1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits a target specifier matcher for converting parsed 10 // assembly operands in the MCInst structures. It also emits a matcher for 11 // custom operand parsing. 12 // 13 // Converting assembly operands into MCInst structures 14 // --------------------------------------------------- 15 // 16 // The input to the target specific matcher is a list of literal tokens and 17 // operands. The target specific parser should generally eliminate any syntax 18 // which is not relevant for matching; for example, comma tokens should have 19 // already been consumed and eliminated by the parser. Most instructions will 20 // end up with a single literal token (the instruction name) and some number of 21 // operands. 22 // 23 // Some example inputs, for X86: 24 // 'addl' (immediate ...) (register ...) 25 // 'add' (immediate ...) (memory ...) 26 // 'call' '*' %epc 27 // 28 // The assembly matcher is responsible for converting this input into a precise 29 // machine instruction (i.e., an instruction with a well defined encoding). This 30 // mapping has several properties which complicate matching: 31 // 32 // - It may be ambiguous; many architectures can legally encode particular 33 // variants of an instruction in different ways (for example, using a smaller 34 // encoding for small immediates). Such ambiguities should never be 35 // arbitrarily resolved by the assembler, the assembler is always responsible 36 // for choosing the "best" available instruction. 37 // 38 // - It may depend on the subtarget or the assembler context. Instructions 39 // which are invalid for the current mode, but otherwise unambiguous (e.g., 40 // an SSE instruction in a file being assembled for i486) should be accepted 41 // and rejected by the assembler front end. However, if the proper encoding 42 // for an instruction is dependent on the assembler context then the matcher 43 // is responsible for selecting the correct machine instruction for the 44 // current mode. 45 // 46 // The core matching algorithm attempts to exploit the regularity in most 47 // instruction sets to quickly determine the set of possibly matching 48 // instructions, and the simplify the generated code. Additionally, this helps 49 // to ensure that the ambiguities are intentionally resolved by the user. 50 // 51 // The matching is divided into two distinct phases: 52 // 53 // 1. Classification: Each operand is mapped to the unique set which (a) 54 // contains it, and (b) is the largest such subset for which a single 55 // instruction could match all members. 56 // 57 // For register classes, we can generate these subgroups automatically. For 58 // arbitrary operands, we expect the user to define the classes and their 59 // relations to one another (for example, 8-bit signed immediates as a 60 // subset of 32-bit immediates). 61 // 62 // By partitioning the operands in this way, we guarantee that for any 63 // tuple of classes, any single instruction must match either all or none 64 // of the sets of operands which could classify to that tuple. 65 // 66 // In addition, the subset relation amongst classes induces a partial order 67 // on such tuples, which we use to resolve ambiguities. 68 // 69 // 2. The input can now be treated as a tuple of classes (static tokens are 70 // simple singleton sets). Each such tuple should generally map to a single 71 // instruction (we currently ignore cases where this isn't true, whee!!!), 72 // which we can emit a simple matcher for. 73 // 74 // Custom Operand Parsing 75 // ---------------------- 76 // 77 // Some targets need a custom way to parse operands, some specific instructions 78 // can contain arguments that can represent processor flags and other kinds of 79 // identifiers that need to be mapped to specific values in the final encoded 80 // instructions. The target specific custom operand parsing works in the 81 // following way: 82 // 83 // 1. A operand match table is built, each entry contains a mnemonic, an 84 // operand class, a mask for all operand positions for that same 85 // class/mnemonic and target features to be checked while trying to match. 86 // 87 // 2. The operand matcher will try every possible entry with the same 88 // mnemonic and will check if the target feature for this mnemonic also 89 // matches. After that, if the operand to be matched has its index 90 // present in the mask, a successful match occurs. Otherwise, fallback 91 // to the regular operand parsing. 92 // 93 // 3. For a match success, each operand class that has a 'ParserMethod' 94 // becomes part of a switch from where the custom method is called. 95 // 96 //===----------------------------------------------------------------------===// 97 98 #include "CodeGenInstAlias.h" 99 #include "CodeGenInstruction.h" 100 #include "CodeGenRegisters.h" 101 #include "CodeGenTarget.h" 102 #include "SubtargetFeatureInfo.h" 103 #include "Types.h" 104 #include "llvm/ADT/CachedHashString.h" 105 #include "llvm/ADT/PointerUnion.h" 106 #include "llvm/ADT/STLExtras.h" 107 #include "llvm/ADT/SmallPtrSet.h" 108 #include "llvm/ADT/SmallVector.h" 109 #include "llvm/ADT/StringExtras.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Debug.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/TableGen/Error.h" 114 #include "llvm/TableGen/Record.h" 115 #include "llvm/TableGen/StringMatcher.h" 116 #include "llvm/TableGen/StringToOffsetTable.h" 117 #include "llvm/TableGen/TableGenBackend.h" 118 #include <cassert> 119 #include <cctype> 120 #include <forward_list> 121 #include <map> 122 #include <set> 123 124 using namespace llvm; 125 126 #define DEBUG_TYPE "asm-matcher-emitter" 127 128 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 129 130 static cl::opt<std::string> 131 MatchPrefix("match-prefix", cl::init(""), 132 cl::desc("Only match instructions with the given prefix"), 133 cl::cat(AsmMatcherEmitterCat)); 134 135 namespace { 136 class AsmMatcherInfo; 137 138 // Register sets are used as keys in some second-order sets TableGen creates 139 // when generating its data structures. This means that the order of two 140 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 141 // can even affect compiler output (at least seen in diagnostics produced when 142 // all matches fail). So we use a type that sorts them consistently. 143 typedef std::set<Record*, LessRecordByID> RegisterSet; 144 145 class AsmMatcherEmitter { 146 RecordKeeper &Records; 147 public: 148 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 149 150 void run(raw_ostream &o); 151 }; 152 153 /// ClassInfo - Helper class for storing the information about a particular 154 /// class of operands which can be matched. 155 struct ClassInfo { 156 enum ClassInfoKind { 157 /// Invalid kind, for use as a sentinel value. 158 Invalid = 0, 159 160 /// The class for a particular token. 161 Token, 162 163 /// The (first) register class, subsequent register classes are 164 /// RegisterClass0+1, and so on. 165 RegisterClass0, 166 167 /// The (first) user defined class, subsequent user defined classes are 168 /// UserClass0+1, and so on. 169 UserClass0 = 1<<16 170 }; 171 172 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 173 /// N) for the Nth user defined class. 174 unsigned Kind; 175 176 /// SuperClasses - The super classes of this class. Note that for simplicities 177 /// sake user operands only record their immediate super class, while register 178 /// operands include all superclasses. 179 std::vector<ClassInfo*> SuperClasses; 180 181 /// Name - The full class name, suitable for use in an enum. 182 std::string Name; 183 184 /// ClassName - The unadorned generic name for this class (e.g., Token). 185 std::string ClassName; 186 187 /// ValueName - The name of the value this class represents; for a token this 188 /// is the literal token string, for an operand it is the TableGen class (or 189 /// empty if this is a derived class). 190 std::string ValueName; 191 192 /// PredicateMethod - The name of the operand method to test whether the 193 /// operand matches this class; this is not valid for Token or register kinds. 194 std::string PredicateMethod; 195 196 /// RenderMethod - The name of the operand method to add this operand to an 197 /// MCInst; this is not valid for Token or register kinds. 198 std::string RenderMethod; 199 200 /// ParserMethod - The name of the operand method to do a target specific 201 /// parsing on the operand. 202 std::string ParserMethod; 203 204 /// For register classes: the records for all the registers in this class. 205 RegisterSet Registers; 206 207 /// For custom match classes: the diagnostic kind for when the predicate fails. 208 std::string DiagnosticType; 209 210 /// For custom match classes: the diagnostic string for when the predicate fails. 211 std::string DiagnosticString; 212 213 /// Is this operand optional and not always required. 214 bool IsOptional; 215 216 /// DefaultMethod - The name of the method that returns the default operand 217 /// for optional operand 218 std::string DefaultMethod; 219 220 public: 221 /// isRegisterClass() - Check if this is a register class. 222 bool isRegisterClass() const { 223 return Kind >= RegisterClass0 && Kind < UserClass0; 224 } 225 226 /// isUserClass() - Check if this is a user defined class. 227 bool isUserClass() const { 228 return Kind >= UserClass0; 229 } 230 231 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 232 /// are related if they are in the same class hierarchy. 233 bool isRelatedTo(const ClassInfo &RHS) const { 234 // Tokens are only related to tokens. 235 if (Kind == Token || RHS.Kind == Token) 236 return Kind == Token && RHS.Kind == Token; 237 238 // Registers classes are only related to registers classes, and only if 239 // their intersection is non-empty. 240 if (isRegisterClass() || RHS.isRegisterClass()) { 241 if (!isRegisterClass() || !RHS.isRegisterClass()) 242 return false; 243 244 RegisterSet Tmp; 245 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 246 std::set_intersection(Registers.begin(), Registers.end(), 247 RHS.Registers.begin(), RHS.Registers.end(), 248 II, LessRecordByID()); 249 250 return !Tmp.empty(); 251 } 252 253 // Otherwise we have two users operands; they are related if they are in the 254 // same class hierarchy. 255 // 256 // FIXME: This is an oversimplification, they should only be related if they 257 // intersect, however we don't have that information. 258 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 259 const ClassInfo *Root = this; 260 while (!Root->SuperClasses.empty()) 261 Root = Root->SuperClasses.front(); 262 263 const ClassInfo *RHSRoot = &RHS; 264 while (!RHSRoot->SuperClasses.empty()) 265 RHSRoot = RHSRoot->SuperClasses.front(); 266 267 return Root == RHSRoot; 268 } 269 270 /// isSubsetOf - Test whether this class is a subset of \p RHS. 271 bool isSubsetOf(const ClassInfo &RHS) const { 272 // This is a subset of RHS if it is the same class... 273 if (this == &RHS) 274 return true; 275 276 // ... or if any of its super classes are a subset of RHS. 277 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 278 SuperClasses.end()); 279 SmallPtrSet<const ClassInfo *, 16> Visited; 280 while (!Worklist.empty()) { 281 auto *CI = Worklist.pop_back_val(); 282 if (CI == &RHS) 283 return true; 284 for (auto *Super : CI->SuperClasses) 285 if (Visited.insert(Super).second) 286 Worklist.push_back(Super); 287 } 288 289 return false; 290 } 291 292 int getTreeDepth() const { 293 int Depth = 0; 294 const ClassInfo *Root = this; 295 while (!Root->SuperClasses.empty()) { 296 Depth++; 297 Root = Root->SuperClasses.front(); 298 } 299 return Depth; 300 } 301 302 const ClassInfo *findRoot() const { 303 const ClassInfo *Root = this; 304 while (!Root->SuperClasses.empty()) 305 Root = Root->SuperClasses.front(); 306 return Root; 307 } 308 309 /// Compare two classes. This does not produce a total ordering, but does 310 /// guarantee that subclasses are sorted before their parents, and that the 311 /// ordering is transitive. 312 bool operator<(const ClassInfo &RHS) const { 313 if (this == &RHS) 314 return false; 315 316 // First, enforce the ordering between the three different types of class. 317 // Tokens sort before registers, which sort before user classes. 318 if (Kind == Token) { 319 if (RHS.Kind != Token) 320 return true; 321 assert(RHS.Kind == Token); 322 } else if (isRegisterClass()) { 323 if (RHS.Kind == Token) 324 return false; 325 else if (RHS.isUserClass()) 326 return true; 327 assert(RHS.isRegisterClass()); 328 } else if (isUserClass()) { 329 if (!RHS.isUserClass()) 330 return false; 331 assert(RHS.isUserClass()); 332 } else { 333 llvm_unreachable("Unknown ClassInfoKind"); 334 } 335 336 if (Kind == Token || isUserClass()) { 337 // Related tokens and user classes get sorted by depth in the inheritence 338 // tree (so that subclasses are before their parents). 339 if (isRelatedTo(RHS)) { 340 if (getTreeDepth() > RHS.getTreeDepth()) 341 return true; 342 if (getTreeDepth() < RHS.getTreeDepth()) 343 return false; 344 } else { 345 // Unrelated tokens and user classes are ordered by the name of their 346 // root nodes, so that there is a consistent ordering between 347 // unconnected trees. 348 return findRoot()->ValueName < RHS.findRoot()->ValueName; 349 } 350 } else if (isRegisterClass()) { 351 // For register sets, sort by number of registers. This guarantees that 352 // a set will always sort before all of it's strict supersets. 353 if (Registers.size() != RHS.Registers.size()) 354 return Registers.size() < RHS.Registers.size(); 355 } else { 356 llvm_unreachable("Unknown ClassInfoKind"); 357 } 358 359 // FIXME: We should be able to just return false here, as we only need a 360 // partial order (we use stable sorts, so this is deterministic) and the 361 // name of a class shouldn't be significant. However, some of the backends 362 // accidentally rely on this behaviour, so it will have to stay like this 363 // until they are fixed. 364 return ValueName < RHS.ValueName; 365 } 366 }; 367 368 class AsmVariantInfo { 369 public: 370 StringRef RegisterPrefix; 371 StringRef TokenizingCharacters; 372 StringRef SeparatorCharacters; 373 StringRef BreakCharacters; 374 StringRef Name; 375 int AsmVariantNo; 376 }; 377 378 /// MatchableInfo - Helper class for storing the necessary information for an 379 /// instruction or alias which is capable of being matched. 380 struct MatchableInfo { 381 struct AsmOperand { 382 /// Token - This is the token that the operand came from. 383 StringRef Token; 384 385 /// The unique class instance this operand should match. 386 ClassInfo *Class; 387 388 /// The operand name this is, if anything. 389 StringRef SrcOpName; 390 391 /// The operand name this is, before renaming for tied operands. 392 StringRef OrigSrcOpName; 393 394 /// The suboperand index within SrcOpName, or -1 for the entire operand. 395 int SubOpIdx; 396 397 /// Whether the token is "isolated", i.e., it is preceded and followed 398 /// by separators. 399 bool IsIsolatedToken; 400 401 /// Register record if this token is singleton register. 402 Record *SingletonReg; 403 404 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 405 : Token(T), Class(nullptr), SubOpIdx(-1), 406 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 407 }; 408 409 /// ResOperand - This represents a single operand in the result instruction 410 /// generated by the match. In cases (like addressing modes) where a single 411 /// assembler operand expands to multiple MCOperands, this represents the 412 /// single assembler operand, not the MCOperand. 413 struct ResOperand { 414 enum { 415 /// RenderAsmOperand - This represents an operand result that is 416 /// generated by calling the render method on the assembly operand. The 417 /// corresponding AsmOperand is specified by AsmOperandNum. 418 RenderAsmOperand, 419 420 /// TiedOperand - This represents a result operand that is a duplicate of 421 /// a previous result operand. 422 TiedOperand, 423 424 /// ImmOperand - This represents an immediate value that is dumped into 425 /// the operand. 426 ImmOperand, 427 428 /// RegOperand - This represents a fixed register that is dumped in. 429 RegOperand 430 } Kind; 431 432 /// Tuple containing the index of the (earlier) result operand that should 433 /// be copied from, as well as the indices of the corresponding (parsed) 434 /// operands in the asm string. 435 struct TiedOperandsTuple { 436 unsigned ResOpnd; 437 unsigned SrcOpnd1Idx; 438 unsigned SrcOpnd2Idx; 439 }; 440 441 union { 442 /// This is the operand # in the AsmOperands list that this should be 443 /// copied from. 444 unsigned AsmOperandNum; 445 446 /// Description of tied operands. 447 TiedOperandsTuple TiedOperands; 448 449 /// ImmVal - This is the immediate value added to the instruction. 450 int64_t ImmVal; 451 452 /// Register - This is the register record. 453 Record *Register; 454 }; 455 456 /// MINumOperands - The number of MCInst operands populated by this 457 /// operand. 458 unsigned MINumOperands; 459 460 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 461 ResOperand X; 462 X.Kind = RenderAsmOperand; 463 X.AsmOperandNum = AsmOpNum; 464 X.MINumOperands = NumOperands; 465 return X; 466 } 467 468 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 469 unsigned SrcOperand2) { 470 ResOperand X; 471 X.Kind = TiedOperand; 472 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 473 X.MINumOperands = 1; 474 return X; 475 } 476 477 static ResOperand getImmOp(int64_t Val) { 478 ResOperand X; 479 X.Kind = ImmOperand; 480 X.ImmVal = Val; 481 X.MINumOperands = 1; 482 return X; 483 } 484 485 static ResOperand getRegOp(Record *Reg) { 486 ResOperand X; 487 X.Kind = RegOperand; 488 X.Register = Reg; 489 X.MINumOperands = 1; 490 return X; 491 } 492 }; 493 494 /// AsmVariantID - Target's assembly syntax variant no. 495 int AsmVariantID; 496 497 /// AsmString - The assembly string for this instruction (with variants 498 /// removed), e.g. "movsx $src, $dst". 499 std::string AsmString; 500 501 /// TheDef - This is the definition of the instruction or InstAlias that this 502 /// matchable came from. 503 Record *const TheDef; 504 505 /// DefRec - This is the definition that it came from. 506 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 507 508 const CodeGenInstruction *getResultInst() const { 509 if (isa<const CodeGenInstruction *>(DefRec)) 510 return cast<const CodeGenInstruction *>(DefRec); 511 return cast<const CodeGenInstAlias *>(DefRec)->ResultInst; 512 } 513 514 /// ResOperands - This is the operand list that should be built for the result 515 /// MCInst. 516 SmallVector<ResOperand, 8> ResOperands; 517 518 /// Mnemonic - This is the first token of the matched instruction, its 519 /// mnemonic. 520 StringRef Mnemonic; 521 522 /// AsmOperands - The textual operands that this instruction matches, 523 /// annotated with a class and where in the OperandList they were defined. 524 /// This directly corresponds to the tokenized AsmString after the mnemonic is 525 /// removed. 526 SmallVector<AsmOperand, 8> AsmOperands; 527 528 /// Predicates - The required subtarget features to match this instruction. 529 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 530 531 /// ConversionFnKind - The enum value which is passed to the generated 532 /// convertToMCInst to convert parsed operands into an MCInst for this 533 /// function. 534 std::string ConversionFnKind; 535 536 /// If this instruction is deprecated in some form. 537 bool HasDeprecation = false; 538 539 /// If this is an alias, this is use to determine whether or not to using 540 /// the conversion function defined by the instruction's AsmMatchConverter 541 /// or to use the function generated by the alias. 542 bool UseInstAsmMatchConverter; 543 544 MatchableInfo(const CodeGenInstruction &CGI) 545 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 546 UseInstAsmMatchConverter(true) { 547 } 548 549 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 550 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 551 DefRec(Alias.release()), 552 UseInstAsmMatchConverter( 553 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 554 } 555 556 // Could remove this and the dtor if PointerUnion supported unique_ptr 557 // elements with a dynamic failure/assertion (like the one below) in the case 558 // where it was copied while being in an owning state. 559 MatchableInfo(const MatchableInfo &RHS) 560 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 561 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 562 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 563 RequiredFeatures(RHS.RequiredFeatures), 564 ConversionFnKind(RHS.ConversionFnKind), 565 HasDeprecation(RHS.HasDeprecation), 566 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 567 assert(!isa<const CodeGenInstAlias *>(DefRec)); 568 } 569 570 ~MatchableInfo() { 571 delete dyn_cast_if_present<const CodeGenInstAlias *>(DefRec); 572 } 573 574 // Two-operand aliases clone from the main matchable, but mark the second 575 // operand as a tied operand of the first for purposes of the assembler. 576 void formTwoOperandAlias(StringRef Constraint); 577 578 void initialize(const AsmMatcherInfo &Info, 579 SmallPtrSetImpl<Record*> &SingletonRegisters, 580 AsmVariantInfo const &Variant, 581 bool HasMnemonicFirst); 582 583 /// validate - Return true if this matchable is a valid thing to match against 584 /// and perform a bunch of validity checking. 585 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 586 587 /// findAsmOperand - Find the AsmOperand with the specified name and 588 /// suboperand index. 589 int findAsmOperand(StringRef N, int SubOpIdx) const { 590 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 591 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 592 }); 593 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 594 } 595 596 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 597 /// This does not check the suboperand index. 598 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 599 auto I = 600 llvm::find_if(llvm::drop_begin(AsmOperands, LastIdx + 1), 601 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 602 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 603 } 604 605 int findAsmOperandOriginallyNamed(StringRef N) const { 606 auto I = 607 find_if(AsmOperands, 608 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 609 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 610 } 611 612 void buildInstructionResultOperands(); 613 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 614 615 /// operator< - Compare two matchables. 616 bool operator<(const MatchableInfo &RHS) const { 617 // The primary comparator is the instruction mnemonic. 618 if (int Cmp = Mnemonic.compare_insensitive(RHS.Mnemonic)) 619 return Cmp == -1; 620 621 if (AsmOperands.size() != RHS.AsmOperands.size()) 622 return AsmOperands.size() < RHS.AsmOperands.size(); 623 624 // Compare lexicographically by operand. The matcher validates that other 625 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 626 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 627 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 628 return true; 629 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 630 return false; 631 } 632 633 // For X86 AVX/AVX512 instructions, we prefer vex encoding because the 634 // vex encoding size is smaller. Since X86InstrSSE.td is included ahead 635 // of X86InstrAVX512.td, the AVX instruction ID is less than AVX512 ID. 636 // We use the ID to sort AVX instruction before AVX512 instruction in 637 // matching table. 638 if (TheDef->isSubClassOf("Instruction") && 639 TheDef->getValueAsBit("HasPositionOrder") && 640 RHS.TheDef->isSubClassOf("Instruction") && 641 RHS.TheDef->getValueAsBit("HasPositionOrder")) 642 return TheDef->getID() < RHS.TheDef->getID(); 643 644 // Give matches that require more features higher precedence. This is useful 645 // because we cannot define AssemblerPredicates with the negation of 646 // processor features. For example, ARM v6 "nop" may be either a HINT or 647 // MOV. With v6, we want to match HINT. The assembler has no way to 648 // predicate MOV under "NoV6", but HINT will always match first because it 649 // requires V6 while MOV does not. 650 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 651 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 652 653 return false; 654 } 655 656 /// couldMatchAmbiguouslyWith - Check whether this matchable could 657 /// ambiguously match the same set of operands as \p RHS (without being a 658 /// strictly superior match). 659 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 660 // The primary comparator is the instruction mnemonic. 661 if (Mnemonic != RHS.Mnemonic) 662 return false; 663 664 // Different variants can't conflict. 665 if (AsmVariantID != RHS.AsmVariantID) 666 return false; 667 668 // The number of operands is unambiguous. 669 if (AsmOperands.size() != RHS.AsmOperands.size()) 670 return false; 671 672 // Otherwise, make sure the ordering of the two instructions is unambiguous 673 // by checking that either (a) a token or operand kind discriminates them, 674 // or (b) the ordering among equivalent kinds is consistent. 675 676 // Tokens and operand kinds are unambiguous (assuming a correct target 677 // specific parser). 678 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 679 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 680 AsmOperands[i].Class->Kind == ClassInfo::Token) 681 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 682 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 683 return false; 684 685 // Otherwise, this operand could commute if all operands are equivalent, or 686 // there is a pair of operands that compare less than and a pair that 687 // compare greater than. 688 bool HasLT = false, HasGT = false; 689 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 690 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 691 HasLT = true; 692 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 693 HasGT = true; 694 } 695 696 return HasLT == HasGT; 697 } 698 699 void dump() const; 700 701 private: 702 void tokenizeAsmString(AsmMatcherInfo const &Info, 703 AsmVariantInfo const &Variant); 704 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 705 }; 706 707 struct OperandMatchEntry { 708 unsigned OperandMask; 709 const MatchableInfo* MI; 710 ClassInfo *CI; 711 712 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 713 unsigned opMask) { 714 OperandMatchEntry X; 715 X.OperandMask = opMask; 716 X.CI = ci; 717 X.MI = mi; 718 return X; 719 } 720 }; 721 722 class AsmMatcherInfo { 723 public: 724 /// Tracked Records 725 RecordKeeper &Records; 726 727 /// The tablegen AsmParser record. 728 Record *AsmParser; 729 730 /// Target - The target information. 731 CodeGenTarget &Target; 732 733 /// The classes which are needed for matching. 734 std::forward_list<ClassInfo> Classes; 735 736 /// The information on the matchables to match. 737 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 738 739 /// Info for custom matching operands by user defined methods. 740 std::vector<OperandMatchEntry> OperandMatchInfo; 741 742 /// Map of Register records to their class information. 743 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 744 RegisterClassesTy RegisterClasses; 745 746 /// Map of Predicate records to their subtarget information. 747 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 748 749 /// Map of AsmOperandClass records to their class information. 750 std::map<Record*, ClassInfo*> AsmOperandClasses; 751 752 /// Map of RegisterClass records to their class information. 753 std::map<Record*, ClassInfo*> RegisterClassClasses; 754 755 private: 756 /// Map of token to class information which has already been constructed. 757 std::map<std::string, ClassInfo*> TokenClasses; 758 759 private: 760 /// getTokenClass - Lookup or create the class for the given token. 761 ClassInfo *getTokenClass(StringRef Token); 762 763 /// getOperandClass - Lookup or create the class for the given operand. 764 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 765 int SubOpIdx); 766 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 767 768 /// buildRegisterClasses - Build the ClassInfo* instances for register 769 /// classes. 770 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 771 772 /// buildOperandClasses - Build the ClassInfo* instances for user defined 773 /// operand classes. 774 void buildOperandClasses(); 775 776 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 777 unsigned AsmOpIdx); 778 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 779 MatchableInfo::AsmOperand &Op); 780 781 public: 782 AsmMatcherInfo(Record *AsmParser, 783 CodeGenTarget &Target, 784 RecordKeeper &Records); 785 786 /// Construct the various tables used during matching. 787 void buildInfo(); 788 789 /// buildOperandMatchInfo - Build the necessary information to handle user 790 /// defined operand parsing methods. 791 void buildOperandMatchInfo(); 792 793 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 794 /// given operand. 795 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 796 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 797 const auto &I = SubtargetFeatures.find(Def); 798 return I == SubtargetFeatures.end() ? nullptr : &I->second; 799 } 800 801 RecordKeeper &getRecords() const { 802 return Records; 803 } 804 805 bool hasOptionalOperands() const { 806 return any_of(Classes, 807 [](const ClassInfo &Class) { return Class.IsOptional; }); 808 } 809 }; 810 811 } // end anonymous namespace 812 813 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 814 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 815 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 816 817 errs() << " variant: " << AsmVariantID << "\n"; 818 819 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 820 const AsmOperand &Op = AsmOperands[i]; 821 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 822 errs() << '\"' << Op.Token << "\"\n"; 823 } 824 } 825 #endif 826 827 static std::pair<StringRef, StringRef> 828 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 829 // Split via the '='. 830 std::pair<StringRef, StringRef> Ops = S.split('='); 831 if (Ops.second == "") 832 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 833 // Trim whitespace and the leading '$' on the operand names. 834 size_t start = Ops.first.find_first_of('$'); 835 if (start == std::string::npos) 836 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 837 Ops.first = Ops.first.slice(start + 1, std::string::npos); 838 size_t end = Ops.first.find_last_of(" \t"); 839 Ops.first = Ops.first.slice(0, end); 840 // Now the second operand. 841 start = Ops.second.find_first_of('$'); 842 if (start == std::string::npos) 843 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 844 Ops.second = Ops.second.slice(start + 1, std::string::npos); 845 end = Ops.second.find_last_of(" \t"); 846 Ops.first = Ops.first.slice(0, end); 847 return Ops; 848 } 849 850 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 851 // Figure out which operands are aliased and mark them as tied. 852 std::pair<StringRef, StringRef> Ops = 853 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 854 855 // Find the AsmOperands that refer to the operands we're aliasing. 856 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 857 int DstAsmOperand = findAsmOperandNamed(Ops.second); 858 if (SrcAsmOperand == -1) 859 PrintFatalError(TheDef->getLoc(), 860 "unknown source two-operand alias operand '" + Ops.first + 861 "'."); 862 if (DstAsmOperand == -1) 863 PrintFatalError(TheDef->getLoc(), 864 "unknown destination two-operand alias operand '" + 865 Ops.second + "'."); 866 867 // Find the ResOperand that refers to the operand we're aliasing away 868 // and update it to refer to the combined operand instead. 869 for (ResOperand &Op : ResOperands) { 870 if (Op.Kind == ResOperand::RenderAsmOperand && 871 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 872 Op.AsmOperandNum = DstAsmOperand; 873 break; 874 } 875 } 876 // Remove the AsmOperand for the alias operand. 877 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 878 // Adjust the ResOperand references to any AsmOperands that followed 879 // the one we just deleted. 880 for (ResOperand &Op : ResOperands) { 881 switch(Op.Kind) { 882 default: 883 // Nothing to do for operands that don't reference AsmOperands. 884 break; 885 case ResOperand::RenderAsmOperand: 886 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 887 --Op.AsmOperandNum; 888 break; 889 } 890 } 891 } 892 893 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 894 /// if present, from specified token. 895 static void 896 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 897 const AsmMatcherInfo &Info, 898 StringRef RegisterPrefix) { 899 StringRef Tok = Op.Token; 900 901 // If this token is not an isolated token, i.e., it isn't separated from 902 // other tokens (e.g. with whitespace), don't interpret it as a register name. 903 if (!Op.IsIsolatedToken) 904 return; 905 906 if (RegisterPrefix.empty()) { 907 std::string LoweredTok = Tok.lower(); 908 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 909 Op.SingletonReg = Reg->TheDef; 910 return; 911 } 912 913 if (!Tok.startswith(RegisterPrefix)) 914 return; 915 916 StringRef RegName = Tok.substr(RegisterPrefix.size()); 917 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 918 Op.SingletonReg = Reg->TheDef; 919 920 // If there is no register prefix (i.e. "%" in "%eax"), then this may 921 // be some random non-register token, just ignore it. 922 } 923 924 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 925 SmallPtrSetImpl<Record*> &SingletonRegisters, 926 AsmVariantInfo const &Variant, 927 bool HasMnemonicFirst) { 928 AsmVariantID = Variant.AsmVariantNo; 929 AsmString = 930 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 931 Variant.AsmVariantNo); 932 933 tokenizeAsmString(Info, Variant); 934 935 // The first token of the instruction is the mnemonic, which must be a 936 // simple string, not a $foo variable or a singleton register. 937 if (AsmOperands.empty()) 938 PrintFatalError(TheDef->getLoc(), 939 "Instruction '" + TheDef->getName() + "' has no tokens"); 940 941 assert(!AsmOperands[0].Token.empty()); 942 if (HasMnemonicFirst) { 943 Mnemonic = AsmOperands[0].Token; 944 if (Mnemonic[0] == '$') 945 PrintFatalError(TheDef->getLoc(), 946 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 947 948 // Remove the first operand, it is tracked in the mnemonic field. 949 AsmOperands.erase(AsmOperands.begin()); 950 } else if (AsmOperands[0].Token[0] != '$') 951 Mnemonic = AsmOperands[0].Token; 952 953 // Compute the require features. 954 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 955 if (const SubtargetFeatureInfo *Feature = 956 Info.getSubtargetFeature(Predicate)) 957 RequiredFeatures.push_back(Feature); 958 959 // Collect singleton registers, if used. 960 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 961 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 962 if (Record *Reg = Op.SingletonReg) 963 SingletonRegisters.insert(Reg); 964 } 965 966 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 967 if (!DepMask) 968 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 969 970 HasDeprecation = 971 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 972 } 973 974 /// Append an AsmOperand for the given substring of AsmString. 975 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 976 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 977 } 978 979 /// tokenizeAsmString - Tokenize a simplified assembly string. 980 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 981 AsmVariantInfo const &Variant) { 982 StringRef String = AsmString; 983 size_t Prev = 0; 984 bool InTok = false; 985 bool IsIsolatedToken = true; 986 for (size_t i = 0, e = String.size(); i != e; ++i) { 987 char Char = String[i]; 988 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 989 if (InTok) { 990 addAsmOperand(String.slice(Prev, i), false); 991 Prev = i; 992 IsIsolatedToken = false; 993 } 994 InTok = true; 995 continue; 996 } 997 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 998 if (InTok) { 999 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1000 InTok = false; 1001 IsIsolatedToken = false; 1002 } 1003 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1004 Prev = i + 1; 1005 IsIsolatedToken = true; 1006 continue; 1007 } 1008 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 1009 if (InTok) { 1010 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1011 InTok = false; 1012 } 1013 Prev = i + 1; 1014 IsIsolatedToken = true; 1015 continue; 1016 } 1017 1018 switch (Char) { 1019 case '\\': 1020 if (InTok) { 1021 addAsmOperand(String.slice(Prev, i), false); 1022 InTok = false; 1023 IsIsolatedToken = false; 1024 } 1025 ++i; 1026 assert(i != String.size() && "Invalid quoted character"); 1027 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1028 Prev = i + 1; 1029 IsIsolatedToken = false; 1030 break; 1031 1032 case '$': { 1033 if (InTok) { 1034 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 1035 InTok = false; 1036 IsIsolatedToken = false; 1037 } 1038 1039 // If this isn't "${", start new identifier looking like "$xxx" 1040 if (i + 1 == String.size() || String[i + 1] != '{') { 1041 Prev = i; 1042 break; 1043 } 1044 1045 size_t EndPos = String.find('}', i); 1046 assert(EndPos != StringRef::npos && 1047 "Missing brace in operand reference!"); 1048 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1049 Prev = EndPos + 1; 1050 i = EndPos; 1051 IsIsolatedToken = false; 1052 break; 1053 } 1054 1055 default: 1056 InTok = true; 1057 break; 1058 } 1059 } 1060 if (InTok && Prev != String.size()) 1061 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1062 } 1063 1064 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1065 // Reject matchables with no .s string. 1066 if (AsmString.empty()) 1067 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1068 1069 // Reject any matchables with a newline in them, they should be marked 1070 // isCodeGenOnly if they are pseudo instructions. 1071 if (AsmString.find('\n') != std::string::npos) 1072 PrintFatalError(TheDef->getLoc(), 1073 "multiline instruction is not valid for the asmparser, " 1074 "mark it isCodeGenOnly"); 1075 1076 // Remove comments from the asm string. We know that the asmstring only 1077 // has one line. 1078 if (!CommentDelimiter.empty() && 1079 StringRef(AsmString).contains(CommentDelimiter)) 1080 PrintFatalError(TheDef->getLoc(), 1081 "asmstring for instruction has comment character in it, " 1082 "mark it isCodeGenOnly"); 1083 1084 // Reject matchables with operand modifiers, these aren't something we can 1085 // handle, the target should be refactored to use operands instead of 1086 // modifiers. 1087 // 1088 // Also, check for instructions which reference the operand multiple times, 1089 // if they don't define a custom AsmMatcher: this implies a constraint that 1090 // the built-in matching code would not honor. 1091 std::set<std::string> OperandNames; 1092 for (const AsmOperand &Op : AsmOperands) { 1093 StringRef Tok = Op.Token; 1094 if (Tok[0] == '$' && Tok.contains(':')) 1095 PrintFatalError(TheDef->getLoc(), 1096 "matchable with operand modifier '" + Tok + 1097 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1098 // Verify that any operand is only mentioned once. 1099 // We reject aliases and ignore instructions for now. 1100 if (!IsAlias && TheDef->getValueAsString("AsmMatchConverter").empty() && 1101 Tok[0] == '$' && !OperandNames.insert(std::string(Tok)).second) { 1102 LLVM_DEBUG({ 1103 errs() << "warning: '" << TheDef->getName() << "': " 1104 << "ignoring instruction with tied operand '" 1105 << Tok << "'\n"; 1106 }); 1107 return false; 1108 } 1109 } 1110 1111 return true; 1112 } 1113 1114 static std::string getEnumNameForToken(StringRef Str) { 1115 std::string Res; 1116 1117 for (char C : Str) { 1118 switch (C) { 1119 case '*': Res += "_STAR_"; break; 1120 case '%': Res += "_PCT_"; break; 1121 case ':': Res += "_COLON_"; break; 1122 case '!': Res += "_EXCLAIM_"; break; 1123 case '.': Res += "_DOT_"; break; 1124 case '<': Res += "_LT_"; break; 1125 case '>': Res += "_GT_"; break; 1126 case '-': Res += "_MINUS_"; break; 1127 case '#': Res += "_HASH_"; break; 1128 default: 1129 if (isAlnum(C)) 1130 Res += C; 1131 else 1132 Res += "_" + utostr((unsigned)C) + "_"; 1133 } 1134 } 1135 1136 return Res; 1137 } 1138 1139 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1140 ClassInfo *&Entry = TokenClasses[std::string(Token)]; 1141 1142 if (!Entry) { 1143 Classes.emplace_front(); 1144 Entry = &Classes.front(); 1145 Entry->Kind = ClassInfo::Token; 1146 Entry->ClassName = "Token"; 1147 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1148 Entry->ValueName = std::string(Token); 1149 Entry->PredicateMethod = "<invalid>"; 1150 Entry->RenderMethod = "<invalid>"; 1151 Entry->ParserMethod = ""; 1152 Entry->DiagnosticType = ""; 1153 Entry->IsOptional = false; 1154 Entry->DefaultMethod = "<invalid>"; 1155 } 1156 1157 return Entry; 1158 } 1159 1160 ClassInfo * 1161 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1162 int SubOpIdx) { 1163 Record *Rec = OI.Rec; 1164 if (SubOpIdx != -1) 1165 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1166 return getOperandClass(Rec, SubOpIdx); 1167 } 1168 1169 ClassInfo * 1170 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1171 if (Rec->isSubClassOf("RegisterOperand")) { 1172 // RegisterOperand may have an associated ParserMatchClass. If it does, 1173 // use it, else just fall back to the underlying register class. 1174 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1175 if (!R || !R->getValue()) 1176 PrintFatalError(Rec->getLoc(), 1177 "Record `" + Rec->getName() + 1178 "' does not have a ParserMatchClass!\n"); 1179 1180 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1181 Record *MatchClass = DI->getDef(); 1182 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1183 return CI; 1184 } 1185 1186 // No custom match class. Just use the register class. 1187 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1188 if (!ClassRec) 1189 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1190 "' has no associated register class!\n"); 1191 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1192 return CI; 1193 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1194 } 1195 1196 if (Rec->isSubClassOf("RegisterClass")) { 1197 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1198 return CI; 1199 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1200 } 1201 1202 if (!Rec->isSubClassOf("Operand")) 1203 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1204 "' does not derive from class Operand!\n"); 1205 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1206 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1207 return CI; 1208 1209 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1210 } 1211 1212 struct LessRegisterSet { 1213 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1214 // std::set<T> defines its own compariso "operator<", but it 1215 // performs a lexicographical comparison by T's innate comparison 1216 // for some reason. We don't want non-deterministic pointer 1217 // comparisons so use this instead. 1218 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1219 RHS.begin(), RHS.end(), 1220 LessRecordByID()); 1221 } 1222 }; 1223 1224 void AsmMatcherInfo:: 1225 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1226 const auto &Registers = Target.getRegBank().getRegisters(); 1227 auto &RegClassList = Target.getRegBank().getRegClasses(); 1228 1229 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1230 1231 // The register sets used for matching. 1232 RegisterSetSet RegisterSets; 1233 1234 // Gather the defined sets. 1235 for (const CodeGenRegisterClass &RC : RegClassList) 1236 RegisterSets.insert( 1237 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1238 1239 // Add any required singleton sets. 1240 for (Record *Rec : SingletonRegisters) { 1241 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1242 } 1243 1244 // Introduce derived sets where necessary (when a register does not determine 1245 // a unique register set class), and build the mapping of registers to the set 1246 // they should classify to. 1247 std::map<Record*, RegisterSet> RegisterMap; 1248 for (const CodeGenRegister &CGR : Registers) { 1249 // Compute the intersection of all sets containing this register. 1250 RegisterSet ContainingSet; 1251 1252 for (const RegisterSet &RS : RegisterSets) { 1253 if (!RS.count(CGR.TheDef)) 1254 continue; 1255 1256 if (ContainingSet.empty()) { 1257 ContainingSet = RS; 1258 continue; 1259 } 1260 1261 RegisterSet Tmp; 1262 std::swap(Tmp, ContainingSet); 1263 std::insert_iterator<RegisterSet> II(ContainingSet, 1264 ContainingSet.begin()); 1265 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1266 LessRecordByID()); 1267 } 1268 1269 if (!ContainingSet.empty()) { 1270 RegisterSets.insert(ContainingSet); 1271 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1272 } 1273 } 1274 1275 // Construct the register classes. 1276 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1277 unsigned Index = 0; 1278 for (const RegisterSet &RS : RegisterSets) { 1279 Classes.emplace_front(); 1280 ClassInfo *CI = &Classes.front(); 1281 CI->Kind = ClassInfo::RegisterClass0 + Index; 1282 CI->ClassName = "Reg" + utostr(Index); 1283 CI->Name = "MCK_Reg" + utostr(Index); 1284 CI->ValueName = ""; 1285 CI->PredicateMethod = ""; // unused 1286 CI->RenderMethod = "addRegOperands"; 1287 CI->Registers = RS; 1288 // FIXME: diagnostic type. 1289 CI->DiagnosticType = ""; 1290 CI->IsOptional = false; 1291 CI->DefaultMethod = ""; // unused 1292 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1293 ++Index; 1294 } 1295 1296 // Find the superclasses; we could compute only the subgroup lattice edges, 1297 // but there isn't really a point. 1298 for (const RegisterSet &RS : RegisterSets) { 1299 ClassInfo *CI = RegisterSetClasses[RS]; 1300 for (const RegisterSet &RS2 : RegisterSets) 1301 if (RS != RS2 && 1302 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1303 LessRecordByID())) 1304 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1305 } 1306 1307 // Name the register classes which correspond to a user defined RegisterClass. 1308 for (const CodeGenRegisterClass &RC : RegClassList) { 1309 // Def will be NULL for non-user defined register classes. 1310 Record *Def = RC.getDef(); 1311 if (!Def) 1312 continue; 1313 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1314 RC.getOrder().end())]; 1315 if (CI->ValueName.empty()) { 1316 CI->ClassName = RC.getName(); 1317 CI->Name = "MCK_" + RC.getName(); 1318 CI->ValueName = RC.getName(); 1319 } else 1320 CI->ValueName = CI->ValueName + "," + RC.getName(); 1321 1322 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1323 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1324 CI->DiagnosticType = std::string(SI->getValue()); 1325 1326 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1327 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1328 CI->DiagnosticString = std::string(SI->getValue()); 1329 1330 // If we have a diagnostic string but the diagnostic type is not specified 1331 // explicitly, create an anonymous diagnostic type. 1332 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1333 CI->DiagnosticType = RC.getName(); 1334 1335 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1336 } 1337 1338 // Populate the map for individual registers. 1339 for (auto &It : RegisterMap) 1340 RegisterClasses[It.first] = RegisterSetClasses[It.second]; 1341 1342 // Name the register classes which correspond to singleton registers. 1343 for (Record *Rec : SingletonRegisters) { 1344 ClassInfo *CI = RegisterClasses[Rec]; 1345 assert(CI && "Missing singleton register class info!"); 1346 1347 if (CI->ValueName.empty()) { 1348 CI->ClassName = std::string(Rec->getName()); 1349 CI->Name = "MCK_" + Rec->getName().str(); 1350 CI->ValueName = std::string(Rec->getName()); 1351 } else 1352 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1353 } 1354 } 1355 1356 void AsmMatcherInfo::buildOperandClasses() { 1357 std::vector<Record*> AsmOperands = 1358 Records.getAllDerivedDefinitions("AsmOperandClass"); 1359 1360 // Pre-populate AsmOperandClasses map. 1361 for (Record *Rec : AsmOperands) { 1362 Classes.emplace_front(); 1363 AsmOperandClasses[Rec] = &Classes.front(); 1364 } 1365 1366 unsigned Index = 0; 1367 for (Record *Rec : AsmOperands) { 1368 ClassInfo *CI = AsmOperandClasses[Rec]; 1369 CI->Kind = ClassInfo::UserClass0 + Index; 1370 1371 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1372 for (Init *I : Supers->getValues()) { 1373 DefInit *DI = dyn_cast<DefInit>(I); 1374 if (!DI) { 1375 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1376 continue; 1377 } 1378 1379 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1380 if (!SC) 1381 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1382 else 1383 CI->SuperClasses.push_back(SC); 1384 } 1385 CI->ClassName = std::string(Rec->getValueAsString("Name")); 1386 CI->Name = "MCK_" + CI->ClassName; 1387 CI->ValueName = std::string(Rec->getName()); 1388 1389 // Get or construct the predicate method name. 1390 Init *PMName = Rec->getValueInit("PredicateMethod"); 1391 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1392 CI->PredicateMethod = std::string(SI->getValue()); 1393 } else { 1394 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1395 CI->PredicateMethod = "is" + CI->ClassName; 1396 } 1397 1398 // Get or construct the render method name. 1399 Init *RMName = Rec->getValueInit("RenderMethod"); 1400 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1401 CI->RenderMethod = std::string(SI->getValue()); 1402 } else { 1403 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1404 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1405 } 1406 1407 // Get the parse method name or leave it as empty. 1408 Init *PRMName = Rec->getValueInit("ParserMethod"); 1409 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1410 CI->ParserMethod = std::string(SI->getValue()); 1411 1412 // Get the diagnostic type and string or leave them as empty. 1413 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1414 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1415 CI->DiagnosticType = std::string(SI->getValue()); 1416 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1417 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1418 CI->DiagnosticString = std::string(SI->getValue()); 1419 // If we have a DiagnosticString, we need a DiagnosticType for use within 1420 // the matcher. 1421 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1422 CI->DiagnosticType = CI->ClassName; 1423 1424 Init *IsOptional = Rec->getValueInit("IsOptional"); 1425 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1426 CI->IsOptional = BI->getValue(); 1427 1428 // Get or construct the default method name. 1429 Init *DMName = Rec->getValueInit("DefaultMethod"); 1430 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1431 CI->DefaultMethod = std::string(SI->getValue()); 1432 } else { 1433 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1434 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1435 } 1436 1437 ++Index; 1438 } 1439 } 1440 1441 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1442 CodeGenTarget &target, 1443 RecordKeeper &records) 1444 : Records(records), AsmParser(asmParser), Target(target) { 1445 } 1446 1447 /// buildOperandMatchInfo - Build the necessary information to handle user 1448 /// defined operand parsing methods. 1449 void AsmMatcherInfo::buildOperandMatchInfo() { 1450 1451 /// Map containing a mask with all operands indices that can be found for 1452 /// that class inside a instruction. 1453 typedef std::map<ClassInfo *, unsigned, deref<std::less<>>> OpClassMaskTy; 1454 OpClassMaskTy OpClassMask; 1455 1456 bool CallCustomParserForAllOperands = 1457 AsmParser->getValueAsBit("CallCustomParserForAllOperands"); 1458 for (const auto &MI : Matchables) { 1459 OpClassMask.clear(); 1460 1461 // Keep track of all operands of this instructions which belong to the 1462 // same class. 1463 unsigned NumOptionalOps = 0; 1464 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1465 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1466 if (CallCustomParserForAllOperands || !Op.Class->ParserMethod.empty()) { 1467 unsigned &OperandMask = OpClassMask[Op.Class]; 1468 OperandMask |= maskTrailingOnes<unsigned>(NumOptionalOps + 1) 1469 << (i - NumOptionalOps); 1470 } 1471 if (Op.Class->IsOptional) 1472 ++NumOptionalOps; 1473 } 1474 1475 // Generate operand match info for each mnemonic/operand class pair. 1476 for (const auto &OCM : OpClassMask) { 1477 unsigned OpMask = OCM.second; 1478 ClassInfo *CI = OCM.first; 1479 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1480 OpMask)); 1481 } 1482 } 1483 } 1484 1485 void AsmMatcherInfo::buildInfo() { 1486 // Build information about all of the AssemblerPredicates. 1487 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1488 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1489 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1490 SubtargetFeaturePairs.end()); 1491 #ifndef NDEBUG 1492 for (const auto &Pair : SubtargetFeatures) 1493 LLVM_DEBUG(Pair.second.dump()); 1494 #endif // NDEBUG 1495 1496 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1497 bool ReportMultipleNearMisses = 1498 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1499 1500 // Parse the instructions; we need to do this first so that we can gather the 1501 // singleton register classes. 1502 SmallPtrSet<Record*, 16> SingletonRegisters; 1503 unsigned VariantCount = Target.getAsmParserVariantCount(); 1504 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1505 Record *AsmVariant = Target.getAsmParserVariant(VC); 1506 StringRef CommentDelimiter = 1507 AsmVariant->getValueAsString("CommentDelimiter"); 1508 AsmVariantInfo Variant; 1509 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1510 Variant.TokenizingCharacters = 1511 AsmVariant->getValueAsString("TokenizingCharacters"); 1512 Variant.SeparatorCharacters = 1513 AsmVariant->getValueAsString("SeparatorCharacters"); 1514 Variant.BreakCharacters = 1515 AsmVariant->getValueAsString("BreakCharacters"); 1516 Variant.Name = AsmVariant->getValueAsString("Name"); 1517 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1518 1519 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1520 1521 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1522 // filter the set of instructions we consider. 1523 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1524 continue; 1525 1526 // Ignore "codegen only" instructions. 1527 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1528 continue; 1529 1530 // Ignore instructions for different instructions 1531 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1532 if (!V.empty() && V != Variant.Name) 1533 continue; 1534 1535 auto II = std::make_unique<MatchableInfo>(*CGI); 1536 1537 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1538 1539 // Ignore instructions which shouldn't be matched and diagnose invalid 1540 // instruction definitions with an error. 1541 if (!II->validate(CommentDelimiter, false)) 1542 continue; 1543 1544 Matchables.push_back(std::move(II)); 1545 } 1546 1547 // Parse all of the InstAlias definitions and stick them in the list of 1548 // matchables. 1549 std::vector<Record*> AllInstAliases = 1550 Records.getAllDerivedDefinitions("InstAlias"); 1551 for (Record *InstAlias : AllInstAliases) { 1552 auto Alias = std::make_unique<CodeGenInstAlias>(InstAlias, Target); 1553 1554 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1555 // filter the set of instruction aliases we consider, based on the target 1556 // instruction. 1557 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1558 .startswith( MatchPrefix)) 1559 continue; 1560 1561 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1562 if (!V.empty() && V != Variant.Name) 1563 continue; 1564 1565 auto II = std::make_unique<MatchableInfo>(std::move(Alias)); 1566 1567 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1568 1569 // Validate the alias definitions. 1570 II->validate(CommentDelimiter, true); 1571 1572 Matchables.push_back(std::move(II)); 1573 } 1574 } 1575 1576 // Build info for the register classes. 1577 buildRegisterClasses(SingletonRegisters); 1578 1579 // Build info for the user defined assembly operand classes. 1580 buildOperandClasses(); 1581 1582 // Build the information about matchables, now that we have fully formed 1583 // classes. 1584 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1585 for (auto &II : Matchables) { 1586 // Parse the tokens after the mnemonic. 1587 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1588 // don't precompute the loop bound. 1589 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1590 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1591 StringRef Token = Op.Token; 1592 1593 // Check for singleton registers. 1594 if (Record *RegRecord = Op.SingletonReg) { 1595 Op.Class = RegisterClasses[RegRecord]; 1596 assert(Op.Class && Op.Class->Registers.size() == 1 && 1597 "Unexpected class for singleton register"); 1598 continue; 1599 } 1600 1601 // Check for simple tokens. 1602 if (Token[0] != '$') { 1603 Op.Class = getTokenClass(Token); 1604 continue; 1605 } 1606 1607 if (Token.size() > 1 && isdigit(Token[1])) { 1608 Op.Class = getTokenClass(Token); 1609 continue; 1610 } 1611 1612 // Otherwise this is an operand reference. 1613 StringRef OperandName; 1614 if (Token[1] == '{') 1615 OperandName = Token.substr(2, Token.size() - 3); 1616 else 1617 OperandName = Token.substr(1); 1618 1619 if (isa<const CodeGenInstruction *>(II->DefRec)) 1620 buildInstructionOperandReference(II.get(), OperandName, i); 1621 else 1622 buildAliasOperandReference(II.get(), OperandName, Op); 1623 } 1624 1625 if (isa<const CodeGenInstruction *>(II->DefRec)) { 1626 II->buildInstructionResultOperands(); 1627 // If the instruction has a two-operand alias, build up the 1628 // matchable here. We'll add them in bulk at the end to avoid 1629 // confusing this loop. 1630 StringRef Constraint = 1631 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1632 if (Constraint != "") { 1633 // Start by making a copy of the original matchable. 1634 auto AliasII = std::make_unique<MatchableInfo>(*II); 1635 1636 // Adjust it to be a two-operand alias. 1637 AliasII->formTwoOperandAlias(Constraint); 1638 1639 // Add the alias to the matchables list. 1640 NewMatchables.push_back(std::move(AliasII)); 1641 } 1642 } else 1643 // FIXME: The tied operands checking is not yet integrated with the 1644 // framework for reporting multiple near misses. To prevent invalid 1645 // formats from being matched with an alias if a tied-operands check 1646 // would otherwise have disallowed it, we just disallow such constructs 1647 // in TableGen completely. 1648 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1649 } 1650 if (!NewMatchables.empty()) 1651 Matchables.insert(Matchables.end(), 1652 std::make_move_iterator(NewMatchables.begin()), 1653 std::make_move_iterator(NewMatchables.end())); 1654 1655 // Process token alias definitions and set up the associated superclass 1656 // information. 1657 std::vector<Record*> AllTokenAliases = 1658 Records.getAllDerivedDefinitions("TokenAlias"); 1659 for (Record *Rec : AllTokenAliases) { 1660 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1661 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1662 if (FromClass == ToClass) 1663 PrintFatalError(Rec->getLoc(), 1664 "error: Destination value identical to source value."); 1665 FromClass->SuperClasses.push_back(ToClass); 1666 } 1667 1668 // Reorder classes so that classes precede super classes. 1669 Classes.sort(); 1670 1671 #ifdef EXPENSIVE_CHECKS 1672 // Verify that the table is sorted and operator < works transitively. 1673 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1674 for (auto J = I; J != E; ++J) { 1675 assert(!(*J < *I)); 1676 assert(I == J || !J->isSubsetOf(*I)); 1677 } 1678 } 1679 #endif 1680 } 1681 1682 /// buildInstructionOperandReference - The specified operand is a reference to a 1683 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1684 void AsmMatcherInfo:: 1685 buildInstructionOperandReference(MatchableInfo *II, 1686 StringRef OperandName, 1687 unsigned AsmOpIdx) { 1688 const CodeGenInstruction &CGI = *cast<const CodeGenInstruction *>(II->DefRec); 1689 const CGIOperandList &Operands = CGI.Operands; 1690 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1691 1692 // Map this token to an operand. 1693 unsigned Idx; 1694 if (!Operands.hasOperandNamed(OperandName, Idx)) 1695 PrintFatalError(II->TheDef->getLoc(), 1696 "error: unable to find operand: '" + OperandName + "'"); 1697 1698 // If the instruction operand has multiple suboperands, but the parser 1699 // match class for the asm operand is still the default "ImmAsmOperand", 1700 // then handle each suboperand separately. 1701 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1702 Record *Rec = Operands[Idx].Rec; 1703 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1704 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1705 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1706 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1707 StringRef Token = Op->Token; // save this in case Op gets moved 1708 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1709 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1710 NewAsmOp.SubOpIdx = SI; 1711 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1712 } 1713 // Replace Op with first suboperand. 1714 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1715 Op->SubOpIdx = 0; 1716 } 1717 } 1718 1719 // Set up the operand class. 1720 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1721 Op->OrigSrcOpName = OperandName; 1722 1723 // If the named operand is tied, canonicalize it to the untied operand. 1724 // For example, something like: 1725 // (outs GPR:$dst), (ins GPR:$src) 1726 // with an asmstring of 1727 // "inc $src" 1728 // we want to canonicalize to: 1729 // "inc $dst" 1730 // so that we know how to provide the $dst operand when filling in the result. 1731 int OITied = -1; 1732 if (Operands[Idx].MINumOperands == 1) 1733 OITied = Operands[Idx].getTiedRegister(); 1734 if (OITied != -1) { 1735 // The tied operand index is an MIOperand index, find the operand that 1736 // contains it. 1737 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1738 OperandName = Operands[Idx.first].Name; 1739 Op->SubOpIdx = Idx.second; 1740 } 1741 1742 Op->SrcOpName = OperandName; 1743 } 1744 1745 /// buildAliasOperandReference - When parsing an operand reference out of the 1746 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1747 /// operand reference is by looking it up in the result pattern definition. 1748 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1749 StringRef OperandName, 1750 MatchableInfo::AsmOperand &Op) { 1751 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(II->DefRec); 1752 1753 // Set up the operand class. 1754 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1755 if (CGA.ResultOperands[i].isRecord() && 1756 CGA.ResultOperands[i].getName() == OperandName) { 1757 // It's safe to go with the first one we find, because CodeGenInstAlias 1758 // validates that all operands with the same name have the same record. 1759 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1760 // Use the match class from the Alias definition, not the 1761 // destination instruction, as we may have an immediate that's 1762 // being munged by the match class. 1763 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1764 Op.SubOpIdx); 1765 Op.SrcOpName = OperandName; 1766 Op.OrigSrcOpName = OperandName; 1767 return; 1768 } 1769 1770 PrintFatalError(II->TheDef->getLoc(), 1771 "error: unable to find operand: '" + OperandName + "'"); 1772 } 1773 1774 void MatchableInfo::buildInstructionResultOperands() { 1775 const CodeGenInstruction *ResultInst = getResultInst(); 1776 1777 // Loop over all operands of the result instruction, determining how to 1778 // populate them. 1779 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1780 // If this is a tied operand, just copy from the previously handled operand. 1781 int TiedOp = -1; 1782 if (OpInfo.MINumOperands == 1) 1783 TiedOp = OpInfo.getTiedRegister(); 1784 if (TiedOp != -1) { 1785 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1786 if (TiedSrcOperand != -1 && 1787 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1788 ResOperands.push_back(ResOperand::getTiedOp( 1789 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1790 else 1791 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1792 continue; 1793 } 1794 1795 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1796 if (OpInfo.Name.empty() || SrcOperand == -1) { 1797 // This may happen for operands that are tied to a suboperand of a 1798 // complex operand. Simply use a dummy value here; nobody should 1799 // use this operand slot. 1800 // FIXME: The long term goal is for the MCOperand list to not contain 1801 // tied operands at all. 1802 ResOperands.push_back(ResOperand::getImmOp(0)); 1803 continue; 1804 } 1805 1806 // Check if the one AsmOperand populates the entire operand. 1807 unsigned NumOperands = OpInfo.MINumOperands; 1808 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1809 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1810 continue; 1811 } 1812 1813 // Add a separate ResOperand for each suboperand. 1814 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1815 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1816 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1817 "unexpected AsmOperands for suboperands"); 1818 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1819 } 1820 } 1821 } 1822 1823 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1824 const CodeGenInstAlias &CGA = *cast<const CodeGenInstAlias *>(DefRec); 1825 const CodeGenInstruction *ResultInst = getResultInst(); 1826 1827 // Map of: $reg -> #lastref 1828 // where $reg is the name of the operand in the asm string 1829 // where #lastref is the last processed index where $reg was referenced in 1830 // the asm string. 1831 SmallDenseMap<StringRef, int> OperandRefs; 1832 1833 // Loop over all operands of the result instruction, determining how to 1834 // populate them. 1835 unsigned AliasOpNo = 0; 1836 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1837 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1838 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1839 1840 // If this is a tied operand, just copy from the previously handled operand. 1841 int TiedOp = -1; 1842 if (OpInfo->MINumOperands == 1) 1843 TiedOp = OpInfo->getTiedRegister(); 1844 if (TiedOp != -1) { 1845 unsigned SrcOp1 = 0; 1846 unsigned SrcOp2 = 0; 1847 1848 // If an operand has been specified twice in the asm string, 1849 // add the two source operand's indices to the TiedOp so that 1850 // at runtime the 'tied' constraint is checked. 1851 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1852 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1853 1854 // Find the next operand (similarly named operand) in the string. 1855 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1856 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1857 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1858 1859 // Not updating the record in OperandRefs will cause TableGen 1860 // to fail with an error at the end of this function. 1861 if (AliasConstraintsAreChecked) 1862 Insert.first->second = SrcOp2; 1863 1864 // In case it only has one reference in the asm string, 1865 // it doesn't need to be checked for tied constraints. 1866 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1867 } 1868 1869 // If the alias operand is of a different operand class, we only want 1870 // to benefit from the tied-operands check and just match the operand 1871 // as a normal, but not copy the original (TiedOp) to the result 1872 // instruction. We do this by passing -1 as the tied operand to copy. 1873 if (ResultInst->Operands[i].Rec->getName() != 1874 ResultInst->Operands[TiedOp].Rec->getName()) { 1875 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1876 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1877 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1878 SrcOp2 = findAsmOperand(Name, SubIdx); 1879 ResOperands.push_back( 1880 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1881 } else { 1882 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1883 continue; 1884 } 1885 } 1886 1887 // Handle all the suboperands for this operand. 1888 const std::string &OpName = OpInfo->Name; 1889 for ( ; AliasOpNo < LastOpNo && 1890 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1891 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1892 1893 // Find out what operand from the asmparser that this MCInst operand 1894 // comes from. 1895 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1896 case CodeGenInstAlias::ResultOperand::K_Record: { 1897 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1898 int SrcOperand = findAsmOperand(Name, SubIdx); 1899 if (SrcOperand == -1) 1900 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1901 TheDef->getName() + "' has operand '" + OpName + 1902 "' that doesn't appear in asm string!"); 1903 1904 // Add it to the operand references. If it is added a second time, the 1905 // record won't be updated and it will fail later on. 1906 OperandRefs.try_emplace(Name, SrcOperand); 1907 1908 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1909 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1910 NumOperands)); 1911 break; 1912 } 1913 case CodeGenInstAlias::ResultOperand::K_Imm: { 1914 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1915 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1916 break; 1917 } 1918 case CodeGenInstAlias::ResultOperand::K_Reg: { 1919 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1920 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1921 break; 1922 } 1923 } 1924 } 1925 } 1926 1927 // Check that operands are not repeated more times than is supported. 1928 for (auto &T : OperandRefs) { 1929 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1930 PrintFatalError(TheDef->getLoc(), 1931 "Operand '" + T.first + "' can never be matched"); 1932 } 1933 } 1934 1935 static unsigned 1936 getConverterOperandID(const std::string &Name, 1937 SmallSetVector<CachedHashString, 16> &Table, 1938 bool &IsNew) { 1939 IsNew = Table.insert(CachedHashString(Name)); 1940 1941 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1942 1943 assert(ID < Table.size()); 1944 1945 return ID; 1946 } 1947 1948 static unsigned 1949 emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1950 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1951 bool HasMnemonicFirst, bool HasOptionalOperands, 1952 raw_ostream &OS) { 1953 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1954 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1955 std::vector<std::vector<uint8_t> > ConversionTable; 1956 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1957 1958 // TargetOperandClass - This is the target's operand class, like X86Operand. 1959 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1960 1961 // Write the convert function to a separate stream, so we can drop it after 1962 // the enum. We'll build up the conversion handlers for the individual 1963 // operand types opportunistically as we encounter them. 1964 std::string ConvertFnBody; 1965 raw_string_ostream CvtOS(ConvertFnBody); 1966 // Start the unified conversion function. 1967 if (HasOptionalOperands) { 1968 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1969 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1970 << "unsigned Opcode,\n" 1971 << " const OperandVector &Operands,\n" 1972 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1973 } else { 1974 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1975 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1976 << "unsigned Opcode,\n" 1977 << " const OperandVector &Operands) {\n"; 1978 } 1979 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1980 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1981 if (HasOptionalOperands) { 1982 size_t MaxNumOperands = 0; 1983 for (const auto &MI : Infos) { 1984 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1985 } 1986 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1987 << "] = { 0 };\n"; 1988 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1989 << ");\n"; 1990 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1991 << "; ++i) {\n"; 1992 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1993 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1994 CvtOS << " }\n"; 1995 } 1996 CvtOS << " unsigned OpIdx;\n"; 1997 CvtOS << " Inst.setOpcode(Opcode);\n"; 1998 CvtOS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 1999 if (HasOptionalOperands) { 2000 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 2001 } else { 2002 CvtOS << " OpIdx = *(p + 1);\n"; 2003 } 2004 CvtOS << " switch (*p) {\n"; 2005 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 2006 CvtOS << " case CVT_Reg:\n"; 2007 CvtOS << " static_cast<" << TargetOperandClass 2008 << " &>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 2009 CvtOS << " break;\n"; 2010 CvtOS << " case CVT_Tied: {\n"; 2011 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 2012 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 2013 CvtOS << " \"Tied operand not found\");\n"; 2014 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 2015 CvtOS << " if (TiedResOpnd != (uint8_t)-1)\n"; 2016 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 2017 CvtOS << " break;\n"; 2018 CvtOS << " }\n"; 2019 2020 std::string OperandFnBody; 2021 raw_string_ostream OpOS(OperandFnBody); 2022 // Start the operand number lookup function. 2023 OpOS << "void " << Target.getName() << ClassName << "::\n" 2024 << "convertToMapAndConstraints(unsigned Kind,\n"; 2025 OpOS.indent(27); 2026 OpOS << "const OperandVector &Operands) {\n" 2027 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2028 << " unsigned NumMCOperands = 0;\n" 2029 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2030 << " for (const uint8_t *p = Converter; *p; p += 2) {\n" 2031 << " switch (*p) {\n" 2032 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2033 << " case CVT_Reg:\n" 2034 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2035 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2036 << " ++NumMCOperands;\n" 2037 << " break;\n" 2038 << " case CVT_Tied:\n" 2039 << " ++NumMCOperands;\n" 2040 << " break;\n"; 2041 2042 // Pre-populate the operand conversion kinds with the standard always 2043 // available entries. 2044 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2045 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2046 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2047 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2048 2049 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2050 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2051 TiedOperandsEnumMap; 2052 2053 for (auto &II : Infos) { 2054 // Check if we have a custom match function. 2055 StringRef AsmMatchConverter = 2056 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2057 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2058 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2059 II->ConversionFnKind = Signature; 2060 2061 // Check if we have already generated this signature. 2062 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2063 continue; 2064 2065 // Remember this converter for the kind enum. 2066 unsigned KindID = OperandConversionKinds.size(); 2067 OperandConversionKinds.insert( 2068 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2069 2070 // Add the converter row for this instruction. 2071 ConversionTable.emplace_back(); 2072 ConversionTable.back().push_back(KindID); 2073 ConversionTable.back().push_back(CVT_Done); 2074 2075 // Add the handler to the conversion driver function. 2076 CvtOS << " case CVT_" 2077 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2078 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2079 << " break;\n"; 2080 2081 // FIXME: Handle the operand number lookup for custom match functions. 2082 continue; 2083 } 2084 2085 // Build the conversion function signature. 2086 std::string Signature = "Convert"; 2087 2088 std::vector<uint8_t> ConversionRow; 2089 2090 // Compute the convert enum and the case body. 2091 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2092 2093 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2094 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2095 2096 // Generate code to populate each result operand. 2097 switch (OpInfo.Kind) { 2098 case MatchableInfo::ResOperand::RenderAsmOperand: { 2099 // This comes from something we parsed. 2100 const MatchableInfo::AsmOperand &Op = 2101 II->AsmOperands[OpInfo.AsmOperandNum]; 2102 2103 // Registers are always converted the same, don't duplicate the 2104 // conversion function based on them. 2105 Signature += "__"; 2106 std::string Class; 2107 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2108 Signature += Class; 2109 Signature += utostr(OpInfo.MINumOperands); 2110 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2111 2112 // Add the conversion kind, if necessary, and get the associated ID 2113 // the index of its entry in the vector). 2114 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2115 Op.Class->RenderMethod); 2116 if (Op.Class->IsOptional) { 2117 // For optional operands we must also care about DefaultMethod 2118 assert(HasOptionalOperands); 2119 Name += "_" + Op.Class->DefaultMethod; 2120 } 2121 Name = getEnumNameForToken(Name); 2122 2123 bool IsNewConverter = false; 2124 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2125 IsNewConverter); 2126 2127 // Add the operand entry to the instruction kind conversion row. 2128 ConversionRow.push_back(ID); 2129 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2130 2131 if (!IsNewConverter) 2132 break; 2133 2134 // This is a new operand kind. Add a handler for it to the 2135 // converter driver. 2136 CvtOS << " case " << Name << ":\n"; 2137 if (Op.Class->IsOptional) { 2138 // If optional operand is not present in actual instruction then we 2139 // should call its DefaultMethod before RenderMethod 2140 assert(HasOptionalOperands); 2141 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2142 << " " << Op.Class->DefaultMethod << "()" 2143 << "->" << Op.Class->RenderMethod << "(Inst, " 2144 << OpInfo.MINumOperands << ");\n" 2145 << " } else {\n" 2146 << " static_cast<" << TargetOperandClass 2147 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2148 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2149 << " }\n"; 2150 } else { 2151 CvtOS << " static_cast<" << TargetOperandClass 2152 << " &>(*Operands[OpIdx])." << Op.Class->RenderMethod 2153 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2154 } 2155 CvtOS << " break;\n"; 2156 2157 // Add a handler for the operand number lookup. 2158 OpOS << " case " << Name << ":\n" 2159 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2160 2161 if (Op.Class->isRegisterClass()) 2162 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2163 else 2164 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2165 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2166 << " break;\n"; 2167 break; 2168 } 2169 case MatchableInfo::ResOperand::TiedOperand: { 2170 // If this operand is tied to a previous one, just copy the MCInst 2171 // operand from the earlier one.We can only tie single MCOperand values. 2172 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2173 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2174 uint8_t SrcOp1 = 2175 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2176 uint8_t SrcOp2 = 2177 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2178 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2179 "Tied operand precedes its target!"); 2180 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2181 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2182 Signature += "__" + TiedTupleName; 2183 ConversionRow.push_back(CVT_Tied); 2184 ConversionRow.push_back(TiedOp); 2185 ConversionRow.push_back(SrcOp1); 2186 ConversionRow.push_back(SrcOp2); 2187 2188 // Also create an 'enum' for this combination of tied operands. 2189 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2190 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2191 break; 2192 } 2193 case MatchableInfo::ResOperand::ImmOperand: { 2194 int64_t Val = OpInfo.ImmVal; 2195 std::string Ty = "imm_" + itostr(Val); 2196 Ty = getEnumNameForToken(Ty); 2197 Signature += "__" + Ty; 2198 2199 std::string Name = "CVT_" + Ty; 2200 bool IsNewConverter = false; 2201 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2202 IsNewConverter); 2203 // Add the operand entry to the instruction kind conversion row. 2204 ConversionRow.push_back(ID); 2205 ConversionRow.push_back(0); 2206 2207 if (!IsNewConverter) 2208 break; 2209 2210 CvtOS << " case " << Name << ":\n" 2211 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2212 << " break;\n"; 2213 2214 OpOS << " case " << Name << ":\n" 2215 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2216 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2217 << " ++NumMCOperands;\n" 2218 << " break;\n"; 2219 break; 2220 } 2221 case MatchableInfo::ResOperand::RegOperand: { 2222 std::string Reg, Name; 2223 if (!OpInfo.Register) { 2224 Name = "reg0"; 2225 Reg = "0"; 2226 } else { 2227 Reg = getQualifiedName(OpInfo.Register); 2228 Name = "reg" + OpInfo.Register->getName().str(); 2229 } 2230 Signature += "__" + Name; 2231 Name = "CVT_" + Name; 2232 bool IsNewConverter = false; 2233 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2234 IsNewConverter); 2235 // Add the operand entry to the instruction kind conversion row. 2236 ConversionRow.push_back(ID); 2237 ConversionRow.push_back(0); 2238 2239 if (!IsNewConverter) 2240 break; 2241 CvtOS << " case " << Name << ":\n" 2242 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2243 << " break;\n"; 2244 2245 OpOS << " case " << Name << ":\n" 2246 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2247 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2248 << " ++NumMCOperands;\n" 2249 << " break;\n"; 2250 } 2251 } 2252 } 2253 2254 // If there were no operands, add to the signature to that effect 2255 if (Signature == "Convert") 2256 Signature += "_NoOperands"; 2257 2258 II->ConversionFnKind = Signature; 2259 2260 // Save the signature. If we already have it, don't add a new row 2261 // to the table. 2262 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2263 continue; 2264 2265 // Add the row to the table. 2266 ConversionTable.push_back(std::move(ConversionRow)); 2267 } 2268 2269 // Finish up the converter driver function. 2270 CvtOS << " }\n }\n}\n\n"; 2271 2272 // Finish up the operand number lookup function. 2273 OpOS << " }\n }\n}\n\n"; 2274 2275 // Output a static table for tied operands. 2276 if (TiedOperandsEnumMap.size()) { 2277 // The number of tied operand combinations will be small in practice, 2278 // but just add the assert to be sure. 2279 assert(TiedOperandsEnumMap.size() <= 254 && 2280 "Too many tied-operand combinations to reference with " 2281 "an 8bit offset from the conversion table, where index " 2282 "'255' is reserved as operand not to be copied."); 2283 2284 OS << "enum {\n"; 2285 for (auto &KV : TiedOperandsEnumMap) { 2286 OS << " " << KV.second << ",\n"; 2287 } 2288 OS << "};\n\n"; 2289 2290 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2291 for (auto &KV : TiedOperandsEnumMap) { 2292 OS << " /* " << KV.second << " */ { " 2293 << utostr(std::get<0>(KV.first)) << ", " 2294 << utostr(std::get<1>(KV.first)) << ", " 2295 << utostr(std::get<2>(KV.first)) << " },\n"; 2296 } 2297 OS << "};\n\n"; 2298 } else 2299 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2300 "{ /* empty */ {0, 0, 0} };\n\n"; 2301 2302 OS << "namespace {\n"; 2303 2304 // Output the operand conversion kind enum. 2305 OS << "enum OperatorConversionKind {\n"; 2306 for (const auto &Converter : OperandConversionKinds) 2307 OS << " " << Converter << ",\n"; 2308 OS << " CVT_NUM_CONVERTERS\n"; 2309 OS << "};\n\n"; 2310 2311 // Output the instruction conversion kind enum. 2312 OS << "enum InstructionConversionKind {\n"; 2313 for (const auto &Signature : InstructionConversionKinds) 2314 OS << " " << Signature << ",\n"; 2315 OS << " CVT_NUM_SIGNATURES\n"; 2316 OS << "};\n\n"; 2317 2318 OS << "} // end anonymous namespace\n\n"; 2319 2320 // Output the conversion table. 2321 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2322 << MaxRowLength << "] = {\n"; 2323 2324 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2325 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2326 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2327 OS << " { "; 2328 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2329 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2330 if (OperandConversionKinds[ConversionTable[Row][i]] != 2331 CachedHashString("CVT_Tied")) { 2332 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2333 continue; 2334 } 2335 2336 // For a tied operand, emit a reference to the TiedAsmOperandTable 2337 // that contains the operand to copy, and the parsed operands to 2338 // check for their tied constraints. 2339 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2340 (uint8_t)ConversionTable[Row][i + 2], 2341 (uint8_t)ConversionTable[Row][i + 3]); 2342 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2343 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2344 "No record for tied operand pair"); 2345 OS << TiedOpndEnum->second << ", "; 2346 i += 2; 2347 } 2348 OS << "CVT_Done },\n"; 2349 } 2350 2351 OS << "};\n\n"; 2352 2353 // Spit out the conversion driver function. 2354 OS << CvtOS.str(); 2355 2356 // Spit out the operand number lookup function. 2357 OS << OpOS.str(); 2358 2359 return ConversionTable.size(); 2360 } 2361 2362 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2363 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2364 std::forward_list<ClassInfo> &Infos, 2365 raw_ostream &OS) { 2366 OS << "namespace {\n\n"; 2367 2368 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2369 << "/// instruction matching.\n"; 2370 OS << "enum MatchClassKind {\n"; 2371 OS << " InvalidMatchClass = 0,\n"; 2372 OS << " OptionalMatchClass = 1,\n"; 2373 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2374 StringRef LastName = "OptionalMatchClass"; 2375 for (const auto &CI : Infos) { 2376 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2377 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2378 } else if (LastKind < ClassInfo::UserClass0 && 2379 CI.Kind >= ClassInfo::UserClass0) { 2380 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2381 } 2382 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2383 LastName = CI.Name; 2384 2385 OS << " " << CI.Name << ", // "; 2386 if (CI.Kind == ClassInfo::Token) { 2387 OS << "'" << CI.ValueName << "'\n"; 2388 } else if (CI.isRegisterClass()) { 2389 if (!CI.ValueName.empty()) 2390 OS << "register class '" << CI.ValueName << "'\n"; 2391 else 2392 OS << "derived register class\n"; 2393 } else { 2394 OS << "user defined class '" << CI.ValueName << "'\n"; 2395 } 2396 } 2397 OS << " NumMatchClassKinds\n"; 2398 OS << "};\n\n"; 2399 2400 OS << "} // end anonymous namespace\n\n"; 2401 } 2402 2403 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2404 /// used when an assembly operand does not match the expected operand class. 2405 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2406 // If the target does not use DiagnosticString for any operands, don't emit 2407 // an unused function. 2408 if (llvm::all_of(Info.Classes, [](const ClassInfo &CI) { 2409 return CI.DiagnosticString.empty(); 2410 })) 2411 return; 2412 2413 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2414 << "AsmParser::" << Info.Target.getName() 2415 << "MatchResultTy MatchResult) {\n"; 2416 OS << " switch (MatchResult) {\n"; 2417 2418 for (const auto &CI: Info.Classes) { 2419 if (!CI.DiagnosticString.empty()) { 2420 assert(!CI.DiagnosticType.empty() && 2421 "DiagnosticString set without DiagnosticType"); 2422 OS << " case " << Info.Target.getName() 2423 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2424 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2425 } 2426 } 2427 2428 OS << " default:\n"; 2429 OS << " return nullptr;\n"; 2430 2431 OS << " }\n"; 2432 OS << "}\n\n"; 2433 } 2434 2435 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2436 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2437 "RegisterClass) {\n"; 2438 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2439 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2440 })) { 2441 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2442 } else { 2443 OS << " switch (RegisterClass) {\n"; 2444 for (const auto &CI: Info.Classes) { 2445 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2446 OS << " case " << CI.Name << ":\n"; 2447 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2448 << CI.DiagnosticType << ";\n"; 2449 } 2450 } 2451 2452 OS << " default:\n"; 2453 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2454 2455 OS << " }\n"; 2456 } 2457 OS << "}\n\n"; 2458 } 2459 2460 /// emitValidateOperandClass - Emit the function to validate an operand class. 2461 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2462 raw_ostream &OS) { 2463 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2464 << "MatchClassKind Kind) {\n"; 2465 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2466 << Info.Target.getName() << "Operand &)GOp;\n"; 2467 2468 // The InvalidMatchClass is not to match any operand. 2469 OS << " if (Kind == InvalidMatchClass)\n"; 2470 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2471 2472 // Check for Token operands first. 2473 // FIXME: Use a more specific diagnostic type. 2474 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2475 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2476 << " MCTargetAsmParser::Match_Success :\n" 2477 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2478 2479 // Check the user classes. We don't care what order since we're only 2480 // actually matching against one of them. 2481 OS << " switch (Kind) {\n" 2482 " default: break;\n"; 2483 for (const auto &CI : Info.Classes) { 2484 if (!CI.isUserClass()) 2485 continue; 2486 2487 OS << " // '" << CI.ClassName << "' class\n"; 2488 OS << " case " << CI.Name << ": {\n"; 2489 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2490 << "());\n"; 2491 OS << " if (DP.isMatch())\n"; 2492 OS << " return MCTargetAsmParser::Match_Success;\n"; 2493 if (!CI.DiagnosticType.empty()) { 2494 OS << " if (DP.isNearMatch())\n"; 2495 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2496 << CI.DiagnosticType << ";\n"; 2497 OS << " break;\n"; 2498 } 2499 else 2500 OS << " break;\n"; 2501 OS << " }\n"; 2502 } 2503 OS << " } // end switch (Kind)\n\n"; 2504 2505 // Check for register operands, including sub-classes. 2506 OS << " if (Operand.isReg()) {\n"; 2507 OS << " MatchClassKind OpKind;\n"; 2508 OS << " switch (Operand.getReg()) {\n"; 2509 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2510 for (const auto &RC : Info.RegisterClasses) 2511 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2512 << RC.first->getName() << ": OpKind = " << RC.second->Name 2513 << "; break;\n"; 2514 OS << " }\n"; 2515 OS << " return isSubclass(OpKind, Kind) ? " 2516 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2517 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2518 2519 // Expected operand is a register, but actual is not. 2520 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2521 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2522 2523 // Generic fallthrough match failure case for operands that don't have 2524 // specialized diagnostic types. 2525 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2526 OS << "}\n\n"; 2527 } 2528 2529 /// emitIsSubclass - Emit the subclass predicate function. 2530 static void emitIsSubclass(CodeGenTarget &Target, 2531 std::forward_list<ClassInfo> &Infos, 2532 raw_ostream &OS) { 2533 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2534 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2535 OS << " if (A == B)\n"; 2536 OS << " return true;\n\n"; 2537 2538 bool EmittedSwitch = false; 2539 for (const auto &A : Infos) { 2540 std::vector<StringRef> SuperClasses; 2541 if (A.IsOptional) 2542 SuperClasses.push_back("OptionalMatchClass"); 2543 for (const auto &B : Infos) { 2544 if (&A != &B && A.isSubsetOf(B)) 2545 SuperClasses.push_back(B.Name); 2546 } 2547 2548 if (SuperClasses.empty()) 2549 continue; 2550 2551 // If this is the first SuperClass, emit the switch header. 2552 if (!EmittedSwitch) { 2553 OS << " switch (A) {\n"; 2554 OS << " default:\n"; 2555 OS << " return false;\n"; 2556 EmittedSwitch = true; 2557 } 2558 2559 OS << "\n case " << A.Name << ":\n"; 2560 2561 if (SuperClasses.size() == 1) { 2562 OS << " return B == " << SuperClasses.back() << ";\n"; 2563 continue; 2564 } 2565 2566 if (!SuperClasses.empty()) { 2567 OS << " switch (B) {\n"; 2568 OS << " default: return false;\n"; 2569 for (StringRef SC : SuperClasses) 2570 OS << " case " << SC << ": return true;\n"; 2571 OS << " }\n"; 2572 } else { 2573 // No case statement to emit 2574 OS << " return false;\n"; 2575 } 2576 } 2577 2578 // If there were case statements emitted into the string stream write the 2579 // default. 2580 if (EmittedSwitch) 2581 OS << " }\n"; 2582 else 2583 OS << " return false;\n"; 2584 2585 OS << "}\n\n"; 2586 } 2587 2588 /// emitMatchTokenString - Emit the function to match a token string to the 2589 /// appropriate match class value. 2590 static void emitMatchTokenString(CodeGenTarget &Target, 2591 std::forward_list<ClassInfo> &Infos, 2592 raw_ostream &OS) { 2593 // Construct the match list. 2594 std::vector<StringMatcher::StringPair> Matches; 2595 for (const auto &CI : Infos) { 2596 if (CI.Kind == ClassInfo::Token) 2597 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2598 } 2599 2600 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2601 2602 StringMatcher("Name", Matches, OS).Emit(); 2603 2604 OS << " return InvalidMatchClass;\n"; 2605 OS << "}\n\n"; 2606 } 2607 2608 /// emitMatchRegisterName - Emit the function to match a string to the target 2609 /// specific register enum. 2610 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2611 raw_ostream &OS) { 2612 // Construct the match list. 2613 std::vector<StringMatcher::StringPair> Matches; 2614 const auto &Regs = Target.getRegBank().getRegisters(); 2615 for (const CodeGenRegister &Reg : Regs) { 2616 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2617 continue; 2618 2619 Matches.emplace_back(std::string(Reg.TheDef->getValueAsString("AsmName")), 2620 "return " + utostr(Reg.EnumValue) + ";"); 2621 } 2622 2623 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2624 2625 bool IgnoreDuplicates = 2626 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2627 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2628 2629 OS << " return 0;\n"; 2630 OS << "}\n\n"; 2631 } 2632 2633 /// Emit the function to match a string to the target 2634 /// specific register enum. 2635 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2636 raw_ostream &OS) { 2637 // Construct the match list. 2638 std::vector<StringMatcher::StringPair> Matches; 2639 const auto &Regs = Target.getRegBank().getRegisters(); 2640 for (const CodeGenRegister &Reg : Regs) { 2641 2642 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2643 2644 for (auto AltName : AltNames) { 2645 AltName = StringRef(AltName).trim(); 2646 2647 // don't handle empty alternative names 2648 if (AltName.empty()) 2649 continue; 2650 2651 Matches.emplace_back(std::string(AltName), 2652 "return " + utostr(Reg.EnumValue) + ";"); 2653 } 2654 } 2655 2656 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2657 2658 bool IgnoreDuplicates = 2659 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2660 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2661 2662 OS << " return 0;\n"; 2663 OS << "}\n\n"; 2664 } 2665 2666 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2667 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2668 // Get the set of diagnostic types from all of the operand classes. 2669 std::set<StringRef> Types; 2670 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2671 if (!OpClassEntry.second->DiagnosticType.empty()) 2672 Types.insert(OpClassEntry.second->DiagnosticType); 2673 } 2674 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2675 if (!OpClassEntry.second->DiagnosticType.empty()) 2676 Types.insert(OpClassEntry.second->DiagnosticType); 2677 } 2678 2679 if (Types.empty()) return; 2680 2681 // Now emit the enum entries. 2682 for (StringRef Type : Types) 2683 OS << " Match_" << Type << ",\n"; 2684 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2685 } 2686 2687 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2688 /// user-level name for a subtarget feature. 2689 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2690 OS << "// User-level names for subtarget features that participate in\n" 2691 << "// instruction matching.\n" 2692 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2693 if (!Info.SubtargetFeatures.empty()) { 2694 OS << " switch(Val) {\n"; 2695 for (const auto &SF : Info.SubtargetFeatures) { 2696 const SubtargetFeatureInfo &SFI = SF.second; 2697 // FIXME: Totally just a placeholder name to get the algorithm working. 2698 OS << " case " << SFI.getEnumBitName() << ": return \"" 2699 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2700 } 2701 OS << " default: return \"(unknown)\";\n"; 2702 OS << " }\n"; 2703 } else { 2704 // Nothing to emit, so skip the switch 2705 OS << " return \"(unknown)\";\n"; 2706 } 2707 OS << "}\n\n"; 2708 } 2709 2710 static std::string GetAliasRequiredFeatures(Record *R, 2711 const AsmMatcherInfo &Info) { 2712 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2713 std::string Result; 2714 2715 if (ReqFeatures.empty()) 2716 return Result; 2717 2718 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2719 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2720 2721 if (!F) 2722 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2723 "' is not marked as an AssemblerPredicate!"); 2724 2725 if (i) 2726 Result += " && "; 2727 2728 Result += "Features.test(" + F->getEnumBitName() + ')'; 2729 } 2730 2731 return Result; 2732 } 2733 2734 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2735 std::vector<Record*> &Aliases, 2736 unsigned Indent = 0, 2737 StringRef AsmParserVariantName = StringRef()){ 2738 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2739 // iteration order of the map is stable. 2740 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2741 2742 for (Record *R : Aliases) { 2743 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2744 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2745 if (AsmVariantName != AsmParserVariantName) 2746 continue; 2747 AliasesFromMnemonic[R->getValueAsString("FromMnemonic").lower()] 2748 .push_back(R); 2749 } 2750 if (AliasesFromMnemonic.empty()) 2751 return; 2752 2753 // Process each alias a "from" mnemonic at a time, building the code executed 2754 // by the string remapper. 2755 std::vector<StringMatcher::StringPair> Cases; 2756 for (const auto &AliasEntry : AliasesFromMnemonic) { 2757 const std::vector<Record*> &ToVec = AliasEntry.second; 2758 2759 // Loop through each alias and emit code that handles each case. If there 2760 // are two instructions without predicates, emit an error. If there is one, 2761 // emit it last. 2762 std::string MatchCode; 2763 int AliasWithNoPredicate = -1; 2764 2765 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2766 Record *R = ToVec[i]; 2767 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2768 2769 // If this unconditionally matches, remember it for later and diagnose 2770 // duplicates. 2771 if (FeatureMask.empty()) { 2772 if (AliasWithNoPredicate != -1 && 2773 R->getValueAsString("ToMnemonic") != 2774 ToVec[AliasWithNoPredicate]->getValueAsString("ToMnemonic")) { 2775 // We can't have two different aliases from the same mnemonic with no 2776 // predicate. 2777 PrintError( 2778 ToVec[AliasWithNoPredicate]->getLoc(), 2779 "two different MnemonicAliases with the same 'from' mnemonic!"); 2780 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2781 } 2782 2783 AliasWithNoPredicate = i; 2784 continue; 2785 } 2786 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2787 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2788 2789 if (!MatchCode.empty()) 2790 MatchCode += "else "; 2791 MatchCode += "if (" + FeatureMask + ")\n"; 2792 MatchCode += " Mnemonic = \""; 2793 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2794 MatchCode += "\";\n"; 2795 } 2796 2797 if (AliasWithNoPredicate != -1) { 2798 Record *R = ToVec[AliasWithNoPredicate]; 2799 if (!MatchCode.empty()) 2800 MatchCode += "else\n "; 2801 MatchCode += "Mnemonic = \""; 2802 MatchCode += R->getValueAsString("ToMnemonic").lower(); 2803 MatchCode += "\";\n"; 2804 } 2805 2806 MatchCode += "return;"; 2807 2808 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2809 } 2810 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2811 } 2812 2813 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2814 /// emit a function for them and return true, otherwise return false. 2815 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2816 CodeGenTarget &Target) { 2817 // Ignore aliases when match-prefix is set. 2818 if (!MatchPrefix.empty()) 2819 return false; 2820 2821 std::vector<Record*> Aliases = 2822 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2823 if (Aliases.empty()) return false; 2824 2825 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2826 "const FeatureBitset &Features, unsigned VariantID) {\n"; 2827 OS << " switch (VariantID) {\n"; 2828 unsigned VariantCount = Target.getAsmParserVariantCount(); 2829 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2830 Record *AsmVariant = Target.getAsmParserVariant(VC); 2831 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2832 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2833 OS << " case " << AsmParserVariantNo << ":\n"; 2834 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2835 AsmParserVariantName); 2836 OS << " break;\n"; 2837 } 2838 OS << " }\n"; 2839 2840 // Emit aliases that apply to all variants. 2841 emitMnemonicAliasVariant(OS, Info, Aliases); 2842 2843 OS << "}\n\n"; 2844 2845 return true; 2846 } 2847 2848 static void 2849 emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2850 const AsmMatcherInfo &Info, StringRef ClassName, 2851 StringToOffsetTable &StringTable, 2852 unsigned MaxMnemonicIndex, unsigned MaxFeaturesIndex, 2853 bool HasMnemonicFirst, const Record &AsmParser) { 2854 unsigned MaxMask = 0; 2855 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2856 MaxMask |= OMI.OperandMask; 2857 } 2858 2859 // Emit the static custom operand parsing table; 2860 OS << "namespace {\n"; 2861 OS << " struct OperandMatchEntry {\n"; 2862 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2863 << " Mnemonic;\n"; 2864 OS << " " << getMinimalTypeForRange(MaxMask) 2865 << " OperandMask;\n"; 2866 OS << " " << getMinimalTypeForRange(std::distance( 2867 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2868 OS << " " << getMinimalTypeForRange(MaxFeaturesIndex) 2869 << " RequiredFeaturesIdx;\n\n"; 2870 OS << " StringRef getMnemonic() const {\n"; 2871 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2872 OS << " MnemonicTable[Mnemonic]);\n"; 2873 OS << " }\n"; 2874 OS << " };\n\n"; 2875 2876 OS << " // Predicate for searching for an opcode.\n"; 2877 OS << " struct LessOpcodeOperand {\n"; 2878 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2879 OS << " return LHS.getMnemonic() < RHS;\n"; 2880 OS << " }\n"; 2881 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2882 OS << " return LHS < RHS.getMnemonic();\n"; 2883 OS << " }\n"; 2884 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2885 OS << " const OperandMatchEntry &RHS) {\n"; 2886 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2887 OS << " }\n"; 2888 OS << " };\n"; 2889 2890 OS << "} // end anonymous namespace\n\n"; 2891 2892 OS << "static const OperandMatchEntry OperandMatchTable[" 2893 << Info.OperandMatchInfo.size() << "] = {\n"; 2894 2895 OS << " /* Operand List Mnemonic, Mask, Operand Class, Features */\n"; 2896 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2897 const MatchableInfo &II = *OMI.MI; 2898 2899 OS << " { "; 2900 2901 // Store a pascal-style length byte in the mnemonic. 2902 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.lower(); 2903 OS << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2904 << " /* " << II.Mnemonic << " */, "; 2905 2906 OS << OMI.OperandMask; 2907 OS << " /* "; 2908 ListSeparator LS; 2909 for (int i = 0, e = 31; i !=e; ++i) 2910 if (OMI.OperandMask & (1 << i)) 2911 OS << LS << i; 2912 OS << " */, "; 2913 2914 OS << OMI.CI->Name; 2915 2916 // Write the required features mask. 2917 OS << ", AMFBS"; 2918 if (II.RequiredFeatures.empty()) 2919 OS << "_None"; 2920 else 2921 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) 2922 OS << '_' << II.RequiredFeatures[i]->TheDef->getName(); 2923 2924 OS << " },\n"; 2925 } 2926 OS << "};\n\n"; 2927 2928 // Emit the operand class switch to call the correct custom parser for 2929 // the found operand class. 2930 OS << "ParseStatus " << Target.getName() << ClassName << "::\n" 2931 << "tryCustomParseOperand(OperandVector" 2932 << " &Operands,\n unsigned MCK) {\n\n" 2933 << " switch(MCK) {\n"; 2934 2935 for (const auto &CI : Info.Classes) { 2936 if (CI.ParserMethod.empty()) 2937 continue; 2938 OS << " case " << CI.Name << ":\n" 2939 << " return " << CI.ParserMethod << "(Operands);\n"; 2940 } 2941 2942 OS << " default:\n"; 2943 OS << " return ParseStatus::NoMatch;\n"; 2944 OS << " }\n"; 2945 OS << " return ParseStatus::NoMatch;\n"; 2946 OS << "}\n\n"; 2947 2948 // Emit the static custom operand parser. This code is very similar with 2949 // the other matcher. Also use MatchResultTy here just in case we go for 2950 // a better error handling. 2951 OS << "ParseStatus " << Target.getName() << ClassName << "::\n" 2952 << "MatchOperandParserImpl(OperandVector" 2953 << " &Operands,\n StringRef Mnemonic,\n" 2954 << " bool ParseForAllFeatures) {\n"; 2955 2956 // Emit code to get the available features. 2957 OS << " // Get the current feature set.\n"; 2958 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 2959 2960 OS << " // Get the next operand index.\n"; 2961 OS << " unsigned NextOpNum = Operands.size()" 2962 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2963 2964 // Emit code to search the table. 2965 OS << " // Search the table.\n"; 2966 if (HasMnemonicFirst) { 2967 OS << " auto MnemonicRange =\n"; 2968 OS << " std::equal_range(std::begin(OperandMatchTable), " 2969 "std::end(OperandMatchTable),\n"; 2970 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2971 } else { 2972 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2973 " std::end(OperandMatchTable));\n"; 2974 OS << " if (!Mnemonic.empty())\n"; 2975 OS << " MnemonicRange =\n"; 2976 OS << " std::equal_range(std::begin(OperandMatchTable), " 2977 "std::end(OperandMatchTable),\n"; 2978 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2979 } 2980 2981 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2982 OS << " return ParseStatus::NoMatch;\n\n"; 2983 2984 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2985 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2986 2987 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2988 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2989 2990 // Emit check that the required features are available. 2991 OS << " // check if the available features match\n"; 2992 OS << " const FeatureBitset &RequiredFeatures = " 2993 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 2994 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2995 "RequiredFeatures) != RequiredFeatures)\n"; 2996 OS << " continue;\n\n"; 2997 2998 // Emit check to ensure the operand number matches. 2999 OS << " // check if the operand in question has a custom parser.\n"; 3000 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 3001 OS << " continue;\n\n"; 3002 3003 // Emit call to the custom parser method 3004 StringRef ParserName = AsmParser.getValueAsString("OperandParserMethod"); 3005 if (ParserName.empty()) 3006 ParserName = "tryCustomParseOperand"; 3007 OS << " // call custom parse method to handle the operand\n"; 3008 OS << " ParseStatus Result = " << ParserName << "(Operands, it->Class);\n"; 3009 OS << " if (!Result.isNoMatch())\n"; 3010 OS << " return Result;\n"; 3011 OS << " }\n\n"; 3012 3013 OS << " // Okay, we had no match.\n"; 3014 OS << " return ParseStatus::NoMatch;\n"; 3015 OS << "}\n\n"; 3016 } 3017 3018 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 3019 AsmMatcherInfo &Info, 3020 raw_ostream &OS) { 3021 std::string AsmParserName = 3022 std::string(Info.AsmParser->getValueAsString("AsmParserClassName")); 3023 OS << "static bool "; 3024 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 3025 << AsmParserName << "&AsmParser,\n"; 3026 OS << " unsigned Kind,\n"; 3027 OS << " const OperandVector &Operands,\n"; 3028 OS << " uint64_t &ErrorInfo) {\n"; 3029 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3030 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3031 OS << " for (const uint8_t *p = Converter; *p; p += 2) {\n"; 3032 OS << " switch (*p) {\n"; 3033 OS << " case CVT_Tied: {\n"; 3034 OS << " unsigned OpIdx = *(p + 1);\n"; 3035 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3036 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3037 OS << " \"Tied operand not found\");\n"; 3038 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3039 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3040 OS << " if (OpndNum1 != OpndNum2) {\n"; 3041 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3042 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3043 OS << " if (!AsmParser.areEqualRegs(*SrcOp1, *SrcOp2)) {\n"; 3044 OS << " ErrorInfo = OpndNum2;\n"; 3045 OS << " return false;\n"; 3046 OS << " }\n"; 3047 OS << " }\n"; 3048 OS << " break;\n"; 3049 OS << " }\n"; 3050 OS << " default:\n"; 3051 OS << " break;\n"; 3052 OS << " }\n"; 3053 OS << " }\n"; 3054 OS << " return true;\n"; 3055 OS << "}\n\n"; 3056 } 3057 3058 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3059 unsigned VariantCount) { 3060 OS << "static std::string " << Target.getName() 3061 << "MnemonicSpellCheck(StringRef S, const FeatureBitset &FBS," 3062 << " unsigned VariantID) {\n"; 3063 if (!VariantCount) 3064 OS << " return \"\";"; 3065 else { 3066 OS << " const unsigned MaxEditDist = 2;\n"; 3067 OS << " std::vector<StringRef> Candidates;\n"; 3068 OS << " StringRef Prev = \"\";\n\n"; 3069 3070 OS << " // Find the appropriate table for this asm variant.\n"; 3071 OS << " const MatchEntry *Start, *End;\n"; 3072 OS << " switch (VariantID) {\n"; 3073 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3074 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3075 Record *AsmVariant = Target.getAsmParserVariant(VC); 3076 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3077 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3078 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3079 } 3080 OS << " }\n\n"; 3081 OS << " for (auto I = Start; I < End; I++) {\n"; 3082 OS << " // Ignore unsupported instructions.\n"; 3083 OS << " const FeatureBitset &RequiredFeatures = " 3084 "FeatureBitsets[I->RequiredFeaturesIdx];\n"; 3085 OS << " if ((FBS & RequiredFeatures) != RequiredFeatures)\n"; 3086 OS << " continue;\n"; 3087 OS << "\n"; 3088 OS << " StringRef T = I->getMnemonic();\n"; 3089 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3090 OS << " if (T.equals(Prev))\n"; 3091 OS << " continue;\n"; 3092 OS << "\n"; 3093 OS << " Prev = T;\n"; 3094 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3095 OS << " if (Dist <= MaxEditDist)\n"; 3096 OS << " Candidates.push_back(T);\n"; 3097 OS << " }\n"; 3098 OS << "\n"; 3099 OS << " if (Candidates.empty())\n"; 3100 OS << " return \"\";\n"; 3101 OS << "\n"; 3102 OS << " std::string Res = \", did you mean: \";\n"; 3103 OS << " unsigned i = 0;\n"; 3104 OS << " for (; i < Candidates.size() - 1; i++)\n"; 3105 OS << " Res += Candidates[i].str() + \", \";\n"; 3106 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3107 } 3108 OS << "}\n"; 3109 OS << "\n"; 3110 } 3111 3112 static void emitMnemonicChecker(raw_ostream &OS, 3113 CodeGenTarget &Target, 3114 unsigned VariantCount, 3115 bool HasMnemonicFirst, 3116 bool HasMnemonicAliases) { 3117 OS << "static bool " << Target.getName() 3118 << "CheckMnemonic(StringRef Mnemonic,\n"; 3119 OS << " " 3120 << "const FeatureBitset &AvailableFeatures,\n"; 3121 OS << " " 3122 << "unsigned VariantID) {\n"; 3123 3124 if (!VariantCount) { 3125 OS << " return false;\n"; 3126 } else { 3127 if (HasMnemonicAliases) { 3128 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3129 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);"; 3130 OS << "\n\n"; 3131 } 3132 OS << " // Find the appropriate table for this asm variant.\n"; 3133 OS << " const MatchEntry *Start, *End;\n"; 3134 OS << " switch (VariantID) {\n"; 3135 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3136 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3137 Record *AsmVariant = Target.getAsmParserVariant(VC); 3138 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3139 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3140 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3141 } 3142 OS << " }\n\n"; 3143 3144 OS << " // Search the table.\n"; 3145 if (HasMnemonicFirst) { 3146 OS << " auto MnemonicRange = " 3147 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3148 } else { 3149 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3150 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3151 OS << " if (!Mnemonic.empty())\n"; 3152 OS << " MnemonicRange = " 3153 << "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3154 } 3155 3156 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3157 OS << " return false;\n\n"; 3158 3159 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3160 << "*ie = MnemonicRange.second;\n"; 3161 OS << " it != ie; ++it) {\n"; 3162 OS << " const FeatureBitset &RequiredFeatures =\n"; 3163 OS << " FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3164 OS << " if ((AvailableFeatures & RequiredFeatures) == "; 3165 OS << "RequiredFeatures)\n"; 3166 OS << " return true;\n"; 3167 OS << " }\n"; 3168 OS << " return false;\n"; 3169 } 3170 OS << "}\n"; 3171 OS << "\n"; 3172 } 3173 3174 // Emit a function mapping match classes to strings, for debugging. 3175 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3176 raw_ostream &OS) { 3177 OS << "#ifndef NDEBUG\n"; 3178 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3179 OS << " switch (Kind) {\n"; 3180 3181 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3182 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3183 for (const auto &CI : Infos) { 3184 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3185 } 3186 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3187 3188 OS << " }\n"; 3189 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3190 OS << "}\n\n"; 3191 OS << "#endif // NDEBUG\n"; 3192 } 3193 3194 static std::string 3195 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) { 3196 std::string Name = "AMFBS"; 3197 for (const auto &Feature : FeatureBitset) 3198 Name += ("_" + Feature->getName()).str(); 3199 return Name; 3200 } 3201 3202 void AsmMatcherEmitter::run(raw_ostream &OS) { 3203 CodeGenTarget Target(Records); 3204 Record *AsmParser = Target.getAsmParser(); 3205 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3206 3207 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3208 3209 // Compute the information on the instructions to match. 3210 AsmMatcherInfo Info(AsmParser, Target, Records); 3211 Info.buildInfo(); 3212 3213 // Sort the instruction table using the partial order on classes. We use 3214 // stable_sort to ensure that ambiguous instructions are still 3215 // deterministically ordered. 3216 llvm::stable_sort( 3217 Info.Matchables, 3218 [](const std::unique_ptr<MatchableInfo> &a, 3219 const std::unique_ptr<MatchableInfo> &b) { return *a < *b; }); 3220 3221 #ifdef EXPENSIVE_CHECKS 3222 // Verify that the table is sorted and operator < works transitively. 3223 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3224 ++I) { 3225 for (auto J = I; J != E; ++J) { 3226 assert(!(**J < **I)); 3227 } 3228 } 3229 #endif 3230 3231 DEBUG_WITH_TYPE("instruction_info", { 3232 for (const auto &MI : Info.Matchables) 3233 MI->dump(); 3234 }); 3235 3236 // Check for ambiguous matchables. 3237 DEBUG_WITH_TYPE("ambiguous_instrs", { 3238 unsigned NumAmbiguous = 0; 3239 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3240 ++I) { 3241 for (auto J = std::next(I); J != E; ++J) { 3242 const MatchableInfo &A = **I; 3243 const MatchableInfo &B = **J; 3244 3245 if (A.couldMatchAmbiguouslyWith(B)) { 3246 errs() << "warning: ambiguous matchables:\n"; 3247 A.dump(); 3248 errs() << "\nis incomparable with:\n"; 3249 B.dump(); 3250 errs() << "\n\n"; 3251 ++NumAmbiguous; 3252 } 3253 } 3254 } 3255 if (NumAmbiguous) 3256 errs() << "warning: " << NumAmbiguous 3257 << " ambiguous matchables!\n"; 3258 }); 3259 3260 // Compute the information on the custom operand parsing. 3261 Info.buildOperandMatchInfo(); 3262 3263 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3264 bool HasOptionalOperands = Info.hasOptionalOperands(); 3265 bool ReportMultipleNearMisses = 3266 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3267 3268 // Write the output. 3269 3270 // Information for the class declaration. 3271 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3272 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3273 OS << " // This should be included into the middle of the declaration of\n"; 3274 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3275 OS << " FeatureBitset ComputeAvailableFeatures(const FeatureBitset &FB) const;\n"; 3276 if (HasOptionalOperands) { 3277 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3278 << "unsigned Opcode,\n" 3279 << " const OperandVector &Operands,\n" 3280 << " const SmallBitVector &OptionalOperandsMask);\n"; 3281 } else { 3282 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3283 << "unsigned Opcode,\n" 3284 << " const OperandVector &Operands);\n"; 3285 } 3286 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3287 OS << " const OperandVector &Operands) override;\n"; 3288 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3289 << " MCInst &Inst,\n"; 3290 if (ReportMultipleNearMisses) 3291 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3292 else 3293 OS << " uint64_t &ErrorInfo,\n" 3294 << " FeatureBitset &MissingFeatures,\n"; 3295 OS << " bool matchingInlineAsm,\n" 3296 << " unsigned VariantID = 0);\n"; 3297 if (!ReportMultipleNearMisses) 3298 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3299 << " MCInst &Inst,\n" 3300 << " uint64_t &ErrorInfo,\n" 3301 << " bool matchingInlineAsm,\n" 3302 << " unsigned VariantID = 0) {\n" 3303 << " FeatureBitset MissingFeatures;\n" 3304 << " return MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures,\n" 3305 << " matchingInlineAsm, VariantID);\n" 3306 << " }\n\n"; 3307 3308 3309 if (!Info.OperandMatchInfo.empty()) { 3310 OS << " ParseStatus MatchOperandParserImpl(\n"; 3311 OS << " OperandVector &Operands,\n"; 3312 OS << " StringRef Mnemonic,\n"; 3313 OS << " bool ParseForAllFeatures = false);\n"; 3314 3315 OS << " ParseStatus tryCustomParseOperand(\n"; 3316 OS << " OperandVector &Operands,\n"; 3317 OS << " unsigned MCK);\n\n"; 3318 } 3319 3320 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3321 3322 // Emit the operand match diagnostic enum names. 3323 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3324 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3325 emitOperandDiagnosticTypes(Info, OS); 3326 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3327 3328 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3329 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3330 3331 // Emit the subtarget feature enumeration. 3332 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration( 3333 Info.SubtargetFeatures, OS); 3334 3335 // Emit the function to match a register name to number. 3336 // This should be omitted for Mips target 3337 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3338 emitMatchRegisterName(Target, AsmParser, OS); 3339 3340 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3341 emitMatchRegisterAltName(Target, AsmParser, OS); 3342 3343 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3344 3345 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3346 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3347 3348 // Generate the helper function to get the names for subtarget features. 3349 emitGetSubtargetFeatureName(Info, OS); 3350 3351 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3352 3353 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3354 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3355 3356 // Generate the function that remaps for mnemonic aliases. 3357 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3358 3359 // Generate the convertToMCInst function to convert operands into an MCInst. 3360 // Also, generate the convertToMapAndConstraints function for MS-style inline 3361 // assembly. The latter doesn't actually generate a MCInst. 3362 unsigned NumConverters = emitConvertFuncs(Target, ClassName, Info.Matchables, 3363 HasMnemonicFirst, 3364 HasOptionalOperands, OS); 3365 3366 // Emit the enumeration for classes which participate in matching. 3367 emitMatchClassEnumeration(Target, Info.Classes, OS); 3368 3369 // Emit a function to get the user-visible string to describe an operand 3370 // match failure in diagnostics. 3371 emitOperandMatchErrorDiagStrings(Info, OS); 3372 3373 // Emit a function to map register classes to operand match failure codes. 3374 emitRegisterMatchErrorFunc(Info, OS); 3375 3376 // Emit the routine to match token strings to their match class. 3377 emitMatchTokenString(Target, Info.Classes, OS); 3378 3379 // Emit the subclass predicate routine. 3380 emitIsSubclass(Target, Info.Classes, OS); 3381 3382 // Emit the routine to validate an operand against a match class. 3383 emitValidateOperandClass(Info, OS); 3384 3385 emitMatchClassKindNames(Info.Classes, OS); 3386 3387 // Emit the available features compute function. 3388 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3389 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3390 Info.SubtargetFeatures, OS); 3391 3392 if (!ReportMultipleNearMisses) 3393 emitAsmTiedOperandConstraints(Target, Info, OS); 3394 3395 StringToOffsetTable StringTable; 3396 3397 size_t MaxNumOperands = 0; 3398 unsigned MaxMnemonicIndex = 0; 3399 bool HasDeprecation = false; 3400 for (const auto &MI : Info.Matchables) { 3401 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3402 HasDeprecation |= MI->HasDeprecation; 3403 3404 // Store a pascal-style length byte in the mnemonic. 3405 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3406 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3407 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3408 } 3409 3410 OS << "static const char MnemonicTable[] =\n"; 3411 StringTable.EmitString(OS); 3412 OS << ";\n\n"; 3413 3414 std::vector<std::vector<Record *>> FeatureBitsets; 3415 for (const auto &MI : Info.Matchables) { 3416 if (MI->RequiredFeatures.empty()) 3417 continue; 3418 FeatureBitsets.emplace_back(); 3419 for (unsigned I = 0, E = MI->RequiredFeatures.size(); I != E; ++I) 3420 FeatureBitsets.back().push_back(MI->RequiredFeatures[I]->TheDef); 3421 } 3422 3423 llvm::sort(FeatureBitsets, [&](const std::vector<Record *> &A, 3424 const std::vector<Record *> &B) { 3425 if (A.size() < B.size()) 3426 return true; 3427 if (A.size() > B.size()) 3428 return false; 3429 for (auto Pair : zip(A, B)) { 3430 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) 3431 return true; 3432 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) 3433 return false; 3434 } 3435 return false; 3436 }); 3437 FeatureBitsets.erase( 3438 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()), 3439 FeatureBitsets.end()); 3440 OS << "// Feature bitsets.\n" 3441 << "enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" 3442 << " AMFBS_None,\n"; 3443 for (const auto &FeatureBitset : FeatureBitsets) { 3444 if (FeatureBitset.empty()) 3445 continue; 3446 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; 3447 } 3448 OS << "};\n\n" 3449 << "static constexpr FeatureBitset FeatureBitsets[] = {\n" 3450 << " {}, // AMFBS_None\n"; 3451 for (const auto &FeatureBitset : FeatureBitsets) { 3452 if (FeatureBitset.empty()) 3453 continue; 3454 OS << " {"; 3455 for (const auto &Feature : FeatureBitset) { 3456 const auto &I = Info.SubtargetFeatures.find(Feature); 3457 assert(I != Info.SubtargetFeatures.end() && "Didn't import predicate?"); 3458 OS << I->second.getEnumBitName() << ", "; 3459 } 3460 OS << "},\n"; 3461 } 3462 OS << "};\n\n"; 3463 3464 // Emit the static match table; unused classes get initialized to 0 which is 3465 // guaranteed to be InvalidMatchClass. 3466 // 3467 // FIXME: We can reduce the size of this table very easily. First, we change 3468 // it so that store the kinds in separate bit-fields for each index, which 3469 // only needs to be the max width used for classes at that index (we also need 3470 // to reject based on this during classification). If we then make sure to 3471 // order the match kinds appropriately (putting mnemonics last), then we 3472 // should only end up using a few bits for each class, especially the ones 3473 // following the mnemonic. 3474 OS << "namespace {\n"; 3475 OS << " struct MatchEntry {\n"; 3476 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3477 << " Mnemonic;\n"; 3478 OS << " uint16_t Opcode;\n"; 3479 OS << " " << getMinimalTypeForRange(NumConverters) 3480 << " ConvertFn;\n"; 3481 OS << " " << getMinimalTypeForRange(FeatureBitsets.size()) 3482 << " RequiredFeaturesIdx;\n"; 3483 OS << " " << getMinimalTypeForRange( 3484 std::distance(Info.Classes.begin(), Info.Classes.end())) 3485 << " Classes[" << MaxNumOperands << "];\n"; 3486 OS << " StringRef getMnemonic() const {\n"; 3487 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3488 OS << " MnemonicTable[Mnemonic]);\n"; 3489 OS << " }\n"; 3490 OS << " };\n\n"; 3491 3492 OS << " // Predicate for searching for an opcode.\n"; 3493 OS << " struct LessOpcode {\n"; 3494 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3495 OS << " return LHS.getMnemonic() < RHS;\n"; 3496 OS << " }\n"; 3497 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3498 OS << " return LHS < RHS.getMnemonic();\n"; 3499 OS << " }\n"; 3500 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3501 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3502 OS << " }\n"; 3503 OS << " };\n"; 3504 3505 OS << "} // end anonymous namespace\n\n"; 3506 3507 unsigned VariantCount = Target.getAsmParserVariantCount(); 3508 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3509 Record *AsmVariant = Target.getAsmParserVariant(VC); 3510 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3511 3512 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3513 3514 for (const auto &MI : Info.Matchables) { 3515 if (MI->AsmVariantID != AsmVariantNo) 3516 continue; 3517 3518 // Store a pascal-style length byte in the mnemonic. 3519 std::string LenMnemonic = 3520 char(MI->Mnemonic.size()) + MI->Mnemonic.lower(); 3521 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3522 << " /* " << MI->Mnemonic << " */, " 3523 << Target.getInstNamespace() << "::" 3524 << MI->getResultInst()->TheDef->getName() << ", " 3525 << MI->ConversionFnKind << ", "; 3526 3527 // Write the required features mask. 3528 OS << "AMFBS"; 3529 if (MI->RequiredFeatures.empty()) 3530 OS << "_None"; 3531 else 3532 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) 3533 OS << '_' << MI->RequiredFeatures[i]->TheDef->getName(); 3534 3535 OS << ", { "; 3536 ListSeparator LS; 3537 for (const MatchableInfo::AsmOperand &Op : MI->AsmOperands) 3538 OS << LS << Op.Class->Name; 3539 OS << " }, },\n"; 3540 } 3541 3542 OS << "};\n\n"; 3543 } 3544 3545 OS << "#include \"llvm/Support/Debug.h\"\n"; 3546 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3547 3548 // Finally, build the match function. 3549 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3550 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3551 OS << " MCInst &Inst,\n"; 3552 if (ReportMultipleNearMisses) 3553 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3554 else 3555 OS << " uint64_t &ErrorInfo,\n" 3556 << " FeatureBitset &MissingFeatures,\n"; 3557 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3558 3559 if (!ReportMultipleNearMisses) { 3560 OS << " // Eliminate obvious mismatches.\n"; 3561 OS << " if (Operands.size() > " 3562 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3563 OS << " ErrorInfo = " 3564 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3565 OS << " return Match_InvalidOperand;\n"; 3566 OS << " }\n\n"; 3567 } 3568 3569 // Emit code to get the available features. 3570 OS << " // Get the current feature set.\n"; 3571 OS << " const FeatureBitset &AvailableFeatures = getAvailableFeatures();\n\n"; 3572 3573 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3574 if (HasMnemonicFirst) { 3575 OS << " StringRef Mnemonic = ((" << Target.getName() 3576 << "Operand &)*Operands[0]).getToken();\n\n"; 3577 } else { 3578 OS << " StringRef Mnemonic;\n"; 3579 OS << " if (Operands[0]->isToken())\n"; 3580 OS << " Mnemonic = ((" << Target.getName() 3581 << "Operand &)*Operands[0]).getToken();\n\n"; 3582 } 3583 3584 if (HasMnemonicAliases) { 3585 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3586 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3587 } 3588 3589 // Emit code to compute the class list for this operand vector. 3590 if (!ReportMultipleNearMisses) { 3591 OS << " // Some state to try to produce better error messages.\n"; 3592 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3593 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3594 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3595 OS << " MissingFeatures.set();\n"; 3596 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3597 OS << " // wrong for all instances of the instruction.\n"; 3598 OS << " ErrorInfo = ~0ULL;\n"; 3599 } 3600 3601 if (HasOptionalOperands) { 3602 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3603 } 3604 3605 // Emit code to search the table. 3606 OS << " // Find the appropriate table for this asm variant.\n"; 3607 OS << " const MatchEntry *Start, *End;\n"; 3608 OS << " switch (VariantID) {\n"; 3609 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3610 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3611 Record *AsmVariant = Target.getAsmParserVariant(VC); 3612 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3613 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3614 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3615 } 3616 OS << " }\n"; 3617 3618 OS << " // Search the table.\n"; 3619 if (HasMnemonicFirst) { 3620 OS << " auto MnemonicRange = " 3621 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3622 } else { 3623 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3624 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3625 OS << " if (!Mnemonic.empty())\n"; 3626 OS << " MnemonicRange = " 3627 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3628 } 3629 3630 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3631 << " std::distance(MnemonicRange.first, MnemonicRange.second) <<\n" 3632 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3633 3634 OS << " // Return a more specific error code if no mnemonics match.\n"; 3635 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3636 OS << " return Match_MnemonicFail;\n\n"; 3637 3638 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3639 << "*ie = MnemonicRange.second;\n"; 3640 OS << " it != ie; ++it) {\n"; 3641 OS << " const FeatureBitset &RequiredFeatures = " 3642 "FeatureBitsets[it->RequiredFeaturesIdx];\n"; 3643 OS << " bool HasRequiredFeatures =\n"; 3644 OS << " (AvailableFeatures & RequiredFeatures) == RequiredFeatures;\n"; 3645 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3646 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3647 3648 if (ReportMultipleNearMisses) { 3649 OS << " // Some state to record ways in which this instruction did not match.\n"; 3650 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3651 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3652 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3653 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3654 OS << " bool MultipleInvalidOperands = false;\n"; 3655 } 3656 3657 if (HasMnemonicFirst) { 3658 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3659 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3660 } 3661 3662 // Emit check that the subclasses match. 3663 if (!ReportMultipleNearMisses) 3664 OS << " bool OperandsValid = true;\n"; 3665 if (HasOptionalOperands) { 3666 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3667 } 3668 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3669 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3670 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3671 OS << " auto Formal = " 3672 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3673 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3674 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3675 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3676 OS << " if (ActualIdx < Operands.size())\n"; 3677 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3678 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3679 OS << " else\n"; 3680 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3681 OS << " if (ActualIdx >= Operands.size()) {\n"; 3682 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand " 3683 "index out of range\\n\");\n"; 3684 if (ReportMultipleNearMisses) { 3685 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3686 "isSubclass(Formal, OptionalMatchClass);\n"; 3687 OS << " if (!ThisOperandValid) {\n"; 3688 OS << " if (!OperandNearMiss) {\n"; 3689 OS << " // Record info about match failure for later use.\n"; 3690 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3691 OS << " OperandNearMiss =\n"; 3692 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3693 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3694 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3695 OS << " DEBUG_WITH_TYPE(\n"; 3696 OS << " \"asm-matcher\",\n"; 3697 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3698 OS << " MultipleInvalidOperands = true;\n"; 3699 OS << " break;\n"; 3700 OS << " }\n"; 3701 OS << " } else {\n"; 3702 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal " 3703 "operand not required\\n\");\n"; 3704 OS << " }\n"; 3705 OS << " continue;\n"; 3706 } else { 3707 OS << " if (Formal == InvalidMatchClass) {\n"; 3708 if (HasOptionalOperands) { 3709 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3710 << ");\n"; 3711 } 3712 OS << " break;\n"; 3713 OS << " }\n"; 3714 OS << " if (isSubclass(Formal, OptionalMatchClass)) {\n"; 3715 if (HasOptionalOperands) { 3716 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3717 } 3718 OS << " continue;\n"; 3719 OS << " }\n"; 3720 OS << " OperandsValid = false;\n"; 3721 OS << " ErrorInfo = ActualIdx;\n"; 3722 OS << " break;\n"; 3723 } 3724 OS << " }\n"; 3725 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3726 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3727 OS << " if (Diag == Match_Success) {\n"; 3728 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3729 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3730 OS << " ++ActualIdx;\n"; 3731 OS << " continue;\n"; 3732 OS << " }\n"; 3733 OS << " // If the generic handler indicates an invalid operand\n"; 3734 OS << " // failure, check for a special case.\n"; 3735 OS << " if (Diag != Match_Success) {\n"; 3736 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3737 OS << " if (TargetDiag == Match_Success) {\n"; 3738 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3739 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3740 OS << " ++ActualIdx;\n"; 3741 OS << " continue;\n"; 3742 OS << " }\n"; 3743 OS << " // If the target matcher returned a specific error code use\n"; 3744 OS << " // that, else use the one from the generic matcher.\n"; 3745 OS << " if (TargetDiag != Match_InvalidOperand && " 3746 "HasRequiredFeatures)\n"; 3747 OS << " Diag = TargetDiag;\n"; 3748 OS << " }\n"; 3749 OS << " // If current formal operand wasn't matched and it is optional\n" 3750 << " // then try to match next formal operand\n"; 3751 OS << " if (Diag == Match_InvalidOperand " 3752 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3753 if (HasOptionalOperands) { 3754 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3755 } 3756 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3757 OS << " continue;\n"; 3758 OS << " }\n"; 3759 3760 if (ReportMultipleNearMisses) { 3761 OS << " if (!OperandNearMiss) {\n"; 3762 OS << " // If this is the first invalid operand we have seen, record some\n"; 3763 OS << " // information about it.\n"; 3764 OS << " DEBUG_WITH_TYPE(\n"; 3765 OS << " \"asm-matcher\",\n"; 3766 OS << " dbgs()\n"; 3767 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3768 OS << " << Diag << \"\\n\");\n"; 3769 OS << " OperandNearMiss =\n"; 3770 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3771 OS << " ++ActualIdx;\n"; 3772 OS << " } else {\n"; 3773 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3774 OS << " DEBUG_WITH_TYPE(\n"; 3775 OS << " \"asm-matcher\",\n"; 3776 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3777 OS << " MultipleInvalidOperands = true;\n"; 3778 OS << " break;\n"; 3779 OS << " }\n"; 3780 OS << " }\n\n"; 3781 } else { 3782 OS << " // If this operand is broken for all of the instances of this\n"; 3783 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3784 OS << " // If we already had a match that only failed due to a\n"; 3785 OS << " // target predicate, that diagnostic is preferred.\n"; 3786 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3787 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3788 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3789 "!= Match_InvalidOperand))\n"; 3790 OS << " RetCode = Diag;\n"; 3791 OS << " ErrorInfo = ActualIdx;\n"; 3792 OS << " }\n"; 3793 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3794 OS << " OperandsValid = false;\n"; 3795 OS << " break;\n"; 3796 OS << " }\n\n"; 3797 } 3798 3799 if (ReportMultipleNearMisses) 3800 OS << " if (MultipleInvalidOperands) {\n"; 3801 else 3802 OS << " if (!OperandsValid) {\n"; 3803 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3804 OS << " \"operand mismatches, ignoring \"\n"; 3805 OS << " \"this opcode\\n\");\n"; 3806 OS << " continue;\n"; 3807 OS << " }\n"; 3808 3809 // Emit check that the required features are available. 3810 OS << " if (!HasRequiredFeatures) {\n"; 3811 if (!ReportMultipleNearMisses) 3812 OS << " HadMatchOtherThanFeatures = true;\n"; 3813 OS << " FeatureBitset NewMissingFeatures = RequiredFeatures & " 3814 "~AvailableFeatures;\n"; 3815 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features:\";\n"; 3816 OS << " for (unsigned I = 0, E = NewMissingFeatures.size(); I != E; ++I)\n"; 3817 OS << " if (NewMissingFeatures[I])\n"; 3818 OS << " dbgs() << ' ' << I;\n"; 3819 OS << " dbgs() << \"\\n\");\n"; 3820 if (ReportMultipleNearMisses) { 3821 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3822 } else { 3823 OS << " if (NewMissingFeatures.count() <=\n" 3824 " MissingFeatures.count())\n"; 3825 OS << " MissingFeatures = NewMissingFeatures;\n"; 3826 OS << " continue;\n"; 3827 } 3828 OS << " }\n"; 3829 OS << "\n"; 3830 OS << " Inst.clear();\n\n"; 3831 OS << " Inst.setOpcode(it->Opcode);\n"; 3832 // Verify the instruction with the target-specific match predicate function. 3833 OS << " // We have a potential match but have not rendered the operands.\n" 3834 << " // Check the target predicate to handle any context sensitive\n" 3835 " // constraints.\n" 3836 << " // For example, Ties that are referenced multiple times must be\n" 3837 " // checked here to ensure the input is the same for each match\n" 3838 " // constraints. If we leave it any later the ties will have been\n" 3839 " // canonicalized\n" 3840 << " unsigned MatchResult;\n" 3841 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3842 "Operands)) != Match_Success) {\n" 3843 << " Inst.clear();\n"; 3844 OS << " DEBUG_WITH_TYPE(\n"; 3845 OS << " \"asm-matcher\",\n"; 3846 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3847 OS << " << MatchResult << \"\\n\");\n"; 3848 if (ReportMultipleNearMisses) { 3849 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3850 } else { 3851 OS << " RetCode = MatchResult;\n" 3852 << " HadMatchOtherThanPredicate = true;\n" 3853 << " continue;\n"; 3854 } 3855 OS << " }\n\n"; 3856 3857 if (ReportMultipleNearMisses) { 3858 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3859 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3860 OS << " if (OperandNearMiss) {\n"; 3861 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3862 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3863 OS << " DEBUG_WITH_TYPE(\n"; 3864 OS << " \"asm-matcher\",\n"; 3865 OS << " dbgs()\n"; 3866 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3867 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3868 OS << " } else {\n"; 3869 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3870 OS << " \"types of mismatch, so not \"\n"; 3871 OS << " \"reporting near-miss\\n\");\n"; 3872 OS << " }\n"; 3873 OS << " continue;\n"; 3874 OS << " }\n\n"; 3875 } 3876 3877 OS << " if (matchingInlineAsm) {\n"; 3878 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3879 if (!ReportMultipleNearMisses) { 3880 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3881 "Operands, ErrorInfo))\n"; 3882 OS << " return Match_InvalidTiedOperand;\n"; 3883 OS << "\n"; 3884 } 3885 OS << " return Match_Success;\n"; 3886 OS << " }\n\n"; 3887 OS << " // We have selected a definite instruction, convert the parsed\n" 3888 << " // operands into the appropriate MCInst.\n"; 3889 if (HasOptionalOperands) { 3890 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3891 << " OptionalOperandsMask);\n"; 3892 } else { 3893 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3894 } 3895 OS << "\n"; 3896 3897 // Verify the instruction with the target-specific match predicate function. 3898 OS << " // We have a potential match. Check the target predicate to\n" 3899 << " // handle any context sensitive constraints.\n" 3900 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3901 << " Match_Success) {\n" 3902 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3903 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3904 << " << MatchResult << \"\\n\");\n" 3905 << " Inst.clear();\n"; 3906 if (ReportMultipleNearMisses) { 3907 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3908 } else { 3909 OS << " RetCode = MatchResult;\n" 3910 << " HadMatchOtherThanPredicate = true;\n" 3911 << " continue;\n"; 3912 } 3913 OS << " }\n\n"; 3914 3915 if (ReportMultipleNearMisses) { 3916 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3917 OS << " (int)(bool)FeaturesNearMiss +\n"; 3918 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3919 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3920 OS << " if (NumNearMisses == 1) {\n"; 3921 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3922 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3923 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3924 OS << " \"mismatch, so reporting a \"\n"; 3925 OS << " \"near-miss\\n\");\n"; 3926 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3927 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3928 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3929 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3930 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3931 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3932 OS << "\n"; 3933 OS << " continue;\n"; 3934 OS << " } else if (NumNearMisses > 1) {\n"; 3935 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3936 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3937 OS << " \"types of mismatch, so not \"\n"; 3938 OS << " \"reporting near-miss\\n\");\n"; 3939 OS << " continue;\n"; 3940 OS << " }\n"; 3941 } 3942 3943 // Call the post-processing function, if used. 3944 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3945 if (!InsnCleanupFn.empty()) 3946 OS << " " << InsnCleanupFn << "(Inst);\n"; 3947 3948 if (HasDeprecation) { 3949 OS << " std::string Info;\n"; 3950 OS << " if (!getParser().getTargetParser().getTargetOptions().MCNoDeprecatedWarn &&\n"; 3951 OS << " MII.getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3952 OS << " SMLoc Loc = ((" << Target.getName() 3953 << "Operand &)*Operands[0]).getStartLoc();\n"; 3954 OS << " getParser().Warning(Loc, Info, std::nullopt);\n"; 3955 OS << " }\n"; 3956 } 3957 3958 if (!ReportMultipleNearMisses) { 3959 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3960 "Operands, ErrorInfo))\n"; 3961 OS << " return Match_InvalidTiedOperand;\n"; 3962 OS << "\n"; 3963 } 3964 3965 OS << " DEBUG_WITH_TYPE(\n"; 3966 OS << " \"asm-matcher\",\n"; 3967 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3968 OS << " return Match_Success;\n"; 3969 OS << " }\n\n"; 3970 3971 if (ReportMultipleNearMisses) { 3972 OS << " // No instruction variants matched exactly.\n"; 3973 OS << " return Match_NearMisses;\n"; 3974 } else { 3975 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3976 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3977 OS << " return RetCode;\n\n"; 3978 OS << " ErrorInfo = 0;\n"; 3979 OS << " return Match_MissingFeature;\n"; 3980 } 3981 OS << "}\n\n"; 3982 3983 if (!Info.OperandMatchInfo.empty()) 3984 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3985 MaxMnemonicIndex, FeatureBitsets.size(), 3986 HasMnemonicFirst, *AsmParser); 3987 3988 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3989 3990 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3991 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3992 3993 emitMnemonicSpellChecker(OS, Target, VariantCount); 3994 3995 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3996 3997 OS << "\n#ifdef GET_MNEMONIC_CHECKER\n"; 3998 OS << "#undef GET_MNEMONIC_CHECKER\n\n"; 3999 4000 emitMnemonicChecker(OS, Target, VariantCount, 4001 HasMnemonicFirst, HasMnemonicAliases); 4002 4003 OS << "#endif // GET_MNEMONIC_CHECKER\n\n"; 4004 } 4005 4006 static TableGen::Emitter::OptClass<AsmMatcherEmitter> 4007 X("gen-asm-matcher", "Generate assembly instruction matcher"); 4008