xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-xray/xray-account.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===- xray-account.h - XRay Function Call Accounting ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic function call accounting from an XRay trace.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <algorithm>
14 #include <cassert>
15 #include <numeric>
16 #include <system_error>
17 #include <utility>
18 
19 #include "xray-account.h"
20 #include "xray-registry.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FormatVariadic.h"
23 #include "llvm/XRay/InstrumentationMap.h"
24 #include "llvm/XRay/Trace.h"
25 
26 using namespace llvm;
27 using namespace llvm::xray;
28 
29 static cl::SubCommand Account("account", "Function call accounting");
30 static cl::opt<std::string> AccountInput(cl::Positional,
31                                          cl::desc("<xray log file>"),
32                                          cl::Required, cl::sub(Account));
33 static cl::opt<bool>
34     AccountKeepGoing("keep-going", cl::desc("Keep going on errors encountered"),
35                      cl::sub(Account), cl::init(false));
36 static cl::alias AccountKeepGoing2("k", cl::aliasopt(AccountKeepGoing),
37                                    cl::desc("Alias for -keep_going"),
38                                    cl::sub(Account));
39 static cl::opt<bool> AccountDeduceSiblingCalls(
40     "deduce-sibling-calls",
41     cl::desc("Deduce sibling calls when unrolling function call stacks"),
42     cl::sub(Account), cl::init(false));
43 static cl::alias
44     AccountDeduceSiblingCalls2("d", cl::aliasopt(AccountDeduceSiblingCalls),
45                                cl::desc("Alias for -deduce_sibling_calls"),
46                                cl::sub(Account));
47 static cl::opt<std::string>
48     AccountOutput("output", cl::value_desc("output file"), cl::init("-"),
49                   cl::desc("output file; use '-' for stdout"),
50                   cl::sub(Account));
51 static cl::alias AccountOutput2("o", cl::aliasopt(AccountOutput),
52                                 cl::desc("Alias for -output"),
53                                 cl::sub(Account));
54 enum class AccountOutputFormats { TEXT, CSV };
55 static cl::opt<AccountOutputFormats>
56     AccountOutputFormat("format", cl::desc("output format"),
57                         cl::values(clEnumValN(AccountOutputFormats::TEXT,
58                                               "text", "report stats in text"),
59                                    clEnumValN(AccountOutputFormats::CSV, "csv",
60                                               "report stats in csv")),
61                         cl::sub(Account));
62 static cl::alias AccountOutputFormat2("f", cl::desc("Alias of -format"),
63                                       cl::aliasopt(AccountOutputFormat),
64                                       cl::sub(Account));
65 
66 enum class SortField {
67   FUNCID,
68   COUNT,
69   MIN,
70   MED,
71   PCT90,
72   PCT99,
73   MAX,
74   SUM,
75   FUNC,
76 };
77 
78 static cl::opt<SortField> AccountSortOutput(
79     "sort", cl::desc("sort output by this field"), cl::value_desc("field"),
80     cl::sub(Account), cl::init(SortField::FUNCID),
81     cl::values(clEnumValN(SortField::FUNCID, "funcid", "function id"),
82                clEnumValN(SortField::COUNT, "count", "funciton call counts"),
83                clEnumValN(SortField::MIN, "min", "minimum function durations"),
84                clEnumValN(SortField::MED, "med", "median function durations"),
85                clEnumValN(SortField::PCT90, "90p", "90th percentile durations"),
86                clEnumValN(SortField::PCT99, "99p", "99th percentile durations"),
87                clEnumValN(SortField::MAX, "max", "maximum function durations"),
88                clEnumValN(SortField::SUM, "sum", "sum of call durations"),
89                clEnumValN(SortField::FUNC, "func", "function names")));
90 static cl::alias AccountSortOutput2("s", cl::aliasopt(AccountSortOutput),
91                                     cl::desc("Alias for -sort"),
92                                     cl::sub(Account));
93 
94 enum class SortDirection {
95   ASCENDING,
96   DESCENDING,
97 };
98 static cl::opt<SortDirection> AccountSortOrder(
99     "sortorder", cl::desc("sort ordering"), cl::init(SortDirection::ASCENDING),
100     cl::values(clEnumValN(SortDirection::ASCENDING, "asc", "ascending"),
101                clEnumValN(SortDirection::DESCENDING, "dsc", "descending")),
102     cl::sub(Account));
103 static cl::alias AccountSortOrder2("r", cl::aliasopt(AccountSortOrder),
104                                    cl::desc("Alias for -sortorder"),
105                                    cl::sub(Account));
106 
107 static cl::opt<int> AccountTop("top", cl::desc("only show the top N results"),
108                                cl::value_desc("N"), cl::sub(Account),
109                                cl::init(-1));
110 static cl::alias AccountTop2("p", cl::desc("Alias for -top"),
111                              cl::aliasopt(AccountTop), cl::sub(Account));
112 
113 static cl::opt<std::string>
114     AccountInstrMap("instr_map",
115                     cl::desc("binary with the instrumentation map, or "
116                              "a separate instrumentation map"),
117                     cl::value_desc("binary with xray_instr_map"),
118                     cl::sub(Account), cl::init(""));
119 static cl::alias AccountInstrMap2("m", cl::aliasopt(AccountInstrMap),
120                                   cl::desc("Alias for -instr_map"),
121                                   cl::sub(Account));
122 
123 namespace {
124 
125 template <class T, class U> void setMinMax(std::pair<T, T> &MM, U &&V) {
126   if (MM.first == 0 || MM.second == 0)
127     MM = std::make_pair(std::forward<U>(V), std::forward<U>(V));
128   else
129     MM = std::make_pair(std::min(MM.first, V), std::max(MM.second, V));
130 }
131 
132 template <class T> T diff(T L, T R) { return std::max(L, R) - std::min(L, R); }
133 
134 } // namespace
135 
136 bool LatencyAccountant::accountRecord(const XRayRecord &Record) {
137   setMinMax(PerThreadMinMaxTSC[Record.TId], Record.TSC);
138   setMinMax(PerCPUMinMaxTSC[Record.CPU], Record.TSC);
139 
140   if (CurrentMaxTSC == 0)
141     CurrentMaxTSC = Record.TSC;
142 
143   if (Record.TSC < CurrentMaxTSC)
144     return false;
145 
146   auto &ThreadStack = PerThreadFunctionStack[Record.TId];
147   switch (Record.Type) {
148   case RecordTypes::CUSTOM_EVENT:
149   case RecordTypes::TYPED_EVENT:
150     // TODO: Support custom and typed event accounting in the future.
151     return true;
152   case RecordTypes::ENTER:
153   case RecordTypes::ENTER_ARG: {
154     ThreadStack.emplace_back(Record.FuncId, Record.TSC);
155     break;
156   }
157   case RecordTypes::EXIT:
158   case RecordTypes::TAIL_EXIT: {
159     if (ThreadStack.empty())
160       return false;
161 
162     if (ThreadStack.back().first == Record.FuncId) {
163       const auto &Top = ThreadStack.back();
164       recordLatency(Top.first, diff(Top.second, Record.TSC));
165       ThreadStack.pop_back();
166       break;
167     }
168 
169     if (!DeduceSiblingCalls)
170       return false;
171 
172     // Look for the parent up the stack.
173     auto Parent =
174         std::find_if(ThreadStack.rbegin(), ThreadStack.rend(),
175                      [&](const std::pair<const int32_t, uint64_t> &E) {
176                        return E.first == Record.FuncId;
177                      });
178     if (Parent == ThreadStack.rend())
179       return false;
180 
181     // Account time for this apparently sibling call exit up the stack.
182     // Considering the following case:
183     //
184     //   f()
185     //    g()
186     //      h()
187     //
188     // We might only ever see the following entries:
189     //
190     //   -> f()
191     //   -> g()
192     //   -> h()
193     //   <- h()
194     //   <- f()
195     //
196     // Now we don't see the exit to g() because some older version of the XRay
197     // runtime wasn't instrumenting tail exits. If we don't deduce tail calls,
198     // we may potentially never account time for g() -- and this code would have
199     // already bailed out, because `<- f()` doesn't match the current "top" of
200     // stack where we're waiting for the exit to `g()` instead. This is not
201     // ideal and brittle -- so instead we provide a potentially inaccurate
202     // accounting of g() instead, computing it from the exit of f().
203     //
204     // While it might be better that we account the time between `-> g()` and
205     // `-> h()` as the proper accounting of time for g() here, this introduces
206     // complexity to do correctly (need to backtrack, etc.).
207     //
208     // FIXME: Potentially implement the more complex deduction algorithm?
209     auto I = std::next(Parent).base();
210     for (auto &E : make_range(I, ThreadStack.end())) {
211       recordLatency(E.first, diff(E.second, Record.TSC));
212     }
213     ThreadStack.erase(I, ThreadStack.end());
214     break;
215   }
216   }
217 
218   return true;
219 }
220 
221 namespace {
222 
223 // We consolidate the data into a struct which we can output in various forms.
224 struct ResultRow {
225   uint64_t Count;
226   double Min;
227   double Median;
228   double Pct90;
229   double Pct99;
230   double Max;
231   double Sum;
232   std::string DebugInfo;
233   std::string Function;
234 };
235 
236 ResultRow getStats(std::vector<uint64_t> &Timings) {
237   assert(!Timings.empty());
238   ResultRow R;
239   R.Sum = std::accumulate(Timings.begin(), Timings.end(), 0.0);
240   auto MinMax = std::minmax_element(Timings.begin(), Timings.end());
241   R.Min = *MinMax.first;
242   R.Max = *MinMax.second;
243   R.Count = Timings.size();
244 
245   auto MedianOff = Timings.size() / 2;
246   std::nth_element(Timings.begin(), Timings.begin() + MedianOff, Timings.end());
247   R.Median = Timings[MedianOff];
248 
249   auto Pct90Off = std::floor(Timings.size() * 0.9);
250   std::nth_element(Timings.begin(), Timings.begin() + Pct90Off, Timings.end());
251   R.Pct90 = Timings[Pct90Off];
252 
253   auto Pct99Off = std::floor(Timings.size() * 0.99);
254   std::nth_element(Timings.begin(), Timings.begin() + Pct99Off, Timings.end());
255   R.Pct99 = Timings[Pct99Off];
256   return R;
257 }
258 
259 } // namespace
260 
261 using TupleType = std::tuple<int32_t, uint64_t, ResultRow>;
262 
263 template <typename F>
264 static void sortByKey(std::vector<TupleType> &Results, F Fn) {
265   bool ASC = AccountSortOrder == SortDirection::ASCENDING;
266   llvm::sort(Results, [=](const TupleType &L, const TupleType &R) {
267     return ASC ? Fn(L) < Fn(R) : Fn(L) > Fn(R);
268   });
269 }
270 
271 template <class F>
272 void LatencyAccountant::exportStats(const XRayFileHeader &Header, F Fn) const {
273   std::vector<TupleType> Results;
274   Results.reserve(FunctionLatencies.size());
275   for (auto FT : FunctionLatencies) {
276     const auto &FuncId = FT.first;
277     auto &Timings = FT.second;
278     Results.emplace_back(FuncId, Timings.size(), getStats(Timings));
279     auto &Row = std::get<2>(Results.back());
280     if (Header.CycleFrequency) {
281       double CycleFrequency = Header.CycleFrequency;
282       Row.Min /= CycleFrequency;
283       Row.Median /= CycleFrequency;
284       Row.Pct90 /= CycleFrequency;
285       Row.Pct99 /= CycleFrequency;
286       Row.Max /= CycleFrequency;
287       Row.Sum /= CycleFrequency;
288     }
289 
290     Row.Function = FuncIdHelper.SymbolOrNumber(FuncId);
291     Row.DebugInfo = FuncIdHelper.FileLineAndColumn(FuncId);
292   }
293 
294   // Sort the data according to user-provided flags.
295   switch (AccountSortOutput) {
296   case SortField::FUNCID:
297     sortByKey(Results, [](const TupleType &X) { return std::get<0>(X); });
298     break;
299   case SortField::COUNT:
300     sortByKey(Results, [](const TupleType &X) { return std::get<1>(X); });
301     break;
302   case SortField::MIN:
303     sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Min; });
304     break;
305   case SortField::MED:
306     sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Median; });
307     break;
308   case SortField::PCT90:
309     sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Pct90; });
310     break;
311   case SortField::PCT99:
312     sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Pct99; });
313     break;
314   case SortField::MAX:
315     sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Max; });
316     break;
317   case SortField::SUM:
318     sortByKey(Results, [](const TupleType &X) { return std::get<2>(X).Sum; });
319     break;
320   case SortField::FUNC:
321     llvm_unreachable("Not implemented");
322   }
323 
324   if (AccountTop > 0) {
325     auto MaxTop =
326         std::min(AccountTop.getValue(), static_cast<int>(Results.size()));
327     Results.erase(Results.begin() + MaxTop, Results.end());
328   }
329 
330   for (const auto &R : Results)
331     Fn(std::get<0>(R), std::get<1>(R), std::get<2>(R));
332 }
333 
334 void LatencyAccountant::exportStatsAsText(raw_ostream &OS,
335                                           const XRayFileHeader &Header) const {
336   OS << "Functions with latencies: " << FunctionLatencies.size() << "\n";
337 
338   // We spend some effort to make the text output more readable, so we do the
339   // following formatting decisions for each of the fields:
340   //
341   //   - funcid: 32-bit, but we can determine the largest number and be
342   //   between
343   //     a minimum of 5 characters, up to 9 characters, right aligned.
344   //   - count:  64-bit, but we can determine the largest number and be
345   //   between
346   //     a minimum of 5 characters, up to 9 characters, right aligned.
347   //   - min, median, 90pct, 99pct, max: double precision, but we want to keep
348   //     the values in seconds, with microsecond precision (0.000'001), so we
349   //     have at most 6 significant digits, with the whole number part to be
350   //     at
351   //     least 1 character. For readability we'll right-align, with full 9
352   //     characters each.
353   //   - debug info, function name: we format this as a concatenation of the
354   //     debug info and the function name.
355   //
356   static constexpr char StatsHeaderFormat[] =
357       "{0,+9} {1,+10} [{2,+9}, {3,+9}, {4,+9}, {5,+9}, {6,+9}] {7,+9}";
358   static constexpr char StatsFormat[] =
359       R"({0,+9} {1,+10} [{2,+9:f6}, {3,+9:f6}, {4,+9:f6}, {5,+9:f6}, {6,+9:f6}] {7,+9:f6})";
360   OS << llvm::formatv(StatsHeaderFormat, "funcid", "count", "min", "med", "90p",
361                       "99p", "max", "sum")
362      << llvm::formatv("  {0,-12}\n", "function");
363   exportStats(Header, [&](int32_t FuncId, size_t Count, const ResultRow &Row) {
364     OS << llvm::formatv(StatsFormat, FuncId, Count, Row.Min, Row.Median,
365                         Row.Pct90, Row.Pct99, Row.Max, Row.Sum)
366        << "  " << Row.DebugInfo << ": " << Row.Function << "\n";
367   });
368 }
369 
370 void LatencyAccountant::exportStatsAsCSV(raw_ostream &OS,
371                                          const XRayFileHeader &Header) const {
372   OS << "funcid,count,min,median,90%ile,99%ile,max,sum,debug,function\n";
373   exportStats(Header, [&](int32_t FuncId, size_t Count, const ResultRow &Row) {
374     OS << FuncId << ',' << Count << ',' << Row.Min << ',' << Row.Median << ','
375        << Row.Pct90 << ',' << Row.Pct99 << ',' << Row.Max << "," << Row.Sum
376        << ",\"" << Row.DebugInfo << "\",\"" << Row.Function << "\"\n";
377   });
378 }
379 
380 using namespace llvm::xray;
381 
382 namespace llvm {
383 template <> struct format_provider<llvm::xray::RecordTypes> {
384   static void format(const llvm::xray::RecordTypes &T, raw_ostream &Stream,
385                      StringRef Style) {
386     switch (T) {
387     case RecordTypes::ENTER:
388       Stream << "enter";
389       break;
390     case RecordTypes::ENTER_ARG:
391       Stream << "enter-arg";
392       break;
393     case RecordTypes::EXIT:
394       Stream << "exit";
395       break;
396     case RecordTypes::TAIL_EXIT:
397       Stream << "tail-exit";
398       break;
399     case RecordTypes::CUSTOM_EVENT:
400       Stream << "custom-event";
401       break;
402     case RecordTypes::TYPED_EVENT:
403       Stream << "typed-event";
404       break;
405     }
406   }
407 };
408 } // namespace llvm
409 
410 static CommandRegistration Unused(&Account, []() -> Error {
411   InstrumentationMap Map;
412   if (!AccountInstrMap.empty()) {
413     auto InstrumentationMapOrError = loadInstrumentationMap(AccountInstrMap);
414     if (!InstrumentationMapOrError)
415       return joinErrors(make_error<StringError>(
416                             Twine("Cannot open instrumentation map '") +
417                                 AccountInstrMap + "'",
418                             std::make_error_code(std::errc::invalid_argument)),
419                         InstrumentationMapOrError.takeError());
420     Map = std::move(*InstrumentationMapOrError);
421   }
422 
423   std::error_code EC;
424   raw_fd_ostream OS(AccountOutput, EC, sys::fs::OpenFlags::F_Text);
425   if (EC)
426     return make_error<StringError>(
427         Twine("Cannot open file '") + AccountOutput + "' for writing.", EC);
428 
429   const auto &FunctionAddresses = Map.getFunctionAddresses();
430   symbolize::LLVMSymbolizer Symbolizer;
431   llvm::xray::FuncIdConversionHelper FuncIdHelper(AccountInstrMap, Symbolizer,
432                                                   FunctionAddresses);
433   xray::LatencyAccountant FCA(FuncIdHelper, AccountDeduceSiblingCalls);
434   auto TraceOrErr = loadTraceFile(AccountInput);
435   if (!TraceOrErr)
436     return joinErrors(
437         make_error<StringError>(
438             Twine("Failed loading input file '") + AccountInput + "'",
439             std::make_error_code(std::errc::executable_format_error)),
440         TraceOrErr.takeError());
441 
442   auto &T = *TraceOrErr;
443   for (const auto &Record : T) {
444     if (FCA.accountRecord(Record))
445       continue;
446     errs()
447         << "Error processing record: "
448         << llvm::formatv(
449                R"({{type: {0}; cpu: {1}; record-type: {2}; function-id: {3}; tsc: {4}; thread-id: {5}; process-id: {6}}})",
450                Record.RecordType, Record.CPU, Record.Type, Record.FuncId,
451                Record.TSC, Record.TId, Record.PId)
452         << '\n';
453     for (const auto &ThreadStack : FCA.getPerThreadFunctionStack()) {
454       errs() << "Thread ID: " << ThreadStack.first << "\n";
455       if (ThreadStack.second.empty()) {
456         errs() << "  (empty stack)\n";
457         continue;
458       }
459       auto Level = ThreadStack.second.size();
460       for (const auto &Entry : llvm::reverse(ThreadStack.second))
461         errs() << "  #" << Level-- << "\t"
462                << FuncIdHelper.SymbolOrNumber(Entry.first) << '\n';
463     }
464     if (!AccountKeepGoing)
465       return make_error<StringError>(
466           Twine("Failed accounting function calls in file '") + AccountInput +
467               "'.",
468           std::make_error_code(std::errc::executable_format_error));
469   }
470   switch (AccountOutputFormat) {
471   case AccountOutputFormats::TEXT:
472     FCA.exportStatsAsText(OS, T.getFileHeader());
473     break;
474   case AccountOutputFormats::CSV:
475     FCA.exportStatsAsCSV(OS, T.getFileHeader());
476     break;
477   }
478 
479   return Error::success();
480 });
481