xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-xray/xray-stacks.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- xray-stacks.cpp: XRay Function Call Stack Accounting ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements stack-based accounting. It takes XRay traces, and
10 // collates statistics across these traces to show a breakdown of time spent
11 // at various points of the stack to provide insight into which functions
12 // spend the most time in terms of a call stack. We provide a few
13 // sorting/filtering options for zero'ing in on the useful stacks.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include <forward_list>
18 #include <numeric>
19 
20 #include "func-id-helper.h"
21 #include "trie-node.h"
22 #include "xray-registry.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Errc.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/FormatAdapters.h"
28 #include "llvm/Support/FormatVariadic.h"
29 #include "llvm/XRay/Graph.h"
30 #include "llvm/XRay/InstrumentationMap.h"
31 #include "llvm/XRay/Trace.h"
32 
33 using namespace llvm;
34 using namespace llvm::xray;
35 
36 static cl::SubCommand Stack("stack", "Call stack accounting");
37 static cl::list<std::string> StackInputs(cl::Positional,
38                                          cl::desc("<xray trace>"), cl::Required,
39                                          cl::sub(Stack), cl::OneOrMore);
40 
41 static cl::opt<bool>
42     StackKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
43                    cl::sub(Stack), cl::init(false));
44 static cl::alias StackKeepGoing2("k", cl::aliasopt(StackKeepGoing),
45                                  cl::desc("Alias for -keep-going"),
46                                  cl::sub(Stack));
47 
48 // TODO: Does there need to be an option to deduce tail or sibling calls?
49 
50 static cl::opt<std::string> StacksInstrMap(
51     "instr_map",
52     cl::desc("instrumentation map used to identify function ids. "
53              "Currently supports elf file instrumentation maps."),
54     cl::sub(Stack), cl::init(""));
55 static cl::alias StacksInstrMap2("m", cl::aliasopt(StacksInstrMap),
56                                  cl::desc("Alias for -instr_map"),
57                                  cl::sub(Stack));
58 
59 static cl::opt<bool>
60     SeparateThreadStacks("per-thread-stacks",
61                          cl::desc("Report top stacks within each thread id"),
62                          cl::sub(Stack), cl::init(false));
63 
64 static cl::opt<bool>
65     AggregateThreads("aggregate-threads",
66                      cl::desc("Aggregate stack times across threads"),
67                      cl::sub(Stack), cl::init(false));
68 
69 static cl::opt<bool>
70     DumpAllStacks("all-stacks",
71                   cl::desc("Dump sum of timings for all stacks. "
72                            "By default separates stacks per-thread."),
73                   cl::sub(Stack), cl::init(false));
74 static cl::alias DumpAllStacksShort("all", cl::aliasopt(DumpAllStacks),
75                                     cl::desc("Alias for -all-stacks"),
76                                     cl::sub(Stack));
77 
78 // TODO(kpw): Add other interesting formats. Perhaps chrome trace viewer format
79 // possibly with aggregations or just a linear trace of timings.
80 enum StackOutputFormat { HUMAN, FLAMETOOL };
81 
82 static cl::opt<StackOutputFormat> StacksOutputFormat(
83     "stack-format",
84     cl::desc("The format that output stacks should be "
85              "output in. Only applies with all-stacks."),
86     cl::values(
87         clEnumValN(HUMAN, "human",
88                    "Human readable output. Only valid without -all-stacks."),
89         clEnumValN(FLAMETOOL, "flame",
90                    "Format consumable by Brendan Gregg's FlameGraph tool. "
91                    "Only valid with -all-stacks.")),
92     cl::sub(Stack), cl::init(HUMAN));
93 
94 // Types of values for each stack in a CallTrie.
95 enum class AggregationType {
96   TOTAL_TIME,      // The total time spent in a stack and its callees.
97   INVOCATION_COUNT // The number of times the stack was invoked.
98 };
99 
100 static cl::opt<AggregationType> RequestedAggregation(
101     "aggregation-type",
102     cl::desc("The type of aggregation to do on call stacks."),
103     cl::values(
104         clEnumValN(
105             AggregationType::TOTAL_TIME, "time",
106             "Capture the total time spent in an all invocations of a stack."),
107         clEnumValN(AggregationType::INVOCATION_COUNT, "count",
108                    "Capture the number of times a stack was invoked. "
109                    "In flamegraph mode, this count also includes invocations "
110                    "of all callees.")),
111     cl::sub(Stack), cl::init(AggregationType::TOTAL_TIME));
112 
113 /// A helper struct to work with formatv and XRayRecords. Makes it easier to
114 /// use instrumentation map names or addresses in formatted output.
115 struct format_xray_record : public FormatAdapter<XRayRecord> {
116   explicit format_xray_record(XRayRecord record,
117                               const FuncIdConversionHelper &conv)
118       : FormatAdapter<XRayRecord>(std::move(record)), Converter(&conv) {}
119   void format(raw_ostream &Stream, StringRef Style) override {
120     Stream << formatv(
121         "{FuncId: \"{0}\", ThreadId: \"{1}\", RecordType: \"{2}\"}",
122         Converter->SymbolOrNumber(Item.FuncId), Item.TId,
123         DecodeRecordType(Item.RecordType));
124   }
125 
126 private:
127   Twine DecodeRecordType(uint16_t recordType) {
128     switch (recordType) {
129     case 0:
130       return Twine("Fn Entry");
131     case 1:
132       return Twine("Fn Exit");
133     default:
134       // TODO: Add Tail exit when it is added to llvm/XRay/XRayRecord.h
135       return Twine("Unknown");
136     }
137   }
138 
139   const FuncIdConversionHelper *Converter;
140 };
141 
142 /// The stack command will take a set of XRay traces as arguments, and collects
143 /// information about the stacks of instrumented functions that appear in the
144 /// traces. We track the following pieces of information:
145 ///
146 ///   - Total time: amount of time/cycles accounted for in the traces.
147 ///   - Stack count: number of times a specific stack appears in the
148 ///     traces. Only instrumented functions show up in stacks.
149 ///   - Cumulative stack time: amount of time spent in a stack accumulated
150 ///     across the invocations in the traces.
151 ///   - Cumulative local time: amount of time spent in each instrumented
152 ///     function showing up in a specific stack, accumulated across the traces.
153 ///
154 /// Example output for the kind of data we'd like to provide looks like the
155 /// following:
156 ///
157 ///   Total time: 3.33234 s
158 ///   Stack ID: ...
159 ///   Stack Count: 2093
160 ///   #     Function                  Local Time     (%)      Stack Time     (%)
161 ///   0     main                         2.34 ms   0.07%      3.33234  s    100%
162 ///   1     foo()                     3.30000  s  99.02%         3.33  s  99.92%
163 ///   2     bar()                          30 ms   0.90%           30 ms   0.90%
164 ///
165 /// We can also show distributions of the function call durations with
166 /// statistics at each level of the stack. This works by doing the following
167 /// algorithm:
168 ///
169 ///   1. When unwinding, record the duration of each unwound function associated
170 ///   with the path up to which the unwinding stops. For example:
171 ///
172 ///        Step                         Duration (? means has start time)
173 ///
174 ///        push a <start time>           a = ?
175 ///        push b <start time>           a = ?, a->b = ?
176 ///        push c <start time>           a = ?, a->b = ?, a->b->c = ?
177 ///        pop  c <end time>             a = ?, a->b = ?, emit duration(a->b->c)
178 ///        pop  b <end time>             a = ?, emit duration(a->b)
179 ///        push c <start time>           a = ?, a->c = ?
180 ///        pop  c <end time>             a = ?, emit duration(a->c)
181 ///        pop  a <end time>             emit duration(a)
182 ///
183 ///   2. We then account for the various stacks we've collected, and for each of
184 ///      them will have measurements that look like the following (continuing
185 ///      with the above simple example):
186 ///
187 ///        c : [<id("a->b->c"), [durations]>, <id("a->c"), [durations]>]
188 ///        b : [<id("a->b"), [durations]>]
189 ///        a : [<id("a"), [durations]>]
190 ///
191 ///      This allows us to compute, for each stack id, and each function that
192 ///      shows up in the stack,  some important statistics like:
193 ///
194 ///        - median
195 ///        - 99th percentile
196 ///        - mean + stddev
197 ///        - count
198 ///
199 ///   3. For cases where we don't have durations for some of the higher levels
200 ///   of the stack (perhaps instrumentation wasn't activated when the stack was
201 ///   entered), we can mark them appropriately.
202 ///
203 ///  Computing this data also allows us to implement lookup by call stack nodes,
204 ///  so that we can find functions that show up in multiple stack traces and
205 ///  show the statistical properties of that function in various contexts. We
206 ///  can compute information similar to the following:
207 ///
208 ///    Function: 'c'
209 ///    Stacks: 2 / 2
210 ///    Stack ID: ...
211 ///    Stack Count: ...
212 ///    #     Function  ...
213 ///    0     a         ...
214 ///    1     b         ...
215 ///    2     c         ...
216 ///
217 ///    Stack ID: ...
218 ///    Stack Count: ...
219 ///    #     Function  ...
220 ///    0     a         ...
221 ///    1     c         ...
222 ///    ----------------...
223 ///
224 ///    Function: 'b'
225 ///    Stacks:  1 / 2
226 ///    Stack ID: ...
227 ///    Stack Count: ...
228 ///    #     Function  ...
229 ///    0     a         ...
230 ///    1     b         ...
231 ///    2     c         ...
232 ///
233 ///
234 /// To do this we require a Trie data structure that will allow us to represent
235 /// all the call stacks of instrumented functions in an easily traversible
236 /// manner when we do the aggregations and lookups. For instrumented call
237 /// sequences like the following:
238 ///
239 ///   a()
240 ///    b()
241 ///     c()
242 ///     d()
243 ///    c()
244 ///
245 /// We will have a representation like so:
246 ///
247 ///   a -> b -> c
248 ///   |    |
249 ///   |    +--> d
250 ///   |
251 ///   +--> c
252 ///
253 /// We maintain a sequence of durations on the leaves and in the internal nodes
254 /// as we go through and process every record from the XRay trace. We also
255 /// maintain an index of unique functions, and provide a means of iterating
256 /// through all the instrumented call stacks which we know about.
257 
258 struct StackDuration {
259   llvm::SmallVector<int64_t, 4> TerminalDurations;
260   llvm::SmallVector<int64_t, 4> IntermediateDurations;
261 };
262 
263 StackDuration mergeStackDuration(const StackDuration &Left,
264                                  const StackDuration &Right) {
265   StackDuration Data{};
266   Data.TerminalDurations.reserve(Left.TerminalDurations.size() +
267                                  Right.TerminalDurations.size());
268   Data.IntermediateDurations.reserve(Left.IntermediateDurations.size() +
269                                      Right.IntermediateDurations.size());
270   // Aggregate the durations.
271   for (auto duration : Left.TerminalDurations)
272     Data.TerminalDurations.push_back(duration);
273   for (auto duration : Right.TerminalDurations)
274     Data.TerminalDurations.push_back(duration);
275 
276   for (auto duration : Left.IntermediateDurations)
277     Data.IntermediateDurations.push_back(duration);
278   for (auto duration : Right.IntermediateDurations)
279     Data.IntermediateDurations.push_back(duration);
280   return Data;
281 }
282 
283 using StackTrieNode = TrieNode<StackDuration>;
284 
285 template <AggregationType AggType>
286 std::size_t GetValueForStack(const StackTrieNode *Node);
287 
288 // When computing total time spent in a stack, we're adding the timings from
289 // its callees and the timings from when it was a leaf.
290 template <>
291 std::size_t
292 GetValueForStack<AggregationType::TOTAL_TIME>(const StackTrieNode *Node) {
293   auto TopSum = std::accumulate(Node->ExtraData.TerminalDurations.begin(),
294                                 Node->ExtraData.TerminalDurations.end(), 0uLL);
295   return std::accumulate(Node->ExtraData.IntermediateDurations.begin(),
296                          Node->ExtraData.IntermediateDurations.end(), TopSum);
297 }
298 
299 // Calculates how many times a function was invoked.
300 // TODO: Hook up option to produce stacks
301 template <>
302 std::size_t
303 GetValueForStack<AggregationType::INVOCATION_COUNT>(const StackTrieNode *Node) {
304   return Node->ExtraData.TerminalDurations.size() +
305          Node->ExtraData.IntermediateDurations.size();
306 }
307 
308 // Make sure there are implementations for each enum value.
309 template <AggregationType T> struct DependentFalseType : std::false_type {};
310 
311 template <AggregationType AggType>
312 std::size_t GetValueForStack(const StackTrieNode *Node) {
313   static_assert(DependentFalseType<AggType>::value,
314                 "No implementation found for aggregation type provided.");
315   return 0;
316 }
317 
318 class StackTrie {
319   // Avoid the magic number of 4 propagated through the code with an alias.
320   // We use this SmallVector to track the root nodes in a call graph.
321   using RootVector = SmallVector<StackTrieNode *, 4>;
322 
323   // We maintain pointers to the roots of the tries we see.
324   DenseMap<uint32_t, RootVector> Roots;
325 
326   // We make sure all the nodes are accounted for in this list.
327   std::forward_list<StackTrieNode> NodeStore;
328 
329   // A map of thread ids to pairs call stack trie nodes and their start times.
330   DenseMap<uint32_t, SmallVector<std::pair<StackTrieNode *, uint64_t>, 8>>
331       ThreadStackMap;
332 
333   StackTrieNode *createTrieNode(uint32_t ThreadId, int32_t FuncId,
334                                 StackTrieNode *Parent) {
335     NodeStore.push_front(StackTrieNode{FuncId, Parent, {}, {{}, {}}});
336     auto I = NodeStore.begin();
337     auto *Node = &*I;
338     if (!Parent)
339       Roots[ThreadId].push_back(Node);
340     return Node;
341   }
342 
343   StackTrieNode *findRootNode(uint32_t ThreadId, int32_t FuncId) {
344     const auto &RootsByThread = Roots[ThreadId];
345     auto I = find_if(RootsByThread,
346                      [&](StackTrieNode *N) { return N->FuncId == FuncId; });
347     return (I == RootsByThread.end()) ? nullptr : *I;
348   }
349 
350 public:
351   enum class AccountRecordStatus {
352     OK,              // Successfully processed
353     ENTRY_NOT_FOUND, // An exit record had no matching call stack entry
354     UNKNOWN_RECORD_TYPE
355   };
356 
357   struct AccountRecordState {
358     // We keep track of whether the call stack is currently unwinding.
359     bool wasLastRecordExit;
360 
361     static AccountRecordState CreateInitialState() { return {false}; }
362   };
363 
364   AccountRecordStatus accountRecord(const XRayRecord &R,
365                                     AccountRecordState *state) {
366     auto &TS = ThreadStackMap[R.TId];
367     switch (R.Type) {
368     case RecordTypes::CUSTOM_EVENT:
369     case RecordTypes::TYPED_EVENT:
370       return AccountRecordStatus::OK;
371     case RecordTypes::ENTER:
372     case RecordTypes::ENTER_ARG: {
373       state->wasLastRecordExit = false;
374       // When we encounter a new function entry, we want to record the TSC for
375       // that entry, and the function id. Before doing so we check the top of
376       // the stack to see if there are callees that already represent this
377       // function.
378       if (TS.empty()) {
379         auto *Root = findRootNode(R.TId, R.FuncId);
380         TS.emplace_back(Root ? Root : createTrieNode(R.TId, R.FuncId, nullptr),
381                         R.TSC);
382         return AccountRecordStatus::OK;
383       }
384 
385       auto &Top = TS.back();
386       auto I = find_if(Top.first->Callees,
387                        [&](StackTrieNode *N) { return N->FuncId == R.FuncId; });
388       if (I == Top.first->Callees.end()) {
389         // We didn't find the callee in the stack trie, so we're going to
390         // add to the stack then set up the pointers properly.
391         auto N = createTrieNode(R.TId, R.FuncId, Top.first);
392         Top.first->Callees.emplace_back(N);
393 
394         // Top may be invalidated after this statement.
395         TS.emplace_back(N, R.TSC);
396       } else {
397         // We found the callee in the stack trie, so we'll use that pointer
398         // instead, add it to the stack associated with the TSC.
399         TS.emplace_back(*I, R.TSC);
400       }
401       return AccountRecordStatus::OK;
402     }
403     case RecordTypes::EXIT:
404     case RecordTypes::TAIL_EXIT: {
405       bool wasLastRecordExit = state->wasLastRecordExit;
406       state->wasLastRecordExit = true;
407       // The exit case is more interesting, since we want to be able to deduce
408       // missing exit records. To do that properly, we need to look up the stack
409       // and see whether the exit record matches any of the entry records. If it
410       // does match, we attempt to record the durations as we pop the stack to
411       // where we see the parent.
412       if (TS.empty()) {
413         // Short circuit, and say we can't find it.
414 
415         return AccountRecordStatus::ENTRY_NOT_FOUND;
416       }
417 
418       auto FunctionEntryMatch = find_if(
419           reverse(TS), [&](const std::pair<StackTrieNode *, uint64_t> &E) {
420             return E.first->FuncId == R.FuncId;
421           });
422       auto status = AccountRecordStatus::OK;
423       if (FunctionEntryMatch == TS.rend()) {
424         status = AccountRecordStatus::ENTRY_NOT_FOUND;
425       } else {
426         // Account for offset of 1 between reverse and forward iterators. We
427         // want the forward iterator to include the function that is exited.
428         ++FunctionEntryMatch;
429       }
430       auto I = FunctionEntryMatch.base();
431       for (auto &E : make_range(I, TS.end() - 1))
432         E.first->ExtraData.IntermediateDurations.push_back(
433             std::max(E.second, R.TSC) - std::min(E.second, R.TSC));
434       auto &Deepest = TS.back();
435       if (wasLastRecordExit)
436         Deepest.first->ExtraData.IntermediateDurations.push_back(
437             std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
438       else
439         Deepest.first->ExtraData.TerminalDurations.push_back(
440             std::max(Deepest.second, R.TSC) - std::min(Deepest.second, R.TSC));
441       TS.erase(I, TS.end());
442       return status;
443     }
444     }
445     return AccountRecordStatus::UNKNOWN_RECORD_TYPE;
446   }
447 
448   bool isEmpty() const { return Roots.empty(); }
449 
450   void printStack(raw_ostream &OS, const StackTrieNode *Top,
451                   FuncIdConversionHelper &FN) {
452     // Traverse the pointers up to the parent, noting the sums, then print
453     // in reverse order (callers at top, callees down bottom).
454     SmallVector<const StackTrieNode *, 8> CurrentStack;
455     for (auto *F = Top; F != nullptr; F = F->Parent)
456       CurrentStack.push_back(F);
457     int Level = 0;
458     OS << formatv("{0,-5} {1,-60} {2,+12} {3,+16}\n", "lvl", "function",
459                   "count", "sum");
460     for (auto *F :
461          reverse(make_range(CurrentStack.begin() + 1, CurrentStack.end()))) {
462       auto Sum = std::accumulate(F->ExtraData.IntermediateDurations.begin(),
463                                  F->ExtraData.IntermediateDurations.end(), 0LL);
464       auto FuncId = FN.SymbolOrNumber(F->FuncId);
465       OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
466                     FuncId.size() > 60 ? FuncId.substr(0, 57) + "..." : FuncId,
467                     F->ExtraData.IntermediateDurations.size(), Sum);
468     }
469     auto *Leaf = *CurrentStack.begin();
470     auto LeafSum =
471         std::accumulate(Leaf->ExtraData.TerminalDurations.begin(),
472                         Leaf->ExtraData.TerminalDurations.end(), 0LL);
473     auto LeafFuncId = FN.SymbolOrNumber(Leaf->FuncId);
474     OS << formatv("#{0,-4} {1,-60} {2,+12} {3,+16}\n", Level++,
475                   LeafFuncId.size() > 60 ? LeafFuncId.substr(0, 57) + "..."
476                                          : LeafFuncId,
477                   Leaf->ExtraData.TerminalDurations.size(), LeafSum);
478     OS << "\n";
479   }
480 
481   /// Prints top stacks for each thread.
482   void printPerThread(raw_ostream &OS, FuncIdConversionHelper &FN) {
483     for (auto iter : Roots) {
484       OS << "Thread " << iter.first << ":\n";
485       print(OS, FN, iter.second);
486       OS << "\n";
487     }
488   }
489 
490   /// Prints timing sums for each stack in each threads.
491   template <AggregationType AggType>
492   void printAllPerThread(raw_ostream &OS, FuncIdConversionHelper &FN,
493                          StackOutputFormat format) {
494     for (auto iter : Roots) {
495       uint32_t threadId = iter.first;
496       RootVector &perThreadRoots = iter.second;
497       bool reportThreadId = true;
498       printAll<AggType>(OS, FN, perThreadRoots, threadId, reportThreadId);
499     }
500   }
501 
502   /// Prints top stacks from looking at all the leaves and ignoring thread IDs.
503   /// Stacks that consist of the same function IDs but were called in different
504   /// thread IDs are not considered unique in this printout.
505   void printIgnoringThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
506     RootVector RootValues;
507 
508     // Function to pull the values out of a map iterator.
509     using RootsType = decltype(Roots.begin())::value_type;
510     auto MapValueFn = [](const RootsType &Value) { return Value.second; };
511 
512     for (const auto &RootNodeRange :
513          make_range(map_iterator(Roots.begin(), MapValueFn),
514                     map_iterator(Roots.end(), MapValueFn))) {
515       for (auto *RootNode : RootNodeRange)
516         RootValues.push_back(RootNode);
517     }
518 
519     print(OS, FN, RootValues);
520   }
521 
522   /// Creates a merged list of Tries for unique stacks that disregards their
523   /// thread IDs.
524   RootVector mergeAcrossThreads(std::forward_list<StackTrieNode> &NodeStore) {
525     RootVector MergedByThreadRoots;
526     for (auto MapIter : Roots) {
527       const auto &RootNodeVector = MapIter.second;
528       for (auto *Node : RootNodeVector) {
529         auto MaybeFoundIter =
530             find_if(MergedByThreadRoots, [Node](StackTrieNode *elem) {
531               return Node->FuncId == elem->FuncId;
532             });
533         if (MaybeFoundIter == MergedByThreadRoots.end()) {
534           MergedByThreadRoots.push_back(Node);
535         } else {
536           MergedByThreadRoots.push_back(mergeTrieNodes(
537               **MaybeFoundIter, *Node, nullptr, NodeStore, mergeStackDuration));
538           MergedByThreadRoots.erase(MaybeFoundIter);
539         }
540       }
541     }
542     return MergedByThreadRoots;
543   }
544 
545   /// Print timing sums for all stacks merged by Thread ID.
546   template <AggregationType AggType>
547   void printAllAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN,
548                                   StackOutputFormat format) {
549     std::forward_list<StackTrieNode> AggregatedNodeStore;
550     RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
551     bool reportThreadId = false;
552     printAll<AggType>(OS, FN, MergedByThreadRoots,
553                       /*threadId*/ 0, reportThreadId);
554   }
555 
556   /// Merges the trie by thread id before printing top stacks.
557   void printAggregatingThreads(raw_ostream &OS, FuncIdConversionHelper &FN) {
558     std::forward_list<StackTrieNode> AggregatedNodeStore;
559     RootVector MergedByThreadRoots = mergeAcrossThreads(AggregatedNodeStore);
560     print(OS, FN, MergedByThreadRoots);
561   }
562 
563   // TODO: Add a format option when more than one are supported.
564   template <AggregationType AggType>
565   void printAll(raw_ostream &OS, FuncIdConversionHelper &FN,
566                 RootVector RootValues, uint32_t ThreadId, bool ReportThread) {
567     SmallVector<const StackTrieNode *, 16> S;
568     for (const auto *N : RootValues) {
569       S.clear();
570       S.push_back(N);
571       while (!S.empty()) {
572         auto *Top = S.pop_back_val();
573         printSingleStack<AggType>(OS, FN, ReportThread, ThreadId, Top);
574         for (const auto *C : Top->Callees)
575           S.push_back(C);
576       }
577     }
578   }
579 
580   /// Prints values for stacks in a format consumable for the flamegraph.pl
581   /// tool. This is a line based format that lists each level in the stack
582   /// hierarchy in a semicolon delimited form followed by a space and a numeric
583   /// value. If breaking down by thread, the thread ID will be added as the
584   /// root level of the stack.
585   template <AggregationType AggType>
586   void printSingleStack(raw_ostream &OS, FuncIdConversionHelper &Converter,
587                         bool ReportThread, uint32_t ThreadId,
588                         const StackTrieNode *Node) {
589     if (ReportThread)
590       OS << "thread_" << ThreadId << ";";
591     SmallVector<const StackTrieNode *, 5> lineage{};
592     lineage.push_back(Node);
593     while (lineage.back()->Parent != nullptr)
594       lineage.push_back(lineage.back()->Parent);
595     while (!lineage.empty()) {
596       OS << Converter.SymbolOrNumber(lineage.back()->FuncId) << ";";
597       lineage.pop_back();
598     }
599     OS << " " << GetValueForStack<AggType>(Node) << "\n";
600   }
601 
602   void print(raw_ostream &OS, FuncIdConversionHelper &FN,
603              RootVector RootValues) {
604     // Go through each of the roots, and traverse the call stack, producing the
605     // aggregates as you go along. Remember these aggregates and stacks, and
606     // show summary statistics about:
607     //
608     //   - Total number of unique stacks
609     //   - Top 10 stacks by count
610     //   - Top 10 stacks by aggregate duration
611     SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11>
612         TopStacksByCount;
613     SmallVector<std::pair<const StackTrieNode *, uint64_t>, 11> TopStacksBySum;
614     auto greater_second =
615         [](const std::pair<const StackTrieNode *, uint64_t> &A,
616            const std::pair<const StackTrieNode *, uint64_t> &B) {
617           return A.second > B.second;
618         };
619     uint64_t UniqueStacks = 0;
620     for (const auto *N : RootValues) {
621       SmallVector<const StackTrieNode *, 16> S;
622       S.emplace_back(N);
623 
624       while (!S.empty()) {
625         auto *Top = S.pop_back_val();
626 
627         // We only start printing the stack (by walking up the parent pointers)
628         // when we get to a leaf function.
629         if (!Top->ExtraData.TerminalDurations.empty()) {
630           ++UniqueStacks;
631           auto TopSum =
632               std::accumulate(Top->ExtraData.TerminalDurations.begin(),
633                               Top->ExtraData.TerminalDurations.end(), 0uLL);
634           {
635             auto E = std::make_pair(Top, TopSum);
636             TopStacksBySum.insert(
637                 llvm::lower_bound(TopStacksBySum, E, greater_second), E);
638             if (TopStacksBySum.size() == 11)
639               TopStacksBySum.pop_back();
640           }
641           {
642             auto E =
643                 std::make_pair(Top, Top->ExtraData.TerminalDurations.size());
644             TopStacksByCount.insert(std::lower_bound(TopStacksByCount.begin(),
645                                                      TopStacksByCount.end(), E,
646                                                      greater_second),
647                                     E);
648             if (TopStacksByCount.size() == 11)
649               TopStacksByCount.pop_back();
650           }
651         }
652         for (const auto *C : Top->Callees)
653           S.push_back(C);
654       }
655     }
656 
657     // Now print the statistics in the end.
658     OS << "\n";
659     OS << "Unique Stacks: " << UniqueStacks << "\n";
660     OS << "Top 10 Stacks by leaf sum:\n\n";
661     for (const auto &P : TopStacksBySum) {
662       OS << "Sum: " << P.second << "\n";
663       printStack(OS, P.first, FN);
664     }
665     OS << "\n";
666     OS << "Top 10 Stacks by leaf count:\n\n";
667     for (const auto &P : TopStacksByCount) {
668       OS << "Count: " << P.second << "\n";
669       printStack(OS, P.first, FN);
670     }
671     OS << "\n";
672   }
673 };
674 
675 std::string CreateErrorMessage(StackTrie::AccountRecordStatus Error,
676                                const XRayRecord &Record,
677                                const FuncIdConversionHelper &Converter) {
678   switch (Error) {
679   case StackTrie::AccountRecordStatus::ENTRY_NOT_FOUND:
680     return formatv("Found record {0} with no matching function entry\n",
681                    format_xray_record(Record, Converter));
682   default:
683     return formatv("Unknown error type for record {0}\n",
684                    format_xray_record(Record, Converter));
685   }
686 }
687 
688 static CommandRegistration Unused(&Stack, []() -> Error {
689   // Load each file provided as a command-line argument. For each one of them
690   // account to a single StackTrie, and just print the whole trie for now.
691   StackTrie ST;
692   InstrumentationMap Map;
693   if (!StacksInstrMap.empty()) {
694     auto InstrumentationMapOrError = loadInstrumentationMap(StacksInstrMap);
695     if (!InstrumentationMapOrError)
696       return joinErrors(
697           make_error<StringError>(
698               Twine("Cannot open instrumentation map: ") + StacksInstrMap,
699               std::make_error_code(std::errc::invalid_argument)),
700           InstrumentationMapOrError.takeError());
701     Map = std::move(*InstrumentationMapOrError);
702   }
703 
704   if (SeparateThreadStacks && AggregateThreads)
705     return make_error<StringError>(
706         Twine("Can't specify options for per thread reporting and reporting "
707               "that aggregates threads."),
708         std::make_error_code(std::errc::invalid_argument));
709 
710   if (!DumpAllStacks && StacksOutputFormat != HUMAN)
711     return make_error<StringError>(
712         Twine("Can't specify a non-human format without -all-stacks."),
713         std::make_error_code(std::errc::invalid_argument));
714 
715   if (DumpAllStacks && StacksOutputFormat == HUMAN)
716     return make_error<StringError>(
717         Twine("You must specify a non-human format when reporting with "
718               "-all-stacks."),
719         std::make_error_code(std::errc::invalid_argument));
720 
721   symbolize::LLVMSymbolizer Symbolizer;
722   FuncIdConversionHelper FuncIdHelper(StacksInstrMap, Symbolizer,
723                                       Map.getFunctionAddresses());
724   // TODO: Someday, support output to files instead of just directly to
725   // standard output.
726   for (const auto &Filename : StackInputs) {
727     auto TraceOrErr = loadTraceFile(Filename);
728     if (!TraceOrErr) {
729       if (!StackKeepGoing)
730         return joinErrors(
731             make_error<StringError>(
732                 Twine("Failed loading input file '") + Filename + "'",
733                 std::make_error_code(std::errc::invalid_argument)),
734             TraceOrErr.takeError());
735       logAllUnhandledErrors(TraceOrErr.takeError(), errs());
736       continue;
737     }
738     auto &T = *TraceOrErr;
739     StackTrie::AccountRecordState AccountRecordState =
740         StackTrie::AccountRecordState::CreateInitialState();
741     for (const auto &Record : T) {
742       auto error = ST.accountRecord(Record, &AccountRecordState);
743       if (error != StackTrie::AccountRecordStatus::OK) {
744         if (!StackKeepGoing)
745           return make_error<StringError>(
746               CreateErrorMessage(error, Record, FuncIdHelper),
747               make_error_code(errc::illegal_byte_sequence));
748         errs() << CreateErrorMessage(error, Record, FuncIdHelper);
749       }
750     }
751   }
752   if (ST.isEmpty()) {
753     return make_error<StringError>(
754         "No instrumented calls were accounted in the input file.",
755         make_error_code(errc::result_out_of_range));
756   }
757 
758   // Report the stacks in a long form mode for another tool to analyze.
759   if (DumpAllStacks) {
760     if (AggregateThreads) {
761       switch (RequestedAggregation) {
762       case AggregationType::TOTAL_TIME:
763         ST.printAllAggregatingThreads<AggregationType::TOTAL_TIME>(
764             outs(), FuncIdHelper, StacksOutputFormat);
765         break;
766       case AggregationType::INVOCATION_COUNT:
767         ST.printAllAggregatingThreads<AggregationType::INVOCATION_COUNT>(
768             outs(), FuncIdHelper, StacksOutputFormat);
769         break;
770       }
771     } else {
772       switch (RequestedAggregation) {
773       case AggregationType::TOTAL_TIME:
774         ST.printAllPerThread<AggregationType::TOTAL_TIME>(outs(), FuncIdHelper,
775                                                           StacksOutputFormat);
776         break;
777       case AggregationType::INVOCATION_COUNT:
778         ST.printAllPerThread<AggregationType::INVOCATION_COUNT>(
779             outs(), FuncIdHelper, StacksOutputFormat);
780         break;
781       }
782     }
783     return Error::success();
784   }
785 
786   // We're only outputting top stacks.
787   if (AggregateThreads) {
788     ST.printAggregatingThreads(outs(), FuncIdHelper);
789   } else if (SeparateThreadStacks) {
790     ST.printPerThread(outs(), FuncIdHelper);
791   } else {
792     ST.printIgnoringThreads(outs(), FuncIdHelper);
793   }
794   return Error::success();
795 });
796