1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "Common/CodeGenInstAlias.h" 99 #include "Common/CodeGenInstruction.h" 100 #include "Common/CodeGenRegisters.h" 101 #include "Common/CodeGenTarget.h" 102 #include "Common/SubtargetFeatureInfo.h" 103 #include "Common/Types.h" 104 #include "llvm/ADT/CachedHashString.h" 105 #include "llvm/ADT/PointerUnion.h" 106 #include "llvm/ADT/STLExtras.h" 107 #include "llvm/ADT/SmallPtrSet.h" 108 #include "llvm/ADT/SmallVector.h" 109 #include "llvm/ADT/StringExtras.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/TableGen/Error.h" 114 #include "llvm/TableGen/Record.h" 115 #include "llvm/TableGen/StringMatcher.h" 116 #include "llvm/TableGen/StringToOffsetTable.h" 117 #include "llvm/TableGen/TableGenBackend.h" 118 #include <cassert> 119 #include <cctype> 120 #include <forward_list> 121 #include <map> 122 #include <set> 123 124 using namespace llvm; 125 126 #define DEBUG_TYPE "asm-matcher-emitter" 127 128 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 129 130 static cl::opt<std::string> 131 MatchPrefix("match-prefix", cl::init(""), 132 cl::desc("Only match instructions with the given prefix"), 133 cl::cat(AsmMatcherEmitterCat)); 134 135 namespace { 136 class AsmMatcherInfo; 137 138 // Register sets are used as keys in some second-order sets TableGen creates 139 // when generating its data structures. This means that the order of two 140 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 141 // can even affect compiler output (at least seen in diagnostics produced when 142 // all matches fail). So we use a type that sorts them consistently. 143 typedef std::set<Record *, LessRecordByID> RegisterSet; 144 145 class AsmMatcherEmitter { 146 RecordKeeper &Records; 147 148 public: 149 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 150 151 void run(raw_ostream &o); 152 }; 153 154 /// ClassInfo - Helper class for storing the information about a particular 155 /// class of operands which can be matched. 156 struct ClassInfo { 157 enum ClassInfoKind { 158 /// Invalid kind, for use as a sentinel value. 159 Invalid = 0, 160 161 /// The class for a particular token. 162 Token, 163 164 /// The (first) register class, subsequent register classes are 165 /// RegisterClass0+1, and so on. 166 RegisterClass0, 167 168 /// The (first) user defined class, subsequent user defined classes are 169 /// UserClass0+1, and so on. 170 UserClass0 = 1 << 16 171 }; 172 173 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 174 /// N) for the Nth user defined class. 175 unsigned Kind; 176 177 /// SuperClasses - The super classes of this class. Note that for simplicities 178 /// sake user operands only record their immediate super class, while register 179 /// operands include all superclasses. 180 std::vector<ClassInfo *> SuperClasses; 181 182 /// Name - The full class name, suitable for use in an enum. 183 std::string Name; 184 185 /// ClassName - The unadorned generic name for this class (e.g., Token). 186 std::string ClassName; 187 188 /// ValueName - The name of the value this class represents; for a token this 189 /// is the literal token string, for an operand it is the TableGen class (or 190 /// empty if this is a derived class). 191 std::string ValueName; 192 193 /// PredicateMethod - The name of the operand method to test whether the 194 /// operand matches this class; this is not valid for Token or register kinds. 195 std::string PredicateMethod; 196 197 /// RenderMethod - The name of the operand method to add this operand to an 198 /// MCInst; this is not valid for Token or register kinds. 199 std::string RenderMethod; 200 201 /// ParserMethod - The name of the operand method to do a target specific 202 /// parsing on the operand. 203 std::string ParserMethod; 204 205 /// For register classes: the records for all the registers in this class. 206 RegisterSet Registers; 207 208 /// For custom match classes: the diagnostic kind for when the predicate 209 /// fails. 210 std::string DiagnosticType; 211 212 /// For custom match classes: the diagnostic string for when the predicate 213 /// fails. 214 std::string DiagnosticString; 215 216 /// Is this operand optional and not always required. 217 bool IsOptional; 218 219 /// DefaultMethod - The name of the method that returns the default operand 220 /// for optional operand 221 std::string DefaultMethod; 222 223 public: 224 /// isRegisterClass() - Check if this is a register class. 225 bool isRegisterClass() const { 226 return Kind >= RegisterClass0 && Kind < UserClass0; 227 } 228 229 /// isUserClass() - Check if this is a user defined class. 230 bool isUserClass() const { return Kind >= UserClass0; } 231 232 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 233 /// are related if they are in the same class hierarchy. 234 bool isRelatedTo(const ClassInfo &RHS) const { 235 // Tokens are only related to tokens. 236 if (Kind == Token || RHS.Kind == Token) 237 return Kind == Token && RHS.Kind == Token; 238 239 // Registers classes are only related to registers classes, and only if 240 // their intersection is non-empty. 241 if (isRegisterClass() || RHS.isRegisterClass()) { 242 if (!isRegisterClass() || !RHS.isRegisterClass()) 243 return false; 244 245 std::vector<Record *> Tmp; 246 std::set_intersection(Registers.begin(), Registers.end(), 247 RHS.Registers.begin(), RHS.Registers.end(), 248 std::back_inserter(Tmp), LessRecordByID()); 249 250 return !Tmp.empty(); 251 } 252 253 // Otherwise we have two users operands; they are related if they are in the 254 // same class hierarchy. 255 // 256 // FIXME: This is an oversimplification, they should only be related if they 257 // intersect, however we don't have that information. 258 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 259 const ClassInfo *Root = this; 260 while (!Root->SuperClasses.empty()) 261 Root = Root->SuperClasses.front(); 262 263 const ClassInfo *RHSRoot = &RHS; 264 while (!RHSRoot->SuperClasses.empty()) 265 RHSRoot = RHSRoot->SuperClasses.front(); 266 267 return Root == RHSRoot; 268 } 269 270 /// isSubsetOf - Test whether this class is a subset of \p RHS. 271 bool isSubsetOf(const ClassInfo &RHS) const { 272 // This is a subset of RHS if it is the same class... 273 if (this == &RHS) 274 return true; 275 276 // ... or if any of its super classes are a subset of RHS. 277 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 278 SuperClasses.end()); 279 SmallPtrSet<const ClassInfo *, 16> Visited; 280 while (!Worklist.empty()) { 281 auto *CI = Worklist.pop_back_val(); 282 if (CI == &RHS) 283 return true; 284 for (auto *Super : CI->SuperClasses) 285 if (Visited.insert(Super).second) 286 Worklist.push_back(Super); 287 } 288 289 return false; 290 } 291 292 int getTreeDepth() const { 293 int Depth = 0; 294 const ClassInfo *Root = this; 295 while (!Root->SuperClasses.empty()) { 296 Depth++; 297 Root = Root->SuperClasses.front(); 298 } 299 return Depth; 300 } 301 302 const ClassInfo *findRoot() const { 303 const ClassInfo *Root = this; 304 while (!Root->SuperClasses.empty()) 305 Root = Root->SuperClasses.front(); 306 return Root; 307 } 308 309 /// Compare two classes. This does not produce a total ordering, but does 310 /// guarantee that subclasses are sorted before their parents, and that the 311 /// ordering is transitive. 312 bool operator<(const ClassInfo &RHS) const { 313 if (this == &RHS) 314 return false; 315 316 // First, enforce the ordering between the three different types of class. 317 // Tokens sort before registers, which sort before user classes. 318 if (Kind == Token) { 319 if (RHS.Kind != Token) 320 return true; 321 assert(RHS.Kind == Token); 322 } else if (isRegisterClass()) { 323 if (RHS.Kind == Token) 324 return false; 325 else if (RHS.isUserClass()) 326 return true; 327 assert(RHS.isRegisterClass()); 328 } else if (isUserClass()) { 329 if (!RHS.isUserClass()) 330 return false; 331 assert(RHS.isUserClass()); 332 } else { 333 llvm_unreachable("Unknown ClassInfoKind"); 334 } 335 336 if (Kind == Token || isUserClass()) { 337 // Related tokens and user classes get sorted by depth in the inheritence 338 // tree (so that subclasses are before their parents). 339 if (isRelatedTo(RHS)) { 340 if (getTreeDepth() > RHS.getTreeDepth()) 341 return true; 342 if (getTreeDepth() < RHS.getTreeDepth()) 343 return false; 344 } else { 345 // Unrelated tokens and user classes are ordered by the name of their 346 // root nodes, so that there is a consistent ordering between 347 // unconnected trees. 348 return findRoot()->ValueName < RHS.findRoot()->ValueName; 349 } 350 } else if (isRegisterClass()) { 351 // For register sets, sort by number of registers. This guarantees that 352 // a set will always sort before all of it's strict supersets. 353 if (Registers.size() != RHS.Registers.size()) 354 return Registers.size() < RHS.Registers.size(); 355 } else { 356 llvm_unreachable("Unknown ClassInfoKind"); 357 } 358 359 // FIXME: We should be able to just return false here, as we only need a 360 // partial order (we use stable sorts, so this is deterministic) and the 361 // name of a class shouldn't be significant. However, some of the backends 362 // accidentally rely on this behaviour, so it will have to stay like this 363 // until they are fixed. 364 return ValueName < RHS.ValueName; 365 } 366 }; 367 368 class AsmVariantInfo { 369 public: 370 StringRef RegisterPrefix; 371 StringRef TokenizingCharacters; 372 StringRef SeparatorCharacters; 373 StringRef BreakCharacters; 374 StringRef Name; 375 int AsmVariantNo; 376 }; 377 378 bool getPreferSmallerInstructions(CodeGenTarget const &Target) { 379 return Target.getAsmParser()->getValueAsBit("PreferSmallerInstructions"); 380 } 381 382 /// MatchableInfo - Helper class for storing the necessary information for an 383 /// instruction or alias which is capable of being matched. 384 struct MatchableInfo { 385 struct AsmOperand { 386 /// Token - This is the token that the operand came from. 387 StringRef Token; 388 389 /// The unique class instance this operand should match. 390 ClassInfo *Class; 391 392 /// The operand name this is, if anything. 393 StringRef SrcOpName; 394 395 /// The operand name this is, before renaming for tied operands. 396 StringRef OrigSrcOpName; 397 398 /// The suboperand index within SrcOpName, or -1 for the entire operand. 399 int SubOpIdx; 400 401 /// Whether the token is "isolated", i.e., it is preceded and followed 402 /// by separators. 403 bool IsIsolatedToken; 404 405 /// Register record if this token is singleton register. 406 Record *SingletonReg; 407 408 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 409 : Token(T), Class(nullptr), SubOpIdx(-1), 410 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 411 }; 412 413 /// ResOperand - This represents a single operand in the result instruction 414 /// generated by the match. In cases (like addressing modes) where a single 415 /// assembler operand expands to multiple MCOperands, this represents the 416 /// single assembler operand, not the MCOperand. 417 struct ResOperand { 418 enum { 419 /// RenderAsmOperand - This represents an operand result that is 420 /// generated by calling the render method on the assembly operand. The 421 /// corresponding AsmOperand is specified by AsmOperandNum. 422 RenderAsmOperand, 423 424 /// TiedOperand - This represents a result operand that is a duplicate of 425 /// a previous result operand. 426 TiedOperand, 427 428 /// ImmOperand - This represents an immediate value that is dumped into 429 /// the operand. 430 ImmOperand, 431 432 /// RegOperand - This represents a fixed register that is dumped in. 433 RegOperand 434 } Kind; 435 436 /// Tuple containing the index of the (earlier) result operand that should 437 /// be copied from, as well as the indices of the corresponding (parsed) 438 /// operands in the asm string. 439 struct TiedOperandsTuple { 440 unsigned ResOpnd; 441 unsigned SrcOpnd1Idx; 442 unsigned SrcOpnd2Idx; 443 }; 444 445 union { 446 /// This is the operand # in the AsmOperands list that this should be 447 /// copied from. 448 unsigned AsmOperandNum; 449 450 /// Description of tied operands. 451 TiedOperandsTuple TiedOperands; 452 453 /// ImmVal - This is the immediate value added to the instruction. 454 int64_t ImmVal; 455 456 /// Register - This is the register record. 457 Record *Register; 458 }; 459 460 /// MINumOperands - The number of MCInst operands populated by this 461 /// operand. 462 unsigned MINumOperands; 463 464 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 465 ResOperand X; 466 X.Kind = RenderAsmOperand; 467 X.AsmOperandNum = AsmOpNum; 468 X.MINumOperands = NumOperands; 469 return X; 470 } 471 472 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 473 unsigned SrcOperand2) { 474 ResOperand X; 475 X.Kind = TiedOperand; 476 X.TiedOperands = {TiedOperandNum, SrcOperand1, SrcOperand2}; 477 X.MINumOperands = 1; 478 return X; 479 } 480 481 static ResOperand getImmOp(int64_t Val) { 482 ResOperand X; 483 X.Kind = ImmOperand; 484 X.ImmVal = Val; 485 X.MINumOperands = 1; 486 return X; 487 } 488 489 static ResOperand getRegOp(Record *Reg) { 490 ResOperand X; 491 X.Kind = RegOperand; 492 X.Register = Reg; 493 X.MINumOperands = 1; 494 return X; 495 } 496 }; 497 498 /// AsmVariantID - Target's assembly syntax variant no. 499 int AsmVariantID; 500 501 /// AsmString - The assembly string for this instruction (with variants 502 /// removed), e.g. "movsx $src, $dst". 503 std::string AsmString; 504 505 /// TheDef - This is the definition of the instruction or InstAlias that this 506 /// matchable came from. 507 Record *const TheDef; 508 509 // ResInstSize - The size of the resulting instruction for this matchable. 510 unsigned ResInstSize; 511 512 /// DefRec - This is the definition that it came from. 513 PointerUnion<const CodeGenInstruction *, const CodeGenInstAlias *> DefRec; 514 515 const CodeGenInstruction *getResultInst() const { 516 if (isa<const CodeGenInstruction *>(DefRec)) 517 return cast<const CodeGenInstruction *>(DefRec); 518 return cast<const CodeGenInstAlias *>(DefRec)->ResultInst; 519 } 520 521 /// ResOperands - This is the operand list that should be built for the result 522 /// MCInst. 523 SmallVector<ResOperand, 8> ResOperands; 524 525 /// Mnemonic - This is the first token of the matched instruction, its 526 /// mnemonic. 527 StringRef Mnemonic; 528 529 /// AsmOperands - The textual operands that this instruction matches, 530 /// annotated with a class and where in the OperandList they were defined. 531 /// This directly corresponds to the tokenized AsmString after the mnemonic is 532 /// removed. 533 SmallVector<AsmOperand, 8> AsmOperands; 534 535 /// Predicates - The required subtarget features to match this instruction. 536 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 537 538 /// ConversionFnKind - The enum value which is passed to the generated 539 /// convertToMCInst to convert parsed operands into an MCInst for this 540 /// function. 541 std::string ConversionFnKind; 542 543 /// If this instruction is deprecated in some form. 544 bool HasDeprecation = false; 545 546 /// If this is an alias, this is use to determine whether or not to using 547 /// the conversion function defined by the instruction's AsmMatchConverter 548 /// or to use the function generated by the alias. 549 bool UseInstAsmMatchConverter; 550 551 MatchableInfo(const CodeGenInstruction &CGI) 552 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), 553 ResInstSize(TheDef->getValueAsInt("Size")), DefRec(&CGI), 554 UseInstAsmMatchConverter(true) {} 555 556 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 557 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 558 ResInstSize(Alias->ResultInst->TheDef->getValueAsInt("Size")), 559 DefRec(Alias.release()), UseInstAsmMatchConverter(TheDef->getValueAsBit( 560 "UseInstAsmMatchConverter")) {} 561 562 // Could remove this and the dtor if PointerUnion supported unique_ptr 563 // elements with a dynamic failure/assertion (like the one below) in the case 564 // where it was copied while being in an owning state. 565 MatchableInfo(const MatchableInfo &RHS) 566 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 567 TheDef(RHS.TheDef), ResInstSize(RHS.ResInstSize), DefRec(RHS.DefRec), 568 ResOperands(RHS.ResOperands), Mnemonic(RHS.Mnemonic), 569 AsmOperands(RHS.AsmOperands), RequiredFeatures(RHS.RequiredFeatures), 570 ConversionFnKind(RHS.ConversionFnKind), 571 HasDeprecation(RHS.HasDeprecation), 572 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 573 assert(!isa<const CodeGenInstAlias *>(DefRec)); 574 } 575 576 ~MatchableInfo() { 577 delete dyn_cast_if_present<const CodeGenInstAlias *>(DefRec); 578 } 579 580 // Two-operand aliases clone from the main matchable, but mark the second 581 // operand as a tied operand of the first for purposes of the assembler. 582 void formTwoOperandAlias(StringRef Constraint); 583 584 void initialize(const AsmMatcherInfo &Info, 585 SmallPtrSetImpl<Record *> &SingletonRegisters, 586 AsmVariantInfo const &Variant, bool HasMnemonicFirst); 587 588 /// validate - Return true if this matchable is a valid thing to match against 589 /// and perform a bunch of validity checking. 590 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 591 592 /// findAsmOperand - Find the AsmOperand with the specified name and 593 /// suboperand index. 594 int findAsmOperand(StringRef N, int SubOpIdx) const { 595 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 596 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 597 }); 598 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 599 } 600 601 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 602 /// This does not check the suboperand index. 603 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 604 auto I = 605 llvm::find_if(llvm::drop_begin(AsmOperands, LastIdx + 1), 606 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 607 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 608 } 609 610 int findAsmOperandOriginallyNamed(StringRef N) const { 611 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 612 return Op.OrigSrcOpName == N; 613 }); 614 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 615 } 616 617 void buildInstructionResultOperands(); 618 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 619 620 /// shouldBeMatchedBefore - Compare two matchables for ordering. 621 bool shouldBeMatchedBefore(const MatchableInfo &RHS, 622 bool PreferSmallerInstructions) const { 623 // The primary comparator is the instruction mnemonic. 624 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic)) 625 return Cmp == -1; 626 627 // (Optionally) Order by the resultant instuctions size. 628 // eg. for ARM thumb instructions smaller encodings should be preferred. 629 if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize) 630 return ResInstSize < RHS.ResInstSize; 631 632 if (AsmOperands.size() != RHS.AsmOperands.size()) 633 return AsmOperands.size() < RHS.AsmOperands.size(); 634 635 // Compare lexicographically by operand. The matcher validates that other 636 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 637 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 638 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 639 return true; 640 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 641 return false; 642 } 643 644 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the 645 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead 646 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID. 647 // We use the ID to sort AVX instruction before AVX512 instruction in 648 // matching table. As well as InstAlias. 649 if (getResultInst()->TheDef->isSubClassOf("Instruction") && 650 getResultInst()->TheDef->getValueAsBit("HasPositionOrder") && 651 RHS.getResultInst()->TheDef->isSubClassOf("Instruction") && 652 RHS.getResultInst()->TheDef->getValueAsBit("HasPositionOrder")) 653 return getResultInst()->TheDef->getID() < 654 RHS.getResultInst()->TheDef->getID(); 655 656 // Give matches that require more features higher precedence. This is useful 657 // because we cannot define AssemblerPredicates with the negation of 658 // processor features. For example, ARM v6 "nop" may be either a HINT or 659 // MOV. With v6, we want to match HINT. The assembler has no way to 660 // predicate MOV under "NoV6", but HINT will always match first because it 661 // requires V6 while MOV does not. 662 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 663 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 664 665 return false; 666 } 667 668 /// couldMatchAmbiguouslyWith - Check whether this matchable could 669 /// ambiguously match the same set of operands as \p RHS (without being a 670 /// strictly superior match). 671 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS, 672 bool PreferSmallerInstructions) const { 673 // The primary comparator is the instruction mnemonic. 674 if (Mnemonic != RHS.Mnemonic) 675 return false; 676 677 // Different variants can't conflict. 678 if (AsmVariantID != RHS.AsmVariantID) 679 return false; 680 681 // The size of instruction is unambiguous. 682 if (PreferSmallerInstructions && ResInstSize != RHS.ResInstSize) 683 return false; 684 685 // The number of operands is unambiguous. 686 if (AsmOperands.size() != RHS.AsmOperands.size()) 687 return false; 688 689 // Otherwise, make sure the ordering of the two instructions is unambiguous 690 // by checking that either (a) a token or operand kind discriminates them, 691 // or (b) the ordering among equivalent kinds is consistent. 692 693 // Tokens and operand kinds are unambiguous (assuming a correct target 694 // specific parser). 695 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 696 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 697 AsmOperands[i].Class->Kind == ClassInfo::Token) 698 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 699 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 700 return false; 701 702 // Otherwise, this operand could commute if all operands are equivalent, or 703 // there is a pair of operands that compare less than and a pair that 704 // compare greater than. 705 bool HasLT = false, HasGT = false; 706 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 707 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 708 HasLT = true; 709 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 710 HasGT = true; 711 } 712 713 return HasLT == HasGT; 714 } 715 716 void dump() const; 717 718 private: 719 void tokenizeAsmString(AsmMatcherInfo const &Info, 720 AsmVariantInfo const &Variant); 721 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 722 }; 723 724 struct OperandMatchEntry { 725 unsigned OperandMask; 726 const MatchableInfo *MI; 727 ClassInfo *CI; 728 729 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 730 unsigned opMask) { 731 OperandMatchEntry X; 732 X.OperandMask = opMask; 733 X.CI = ci; 734 X.MI = mi; 735 return X; 736 } 737 }; 738 739 class AsmMatcherInfo { 740 public: 741 /// Tracked Records 742 RecordKeeper &Records; 743 744 /// The tablegen AsmParser record. 745 Record *AsmParser; 746 747 /// Target - The target information. 748 CodeGenTarget &Target; 749 750 /// The classes which are needed for matching. 751 std::forward_list<ClassInfo> Classes; 752 753 /// The information on the matchables to match. 754 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 755 756 /// Info for custom matching operands by user defined methods. 757 std::vector<OperandMatchEntry> OperandMatchInfo; 758 759 /// Map of Register records to their class information. 760 typedef std::map<Record *, ClassInfo *, LessRecordByID> RegisterClassesTy; 761 RegisterClassesTy RegisterClasses; 762 763 /// Map of Predicate records to their subtarget information. 764 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 765 766 /// Map of AsmOperandClass records to their class information. 767 std::map<Record *, ClassInfo *> AsmOperandClasses; 768 769 /// Map of RegisterClass records to their class information. 770 std::map<Record *, ClassInfo *> RegisterClassClasses; 771 772 private: 773 /// Map of token to class information which has already been constructed. 774 std::map<std::string, ClassInfo *> TokenClasses; 775 776 private: 777 /// getTokenClass - Lookup or create the class for the given token. 778 ClassInfo *getTokenClass(StringRef Token); 779 780 /// getOperandClass - Lookup or create the class for the given operand. 781 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 782 int SubOpIdx); 783 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 784 785 /// buildRegisterClasses - Build the ClassInfo* instances for register 786 /// classes. 787 void buildRegisterClasses(SmallPtrSetImpl<Record *> &SingletonRegisters); 788 789 /// buildOperandClasses - Build the ClassInfo* instances for user defined 790 /// operand classes. 791 void buildOperandClasses(); 792 793 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 794 unsigned AsmOpIdx); 795 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 796 MatchableInfo::AsmOperand &Op); 797 798 public: 799 AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target, 800 RecordKeeper &Records); 801 802 /// Construct the various tables used during matching. 803 void buildInfo(); 804 805 /// buildOperandMatchInfo - Build the necessary information to handle user 806 /// defined operand parsing methods. 807 void buildOperandMatchInfo(); 808 809 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 810 /// given operand. 811 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 812 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 813 const auto &I = SubtargetFeatures.find(Def); 814 return I == SubtargetFeatures.end() ? nullptr : &I->second; 815 } 816 817 RecordKeeper &getRecords() const { return Records; } 818 819 bool hasOptionalOperands() const { 820 return any_of(Classes, 821 [](const ClassInfo &Class) { return Class.IsOptional; }); 822 } 823 }; 824 825 } // end anonymous namespace 826 827 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 828 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 829 errs() << TheDef->getName() << " -- " 830 << "flattened:\"" << AsmString << "\"\n"; 831 832 errs() << " variant: " << AsmVariantID << "\n"; 833 834 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 835 const AsmOperand &Op = AsmOperands[i]; 836 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 837 errs() << '\"' << Op.Token << "\"\n"; 838 } 839 } 840 #endif 841 842 static std::pair<StringRef, StringRef> 843 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 844 // Split via the '='. 845 std::pair<StringRef, StringRef> Ops = S.split('='); 846 if (Ops.second == "") 847 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 848 // Trim whitespace and the leading '$' on the operand names. 849 size_t start = Ops.first.find_first_of('$'); 850 if (start == std::string::npos) 851 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 852 Ops.first = Ops.first.slice(start + 1, std::string::npos); 853 size_t end = Ops.first.find_last_of(" \t"); 854 Ops.first = Ops.first.slice(0, end); 855 // Now the second operand. 856 start = Ops.second.find_first_of('$'); 857 if (start == std::string::npos) 858 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 859 Ops.second = Ops.second.slice(start + 1, std::string::npos); 860 end = Ops.second.find_last_of(" \t"); 861 Ops.first = Ops.first.slice(0, end); 862 return Ops; 863 } 864 865 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 866 // Figure out which operands are aliased and mark them as tied. 867 std::pair<StringRef, StringRef> Ops = 868 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 869 870 // Find the AsmOperands that refer to the operands we're aliasing. 871 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 872 int DstAsmOperand = findAsmOperandNamed(Ops.second); 873 if (SrcAsmOperand == -1) 874 PrintFatalError(TheDef->getLoc(), 875 "unknown source two-operand alias operand '" + Ops.first + 876 "'."); 877 if (DstAsmOperand == -1) 878 PrintFatalError(TheDef->getLoc(), 879 "unknown destination two-operand alias operand '" + 880 Ops.second + "'."); 881 882 // Find the ResOperand that refers to the operand we're aliasing away 883 // and update it to refer to the combined operand instead. 884 for (ResOperand &Op : ResOperands) { 885 if (Op.Kind == ResOperand::RenderAsmOperand && 886 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 887 Op.AsmOperandNum = DstAsmOperand; 888 break; 889 } 890 } 891 // Remove the AsmOperand for the alias operand. 892 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 893 // Adjust the ResOperand references to any AsmOperands that followed 894 // the one we just deleted. 895 for (ResOperand &Op : ResOperands) { 896 switch (Op.Kind) { 897 default: 898 // Nothing to do for operands that don't reference AsmOperands. 899 break; 900 case ResOperand::RenderAsmOperand: 901 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 902 --Op.AsmOperandNum; 903 break; 904 } 905 } 906 } 907 908 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 909 /// if present, from specified token. 910 static void extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 911 const AsmMatcherInfo &Info, 912 StringRef RegisterPrefix) { 913 StringRef Tok = Op.Token; 914 915 // If this token is not an isolated token, i.e., it isn't separated from 916 // other tokens (e.g. with whitespace), don't interpret it as a register name. 917 if (!Op.IsIsolatedToken) 918 return; 919 920 if (RegisterPrefix.empty()) { 921 std::string LoweredTok = Tok.lower(); 922 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 923 Op.SingletonReg = Reg->TheDef; 924 return; 925 } 926 927 if (!Tok.starts_with(RegisterPrefix)) 928 return; 929 930 StringRef RegName = Tok.substr(RegisterPrefix.size()); 931 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 932 Op.SingletonReg = Reg->TheDef; 933 934 // If there is no register prefix (i.e. "%" in "%eax"), then this may 935 // be some random non-register token, just ignore it. 936 } 937 938 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 939 SmallPtrSetImpl<Record *> &SingletonRegisters, 940 AsmVariantInfo const &Variant, 941 bool HasMnemonicFirst) { 942 AsmVariantID = Variant.AsmVariantNo; 943 AsmString = CodeGenInstruction::FlattenAsmStringVariants( 944 AsmString, Variant.AsmVariantNo); 945 946 tokenizeAsmString(Info, Variant); 947 948 // The first token of the instruction is the mnemonic, which must be a 949 // simple string, not a $foo variable or a singleton register. 950 if (AsmOperands.empty()) 951 PrintFatalError(TheDef->getLoc(), 952 "Instruction '" + TheDef->getName() + "' has no tokens"); 953 954 assert(!AsmOperands[0].Token.empty()); 955 if (HasMnemonicFirst) { 956 Mnemonic = AsmOperands[0].Token; 957 if (Mnemonic[0] == '$') 958 PrintFatalError(TheDef->getLoc(), 959 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 960 961 // Remove the first operand, it is tracked in the mnemonic field. 962 AsmOperands.erase(AsmOperands.begin()); 963 } else if (AsmOperands[0].Token[0] != '$') 964 Mnemonic = AsmOperands[0].Token; 965 966 // Compute the require features. 967 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 968 if (const SubtargetFeatureInfo *Feature = 969 Info.getSubtargetFeature(Predicate)) 970 RequiredFeatures.push_back(Feature); 971 972 // Collect singleton registers, if used. 973 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 974 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 975 if (Record *Reg = Op.SingletonReg) 976 SingletonRegisters.insert(Reg); 977 } 978 979 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 980 if (!DepMask) 981 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 982 983 HasDeprecation = 984 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 985 } 986 987 /// Append an AsmOperand for the given substring of AsmString. 988 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 989 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 990 } 991 992 /// tokenizeAsmString - Tokenize a simplified assembly string. 993 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 994 AsmVariantInfo const &Variant) { 995 StringRef String = AsmString; 996 size_t Prev = 0; 997 bool InTok = false; 998 bool IsIsolatedToken = true; 999 for (size_t i = 0, e = String.size(); i != e; ++i) { 1000 char Char = String[i]; 1001 if (Variant.BreakCharacters.contains(Char)) { 1002 if (InTok) { 1003 addAsmOperand(String.slice(Prev, i), false); 1004 Prev = i; 1005 IsIsolatedToken = false; 1006 } 1007 InTok = true; 1008 continue; 1009 } 1010 if (Variant.TokenizingCharacters.contains(Char)) { 1011 if (InTok) { 1012 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1013 InTok = false; 1014 IsIsolatedToken = false; 1015 } 1016 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1017 Prev = i + 1; 1018 IsIsolatedToken = true; 1019 continue; 1020 } 1021 if (Variant.SeparatorCharacters.contains(Char)) { 1022 if (InTok) { 1023 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1024 InTok = false; 1025 } 1026 Prev = i + 1; 1027 IsIsolatedToken = true; 1028 continue; 1029 } 1030 1031 switch (Char) { 1032 case '\\': 1033 if (InTok) { 1034 addAsmOperand(String.slice(Prev, i), false); 1035 InTok = false; 1036 IsIsolatedToken = false; 1037 } 1038 ++i; 1039 assert(i != String.size() && "Invalid quoted character"); 1040 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1041 Prev = i + 1; 1042 IsIsolatedToken = false; 1043 break; 1044 1045 case '$': { 1046 if (InTok) { 1047 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1048 InTok = false; 1049 IsIsolatedToken = false; 1050 } 1051 1052 // If this isn't "${", start new identifier looking like "$xxx" 1053 if (i + 1 == String.size() || String[i + 1] != '{') { 1054 Prev = i; 1055 break; 1056 } 1057 1058 size_t EndPos = String.find('}', i); 1059 assert(EndPos != StringRef::npos && 1060 "Missing brace in operand reference!"); 1061 addAsmOperand(String.slice(i, EndPos + 1), IsIsolatedToken); 1062 Prev = EndPos + 1; 1063 i = EndPos; 1064 IsIsolatedToken = false; 1065 break; 1066 } 1067 1068 default: 1069 InTok = true; 1070 break; 1071 } 1072 } 1073 if (InTok && Prev != String.size()) 1074 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1075 } 1076 1077 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1078 // Reject matchables with no .s string. 1079 if (AsmString.empty()) 1080 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1081 1082 // Reject any matchables with a newline in them, they should be marked 1083 // isCodeGenOnly if they are pseudo instructions. 1084 if (AsmString.find('\n') != std::string::npos) 1085 PrintFatalError(TheDef->getLoc(), 1086 "multiline instruction is not valid for the asmparser, " 1087 "mark it isCodeGenOnly"); 1088 1089 // Remove comments from the asm string. We know that the asmstring only 1090 // has one line. 1091 if (!CommentDelimiter.empty() && 1092 StringRef(AsmString).contains(CommentDelimiter)) 1093 PrintFatalError(TheDef->getLoc(), 1094 "asmstring for instruction has comment character in it, " 1095 "mark it isCodeGenOnly"); 1096 1097 // Reject matchables with operand modifiers, these aren't something we can 1098 // handle, the target should be refactored to use operands instead of 1099 // modifiers. 1100 // 1101 // Also, check for instructions which reference the operand multiple times, 1102 // if they don't define a custom AsmMatcher: this implies a constraint that 1103 // the built-in matching code would not honor. 1104 std::set<std::string> OperandNames; 1105 for (const AsmOperand &Op : AsmOperands) { 1106 StringRef Tok = Op.Token; 1107 if (Tok[0] == '$' && Tok.contains(':')) 1108 PrintFatalError( 1109 TheDef->getLoc(), 1110 "matchable with operand modifier '" + Tok + 1111 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1112 // Verify that any operand is only mentioned once. 1113 // We reject aliases and ignore instructions for now. 1114 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1115 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { 1116 LLVM_DEBUG({ 1117 errs() << "warning: '" << TheDef->getName() << "': " 1118 << "ignoring instruction with tied operand '" << Tok << "'\n"; 1119 }); 1120 return false; 1121 } 1122 } 1123 1124 return true; 1125 } 1126 1127 static std::string getEnumNameForToken(StringRef Str) { 1128 std::string Res; 1129 1130 for (char C : Str) { 1131 switch (C) { 1132 case '*': 1133 Res += "_STAR_"; 1134 break; 1135 case '%': 1136 Res += "_PCT_"; 1137 break; 1138 case ':': 1139 Res += "_COLON_"; 1140 break; 1141 case '!': 1142 Res += "_EXCLAIM_"; 1143 break; 1144 case '.': 1145 Res += "_DOT_"; 1146 break; 1147 case '<': 1148 Res += "_LT_"; 1149 break; 1150 case '>': 1151 Res += "_GT_"; 1152 break; 1153 case '-': 1154 Res += "_MINUS_"; 1155 break; 1156 case '#': 1157 Res += "_HASH_"; 1158 break; 1159 default: 1160 if (isAlnum(C)) 1161 Res += C; 1162 else 1163 Res += "_" + utostr((unsigned)C) + "_"; 1164 } 1165 } 1166 1167 return Res; 1168 } 1169 1170 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1171 ClassInfo *&Entry = TokenClasses[std::string(Token)]; 1172 1173 if (!Entry) { 1174 Classes.emplace_front(); 1175 Entry = &Classes.front(); 1176 Entry->Kind = ClassInfo::Token; 1177 Entry->ClassName = "Token"; 1178 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1179 Entry->ValueName = std::string(Token); 1180 Entry->PredicateMethod = "<invalid>"; 1181 Entry->RenderMethod = "<invalid>"; 1182 Entry->ParserMethod = ""; 1183 Entry->DiagnosticType = ""; 1184 Entry->IsOptional = false; 1185 Entry->DefaultMethod = "<invalid>"; 1186 } 1187 1188 return Entry; 1189 } 1190 1191 ClassInfo * 1192 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1193 int SubOpIdx) { 1194 Record *Rec = OI.Rec; 1195 if (SubOpIdx != -1) 1196 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1197 return getOperandClass(Rec, SubOpIdx); 1198 } 1199 1200 ClassInfo *AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1201 if (Rec->isSubClassOf("RegisterOperand")) { 1202 // RegisterOperand may have an associated ParserMatchClass. If it does, 1203 // use it, else just fall back to the underlying register class. 1204 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1205 if (!R || !R->getValue()) 1206 PrintFatalError(Rec->getLoc(), 1207 "Record `" + Rec->getName() + 1208 "' does not have a ParserMatchClass!\n"); 1209 1210 if (DefInit *DI = dyn_cast<DefInit>(R->getValue())) { 1211 Record *MatchClass = DI->getDef(); 1212 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1213 return CI; 1214 } 1215 1216 // No custom match class. Just use the register class. 1217 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1218 if (!ClassRec) 1219 PrintFatalError(Rec->getLoc(), 1220 "RegisterOperand `" + Rec->getName() + 1221 "' has no associated register class!\n"); 1222 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1223 return CI; 1224 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1225 } 1226 1227 if (Rec->isSubClassOf("RegisterClass")) { 1228 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1229 return CI; 1230 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1231 } 1232 1233 if (!Rec->isSubClassOf("Operand")) 1234 PrintFatalError(Rec->getLoc(), 1235 "Operand `" + Rec->getName() + 1236 "' does not derive from class Operand!\n"); 1237 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1238 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1239 return CI; 1240 1241 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1242 } 1243 1244 struct LessRegisterSet { 1245 bool operator()(const RegisterSet &LHS, const RegisterSet &RHS) const { 1246 // std::set<T> defines its own compariso "operator<", but it 1247 // performs a lexicographical comparison by T's innate comparison 1248 // for some reason. We don't want non-deterministic pointer 1249 // comparisons so use this instead. 1250 return std::lexicographical_compare(LHS.begin(), LHS.end(), RHS.begin(), 1251 RHS.end(), LessRecordByID()); 1252 } 1253 }; 1254 1255 void AsmMatcherInfo::buildRegisterClasses( 1256 SmallPtrSetImpl<Record *> &SingletonRegisters) { 1257 const auto &Registers = Target.getRegBank().getRegisters(); 1258 auto &RegClassList = Target.getRegBank().getRegClasses(); 1259 1260 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1261 1262 // The register sets used for matching. 1263 RegisterSetSet RegisterSets; 1264 1265 // Gather the defined sets. 1266 for (const CodeGenRegisterClass &RC : RegClassList) 1267 RegisterSets.insert( 1268 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1269 1270 // Add any required singleton sets. 1271 for (Record *Rec : SingletonRegisters) { 1272 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1273 } 1274 1275 // Introduce derived sets where necessary (when a register does not determine 1276 // a unique register set class), and build the mapping of registers to the set 1277 // they should classify to. 1278 std::map<Record *, RegisterSet> RegisterMap; 1279 for (const CodeGenRegister &CGR : Registers) { 1280 // Compute the intersection of all sets containing this register. 1281 RegisterSet ContainingSet; 1282 1283 for (const RegisterSet &RS : RegisterSets) { 1284 if (!RS.count(CGR.TheDef)) 1285 continue; 1286 1287 if (ContainingSet.empty()) { 1288 ContainingSet = RS; 1289 continue; 1290 } 1291 1292 RegisterSet Tmp; 1293 std::set_intersection(ContainingSet.begin(), ContainingSet.end(), 1294 RS.begin(), RS.end(), 1295 std::inserter(Tmp, Tmp.begin()), LessRecordByID()); 1296 ContainingSet = std::move(Tmp); 1297 } 1298 1299 if (!ContainingSet.empty()) { 1300 RegisterSets.insert(ContainingSet); 1301 RegisterMap.insert(std::pair(CGR.TheDef, ContainingSet)); 1302 } 1303 } 1304 1305 // Construct the register classes. 1306 std::map<RegisterSet, ClassInfo *, LessRegisterSet> RegisterSetClasses; 1307 unsigned Index = 0; 1308 for (const RegisterSet &RS : RegisterSets) { 1309 Classes.emplace_front(); 1310 ClassInfo *CI = &Classes.front(); 1311 CI->Kind = ClassInfo::RegisterClass0 + Index; 1312 CI->ClassName = "Reg" + utostr(Index); 1313 CI->Name = "MCK_Reg" + utostr(Index); 1314 CI->ValueName = ""; 1315 CI->PredicateMethod = ""; // unused 1316 CI->RenderMethod = "addRegOperands"; 1317 CI->Registers = RS; 1318 // FIXME: diagnostic type. 1319 CI->DiagnosticType = ""; 1320 CI->IsOptional = false; 1321 CI->DefaultMethod = ""; // unused 1322 RegisterSetClasses.insert(std::pair(RS, CI)); 1323 ++Index; 1324 } 1325 1326 // Find the superclasses; we could compute only the subgroup lattice edges, 1327 // but there isn't really a point. 1328 for (const RegisterSet &RS : RegisterSets) { 1329 ClassInfo *CI = RegisterSetClasses[RS]; 1330 for (const RegisterSet &RS2 : RegisterSets) 1331 if (RS != RS2 && std::includes(RS2.begin(), RS2.end(), RS.begin(), 1332 RS.end(), LessRecordByID())) 1333 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1334 } 1335 1336 // Name the register classes which correspond to a user defined RegisterClass. 1337 for (const CodeGenRegisterClass &RC : RegClassList) { 1338 // Def will be NULL for non-user defined register classes. 1339 Record *Def = RC.getDef(); 1340 if (!Def) 1341 continue; 1342 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1343 RC.getOrder().end())]; 1344 if (CI->ValueName.empty()) { 1345 CI->ClassName = RC.getName(); 1346 CI->Name = "MCK_" + RC.getName(); 1347 CI->ValueName = RC.getName(); 1348 } else 1349 CI->ValueName = CI->ValueName + "," + RC.getName(); 1350 1351 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1352 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1353 CI->DiagnosticType = std::string(SI->getValue()); 1354 1355 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1356 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1357 CI->DiagnosticString = std::string(SI->getValue()); 1358 1359 // If we have a diagnostic string but the diagnostic type is not specified 1360 // explicitly, create an anonymous diagnostic type. 1361 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1362 CI->DiagnosticType = RC.getName(); 1363 1364 RegisterClassClasses.insert(std::pair(Def, CI)); 1365 } 1366 1367 // Populate the map for individual registers. 1368 for (auto &It : RegisterMap) 1369 RegisterClasses[It.first] = RegisterSetClasses[It.second]; 1370 1371 // Name the register classes which correspond to singleton registers. 1372 for (Record *Rec : SingletonRegisters) { 1373 ClassInfo *CI = RegisterClasses[Rec]; 1374 assert(CI && "Missing singleton register class info!"); 1375 1376 if (CI->ValueName.empty()) { 1377 CI->ClassName = std::string(Rec->getName()); 1378 CI->Name = "MCK_" + Rec->getName().str(); 1379 CI->ValueName = std::string(Rec->getName()); 1380 } else 1381 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1382 } 1383 } 1384 1385 void AsmMatcherInfo::buildOperandClasses() { 1386 std::vector<Record *> AsmOperands = 1387 Records.getAllDerivedDefinitions("AsmOperandClass"); 1388 1389 // Pre-populate AsmOperandClasses map. 1390 for (Record *Rec : AsmOperands) { 1391 Classes.emplace_front(); 1392 AsmOperandClasses[Rec] = &Classes.front(); 1393 } 1394 1395 unsigned Index = 0; 1396 for (Record *Rec : AsmOperands) { 1397 ClassInfo *CI = AsmOperandClasses[Rec]; 1398 CI->Kind = ClassInfo::UserClass0 + Index; 1399 1400 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1401 for (Init *I : Supers->getValues()) { 1402 DefInit *DI = dyn_cast<DefInit>(I); 1403 if (!DI) { 1404 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1405 continue; 1406 } 1407 1408 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1409 if (!SC) 1410 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1411 else 1412 CI->SuperClasses.push_back(SC); 1413 } 1414 CI->ClassName = std::string(Rec->getValueAsString("Name")); 1415 CI->Name = "MCK_" + CI->ClassName; 1416 CI->ValueName = std::string(Rec->getName()); 1417 1418 // Get or construct the predicate method name. 1419 Init *PMName = Rec->getValueInit("PredicateMethod"); 1420 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1421 CI->PredicateMethod = std::string(SI->getValue()); 1422 } else { 1423 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1424 CI->PredicateMethod = "is" + CI->ClassName; 1425 } 1426 1427 // Get or construct the render method name. 1428 Init *RMName = Rec->getValueInit("RenderMethod"); 1429 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1430 CI->RenderMethod = std::string(SI->getValue()); 1431 } else { 1432 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1433 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1434 } 1435 1436 // Get the parse method name or leave it as empty. 1437 Init *PRMName = Rec->getValueInit("ParserMethod"); 1438 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1439 CI->ParserMethod = std::string(SI->getValue()); 1440 1441 // Get the diagnostic type and string or leave them as empty. 1442 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1443 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1444 CI->DiagnosticType = std::string(SI->getValue()); 1445 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1446 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1447 CI->DiagnosticString = std::string(SI->getValue()); 1448 // If we have a DiagnosticString, we need a DiagnosticType for use within 1449 // the matcher. 1450 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1451 CI->DiagnosticType = CI->ClassName; 1452 1453 Init *IsOptional = Rec->getValueInit("IsOptional"); 1454 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1455 CI->IsOptional = BI->getValue(); 1456 1457 // Get or construct the default method name. 1458 Init *DMName = Rec->getValueInit("DefaultMethod"); 1459 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1460 CI->DefaultMethod = std::string(SI->getValue()); 1461 } else { 1462 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1463 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1464 } 1465 1466 ++Index; 1467 } 1468 } 1469 1470 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target, 1471 RecordKeeper &records) 1472 : Records(records), AsmParser(asmParser), Target(target) {} 1473 1474 /// buildOperandMatchInfo - Build the necessary information to handle user 1475 /// defined operand parsing methods. 1476 void AsmMatcherInfo::buildOperandMatchInfo() { 1477 1478 /// Map containing a mask with all operands indices that can be found for 1479 /// that class inside a instruction. 1480 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1481 OpClassMaskTy OpClassMask; 1482 1483 bool CallCustomParserForAllOperands = 1484 AsmParser->getValueAsBit("CallCustomParserForAllOperands"); 1485 for (const auto &MI : Matchables) { 1486 OpClassMask.clear(); 1487 1488 // Keep track of all operands of this instructions which belong to the 1489 // same class. 1490 unsigned NumOptionalOps = 0; 1491 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1492 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1493 if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) { 1494 unsigned &OperandMask = OpClassMask[Op.Class]; 1495 OperandMask |= maskTrailingOnes<unsigned>(NumOptionalOps + 1) 1496 << (i - NumOptionalOps); 1497 } 1498 if (Op.Class->IsOptional) 1499 ++NumOptionalOps; 1500 } 1501 1502 // Generate operand match info for each mnemonic/operand class pair. 1503 for (const auto &OCM : OpClassMask) { 1504 unsigned OpMask = OCM.second; 1505 ClassInfo *CI = OCM.first; 1506 OperandMatchInfo.push_back( 1507 OperandMatchEntry::create(MI.get(), CI, OpMask)); 1508 } 1509 } 1510 } 1511 1512 void AsmMatcherInfo::buildInfo() { 1513 // Build information about all of the AssemblerPredicates. 1514 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1515 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1516 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1517 SubtargetFeaturePairs.end()); 1518 #ifndef NDEBUG 1519 for (const auto &Pair : SubtargetFeatures) 1520 LLVM_DEBUG(Pair.second.dump()); 1521 #endif // NDEBUG 1522 1523 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1524 bool ReportMultipleNearMisses = 1525 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1526 1527 // Parse the instructions; we need to do this first so that we can gather the 1528 // singleton register classes. 1529 SmallPtrSet<Record *, 16> SingletonRegisters; 1530 unsigned VariantCount = Target.getAsmParserVariantCount(); 1531 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1532 Record *AsmVariant = Target.getAsmParserVariant(VC); 1533 StringRef CommentDelimiter = 1534 AsmVariant->getValueAsString("CommentDelimiter"); 1535 AsmVariantInfo Variant; 1536 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1537 Variant.TokenizingCharacters = 1538 AsmVariant->getValueAsString("TokenizingCharacters"); 1539 Variant.SeparatorCharacters = 1540 AsmVariant->getValueAsString("SeparatorCharacters"); 1541 Variant.BreakCharacters = AsmVariant->getValueAsString("BreakCharacters"); 1542 Variant.Name = AsmVariant->getValueAsString("Name"); 1543 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1544 1545 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1546 1547 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1548 // filter the set of instructions we consider. 1549 if (!StringRef(CGI->TheDef->getName()).starts_with(MatchPrefix)) 1550 continue; 1551 1552 // Ignore "codegen only" instructions. 1553 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1554 continue; 1555 1556 // Ignore instructions for different instructions 1557 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1558 if (!V.empty() && V != Variant.Name) 1559 continue; 1560 1561 auto II = std::make_unique<MatchableInfo>(*CGI); 1562 1563 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1564 1565 // Ignore instructions which shouldn't be matched and diagnose invalid 1566 // instruction definitions with an error. 1567 if (!II->validate(CommentDelimiter, false)) 1568 continue; 1569 1570 Matchables.push_back(std::move(II)); 1571 } 1572 1573 // Parse all of the InstAlias definitions and stick them in the list of 1574 // matchables. 1575 std::vector<Record *> AllInstAliases = 1576 Records.getAllDerivedDefinitions("InstAlias"); 1577 for (Record *InstAlias : AllInstAliases) { 1578 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target); 1579 1580 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1581 // filter the set of instruction aliases we consider, based on the target 1582 // instruction. 1583 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1584 .starts_with(MatchPrefix)) 1585 continue; 1586 1587 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1588 if (!V.empty() && V != Variant.Name) 1589 continue; 1590 1591 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1592 1593 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1594 1595 // Validate the alias definitions. 1596 II->validate(CommentDelimiter, true); 1597 1598 Matchables.push_back(std::move(II)); 1599 } 1600 } 1601 1602 // Build info for the register classes. 1603 buildRegisterClasses(SingletonRegisters); 1604 1605 // Build info for the user defined assembly operand classes. 1606 buildOperandClasses(); 1607 1608 // Build the information about matchables, now that we have fully formed 1609 // classes. 1610 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1611 for (auto &II : Matchables) { 1612 // Parse the tokens after the mnemonic. 1613 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1614 // don't precompute the loop bound. 1615 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1616 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1617 StringRef Token = Op.Token; 1618 1619 // Check for singleton registers. 1620 if (Record *RegRecord = Op.SingletonReg) { 1621 Op.Class = RegisterClasses[RegRecord]; 1622 assert(Op.Class && Op.Class->Registers.size() == 1 && 1623 "Unexpected class for singleton register"); 1624 continue; 1625 } 1626 1627 // Check for simple tokens. 1628 if (Token[0] != '$') { 1629 Op.Class = getTokenClass(Token); 1630 continue; 1631 } 1632 1633 if (Token.size() > 1 && isdigit(Token[1])) { 1634 Op.Class = getTokenClass(Token); 1635 continue; 1636 } 1637 1638 // Otherwise this is an operand reference. 1639 StringRef OperandName; 1640 if (Token[1] == '{') 1641 OperandName = Token.substr(2, Token.size() - 3); 1642 else 1643 OperandName = Token.substr(1); 1644 1645 if (isa<const CodeGenInstruction *>(II->DefRec)) 1646 buildInstructionOperandReference(II.get(), OperandName, i); 1647 else 1648 buildAliasOperandReference(II.get(), OperandName, Op); 1649 } 1650 1651 if (isa<const CodeGenInstruction *>(II->DefRec)) { 1652 II->buildInstructionResultOperands(); 1653 // If the instruction has a two-operand alias, build up the 1654 // matchable here. We'll add them in bulk at the end to avoid 1655 // confusing this loop. 1656 StringRef Constraint = 1657 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1658 if (Constraint != "") { 1659 // Start by making a copy of the original matchable. 1660 auto AliasII = std::make_unique<MatchableInfo>(*II); 1661 1662 // Adjust it to be a two-operand alias. 1663 AliasII->formTwoOperandAlias(Constraint); 1664 1665 // Add the alias to the matchables list. 1666 NewMatchables.push_back(std::move(AliasII)); 1667 } 1668 } else 1669 // FIXME: The tied operands checking is not yet integrated with the 1670 // framework for reporting multiple near misses. To prevent invalid 1671 // formats from being matched with an alias if a tied-operands check 1672 // would otherwise have disallowed it, we just disallow such constructs 1673 // in TableGen completely. 1674 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1675 } 1676 if (!NewMatchables.empty()) 1677 Matchables.insert(Matchables.end(), 1678 std::make_move_iterator(NewMatchables.begin()), 1679 std::make_move_iterator(NewMatchables.end())); 1680 1681 // Process token alias definitions and set up the associated superclass 1682 // information. 1683 std::vector<Record *> AllTokenAliases = 1684 Records.getAllDerivedDefinitions("TokenAlias"); 1685 for (Record *Rec : AllTokenAliases) { 1686 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1687 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1688 if (FromClass == ToClass) 1689 PrintFatalError(Rec->getLoc(), 1690 "error: Destination value identical to source value."); 1691 FromClass->SuperClasses.push_back(ToClass); 1692 } 1693 1694 // Reorder classes so that classes precede super classes. 1695 Classes.sort(); 1696 1697 #ifdef EXPENSIVE_CHECKS 1698 // Verify that the table is sorted and operator < works transitively. 1699 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1700 for (auto J = I; J != E; ++J) { 1701 assert(!(*J < *I)); 1702 assert(I == J || !J->isSubsetOf(*I)); 1703 } 1704 } 1705 #endif 1706 } 1707 1708 /// buildInstructionOperandReference - The specified operand is a reference to a 1709 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1710 void AsmMatcherInfo::buildInstructionOperandReference(MatchableInfo *II, 1711 StringRef OperandName, 1712 unsigned AsmOpIdx) { 1713 const CodeGenInstruction &CGI = *cast<const CodeGenInstruction *>(II->DefRec); 1714 const CGIOperandList &Operands = CGI.Operands; 1715 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1716 1717 // Map this token to an operand. 1718 unsigned Idx; 1719 if (!Operands.hasOperandNamed(OperandName, Idx)) 1720 PrintFatalError(II->TheDef->getLoc(), 1721 "error: unable to find operand: '" + OperandName + "'"); 1722 1723 // If the instruction operand has multiple suboperands, but the parser 1724 // match class for the asm operand is still the default "ImmAsmOperand", 1725 // then handle each suboperand separately. 1726 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1727 Record *Rec = Operands[Idx].Rec; 1728 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1729 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1730 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1731 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1732 StringRef Token = Op->Token; // save this in case Op gets moved 1733 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1734 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1735 NewAsmOp.SubOpIdx = SI; 1736 II->AsmOperands.insert(II->AsmOperands.begin() + AsmOpIdx + SI, 1737 NewAsmOp); 1738 } 1739 // Replace Op with first suboperand. 1740 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1741 Op->SubOpIdx = 0; 1742 } 1743 } 1744 1745 // Set up the operand class. 1746 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1747 Op->OrigSrcOpName = OperandName; 1748 1749 // If the named operand is tied, canonicalize it to the untied operand. 1750 // For example, something like: 1751 // (outs GPR:$dst), (ins GPR:$src) 1752 // with an asmstring of 1753 // "inc $src" 1754 // we want to canonicalize to: 1755 // "inc $dst" 1756 // so that we know how to provide the $dst operand when filling in the result. 1757 int OITied = -1; 1758 if (Operands[Idx].MINumOperands == 1) 1759 OITied = Operands[Idx].getTiedRegister(); 1760 if (OITied != -1) { 1761 // The tied operand index is an MIOperand index, find the operand that 1762 // contains it. 1763 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1764 OperandName = Operands[Idx.first].Name; 1765 Op->SubOpIdx = Idx.second; 1766 } 1767 1768 Op->SrcOpName = OperandName; 1769 } 1770 1771 /// buildAliasOperandReference - When parsing an operand reference out of the 1772 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1773 /// operand reference is by looking it up in the result pattern definition. 1774 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1775 StringRef OperandName, 1776 MatchableInfo::AsmOperand &Op) { 1777 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(II->DefRec); 1778 1779 // Set up the operand class. 1780 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1781 if (CGA.ResultOperands[i].isRecord() && 1782 CGA.ResultOperands[i].getName() == OperandName) { 1783 // It's safe to go with the first one we find, because CodeGenInstAlias 1784 // validates that all operands with the same name have the same record. 1785 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1786 // Use the match class from the Alias definition, not the 1787 // destination instruction, as we may have an immediate that's 1788 // being munged by the match class. 1789 Op.Class = 1790 getOperandClass(CGA.ResultOperands[i].getRecord(), Op.SubOpIdx); 1791 Op.SrcOpName = OperandName; 1792 Op.OrigSrcOpName = OperandName; 1793 return; 1794 } 1795 1796 PrintFatalError(II->TheDef->getLoc(), 1797 "error: unable to find operand: '" + OperandName + "'"); 1798 } 1799 1800 void MatchableInfo::buildInstructionResultOperands() { 1801 const CodeGenInstruction *ResultInst = getResultInst(); 1802 1803 // Loop over all operands of the result instruction, determining how to 1804 // populate them. 1805 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1806 // If this is a tied operand, just copy from the previously handled operand. 1807 int TiedOp = -1; 1808 if (OpInfo.MINumOperands == 1) 1809 TiedOp = OpInfo.getTiedRegister(); 1810 if (TiedOp != -1) { 1811 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1812 if (TiedSrcOperand != -1 && 1813 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1814 ResOperands.push_back(ResOperand::getTiedOp( 1815 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1816 else 1817 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1818 continue; 1819 } 1820 1821 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1822 if (OpInfo.Name.empty() || SrcOperand == -1) { 1823 // This may happen for operands that are tied to a suboperand of a 1824 // complex operand. Simply use a dummy value here; nobody should 1825 // use this operand slot. 1826 // FIXME: The long term goal is for the MCOperand list to not contain 1827 // tied operands at all. 1828 ResOperands.push_back(ResOperand::getImmOp(0)); 1829 continue; 1830 } 1831 1832 // Check if the one AsmOperand populates the entire operand. 1833 unsigned NumOperands = OpInfo.MINumOperands; 1834 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1835 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1836 continue; 1837 } 1838 1839 // Add a separate ResOperand for each suboperand. 1840 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1841 assert(AsmOperands[SrcOperand + AI].SubOpIdx == (int)AI && 1842 AsmOperands[SrcOperand + AI].SrcOpName == OpInfo.Name && 1843 "unexpected AsmOperands for suboperands"); 1844 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1845 } 1846 } 1847 } 1848 1849 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1850 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(DefRec); 1851 const CodeGenInstruction *ResultInst = getResultInst(); 1852 1853 // Map of: $reg -> #lastref 1854 // where $reg is the name of the operand in the asm string 1855 // where #lastref is the last processed index where $reg was referenced in 1856 // the asm string. 1857 SmallDenseMap<StringRef, int> OperandRefs; 1858 1859 // Loop over all operands of the result instruction, determining how to 1860 // populate them. 1861 unsigned AliasOpNo = 0; 1862 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1863 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1864 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1865 1866 // If this is a tied operand, just copy from the previously handled operand. 1867 int TiedOp = -1; 1868 if (OpInfo->MINumOperands == 1) 1869 TiedOp = OpInfo->getTiedRegister(); 1870 if (TiedOp != -1) { 1871 unsigned SrcOp1 = 0; 1872 unsigned SrcOp2 = 0; 1873 1874 // If an operand has been specified twice in the asm string, 1875 // add the two source operand's indices to the TiedOp so that 1876 // at runtime the 'tied' constraint is checked. 1877 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1878 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1879 1880 // Find the next operand (similarly named operand) in the string. 1881 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1882 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1883 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1884 1885 // Not updating the record in OperandRefs will cause TableGen 1886 // to fail with an error at the end of this function. 1887 if (AliasConstraintsAreChecked) 1888 Insert.first->second = SrcOp2; 1889 1890 // In case it only has one reference in the asm string, 1891 // it doesn't need to be checked for tied constraints. 1892 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1893 } 1894 1895 // If the alias operand is of a different operand class, we only want 1896 // to benefit from the tied-operands check and just match the operand 1897 // as a normal, but not copy the original (TiedOp) to the result 1898 // instruction. We do this by passing -1 as the tied operand to copy. 1899 if (ResultInst->Operands[i].Rec->getName() != 1900 ResultInst->Operands[TiedOp].Rec->getName()) { 1901 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1902 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1903 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1904 SrcOp2 = findAsmOperand(Name, SubIdx); 1905 ResOperands.push_back( 1906 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1907 } else { 1908 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1909 continue; 1910 } 1911 } 1912 1913 // Handle all the suboperands for this operand. 1914 const std::string &OpName = OpInfo->Name; 1915 for (; AliasOpNo < LastOpNo && 1916 CGA.ResultInstOperandIndex[AliasOpNo].first == i; 1917 ++AliasOpNo) { 1918 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1919 1920 // Find out what operand from the asmparser that this MCInst operand 1921 // comes from. 1922 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1923 case CodeGenInstAlias::ResultOperand::K_Record: { 1924 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1925 int SrcOperand = findAsmOperand(Name, SubIdx); 1926 if (SrcOperand == -1) 1927 PrintFatalError(TheDef->getLoc(), 1928 "Instruction '" + TheDef->getName() + 1929 "' has operand '" + OpName + 1930 "' that doesn't appear in asm string!"); 1931 1932 // Add it to the operand references. If it is added a second time, the 1933 // record won't be updated and it will fail later on. 1934 OperandRefs.try_emplace(Name, SrcOperand); 1935 1936 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1937 ResOperands.push_back( 1938 ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1939 break; 1940 } 1941 case CodeGenInstAlias::ResultOperand::K_Imm: { 1942 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1943 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1944 break; 1945 } 1946 case CodeGenInstAlias::ResultOperand::K_Reg: { 1947 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1948 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1949 break; 1950 } 1951 } 1952 } 1953 } 1954 1955 // Check that operands are not repeated more times than is supported. 1956 for (auto &T : OperandRefs) { 1957 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1958 PrintFatalError(TheDef->getLoc(), 1959 "Operand '" + T.first + "' can never be matched"); 1960 } 1961 } 1962 1963 static unsigned 1964 getConverterOperandID(const std::string &Name, 1965 SmallSetVector<CachedHashString, 16> &Table, 1966 bool &IsNew) { 1967 IsNew = Table.insert(CachedHashString(Name)); 1968 1969 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1970 1971 assert(ID < Table.size()); 1972 1973 return ID; 1974 } 1975 1976 static unsigned 1977 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1978 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1979 bool HasMnemonicFirst, bool HasOptionalOperands, 1980 raw_ostream &OS) { 1981 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1982 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1983 std::vector<std::vector<uint8_t>> ConversionTable; 1984 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1985 1986 // TargetOperandClass - This is the target's operand class, like X86Operand. 1987 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1988 1989 // Write the convert function to a separate stream, so we can drop it after 1990 // the enum. We'll build up the conversion handlers for the individual 1991 // operand types opportunistically as we encounter them. 1992 std::string ConvertFnBody; 1993 raw_string_ostream CvtOS(ConvertFnBody); 1994 // Start the unified conversion function. 1995 if (HasOptionalOperands) { 1996 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1997 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1998 << "unsigned Opcode,\n" 1999 << " const OperandVector &Operands,\n" 2000 << " const SmallBitVector &OptionalOperandsMask,\n" 2001 << " ArrayRef<unsigned> DefaultsOffset) {\n"; 2002 } else { 2003 CvtOS << "void " << Target.getName() << ClassName << "::\n" 2004 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 2005 << "unsigned Opcode,\n" 2006 << " const OperandVector &Operands) {\n"; 2007 } 2008 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 2009 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 2010 CvtOS << " Inst.setOpcode(Opcode);\n"; 2011 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 2012 if (HasOptionalOperands) { 2013 // When optional operands are involved, formal and actual operand indices 2014 // may differ. Map the former to the latter by subtracting the number of 2015 // absent optional operands. 2016 // FIXME: This is not an operand index in the CVT_Tied case 2017 CvtOS << " unsigned OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 2018 } else { 2019 CvtOS << " unsigned OpIdx = *(p + 1);\n"; 2020 } 2021 CvtOS << " switch (*p) {\n"; 2022 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 2023 CvtOS << " case CVT_Reg:\n"; 2024 CvtOS << " static_cast<" << TargetOperandClass 2025 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 2026 CvtOS << " break;\n"; 2027 CvtOS << " case CVT_Tied: {\n"; 2028 CvtOS << " assert(*(p + 1) < (size_t)(std::end(TiedAsmOperandTable) -\n"; 2029 CvtOS 2030 << " std::begin(TiedAsmOperandTable)) &&\n"; 2031 CvtOS << " \"Tied operand not found\");\n"; 2032 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[*(p + 1)][0];\n"; 2033 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n"; 2034 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 2035 CvtOS << " break;\n"; 2036 CvtOS << " }\n"; 2037 2038 std::string OperandFnBody; 2039 raw_string_ostream OpOS(OperandFnBody); 2040 // Start the operand number lookup function. 2041 OpOS << "void " << Target.getName() << ClassName << "::\n" 2042 << "convertToMapAndConstraints(unsigned Kind,\n"; 2043 OpOS.indent(27); 2044 OpOS << "const OperandVector &Operands) {\n" 2045 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2046 << " unsigned NumMCOperands = 0;\n" 2047 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2048 << " for (const uint8_t *p = Converter; *p; p += 2) {\n" 2049 << " switch (*p) {\n" 2050 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2051 << " case CVT_Reg:\n" 2052 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2053 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2054 << " ++NumMCOperands;\n" 2055 << " break;\n" 2056 << " case CVT_Tied:\n" 2057 << " ++NumMCOperands;\n" 2058 << " break;\n"; 2059 2060 // Pre-populate the operand conversion kinds with the standard always 2061 // available entries. 2062 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2063 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2064 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2065 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2066 2067 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2068 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2069 TiedOperandsEnumMap; 2070 2071 for (auto &II : Infos) { 2072 // Check if we have a custom match function. 2073 StringRef AsmMatchConverter = 2074 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2075 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2076 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2077 II->ConversionFnKind = Signature; 2078 2079 // Check if we have already generated this signature. 2080 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2081 continue; 2082 2083 // Remember this converter for the kind enum. 2084 unsigned KindID = OperandConversionKinds.size(); 2085 OperandConversionKinds.insert( 2086 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2087 2088 // Add the converter row for this instruction. 2089 ConversionTable.emplace_back(); 2090 ConversionTable.back().push_back(KindID); 2091 ConversionTable.back().push_back(CVT_Done); 2092 2093 // Add the handler to the conversion driver function. 2094 CvtOS << " case CVT_" << getEnumNameForToken(AsmMatchConverter) 2095 << ":\n" 2096 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2097 << " break;\n"; 2098 2099 // FIXME: Handle the operand number lookup for custom match functions. 2100 continue; 2101 } 2102 2103 // Build the conversion function signature. 2104 std::string Signature = "Convert"; 2105 2106 std::vector<uint8_t> ConversionRow; 2107 2108 // Compute the convert enum and the case body. 2109 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size() * 2 + 1); 2110 2111 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2112 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2113 2114 // Generate code to populate each result operand. 2115 switch (OpInfo.Kind) { 2116 case MatchableInfo::ResOperand::RenderAsmOperand: { 2117 // This comes from something we parsed. 2118 const MatchableInfo::AsmOperand &Op = 2119 II->AsmOperands[OpInfo.AsmOperandNum]; 2120 2121 // Registers are always converted the same, don't duplicate the 2122 // conversion function based on them. 2123 Signature += "__"; 2124 std::string Class; 2125 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2126 Signature += Class; 2127 Signature += utostr(OpInfo.MINumOperands); 2128 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2129 2130 // Add the conversion kind, if necessary, and get the associated ID 2131 // the index of its entry in the vector). 2132 std::string Name = 2133 "CVT_" + 2134 (Op.Class->isRegisterClass() ? "Reg" : Op.Class->RenderMethod); 2135 if (Op.Class->IsOptional) { 2136 // For optional operands we must also care about DefaultMethod 2137 assert(HasOptionalOperands); 2138 Name += "_" + Op.Class->DefaultMethod; 2139 } 2140 Name = getEnumNameForToken(Name); 2141 2142 bool IsNewConverter = false; 2143 unsigned ID = 2144 getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); 2145 2146 // Add the operand entry to the instruction kind conversion row. 2147 ConversionRow.push_back(ID); 2148 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2149 2150 if (!IsNewConverter) 2151 break; 2152 2153 // This is a new operand kind. Add a handler for it to the 2154 // converter driver. 2155 CvtOS << " case " << Name << ":\n"; 2156 if (Op.Class->IsOptional) { 2157 // If optional operand is not present in actual instruction then we 2158 // should call its DefaultMethod before RenderMethod 2159 assert(HasOptionalOperands); 2160 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2161 << " " << Op.Class->DefaultMethod << "()" 2162 << "->" << Op.Class->RenderMethod << "(Inst, " 2163 << OpInfo.MINumOperands << ");\n" 2164 << " } else {\n" 2165 << " static_cast<" << TargetOperandClass 2166 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2167 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2168 << " }\n"; 2169 } else { 2170 CvtOS << " static_cast<" << TargetOperandClass 2171 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2172 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2173 } 2174 CvtOS << " break;\n"; 2175 2176 // Add a handler for the operand number lookup. 2177 OpOS << " case " << Name << ":\n" 2178 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2179 2180 if (Op.Class->isRegisterClass()) 2181 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2182 else 2183 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2184 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2185 << " break;\n"; 2186 break; 2187 } 2188 case MatchableInfo::ResOperand::TiedOperand: { 2189 // If this operand is tied to a previous one, just copy the MCInst 2190 // operand from the earlier one.We can only tie single MCOperand values. 2191 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2192 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2193 uint8_t SrcOp1 = OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2194 uint8_t SrcOp2 = OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2195 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2196 "Tied operand precedes its target!"); 2197 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2198 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2199 Signature += "__" + TiedTupleName; 2200 ConversionRow.push_back(CVT_Tied); 2201 ConversionRow.push_back(TiedOp); 2202 ConversionRow.push_back(SrcOp1); 2203 ConversionRow.push_back(SrcOp2); 2204 2205 // Also create an 'enum' for this combination of tied operands. 2206 auto Key = std::tuple(TiedOp, SrcOp1, SrcOp2); 2207 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2208 break; 2209 } 2210 case MatchableInfo::ResOperand::ImmOperand: { 2211 int64_t Val = OpInfo.ImmVal; 2212 std::string Ty = "imm_" + itostr(Val); 2213 Ty = getEnumNameForToken(Ty); 2214 Signature += "__" + Ty; 2215 2216 std::string Name = "CVT_" + Ty; 2217 bool IsNewConverter = false; 2218 unsigned ID = 2219 getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); 2220 // Add the operand entry to the instruction kind conversion row. 2221 ConversionRow.push_back(ID); 2222 ConversionRow.push_back(0); 2223 2224 if (!IsNewConverter) 2225 break; 2226 2227 CvtOS << " case " << Name << ":\n" 2228 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2229 << " break;\n"; 2230 2231 OpOS << " case " << Name << ":\n" 2232 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2233 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2234 << " ++NumMCOperands;\n" 2235 << " break;\n"; 2236 break; 2237 } 2238 case MatchableInfo::ResOperand::RegOperand: { 2239 std::string Reg, Name; 2240 if (!OpInfo.Register) { 2241 Name = "reg0"; 2242 Reg = "0"; 2243 } else { 2244 Reg = getQualifiedName(OpInfo.Register); 2245 Name = "reg" + OpInfo.Register->getName().str(); 2246 } 2247 Signature += "__" + Name; 2248 Name = "CVT_" + Name; 2249 bool IsNewConverter = false; 2250 unsigned ID = 2251 getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); 2252 // Add the operand entry to the instruction kind conversion row. 2253 ConversionRow.push_back(ID); 2254 ConversionRow.push_back(0); 2255 2256 if (!IsNewConverter) 2257 break; 2258 CvtOS << " case " << Name << ":\n" 2259 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2260 << " break;\n"; 2261 2262 OpOS << " case " << Name << ":\n" 2263 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2264 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2265 << " ++NumMCOperands;\n" 2266 << " break;\n"; 2267 } 2268 } 2269 } 2270 2271 // If there were no operands, add to the signature to that effect 2272 if (Signature == "Convert") 2273 Signature += "_NoOperands"; 2274 2275 II->ConversionFnKind = Signature; 2276 2277 // Save the signature. If we already have it, don't add a new row 2278 // to the table. 2279 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2280 continue; 2281 2282 // Add the row to the table. 2283 ConversionTable.push_back(std::move(ConversionRow)); 2284 } 2285 2286 // Finish up the converter driver function. 2287 CvtOS << " }\n }\n}\n\n"; 2288 2289 // Finish up the operand number lookup function. 2290 OpOS << " }\n }\n}\n\n"; 2291 2292 // Output a static table for tied operands. 2293 if (TiedOperandsEnumMap.size()) { 2294 // The number of tied operand combinations will be small in practice, 2295 // but just add the assert to be sure. 2296 assert(TiedOperandsEnumMap.size() <= 254 && 2297 "Too many tied-operand combinations to reference with " 2298 "an 8bit offset from the conversion table, where index " 2299 "'255' is reserved as operand not to be copied."); 2300 2301 OS << "enum {\n"; 2302 for (auto &KV : TiedOperandsEnumMap) { 2303 OS << " " << KV.second << ",\n"; 2304 } 2305 OS << "};\n\n"; 2306 2307 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2308 for (auto &KV : TiedOperandsEnumMap) { 2309 OS << " /* " << KV.second << " */ { " << utostr(std::get<0>(KV.first)) 2310 << ", " << utostr(std::get<1>(KV.first)) << ", " 2311 << utostr(std::get<2>(KV.first)) << " },\n"; 2312 } 2313 OS << "};\n\n"; 2314 } else 2315 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2316 "{ /* empty */ {0, 0, 0} };\n\n"; 2317 2318 OS << "namespace {\n"; 2319 2320 // Output the operand conversion kind enum. 2321 OS << "enum OperatorConversionKind {\n"; 2322 for (const auto &Converter : OperandConversionKinds) 2323 OS << " " << Converter << ",\n"; 2324 OS << " CVT_NUM_CONVERTERS\n"; 2325 OS << "};\n\n"; 2326 2327 // Output the instruction conversion kind enum. 2328 OS << "enum InstructionConversionKind {\n"; 2329 for (const auto &Signature : InstructionConversionKinds) 2330 OS << " " << Signature << ",\n"; 2331 OS << " CVT_NUM_SIGNATURES\n"; 2332 OS << "};\n\n"; 2333 2334 OS << "} // end anonymous namespace\n\n"; 2335 2336 // Output the conversion table. 2337 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2338 << MaxRowLength << "] = {\n"; 2339 2340 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2341 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2342 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2343 OS << " { "; 2344 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2345 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2346 if (OperandConversionKinds[ConversionTable[Row][i]] != 2347 CachedHashString("CVT_Tied")) { 2348 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2349 continue; 2350 } 2351 2352 // For a tied operand, emit a reference to the TiedAsmOperandTable 2353 // that contains the operand to copy, and the parsed operands to 2354 // check for their tied constraints. 2355 auto Key = std::tuple((uint8_t)ConversionTable[Row][i + 1], 2356 (uint8_t)ConversionTable[Row][i + 2], 2357 (uint8_t)ConversionTable[Row][i + 3]); 2358 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2359 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2360 "No record for tied operand pair"); 2361 OS << TiedOpndEnum->second << ", "; 2362 i += 2; 2363 } 2364 OS << "CVT_Done },\n"; 2365 } 2366 2367 OS << "};\n\n"; 2368 2369 // Spit out the conversion driver function. 2370 OS << ConvertFnBody; 2371 2372 // Spit out the operand number lookup function. 2373 OS << OperandFnBody; 2374 2375 return ConversionTable.size(); 2376 } 2377 2378 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2379 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2380 std::forward_list<ClassInfo> &Infos, 2381 raw_ostream &OS) { 2382 OS << "namespace {\n\n"; 2383 2384 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2385 << "/// instruction matching.\n"; 2386 OS << "enum MatchClassKind {\n"; 2387 OS << " InvalidMatchClass = 0,\n"; 2388 OS << " OptionalMatchClass = 1,\n"; 2389 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2390 StringRef LastName = "OptionalMatchClass"; 2391 for (const auto &CI : Infos) { 2392 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2393 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2394 } else if (LastKind < ClassInfo::UserClass0 && 2395 CI.Kind >= ClassInfo::UserClass0) { 2396 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2397 } 2398 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2399 LastName = CI.Name; 2400 2401 OS << " " << CI.Name << ", // "; 2402 if (CI.Kind == ClassInfo::Token) { 2403 OS << "'" << CI.ValueName << "'\n"; 2404 } else if (CI.isRegisterClass()) { 2405 if (!CI.ValueName.empty()) 2406 OS << "register class '" << CI.ValueName << "'\n"; 2407 else 2408 OS << "derived register class\n"; 2409 } else { 2410 OS << "user defined class '" << CI.ValueName << "'\n"; 2411 } 2412 } 2413 OS << " NumMatchClassKinds\n"; 2414 OS << "};\n\n"; 2415 2416 OS << "} // end anonymous namespace\n\n"; 2417 } 2418 2419 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2420 /// used when an assembly operand does not match the expected operand class. 2421 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, 2422 raw_ostream &OS) { 2423 // If the target does not use DiagnosticString for any operands, don't emit 2424 // an unused function. 2425 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) { 2426 return CI.DiagnosticString.empty(); 2427 })) 2428 return; 2429 2430 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2431 << "AsmParser::" << Info.Target.getName() 2432 << "MatchResultTy MatchResult) {\n"; 2433 OS << " switch (MatchResult) {\n"; 2434 2435 for (const auto &CI : Info.Classes) { 2436 if (!CI.DiagnosticString.empty()) { 2437 assert(!CI.DiagnosticType.empty() && 2438 "DiagnosticString set without DiagnosticType"); 2439 OS << " case " << Info.Target.getName() << "AsmParser::Match_" 2440 << CI.DiagnosticType << ":\n"; 2441 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2442 } 2443 } 2444 2445 OS << " default:\n"; 2446 OS << " return nullptr;\n"; 2447 2448 OS << " }\n"; 2449 OS << "}\n\n"; 2450 } 2451 2452 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2453 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2454 "RegisterClass) {\n"; 2455 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2456 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2457 })) { 2458 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2459 } else { 2460 OS << " switch (RegisterClass) {\n"; 2461 for (const auto &CI : Info.Classes) { 2462 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2463 OS << " case " << CI.Name << ":\n"; 2464 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2465 << CI.DiagnosticType << ";\n"; 2466 } 2467 } 2468 2469 OS << " default:\n"; 2470 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2471 2472 OS << " }\n"; 2473 } 2474 OS << "}\n\n"; 2475 } 2476 2477 /// emitValidateOperandClass - Emit the function to validate an operand class. 2478 static void emitValidateOperandClass(AsmMatcherInfo &Info, raw_ostream &OS) { 2479 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2480 << "MatchClassKind Kind) {\n"; 2481 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2482 << Info.Target.getName() << "Operand &)GOp;\n"; 2483 2484 // The InvalidMatchClass is not to match any operand. 2485 OS << " if (Kind == InvalidMatchClass)\n"; 2486 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2487 2488 // Check for Token operands first. 2489 // FIXME: Use a more specific diagnostic type. 2490 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2491 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2492 << " MCTargetAsmParser::Match_Success :\n" 2493 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2494 2495 // Check the user classes. We don't care what order since we're only 2496 // actually matching against one of them. 2497 OS << " switch (Kind) {\n" 2498 " default: break;\n"; 2499 for (const auto &CI : Info.Classes) { 2500 if (!CI.isUserClass()) 2501 continue; 2502 2503 OS << " // '" << CI.ClassName << "' class\n"; 2504 OS << " case " << CI.Name << ": {\n"; 2505 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2506 << "());\n"; 2507 OS << " if (DP.isMatch())\n"; 2508 OS << " return MCTargetAsmParser::Match_Success;\n"; 2509 if (!CI.DiagnosticType.empty()) { 2510 OS << " if (DP.isNearMatch())\n"; 2511 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2512 << CI.DiagnosticType << ";\n"; 2513 OS << " break;\n"; 2514 } else 2515 OS << " break;\n"; 2516 OS << " }\n"; 2517 } 2518 OS << " } // end switch (Kind)\n\n"; 2519 2520 // Check for register operands, including sub-classes. 2521 OS << " if (Operand.isReg()) {\n"; 2522 OS << " MatchClassKind OpKind;\n"; 2523 OS << " switch (Operand.getReg().id()) {\n"; 2524 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2525 for (const auto &RC : Info.RegisterClasses) 2526 OS << " case " << RC.first->getValueAsString("Namespace") 2527 << "::" << RC.first->getName() << ": OpKind = " << RC.second->Name 2528 << "; break;\n"; 2529 OS << " }\n"; 2530 OS << " return isSubclass(OpKind, Kind) ? " 2531 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2532 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2533 2534 // Expected operand is a register, but actual is not. 2535 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2536 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2537 2538 // Generic fallthrough match failure case for operands that don't have 2539 // specialized diagnostic types. 2540 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2541 OS << "}\n\n"; 2542 } 2543 2544 /// emitIsSubclass - Emit the subclass predicate function. 2545 static void emitIsSubclass(CodeGenTarget &Target, 2546 std::forward_list<ClassInfo> &Infos, 2547 raw_ostream &OS) { 2548 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2549 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2550 OS << " if (A == B)\n"; 2551 OS << " return true;\n\n"; 2552 2553 bool EmittedSwitch = false; 2554 for (const auto &A : Infos) { 2555 std::vector<StringRef> SuperClasses; 2556 if (A.IsOptional) 2557 SuperClasses.push_back("OptionalMatchClass"); 2558 for (const auto &B : Infos) { 2559 if (&A != &B && A.isSubsetOf(B)) 2560 SuperClasses.push_back(B.Name); 2561 } 2562 2563 if (SuperClasses.empty()) 2564 continue; 2565 2566 // If this is the first SuperClass, emit the switch header. 2567 if (!EmittedSwitch) { 2568 OS << " switch (A) {\n"; 2569 OS << " default:\n"; 2570 OS << " return false;\n"; 2571 EmittedSwitch = true; 2572 } 2573 2574 OS << "\n case " << A.Name << ":\n"; 2575 2576 if (SuperClasses.size() == 1) { 2577 OS << " return B == " << SuperClasses.back() << ";\n"; 2578 continue; 2579 } 2580 2581 if (!SuperClasses.empty()) { 2582 OS << " switch (B) {\n"; 2583 OS << " default: return false;\n"; 2584 for (StringRef SC : SuperClasses) 2585 OS << " case " << SC << ": return true;\n"; 2586 OS << " }\n"; 2587 } else { 2588 // No case statement to emit 2589 OS << " return false;\n"; 2590 } 2591 } 2592 2593 // If there were case statements emitted into the string stream write the 2594 // default. 2595 if (EmittedSwitch) 2596 OS << " }\n"; 2597 else 2598 OS << " return false;\n"; 2599 2600 OS << "}\n\n"; 2601 } 2602 2603 /// emitMatchTokenString - Emit the function to match a token string to the 2604 /// appropriate match class value. 2605 static void emitMatchTokenString(CodeGenTarget &Target, 2606 std::forward_list<ClassInfo> &Infos, 2607 raw_ostream &OS) { 2608 // Construct the match list. 2609 std::vector<StringMatcher::StringPair> Matches; 2610 for (const auto &CI : Infos) { 2611 if (CI.Kind == ClassInfo::Token) 2612 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2613 } 2614 2615 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2616 2617 StringMatcher("Name", Matches, OS).Emit(); 2618 2619 OS << " return InvalidMatchClass;\n"; 2620 OS << "}\n\n"; 2621 } 2622 2623 /// emitMatchRegisterName - Emit the function to match a string to the target 2624 /// specific register enum. 2625 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2626 raw_ostream &OS) { 2627 // Construct the match list. 2628 std::vector<StringMatcher::StringPair> Matches; 2629 const auto &Regs = Target.getRegBank().getRegisters(); 2630 std::string Namespace = 2631 Regs.front().TheDef->getValueAsString("Namespace").str(); 2632 for (const CodeGenRegister &Reg : Regs) { 2633 StringRef AsmName = Reg.TheDef->getValueAsString("AsmName"); 2634 if (AsmName.empty()) 2635 continue; 2636 2637 Matches.emplace_back(AsmName.str(), "return " + Namespace + 2638 "::" + Reg.getName().str() + ';'); 2639 } 2640 2641 OS << "static MCRegister MatchRegisterName(StringRef Name) {\n"; 2642 2643 bool IgnoreDuplicates = 2644 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2645 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2646 2647 OS << " return " << Namespace << "::NoRegister;\n"; 2648 OS << "}\n\n"; 2649 } 2650 2651 /// Emit the function to match a string to the target 2652 /// specific register enum. 2653 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2654 raw_ostream &OS) { 2655 // Construct the match list. 2656 std::vector<StringMatcher::StringPair> Matches; 2657 const auto &Regs = Target.getRegBank().getRegisters(); 2658 std::string Namespace = 2659 Regs.front().TheDef->getValueAsString("Namespace").str(); 2660 for (const CodeGenRegister &Reg : Regs) { 2661 2662 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2663 2664 for (auto AltName : AltNames) { 2665 AltName = StringRef(AltName).trim(); 2666 2667 // don't handle empty alternative names 2668 if (AltName.empty()) 2669 continue; 2670 2671 Matches.emplace_back(AltName.str(), "return " + Namespace + 2672 "::" + Reg.getName().str() + ';'); 2673 } 2674 } 2675 2676 OS << "static MCRegister MatchRegisterAltName(StringRef Name) {\n"; 2677 2678 bool IgnoreDuplicates = 2679 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2680 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2681 2682 OS << " return " << Namespace << "::NoRegister;\n"; 2683 OS << "}\n\n"; 2684 } 2685 2686 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2687 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2688 // Get the set of diagnostic types from all of the operand classes. 2689 std::set<StringRef> Types; 2690 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2691 if (!OpClassEntry.second->DiagnosticType.empty()) 2692 Types.insert(OpClassEntry.second->DiagnosticType); 2693 } 2694 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2695 if (!OpClassEntry.second->DiagnosticType.empty()) 2696 Types.insert(OpClassEntry.second->DiagnosticType); 2697 } 2698 2699 if (Types.empty()) 2700 return; 2701 2702 // Now emit the enum entries. 2703 for (StringRef Type : Types) 2704 OS << " Match_" << Type << ",\n"; 2705 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2706 } 2707 2708 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2709 /// user-level name for a subtarget feature. 2710 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2711 OS << "// User-level names for subtarget features that participate in\n" 2712 << "// instruction matching.\n" 2713 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2714 if (!Info.SubtargetFeatures.empty()) { 2715 OS << " switch(Val) {\n"; 2716 for (const auto &SF : Info.SubtargetFeatures) { 2717 const SubtargetFeatureInfo &SFI = SF.second; 2718 // FIXME: Totally just a placeholder name to get the algorithm working. 2719 OS << " case " << SFI.getEnumBitName() << ": return \"" 2720 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2721 } 2722 OS << " default: return \"(unknown)\";\n"; 2723 OS << " }\n"; 2724 } else { 2725 // Nothing to emit, so skip the switch 2726 OS << " return \"(unknown)\";\n"; 2727 } 2728 OS << "}\n\n"; 2729 } 2730 2731 static std::string GetAliasRequiredFeatures(Record *R, 2732 const AsmMatcherInfo &Info) { 2733 std::vector<Record *> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2734 std::string Result; 2735 2736 if (ReqFeatures.empty()) 2737 return Result; 2738 2739 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2740 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2741 2742 if (!F) 2743 PrintFatalError(R->getLoc(), 2744 "Predicate '" + ReqFeatures[i]->getName() + 2745 "' is not marked as an AssemblerPredicate!"); 2746 2747 if (i) 2748 Result += " && "; 2749 2750 Result += "Features.test(" + F->getEnumBitName() + ')'; 2751 } 2752 2753 return Result; 2754 } 2755 2756 static void 2757 emitMnemonicAliasVariant(raw_ostream &OS, const AsmMatcherInfo &Info, 2758 std::vector<Record *> &Aliases, unsigned Indent = 0, 2759 StringRef AsmParserVariantName = StringRef()) { 2760 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2761 // iteration order of the map is stable. 2762 std::map<std::string, std::vector<Record *>> AliasesFromMnemonic; 2763 2764 for (Record *R : Aliases) { 2765 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2766 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2767 if (AsmVariantName != AsmParserVariantName) 2768 continue; 2769 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()].push_back( 2770 R); 2771 } 2772 if (AliasesFromMnemonic.empty()) 2773 return; 2774 2775 // Process each alias a "from" mnemonic at a time, building the code executed 2776 // by the string remapper. 2777 std::vector<StringMatcher::StringPair> Cases; 2778 for (const auto &AliasEntry : AliasesFromMnemonic) { 2779 const std::vector<Record *> &ToVec = AliasEntry.second; 2780 2781 // Loop through each alias and emit code that handles each case. If there 2782 // are two instructions without predicates, emit an error. If there is one, 2783 // emit it last. 2784 std::string MatchCode; 2785 int AliasWithNoPredicate = -1; 2786 2787 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2788 Record *R = ToVec[i]; 2789 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2790 2791 // If this unconditionally matches, remember it for later and diagnose 2792 // duplicates. 2793 if (FeatureMask.empty()) { 2794 if (AliasWithNoPredicate != -1 && 2795 R->getValueAsString("ToMnemonic") != 2796 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) { 2797 // We can't have two different aliases from the same mnemonic with no 2798 // predicate. 2799 PrintError( 2800 ToVec[AliasWithNoPredicate]->getLoc(), 2801 "two different MnemonicAliases with the same 'from' mnemonic!"); 2802 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2803 } 2804 2805 AliasWithNoPredicate = i; 2806 continue; 2807 } 2808 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2809 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2810 2811 if (!MatchCode.empty()) 2812 MatchCode += "else "; 2813 MatchCode += "if (" + FeatureMask + ")\n"; 2814 MatchCode += " Mnemonic = \""; 2815 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2816 MatchCode += "\";\n"; 2817 } 2818 2819 if (AliasWithNoPredicate != -1) { 2820 Record *R = ToVec[AliasWithNoPredicate]; 2821 if (!MatchCode.empty()) 2822 MatchCode += "else\n "; 2823 MatchCode += "Mnemonic = \""; 2824 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2825 MatchCode += "\";\n"; 2826 } 2827 2828 MatchCode += "return;"; 2829 2830 Cases.push_back(std::pair(AliasEntry.first, MatchCode)); 2831 } 2832 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2833 } 2834 2835 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2836 /// emit a function for them and return true, otherwise return false. 2837 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2838 CodeGenTarget &Target) { 2839 // Ignore aliases when match-prefix is set. 2840 if (!MatchPrefix.empty()) 2841 return false; 2842 2843 std::vector<Record *> Aliases = 2844 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2845 if (Aliases.empty()) 2846 return false; 2847 2848 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2849 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2850 OS << " switch (VariantID) {\n"; 2851 unsigned VariantCount = Target.getAsmParserVariantCount(); 2852 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2853 Record *AsmVariant = Target.getAsmParserVariant(VC); 2854 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2855 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2856 OS << " case " << AsmParserVariantNo << ":\n"; 2857 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2858 AsmParserVariantName); 2859 OS << " break;\n"; 2860 } 2861 OS << " }\n"; 2862 2863 // Emit aliases that apply to all variants. 2864 emitMnemonicAliasVariant(OS, Info, Aliases); 2865 2866 OS << "}\n\n"; 2867 2868 return true; 2869 } 2870 2871 static void 2872 emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2873 const AsmMatcherInfo &Info, StringRef ClassName, 2874 StringToOffsetTable &StringTable, 2875 unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex, 2876 bool HasMnemonicFirst, const Record &AsmParser) { 2877 unsigned MaxMask = 0; 2878 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2879 MaxMask |= OMI.OperandMask; 2880 } 2881 2882 // Emit the static custom operand parsing table; 2883 OS << "namespace {\n"; 2884 OS << " struct OperandMatchEntry {\n"; 2885 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n"; 2886 OS << " " << getMinimalTypeForRange(MaxMask) << " OperandMask;\n"; 2887 OS << " " 2888 << getMinimalTypeForRange( 2889 std::distance(Info.Classes.begin(), Info.Classes.end()) + 2890 2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */) 2891 << " Class;\n"; 2892 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2893 << " RequiredFeaturesIdx;\n\n"; 2894 OS << " StringRef getMnemonic() const {\n"; 2895 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2896 OS << " MnemonicTable[Mnemonic]);\n"; 2897 OS << " }\n"; 2898 OS << " };\n\n"; 2899 2900 OS << " // Predicate for searching for an opcode.\n"; 2901 OS << " struct LessOpcodeOperand {\n"; 2902 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2903 OS << " return LHS.getMnemonic() < RHS;\n"; 2904 OS << " }\n"; 2905 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2906 OS << " return LHS < RHS.getMnemonic();\n"; 2907 OS << " }\n"; 2908 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2909 OS << " const OperandMatchEntry &RHS) {\n"; 2910 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2911 OS << " }\n"; 2912 OS << " };\n"; 2913 2914 OS << "} // end anonymous namespace\n\n"; 2915 2916 OS << "static const OperandMatchEntry OperandMatchTable[" 2917 << Info.OperandMatchInfo.size() << "] = {\n"; 2918 2919 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2920 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2921 const MatchableInfo &II = *OMI.MI; 2922 2923 OS << " { "; 2924 2925 // Store a pascal-style length byte in the mnemonic. 2926 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower(); 2927 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) << " /* " 2928 << II.Mnemonic << " */, "; 2929 2930 OS << OMI.OperandMask; 2931 OS << " /* "; 2932 ListSeparator LS; 2933 for (int i = 0, e = 31; i != e; ++i) 2934 if (OMI.OperandMask & (1 << i)) 2935 OS << LS << i; 2936 OS << " */, "; 2937 2938 OS << OMI.CI->Name; 2939 2940 // Write the required features mask. 2941 OS << ", AMFBS"; 2942 if (II.RequiredFeatures.empty()) 2943 OS << "_None"; 2944 else 2945 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2946 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2947 2948 OS << " },\n"; 2949 } 2950 OS << "};\n\n"; 2951 2952 // Emit the operand class switch to call the correct custom parser for 2953 // the found operand class. 2954 OS << "ParseStatus " << Target.getName() << ClassName << "::\n" 2955 << "tryCustomParseOperand(OperandVector" 2956 << " &Operands,\n unsigned MCK) {\n\n" 2957 << " switch(MCK) {\n"; 2958 2959 for (const auto &CI : Info.Classes) { 2960 if (CI.ParserMethod.empty()) 2961 continue; 2962 OS << " case " << CI.Name << ":\n" 2963 << " return " << CI.ParserMethod << "(Operands);\n"; 2964 } 2965 2966 OS << " default:\n"; 2967 OS << " return ParseStatus::NoMatch;\n"; 2968 OS << " }\n"; 2969 OS << " return ParseStatus::NoMatch;\n"; 2970 OS << "}\n\n"; 2971 2972 // Emit the static custom operand parser. This code is very similar with 2973 // the other matcher. Also use MatchResultTy here just in case we go for 2974 // a better error handling. 2975 OS << "ParseStatus " << Target.getName() << ClassName << "::\n" 2976 << "MatchOperandParserImpl(OperandVector" 2977 << " &Operands,\n StringRef Mnemonic,\n" 2978 << " bool ParseForAllFeatures) {\n"; 2979 2980 // Emit code to get the available features. 2981 OS << " // Get the current feature set.\n"; 2982 OS << " const FeatureBitset &AvailableFeatures = " 2983 "getAvailableFeatures();\n\n"; 2984 2985 OS << " // Get the next operand index.\n"; 2986 OS << " unsigned NextOpNum = Operands.size()" 2987 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2988 2989 // Emit code to search the table. 2990 OS << " // Search the table.\n"; 2991 if (HasMnemonicFirst) { 2992 OS << " auto MnemonicRange =\n"; 2993 OS << " std::equal_range(std::begin(OperandMatchTable), " 2994 "std::end(OperandMatchTable),\n"; 2995 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2996 } else { 2997 OS << " auto MnemonicRange = std::pair(std::begin(OperandMatchTable)," 2998 " std::end(OperandMatchTable));\n"; 2999 OS << " if (!Mnemonic.empty())\n"; 3000 OS << " MnemonicRange =\n"; 3001 OS << " std::equal_range(std::begin(OperandMatchTable), " 3002 "std::end(OperandMatchTable),\n"; 3003 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 3004 } 3005 3006 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3007 OS << " return ParseStatus::NoMatch;\n\n"; 3008 3009 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 3010 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 3011 3012 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3013 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 3014 3015 // Emit check that the required features are available. 3016 OS << " // check if the available features match\n"; 3017 OS << " const FeatureBitset &RequiredFeatures = " 3018 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3019 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 3020 "RequiredFeatures) != RequiredFeatures)\n"; 3021 OS << " continue;\n\n"; 3022 3023 // Emit check to ensure the operand number matches. 3024 OS << " // check if the operand in question has a custom parser.\n"; 3025 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 3026 OS << " continue;\n\n"; 3027 3028 // Emit call to the custom parser method 3029 StringRef ParserName = AsmParser.getValueAsString("OperandParserMethod"); 3030 if (ParserName.empty()) 3031 ParserName = "tryCustomParseOperand"; 3032 OS << " // call custom parse method to handle the operand\n"; 3033 OS << " ParseStatus Result = " << ParserName << "(Operands, it->Class);\n"; 3034 OS << " if (!Result.isNoMatch())\n"; 3035 OS << " return Result;\n"; 3036 OS << " }\n\n"; 3037 3038 OS << " // Okay, we had no match.\n"; 3039 OS << " return ParseStatus::NoMatch;\n"; 3040 OS << "}\n\n"; 3041 } 3042 3043 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 3044 AsmMatcherInfo &Info, raw_ostream &OS, 3045 bool HasOptionalOperands) { 3046 std::string AsmParserName = 3047 std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); 3048 OS << "static bool "; 3049 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3050 << AsmParserName << "&AsmParser,\n"; 3051 OS << " unsigned Kind, const OperandVector " 3052 "&Operands,\n"; 3053 if (HasOptionalOperands) 3054 OS << " ArrayRef<unsigned> DefaultsOffset,\n"; 3055 OS << " uint64_t &ErrorInfo) {\n"; 3056 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3057 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3058 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 3059 OS << " switch (*p) {\n"; 3060 OS << " case CVT_Tied: {\n"; 3061 OS << " unsigned OpIdx = *(p + 1);\n"; 3062 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3063 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3064 OS << " \"Tied operand not found\");\n"; 3065 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3066 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3067 if (HasOptionalOperands) { 3068 // When optional operands are involved, formal and actual operand indices 3069 // may differ. Map the former to the latter by subtracting the number of 3070 // absent optional operands. 3071 OS << " OpndNum1 = OpndNum1 - DefaultsOffset[OpndNum1];\n"; 3072 OS << " OpndNum2 = OpndNum2 - DefaultsOffset[OpndNum2];\n"; 3073 } 3074 OS << " if (OpndNum1 != OpndNum2) {\n"; 3075 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3076 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3077 OS << " if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n"; 3078 OS << " ErrorInfo = OpndNum2;\n"; 3079 OS << " return false;\n"; 3080 OS << " }\n"; 3081 OS << " }\n"; 3082 OS << " break;\n"; 3083 OS << " }\n"; 3084 OS << " default:\n"; 3085 OS << " break;\n"; 3086 OS << " }\n"; 3087 OS << " }\n"; 3088 OS << " return true;\n"; 3089 OS << "}\n\n"; 3090 } 3091 3092 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3093 unsigned VariantCount) { 3094 OS << "static std::string " << Target.getName() 3095 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3096 << " unsigned VariantID) {\n"; 3097 if (!VariantCount) 3098 OS << " return \"\";"; 3099 else { 3100 OS << " const unsigned MaxEditDist = 2;\n"; 3101 OS << " std::vector<StringRef> Candidates;\n"; 3102 OS << " StringRef Prev = \"\";\n\n"; 3103 3104 OS << " // Find the appropriate table for this asm variant.\n"; 3105 OS << " const MatchEntry *Start, *End;\n"; 3106 OS << " switch (VariantID) {\n"; 3107 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3108 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3109 Record *AsmVariant = Target.getAsmParserVariant(VC); 3110 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3111 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3112 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3113 } 3114 OS << " }\n\n"; 3115 OS << " for (auto I = Start; I < End; I++) {\n"; 3116 OS << " // Ignore unsupported instructions.\n"; 3117 OS << " const FeatureBitset &RequiredFeatures = " 3118 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3119 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3120 OS << " continue;\n"; 3121 OS << "\n"; 3122 OS << " StringRef T = I->getMnemonic();\n"; 3123 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3124 OS << " if (T == Prev)\n"; 3125 OS << " continue;\n"; 3126 OS << "\n"; 3127 OS << " Prev = T;\n"; 3128 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3129 OS << " if (Dist <= MaxEditDist)\n"; 3130 OS << " Candidates.push_back(T);\n"; 3131 OS << " }\n"; 3132 OS << "\n"; 3133 OS << " if (Candidates.empty())\n"; 3134 OS << " return \"\";\n"; 3135 OS << "\n"; 3136 OS << " std::string Res = \", did you mean: \";\n"; 3137 OS << " unsigned i = 0;\n"; 3138 OS << " for (; i < Candidates.size() - 1; i++)\n"; 3139 OS << " Res += Candidates[i].str() + \", \";\n"; 3140 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3141 } 3142 OS << "}\n"; 3143 OS << "\n"; 3144 } 3145 3146 static void emitMnemonicChecker(raw_ostream &OS, CodeGenTarget &Target, 3147 unsigned VariantCount, bool HasMnemonicFirst, 3148 bool HasMnemonicAliases) { 3149 OS << "static bool " << Target.getName() 3150 << "CheckMnemonic(StringRef Mnemonic,\n"; 3151 OS << " " 3152 << "const FeatureBitset &AvailableFeatures,\n"; 3153 OS << " " 3154 << "unsigned VariantID) {\n"; 3155 3156 if (!VariantCount) { 3157 OS << " return false;\n"; 3158 } else { 3159 if (HasMnemonicAliases) { 3160 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3161 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);"; 3162 OS << "\n\n"; 3163 } 3164 OS << " // Find the appropriate table for this asm variant.\n"; 3165 OS << " const MatchEntry *Start, *End;\n"; 3166 OS << " switch (VariantID) {\n"; 3167 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3168 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3169 Record *AsmVariant = Target.getAsmParserVariant(VC); 3170 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3171 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3172 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3173 } 3174 OS << " }\n\n"; 3175 3176 OS << " // Search the table.\n"; 3177 if (HasMnemonicFirst) { 3178 OS << " auto MnemonicRange = " 3179 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3180 } else { 3181 OS << " auto MnemonicRange = std::pair(Start, End);\n"; 3182 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3183 OS << " if (!Mnemonic.empty())\n"; 3184 OS << " MnemonicRange = " 3185 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3186 } 3187 3188 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3189 OS << " return false;\n\n"; 3190 3191 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3192 << "*ie = MnemonicRange.second;\n"; 3193 OS << " it != ie; ++it) {\n"; 3194 OS << " const FeatureBitset &RequiredFeatures =\n"; 3195 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3196 OS << " if ((AvailableFeatures & RequiredFeatures) == "; 3197 OS << "RequiredFeatures)\n"; 3198 OS << " return true;\n"; 3199 OS << " }\n"; 3200 OS << " return false;\n"; 3201 } 3202 OS << "}\n"; 3203 OS << "\n"; 3204 } 3205 3206 // Emit a function mapping match classes to strings, for debugging. 3207 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3208 raw_ostream &OS) { 3209 OS << "#ifndef NDEBUG\n"; 3210 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3211 OS << " switch (Kind) {\n"; 3212 3213 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3214 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3215 for (const auto &CI : Infos) { 3216 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3217 } 3218 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3219 3220 OS << " }\n"; 3221 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3222 OS << "}\n\n"; 3223 OS << "#endif // NDEBUG\n"; 3224 } 3225 3226 static std::string 3227 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3228 std::string Name = "AMFBS"; 3229 for (const auto &Feature : FeatureBitset) 3230 Name += ("_" + Feature->getName()).str(); 3231 return Name; 3232 } 3233 3234 void AsmMatcherEmitter::run(raw_ostream &OS) { 3235 CodeGenTarget Target(Records); 3236 Record *AsmParser = Target.getAsmParser(); 3237 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3238 3239 emitSourceFileHeader("Assembly Matcher Source Fragment", OS, Records); 3240 3241 // Compute the information on the instructions to match. 3242 AsmMatcherInfo Info(AsmParser, Target, Records); 3243 Info.buildInfo(); 3244 3245 bool PreferSmallerInstructions = getPreferSmallerInstructions(Target); 3246 // Sort the instruction table using the partial order on classes. We use 3247 // stable_sort to ensure that ambiguous instructions are still 3248 // deterministically ordered. 3249 llvm::stable_sort( 3250 Info.Matchables, 3251 [PreferSmallerInstructions](const std::unique_ptr<MatchableInfo> &A, 3252 const std::unique_ptr<MatchableInfo> &B) { 3253 return A->shouldBeMatchedBefore(*B, PreferSmallerInstructions); 3254 }); 3255 3256 #ifdef EXPENSIVE_CHECKS 3257 // Verify that the table is sorted and operator < works transitively. 3258 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3259 ++I) { 3260 for (auto J = I; J != E; ++J) { 3261 assert(!(*J)->shouldBeMatchedBefore(**I, PreferSmallerInstructions)); 3262 } 3263 } 3264 #endif 3265 3266 DEBUG_WITH_TYPE("instruction_info", { 3267 for (const auto &MI : Info.Matchables) 3268 MI->dump(); 3269 }); 3270 3271 // Check for ambiguous matchables. 3272 DEBUG_WITH_TYPE("ambiguous_instrs", { 3273 unsigned NumAmbiguous = 0; 3274 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3275 ++I) { 3276 for (auto J = std::next(I); J != E; ++J) { 3277 const MatchableInfo &A = **I; 3278 const MatchableInfo &B = **J; 3279 3280 if (A.couldMatchAmbiguouslyWith(B, PreferSmallerInstructions)) { 3281 errs() << "warning: ambiguous matchables:\n"; 3282 A.dump(); 3283 errs() << "\nis incomparable with:\n"; 3284 B.dump(); 3285 errs() << "\n\n"; 3286 ++NumAmbiguous; 3287 } 3288 } 3289 } 3290 if (NumAmbiguous) 3291 errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n"; 3292 }); 3293 3294 // Compute the information on the custom operand parsing. 3295 Info.buildOperandMatchInfo(); 3296 3297 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3298 bool HasOptionalOperands = Info.hasOptionalOperands(); 3299 bool ReportMultipleNearMisses = 3300 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3301 3302 // Write the output. 3303 3304 // Information for the class declaration. 3305 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3306 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3307 OS << " // This should be included into the middle of the declaration of\n"; 3308 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3309 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) " 3310 "const;\n"; 3311 if (HasOptionalOperands) { 3312 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3313 << "unsigned Opcode,\n" 3314 << " const OperandVector &Operands,\n" 3315 << " const SmallBitVector " 3316 "&OptionalOperandsMask,\n" 3317 << " ArrayRef<unsigned> DefaultsOffset);\n"; 3318 } else { 3319 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3320 << "unsigned Opcode,\n" 3321 << " const OperandVector &Operands);\n"; 3322 } 3323 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3324 OS << " const OperandVector &Operands) override;\n"; 3325 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3326 << " MCInst &Inst,\n"; 3327 if (ReportMultipleNearMisses) 3328 OS << " SmallVectorImpl<NearMissInfo> " 3329 "*NearMisses,\n"; 3330 else 3331 OS << " uint64_t &ErrorInfo,\n" 3332 << " FeatureBitset &MissingFeatures,\n"; 3333 OS << " bool matchingInlineAsm,\n" 3334 << " unsigned VariantID = 0);\n"; 3335 if (!ReportMultipleNearMisses) 3336 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3337 << " MCInst &Inst,\n" 3338 << " uint64_t &ErrorInfo,\n" 3339 << " bool matchingInlineAsm,\n" 3340 << " unsigned VariantID = 0) {\n" 3341 << " FeatureBitset MissingFeatures;\n" 3342 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, " 3343 "MissingFeatures,\n" 3344 << " matchingInlineAsm, VariantID);\n" 3345 << " }\n\n"; 3346 3347 if (!Info.OperandMatchInfo.empty()) { 3348 OS << " ParseStatus MatchOperandParserImpl(\n"; 3349 OS << " OperandVector &Operands,\n"; 3350 OS << " StringRef Mnemonic,\n"; 3351 OS << " bool ParseForAllFeatures = false);\n"; 3352 3353 OS << " ParseStatus tryCustomParseOperand(\n"; 3354 OS << " OperandVector &Operands,\n"; 3355 OS << " unsigned MCK);\n\n"; 3356 } 3357 3358 OS << "#endif // GET_ASSEMBLER_HEADER\n\n"; 3359 3360 // Emit the operand match diagnostic enum names. 3361 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3362 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3363 emitOperandDiagnosticTypes(Info, OS); 3364 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3365 3366 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3367 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3368 3369 // Emit the subtarget feature enumeration. 3370 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3371 Info.SubtargetFeatures, OS); 3372 3373 // Emit the function to match a register name to number. 3374 // This should be omitted for Mips target 3375 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3376 emitMatchRegisterName(Target, AsmParser, OS); 3377 3378 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3379 emitMatchRegisterAltName(Target, AsmParser, OS); 3380 3381 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3382 3383 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3384 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3385 3386 // Generate the helper function to get the names for subtarget features. 3387 emitGetSubtargetFeatureName(Info, OS); 3388 3389 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3390 3391 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3392 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3393 3394 // Generate the function that remaps for mnemonic aliases. 3395 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3396 3397 // Generate the convertToMCInst function to convert operands into an MCInst. 3398 // Also, generate the convertToMapAndConstraints function for MS-style inline 3399 // assembly. The latter doesn't actually generate a MCInst. 3400 unsigned NumConverters = 3401 emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, 3402 HasOptionalOperands, OS); 3403 3404 // Emit the enumeration for classes which participate in matching. 3405 emitMatchClassEnumeration(Target, Info.Classes, OS); 3406 3407 // Emit a function to get the user-visible string to describe an operand 3408 // match failure in diagnostics. 3409 emitOperandMatchErrorDiagStrings(Info, OS); 3410 3411 // Emit a function to map register classes to operand match failure codes. 3412 emitRegisterMatchErrorFunc(Info, OS); 3413 3414 // Emit the routine to match token strings to their match class. 3415 emitMatchTokenString(Target, Info.Classes, OS); 3416 3417 // Emit the subclass predicate routine. 3418 emitIsSubclass(Target, Info.Classes, OS); 3419 3420 // Emit the routine to validate an operand against a match class. 3421 emitValidateOperandClass(Info, OS); 3422 3423 emitMatchClassKindNames(Info.Classes, OS); 3424 3425 // Emit the available features compute function. 3426 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3427 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3428 Info.SubtargetFeatures, OS); 3429 3430 if (!ReportMultipleNearMisses) 3431 emitAsmTiedOperandConstraints(Target, Info, OS, HasOptionalOperands); 3432 3433 StringToOffsetTable StringTable; 3434 3435 size_t MaxNumOperands = 0; 3436 unsigned MaxMnemonicIndex = 0; 3437 bool HasDeprecation = false; 3438 for (const auto &MI : Info.Matchables) { 3439 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3440 HasDeprecation |= MI->HasDeprecation; 3441 3442 // Store a pascal-style length byte in the mnemonic. 3443 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3444 MaxMnemonicIndex = std::max( 3445 MaxMnemonicIndex, StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3446 } 3447 3448 OS << "static const char MnemonicTable[] =\n"; 3449 StringTable.EmitString(OS); 3450 OS << ";\n\n"; 3451 3452 std::vector<std::vector<Record *>> FeatureBitsets; 3453 for (const auto &MI : Info.Matchables) { 3454 if (MI->RequiredFeatures.empty()) 3455 continue; 3456 FeatureBitsets.emplace_back(); 3457 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3458 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3459 } 3460 3461 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3462 const std::vector<Record *> &B) { 3463 if (A.size() < B.size()) 3464 return true; 3465 if (A.size() > B.size()) 3466 return false; 3467 for (auto Pair : zip(A, B)) { 3468 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3469 return true; 3470 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3471 return false; 3472 } 3473 return false; 3474 }); 3475 FeatureBitsets.erase(llvm::unique(FeatureBitsets), FeatureBitsets.end()); 3476 OS << "// Feature bitsets.\n" 3477 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3478 << " AMFBS_None,\n"; 3479 for (const auto &FeatureBitset : FeatureBitsets) { 3480 if (FeatureBitset.empty()) 3481 continue; 3482 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3483 } 3484 OS << "};\n\n" 3485 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3486 << " {}, // AMFBS_None\n"; 3487 for (const auto &FeatureBitset : FeatureBitsets) { 3488 if (FeatureBitset.empty()) 3489 continue; 3490 OS << " {"; 3491 for (const auto &Feature : FeatureBitset) { 3492 const auto &I = Info.SubtargetFeatures.find(Feature); 3493 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3494 OS << I->second.getEnumBitName() << ", "; 3495 } 3496 OS << "},\n"; 3497 } 3498 OS << "};\n\n"; 3499 3500 // Emit the static match table; unused classes get initialized to 0 which is 3501 // guaranteed to be InvalidMatchClass. 3502 // 3503 // FIXME: We can reduce the size of this table very easily. First, we change 3504 // it so that store the kinds in separate bit-fields for each index, which 3505 // only needs to be the max width used for classes at that index (we also need 3506 // to reject based on this during classification). If we then make sure to 3507 // order the match kinds appropriately (putting mnemonics last), then we 3508 // should only end up using a few bits for each class, especially the ones 3509 // following the mnemonic. 3510 OS << "namespace {\n"; 3511 OS << " struct MatchEntry {\n"; 3512 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n"; 3513 OS << " uint16_t Opcode;\n"; 3514 OS << " " << getMinimalTypeForRange(NumConverters) << " ConvertFn;\n"; 3515 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3516 << " RequiredFeaturesIdx;\n"; 3517 OS << " " 3518 << getMinimalTypeForRange( 3519 std::distance(Info.Classes.begin(), Info.Classes.end()) + 3520 2 /* Include 'InvalidMatchClass' and 'OptionalMatchClass' */) 3521 << " Classes[" << MaxNumOperands << "];\n"; 3522 OS << " StringRef getMnemonic() const {\n"; 3523 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3524 OS << " MnemonicTable[Mnemonic]);\n"; 3525 OS << " }\n"; 3526 OS << " };\n\n"; 3527 3528 OS << " // Predicate for searching for an opcode.\n"; 3529 OS << " struct LessOpcode {\n"; 3530 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3531 OS << " return LHS.getMnemonic() < RHS;\n"; 3532 OS << " }\n"; 3533 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3534 OS << " return LHS < RHS.getMnemonic();\n"; 3535 OS << " }\n"; 3536 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3537 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3538 OS << " }\n"; 3539 OS << " };\n"; 3540 3541 OS << "} // end anonymous namespace\n\n"; 3542 3543 unsigned VariantCount = Target.getAsmParserVariantCount(); 3544 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3545 Record *AsmVariant = Target.getAsmParserVariant(VC); 3546 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3547 3548 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3549 3550 for (const auto &MI : Info.Matchables) { 3551 if (MI->AsmVariantID != AsmVariantNo) 3552 continue; 3553 3554 // Store a pascal-style length byte in the mnemonic. 3555 std::string LenMnemonic = 3556 char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3557 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3558 << " /* " << MI->Mnemonic << " */, " << Target.getInstNamespace() 3559 << "::" << MI->getResultInst()->TheDef->getName() << ", " 3560 << MI->ConversionFnKind << ", "; 3561 3562 // Write the required features mask. 3563 OS << "AMFBS"; 3564 if (MI->RequiredFeatures.empty()) 3565 OS << "_None"; 3566 else 3567 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3568 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3569 3570 OS << ", { "; 3571 ListSeparator LS; 3572 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands) 3573 OS << LS << Op.Class->Name; 3574 OS << " }, },\n"; 3575 } 3576 3577 OS << "};\n\n"; 3578 } 3579 3580 OS << "#include \"llvm/Support/Debug.h\"\n"; 3581 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3582 3583 // Finally, build the match function. 3584 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3585 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3586 OS << " MCInst &Inst,\n"; 3587 if (ReportMultipleNearMisses) 3588 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3589 else 3590 OS << " uint64_t &ErrorInfo,\n" 3591 << " FeatureBitset &MissingFeatures,\n"; 3592 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3593 3594 if (!ReportMultipleNearMisses) { 3595 OS << " // Eliminate obvious mismatches.\n"; 3596 OS << " if (Operands.size() > " << (MaxNumOperands + HasMnemonicFirst) 3597 << ") {\n"; 3598 OS << " ErrorInfo = " << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3599 OS << " return Match_InvalidOperand;\n"; 3600 OS << " }\n\n"; 3601 } 3602 3603 // Emit code to get the available features. 3604 OS << " // Get the current feature set.\n"; 3605 OS << " const FeatureBitset &AvailableFeatures = " 3606 "getAvailableFeatures();\n\n"; 3607 3608 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3609 if (HasMnemonicFirst) { 3610 OS << " StringRef Mnemonic = ((" << Target.getName() 3611 << "Operand &)*Operands[0]).getToken();\n\n"; 3612 } else { 3613 OS << " StringRef Mnemonic;\n"; 3614 OS << " if (Operands[0]->isToken())\n"; 3615 OS << " Mnemonic = ((" << Target.getName() 3616 << "Operand &)*Operands[0]).getToken();\n\n"; 3617 } 3618 3619 if (HasMnemonicAliases) { 3620 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3621 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3622 } 3623 3624 // Emit code to compute the class list for this operand vector. 3625 if (!ReportMultipleNearMisses) { 3626 OS << " // Some state to try to produce better error messages.\n"; 3627 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3628 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3629 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3630 OS << " MissingFeatures.set();\n"; 3631 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3632 OS << " // wrong for all instances of the instruction.\n"; 3633 OS << " ErrorInfo = ~0ULL;\n"; 3634 } 3635 3636 if (HasOptionalOperands) { 3637 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3638 } 3639 3640 // Emit code to search the table. 3641 OS << " // Find the appropriate table for this asm variant.\n"; 3642 OS << " const MatchEntry *Start, *End;\n"; 3643 OS << " switch (VariantID) {\n"; 3644 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3645 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3646 Record *AsmVariant = Target.getAsmParserVariant(VC); 3647 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3648 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3649 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3650 } 3651 OS << " }\n"; 3652 3653 OS << " // Search the table.\n"; 3654 if (HasMnemonicFirst) { 3655 OS << " auto MnemonicRange = " 3656 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3657 } else { 3658 OS << " auto MnemonicRange = std::pair(Start, End);\n"; 3659 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3660 OS << " if (!Mnemonic.empty())\n"; 3661 OS << " MnemonicRange = " 3662 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3663 } 3664 3665 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" " 3666 "<<\n" 3667 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n" 3668 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3669 3670 OS << " // Return a more specific error code if no mnemonics match.\n"; 3671 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3672 OS << " return Match_MnemonicFail;\n\n"; 3673 3674 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3675 << "*ie = MnemonicRange.second;\n"; 3676 OS << " it != ie; ++it) {\n"; 3677 OS << " const FeatureBitset &RequiredFeatures = " 3678 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3679 OS << " bool HasRequiredFeatures =\n"; 3680 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3681 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match " 3682 "opcode \"\n"; 3683 OS << " << MII.getName(it->Opcode) " 3684 "<< \"\\n\");\n"; 3685 3686 if (ReportMultipleNearMisses) { 3687 OS << " // Some state to record ways in which this instruction did not " 3688 "match.\n"; 3689 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3690 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3691 OS << " NearMissInfo EarlyPredicateNearMiss = " 3692 "NearMissInfo::getSuccess();\n"; 3693 OS << " NearMissInfo LatePredicateNearMiss = " 3694 "NearMissInfo::getSuccess();\n"; 3695 OS << " bool MultipleInvalidOperands = false;\n"; 3696 } 3697 3698 if (HasMnemonicFirst) { 3699 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3700 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3701 } 3702 3703 // Emit check that the subclasses match. 3704 if (!ReportMultipleNearMisses) 3705 OS << " bool OperandsValid = true;\n"; 3706 if (HasOptionalOperands) { 3707 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3708 } 3709 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3710 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3711 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3712 OS << " auto Formal = " 3713 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3714 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3715 OS << " dbgs() << \" Matching formal operand class \" " 3716 "<< getMatchClassName(Formal)\n"; 3717 OS << " << \" against actual operand at index \" " 3718 "<< ActualIdx);\n"; 3719 OS << " if (ActualIdx < Operands.size())\n"; 3720 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3721 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << " 3722 "\"): \");\n"; 3723 OS << " else\n"; 3724 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3725 OS << " if (ActualIdx >= Operands.size()) {\n"; 3726 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand " 3727 "index out of range\\n\");\n"; 3728 if (ReportMultipleNearMisses) { 3729 OS << " bool ThisOperandValid = (Formal == " 3730 << "InvalidMatchClass) || " 3731 "isSubclass(Formal, OptionalMatchClass);\n"; 3732 OS << " if (!ThisOperandValid) {\n"; 3733 OS << " if (!OperandNearMiss) {\n"; 3734 OS << " // Record info about match failure for later use.\n"; 3735 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording " 3736 "too-few-operands near miss\\n\");\n"; 3737 OS << " OperandNearMiss =\n"; 3738 OS << " NearMissInfo::getTooFewOperands(Formal, " 3739 "it->Opcode);\n"; 3740 OS << " } else if (OperandNearMiss.getKind() != " 3741 "NearMissInfo::NearMissTooFewOperands) {\n"; 3742 OS << " // If more than one operand is invalid, give up on this " 3743 "match entry.\n"; 3744 OS << " DEBUG_WITH_TYPE(\n"; 3745 OS << " \"asm-matcher\",\n"; 3746 OS << " dbgs() << \"second invalid operand, giving up on " 3747 "this opcode\\n\");\n"; 3748 OS << " MultipleInvalidOperands = true;\n"; 3749 OS << " break;\n"; 3750 OS << " }\n"; 3751 OS << " } else {\n"; 3752 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal " 3753 "operand not required\\n\");\n"; 3754 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n"; 3755 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3756 OS << " }\n"; 3757 OS << " }\n"; 3758 OS << " continue;\n"; 3759 } else { 3760 OS << " if (Formal == InvalidMatchClass) {\n"; 3761 if (HasOptionalOperands) { 3762 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3763 << ");\n"; 3764 } 3765 OS << " break;\n"; 3766 OS << " }\n"; 3767 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n"; 3768 if (HasOptionalOperands) { 3769 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3770 } 3771 OS << " continue;\n"; 3772 OS << " }\n"; 3773 OS << " OperandsValid = false;\n"; 3774 OS << " ErrorInfo = ActualIdx;\n"; 3775 OS << " break;\n"; 3776 } 3777 OS << " }\n"; 3778 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3779 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3780 OS << " if (Diag == Match_Success) {\n"; 3781 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3782 OS << " dbgs() << \"match success using generic " 3783 "matcher\\n\");\n"; 3784 OS << " ++ActualIdx;\n"; 3785 OS << " continue;\n"; 3786 OS << " }\n"; 3787 OS << " // If the generic handler indicates an invalid operand\n"; 3788 OS << " // failure, check for a special case.\n"; 3789 OS << " if (Diag != Match_Success) {\n"; 3790 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, " 3791 "Formal);\n"; 3792 OS << " if (TargetDiag == Match_Success) {\n"; 3793 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3794 OS << " dbgs() << \"match success using target " 3795 "matcher\\n\");\n"; 3796 OS << " ++ActualIdx;\n"; 3797 OS << " continue;\n"; 3798 OS << " }\n"; 3799 OS << " // If the target matcher returned a specific error code use\n"; 3800 OS << " // that, else use the one from the generic matcher.\n"; 3801 OS << " if (TargetDiag != Match_InvalidOperand && " 3802 "HasRequiredFeatures)\n"; 3803 OS << " Diag = TargetDiag;\n"; 3804 OS << " }\n"; 3805 OS << " // If current formal operand wasn't matched and it is optional\n" 3806 << " // then try to match next formal operand\n"; 3807 OS << " if (Diag == Match_InvalidOperand " 3808 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3809 if (HasOptionalOperands) { 3810 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3811 } 3812 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring " 3813 "optional operand\\n\");\n"; 3814 OS << " continue;\n"; 3815 OS << " }\n"; 3816 3817 if (ReportMultipleNearMisses) { 3818 OS << " if (!OperandNearMiss) {\n"; 3819 OS << " // If this is the first invalid operand we have seen, " 3820 "record some\n"; 3821 OS << " // information about it.\n"; 3822 OS << " DEBUG_WITH_TYPE(\n"; 3823 OS << " \"asm-matcher\",\n"; 3824 OS << " dbgs()\n"; 3825 OS << " << \"operand match failed, recording near-miss with " 3826 "diag code \"\n"; 3827 OS << " << Diag << \"\\n\");\n"; 3828 OS << " OperandNearMiss =\n"; 3829 OS << " NearMissInfo::getMissedOperand(Diag, Formal, " 3830 "it->Opcode, ActualIdx);\n"; 3831 OS << " ++ActualIdx;\n"; 3832 OS << " } else {\n"; 3833 OS << " // If more than one operand is invalid, give up on this " 3834 "match entry.\n"; 3835 OS << " DEBUG_WITH_TYPE(\n"; 3836 OS << " \"asm-matcher\",\n"; 3837 OS << " dbgs() << \"second operand mismatch, skipping this " 3838 "opcode\\n\");\n"; 3839 OS << " MultipleInvalidOperands = true;\n"; 3840 OS << " break;\n"; 3841 OS << " }\n"; 3842 OS << " }\n\n"; 3843 } else { 3844 OS << " // If this operand is broken for all of the instances of " 3845 "this\n"; 3846 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3847 OS << " // If we already had a match that only failed due to a\n"; 3848 OS << " // target predicate, that diagnostic is preferred.\n"; 3849 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3850 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) " 3851 "{\n"; 3852 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3853 "!= Match_InvalidOperand))\n"; 3854 OS << " RetCode = Diag;\n"; 3855 OS << " ErrorInfo = ActualIdx;\n"; 3856 OS << " }\n"; 3857 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3858 OS << " OperandsValid = false;\n"; 3859 OS << " break;\n"; 3860 OS << " }\n\n"; 3861 } 3862 3863 if (ReportMultipleNearMisses) 3864 OS << " if (MultipleInvalidOperands) {\n"; 3865 else 3866 OS << " if (!OperandsValid) {\n"; 3867 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: " 3868 "multiple \"\n"; 3869 OS << " \"operand mismatches, " 3870 "ignoring \"\n"; 3871 OS << " \"this opcode\\n\");\n"; 3872 OS << " continue;\n"; 3873 OS << " }\n"; 3874 3875 // Emit check that the required features are available. 3876 OS << " if (!HasRequiredFeatures) {\n"; 3877 if (!ReportMultipleNearMisses) 3878 OS << " HadMatchOtherThanFeatures = true;\n"; 3879 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3880 "~AvailableFeatures;\n"; 3881 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target " 3882 "features:\";\n"; 3883 OS << " for (unsigned I = 0, E = " 3884 "NewMissingFeatures.size(); I != E; ++I)\n"; 3885 OS << " if (NewMissingFeatures[I])\n"; 3886 OS << " dbgs() << ' ' << I;\n"; 3887 OS << " dbgs() << \"\\n\");\n"; 3888 if (ReportMultipleNearMisses) { 3889 OS << " FeaturesNearMiss = " 3890 "NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3891 } else { 3892 OS << " if (NewMissingFeatures.count() <=\n" 3893 " MissingFeatures.count())\n"; 3894 OS << " MissingFeatures = NewMissingFeatures;\n"; 3895 OS << " continue;\n"; 3896 } 3897 OS << " }\n"; 3898 OS << "\n"; 3899 OS << " Inst.clear();\n\n"; 3900 OS << " Inst.setOpcode(it->Opcode);\n"; 3901 // Verify the instruction with the target-specific match predicate function. 3902 OS << " // We have a potential match but have not rendered the operands.\n" 3903 << " // Check the target predicate to handle any context sensitive\n" 3904 " // constraints.\n" 3905 << " // For example, Ties that are referenced multiple times must be\n" 3906 " // checked here to ensure the input is the same for each match\n" 3907 " // constraints. If we leave it any later the ties will have been\n" 3908 " // canonicalized\n" 3909 << " unsigned MatchResult;\n" 3910 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3911 "Operands)) != Match_Success) {\n" 3912 << " Inst.clear();\n"; 3913 OS << " DEBUG_WITH_TYPE(\n"; 3914 OS << " \"asm-matcher\",\n"; 3915 OS << " dbgs() << \"Early target match predicate failed with diag " 3916 "code \"\n"; 3917 OS << " << MatchResult << \"\\n\");\n"; 3918 if (ReportMultipleNearMisses) { 3919 OS << " EarlyPredicateNearMiss = " 3920 "NearMissInfo::getMissedPredicate(MatchResult);\n"; 3921 } else { 3922 OS << " RetCode = MatchResult;\n" 3923 << " HadMatchOtherThanPredicate = true;\n" 3924 << " continue;\n"; 3925 } 3926 OS << " }\n\n"; 3927 3928 if (ReportMultipleNearMisses) { 3929 OS << " // If we did not successfully match the operands, then we can't " 3930 "convert to\n"; 3931 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3932 OS << " if (OperandNearMiss) {\n"; 3933 OS << " // If the operand mismatch was the only problem, reprrt it as " 3934 "a near-miss.\n"; 3935 OS << " if (NearMisses && !FeaturesNearMiss && " 3936 "!EarlyPredicateNearMiss) {\n"; 3937 OS << " DEBUG_WITH_TYPE(\n"; 3938 OS << " \"asm-matcher\",\n"; 3939 OS << " dbgs()\n"; 3940 OS << " << \"Opcode result: one mismatched operand, adding " 3941 "near-miss\\n\");\n"; 3942 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3943 OS << " } else {\n"; 3944 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: " 3945 "multiple \"\n"; 3946 OS << " \"types of " 3947 "mismatch, so not \"\n"; 3948 OS << " \"reporting " 3949 "near-miss\\n\");\n"; 3950 OS << " }\n"; 3951 OS << " continue;\n"; 3952 OS << " }\n\n"; 3953 } 3954 3955 // When converting parsed operands to MCInst we need to know whether optional 3956 // operands were parsed or not so that we can choose the correct converter 3957 // function. We also need to know this when checking tied operand constraints. 3958 // DefaultsOffset is an array of deltas between the formal (MCInst) and the 3959 // actual (parsed operand array) operand indices. When all optional operands 3960 // are present, all elements of the array are zeros. If some of the optional 3961 // operands are absent, the array might look like '0, 0, 1, 1, 1, 2, 2, 3', 3962 // where each increment in value reflects the absence of an optional operand. 3963 if (HasOptionalOperands) { 3964 OS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 3965 << "] = { 0 };\n"; 3966 OS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 3967 << ");\n"; 3968 OS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 3969 << "; ++i) {\n"; 3970 OS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 3971 OS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 3972 OS << " }\n\n"; 3973 } 3974 3975 OS << " if (matchingInlineAsm) {\n"; 3976 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3977 if (!ReportMultipleNearMisses) { 3978 if (HasOptionalOperands) { 3979 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3980 "Operands,\n"; 3981 OS << " DefaultsOffset, " 3982 "ErrorInfo))\n"; 3983 } else { 3984 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3985 "Operands,\n"; 3986 OS << " ErrorInfo))\n"; 3987 } 3988 OS << " return Match_InvalidTiedOperand;\n"; 3989 OS << "\n"; 3990 } 3991 OS << " return Match_Success;\n"; 3992 OS << " }\n\n"; 3993 OS << " // We have selected a definite instruction, convert the parsed\n" 3994 << " // operands into the appropriate MCInst.\n"; 3995 if (HasOptionalOperands) { 3996 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3997 << " OptionalOperandsMask, DefaultsOffset);\n"; 3998 } else { 3999 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 4000 } 4001 OS << "\n"; 4002 4003 // Verify the instruction with the target-specific match predicate function. 4004 OS << " // We have a potential match. Check the target predicate to\n" 4005 << " // handle any context sensitive constraints.\n" 4006 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 4007 << " Match_Success) {\n" 4008 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 4009 << " dbgs() << \"Target match predicate failed with " 4010 "diag code \"\n" 4011 << " << MatchResult << \"\\n\");\n" 4012 << " Inst.clear();\n"; 4013 if (ReportMultipleNearMisses) { 4014 OS << " LatePredicateNearMiss = " 4015 "NearMissInfo::getMissedPredicate(MatchResult);\n"; 4016 } else { 4017 OS << " RetCode = MatchResult;\n" 4018 << " HadMatchOtherThanPredicate = true;\n" 4019 << " continue;\n"; 4020 } 4021 OS << " }\n\n"; 4022 4023 if (ReportMultipleNearMisses) { 4024 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 4025 OS << " (int)(bool)FeaturesNearMiss +\n"; 4026 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 4027 OS << " (int)(bool)LatePredicateNearMiss);\n"; 4028 OS << " if (NumNearMisses == 1) {\n"; 4029 OS << " // We had exactly one type of near-miss, so add that to the " 4030 "list.\n"; 4031 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled " 4032 "earlier\");\n"; 4033 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: " 4034 "found one type of \"\n"; 4035 OS << " \"mismatch, so " 4036 "reporting a \"\n"; 4037 OS << " \"near-miss\\n\");\n"; 4038 OS << " if (NearMisses && FeaturesNearMiss)\n"; 4039 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 4040 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 4041 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 4042 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 4043 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 4044 OS << "\n"; 4045 OS << " continue;\n"; 4046 OS << " } else if (NumNearMisses > 1) {\n"; 4047 OS << " // This instruction missed in more than one way, so ignore " 4048 "it.\n"; 4049 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: " 4050 "multiple \"\n"; 4051 OS << " \"types of mismatch, " 4052 "so not \"\n"; 4053 OS << " \"reporting " 4054 "near-miss\\n\");\n"; 4055 OS << " continue;\n"; 4056 OS << " }\n"; 4057 } 4058 4059 // Call the post-processing function, if used. 4060 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 4061 if (!InsnCleanupFn.empty()) 4062 OS << " " << InsnCleanupFn << "(Inst);\n"; 4063 4064 if (HasDeprecation) { 4065 OS << " std::string Info;\n"; 4066 OS << " if " 4067 "(!getParser().getTargetParser().getTargetOptions()." 4068 "MCNoDeprecatedWarn &&\n"; 4069 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 4070 OS << " SMLoc Loc = ((" << Target.getName() 4071 << "Operand &)*Operands[0]).getStartLoc();\n"; 4072 OS << " getParser().Warning(Loc, Info, std::nullopt);\n"; 4073 OS << " }\n"; 4074 } 4075 4076 if (!ReportMultipleNearMisses) { 4077 if (HasOptionalOperands) { 4078 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 4079 "Operands,\n"; 4080 OS << " DefaultsOffset, " 4081 "ErrorInfo))\n"; 4082 } else { 4083 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 4084 "Operands,\n"; 4085 OS << " ErrorInfo))\n"; 4086 } 4087 OS << " return Match_InvalidTiedOperand;\n"; 4088 OS << "\n"; 4089 } 4090 4091 OS << " DEBUG_WITH_TYPE(\n"; 4092 OS << " \"asm-matcher\",\n"; 4093 OS << " dbgs() << \"Opcode result: complete match, selecting this " 4094 "opcode\\n\");\n"; 4095 OS << " return Match_Success;\n"; 4096 OS << " }\n\n"; 4097 4098 if (ReportMultipleNearMisses) { 4099 OS << " // No instruction variants matched exactly.\n"; 4100 OS << " return Match_NearMisses;\n"; 4101 } else { 4102 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 4103 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 4104 OS << " return RetCode;\n\n"; 4105 OS << " ErrorInfo = 0;\n"; 4106 OS << " return Match_MissingFeature;\n"; 4107 } 4108 OS << "}\n\n"; 4109 4110 if (!Info.OperandMatchInfo.empty()) 4111 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 4112 MaxMnemonicIndex, FeatureBitsets.size(), 4113 HasMnemonicFirst, *AsmParser); 4114 4115 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 4116 4117 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 4118 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 4119 4120 emitMnemonicSpellChecker(OS, Target, VariantCount); 4121 4122 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 4123 4124 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n"; 4125 OS << "#undef GET_MNEMONIC_CHECKER\n\n"; 4126 4127 emitMnemonicChecker(OS, Target, VariantCount, HasMnemonicFirst, 4128 HasMnemonicAliases); 4129 4130 OS << "#endif // GET_MNEMONIC_CHECKER\n\n"; 4131 } 4132 4133 static TableGen::Emitter::OptClass<AsmMatcherEmitter> 4134 X("gen-asm-matcher", "Generate assembly instruction matcher"); 4135