xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-xray/xray-stacks.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===- xray-stacks.cpp: XRay Function Call Stack Accounting ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements stack-based accounting. It takes XRay traces, and
10 // collates statistics across these traces to show a breakdown of time spent
11 // at various points of the stack to provide insight into which functions
12 // spend the most time in terms of a call stack. We provide a few
13 // sorting/filtering options for zero'ing in on the useful stacks.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include <forward_list>
18 #include <numeric>
19 
20 #include "func-id-helper.h"
21 #include "trie-node.h"
22 #include "xray-registry.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Errc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/FormatAdapters.h"
28 #include "llvm/Support/FormatVariadic.h"
29 #include "llvm/XRay/Graph.h"
30 #include "llvm/XRay/InstrumentationMap.h"
31 #include "llvm/XRay/Trace.h"
32 
33 using namespace llvm;
34 using namespace llvm::xray;
35 
36 static cl::SubCommand Stack("stack", "Call stack accounting");
37 static cl::list<std::string> StackInputs(cl::Positional,
38                                          cl::desc("<xray trace>"), cl::Required,
39                                          cl::sub(Stack), cl::OneOrMore);
40 
41 static cl::opt<bool>
42     StackKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
43                    cl::sub(Stack), cl::init(false));
44 static cl::alias StackKeepGoing2("k", cl::aliasopt(StackKeepGoing),
45                                  cl::desc("Alias for -keep-going"));
46 
47 // TODO: Does there need to be an option to deduce tail or sibling calls?
48 
49 static cl::opt<std::string> StacksInstrMap(
50     "instr_map",
51     cl::desc("instrumentation map used to identify function ids. "
52              "Currently supports elf file instrumentation maps."),
53     cl::sub(Stack), cl::init(""));
54 static cl::alias StacksInstrMap2("m", cl::aliasopt(StacksInstrMap),
55                                  cl::desc("Alias for -instr_map"));
56 
57 static cl::opt<bool>
58     SeparateThreadStacks("per-thread-stacks",
59                          cl::desc("Report top stacks within each thread id"),
60                          cl::sub(Stack), cl::init(false));
61 
62 static cl::opt<bool>
63     AggregateThreads("aggregate-threads",
64                      cl::desc("Aggregate stack times across threads"),
65                      cl::sub(Stack), cl::init(false));
66 
67 static cl::opt<bool>
68     DumpAllStacks("all-stacks",
69                   cl::desc("Dump sum of timings for all stacks. "
70                            "By default separates stacks per-thread."),
71                   cl::sub(Stack), cl::init(false));
72 static cl::alias DumpAllStacksShort("all", cl::aliasopt(DumpAllStacks),
73                                     cl::desc("Alias for -all-stacks"));
74 
75 // TODO(kpw): Add other interesting formats. Perhaps chrome trace viewer format
76 // possibly with aggregations or just a linear trace of timings.
77 enum StackOutputFormat { HUMAN, FLAMETOOL };
78 
79 static cl::opt<StackOutputFormat> StacksOutputFormat(
80     "stack-format",
81     cl::desc("The format that output stacks should be "
82              "output in. Only applies with all-stacks."),
83     cl::values(
84         clEnumValN(HUMAN, "human",
85                    "Human readable output. Only valid without -all-stacks."),
86         clEnumValN(FLAMETOOL, "flame",
87                    "Format consumable by Brendan Gregg's FlameGraph tool. "
88                    "Only valid with -all-stacks.")),
89     cl::sub(Stack), cl::init(HUMAN));
90 
91 // Types of values for each stack in a CallTrie.
92 enum class AggregationType {
93   TOTAL_TIME,      // The total time spent in a stack and its callees.
94   INVOCATION_COUNT // The number of times the stack was invoked.
95 };
96 
97 static cl::opt<AggregationType> RequestedAggregation(
98     "aggregation-type",
99     cl::desc("The type of aggregation to do on call stacks."),
100     cl::values(
101         clEnumValN(
102             AggregationType::TOTAL_TIME, "time",
103             "Capture the total time spent in an all invocations of a stack."),
104         clEnumValN(AggregationType::INVOCATION_COUNT, "count",
105                    "Capture the number of times a stack was invoked. "
106                    "In flamegraph mode, this count also includes invocations "
107                    "of all callees.")),
108     cl::sub(Stack), cl::init(AggregationType::TOTAL_TIME));
109 
110 /// A helper struct to work with formatv and XRayRecords. Makes it easier to
111 /// use instrumentation map names or addresses in formatted output.
112 struct format_xray_record : public FormatAdapter<XRayRecord> {
113   explicit format_xray_record(XRayRecord record,
114                               const FuncIdConversionHelper &conv)
115       : FormatAdapter<XRayRecord>(std::move(record)), Converter(&conv) {}
116   void format(raw_ostream &Stream, StringRef Style) override {
117     Stream << formatv(
118         "{FuncId: \"{0}\", ThreadId: \"{1}\", RecordType: \"{2}\"}",
119         Converter->SymbolOrNumber(Item.FuncId), Item.TId,
120         DecodeRecordType(Item.RecordType));
121   }
122 
123 private:
124   Twine DecodeRecordType(uint16_t recordType) {
125     switch (recordType) {
126     case 0:
127       return Twine("Fn Entry");
128     case 1:
129       return Twine("Fn Exit");
130     default:
131       // TODO: Add Tail exit when it is added to llvm/XRay/XRayRecord.h
132       return Twine("Unknown");
133     }
134   }
135 
136   const FuncIdConversionHelper *Converter;
137 };
138 
139 /// The stack command will take a set of XRay traces as arguments, and collects
140 /// information about the stacks of instrumented functions that appear in the
141 /// traces. We track the following pieces of information:
142 ///
143 ///   - Total time: amount of time/cycles accounted for in the traces.
144 ///   - Stack count: number of times a specific stack appears in the
145 ///     traces. Only instrumented functions show up in stacks.
146 ///   - Cumulative stack time: amount of time spent in a stack accumulated
147 ///     across the invocations in the traces.
148 ///   - Cumulative local time: amount of time spent in each instrumented
149 ///     function showing up in a specific stack, accumulated across the traces.
150 ///
151 /// Example output for the kind of data we'd like to provide looks like the
152 /// following:
153 ///
154 ///   Total time: 3.33234 s
155 ///   Stack ID: ...
156 ///   Stack Count: 2093
157 ///   #     Function                  Local Time     (%)      Stack Time     (%)
158 ///   0     main                         2.34 ms   0.07%      3.33234  s    100%
159 ///   1     foo()                     3.30000  s  99.02%         3.33  s  99.92%
160 ///   2     bar()                          30 ms   0.90%           30 ms   0.90%
161 ///
162 /// We can also show distributions of the function call durations with
163 /// statistics at each level of the stack. This works by doing the following
164 /// algorithm:
165 ///
166 ///   1. When unwinding, record the duration of each unwound function associated
167 ///   with the path up to which the unwinding stops. For example:
168 ///
169 ///        Step                         Duration (? means has start time)
170 ///
171 ///        push a <start time>           a = ?
172 ///        push b <start time>           a = ?, a->b = ?
173 ///        push c <start time>           a = ?, a->b = ?, a->b->c = ?
174 ///        pop  c <end time>             a = ?, a->b = ?, emit duration(a->b->c)
175 ///        pop  b <end time>             a = ?, emit duration(a->b)
176 ///        push c <start time>           a = ?, a->c = ?
177 ///        pop  c <end time>             a = ?, emit duration(a->c)
178 ///        pop  a <end time>             emit duration(a)
179 ///
180 ///   2. We then account for the various stacks we've collected, and for each of
181 ///      them will have measurements that look like the following (continuing
182 ///      with the above simple example):
183 ///
184 ///        c : [<id("a->b->c"), [durations]>, <id("a->c"), [durations]>]
185 ///        b : [<id("a->b"), [durations]>]
186 ///        a : [<id("a"), [durations]>]
187 ///
188 ///      This allows us to compute, for each stack id, and each function that
189 ///      shows up in the stack,  some important statistics like:
190 ///
191 ///        - median
192 ///        - 99th percentile
193 ///        - mean + stddev
194 ///        - count
195 ///
196 ///   3. For cases where we don't have durations for some of the higher levels
197 ///   of the stack (perhaps instrumentation wasn't activated when the stack was
198 ///   entered), we can mark them appropriately.
199 ///
200 ///  Computing this data also allows us to implement lookup by call stack nodes,
201 ///  so that we can find functions that show up in multiple stack traces and
202 ///  show the statistical properties of that function in various contexts. We
203 ///  can compute information similar to the following:
204 ///
205 ///    Function: 'c'
206 ///    Stacks: 2 / 2
207 ///    Stack ID: ...
208 ///    Stack Count: ...
209 ///    #     Function  ...
210 ///    0     a         ...
211 ///    1     b         ...
212 ///    2     c         ...
213 ///
214 ///    Stack ID: ...
215 ///    Stack Count: ...
216 ///    #     Function  ...
217 ///    0     a         ...
218 ///    1     c         ...
219 ///    ----------------...
220 ///
221 ///    Function: 'b'
222 ///    Stacks:  1 / 2
223 ///    Stack ID: ...
224 ///    Stack Count: ...
225 ///    #     Function  ...
226 ///    0     a         ...
227 ///    1     b         ...
228 ///    2     c         ...
229 ///
230 ///
231 /// To do this we require a Trie data structure that will allow us to represent
232 /// all the call stacks of instrumented functions in an easily traversible
233 /// manner when we do the aggregations and lookups. For instrumented call
234 /// sequences like the following:
235 ///
236 ///   a()
237 ///    b()
238 ///     c()
239 ///     d()
240 ///    c()
241 ///
242 /// We will have a representation like so:
243 ///
244 ///   a -> b -> c
245 ///   |    |
246 ///   |    +--> d
247 ///   |
248 ///   +--> c
249 ///
250 /// We maintain a sequence of durations on the leaves and in the internal nodes
251 /// as we go through and process every record from the XRay trace. We also
252 /// maintain an index of unique functions, and provide a means of iterating
253 /// through all the instrumented call stacks which we know about.
254 
255 struct StackDuration {
256   llvm::SmallVector<int64_t, 4> TerminalDurations;
257   llvm::SmallVector<int64_t, 4> IntermediateDurations;
258 };
259 
260 StackDuration mergeStackDuration(const StackDuration &Left,
261                                  const StackDuration &Right) {
262   StackDuration Data{};
263   Data.TerminalDurations.reserve(Left.TerminalDurations.size() +
264                                  Right.TerminalDurations.size());
265   Data.IntermediateDurations.reserve(Left.IntermediateDurations.size() +
266                                      Right.IntermediateDurations.size());
267   // Aggregate the durations.
268   for (auto duration : Left.TerminalDurations)
269     Data.TerminalDurations.push_back(duration);
270   for (auto duration : Right.TerminalDurations)
271     Data.TerminalDurations.push_back(duration);
272 
273   for (auto duration : Left.IntermediateDurations)
274     Data.IntermediateDurations.push_back(duration);
275   for (auto duration : Right.IntermediateDurations)
276     Data.IntermediateDurations.push_back(duration);
277   return Data;
278 }
279 
280 using StackTrieNode = TrieNode<StackDuration>;
281 
282 template <AggregationType AggType>
283 std::size_t GetValueForStack(const StackTrieNode *Node);
284 
285 // When computing total time spent in a stack, we're adding the timings from
286 // its callees and the timings from when it was a leaf.
287 template <>
288 std::size_t
289 GetValueForStack<AggregationType::TOTAL_TIME>(const StackTrieNode *Node) {
290   auto TopSum = std::accumulate(Node->ExtraData.TerminalDurations.begin(),
291                                 Node->ExtraData.TerminalDurations.end(), 0uLL);
292   return std::accumulate(Node->ExtraData.IntermediateDurations.begin(),
293                          Node->ExtraData.IntermediateDurations.end(), TopSum);
294 }
295 
296 // Calculates how many times a function was invoked.
297 // TODO: Hook up option to produce stacks
298 template <>
299 std::size_t
300 GetValueForStack<AggregationType::INVOCATION_COUNT>(const StackTrieNode *Node) {
301   return Node->ExtraData.TerminalDurations.size() +
302          Node->ExtraData.IntermediateDurations.size();
303 }
304 
305 // Make sure there are implementations for each enum value.
306 template <AggregationType T> struct DependentFalseType : std::false_type {};
307 
308 template <AggregationType AggType>
309 std::size_t GetValueForStack(const StackTrieNode *Node) {
310   static_assert(DependentFalseType<AggType>::value,
311                 "No implementation found for aggregation type provided.");
312   return 0;
313 }
314 
315 class StackTrie {
316   // Avoid the magic number of 4 propagated through the code with an alias.
317   // We use this SmallVector to track the root nodes in a call graph.
318   using RootVector = SmallVector<StackTrieNode *, 4>;
319 
320   // We maintain pointers to the roots of the tries we see.
321   DenseMap<uint32_t, RootVector> Roots;
322 
323   // We make sure all the nodes are accounted for in this list.
324   std::forward_list<StackTrieNode> NodeStore;
325 
326   // A map of thread ids to pairs call stack trie nodes and their start times.
327   DenseMap<uint32_t, SmallVector<std::pair<StackTrieNode *, uint64_t>, 8>>
328       ThreadStackMap;
329 
330   StackTrieNode *createTrieNode(uint32_t ThreadId, int32_t FuncId,
331                                 StackTrieNode *Parent) {
332     NodeStore.push_front(StackTrieNode{FuncId, Parent, {}, {{}, {}}});
333     auto I = NodeStore.begin();
334     auto *Node = &*I;
335     if (!Parent)
336       Roots[ThreadId].push_back(Node);
337     return Node;
338   }
339 
340   StackTrieNode *findRootNode(uint32_t ThreadId, int32_t FuncId) {
341     const auto &RootsByThread = Roots[ThreadId];
342     auto I = find_if(RootsByThread,
343                      [&](StackTrieNode *N) { return N->FuncId == FuncId; });
344     return (I == RootsByThread.end()) ? nullptr : *I;
345   }
346 
347 public:
348   enum class AccountRecordStatus {
349     OK,              // Successfully processed
350     ENTRY_NOT_FOUND, // An exit record had no matching call stack entry
351     UNKNOWN_RECORD_TYPE
352   };
353 
354   struct AccountRecordState {
355     // We keep track of whether the call stack is currently unwinding.
356     bool wasLastRecordExit;
357 
358     static AccountRecordState CreateInitialState() { return {false}; }
359   };
360 
361   AccountRecordStatus accountRecord(const XRayRecord &R,
362                                     AccountRecordState *state) {
363     auto &TS = ThreadStackMap[R.TId];
364     switch (R.Type) {
365     case RecordTypes::CUSTOM_EVENT:
366     case RecordTypes::TYPED_EVENT:
367       return AccountRecordStatus::OK;
368     case RecordTypes::ENTER:
369     case RecordTypes::ENTER_ARG: {
370       state->wasLastRecordExit = false;
371       // When we encounter a new function entry, we want to record the TSC for
372       // that entry, and the function id. Before doing so we check the top of
373       // the stack to see if there are callees that already represent this
374       // function.
375       if (TS.empty()) {
376         auto *Root = findRootNode(R.TId, R.FuncId);
377         TS.emplace_back(Root ? Root : createTrieNode(R.TId, R.FuncId, nullptr),
378                         R.TSC);
379         return AccountRecordStatus::OK;
380       }
381 
382       auto &Top = TS.back();
383       auto I = find_if(Top.first->Callees,
384                        [&](StackTrieNode *N) { return N->FuncId == R.FuncId; });
385       if (I == Top.first->Callees.end()) {
386         // We didn't find the callee in the stack trie, so we're going to
387         // add to the stack then set up the pointers properly.
388         auto N = createTrieNode(R.TId, R.FuncId, Top.first);
389         Top.first->Callees.emplace_back(N);
390 
391         // Top may be invalidated after this statement.
392         TS.emplace_back(N, R.TSC);
393       } else {
394         // We found the callee in the stack trie, so we'll use that pointer
395         // instead, add it to the stack associated with the TSC.
396         TS.emplace_back(*I, R.TSC);
397       }
398       return AccountRecordStatus::OK;
399     }
400     case RecordTypes::EXIT:
401     case RecordTypes::TAIL_EXIT: {
402       bool wasLastRecordExit = state->wasLastRecordExit;
403       state->wasLastRecordExit = true;
404       // The exit case is more interesting, since we want to be able to deduce
405       // missing exit records. To do that properly, we need to look up the stack
406       // and see whether the exit record matches any of the entry records. If it
407       // does match, we attempt to record the durations as we pop the stack to
408       // where we see the parent.
409       if (TS.empty()) {
410         // Short circuit, and say we can't find it.
411 
412         return AccountRecordStatus::ENTRY_NOT_FOUND;
413       }
414 
415       auto FunctionEntryMatch = find_if(
416           reverse(TS), [&](const std::pair<StackTrieNode *, uint64_t> &E) {
417             return E.first->FuncId == R.FuncId;
418           });
419       auto status = AccountRecordStatus::OK;
420       if (FunctionEntryMatch == TS.rend()) {
421         status = AccountRecordStatus::ENTRY_NOT_FOUND;
422       } else {
423         // Account for offset of 1 between reverse and forward iterators. We
424         // want the forward iterator to include the function that is exited.
425         ++FunctionEntryMatch;
426       }
427       auto I = FunctionEntryMatch.base();
428       for (auto &E : make_range(I, TS.end() - 1))
429         E.first->ExtraData.IntermediateDurations.push_back(
430             std::max(E.second, R.TSC) - std::min(E.second, R.TSC));
431       auto &Deepest = TS.back();
432       if (wasLastRecordExit)
433         Deepest.first->ExtraData.IntermediateDurations.push_back(
434             std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
435       else
436         Deepest.first->ExtraData.TerminalDurations.push_back(
437             std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
438       TS.erase(I, TS.end());
439       return status;
440     }
441     }
442     return AccountRecordStatus::UNKNOWN_RECORD_TYPE;
443   }
444 
445   bool isEmpty() const { return Roots.empty(); }
446 
447   void printStack(raw_ostream &OS, const StackTrieNode *Top,
448                   FuncIdConversionHelper &FN) {
449     // Traverse the pointers up to the parent, noting the sums, then print
450     // in reverse order (callers at top, callees down bottom).
451     SmallVector<const StackTrieNode *, 8> CurrentStack;
452     for (auto *F = Top; F != nullptr; F = F->Parent)
453       CurrentStack.push_back(F);
454     int Level = 0;
455     OS << formatv("{0,-5} {1,-60} {2,+12} {3,+16}\n", "lvl", "function",
456                   "count", "sum");
457     for (auto *F :
458          reverse(make_range(CurrentStack.begin() + 1, CurrentStack.end()))) {
459       auto Sum = std::accumulate(F->ExtraData.IntermediateDurations.begin(),
460                                  F->ExtraData.IntermediateDurations.end(), 0LL);
461       auto FuncId = FN.SymbolOrNumber(F->FuncId);
462       OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
463                     FuncId.size() > 60 ? FuncId.substr(0, 57) + "..." : FuncId,
464                     F->ExtraData.IntermediateDurations.size(), Sum);
465     }
466     auto *Leaf = *CurrentStack.begin();
467     auto LeafSum =
468         std::accumulate(Leaf->ExtraData.TerminalDurations.begin(),
469                         Leaf->ExtraData.TerminalDurations.end(), 0LL);
470     auto LeafFuncId = FN.SymbolOrNumber(Leaf->FuncId);
471     OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
472                   LeafFuncId.size() > 60 ? LeafFuncId.substr(0, 57) + "..."
473                                          : LeafFuncId,
474                   Leaf->ExtraData.TerminalDurations.size(), LeafSum);
475     OS << "\n";
476   }
477 
478   /// Prints top stacks for each thread.
479   void printPerThread(raw_ostream &OS, FuncIdConversionHelper &FN) {
480     for (auto iter : Roots) {
481       OS << "Thread " << iter.first << ":\n";
482       print(OS, FN, iter.second);
483       OS << "\n";
484     }
485   }
486 
487   /// Prints timing sums for each stack in each threads.
488   template <AggregationType AggType>
489   void printAllPerThread(raw_ostream &OS, FuncIdConversionHelper &FN,
490                          StackOutputFormat format) {
491     for (auto iter : Roots) {
492       uint32_t threadId = iter.first;
493       RootVector &perThreadRoots = iter.second;
494       bool reportThreadId = true;
495       printAll<AggType>(OS, FN, perThreadRoots, threadId, reportThreadId);
496     }
497   }
498 
499   /// Prints top stacks from looking at all the leaves and ignoring thread IDs.
500   /// Stacks that consist of the same function IDs but were called in different
501   /// thread IDs are not considered unique in this printout.
502   void printIgnoringThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
503     RootVector RootValues;
504 
505     // Function to pull the values out of a map iterator.
506     using RootsType = decltype(Roots.begin())::value_type;
507     auto MapValueFn = [](const RootsType &Value) { return Value.second; };
508 
509     for (const auto &RootNodeRange :
510          make_range(map_iterator(Roots.begin(), MapValueFn),
511                     map_iterator(Roots.end(), MapValueFn))) {
512       for (auto *RootNode : RootNodeRange)
513         RootValues.push_back(RootNode);
514     }
515 
516     print(OS, FN, RootValues);
517   }
518 
519   /// Creates a merged list of Tries for unique stacks that disregards their
520   /// thread IDs.
521   RootVector mergeAcrossThreads(std::forward_list<StackTrieNode> &NodeStore) {
522     RootVector MergedByThreadRoots;
523     for (auto MapIter : Roots) {
524       const auto &RootNodeVector = MapIter.second;
525       for (auto *Node : RootNodeVector) {
526         auto MaybeFoundIter =
527             find_if(MergedByThreadRoots, [Node](StackTrieNode *elem) {
528               return Node->FuncId == elem->FuncId;
529             });
530         if (MaybeFoundIter == MergedByThreadRoots.end()) {
531           MergedByThreadRoots.push_back(Node);
532         } else {
533           MergedByThreadRoots.push_back(mergeTrieNodes(
534               **MaybeFoundIter, *Node, nullptr, NodeStore, mergeStackDuration));
535           MergedByThreadRoots.erase(MaybeFoundIter);
536         }
537       }
538     }
539     return MergedByThreadRoots;
540   }
541 
542   /// Print timing sums for all stacks merged by Thread ID.
543   template <AggregationType AggType>
544   void printAllAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN,
545                                   StackOutputFormat format) {
546     std::forward_list<StackTrieNode> AggregatedNodeStore;
547     RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
548     bool reportThreadId = false;
549     printAll<AggType>(OS, FN, MergedByThreadRoots,
550                       /*threadId*/ 0, reportThreadId);
551   }
552 
553   /// Merges the trie by thread id before printing top stacks.
554   void printAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
555     std::forward_list<StackTrieNode> AggregatedNodeStore;
556     RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
557     print(OS, FN, MergedByThreadRoots);
558   }
559 
560   // TODO: Add a format option when more than one are supported.
561   template <AggregationType AggType>
562   void printAll(raw_ostream &OS, FuncIdConversionHelper &FN,
563                 RootVector RootValues, uint32_t ThreadId, bool ReportThread) {
564     SmallVector<const StackTrieNode *, 16> S;
565     for (const auto *N : RootValues) {
566       S.clear();
567       S.push_back(N);
568       while (!S.empty()) {
569         auto *Top = S.pop_back_val();
570         printSingleStack<AggType>(OS, FN, ReportThread, ThreadId, Top);
571         for (const auto *C : Top->Callees)
572           S.push_back(C);
573       }
574     }
575   }
576 
577   /// Prints values for stacks in a format consumable for the flamegraph.pl
578   /// tool. This is a line based format that lists each level in the stack
579   /// hierarchy in a semicolon delimited form followed by a space and a numeric
580   /// value. If breaking down by thread, the thread ID will be added as the
581   /// root level of the stack.
582   template <AggregationType AggType>
583   void printSingleStack(raw_ostream &OS, FuncIdConversionHelper &Converter,
584                         bool ReportThread, uint32_t ThreadId,
585                         const StackTrieNode *Node) {
586     if (ReportThread)
587       OS << "thread_" << ThreadId << ";";
588     SmallVector<const StackTrieNode *, 5> lineage{};
589     lineage.push_back(Node);
590     while (lineage.back()->Parent != nullptr)
591       lineage.push_back(lineage.back()->Parent);
592     while (!lineage.empty()) {
593       OS << Converter.SymbolOrNumber(lineage.back()->FuncId) << ";";
594       lineage.pop_back();
595     }
596     OS << " " << GetValueForStack<AggType>(Node) << "\n";
597   }
598 
599   void print(raw_ostream &OS, FuncIdConversionHelper &FN,
600              RootVector RootValues) {
601     // Go through each of the roots, and traverse the call stack, producing the
602     // aggregates as you go along. Remember these aggregates and stacks, and
603     // show summary statistics about:
604     //
605     //   - Total number of unique stacks
606     //   - Top 10 stacks by count
607     //   - Top 10 stacks by aggregate duration
608     SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11>
609         TopStacksByCount;
610     SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11> TopStacksBySum;
611     auto greater_second =
612         [](const std::pair<const StackTrieNode *, uint64_t> &A,
613            const std::pair<const StackTrieNode *, uint64_t> &B) {
614           return A.second > B.second;
615         };
616     uint64_t UniqueStacks = 0;
617     for (const auto *N : RootValues) {
618       SmallVector<const StackTrieNode *, 16> S;
619       S.emplace_back(N);
620 
621       while (!S.empty()) {
622         auto *Top = S.pop_back_val();
623 
624         // We only start printing the stack (by walking up the parent pointers)
625         // when we get to a leaf function.
626         if (!Top->ExtraData.TerminalDurations.empty()) {
627           ++UniqueStacks;
628           auto TopSum =
629               std::accumulate(Top->ExtraData.TerminalDurations.begin(),
630                               Top->ExtraData.TerminalDurations.end(), 0uLL);
631           {
632             auto E = std::make_pair(Top, TopSum);
633             TopStacksBySum.insert(
634                 llvm::lower_bound(TopStacksBySum, E, greater_second), E);
635             if (TopStacksBySum.size() == 11)
636               TopStacksBySum.pop_back();
637           }
638           {
639             auto E =
640                 std::make_pair(Top, Top->ExtraData.TerminalDurations.size());
641             TopStacksByCount.insert(std::lower_bound(TopStacksByCount.begin(),
642                                                      TopStacksByCount.end(), E,
643                                                      greater_second),
644                                     E);
645             if (TopStacksByCount.size() == 11)
646               TopStacksByCount.pop_back();
647           }
648         }
649         for (const auto *C : Top->Callees)
650           S.push_back(C);
651       }
652     }
653 
654     // Now print the statistics in the end.
655     OS << "\n";
656     OS << "Unique Stacks: " << UniqueStacks << "\n";
657     OS << "Top 10 Stacks by leaf sum:\n\n";
658     for (const auto &P : TopStacksBySum) {
659       OS << "Sum: " << P.second << "\n";
660       printStack(OS, P.first, FN);
661     }
662     OS << "\n";
663     OS << "Top 10 Stacks by leaf count:\n\n";
664     for (const auto &P : TopStacksByCount) {
665       OS << "Count: " << P.second << "\n";
666       printStack(OS, P.first, FN);
667     }
668     OS << "\n";
669   }
670 };
671 
672 std::string CreateErrorMessage(StackTrie::AccountRecordStatus Error,
673                                const XRayRecord &Record,
674                                const FuncIdConversionHelper &Converter) {
675   switch (Error) {
676   case StackTrie::AccountRecordStatus::ENTRY_NOT_FOUND:
677     return formatv("Found record {0} with no matching function entry\n",
678                    format_xray_record(Record, Converter));
679   default:
680     return formatv("Unknown error type for record {0}\n",
681                    format_xray_record(Record, Converter));
682   }
683 }
684 
685 static CommandRegistration Unused(&Stack, []() -> Error {
686   // Load each file provided as a command-line argument. For each one of them
687   // account to a single StackTrie, and just print the whole trie for now.
688   StackTrie ST;
689   InstrumentationMap Map;
690   if (!StacksInstrMap.empty()) {
691     auto InstrumentationMapOrError = loadInstrumentationMap(StacksInstrMap);
692     if (!InstrumentationMapOrError)
693       return joinErrors(
694           make_error<StringError>(
695               Twine("Cannot open instrumentation map: ") + StacksInstrMap,
696               std::make_error_code(std::errc::invalid_argument)),
697           InstrumentationMapOrError.takeError());
698     Map = std::move(*InstrumentationMapOrError);
699   }
700 
701   if (SeparateThreadStacks && AggregateThreads)
702     return make_error<StringError>(
703         Twine("Can't specify options for per thread reporting and reporting "
704               "that aggregates threads."),
705         std::make_error_code(std::errc::invalid_argument));
706 
707   if (!DumpAllStacks && StacksOutputFormat != HUMAN)
708     return make_error<StringError>(
709         Twine("Can't specify a non-human format without -all-stacks."),
710         std::make_error_code(std::errc::invalid_argument));
711 
712   if (DumpAllStacks && StacksOutputFormat == HUMAN)
713     return make_error<StringError>(
714         Twine("You must specify a non-human format when reporting with "
715               "-all-stacks."),
716         std::make_error_code(std::errc::invalid_argument));
717 
718   symbolize::LLVMSymbolizer Symbolizer;
719   FuncIdConversionHelper FuncIdHelper(StacksInstrMap, Symbolizer,
720                                       Map.getFunctionAddresses());
721   // TODO: Someday, support output to files instead of just directly to
722   // standard output.
723   for (const auto &Filename : StackInputs) {
724     auto TraceOrErr = loadTraceFile(Filename);
725     if (!TraceOrErr) {
726       if (!StackKeepGoing)
727         return joinErrors(
728             make_error<StringError>(
729                 Twine("Failed loading input file '") + Filename + "'",
730                 std::make_error_code(std::errc::invalid_argument)),
731             TraceOrErr.takeError());
732       logAllUnhandledErrors(TraceOrErr.takeError(), errs());
733       continue;
734     }
735     auto &T = *TraceOrErr;
736     StackTrie::AccountRecordState AccountRecordState =
737         StackTrie::AccountRecordState::CreateInitialState();
738     for (const auto &Record : T) {
739       auto error = ST.accountRecord(Record, &AccountRecordState);
740       if (error != StackTrie::AccountRecordStatus::OK) {
741         if (!StackKeepGoing)
742           return make_error<StringError>(
743               CreateErrorMessage(error, Record, FuncIdHelper),
744               make_error_code(errc::illegal_byte_sequence));
745         errs() << CreateErrorMessage(error, Record, FuncIdHelper);
746       }
747     }
748   }
749   if (ST.isEmpty()) {
750     return make_error<StringError>(
751         "No instrumented calls were accounted in the input file.",
752         make_error_code(errc::result_out_of_range));
753   }
754 
755   // Report the stacks in a long form mode for another tool to analyze.
756   if (DumpAllStacks) {
757     if (AggregateThreads) {
758       switch (RequestedAggregation) {
759       case AggregationType::TOTAL_TIME:
760         ST.printAllAggregatingThreads<AggregationType::TOTAL_TIME>(
761             outs(), FuncIdHelper, StacksOutputFormat);
762         break;
763       case AggregationType::INVOCATION_COUNT:
764         ST.printAllAggregatingThreads<AggregationType::INVOCATION_COUNT>(
765             outs(), FuncIdHelper, StacksOutputFormat);
766         break;
767       }
768     } else {
769       switch (RequestedAggregation) {
770       case AggregationType::TOTAL_TIME:
771         ST.printAllPerThread<AggregationType::TOTAL_TIME>(outs(), FuncIdHelper,
772                                                           StacksOutputFormat);
773         break;
774       case AggregationType::INVOCATION_COUNT:
775         ST.printAllPerThread<AggregationType::INVOCATION_COUNT>(
776             outs(), FuncIdHelper, StacksOutputFormat);
777         break;
778       }
779     }
780     return Error::success();
781   }
782 
783   // We're only outputting top stacks.
784   if (AggregateThreads) {
785     ST.printAggregatingThreads(outs(), FuncIdHelper);
786   } else if (SeparateThreadStacks) {
787     ST.printPerThread(outs(), FuncIdHelper);
788   } else {
789     ST.printIgnoringThreads(outs(), FuncIdHelper);
790   }
791   return Error::success();
792 });
793