1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "CodeGenTarget.h" 99 #include "SubtargetFeatureInfo.h" 100 #include "Types.h" 101 #include "llvm/ADT/CachedHashString.h" 102 #include "llvm/ADT/PointerUnion.h" 103 #include "llvm/ADT/STLExtras.h" 104 #include "llvm/ADT/SmallPtrSet.h" 105 #include "llvm/ADT/SmallVector.h" 106 #include "llvm/ADT/StringExtras.h" 107 #include "llvm/Config/llvm-config.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/TableGen/Error.h" 112 #include "llvm/TableGen/Record.h" 113 #include "llvm/TableGen/StringMatcher.h" 114 #include "llvm/TableGen/StringToOffsetTable.h" 115 #include "llvm/TableGen/TableGenBackend.h" 116 #include <cassert> 117 #include <cctype> 118 #include <forward_list> 119 #include <map> 120 #include <set> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "asm-matcher-emitter" 125 126 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 127 128 static cl::opt<std::string> 129 MatchPrefix("match-prefix", cl::init(""), 130 cl::desc("Only match instructions with the given prefix"), 131 cl::cat(AsmMatcherEmitterCat)); 132 133 namespace { 134 class AsmMatcherInfo; 135 136 // Register sets are used as keys in some second-order sets TableGen creates 137 // when generating its data structures. This means that the order of two 138 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 139 // can even affect compiler output (at least seen in diagnostics produced when 140 // all matches fail). So we use a type that sorts them consistently. 141 typedef std::set<Record*, LessRecordByID> RegisterSet; 142 143 class AsmMatcherEmitter { 144 RecordKeeper &Records; 145 public: 146 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 147 148 void run(raw_ostream &o); 149 }; 150 151 /// ClassInfo - Helper class for storing the information about a particular 152 /// class of operands which can be matched. 153 struct ClassInfo { 154 enum ClassInfoKind { 155 /// Invalid kind, for use as a sentinel value. 156 Invalid = 0, 157 158 /// The class for a particular token. 159 Token, 160 161 /// The (first) register class, subsequent register classes are 162 /// RegisterClass0+1, and so on. 163 RegisterClass0, 164 165 /// The (first) user defined class, subsequent user defined classes are 166 /// UserClass0+1, and so on. 167 UserClass0 = 1<<16 168 }; 169 170 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 171 /// N) for the Nth user defined class. 172 unsigned Kind; 173 174 /// SuperClasses - The super classes of this class. Note that for simplicities 175 /// sake user operands only record their immediate super class, while register 176 /// operands include all superclasses. 177 std::vector<ClassInfo*> SuperClasses; 178 179 /// Name - The full class name, suitable for use in an enum. 180 std::string Name; 181 182 /// ClassName - The unadorned generic name for this class (e.g., Token). 183 std::string ClassName; 184 185 /// ValueName - The name of the value this class represents; for a token this 186 /// is the literal token string, for an operand it is the TableGen class (or 187 /// empty if this is a derived class). 188 std::string ValueName; 189 190 /// PredicateMethod - The name of the operand method to test whether the 191 /// operand matches this class; this is not valid for Token or register kinds. 192 std::string PredicateMethod; 193 194 /// RenderMethod - The name of the operand method to add this operand to an 195 /// MCInst; this is not valid for Token or register kinds. 196 std::string RenderMethod; 197 198 /// ParserMethod - The name of the operand method to do a target specific 199 /// parsing on the operand. 200 std::string ParserMethod; 201 202 /// For register classes: the records for all the registers in this class. 203 RegisterSet Registers; 204 205 /// For custom match classes: the diagnostic kind for when the predicate fails. 206 std::string DiagnosticType; 207 208 /// For custom match classes: the diagnostic string for when the predicate fails. 209 std::string DiagnosticString; 210 211 /// Is this operand optional and not always required. 212 bool IsOptional; 213 214 /// DefaultMethod - The name of the method that returns the default operand 215 /// for optional operand 216 std::string DefaultMethod; 217 218 public: 219 /// isRegisterClass() - Check if this is a register class. 220 bool isRegisterClass() const { 221 return Kind >= RegisterClass0 && Kind < UserClass0; 222 } 223 224 /// isUserClass() - Check if this is a user defined class. 225 bool isUserClass() const { 226 return Kind >= UserClass0; 227 } 228 229 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 230 /// are related if they are in the same class hierarchy. 231 bool isRelatedTo(const ClassInfo &RHS) const { 232 // Tokens are only related to tokens. 233 if (Kind == Token || RHS.Kind == Token) 234 return Kind == Token && RHS.Kind == Token; 235 236 // Registers classes are only related to registers classes, and only if 237 // their intersection is non-empty. 238 if (isRegisterClass() || RHS.isRegisterClass()) { 239 if (!isRegisterClass() || !RHS.isRegisterClass()) 240 return false; 241 242 RegisterSet Tmp; 243 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 244 std::set_intersection(Registers.begin(), Registers.end(), 245 RHS.Registers.begin(), RHS.Registers.end(), 246 II, LessRecordByID()); 247 248 return !Tmp.empty(); 249 } 250 251 // Otherwise we have two users operands; they are related if they are in the 252 // same class hierarchy. 253 // 254 // FIXME: This is an oversimplification, they should only be related if they 255 // intersect, however we don't have that information. 256 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 257 const ClassInfo *Root = this; 258 while (!Root->SuperClasses.empty()) 259 Root = Root->SuperClasses.front(); 260 261 const ClassInfo *RHSRoot = &RHS; 262 while (!RHSRoot->SuperClasses.empty()) 263 RHSRoot = RHSRoot->SuperClasses.front(); 264 265 return Root == RHSRoot; 266 } 267 268 /// isSubsetOf - Test whether this class is a subset of \p RHS. 269 bool isSubsetOf(const ClassInfo &RHS) const { 270 // This is a subset of RHS if it is the same class... 271 if (this == &RHS) 272 return true; 273 274 // ... or if any of its super classes are a subset of RHS. 275 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 276 SuperClasses.end()); 277 SmallPtrSet<const ClassInfo *, 16> Visited; 278 while (!Worklist.empty()) { 279 auto *CI = Worklist.pop_back_val(); 280 if (CI == &RHS) 281 return true; 282 for (auto *Super : CI->SuperClasses) 283 if (Visited.insert(Super).second) 284 Worklist.push_back(Super); 285 } 286 287 return false; 288 } 289 290 int getTreeDepth() const { 291 int Depth = 0; 292 const ClassInfo *Root = this; 293 while (!Root->SuperClasses.empty()) { 294 Depth++; 295 Root = Root->SuperClasses.front(); 296 } 297 return Depth; 298 } 299 300 const ClassInfo *findRoot() const { 301 const ClassInfo *Root = this; 302 while (!Root->SuperClasses.empty()) 303 Root = Root->SuperClasses.front(); 304 return Root; 305 } 306 307 /// Compare two classes. This does not produce a total ordering, but does 308 /// guarantee that subclasses are sorted before their parents, and that the 309 /// ordering is transitive. 310 bool operator<(const ClassInfo &RHS) const { 311 if (this == &RHS) 312 return false; 313 314 // First, enforce the ordering between the three different types of class. 315 // Tokens sort before registers, which sort before user classes. 316 if (Kind == Token) { 317 if (RHS.Kind != Token) 318 return true; 319 assert(RHS.Kind == Token); 320 } else if (isRegisterClass()) { 321 if (RHS.Kind == Token) 322 return false; 323 else if (RHS.isUserClass()) 324 return true; 325 assert(RHS.isRegisterClass()); 326 } else if (isUserClass()) { 327 if (!RHS.isUserClass()) 328 return false; 329 assert(RHS.isUserClass()); 330 } else { 331 llvm_unreachable("Unknown ClassInfoKind"); 332 } 333 334 if (Kind == Token || isUserClass()) { 335 // Related tokens and user classes get sorted by depth in the inheritence 336 // tree (so that subclasses are before their parents). 337 if (isRelatedTo(RHS)) { 338 if (getTreeDepth() > RHS.getTreeDepth()) 339 return true; 340 if (getTreeDepth() < RHS.getTreeDepth()) 341 return false; 342 } else { 343 // Unrelated tokens and user classes are ordered by the name of their 344 // root nodes, so that there is a consistent ordering between 345 // unconnected trees. 346 return findRoot()->ValueName < RHS.findRoot()->ValueName; 347 } 348 } else if (isRegisterClass()) { 349 // For register sets, sort by number of registers. This guarantees that 350 // a set will always sort before all of it's strict supersets. 351 if (Registers.size() != RHS.Registers.size()) 352 return Registers.size() < RHS.Registers.size(); 353 } else { 354 llvm_unreachable("Unknown ClassInfoKind"); 355 } 356 357 // FIXME: We should be able to just return false here, as we only need a 358 // partial order (we use stable sorts, so this is deterministic) and the 359 // name of a class shouldn't be significant. However, some of the backends 360 // accidentally rely on this behaviour, so it will have to stay like this 361 // until they are fixed. 362 return ValueName < RHS.ValueName; 363 } 364 }; 365 366 class AsmVariantInfo { 367 public: 368 StringRef RegisterPrefix; 369 StringRef TokenizingCharacters; 370 StringRef SeparatorCharacters; 371 StringRef BreakCharacters; 372 StringRef Name; 373 int AsmVariantNo; 374 }; 375 376 /// MatchableInfo - Helper class for storing the necessary information for an 377 /// instruction or alias which is capable of being matched. 378 struct MatchableInfo { 379 struct AsmOperand { 380 /// Token - This is the token that the operand came from. 381 StringRef Token; 382 383 /// The unique class instance this operand should match. 384 ClassInfo *Class; 385 386 /// The operand name this is, if anything. 387 StringRef SrcOpName; 388 389 /// The operand name this is, before renaming for tied operands. 390 StringRef OrigSrcOpName; 391 392 /// The suboperand index within SrcOpName, or -1 for the entire operand. 393 int SubOpIdx; 394 395 /// Whether the token is "isolated", i.e., it is preceded and followed 396 /// by separators. 397 bool IsIsolatedToken; 398 399 /// Register record if this token is singleton register. 400 Record *SingletonReg; 401 402 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 403 : Token(T), Class(nullptr), SubOpIdx(-1), 404 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 405 }; 406 407 /// ResOperand - This represents a single operand in the result instruction 408 /// generated by the match. In cases (like addressing modes) where a single 409 /// assembler operand expands to multiple MCOperands, this represents the 410 /// single assembler operand, not the MCOperand. 411 struct ResOperand { 412 enum { 413 /// RenderAsmOperand - This represents an operand result that is 414 /// generated by calling the render method on the assembly operand. The 415 /// corresponding AsmOperand is specified by AsmOperandNum. 416 RenderAsmOperand, 417 418 /// TiedOperand - This represents a result operand that is a duplicate of 419 /// a previous result operand. 420 TiedOperand, 421 422 /// ImmOperand - This represents an immediate value that is dumped into 423 /// the operand. 424 ImmOperand, 425 426 /// RegOperand - This represents a fixed register that is dumped in. 427 RegOperand 428 } Kind; 429 430 /// Tuple containing the index of the (earlier) result operand that should 431 /// be copied from, as well as the indices of the corresponding (parsed) 432 /// operands in the asm string. 433 struct TiedOperandsTuple { 434 unsigned ResOpnd; 435 unsigned SrcOpnd1Idx; 436 unsigned SrcOpnd2Idx; 437 }; 438 439 union { 440 /// This is the operand # in the AsmOperands list that this should be 441 /// copied from. 442 unsigned AsmOperandNum; 443 444 /// Description of tied operands. 445 TiedOperandsTuple TiedOperands; 446 447 /// ImmVal - This is the immediate value added to the instruction. 448 int64_t ImmVal; 449 450 /// Register - This is the register record. 451 Record *Register; 452 }; 453 454 /// MINumOperands - The number of MCInst operands populated by this 455 /// operand. 456 unsigned MINumOperands; 457 458 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 459 ResOperand X; 460 X.Kind = RenderAsmOperand; 461 X.AsmOperandNum = AsmOpNum; 462 X.MINumOperands = NumOperands; 463 return X; 464 } 465 466 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 467 unsigned SrcOperand2) { 468 ResOperand X; 469 X.Kind = TiedOperand; 470 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 471 X.MINumOperands = 1; 472 return X; 473 } 474 475 static ResOperand getImmOp(int64_t Val) { 476 ResOperand X; 477 X.Kind = ImmOperand; 478 X.ImmVal = Val; 479 X.MINumOperands = 1; 480 return X; 481 } 482 483 static ResOperand getRegOp(Record *Reg) { 484 ResOperand X; 485 X.Kind = RegOperand; 486 X.Register = Reg; 487 X.MINumOperands = 1; 488 return X; 489 } 490 }; 491 492 /// AsmVariantID - Target's assembly syntax variant no. 493 int AsmVariantID; 494 495 /// AsmString - The assembly string for this instruction (with variants 496 /// removed), e.g. "movsx $src, $dst". 497 std::string AsmString; 498 499 /// TheDef - This is the definition of the instruction or InstAlias that this 500 /// matchable came from. 501 Record *const TheDef; 502 503 /// DefRec - This is the definition that it came from. 504 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 505 506 const CodeGenInstruction *getResultInst() const { 507 if (DefRec.is<const CodeGenInstruction*>()) 508 return DefRec.get<const CodeGenInstruction*>(); 509 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 510 } 511 512 /// ResOperands - This is the operand list that should be built for the result 513 /// MCInst. 514 SmallVector<ResOperand, 8> ResOperands; 515 516 /// Mnemonic - This is the first token of the matched instruction, its 517 /// mnemonic. 518 StringRef Mnemonic; 519 520 /// AsmOperands - The textual operands that this instruction matches, 521 /// annotated with a class and where in the OperandList they were defined. 522 /// This directly corresponds to the tokenized AsmString after the mnemonic is 523 /// removed. 524 SmallVector<AsmOperand, 8> AsmOperands; 525 526 /// Predicates - The required subtarget features to match this instruction. 527 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 528 529 /// ConversionFnKind - The enum value which is passed to the generated 530 /// convertToMCInst to convert parsed operands into an MCInst for this 531 /// function. 532 std::string ConversionFnKind; 533 534 /// If this instruction is deprecated in some form. 535 bool HasDeprecation; 536 537 /// If this is an alias, this is use to determine whether or not to using 538 /// the conversion function defined by the instruction's AsmMatchConverter 539 /// or to use the function generated by the alias. 540 bool UseInstAsmMatchConverter; 541 542 MatchableInfo(const CodeGenInstruction &CGI) 543 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 544 UseInstAsmMatchConverter(true) { 545 } 546 547 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 548 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 549 DefRec(Alias.release()), 550 UseInstAsmMatchConverter( 551 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 552 } 553 554 // Could remove this and the dtor if PointerUnion supported unique_ptr 555 // elements with a dynamic failure/assertion (like the one below) in the case 556 // where it was copied while being in an owning state. 557 MatchableInfo(const MatchableInfo &RHS) 558 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 559 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 560 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 561 RequiredFeatures(RHS.RequiredFeatures), 562 ConversionFnKind(RHS.ConversionFnKind), 563 HasDeprecation(RHS.HasDeprecation), 564 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 565 assert(!DefRec.is<const CodeGenInstAlias *>()); 566 } 567 568 ~MatchableInfo() { 569 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 570 } 571 572 // Two-operand aliases clone from the main matchable, but mark the second 573 // operand as a tied operand of the first for purposes of the assembler. 574 void formTwoOperandAlias(StringRef Constraint); 575 576 void initialize(const AsmMatcherInfo &Info, 577 SmallPtrSetImpl<Record*> &SingletonRegisters, 578 AsmVariantInfo const &Variant, 579 bool HasMnemonicFirst); 580 581 /// validate - Return true if this matchable is a valid thing to match against 582 /// and perform a bunch of validity checking. 583 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 584 585 /// findAsmOperand - Find the AsmOperand with the specified name and 586 /// suboperand index. 587 int findAsmOperand(StringRef N, int SubOpIdx) const { 588 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 589 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 590 }); 591 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 592 } 593 594 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 595 /// This does not check the suboperand index. 596 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 597 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), 598 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 599 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 600 } 601 602 int findAsmOperandOriginallyNamed(StringRef N) const { 603 auto I = 604 find_if(AsmOperands, 605 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 606 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 607 } 608 609 void buildInstructionResultOperands(); 610 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 611 612 /// operator< - Compare two matchables. 613 bool operator<(const MatchableInfo &RHS) const { 614 // The primary comparator is the instruction mnemonic. 615 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic)) 616 return Cmp == -1; 617 618 if (AsmOperands.size() != RHS.AsmOperands.size()) 619 return AsmOperands.size() < RHS.AsmOperands.size(); 620 621 // Compare lexicographically by operand. The matcher validates that other 622 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 623 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 624 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 625 return true; 626 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 627 return false; 628 } 629 630 // Give matches that require more features higher precedence. This is useful 631 // because we cannot define AssemblerPredicates with the negation of 632 // processor features. For example, ARM v6 "nop" may be either a HINT or 633 // MOV. With v6, we want to match HINT. The assembler has no way to 634 // predicate MOV under "NoV6", but HINT will always match first because it 635 // requires V6 while MOV does not. 636 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 637 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 638 639 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the 640 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead 641 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID. 642 // We use the ID to sort AVX instruction before AVX512 instruction in 643 // matching table. 644 if (TheDef->isSubClassOf("Instruction") && 645 TheDef->getValueAsBit("HasPositionOrder")) 646 return TheDef->getID() < RHS.TheDef->getID(); 647 648 return false; 649 } 650 651 /// couldMatchAmbiguouslyWith - Check whether this matchable could 652 /// ambiguously match the same set of operands as \p RHS (without being a 653 /// strictly superior match). 654 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 655 // The primary comparator is the instruction mnemonic. 656 if (Mnemonic != RHS.Mnemonic) 657 return false; 658 659 // Different variants can't conflict. 660 if (AsmVariantID != RHS.AsmVariantID) 661 return false; 662 663 // The number of operands is unambiguous. 664 if (AsmOperands.size() != RHS.AsmOperands.size()) 665 return false; 666 667 // Otherwise, make sure the ordering of the two instructions is unambiguous 668 // by checking that either (a) a token or operand kind discriminates them, 669 // or (b) the ordering among equivalent kinds is consistent. 670 671 // Tokens and operand kinds are unambiguous (assuming a correct target 672 // specific parser). 673 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 674 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 675 AsmOperands[i].Class->Kind == ClassInfo::Token) 676 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 677 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 678 return false; 679 680 // Otherwise, this operand could commute if all operands are equivalent, or 681 // there is a pair of operands that compare less than and a pair that 682 // compare greater than. 683 bool HasLT = false, HasGT = false; 684 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 685 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 686 HasLT = true; 687 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 688 HasGT = true; 689 } 690 691 return HasLT == HasGT; 692 } 693 694 void dump() const; 695 696 private: 697 void tokenizeAsmString(AsmMatcherInfo const &Info, 698 AsmVariantInfo const &Variant); 699 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 700 }; 701 702 struct OperandMatchEntry { 703 unsigned OperandMask; 704 const MatchableInfo* MI; 705 ClassInfo *CI; 706 707 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 708 unsigned opMask) { 709 OperandMatchEntry X; 710 X.OperandMask = opMask; 711 X.CI = ci; 712 X.MI = mi; 713 return X; 714 } 715 }; 716 717 class AsmMatcherInfo { 718 public: 719 /// Tracked Records 720 RecordKeeper &Records; 721 722 /// The tablegen AsmParser record. 723 Record *AsmParser; 724 725 /// Target - The target information. 726 CodeGenTarget &Target; 727 728 /// The classes which are needed for matching. 729 std::forward_list<ClassInfo> Classes; 730 731 /// The information on the matchables to match. 732 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 733 734 /// Info for custom matching operands by user defined methods. 735 std::vector<OperandMatchEntry> OperandMatchInfo; 736 737 /// Map of Register records to their class information. 738 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 739 RegisterClassesTy RegisterClasses; 740 741 /// Map of Predicate records to their subtarget information. 742 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 743 744 /// Map of AsmOperandClass records to their class information. 745 std::map<Record*, ClassInfo*> AsmOperandClasses; 746 747 /// Map of RegisterClass records to their class information. 748 std::map<Record*, ClassInfo*> RegisterClassClasses; 749 750 private: 751 /// Map of token to class information which has already been constructed. 752 std::map<std::string, ClassInfo*> TokenClasses; 753 754 private: 755 /// getTokenClass - Lookup or create the class for the given token. 756 ClassInfo *getTokenClass(StringRef Token); 757 758 /// getOperandClass - Lookup or create the class for the given operand. 759 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 760 int SubOpIdx); 761 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 762 763 /// buildRegisterClasses - Build the ClassInfo* instances for register 764 /// classes. 765 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 766 767 /// buildOperandClasses - Build the ClassInfo* instances for user defined 768 /// operand classes. 769 void buildOperandClasses(); 770 771 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 772 unsigned AsmOpIdx); 773 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 774 MatchableInfo::AsmOperand &Op); 775 776 public: 777 AsmMatcherInfo(Record *AsmParser, 778 CodeGenTarget &Target, 779 RecordKeeper &Records); 780 781 /// Construct the various tables used during matching. 782 void buildInfo(); 783 784 /// buildOperandMatchInfo - Build the necessary information to handle user 785 /// defined operand parsing methods. 786 void buildOperandMatchInfo(); 787 788 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 789 /// given operand. 790 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 791 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 792 const auto &I = SubtargetFeatures.find(Def); 793 return I == SubtargetFeatures.end() ? nullptr : &I->second; 794 } 795 796 RecordKeeper &getRecords() const { 797 return Records; 798 } 799 800 bool hasOptionalOperands() const { 801 return any_of(Classes, 802 [](const ClassInfo &Class) { return Class.IsOptional; }); 803 } 804 }; 805 806 } // end anonymous namespace 807 808 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 809 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 810 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 811 812 errs() << " variant: " << AsmVariantID << "\n"; 813 814 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 815 const AsmOperand &Op = AsmOperands[i]; 816 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 817 errs() << '\"' << Op.Token << "\"\n"; 818 } 819 } 820 #endif 821 822 static std::pair<StringRef, StringRef> 823 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 824 // Split via the '='. 825 std::pair<StringRef, StringRef> Ops = S.split('='); 826 if (Ops.second == "") 827 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 828 // Trim whitespace and the leading '$' on the operand names. 829 size_t start = Ops.first.find_first_of('$'); 830 if (start == std::string::npos) 831 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 832 Ops.first = Ops.first.slice(start + 1, std::string::npos); 833 size_t end = Ops.first.find_last_of(" \t"); 834 Ops.first = Ops.first.slice(0, end); 835 // Now the second operand. 836 start = Ops.second.find_first_of('$'); 837 if (start == std::string::npos) 838 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 839 Ops.second = Ops.second.slice(start + 1, std::string::npos); 840 end = Ops.second.find_last_of(" \t"); 841 Ops.first = Ops.first.slice(0, end); 842 return Ops; 843 } 844 845 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 846 // Figure out which operands are aliased and mark them as tied. 847 std::pair<StringRef, StringRef> Ops = 848 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 849 850 // Find the AsmOperands that refer to the operands we're aliasing. 851 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 852 int DstAsmOperand = findAsmOperandNamed(Ops.second); 853 if (SrcAsmOperand == -1) 854 PrintFatalError(TheDef->getLoc(), 855 "unknown source two-operand alias operand '" + Ops.first + 856 "'."); 857 if (DstAsmOperand == -1) 858 PrintFatalError(TheDef->getLoc(), 859 "unknown destination two-operand alias operand '" + 860 Ops.second + "'."); 861 862 // Find the ResOperand that refers to the operand we're aliasing away 863 // and update it to refer to the combined operand instead. 864 for (ResOperand &Op : ResOperands) { 865 if (Op.Kind == ResOperand::RenderAsmOperand && 866 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 867 Op.AsmOperandNum = DstAsmOperand; 868 break; 869 } 870 } 871 // Remove the AsmOperand for the alias operand. 872 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 873 // Adjust the ResOperand references to any AsmOperands that followed 874 // the one we just deleted. 875 for (ResOperand &Op : ResOperands) { 876 switch(Op.Kind) { 877 default: 878 // Nothing to do for operands that don't reference AsmOperands. 879 break; 880 case ResOperand::RenderAsmOperand: 881 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 882 --Op.AsmOperandNum; 883 break; 884 } 885 } 886 } 887 888 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 889 /// if present, from specified token. 890 static void 891 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 892 const AsmMatcherInfo &Info, 893 StringRef RegisterPrefix) { 894 StringRef Tok = Op.Token; 895 896 // If this token is not an isolated token, i.e., it isn't separated from 897 // other tokens (e.g. with whitespace), don't interpret it as a register name. 898 if (!Op.IsIsolatedToken) 899 return; 900 901 if (RegisterPrefix.empty()) { 902 std::string LoweredTok = Tok.lower(); 903 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 904 Op.SingletonReg = Reg->TheDef; 905 return; 906 } 907 908 if (!Tok.startswith(RegisterPrefix)) 909 return; 910 911 StringRef RegName = Tok.substr(RegisterPrefix.size()); 912 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 913 Op.SingletonReg = Reg->TheDef; 914 915 // If there is no register prefix (i.e. "%" in "%eax"), then this may 916 // be some random non-register token, just ignore it. 917 } 918 919 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 920 SmallPtrSetImpl<Record*> &SingletonRegisters, 921 AsmVariantInfo const &Variant, 922 bool HasMnemonicFirst) { 923 AsmVariantID = Variant.AsmVariantNo; 924 AsmString = 925 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 926 Variant.AsmVariantNo); 927 928 tokenizeAsmString(Info, Variant); 929 930 // The first token of the instruction is the mnemonic, which must be a 931 // simple string, not a $foo variable or a singleton register. 932 if (AsmOperands.empty()) 933 PrintFatalError(TheDef->getLoc(), 934 "Instruction '" + TheDef->getName() + "' has no tokens"); 935 936 assert(!AsmOperands[0].Token.empty()); 937 if (HasMnemonicFirst) { 938 Mnemonic = AsmOperands[0].Token; 939 if (Mnemonic[0] == '$') 940 PrintFatalError(TheDef->getLoc(), 941 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 942 943 // Remove the first operand, it is tracked in the mnemonic field. 944 AsmOperands.erase(AsmOperands.begin()); 945 } else if (AsmOperands[0].Token[0] != '$') 946 Mnemonic = AsmOperands[0].Token; 947 948 // Compute the require features. 949 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 950 if (const SubtargetFeatureInfo *Feature = 951 Info.getSubtargetFeature(Predicate)) 952 RequiredFeatures.push_back(Feature); 953 954 // Collect singleton registers, if used. 955 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 956 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 957 if (Record *Reg = Op.SingletonReg) 958 SingletonRegisters.insert(Reg); 959 } 960 961 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 962 if (!DepMask) 963 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 964 965 HasDeprecation = 966 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 967 } 968 969 /// Append an AsmOperand for the given substring of AsmString. 970 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 971 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 972 } 973 974 /// tokenizeAsmString - Tokenize a simplified assembly string. 975 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 976 AsmVariantInfo const &Variant) { 977 StringRef String = AsmString; 978 size_t Prev = 0; 979 bool InTok = false; 980 bool IsIsolatedToken = true; 981 for (size_t i = 0, e = String.size(); i != e; ++i) { 982 char Char = String[i]; 983 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 984 if (InTok) { 985 addAsmOperand(String.slice(Prev, i), false); 986 Prev = i; 987 IsIsolatedToken = false; 988 } 989 InTok = true; 990 continue; 991 } 992 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 993 if (InTok) { 994 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 995 InTok = false; 996 IsIsolatedToken = false; 997 } 998 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 999 Prev = i + 1; 1000 IsIsolatedToken = true; 1001 continue; 1002 } 1003 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 1004 if (InTok) { 1005 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1006 InTok = false; 1007 } 1008 Prev = i + 1; 1009 IsIsolatedToken = true; 1010 continue; 1011 } 1012 1013 switch (Char) { 1014 case '\\': 1015 if (InTok) { 1016 addAsmOperand(String.slice(Prev, i), false); 1017 InTok = false; 1018 IsIsolatedToken = false; 1019 } 1020 ++i; 1021 assert(i != String.size() && "Invalid quoted character"); 1022 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1023 Prev = i + 1; 1024 IsIsolatedToken = false; 1025 break; 1026 1027 case '$': { 1028 if (InTok) { 1029 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1030 InTok = false; 1031 IsIsolatedToken = false; 1032 } 1033 1034 // If this isn't "${", start new identifier looking like "$xxx" 1035 if (i + 1 == String.size() || String[i + 1] != '{') { 1036 Prev = i; 1037 break; 1038 } 1039 1040 size_t EndPos = String.find('}', i); 1041 assert(EndPos != StringRef::npos && 1042 "Missing brace in operand reference!"); 1043 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1044 Prev = EndPos + 1; 1045 i = EndPos; 1046 IsIsolatedToken = false; 1047 break; 1048 } 1049 1050 default: 1051 InTok = true; 1052 break; 1053 } 1054 } 1055 if (InTok && Prev != String.size()) 1056 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1057 } 1058 1059 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1060 // Reject matchables with no .s string. 1061 if (AsmString.empty()) 1062 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1063 1064 // Reject any matchables with a newline in them, they should be marked 1065 // isCodeGenOnly if they are pseudo instructions. 1066 if (AsmString.find('\n') != std::string::npos) 1067 PrintFatalError(TheDef->getLoc(), 1068 "multiline instruction is not valid for the asmparser, " 1069 "mark it isCodeGenOnly"); 1070 1071 // Remove comments from the asm string. We know that the asmstring only 1072 // has one line. 1073 if (!CommentDelimiter.empty() && 1074 StringRef(AsmString).contains(CommentDelimiter)) 1075 PrintFatalError(TheDef->getLoc(), 1076 "asmstring for instruction has comment character in it, " 1077 "mark it isCodeGenOnly"); 1078 1079 // Reject matchables with operand modifiers, these aren't something we can 1080 // handle, the target should be refactored to use operands instead of 1081 // modifiers. 1082 // 1083 // Also, check for instructions which reference the operand multiple times, 1084 // if they don't define a custom AsmMatcher: this implies a constraint that 1085 // the built-in matching code would not honor. 1086 std::set<std::string> OperandNames; 1087 for (const AsmOperand &Op : AsmOperands) { 1088 StringRef Tok = Op.Token; 1089 if (Tok[0] == '$' && Tok.contains(':')) 1090 PrintFatalError(TheDef->getLoc(), 1091 "matchable with operand modifier '" + Tok + 1092 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1093 // Verify that any operand is only mentioned once. 1094 // We reject aliases and ignore instructions for now. 1095 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1096 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { 1097 LLVM_DEBUG({ 1098 errs() << "warning: '" << TheDef->getName() << "': " 1099 << "ignoring instruction with tied operand '" 1100 << Tok << "'\n"; 1101 }); 1102 return false; 1103 } 1104 } 1105 1106 return true; 1107 } 1108 1109 static std::string getEnumNameForToken(StringRef Str) { 1110 std::string Res; 1111 1112 for (char C : Str) { 1113 switch (C) { 1114 case '*': Res += "_STAR_"; break; 1115 case '%': Res += "_PCT_"; break; 1116 case ':': Res += "_COLON_"; break; 1117 case '!': Res += "_EXCLAIM_"; break; 1118 case '.': Res += "_DOT_"; break; 1119 case '<': Res += "_LT_"; break; 1120 case '>': Res += "_GT_"; break; 1121 case '-': Res += "_MINUS_"; break; 1122 case '#': Res += "_HASH_"; break; 1123 default: 1124 if (isAlnum(C)) 1125 Res += C; 1126 else 1127 Res += "_" + utostr((unsigned)C) + "_"; 1128 } 1129 } 1130 1131 return Res; 1132 } 1133 1134 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1135 ClassInfo *&Entry = TokenClasses[std::string(Token)]; 1136 1137 if (!Entry) { 1138 Classes.emplace_front(); 1139 Entry = &Classes.front(); 1140 Entry->Kind = ClassInfo::Token; 1141 Entry->ClassName = "Token"; 1142 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1143 Entry->ValueName = std::string(Token); 1144 Entry->PredicateMethod = "<invalid>"; 1145 Entry->RenderMethod = "<invalid>"; 1146 Entry->ParserMethod = ""; 1147 Entry->DiagnosticType = ""; 1148 Entry->IsOptional = false; 1149 Entry->DefaultMethod = "<invalid>"; 1150 } 1151 1152 return Entry; 1153 } 1154 1155 ClassInfo * 1156 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1157 int SubOpIdx) { 1158 Record *Rec = OI.Rec; 1159 if (SubOpIdx != -1) 1160 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1161 return getOperandClass(Rec, SubOpIdx); 1162 } 1163 1164 ClassInfo * 1165 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1166 if (Rec->isSubClassOf("RegisterOperand")) { 1167 // RegisterOperand may have an associated ParserMatchClass. If it does, 1168 // use it, else just fall back to the underlying register class. 1169 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1170 if (!R || !R->getValue()) 1171 PrintFatalError(Rec->getLoc(), 1172 "Record `" + Rec->getName() + 1173 "' does not have a ParserMatchClass!\n"); 1174 1175 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1176 Record *MatchClass = DI->getDef(); 1177 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1178 return CI; 1179 } 1180 1181 // No custom match class. Just use the register class. 1182 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1183 if (!ClassRec) 1184 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1185 "' has no associated register class!\n"); 1186 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1187 return CI; 1188 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1189 } 1190 1191 if (Rec->isSubClassOf("RegisterClass")) { 1192 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1193 return CI; 1194 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1195 } 1196 1197 if (!Rec->isSubClassOf("Operand")) 1198 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1199 "' does not derive from class Operand!\n"); 1200 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1201 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1202 return CI; 1203 1204 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1205 } 1206 1207 struct LessRegisterSet { 1208 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1209 // std::set<T> defines its own compariso "operator<", but it 1210 // performs a lexicographical comparison by T's innate comparison 1211 // for some reason. We don't want non-deterministic pointer 1212 // comparisons so use this instead. 1213 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1214 RHS.begin(), RHS.end(), 1215 LessRecordByID()); 1216 } 1217 }; 1218 1219 void AsmMatcherInfo:: 1220 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1221 const auto &Registers = Target.getRegBank().getRegisters(); 1222 auto &RegClassList = Target.getRegBank().getRegClasses(); 1223 1224 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1225 1226 // The register sets used for matching. 1227 RegisterSetSet RegisterSets; 1228 1229 // Gather the defined sets. 1230 for (const CodeGenRegisterClass &RC : RegClassList) 1231 RegisterSets.insert( 1232 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1233 1234 // Add any required singleton sets. 1235 for (Record *Rec : SingletonRegisters) { 1236 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1237 } 1238 1239 // Introduce derived sets where necessary (when a register does not determine 1240 // a unique register set class), and build the mapping of registers to the set 1241 // they should classify to. 1242 std::map<Record*, RegisterSet> RegisterMap; 1243 for (const CodeGenRegister &CGR : Registers) { 1244 // Compute the intersection of all sets containing this register. 1245 RegisterSet ContainingSet; 1246 1247 for (const RegisterSet &RS : RegisterSets) { 1248 if (!RS.count(CGR.TheDef)) 1249 continue; 1250 1251 if (ContainingSet.empty()) { 1252 ContainingSet = RS; 1253 continue; 1254 } 1255 1256 RegisterSet Tmp; 1257 std::swap(Tmp, ContainingSet); 1258 std::insert_iterator<RegisterSet> II(ContainingSet, 1259 ContainingSet.begin()); 1260 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1261 LessRecordByID()); 1262 } 1263 1264 if (!ContainingSet.empty()) { 1265 RegisterSets.insert(ContainingSet); 1266 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1267 } 1268 } 1269 1270 // Construct the register classes. 1271 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1272 unsigned Index = 0; 1273 for (const RegisterSet &RS : RegisterSets) { 1274 Classes.emplace_front(); 1275 ClassInfo *CI = &Classes.front(); 1276 CI->Kind = ClassInfo::RegisterClass0 + Index; 1277 CI->ClassName = "Reg" + utostr(Index); 1278 CI->Name = "MCK_Reg" + utostr(Index); 1279 CI->ValueName = ""; 1280 CI->PredicateMethod = ""; // unused 1281 CI->RenderMethod = "addRegOperands"; 1282 CI->Registers = RS; 1283 // FIXME: diagnostic type. 1284 CI->DiagnosticType = ""; 1285 CI->IsOptional = false; 1286 CI->DefaultMethod = ""; // unused 1287 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1288 ++Index; 1289 } 1290 1291 // Find the superclasses; we could compute only the subgroup lattice edges, 1292 // but there isn't really a point. 1293 for (const RegisterSet &RS : RegisterSets) { 1294 ClassInfo *CI = RegisterSetClasses[RS]; 1295 for (const RegisterSet &RS2 : RegisterSets) 1296 if (RS != RS2 && 1297 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1298 LessRecordByID())) 1299 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1300 } 1301 1302 // Name the register classes which correspond to a user defined RegisterClass. 1303 for (const CodeGenRegisterClass &RC : RegClassList) { 1304 // Def will be NULL for non-user defined register classes. 1305 Record *Def = RC.getDef(); 1306 if (!Def) 1307 continue; 1308 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1309 RC.getOrder().end())]; 1310 if (CI->ValueName.empty()) { 1311 CI->ClassName = RC.getName(); 1312 CI->Name = "MCK_" + RC.getName(); 1313 CI->ValueName = RC.getName(); 1314 } else 1315 CI->ValueName = CI->ValueName + "," + RC.getName(); 1316 1317 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1318 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1319 CI->DiagnosticType = std::string(SI->getValue()); 1320 1321 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1322 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1323 CI->DiagnosticString = std::string(SI->getValue()); 1324 1325 // If we have a diagnostic string but the diagnostic type is not specified 1326 // explicitly, create an anonymous diagnostic type. 1327 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1328 CI->DiagnosticType = RC.getName(); 1329 1330 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1331 } 1332 1333 // Populate the map for individual registers. 1334 for (auto &It : RegisterMap) 1335 RegisterClasses[It.first] = RegisterSetClasses[It.second]; 1336 1337 // Name the register classes which correspond to singleton registers. 1338 for (Record *Rec : SingletonRegisters) { 1339 ClassInfo *CI = RegisterClasses[Rec]; 1340 assert(CI && "Missing singleton register class info!"); 1341 1342 if (CI->ValueName.empty()) { 1343 CI->ClassName = std::string(Rec->getName()); 1344 CI->Name = "MCK_" + Rec->getName().str(); 1345 CI->ValueName = std::string(Rec->getName()); 1346 } else 1347 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1348 } 1349 } 1350 1351 void AsmMatcherInfo::buildOperandClasses() { 1352 std::vector<Record*> AsmOperands = 1353 Records.getAllDerivedDefinitions("AsmOperandClass"); 1354 1355 // Pre-populate AsmOperandClasses map. 1356 for (Record *Rec : AsmOperands) { 1357 Classes.emplace_front(); 1358 AsmOperandClasses[Rec] = &Classes.front(); 1359 } 1360 1361 unsigned Index = 0; 1362 for (Record *Rec : AsmOperands) { 1363 ClassInfo *CI = AsmOperandClasses[Rec]; 1364 CI->Kind = ClassInfo::UserClass0 + Index; 1365 1366 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1367 for (Init *I : Supers->getValues()) { 1368 DefInit *DI = dyn_cast<DefInit>(I); 1369 if (!DI) { 1370 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1371 continue; 1372 } 1373 1374 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1375 if (!SC) 1376 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1377 else 1378 CI->SuperClasses.push_back(SC); 1379 } 1380 CI->ClassName = std::string(Rec->getValueAsString("Name")); 1381 CI->Name = "MCK_" + CI->ClassName; 1382 CI->ValueName = std::string(Rec->getName()); 1383 1384 // Get or construct the predicate method name. 1385 Init *PMName = Rec->getValueInit("PredicateMethod"); 1386 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1387 CI->PredicateMethod = std::string(SI->getValue()); 1388 } else { 1389 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1390 CI->PredicateMethod = "is" + CI->ClassName; 1391 } 1392 1393 // Get or construct the render method name. 1394 Init *RMName = Rec->getValueInit("RenderMethod"); 1395 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1396 CI->RenderMethod = std::string(SI->getValue()); 1397 } else { 1398 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1399 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1400 } 1401 1402 // Get the parse method name or leave it as empty. 1403 Init *PRMName = Rec->getValueInit("ParserMethod"); 1404 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1405 CI->ParserMethod = std::string(SI->getValue()); 1406 1407 // Get the diagnostic type and string or leave them as empty. 1408 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1409 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1410 CI->DiagnosticType = std::string(SI->getValue()); 1411 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1412 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1413 CI->DiagnosticString = std::string(SI->getValue()); 1414 // If we have a DiagnosticString, we need a DiagnosticType for use within 1415 // the matcher. 1416 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1417 CI->DiagnosticType = CI->ClassName; 1418 1419 Init *IsOptional = Rec->getValueInit("IsOptional"); 1420 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1421 CI->IsOptional = BI->getValue(); 1422 1423 // Get or construct the default method name. 1424 Init *DMName = Rec->getValueInit("DefaultMethod"); 1425 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1426 CI->DefaultMethod = std::string(SI->getValue()); 1427 } else { 1428 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1429 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1430 } 1431 1432 ++Index; 1433 } 1434 } 1435 1436 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1437 CodeGenTarget &target, 1438 RecordKeeper &records) 1439 : Records(records), AsmParser(asmParser), Target(target) { 1440 } 1441 1442 /// buildOperandMatchInfo - Build the necessary information to handle user 1443 /// defined operand parsing methods. 1444 void AsmMatcherInfo::buildOperandMatchInfo() { 1445 1446 /// Map containing a mask with all operands indices that can be found for 1447 /// that class inside a instruction. 1448 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1449 OpClassMaskTy OpClassMask; 1450 1451 for (const auto &MI : Matchables) { 1452 OpClassMask.clear(); 1453 1454 // Keep track of all operands of this instructions which belong to the 1455 // same class. 1456 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1457 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1458 if (Op.Class->ParserMethod.empty()) 1459 continue; 1460 unsigned &OperandMask = OpClassMask[Op.Class]; 1461 OperandMask |= (1 << i); 1462 } 1463 1464 // Generate operand match info for each mnemonic/operand class pair. 1465 for (const auto &OCM : OpClassMask) { 1466 unsigned OpMask = OCM.second; 1467 ClassInfo *CI = OCM.first; 1468 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1469 OpMask)); 1470 } 1471 } 1472 } 1473 1474 void AsmMatcherInfo::buildInfo() { 1475 // Build information about all of the AssemblerPredicates. 1476 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1477 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1478 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1479 SubtargetFeaturePairs.end()); 1480 #ifndef NDEBUG 1481 for (const auto &Pair : SubtargetFeatures) 1482 LLVM_DEBUG(Pair.second.dump()); 1483 #endif // NDEBUG 1484 1485 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1486 bool ReportMultipleNearMisses = 1487 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1488 1489 // Parse the instructions; we need to do this first so that we can gather the 1490 // singleton register classes. 1491 SmallPtrSet<Record*, 16> SingletonRegisters; 1492 unsigned VariantCount = Target.getAsmParserVariantCount(); 1493 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1494 Record *AsmVariant = Target.getAsmParserVariant(VC); 1495 StringRef CommentDelimiter = 1496 AsmVariant->getValueAsString("CommentDelimiter"); 1497 AsmVariantInfo Variant; 1498 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1499 Variant.TokenizingCharacters = 1500 AsmVariant->getValueAsString("TokenizingCharacters"); 1501 Variant.SeparatorCharacters = 1502 AsmVariant->getValueAsString("SeparatorCharacters"); 1503 Variant.BreakCharacters = 1504 AsmVariant->getValueAsString("BreakCharacters"); 1505 Variant.Name = AsmVariant->getValueAsString("Name"); 1506 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1507 1508 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1509 1510 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1511 // filter the set of instructions we consider. 1512 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1513 continue; 1514 1515 // Ignore "codegen only" instructions. 1516 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1517 continue; 1518 1519 // Ignore instructions for different instructions 1520 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1521 if (!V.empty() && V != Variant.Name) 1522 continue; 1523 1524 auto II = std::make_unique<MatchableInfo>(*CGI); 1525 1526 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1527 1528 // Ignore instructions which shouldn't be matched and diagnose invalid 1529 // instruction definitions with an error. 1530 if (!II->validate(CommentDelimiter, false)) 1531 continue; 1532 1533 Matchables.push_back(std::move(II)); 1534 } 1535 1536 // Parse all of the InstAlias definitions and stick them in the list of 1537 // matchables. 1538 std::vector<Record*> AllInstAliases = 1539 Records.getAllDerivedDefinitions("InstAlias"); 1540 for (Record *InstAlias : AllInstAliases) { 1541 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target); 1542 1543 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1544 // filter the set of instruction aliases we consider, based on the target 1545 // instruction. 1546 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1547 .startswith( MatchPrefix)) 1548 continue; 1549 1550 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1551 if (!V.empty() && V != Variant.Name) 1552 continue; 1553 1554 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1555 1556 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1557 1558 // Validate the alias definitions. 1559 II->validate(CommentDelimiter, true); 1560 1561 Matchables.push_back(std::move(II)); 1562 } 1563 } 1564 1565 // Build info for the register classes. 1566 buildRegisterClasses(SingletonRegisters); 1567 1568 // Build info for the user defined assembly operand classes. 1569 buildOperandClasses(); 1570 1571 // Build the information about matchables, now that we have fully formed 1572 // classes. 1573 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1574 for (auto &II : Matchables) { 1575 // Parse the tokens after the mnemonic. 1576 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1577 // don't precompute the loop bound. 1578 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1579 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1580 StringRef Token = Op.Token; 1581 1582 // Check for singleton registers. 1583 if (Record *RegRecord = Op.SingletonReg) { 1584 Op.Class = RegisterClasses[RegRecord]; 1585 assert(Op.Class && Op.Class->Registers.size() == 1 && 1586 "Unexpected class for singleton register"); 1587 continue; 1588 } 1589 1590 // Check for simple tokens. 1591 if (Token[0] != '$') { 1592 Op.Class = getTokenClass(Token); 1593 continue; 1594 } 1595 1596 if (Token.size() > 1 && isdigit(Token[1])) { 1597 Op.Class = getTokenClass(Token); 1598 continue; 1599 } 1600 1601 // Otherwise this is an operand reference. 1602 StringRef OperandName; 1603 if (Token[1] == '{') 1604 OperandName = Token.substr(2, Token.size() - 3); 1605 else 1606 OperandName = Token.substr(1); 1607 1608 if (II->DefRec.is<const CodeGenInstruction*>()) 1609 buildInstructionOperandReference(II.get(), OperandName, i); 1610 else 1611 buildAliasOperandReference(II.get(), OperandName, Op); 1612 } 1613 1614 if (II->DefRec.is<const CodeGenInstruction*>()) { 1615 II->buildInstructionResultOperands(); 1616 // If the instruction has a two-operand alias, build up the 1617 // matchable here. We'll add them in bulk at the end to avoid 1618 // confusing this loop. 1619 StringRef Constraint = 1620 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1621 if (Constraint != "") { 1622 // Start by making a copy of the original matchable. 1623 auto AliasII = std::make_unique<MatchableInfo>(*II); 1624 1625 // Adjust it to be a two-operand alias. 1626 AliasII->formTwoOperandAlias(Constraint); 1627 1628 // Add the alias to the matchables list. 1629 NewMatchables.push_back(std::move(AliasII)); 1630 } 1631 } else 1632 // FIXME: The tied operands checking is not yet integrated with the 1633 // framework for reporting multiple near misses. To prevent invalid 1634 // formats from being matched with an alias if a tied-operands check 1635 // would otherwise have disallowed it, we just disallow such constructs 1636 // in TableGen completely. 1637 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1638 } 1639 if (!NewMatchables.empty()) 1640 Matchables.insert(Matchables.end(), 1641 std::make_move_iterator(NewMatchables.begin()), 1642 std::make_move_iterator(NewMatchables.end())); 1643 1644 // Process token alias definitions and set up the associated superclass 1645 // information. 1646 std::vector<Record*> AllTokenAliases = 1647 Records.getAllDerivedDefinitions("TokenAlias"); 1648 for (Record *Rec : AllTokenAliases) { 1649 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1650 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1651 if (FromClass == ToClass) 1652 PrintFatalError(Rec->getLoc(), 1653 "error: Destination value identical to source value."); 1654 FromClass->SuperClasses.push_back(ToClass); 1655 } 1656 1657 // Reorder classes so that classes precede super classes. 1658 Classes.sort(); 1659 1660 #ifdef EXPENSIVE_CHECKS 1661 // Verify that the table is sorted and operator < works transitively. 1662 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1663 for (auto J = I; J != E; ++J) { 1664 assert(!(*J < *I)); 1665 assert(I == J || !J->isSubsetOf(*I)); 1666 } 1667 } 1668 #endif 1669 } 1670 1671 /// buildInstructionOperandReference - The specified operand is a reference to a 1672 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1673 void AsmMatcherInfo:: 1674 buildInstructionOperandReference(MatchableInfo *II, 1675 StringRef OperandName, 1676 unsigned AsmOpIdx) { 1677 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1678 const CGIOperandList &Operands = CGI.Operands; 1679 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1680 1681 // Map this token to an operand. 1682 unsigned Idx; 1683 if (!Operands.hasOperandNamed(OperandName, Idx)) 1684 PrintFatalError(II->TheDef->getLoc(), 1685 "error: unable to find operand: '" + OperandName + "'"); 1686 1687 // If the instruction operand has multiple suboperands, but the parser 1688 // match class for the asm operand is still the default "ImmAsmOperand", 1689 // then handle each suboperand separately. 1690 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1691 Record *Rec = Operands[Idx].Rec; 1692 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1693 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1694 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1695 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1696 StringRef Token = Op->Token; // save this in case Op gets moved 1697 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1698 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1699 NewAsmOp.SubOpIdx = SI; 1700 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1701 } 1702 // Replace Op with first suboperand. 1703 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1704 Op->SubOpIdx = 0; 1705 } 1706 } 1707 1708 // Set up the operand class. 1709 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1710 Op->OrigSrcOpName = OperandName; 1711 1712 // If the named operand is tied, canonicalize it to the untied operand. 1713 // For example, something like: 1714 // (outs GPR:$dst), (ins GPR:$src) 1715 // with an asmstring of 1716 // "inc $src" 1717 // we want to canonicalize to: 1718 // "inc $dst" 1719 // so that we know how to provide the $dst operand when filling in the result. 1720 int OITied = -1; 1721 if (Operands[Idx].MINumOperands == 1) 1722 OITied = Operands[Idx].getTiedRegister(); 1723 if (OITied != -1) { 1724 // The tied operand index is an MIOperand index, find the operand that 1725 // contains it. 1726 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1727 OperandName = Operands[Idx.first].Name; 1728 Op->SubOpIdx = Idx.second; 1729 } 1730 1731 Op->SrcOpName = OperandName; 1732 } 1733 1734 /// buildAliasOperandReference - When parsing an operand reference out of the 1735 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1736 /// operand reference is by looking it up in the result pattern definition. 1737 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1738 StringRef OperandName, 1739 MatchableInfo::AsmOperand &Op) { 1740 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1741 1742 // Set up the operand class. 1743 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1744 if (CGA.ResultOperands[i].isRecord() && 1745 CGA.ResultOperands[i].getName() == OperandName) { 1746 // It's safe to go with the first one we find, because CodeGenInstAlias 1747 // validates that all operands with the same name have the same record. 1748 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1749 // Use the match class from the Alias definition, not the 1750 // destination instruction, as we may have an immediate that's 1751 // being munged by the match class. 1752 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1753 Op.SubOpIdx); 1754 Op.SrcOpName = OperandName; 1755 Op.OrigSrcOpName = OperandName; 1756 return; 1757 } 1758 1759 PrintFatalError(II->TheDef->getLoc(), 1760 "error: unable to find operand: '" + OperandName + "'"); 1761 } 1762 1763 void MatchableInfo::buildInstructionResultOperands() { 1764 const CodeGenInstruction *ResultInst = getResultInst(); 1765 1766 // Loop over all operands of the result instruction, determining how to 1767 // populate them. 1768 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1769 // If this is a tied operand, just copy from the previously handled operand. 1770 int TiedOp = -1; 1771 if (OpInfo.MINumOperands == 1) 1772 TiedOp = OpInfo.getTiedRegister(); 1773 if (TiedOp != -1) { 1774 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1775 if (TiedSrcOperand != -1 && 1776 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1777 ResOperands.push_back(ResOperand::getTiedOp( 1778 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1779 else 1780 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1781 continue; 1782 } 1783 1784 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1785 if (OpInfo.Name.empty() || SrcOperand == -1) { 1786 // This may happen for operands that are tied to a suboperand of a 1787 // complex operand. Simply use a dummy value here; nobody should 1788 // use this operand slot. 1789 // FIXME: The long term goal is for the MCOperand list to not contain 1790 // tied operands at all. 1791 ResOperands.push_back(ResOperand::getImmOp(0)); 1792 continue; 1793 } 1794 1795 // Check if the one AsmOperand populates the entire operand. 1796 unsigned NumOperands = OpInfo.MINumOperands; 1797 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1798 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1799 continue; 1800 } 1801 1802 // Add a separate ResOperand for each suboperand. 1803 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1804 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1805 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1806 "unexpected AsmOperands for suboperands"); 1807 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1808 } 1809 } 1810 } 1811 1812 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1813 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1814 const CodeGenInstruction *ResultInst = getResultInst(); 1815 1816 // Map of: $reg -> #lastref 1817 // where $reg is the name of the operand in the asm string 1818 // where #lastref is the last processed index where $reg was referenced in 1819 // the asm string. 1820 SmallDenseMap<StringRef, int> OperandRefs; 1821 1822 // Loop over all operands of the result instruction, determining how to 1823 // populate them. 1824 unsigned AliasOpNo = 0; 1825 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1826 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1827 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1828 1829 // If this is a tied operand, just copy from the previously handled operand. 1830 int TiedOp = -1; 1831 if (OpInfo->MINumOperands == 1) 1832 TiedOp = OpInfo->getTiedRegister(); 1833 if (TiedOp != -1) { 1834 unsigned SrcOp1 = 0; 1835 unsigned SrcOp2 = 0; 1836 1837 // If an operand has been specified twice in the asm string, 1838 // add the two source operand's indices to the TiedOp so that 1839 // at runtime the 'tied' constraint is checked. 1840 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1841 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1842 1843 // Find the next operand (similarly named operand) in the string. 1844 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1845 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1846 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1847 1848 // Not updating the record in OperandRefs will cause TableGen 1849 // to fail with an error at the end of this function. 1850 if (AliasConstraintsAreChecked) 1851 Insert.first->second = SrcOp2; 1852 1853 // In case it only has one reference in the asm string, 1854 // it doesn't need to be checked for tied constraints. 1855 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1856 } 1857 1858 // If the alias operand is of a different operand class, we only want 1859 // to benefit from the tied-operands check and just match the operand 1860 // as a normal, but not copy the original (TiedOp) to the result 1861 // instruction. We do this by passing -1 as the tied operand to copy. 1862 if (ResultInst->Operands[i].Rec->getName() != 1863 ResultInst->Operands[TiedOp].Rec->getName()) { 1864 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1865 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1866 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1867 SrcOp2 = findAsmOperand(Name, SubIdx); 1868 ResOperands.push_back( 1869 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1870 } else { 1871 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1872 continue; 1873 } 1874 } 1875 1876 // Handle all the suboperands for this operand. 1877 const std::string &OpName = OpInfo->Name; 1878 for ( ; AliasOpNo < LastOpNo && 1879 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1880 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1881 1882 // Find out what operand from the asmparser that this MCInst operand 1883 // comes from. 1884 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1885 case CodeGenInstAlias::ResultOperand::K_Record: { 1886 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1887 int SrcOperand = findAsmOperand(Name, SubIdx); 1888 if (SrcOperand == -1) 1889 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1890 TheDef->getName() + "' has operand '" + OpName + 1891 "' that doesn't appear in asm string!"); 1892 1893 // Add it to the operand references. If it is added a second time, the 1894 // record won't be updated and it will fail later on. 1895 OperandRefs.try_emplace(Name, SrcOperand); 1896 1897 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1898 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1899 NumOperands)); 1900 break; 1901 } 1902 case CodeGenInstAlias::ResultOperand::K_Imm: { 1903 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1904 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1905 break; 1906 } 1907 case CodeGenInstAlias::ResultOperand::K_Reg: { 1908 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1909 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1910 break; 1911 } 1912 } 1913 } 1914 } 1915 1916 // Check that operands are not repeated more times than is supported. 1917 for (auto &T : OperandRefs) { 1918 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1919 PrintFatalError(TheDef->getLoc(), 1920 "Operand '" + T.first + "' can never be matched"); 1921 } 1922 } 1923 1924 static unsigned 1925 getConverterOperandID(const std::string &Name, 1926 SmallSetVector<CachedHashString, 16> &Table, 1927 bool &IsNew) { 1928 IsNew = Table.insert(CachedHashString(Name)); 1929 1930 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1931 1932 assert(ID < Table.size()); 1933 1934 return ID; 1935 } 1936 1937 static unsigned 1938 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1939 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1940 bool HasMnemonicFirst, bool HasOptionalOperands, 1941 raw_ostream &OS) { 1942 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1943 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1944 std::vector<std::vector<uint8_t> > ConversionTable; 1945 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1946 1947 // TargetOperandClass - This is the target's operand class, like X86Operand. 1948 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1949 1950 // Write the convert function to a separate stream, so we can drop it after 1951 // the enum. We'll build up the conversion handlers for the individual 1952 // operand types opportunistically as we encounter them. 1953 std::string ConvertFnBody; 1954 raw_string_ostream CvtOS(ConvertFnBody); 1955 // Start the unified conversion function. 1956 if (HasOptionalOperands) { 1957 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1958 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1959 << "unsigned Opcode,\n" 1960 << " const OperandVector &Operands,\n" 1961 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1962 } else { 1963 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1964 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1965 << "unsigned Opcode,\n" 1966 << " const OperandVector &Operands) {\n"; 1967 } 1968 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1969 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1970 if (HasOptionalOperands) { 1971 size_t MaxNumOperands = 0; 1972 for (const auto &MI : Infos) { 1973 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1974 } 1975 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1976 << "] = { 0 };\n"; 1977 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1978 << ");\n"; 1979 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1980 << "; ++i) {\n"; 1981 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1982 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1983 CvtOS << " }\n"; 1984 } 1985 CvtOS << " unsigned OpIdx;\n"; 1986 CvtOS << " Inst.setOpcode(Opcode);\n"; 1987 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 1988 if (HasOptionalOperands) { 1989 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1990 } else { 1991 CvtOS << " OpIdx = *(p + 1);\n"; 1992 } 1993 CvtOS << " switch (*p) {\n"; 1994 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1995 CvtOS << " case CVT_Reg:\n"; 1996 CvtOS << " static_cast<" << TargetOperandClass 1997 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1998 CvtOS << " break;\n"; 1999 CvtOS << " case CVT_Tied: {\n"; 2000 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 2001 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 2002 CvtOS << " \"Tied operand not found\");\n"; 2003 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 2004 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n"; 2005 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 2006 CvtOS << " break;\n"; 2007 CvtOS << " }\n"; 2008 2009 std::string OperandFnBody; 2010 raw_string_ostream OpOS(OperandFnBody); 2011 // Start the operand number lookup function. 2012 OpOS << "void " << Target.getName() << ClassName << "::\n" 2013 << "convertToMapAndConstraints(unsigned Kind,\n"; 2014 OpOS.indent(27); 2015 OpOS << "const OperandVector &Operands) {\n" 2016 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2017 << " unsigned NumMCOperands = 0;\n" 2018 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2019 << " for (const uint8_t *p = Converter; *p; p += 2) {\n" 2020 << " switch (*p) {\n" 2021 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2022 << " case CVT_Reg:\n" 2023 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2024 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2025 << " ++NumMCOperands;\n" 2026 << " break;\n" 2027 << " case CVT_Tied:\n" 2028 << " ++NumMCOperands;\n" 2029 << " break;\n"; 2030 2031 // Pre-populate the operand conversion kinds with the standard always 2032 // available entries. 2033 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2034 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2035 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2036 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2037 2038 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2039 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2040 TiedOperandsEnumMap; 2041 2042 for (auto &II : Infos) { 2043 // Check if we have a custom match function. 2044 StringRef AsmMatchConverter = 2045 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2046 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2047 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2048 II->ConversionFnKind = Signature; 2049 2050 // Check if we have already generated this signature. 2051 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2052 continue; 2053 2054 // Remember this converter for the kind enum. 2055 unsigned KindID = OperandConversionKinds.size(); 2056 OperandConversionKinds.insert( 2057 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2058 2059 // Add the converter row for this instruction. 2060 ConversionTable.emplace_back(); 2061 ConversionTable.back().push_back(KindID); 2062 ConversionTable.back().push_back(CVT_Done); 2063 2064 // Add the handler to the conversion driver function. 2065 CvtOS << " case CVT_" 2066 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2067 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2068 << " break;\n"; 2069 2070 // FIXME: Handle the operand number lookup for custom match functions. 2071 continue; 2072 } 2073 2074 // Build the conversion function signature. 2075 std::string Signature = "Convert"; 2076 2077 std::vector<uint8_t> ConversionRow; 2078 2079 // Compute the convert enum and the case body. 2080 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2081 2082 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2083 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2084 2085 // Generate code to populate each result operand. 2086 switch (OpInfo.Kind) { 2087 case MatchableInfo::ResOperand::RenderAsmOperand: { 2088 // This comes from something we parsed. 2089 const MatchableInfo::AsmOperand &Op = 2090 II->AsmOperands[OpInfo.AsmOperandNum]; 2091 2092 // Registers are always converted the same, don't duplicate the 2093 // conversion function based on them. 2094 Signature += "__"; 2095 std::string Class; 2096 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2097 Signature += Class; 2098 Signature += utostr(OpInfo.MINumOperands); 2099 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2100 2101 // Add the conversion kind, if necessary, and get the associated ID 2102 // the index of its entry in the vector). 2103 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2104 Op.Class->RenderMethod); 2105 if (Op.Class->IsOptional) { 2106 // For optional operands we must also care about DefaultMethod 2107 assert(HasOptionalOperands); 2108 Name += "_" + Op.Class->DefaultMethod; 2109 } 2110 Name = getEnumNameForToken(Name); 2111 2112 bool IsNewConverter = false; 2113 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2114 IsNewConverter); 2115 2116 // Add the operand entry to the instruction kind conversion row. 2117 ConversionRow.push_back(ID); 2118 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2119 2120 if (!IsNewConverter) 2121 break; 2122 2123 // This is a new operand kind. Add a handler for it to the 2124 // converter driver. 2125 CvtOS << " case " << Name << ":\n"; 2126 if (Op.Class->IsOptional) { 2127 // If optional operand is not present in actual instruction then we 2128 // should call its DefaultMethod before RenderMethod 2129 assert(HasOptionalOperands); 2130 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2131 << " " << Op.Class->DefaultMethod << "()" 2132 << "->" << Op.Class->RenderMethod << "(Inst, " 2133 << OpInfo.MINumOperands << ");\n" 2134 << " } else {\n" 2135 << " static_cast<" << TargetOperandClass 2136 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2137 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2138 << " }\n"; 2139 } else { 2140 CvtOS << " static_cast<" << TargetOperandClass 2141 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2142 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2143 } 2144 CvtOS << " break;\n"; 2145 2146 // Add a handler for the operand number lookup. 2147 OpOS << " case " << Name << ":\n" 2148 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2149 2150 if (Op.Class->isRegisterClass()) 2151 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2152 else 2153 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2154 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2155 << " break;\n"; 2156 break; 2157 } 2158 case MatchableInfo::ResOperand::TiedOperand: { 2159 // If this operand is tied to a previous one, just copy the MCInst 2160 // operand from the earlier one.We can only tie single MCOperand values. 2161 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2162 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2163 uint8_t SrcOp1 = 2164 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2165 uint8_t SrcOp2 = 2166 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2167 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2168 "Tied operand precedes its target!"); 2169 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2170 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2171 Signature += "__" + TiedTupleName; 2172 ConversionRow.push_back(CVT_Tied); 2173 ConversionRow.push_back(TiedOp); 2174 ConversionRow.push_back(SrcOp1); 2175 ConversionRow.push_back(SrcOp2); 2176 2177 // Also create an 'enum' for this combination of tied operands. 2178 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2179 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2180 break; 2181 } 2182 case MatchableInfo::ResOperand::ImmOperand: { 2183 int64_t Val = OpInfo.ImmVal; 2184 std::string Ty = "imm_" + itostr(Val); 2185 Ty = getEnumNameForToken(Ty); 2186 Signature += "__" + Ty; 2187 2188 std::string Name = "CVT_" + Ty; 2189 bool IsNewConverter = false; 2190 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2191 IsNewConverter); 2192 // Add the operand entry to the instruction kind conversion row. 2193 ConversionRow.push_back(ID); 2194 ConversionRow.push_back(0); 2195 2196 if (!IsNewConverter) 2197 break; 2198 2199 CvtOS << " case " << Name << ":\n" 2200 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2201 << " break;\n"; 2202 2203 OpOS << " case " << Name << ":\n" 2204 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2205 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2206 << " ++NumMCOperands;\n" 2207 << " break;\n"; 2208 break; 2209 } 2210 case MatchableInfo::ResOperand::RegOperand: { 2211 std::string Reg, Name; 2212 if (!OpInfo.Register) { 2213 Name = "reg0"; 2214 Reg = "0"; 2215 } else { 2216 Reg = getQualifiedName(OpInfo.Register); 2217 Name = "reg" + OpInfo.Register->getName().str(); 2218 } 2219 Signature += "__" + Name; 2220 Name = "CVT_" + Name; 2221 bool IsNewConverter = false; 2222 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2223 IsNewConverter); 2224 // Add the operand entry to the instruction kind conversion row. 2225 ConversionRow.push_back(ID); 2226 ConversionRow.push_back(0); 2227 2228 if (!IsNewConverter) 2229 break; 2230 CvtOS << " case " << Name << ":\n" 2231 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2232 << " break;\n"; 2233 2234 OpOS << " case " << Name << ":\n" 2235 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2236 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2237 << " ++NumMCOperands;\n" 2238 << " break;\n"; 2239 } 2240 } 2241 } 2242 2243 // If there were no operands, add to the signature to that effect 2244 if (Signature == "Convert") 2245 Signature += "_NoOperands"; 2246 2247 II->ConversionFnKind = Signature; 2248 2249 // Save the signature. If we already have it, don't add a new row 2250 // to the table. 2251 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2252 continue; 2253 2254 // Add the row to the table. 2255 ConversionTable.push_back(std::move(ConversionRow)); 2256 } 2257 2258 // Finish up the converter driver function. 2259 CvtOS << " }\n }\n}\n\n"; 2260 2261 // Finish up the operand number lookup function. 2262 OpOS << " }\n }\n}\n\n"; 2263 2264 // Output a static table for tied operands. 2265 if (TiedOperandsEnumMap.size()) { 2266 // The number of tied operand combinations will be small in practice, 2267 // but just add the assert to be sure. 2268 assert(TiedOperandsEnumMap.size() <= 254 && 2269 "Too many tied-operand combinations to reference with " 2270 "an 8bit offset from the conversion table, where index " 2271 "'255' is reserved as operand not to be copied."); 2272 2273 OS << "enum {\n"; 2274 for (auto &KV : TiedOperandsEnumMap) { 2275 OS << " " << KV.second << ",\n"; 2276 } 2277 OS << "};\n\n"; 2278 2279 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2280 for (auto &KV : TiedOperandsEnumMap) { 2281 OS << " /* " << KV.second << " */ { " 2282 << utostr(std::get<0>(KV.first)) << ", " 2283 << utostr(std::get<1>(KV.first)) << ", " 2284 << utostr(std::get<2>(KV.first)) << " },\n"; 2285 } 2286 OS << "};\n\n"; 2287 } else 2288 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2289 "{ /* empty */ {0, 0, 0} };\n\n"; 2290 2291 OS << "namespace {\n"; 2292 2293 // Output the operand conversion kind enum. 2294 OS << "enum OperatorConversionKind {\n"; 2295 for (const auto &Converter : OperandConversionKinds) 2296 OS << " " << Converter << ",\n"; 2297 OS << " CVT_NUM_CONVERTERS\n"; 2298 OS << "};\n\n"; 2299 2300 // Output the instruction conversion kind enum. 2301 OS << "enum InstructionConversionKind {\n"; 2302 for (const auto &Signature : InstructionConversionKinds) 2303 OS << " " << Signature << ",\n"; 2304 OS << " CVT_NUM_SIGNATURES\n"; 2305 OS << "};\n\n"; 2306 2307 OS << "} // end anonymous namespace\n\n"; 2308 2309 // Output the conversion table. 2310 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2311 << MaxRowLength << "] = {\n"; 2312 2313 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2314 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2315 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2316 OS << " { "; 2317 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2318 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2319 if (OperandConversionKinds[ConversionTable[Row][i]] != 2320 CachedHashString("CVT_Tied")) { 2321 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2322 continue; 2323 } 2324 2325 // For a tied operand, emit a reference to the TiedAsmOperandTable 2326 // that contains the operand to copy, and the parsed operands to 2327 // check for their tied constraints. 2328 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2329 (uint8_t)ConversionTable[Row][i + 2], 2330 (uint8_t)ConversionTable[Row][i + 3]); 2331 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2332 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2333 "No record for tied operand pair"); 2334 OS << TiedOpndEnum->second << ", "; 2335 i += 2; 2336 } 2337 OS << "CVT_Done },\n"; 2338 } 2339 2340 OS << "};\n\n"; 2341 2342 // Spit out the conversion driver function. 2343 OS << CvtOS.str(); 2344 2345 // Spit out the operand number lookup function. 2346 OS << OpOS.str(); 2347 2348 return ConversionTable.size(); 2349 } 2350 2351 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2352 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2353 std::forward_list<ClassInfo> &Infos, 2354 raw_ostream &OS) { 2355 OS << "namespace {\n\n"; 2356 2357 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2358 << "/// instruction matching.\n"; 2359 OS << "enum MatchClassKind {\n"; 2360 OS << " InvalidMatchClass = 0,\n"; 2361 OS << " OptionalMatchClass = 1,\n"; 2362 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2363 StringRef LastName = "OptionalMatchClass"; 2364 for (const auto &CI : Infos) { 2365 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2366 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2367 } else if (LastKind < ClassInfo::UserClass0 && 2368 CI.Kind >= ClassInfo::UserClass0) { 2369 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2370 } 2371 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2372 LastName = CI.Name; 2373 2374 OS << " " << CI.Name << ", // "; 2375 if (CI.Kind == ClassInfo::Token) { 2376 OS << "'" << CI.ValueName << "'\n"; 2377 } else if (CI.isRegisterClass()) { 2378 if (!CI.ValueName.empty()) 2379 OS << "register class '" << CI.ValueName << "'\n"; 2380 else 2381 OS << "derived register class\n"; 2382 } else { 2383 OS << "user defined class '" << CI.ValueName << "'\n"; 2384 } 2385 } 2386 OS << " NumMatchClassKinds\n"; 2387 OS << "};\n\n"; 2388 2389 OS << "} // end anonymous namespace\n\n"; 2390 } 2391 2392 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2393 /// used when an assembly operand does not match the expected operand class. 2394 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2395 // If the target does not use DiagnosticString for any operands, don't emit 2396 // an unused function. 2397 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) { 2398 return CI.DiagnosticString.empty(); 2399 })) 2400 return; 2401 2402 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2403 << "AsmParser::" << Info.Target.getName() 2404 << "MatchResultTy MatchResult) {\n"; 2405 OS << " switch (MatchResult) {\n"; 2406 2407 for (const auto &CI: Info.Classes) { 2408 if (!CI.DiagnosticString.empty()) { 2409 assert(!CI.DiagnosticType.empty() && 2410 "DiagnosticString set without DiagnosticType"); 2411 OS << " case " << Info.Target.getName() 2412 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2413 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2414 } 2415 } 2416 2417 OS << " default:\n"; 2418 OS << " return nullptr;\n"; 2419 2420 OS << " }\n"; 2421 OS << "}\n\n"; 2422 } 2423 2424 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2425 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2426 "RegisterClass) {\n"; 2427 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2428 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2429 })) { 2430 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2431 } else { 2432 OS << " switch (RegisterClass) {\n"; 2433 for (const auto &CI: Info.Classes) { 2434 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2435 OS << " case " << CI.Name << ":\n"; 2436 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2437 << CI.DiagnosticType << ";\n"; 2438 } 2439 } 2440 2441 OS << " default:\n"; 2442 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2443 2444 OS << " }\n"; 2445 } 2446 OS << "}\n\n"; 2447 } 2448 2449 /// emitValidateOperandClass - Emit the function to validate an operand class. 2450 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2451 raw_ostream &OS) { 2452 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2453 << "MatchClassKind Kind) {\n"; 2454 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2455 << Info.Target.getName() << "Operand &)GOp;\n"; 2456 2457 // The InvalidMatchClass is not to match any operand. 2458 OS << " if (Kind == InvalidMatchClass)\n"; 2459 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2460 2461 // Check for Token operands first. 2462 // FIXME: Use a more specific diagnostic type. 2463 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2464 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2465 << " MCTargetAsmParser::Match_Success :\n" 2466 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2467 2468 // Check the user classes. We don't care what order since we're only 2469 // actually matching against one of them. 2470 OS << " switch (Kind) {\n" 2471 " default: break;\n"; 2472 for (const auto &CI : Info.Classes) { 2473 if (!CI.isUserClass()) 2474 continue; 2475 2476 OS << " // '" << CI.ClassName << "' class\n"; 2477 OS << " case " << CI.Name << ": {\n"; 2478 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2479 << "());\n"; 2480 OS << " if (DP.isMatch())\n"; 2481 OS << " return MCTargetAsmParser::Match_Success;\n"; 2482 if (!CI.DiagnosticType.empty()) { 2483 OS << " if (DP.isNearMatch())\n"; 2484 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2485 << CI.DiagnosticType << ";\n"; 2486 OS << " break;\n"; 2487 } 2488 else 2489 OS << " break;\n"; 2490 OS << " }\n"; 2491 } 2492 OS << " } // end switch (Kind)\n\n"; 2493 2494 // Check for register operands, including sub-classes. 2495 OS << " if (Operand.isReg()) {\n"; 2496 OS << " MatchClassKind OpKind;\n"; 2497 OS << " switch (Operand.getReg()) {\n"; 2498 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2499 for (const auto &RC : Info.RegisterClasses) 2500 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2501 << RC.first->getName() << ": OpKind = " << RC.second->Name 2502 << "; break;\n"; 2503 OS << " }\n"; 2504 OS << " return isSubclass(OpKind, Kind) ? " 2505 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2506 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2507 2508 // Expected operand is a register, but actual is not. 2509 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2510 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2511 2512 // Generic fallthrough match failure case for operands that don't have 2513 // specialized diagnostic types. 2514 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2515 OS << "}\n\n"; 2516 } 2517 2518 /// emitIsSubclass - Emit the subclass predicate function. 2519 static void emitIsSubclass(CodeGenTarget &Target, 2520 std::forward_list<ClassInfo> &Infos, 2521 raw_ostream &OS) { 2522 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2523 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2524 OS << " if (A == B)\n"; 2525 OS << " return true;\n\n"; 2526 2527 bool EmittedSwitch = false; 2528 for (const auto &A : Infos) { 2529 std::vector<StringRef> SuperClasses; 2530 if (A.IsOptional) 2531 SuperClasses.push_back("OptionalMatchClass"); 2532 for (const auto &B : Infos) { 2533 if (&A != &B && A.isSubsetOf(B)) 2534 SuperClasses.push_back(B.Name); 2535 } 2536 2537 if (SuperClasses.empty()) 2538 continue; 2539 2540 // If this is the first SuperClass, emit the switch header. 2541 if (!EmittedSwitch) { 2542 OS << " switch (A) {\n"; 2543 OS << " default:\n"; 2544 OS << " return false;\n"; 2545 EmittedSwitch = true; 2546 } 2547 2548 OS << "\n case " << A.Name << ":\n"; 2549 2550 if (SuperClasses.size() == 1) { 2551 OS << " return B == " << SuperClasses.back() << ";\n"; 2552 continue; 2553 } 2554 2555 if (!SuperClasses.empty()) { 2556 OS << " switch (B) {\n"; 2557 OS << " default: return false;\n"; 2558 for (StringRef SC : SuperClasses) 2559 OS << " case " << SC << ": return true;\n"; 2560 OS << " }\n"; 2561 } else { 2562 // No case statement to emit 2563 OS << " return false;\n"; 2564 } 2565 } 2566 2567 // If there were case statements emitted into the string stream write the 2568 // default. 2569 if (EmittedSwitch) 2570 OS << " }\n"; 2571 else 2572 OS << " return false;\n"; 2573 2574 OS << "}\n\n"; 2575 } 2576 2577 /// emitMatchTokenString - Emit the function to match a token string to the 2578 /// appropriate match class value. 2579 static void emitMatchTokenString(CodeGenTarget &Target, 2580 std::forward_list<ClassInfo> &Infos, 2581 raw_ostream &OS) { 2582 // Construct the match list. 2583 std::vector<StringMatcher::StringPair> Matches; 2584 for (const auto &CI : Infos) { 2585 if (CI.Kind == ClassInfo::Token) 2586 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2587 } 2588 2589 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2590 2591 StringMatcher("Name", Matches, OS).Emit(); 2592 2593 OS << " return InvalidMatchClass;\n"; 2594 OS << "}\n\n"; 2595 } 2596 2597 /// emitMatchRegisterName - Emit the function to match a string to the target 2598 /// specific register enum. 2599 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2600 raw_ostream &OS) { 2601 // Construct the match list. 2602 std::vector<StringMatcher::StringPair> Matches; 2603 const auto &Regs = Target.getRegBank().getRegisters(); 2604 for (const CodeGenRegister &Reg : Regs) { 2605 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2606 continue; 2607 2608 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")), 2609 "return " + utostr(Reg.EnumValue) + ";"); 2610 } 2611 2612 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2613 2614 bool IgnoreDuplicates = 2615 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2616 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2617 2618 OS << " return 0;\n"; 2619 OS << "}\n\n"; 2620 } 2621 2622 /// Emit the function to match a string to the target 2623 /// specific register enum. 2624 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2625 raw_ostream &OS) { 2626 // Construct the match list. 2627 std::vector<StringMatcher::StringPair> Matches; 2628 const auto &Regs = Target.getRegBank().getRegisters(); 2629 for (const CodeGenRegister &Reg : Regs) { 2630 2631 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2632 2633 for (auto AltName : AltNames) { 2634 AltName = StringRef(AltName).trim(); 2635 2636 // don't handle empty alternative names 2637 if (AltName.empty()) 2638 continue; 2639 2640 Matches.emplace_back(std::string(AltName), 2641 "return " + utostr(Reg.EnumValue) + ";"); 2642 } 2643 } 2644 2645 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2646 2647 bool IgnoreDuplicates = 2648 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2649 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2650 2651 OS << " return 0;\n"; 2652 OS << "}\n\n"; 2653 } 2654 2655 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2656 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2657 // Get the set of diagnostic types from all of the operand classes. 2658 std::set<StringRef> Types; 2659 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2660 if (!OpClassEntry.second->DiagnosticType.empty()) 2661 Types.insert(OpClassEntry.second->DiagnosticType); 2662 } 2663 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2664 if (!OpClassEntry.second->DiagnosticType.empty()) 2665 Types.insert(OpClassEntry.second->DiagnosticType); 2666 } 2667 2668 if (Types.empty()) return; 2669 2670 // Now emit the enum entries. 2671 for (StringRef Type : Types) 2672 OS << " Match_" << Type << ",\n"; 2673 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2674 } 2675 2676 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2677 /// user-level name for a subtarget feature. 2678 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2679 OS << "// User-level names for subtarget features that participate in\n" 2680 << "// instruction matching.\n" 2681 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2682 if (!Info.SubtargetFeatures.empty()) { 2683 OS << " switch(Val) {\n"; 2684 for (const auto &SF : Info.SubtargetFeatures) { 2685 const SubtargetFeatureInfo &SFI = SF.second; 2686 // FIXME: Totally just a placeholder name to get the algorithm working. 2687 OS << " case " << SFI.getEnumBitName() << ": return \"" 2688 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2689 } 2690 OS << " default: return \"(unknown)\";\n"; 2691 OS << " }\n"; 2692 } else { 2693 // Nothing to emit, so skip the switch 2694 OS << " return \"(unknown)\";\n"; 2695 } 2696 OS << "}\n\n"; 2697 } 2698 2699 static std::string GetAliasRequiredFeatures(Record *R, 2700 const AsmMatcherInfo &Info) { 2701 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2702 std::string Result; 2703 2704 if (ReqFeatures.empty()) 2705 return Result; 2706 2707 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2708 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2709 2710 if (!F) 2711 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2712 "' is not marked as an AssemblerPredicate!"); 2713 2714 if (i) 2715 Result += " && "; 2716 2717 Result += "Features.test(" + F->getEnumBitName() + ')'; 2718 } 2719 2720 return Result; 2721 } 2722 2723 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2724 std::vector<Record*> &Aliases, 2725 unsigned Indent = 0, 2726 StringRef AsmParserVariantName = StringRef()){ 2727 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2728 // iteration order of the map is stable. 2729 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2730 2731 for (Record *R : Aliases) { 2732 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2733 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2734 if (AsmVariantName != AsmParserVariantName) 2735 continue; 2736 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()] 2737 .push_back(R); 2738 } 2739 if (AliasesFromMnemonic.empty()) 2740 return; 2741 2742 // Process each alias a "from" mnemonic at a time, building the code executed 2743 // by the string remapper. 2744 std::vector<StringMatcher::StringPair> Cases; 2745 for (const auto &AliasEntry : AliasesFromMnemonic) { 2746 const std::vector<Record*> &ToVec = AliasEntry.second; 2747 2748 // Loop through each alias and emit code that handles each case. If there 2749 // are two instructions without predicates, emit an error. If there is one, 2750 // emit it last. 2751 std::string MatchCode; 2752 int AliasWithNoPredicate = -1; 2753 2754 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2755 Record *R = ToVec[i]; 2756 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2757 2758 // If this unconditionally matches, remember it for later and diagnose 2759 // duplicates. 2760 if (FeatureMask.empty()) { 2761 if (AliasWithNoPredicate != -1 && 2762 R->getValueAsString("ToMnemonic") != 2763 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) { 2764 // We can't have two different aliases from the same mnemonic with no 2765 // predicate. 2766 PrintError( 2767 ToVec[AliasWithNoPredicate]->getLoc(), 2768 "two different MnemonicAliases with the same 'from' mnemonic!"); 2769 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2770 } 2771 2772 AliasWithNoPredicate = i; 2773 continue; 2774 } 2775 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2776 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2777 2778 if (!MatchCode.empty()) 2779 MatchCode += "else "; 2780 MatchCode += "if (" + FeatureMask + ")\n"; 2781 MatchCode += " Mnemonic = \""; 2782 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2783 MatchCode += "\";\n"; 2784 } 2785 2786 if (AliasWithNoPredicate != -1) { 2787 Record *R = ToVec[AliasWithNoPredicate]; 2788 if (!MatchCode.empty()) 2789 MatchCode += "else\n "; 2790 MatchCode += "Mnemonic = \""; 2791 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2792 MatchCode += "\";\n"; 2793 } 2794 2795 MatchCode += "return;"; 2796 2797 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2798 } 2799 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2800 } 2801 2802 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2803 /// emit a function for them and return true, otherwise return false. 2804 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2805 CodeGenTarget &Target) { 2806 // Ignore aliases when match-prefix is set. 2807 if (!MatchPrefix.empty()) 2808 return false; 2809 2810 std::vector<Record*> Aliases = 2811 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2812 if (Aliases.empty()) return false; 2813 2814 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2815 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2816 OS << " switch (VariantID) {\n"; 2817 unsigned VariantCount = Target.getAsmParserVariantCount(); 2818 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2819 Record *AsmVariant = Target.getAsmParserVariant(VC); 2820 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2821 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2822 OS << " case " << AsmParserVariantNo << ":\n"; 2823 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2824 AsmParserVariantName); 2825 OS << " break;\n"; 2826 } 2827 OS << " }\n"; 2828 2829 // Emit aliases that apply to all variants. 2830 emitMnemonicAliasVariant(OS, Info, Aliases); 2831 2832 OS << "}\n\n"; 2833 2834 return true; 2835 } 2836 2837 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2838 const AsmMatcherInfo &Info, StringRef ClassName, 2839 StringToOffsetTable &StringTable, 2840 unsigned MaxMnemonicIndex, 2841 unsigned MaxFeaturesIndex, 2842 bool HasMnemonicFirst) { 2843 unsigned MaxMask = 0; 2844 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2845 MaxMask |= OMI.OperandMask; 2846 } 2847 2848 // Emit the static custom operand parsing table; 2849 OS << "namespace {\n"; 2850 OS << " struct OperandMatchEntry {\n"; 2851 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2852 << " Mnemonic;\n"; 2853 OS << " " << getMinimalTypeForRange(MaxMask) 2854 << " OperandMask;\n"; 2855 OS << " " << getMinimalTypeForRange(std::distance( 2856 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2857 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2858 << " RequiredFeaturesIdx;\n\n"; 2859 OS << " StringRef getMnemonic() const {\n"; 2860 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2861 OS << " MnemonicTable[Mnemonic]);\n"; 2862 OS << " }\n"; 2863 OS << " };\n\n"; 2864 2865 OS << " // Predicate for searching for an opcode.\n"; 2866 OS << " struct LessOpcodeOperand {\n"; 2867 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2868 OS << " return LHS.getMnemonic() < RHS;\n"; 2869 OS << " }\n"; 2870 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2871 OS << " return LHS < RHS.getMnemonic();\n"; 2872 OS << " }\n"; 2873 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2874 OS << " const OperandMatchEntry &RHS) {\n"; 2875 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2876 OS << " }\n"; 2877 OS << " };\n"; 2878 2879 OS << "} // end anonymous namespace\n\n"; 2880 2881 OS << "static const OperandMatchEntry OperandMatchTable[" 2882 << Info.OperandMatchInfo.size() << "] = {\n"; 2883 2884 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2885 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2886 const MatchableInfo &II = *OMI.MI; 2887 2888 OS << " { "; 2889 2890 // Store a pascal-style length byte in the mnemonic. 2891 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower(); 2892 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2893 << " /* " << II.Mnemonic << " */, "; 2894 2895 OS << OMI.OperandMask; 2896 OS << " /* "; 2897 ListSeparator LS; 2898 for (int i = 0, e = 31; i !=e; ++i) 2899 if (OMI.OperandMask & (1 << i)) 2900 OS << LS << i; 2901 OS << " */, "; 2902 2903 OS << OMI.CI->Name; 2904 2905 // Write the required features mask. 2906 OS << ", AMFBS"; 2907 if (II.RequiredFeatures.empty()) 2908 OS << "_None"; 2909 else 2910 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2911 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2912 2913 OS << " },\n"; 2914 } 2915 OS << "};\n\n"; 2916 2917 // Emit the operand class switch to call the correct custom parser for 2918 // the found operand class. 2919 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2920 << "tryCustomParseOperand(OperandVector" 2921 << " &Operands,\n unsigned MCK) {\n\n" 2922 << " switch(MCK) {\n"; 2923 2924 for (const auto &CI : Info.Classes) { 2925 if (CI.ParserMethod.empty()) 2926 continue; 2927 OS << " case " << CI.Name << ":\n" 2928 << " return " << CI.ParserMethod << "(Operands);\n"; 2929 } 2930 2931 OS << " default:\n"; 2932 OS << " return MatchOperand_NoMatch;\n"; 2933 OS << " }\n"; 2934 OS << " return MatchOperand_NoMatch;\n"; 2935 OS << "}\n\n"; 2936 2937 // Emit the static custom operand parser. This code is very similar with 2938 // the other matcher. Also use MatchResultTy here just in case we go for 2939 // a better error handling. 2940 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2941 << "MatchOperandParserImpl(OperandVector" 2942 << " &Operands,\n StringRef Mnemonic,\n" 2943 << " bool ParseForAllFeatures) {\n"; 2944 2945 // Emit code to get the available features. 2946 OS << " // Get the current feature set.\n"; 2947 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 2948 2949 OS << " // Get the next operand index.\n"; 2950 OS << " unsigned NextOpNum = Operands.size()" 2951 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2952 2953 // Emit code to search the table. 2954 OS << " // Search the table.\n"; 2955 if (HasMnemonicFirst) { 2956 OS << " auto MnemonicRange =\n"; 2957 OS << " std::equal_range(std::begin(OperandMatchTable), " 2958 "std::end(OperandMatchTable),\n"; 2959 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2960 } else { 2961 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2962 " std::end(OperandMatchTable));\n"; 2963 OS << " if (!Mnemonic.empty())\n"; 2964 OS << " MnemonicRange =\n"; 2965 OS << " std::equal_range(std::begin(OperandMatchTable), " 2966 "std::end(OperandMatchTable),\n"; 2967 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2968 } 2969 2970 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2971 OS << " return MatchOperand_NoMatch;\n\n"; 2972 2973 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2974 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2975 2976 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2977 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2978 2979 // Emit check that the required features are available. 2980 OS << " // check if the available features match\n"; 2981 OS << " const FeatureBitset &RequiredFeatures = " 2982 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 2983 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2984 "RequiredFeatures) != RequiredFeatures)\n"; 2985 OS << " continue;\n\n"; 2986 2987 // Emit check to ensure the operand number matches. 2988 OS << " // check if the operand in question has a custom parser.\n"; 2989 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2990 OS << " continue;\n\n"; 2991 2992 // Emit call to the custom parser method 2993 OS << " // call custom parse method to handle the operand\n"; 2994 OS << " OperandMatchResultTy Result = "; 2995 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2996 OS << " if (Result != MatchOperand_NoMatch)\n"; 2997 OS << " return Result;\n"; 2998 OS << " }\n\n"; 2999 3000 OS << " // Okay, we had no match.\n"; 3001 OS << " return MatchOperand_NoMatch;\n"; 3002 OS << "}\n\n"; 3003 } 3004 3005 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 3006 AsmMatcherInfo &Info, 3007 raw_ostream &OS) { 3008 std::string AsmParserName = 3009 std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); 3010 OS << "static bool "; 3011 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3012 << AsmParserName << "&AsmParser,\n"; 3013 OS << " unsigned Kind,\n"; 3014 OS << " const OperandVector &Operands,\n"; 3015 OS << " uint64_t &ErrorInfo) {\n"; 3016 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3017 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3018 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 3019 OS << " switch (*p) {\n"; 3020 OS << " case CVT_Tied: {\n"; 3021 OS << " unsigned OpIdx = *(p + 1);\n"; 3022 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3023 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3024 OS << " \"Tied operand not found\");\n"; 3025 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3026 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3027 OS << " if (OpndNum1 != OpndNum2) {\n"; 3028 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3029 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3030 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; 3031 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; 3032 OS << " ErrorInfo = OpndNum2;\n"; 3033 OS << " return false;\n"; 3034 OS << " }\n"; 3035 OS << " }\n"; 3036 OS << " }\n"; 3037 OS << " break;\n"; 3038 OS << " }\n"; 3039 OS << " default:\n"; 3040 OS << " break;\n"; 3041 OS << " }\n"; 3042 OS << " }\n"; 3043 OS << " return true;\n"; 3044 OS << "}\n\n"; 3045 } 3046 3047 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3048 unsigned VariantCount) { 3049 OS << "static std::string " << Target.getName() 3050 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3051 << " unsigned VariantID) {\n"; 3052 if (!VariantCount) 3053 OS << " return \"\";"; 3054 else { 3055 OS << " const unsigned MaxEditDist = 2;\n"; 3056 OS << " std::vector<StringRef> Candidates;\n"; 3057 OS << " StringRef Prev = \"\";\n\n"; 3058 3059 OS << " // Find the appropriate table for this asm variant.\n"; 3060 OS << " const MatchEntry *Start, *End;\n"; 3061 OS << " switch (VariantID) {\n"; 3062 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3063 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3064 Record *AsmVariant = Target.getAsmParserVariant(VC); 3065 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3066 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3067 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3068 } 3069 OS << " }\n\n"; 3070 OS << " for (auto I = Start; I < End; I++) {\n"; 3071 OS << " // Ignore unsupported instructions.\n"; 3072 OS << " const FeatureBitset &RequiredFeatures = " 3073 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3074 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3075 OS << " continue;\n"; 3076 OS << "\n"; 3077 OS << " StringRef T = I->getMnemonic();\n"; 3078 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3079 OS << " if (T.equals(Prev))\n"; 3080 OS << " continue;\n"; 3081 OS << "\n"; 3082 OS << " Prev = T;\n"; 3083 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3084 OS << " if (Dist <= MaxEditDist)\n"; 3085 OS << " Candidates.push_back(T);\n"; 3086 OS << " }\n"; 3087 OS << "\n"; 3088 OS << " if (Candidates.empty())\n"; 3089 OS << " return \"\";\n"; 3090 OS << "\n"; 3091 OS << " std::string Res = \", did you mean: \";\n"; 3092 OS << " unsigned i = 0;\n"; 3093 OS << " for (; i < Candidates.size() - 1; i++)\n"; 3094 OS << " Res += Candidates[i].str() + \", \";\n"; 3095 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3096 } 3097 OS << "}\n"; 3098 OS << "\n"; 3099 } 3100 3101 static void emitMnemonicChecker(raw_ostream &OS, 3102 CodeGenTarget &Target, 3103 unsigned VariantCount, 3104 bool HasMnemonicFirst, 3105 bool HasMnemonicAliases) { 3106 OS << "static bool " << Target.getName() 3107 << "CheckMnemonic(StringRef Mnemonic,\n"; 3108 OS << " " 3109 << "const FeatureBitset &AvailableFeatures,\n"; 3110 OS << " " 3111 << "unsigned VariantID) {\n"; 3112 3113 if (!VariantCount) { 3114 OS << " return false;\n"; 3115 } else { 3116 if (HasMnemonicAliases) { 3117 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3118 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);"; 3119 OS << "\n\n"; 3120 } 3121 OS << " // Find the appropriate table for this asm variant.\n"; 3122 OS << " const MatchEntry *Start, *End;\n"; 3123 OS << " switch (VariantID) {\n"; 3124 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3125 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3126 Record *AsmVariant = Target.getAsmParserVariant(VC); 3127 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3128 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3129 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3130 } 3131 OS << " }\n\n"; 3132 3133 OS << " // Search the table.\n"; 3134 if (HasMnemonicFirst) { 3135 OS << " auto MnemonicRange = " 3136 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3137 } else { 3138 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3139 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3140 OS << " if (!Mnemonic.empty())\n"; 3141 OS << " MnemonicRange = " 3142 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3143 } 3144 3145 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3146 OS << " return false;\n\n"; 3147 3148 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3149 << "*ie = MnemonicRange.second;\n"; 3150 OS << " it != ie; ++it) {\n"; 3151 OS << " const FeatureBitset &RequiredFeatures =\n"; 3152 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3153 OS << " if ((AvailableFeatures & RequiredFeatures) == "; 3154 OS << "RequiredFeatures)\n"; 3155 OS << " return true;\n"; 3156 OS << " }\n"; 3157 OS << " return false;\n"; 3158 } 3159 OS << "}\n"; 3160 OS << "\n"; 3161 } 3162 3163 // Emit a function mapping match classes to strings, for debugging. 3164 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3165 raw_ostream &OS) { 3166 OS << "#ifndef NDEBUG\n"; 3167 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3168 OS << " switch (Kind) {\n"; 3169 3170 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3171 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3172 for (const auto &CI : Infos) { 3173 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3174 } 3175 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3176 3177 OS << " }\n"; 3178 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3179 OS << "}\n\n"; 3180 OS << "#endif // NDEBUG\n"; 3181 } 3182 3183 static std::string 3184 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3185 std::string Name = "AMFBS"; 3186 for (const auto &Feature : FeatureBitset) 3187 Name += ("_" + Feature->getName()).str(); 3188 return Name; 3189 } 3190 3191 void AsmMatcherEmitter::run(raw_ostream &OS) { 3192 CodeGenTarget Target(Records); 3193 Record *AsmParser = Target.getAsmParser(); 3194 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3195 3196 // Compute the information on the instructions to match. 3197 AsmMatcherInfo Info(AsmParser, Target, Records); 3198 Info.buildInfo(); 3199 3200 // Sort the instruction table using the partial order on classes. We use 3201 // stable_sort to ensure that ambiguous instructions are still 3202 // deterministically ordered. 3203 llvm::stable_sort( 3204 Info.Matchables, 3205 [](const std::unique_ptr<MatchableInfo> &a, 3206 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); 3207 3208 #ifdef EXPENSIVE_CHECKS 3209 // Verify that the table is sorted and operator < works transitively. 3210 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3211 ++I) { 3212 for (auto J = I; J != E; ++J) { 3213 assert(!(**J < **I)); 3214 } 3215 } 3216 #endif 3217 3218 DEBUG_WITH_TYPE("instruction_info", { 3219 for (const auto &MI : Info.Matchables) 3220 MI->dump(); 3221 }); 3222 3223 // Check for ambiguous matchables. 3224 DEBUG_WITH_TYPE("ambiguous_instrs", { 3225 unsigned NumAmbiguous = 0; 3226 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3227 ++I) { 3228 for (auto J = std::next(I); J != E; ++J) { 3229 const MatchableInfo &A = **I; 3230 const MatchableInfo &B = **J; 3231 3232 if (A.couldMatchAmbiguouslyWith(B)) { 3233 errs() << "warning: ambiguous matchables:\n"; 3234 A.dump(); 3235 errs() << "\nis incomparable with:\n"; 3236 B.dump(); 3237 errs() << "\n\n"; 3238 ++NumAmbiguous; 3239 } 3240 } 3241 } 3242 if (NumAmbiguous) 3243 errs() << "warning: " << NumAmbiguous 3244 << " ambiguous matchables!\n"; 3245 }); 3246 3247 // Compute the information on the custom operand parsing. 3248 Info.buildOperandMatchInfo(); 3249 3250 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3251 bool HasOptionalOperands = Info.hasOptionalOperands(); 3252 bool ReportMultipleNearMisses = 3253 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3254 3255 // Write the output. 3256 3257 // Information for the class declaration. 3258 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3259 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3260 OS << " // This should be included into the middle of the declaration of\n"; 3261 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3262 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n"; 3263 if (HasOptionalOperands) { 3264 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3265 << "unsigned Opcode,\n" 3266 << " const OperandVector &Operands,\n" 3267 << " const SmallBitVector &OptionalOperandsMask);\n"; 3268 } else { 3269 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3270 << "unsigned Opcode,\n" 3271 << " const OperandVector &Operands);\n"; 3272 } 3273 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3274 OS << " const OperandVector &Operands) override;\n"; 3275 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3276 << " MCInst &Inst,\n"; 3277 if (ReportMultipleNearMisses) 3278 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3279 else 3280 OS << " uint64_t &ErrorInfo,\n" 3281 << " FeatureBitset &MissingFeatures,\n"; 3282 OS << " bool matchingInlineAsm,\n" 3283 << " unsigned VariantID = 0);\n"; 3284 if (!ReportMultipleNearMisses) 3285 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3286 << " MCInst &Inst,\n" 3287 << " uint64_t &ErrorInfo,\n" 3288 << " bool matchingInlineAsm,\n" 3289 << " unsigned VariantID = 0) {\n" 3290 << " FeatureBitset MissingFeatures;\n" 3291 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" 3292 << " matchingInlineAsm, VariantID);\n" 3293 << " }\n\n"; 3294 3295 3296 if (!Info.OperandMatchInfo.empty()) { 3297 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3298 OS << " OperandVector &Operands,\n"; 3299 OS << " StringRef Mnemonic,\n"; 3300 OS << " bool ParseForAllFeatures = false);\n"; 3301 3302 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3303 OS << " OperandVector &Operands,\n"; 3304 OS << " unsigned MCK);\n\n"; 3305 } 3306 3307 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3308 3309 // Emit the operand match diagnostic enum names. 3310 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3311 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3312 emitOperandDiagnosticTypes(Info, OS); 3313 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3314 3315 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3316 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3317 3318 // Emit the subtarget feature enumeration. 3319 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3320 Info.SubtargetFeatures, OS); 3321 3322 // Emit the function to match a register name to number. 3323 // This should be omitted for Mips target 3324 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3325 emitMatchRegisterName(Target, AsmParser, OS); 3326 3327 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3328 emitMatchRegisterAltName(Target, AsmParser, OS); 3329 3330 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3331 3332 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3333 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3334 3335 // Generate the helper function to get the names for subtarget features. 3336 emitGetSubtargetFeatureName(Info, OS); 3337 3338 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3339 3340 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3341 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3342 3343 // Generate the function that remaps for mnemonic aliases. 3344 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3345 3346 // Generate the convertToMCInst function to convert operands into an MCInst. 3347 // Also, generate the convertToMapAndConstraints function for MS-style inline 3348 // assembly. The latter doesn't actually generate a MCInst. 3349 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, 3350 HasMnemonicFirst, 3351 HasOptionalOperands, OS); 3352 3353 // Emit the enumeration for classes which participate in matching. 3354 emitMatchClassEnumeration(Target, Info.Classes, OS); 3355 3356 // Emit a function to get the user-visible string to describe an operand 3357 // match failure in diagnostics. 3358 emitOperandMatchErrorDiagStrings(Info, OS); 3359 3360 // Emit a function to map register classes to operand match failure codes. 3361 emitRegisterMatchErrorFunc(Info, OS); 3362 3363 // Emit the routine to match token strings to their match class. 3364 emitMatchTokenString(Target, Info.Classes, OS); 3365 3366 // Emit the subclass predicate routine. 3367 emitIsSubclass(Target, Info.Classes, OS); 3368 3369 // Emit the routine to validate an operand against a match class. 3370 emitValidateOperandClass(Info, OS); 3371 3372 emitMatchClassKindNames(Info.Classes, OS); 3373 3374 // Emit the available features compute function. 3375 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3376 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3377 Info.SubtargetFeatures, OS); 3378 3379 if (!ReportMultipleNearMisses) 3380 emitAsmTiedOperandConstraints(Target, Info, OS); 3381 3382 StringToOffsetTable StringTable; 3383 3384 size_t MaxNumOperands = 0; 3385 unsigned MaxMnemonicIndex = 0; 3386 bool HasDeprecation = false; 3387 for (const auto &MI : Info.Matchables) { 3388 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3389 HasDeprecation |= MI->HasDeprecation; 3390 3391 // Store a pascal-style length byte in the mnemonic. 3392 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3393 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3394 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3395 } 3396 3397 OS << "static const char *const MnemonicTable =\n"; 3398 StringTable.EmitString(OS); 3399 OS << ";\n\n"; 3400 3401 std::vector<std::vector<Record *>> FeatureBitsets; 3402 for (const auto &MI : Info.Matchables) { 3403 if (MI->RequiredFeatures.empty()) 3404 continue; 3405 FeatureBitsets.emplace_back(); 3406 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3407 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3408 } 3409 3410 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3411 const std::vector<Record *> &B) { 3412 if (A.size() < B.size()) 3413 return true; 3414 if (A.size() > B.size()) 3415 return false; 3416 for (auto Pair : zip(A, B)) { 3417 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3418 return true; 3419 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3420 return false; 3421 } 3422 return false; 3423 }); 3424 FeatureBitsets.erase( 3425 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 3426 FeatureBitsets.end()); 3427 OS << "// Feature bitsets.\n" 3428 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3429 << " AMFBS_None,\n"; 3430 for (const auto &FeatureBitset : FeatureBitsets) { 3431 if (FeatureBitset.empty()) 3432 continue; 3433 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3434 } 3435 OS << "};\n\n" 3436 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3437 << " {}, // AMFBS_None\n"; 3438 for (const auto &FeatureBitset : FeatureBitsets) { 3439 if (FeatureBitset.empty()) 3440 continue; 3441 OS << " {"; 3442 for (const auto &Feature : FeatureBitset) { 3443 const auto &I = Info.SubtargetFeatures.find(Feature); 3444 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3445 OS << I->second.getEnumBitName() << ", "; 3446 } 3447 OS << "},\n"; 3448 } 3449 OS << "};\n\n"; 3450 3451 // Emit the static match table; unused classes get initialized to 0 which is 3452 // guaranteed to be InvalidMatchClass. 3453 // 3454 // FIXME: We can reduce the size of this table very easily. First, we change 3455 // it so that store the kinds in separate bit-fields for each index, which 3456 // only needs to be the max width used for classes at that index (we also need 3457 // to reject based on this during classification). If we then make sure to 3458 // order the match kinds appropriately (putting mnemonics last), then we 3459 // should only end up using a few bits for each class, especially the ones 3460 // following the mnemonic. 3461 OS << "namespace {\n"; 3462 OS << " struct MatchEntry {\n"; 3463 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3464 << " Mnemonic;\n"; 3465 OS << " uint16_t Opcode;\n"; 3466 OS << " " << getMinimalTypeForRange(NumConverters) 3467 << " ConvertFn;\n"; 3468 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3469 << " RequiredFeaturesIdx;\n"; 3470 OS << " " << getMinimalTypeForRange( 3471 std::distance(Info.Classes.begin(), Info.Classes.end())) 3472 << " Classes[" << MaxNumOperands << "];\n"; 3473 OS << " StringRef getMnemonic() const {\n"; 3474 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3475 OS << " MnemonicTable[Mnemonic]);\n"; 3476 OS << " }\n"; 3477 OS << " };\n\n"; 3478 3479 OS << " // Predicate for searching for an opcode.\n"; 3480 OS << " struct LessOpcode {\n"; 3481 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3482 OS << " return LHS.getMnemonic() < RHS;\n"; 3483 OS << " }\n"; 3484 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3485 OS << " return LHS < RHS.getMnemonic();\n"; 3486 OS << " }\n"; 3487 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3488 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3489 OS << " }\n"; 3490 OS << " };\n"; 3491 3492 OS << "} // end anonymous namespace\n\n"; 3493 3494 unsigned VariantCount = Target.getAsmParserVariantCount(); 3495 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3496 Record *AsmVariant = Target.getAsmParserVariant(VC); 3497 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3498 3499 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3500 3501 for (const auto &MI : Info.Matchables) { 3502 if (MI->AsmVariantID != AsmVariantNo) 3503 continue; 3504 3505 // Store a pascal-style length byte in the mnemonic. 3506 std::string LenMnemonic = 3507 char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3508 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3509 << " /* " << MI->Mnemonic << " */, " 3510 << Target.getInstNamespace() << "::" 3511 << MI->getResultInst()->TheDef->getName() << ", " 3512 << MI->ConversionFnKind << ", "; 3513 3514 // Write the required features mask. 3515 OS << "AMFBS"; 3516 if (MI->RequiredFeatures.empty()) 3517 OS << "_None"; 3518 else 3519 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3520 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3521 3522 OS << ", { "; 3523 ListSeparator LS; 3524 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands) 3525 OS << LS << Op.Class->Name; 3526 OS << " }, },\n"; 3527 } 3528 3529 OS << "};\n\n"; 3530 } 3531 3532 OS << "#include \"llvm/Support/Debug.h\"\n"; 3533 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3534 3535 // Finally, build the match function. 3536 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3537 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3538 OS << " MCInst &Inst,\n"; 3539 if (ReportMultipleNearMisses) 3540 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3541 else 3542 OS << " uint64_t &ErrorInfo,\n" 3543 << " FeatureBitset &MissingFeatures,\n"; 3544 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3545 3546 if (!ReportMultipleNearMisses) { 3547 OS << " // Eliminate obvious mismatches.\n"; 3548 OS << " if (Operands.size() > " 3549 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3550 OS << " ErrorInfo = " 3551 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3552 OS << " return Match_InvalidOperand;\n"; 3553 OS << " }\n\n"; 3554 } 3555 3556 // Emit code to get the available features. 3557 OS << " // Get the current feature set.\n"; 3558 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 3559 3560 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3561 if (HasMnemonicFirst) { 3562 OS << " StringRef Mnemonic = ((" << Target.getName() 3563 << "Operand &)*Operands[0]).getToken();\n\n"; 3564 } else { 3565 OS << " StringRef Mnemonic;\n"; 3566 OS << " if (Operands[0]->isToken())\n"; 3567 OS << " Mnemonic = ((" << Target.getName() 3568 << "Operand &)*Operands[0]).getToken();\n\n"; 3569 } 3570 3571 if (HasMnemonicAliases) { 3572 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3573 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3574 } 3575 3576 // Emit code to compute the class list for this operand vector. 3577 if (!ReportMultipleNearMisses) { 3578 OS << " // Some state to try to produce better error messages.\n"; 3579 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3580 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3581 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3582 OS << " MissingFeatures.set();\n"; 3583 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3584 OS << " // wrong for all instances of the instruction.\n"; 3585 OS << " ErrorInfo = ~0ULL;\n"; 3586 } 3587 3588 if (HasOptionalOperands) { 3589 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3590 } 3591 3592 // Emit code to search the table. 3593 OS << " // Find the appropriate table for this asm variant.\n"; 3594 OS << " const MatchEntry *Start, *End;\n"; 3595 OS << " switch (VariantID) {\n"; 3596 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3597 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3598 Record *AsmVariant = Target.getAsmParserVariant(VC); 3599 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3600 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3601 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3602 } 3603 OS << " }\n"; 3604 3605 OS << " // Search the table.\n"; 3606 if (HasMnemonicFirst) { 3607 OS << " auto MnemonicRange = " 3608 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3609 } else { 3610 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3611 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3612 OS << " if (!Mnemonic.empty())\n"; 3613 OS << " MnemonicRange = " 3614 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3615 } 3616 3617 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3618 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n" 3619 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3620 3621 OS << " // Return a more specific error code if no mnemonics match.\n"; 3622 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3623 OS << " return Match_MnemonicFail;\n\n"; 3624 3625 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3626 << "*ie = MnemonicRange.second;\n"; 3627 OS << " it != ie; ++it) {\n"; 3628 OS << " const FeatureBitset &RequiredFeatures = " 3629 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3630 OS << " bool HasRequiredFeatures =\n"; 3631 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3632 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3633 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3634 3635 if (ReportMultipleNearMisses) { 3636 OS << " // Some state to record ways in which this instruction did not match.\n"; 3637 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3638 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3639 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3640 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3641 OS << " bool MultipleInvalidOperands = false;\n"; 3642 } 3643 3644 if (HasMnemonicFirst) { 3645 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3646 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3647 } 3648 3649 // Emit check that the subclasses match. 3650 if (!ReportMultipleNearMisses) 3651 OS << " bool OperandsValid = true;\n"; 3652 if (HasOptionalOperands) { 3653 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3654 } 3655 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3656 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3657 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3658 OS << " auto Formal = " 3659 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3660 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3661 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3662 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3663 OS << " if (ActualIdx < Operands.size())\n"; 3664 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3665 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3666 OS << " else\n"; 3667 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3668 OS << " if (ActualIdx >= Operands.size()) {\n"; 3669 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; 3670 if (ReportMultipleNearMisses) { 3671 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3672 "isSubclass(Formal, OptionalMatchClass);\n"; 3673 OS << " if (!ThisOperandValid) {\n"; 3674 OS << " if (!OperandNearMiss) {\n"; 3675 OS << " // Record info about match failure for later use.\n"; 3676 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3677 OS << " OperandNearMiss =\n"; 3678 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3679 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3680 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3681 OS << " DEBUG_WITH_TYPE(\n"; 3682 OS << " \"asm-matcher\",\n"; 3683 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3684 OS << " MultipleInvalidOperands = true;\n"; 3685 OS << " break;\n"; 3686 OS << " }\n"; 3687 OS << " } else {\n"; 3688 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; 3689 OS << " break;\n"; 3690 OS << " }\n"; 3691 OS << " continue;\n"; 3692 } else { 3693 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; 3694 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3695 if (HasOptionalOperands) { 3696 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3697 << ");\n"; 3698 } 3699 OS << " break;\n"; 3700 } 3701 OS << " }\n"; 3702 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3703 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3704 OS << " if (Diag == Match_Success) {\n"; 3705 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3706 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3707 OS << " ++ActualIdx;\n"; 3708 OS << " continue;\n"; 3709 OS << " }\n"; 3710 OS << " // If the generic handler indicates an invalid operand\n"; 3711 OS << " // failure, check for a special case.\n"; 3712 OS << " if (Diag != Match_Success) {\n"; 3713 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3714 OS << " if (TargetDiag == Match_Success) {\n"; 3715 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3716 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3717 OS << " ++ActualIdx;\n"; 3718 OS << " continue;\n"; 3719 OS << " }\n"; 3720 OS << " // If the target matcher returned a specific error code use\n"; 3721 OS << " // that, else use the one from the generic matcher.\n"; 3722 OS << " if (TargetDiag != Match_InvalidOperand && " 3723 "HasRequiredFeatures)\n"; 3724 OS << " Diag = TargetDiag;\n"; 3725 OS << " }\n"; 3726 OS << " // If current formal operand wasn't matched and it is optional\n" 3727 << " // then try to match next formal operand\n"; 3728 OS << " if (Diag == Match_InvalidOperand " 3729 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3730 if (HasOptionalOperands) { 3731 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3732 } 3733 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3734 OS << " continue;\n"; 3735 OS << " }\n"; 3736 3737 if (ReportMultipleNearMisses) { 3738 OS << " if (!OperandNearMiss) {\n"; 3739 OS << " // If this is the first invalid operand we have seen, record some\n"; 3740 OS << " // information about it.\n"; 3741 OS << " DEBUG_WITH_TYPE(\n"; 3742 OS << " \"asm-matcher\",\n"; 3743 OS << " dbgs()\n"; 3744 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3745 OS << " << Diag << \"\\n\");\n"; 3746 OS << " OperandNearMiss =\n"; 3747 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3748 OS << " ++ActualIdx;\n"; 3749 OS << " } else {\n"; 3750 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3751 OS << " DEBUG_WITH_TYPE(\n"; 3752 OS << " \"asm-matcher\",\n"; 3753 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3754 OS << " MultipleInvalidOperands = true;\n"; 3755 OS << " break;\n"; 3756 OS << " }\n"; 3757 OS << " }\n\n"; 3758 } else { 3759 OS << " // If this operand is broken for all of the instances of this\n"; 3760 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3761 OS << " // If we already had a match that only failed due to a\n"; 3762 OS << " // target predicate, that diagnostic is preferred.\n"; 3763 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3764 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3765 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3766 "!= Match_InvalidOperand))\n"; 3767 OS << " RetCode = Diag;\n"; 3768 OS << " ErrorInfo = ActualIdx;\n"; 3769 OS << " }\n"; 3770 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3771 OS << " OperandsValid = false;\n"; 3772 OS << " break;\n"; 3773 OS << " }\n\n"; 3774 } 3775 3776 if (ReportMultipleNearMisses) 3777 OS << " if (MultipleInvalidOperands) {\n"; 3778 else 3779 OS << " if (!OperandsValid) {\n"; 3780 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3781 OS << " \"operand mismatches, ignoring \"\n"; 3782 OS << " \"this opcode\\n\");\n"; 3783 OS << " continue;\n"; 3784 OS << " }\n"; 3785 3786 // Emit check that the required features are available. 3787 OS << " if (!HasRequiredFeatures) {\n"; 3788 if (!ReportMultipleNearMisses) 3789 OS << " HadMatchOtherThanFeatures = true;\n"; 3790 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3791 "~AvailableFeatures;\n"; 3792 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; 3793 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; 3794 OS << " if (NewMissingFeatures[I])\n"; 3795 OS << " dbgs() << ' ' << I;\n"; 3796 OS << " dbgs() << \"\\n\");\n"; 3797 if (ReportMultipleNearMisses) { 3798 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3799 } else { 3800 OS << " if (NewMissingFeatures.count() <=\n" 3801 " MissingFeatures.count())\n"; 3802 OS << " MissingFeatures = NewMissingFeatures;\n"; 3803 OS << " continue;\n"; 3804 } 3805 OS << " }\n"; 3806 OS << "\n"; 3807 OS << " Inst.clear();\n\n"; 3808 OS << " Inst.setOpcode(it->Opcode);\n"; 3809 // Verify the instruction with the target-specific match predicate function. 3810 OS << " // We have a potential match but have not rendered the operands.\n" 3811 << " // Check the target predicate to handle any context sensitive\n" 3812 " // constraints.\n" 3813 << " // For example, Ties that are referenced multiple times must be\n" 3814 " // checked here to ensure the input is the same for each match\n" 3815 " // constraints. If we leave it any later the ties will have been\n" 3816 " // canonicalized\n" 3817 << " unsigned MatchResult;\n" 3818 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3819 "Operands)) != Match_Success) {\n" 3820 << " Inst.clear();\n"; 3821 OS << " DEBUG_WITH_TYPE(\n"; 3822 OS << " \"asm-matcher\",\n"; 3823 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3824 OS << " << MatchResult << \"\\n\");\n"; 3825 if (ReportMultipleNearMisses) { 3826 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3827 } else { 3828 OS << " RetCode = MatchResult;\n" 3829 << " HadMatchOtherThanPredicate = true;\n" 3830 << " continue;\n"; 3831 } 3832 OS << " }\n\n"; 3833 3834 if (ReportMultipleNearMisses) { 3835 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3836 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3837 OS << " if (OperandNearMiss) {\n"; 3838 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3839 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3840 OS << " DEBUG_WITH_TYPE(\n"; 3841 OS << " \"asm-matcher\",\n"; 3842 OS << " dbgs()\n"; 3843 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3844 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3845 OS << " } else {\n"; 3846 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3847 OS << " \"types of mismatch, so not \"\n"; 3848 OS << " \"reporting near-miss\\n\");\n"; 3849 OS << " }\n"; 3850 OS << " continue;\n"; 3851 OS << " }\n\n"; 3852 } 3853 3854 OS << " if (matchingInlineAsm) {\n"; 3855 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3856 if (!ReportMultipleNearMisses) { 3857 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3858 "Operands, ErrorInfo))\n"; 3859 OS << " return Match_InvalidTiedOperand;\n"; 3860 OS << "\n"; 3861 } 3862 OS << " return Match_Success;\n"; 3863 OS << " }\n\n"; 3864 OS << " // We have selected a definite instruction, convert the parsed\n" 3865 << " // operands into the appropriate MCInst.\n"; 3866 if (HasOptionalOperands) { 3867 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3868 << " OptionalOperandsMask);\n"; 3869 } else { 3870 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3871 } 3872 OS << "\n"; 3873 3874 // Verify the instruction with the target-specific match predicate function. 3875 OS << " // We have a potential match. Check the target predicate to\n" 3876 << " // handle any context sensitive constraints.\n" 3877 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3878 << " Match_Success) {\n" 3879 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3880 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3881 << " << MatchResult << \"\\n\");\n" 3882 << " Inst.clear();\n"; 3883 if (ReportMultipleNearMisses) { 3884 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3885 } else { 3886 OS << " RetCode = MatchResult;\n" 3887 << " HadMatchOtherThanPredicate = true;\n" 3888 << " continue;\n"; 3889 } 3890 OS << " }\n\n"; 3891 3892 if (ReportMultipleNearMisses) { 3893 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3894 OS << " (int)(bool)FeaturesNearMiss +\n"; 3895 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3896 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3897 OS << " if (NumNearMisses == 1) {\n"; 3898 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3899 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3900 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3901 OS << " \"mismatch, so reporting a \"\n"; 3902 OS << " \"near-miss\\n\");\n"; 3903 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3904 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3905 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3906 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3907 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3908 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3909 OS << "\n"; 3910 OS << " continue;\n"; 3911 OS << " } else if (NumNearMisses > 1) {\n"; 3912 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3913 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3914 OS << " \"types of mismatch, so not \"\n"; 3915 OS << " \"reporting near-miss\\n\");\n"; 3916 OS << " continue;\n"; 3917 OS << " }\n"; 3918 } 3919 3920 // Call the post-processing function, if used. 3921 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3922 if (!InsnCleanupFn.empty()) 3923 OS << " " << InsnCleanupFn << "(Inst);\n"; 3924 3925 if (HasDeprecation) { 3926 OS << " std::string Info;\n"; 3927 OS << " if (!getParser().getTargetParser().getTargetOptions().MCNoDeprecatedWarn &&\n"; 3928 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3929 OS << " SMLoc Loc = ((" << Target.getName() 3930 << "Operand &)*Operands[0]).getStartLoc();\n"; 3931 OS << " getParser().Warning(Loc, Info, None);\n"; 3932 OS << " }\n"; 3933 } 3934 3935 if (!ReportMultipleNearMisses) { 3936 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3937 "Operands, ErrorInfo))\n"; 3938 OS << " return Match_InvalidTiedOperand;\n"; 3939 OS << "\n"; 3940 } 3941 3942 OS << " DEBUG_WITH_TYPE(\n"; 3943 OS << " \"asm-matcher\",\n"; 3944 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3945 OS << " return Match_Success;\n"; 3946 OS << " }\n\n"; 3947 3948 if (ReportMultipleNearMisses) { 3949 OS << " // No instruction variants matched exactly.\n"; 3950 OS << " return Match_NearMisses;\n"; 3951 } else { 3952 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3953 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3954 OS << " return RetCode;\n\n"; 3955 OS << " ErrorInfo = 0;\n"; 3956 OS << " return Match_MissingFeature;\n"; 3957 } 3958 OS << "}\n\n"; 3959 3960 if (!Info.OperandMatchInfo.empty()) 3961 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3962 MaxMnemonicIndex, FeatureBitsets.size(), 3963 HasMnemonicFirst); 3964 3965 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3966 3967 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3968 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3969 3970 emitMnemonicSpellChecker(OS, Target, VariantCount); 3971 3972 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3973 3974 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n"; 3975 OS << "#undef GET_MNEMONIC_CHECKER\n\n"; 3976 3977 emitMnemonicChecker(OS, Target, VariantCount, 3978 HasMnemonicFirst, HasMnemonicAliases); 3979 3980 OS << "#endif // GET_MNEMONIC_CHECKER\n\n"; 3981 } 3982 3983 namespace llvm { 3984 3985 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3986 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3987 AsmMatcherEmitter(RK).run(OS); 3988 } 3989 3990 } // end namespace llvm 3991