " // constraints.\n" 3749 << " // For example, Ties that are referenced multiple times must be\n" 3750 " // checked here to ensure the input is the same for each match\n" 3751 " // constraints. If we leave it any later the ties will have been\n" 3752 " // canonicalized\n" 3753 << " unsigned MatchResult;\n" 3754 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3755 "Operands)) != Match_Success) {\n" 3756 << " Inst.clear();\n"; 3757 OS << " DEBUG_WITH_TYPE(\n"; 3758 OS << " \"asm-matcher\",\n"; 3759 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3760 OS << " << MatchResult << \"\\n\");\n"; 3761 if (ReportMultipleNearMisses) { 3762 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3763 } else { 3764 OS << " RetCode = MatchResult;\n" 3765 << " HadMatchOtherThanPredicate = true;\n" 3766 << " continue;\n"; 3767 } 3768 OS << " }\n\n"; 3769 3770 if (ReportMultipleNearMisses) { 3771 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3772 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3773 OS << " if (OperandNearMiss) {\n"; 3774 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3775 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3776 OS << " DEBUG_WITH_TYPE(\n"; 3777 OS << " \"asm-matcher\",\n"; 3778 OS << " dbgs()\n"; 3779 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3780 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3781 OS << " } else {\n"; 3782 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3783 OS << " \"types of mismatch, so not \"\n"; 3784 OS << " \"reporting near-miss\\n\");\n"; 3785 OS << " }\n"; 3786 OS << " continue;\n"; 3787 OS << " }\n\n"; 3788 } 3789 3790 OS << " if (matchingInlineAsm) {\n"; 3791 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3792 if (!ReportMultipleNearMisses) { 3793 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3794 "Operands, ErrorInfo))\n"; 3795 OS << " return Match_InvalidTiedOperand;\n"; 3796 OS << "\n"; 3797 } 3798 OS << " return Match_Success;\n"; 3799 OS << " }\n\n"; 3800 OS << " // We have selected a definite instruction, convert the parsed\n" 3801 << " // operands into the appropriate MCInst.\n"; 3802 if (HasOptionalOperands) { 3803 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3804 << " OptionalOperandsMask);\n"; 3805 } else { 3806 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3807 } 3808 OS << "\n"; 3809 3810 // Verify the instruction with the target-specific match predicate function. 3811 OS << " // We have a potential match. Check the target predicate to\n" 3812 << " // handle any context sensitive constraints.\n" 3813 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3814 << " Match_Success) {\n" 3815 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3816 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3817 << " << MatchResult << \"\\n\");\n" 3818 << " Inst.clear();\n"; 3819 if (ReportMultipleNearMisses) { 3820 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3821 } else { 3822 OS << " RetCode = MatchResult;\n" 3823 << " HadMatchOtherThanPredicate = true;\n" 3824 << " continue;\n"; 3825 } 3826 OS << " }\n\n"; 3827 3828 if (ReportMultipleNearMisses) { 3829 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3830 OS << " (int)(bool)FeaturesNearMiss +\n"; 3831 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3832 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3833 OS << " if (NumNearMisses == 1) {\n"; 3834 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3835 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3836 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3837 OS << " \"mismatch, so reporting a \"\n"; 3838 OS << " \"near-miss\\n\");\n"; 3839 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3840 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3841 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3842 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3843 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3844 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3845 OS << "\n"; 3846 OS << " continue;\n"; 3847 OS << " } else if (NumNearMisses > 1) {\n"; 3848 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3849 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3850 OS << " \"types of mismatch, so not \"\n"; 3851 OS << " \"reporting near-miss\\n\");\n"; 3852 OS << " continue;\n"; 3853 OS << " }\n"; 3854 } 3855 3856 // Call the post-processing function, if used. 3857 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3858 if (!InsnCleanupFn.empty()) 3859 OS << " " << InsnCleanupFn << "(Inst);\n"; 3860 3861 if (HasDeprecation) { 3862 OS << " std::string Info;\n"; 3863 OS << " if (!getParser().getTargetParser().\n"; 3864 OS << " getTargetOptions().MCNoDeprecatedWarn &&\n"; 3865 OS << " MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3866 OS << " SMLoc Loc = ((" << Target.getName() 3867 << "Operand&)*Operands[0]).getStartLoc();\n"; 3868 OS << " getParser().Warning(Loc, Info, None);\n"; 3869 OS << " }\n"; 3870 } 3871 3872 if (!ReportMultipleNearMisses) { 3873 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3874 "Operands, ErrorInfo))\n"; 3875 OS << " return Match_InvalidTiedOperand;\n"; 3876 OS << "\n"; 3877 } 3878 3879 OS << " DEBUG_WITH_TYPE(\n"; 3880 OS << " \"asm-matcher\",\n"; 3881 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3882 OS << " return Match_Success;\n"; 3883 OS << " }\n\n"; 3884 3885 if (ReportMultipleNearMisses) { 3886 OS << " // No instruction variants matched exactly.\n"; 3887 OS << " return Match_NearMisses;\n"; 3888 } else { 3889 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3890 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3891 OS << " return RetCode;\n\n"; 3892 OS << " ErrorInfo = 0;\n"; 3893 OS << " return Match_MissingFeature;\n"; 3894 } 3895 OS << "}\n\n"; 3896 3897 if (!Info.OperandMatchInfo.empty()) 3898 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3899 MaxMnemonicIndex, FeatureBitsets.size(), 3900 HasMnemonicFirst); 3901 3902 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3903 3904 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3905 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3906 3907 emitMnemonicSpellChecker(OS, Target, VariantCount); 3908 3909 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3910 } 3911 3912 namespace llvm { 3913 3914 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3915 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3916 AsmMatcherEmitter(RK).run(OS); 3917 } 3918 3919 } // end namespace llvm 3920