xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-stress/llvm-stress.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/InitLLVM.h"
40 #include "llvm/Support/ToolOutputFile.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <memory>
48 #include <string>
49 #include <system_error>
50 #include <vector>
51 
52 namespace llvm {
53 
54 static cl::OptionCategory StressCategory("Stress Options");
55 
56 static cl::opt<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"),
57                                 cl::init(0), cl::cat(StressCategory));
58 
59 static cl::opt<unsigned> SizeCL(
60     "size",
61     cl::desc("The estimated size of the generated function (# of instrs)"),
62     cl::init(100), cl::cat(StressCategory));
63 
64 static cl::opt<std::string> OutputFilename("o",
65                                            cl::desc("Override output filename"),
66                                            cl::value_desc("filename"),
67                                            cl::cat(StressCategory));
68 
69 static cl::list<StringRef> AdditionalScalarTypes(
70     "types", cl::CommaSeparated,
71     cl::desc("Additional IR scalar types "
72              "(always includes i1, i8, i16, i32, i64, float and double)"));
73 
74 static cl::opt<bool> EnableScalableVectors(
75     "enable-scalable-vectors",
76     cl::desc("Generate IR involving scalable vector types"),
77     cl::init(false), cl::cat(StressCategory));
78 
79 
80 namespace {
81 
82 /// A utility class to provide a pseudo-random number generator which is
83 /// the same across all platforms. This is somewhat close to the libc
84 /// implementation. Note: This is not a cryptographically secure pseudorandom
85 /// number generator.
86 class Random {
87 public:
88   /// C'tor
89   Random(unsigned _seed):Seed(_seed) {}
90 
91   /// Return a random integer, up to a
92   /// maximum of 2**19 - 1.
93   uint32_t Rand() {
94     uint32_t Val = Seed + 0x000b07a1;
95     Seed = (Val * 0x3c7c0ac1);
96     // Only lowest 19 bits are random-ish.
97     return Seed & 0x7ffff;
98   }
99 
100   /// Return a random 64 bit integer.
101   uint64_t Rand64() {
102     uint64_t Val = Rand() & 0xffff;
103     Val |= uint64_t(Rand() & 0xffff) << 16;
104     Val |= uint64_t(Rand() & 0xffff) << 32;
105     Val |= uint64_t(Rand() & 0xffff) << 48;
106     return Val;
107   }
108 
109   /// Rand operator for STL algorithms.
110   ptrdiff_t operator()(ptrdiff_t y) {
111     return  Rand64() % y;
112   }
113 
114   /// Make this like a C++11 random device
115   using result_type = uint32_t ;
116 
117   static constexpr result_type min() { return 0; }
118   static constexpr result_type max() { return 0x7ffff; }
119 
120   uint32_t operator()() {
121     uint32_t Val = Rand();
122     assert(Val <= max() && "Random value out of range");
123     return Val;
124   }
125 
126 private:
127   unsigned Seed;
128 };
129 
130 /// Generate an empty function with a default argument list.
131 Function *GenEmptyFunction(Module *M) {
132   // Define a few arguments
133   LLVMContext &Context = M->getContext();
134   Type* ArgsTy[] = {
135     Type::getInt8PtrTy(Context),
136     Type::getInt32PtrTy(Context),
137     Type::getInt64PtrTy(Context),
138     Type::getInt32Ty(Context),
139     Type::getInt64Ty(Context),
140     Type::getInt8Ty(Context)
141   };
142 
143   auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false);
144   // Pick a unique name to describe the input parameters
145   Twine Name = "autogen_SD" + Twine{SeedCL};
146   auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M);
147   Func->setCallingConv(CallingConv::C);
148   return Func;
149 }
150 
151 /// A base class, implementing utilities needed for
152 /// modifying and adding new random instructions.
153 struct Modifier {
154   /// Used to store the randomly generated values.
155   using PieceTable = std::vector<Value *>;
156 
157 public:
158   /// C'tor
159   Modifier(BasicBlock *Block, PieceTable *PT, Random *R)
160       : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) {
161     ScalarTypes.assign({Type::getInt1Ty(Context), Type::getInt8Ty(Context),
162                         Type::getInt16Ty(Context), Type::getInt32Ty(Context),
163                         Type::getInt64Ty(Context), Type::getFloatTy(Context),
164                         Type::getDoubleTy(Context)});
165 
166     for (auto &Arg : AdditionalScalarTypes) {
167       Type *Ty = nullptr;
168       if (Arg == "half")
169         Ty = Type::getHalfTy(Context);
170       else if (Arg == "fp128")
171         Ty = Type::getFP128Ty(Context);
172       else if (Arg == "x86_fp80")
173         Ty = Type::getX86_FP80Ty(Context);
174       else if (Arg == "ppc_fp128")
175         Ty = Type::getPPC_FP128Ty(Context);
176       else if (Arg == "x86_mmx")
177         Ty = Type::getX86_MMXTy(Context);
178       else if (Arg.startswith("i")) {
179         unsigned N = 0;
180         Arg.drop_front().getAsInteger(10, N);
181         if (N > 0)
182           Ty = Type::getIntNTy(Context, N);
183       }
184       if (!Ty) {
185         errs() << "Invalid IR scalar type: '" << Arg << "'!\n";
186         exit(1);
187       }
188 
189       ScalarTypes.push_back(Ty);
190     }
191   }
192 
193   /// virtual D'tor to silence warnings.
194   virtual ~Modifier() = default;
195 
196   /// Add a new instruction.
197   virtual void Act() = 0;
198 
199   /// Add N new instructions,
200   virtual void ActN(unsigned n) {
201     for (unsigned i=0; i<n; ++i)
202       Act();
203   }
204 
205 protected:
206   /// Return a random integer.
207   uint32_t getRandom() {
208     return Ran->Rand();
209   }
210 
211   /// Return a random value from the list of known values.
212   Value *getRandomVal() {
213     assert(PT->size());
214     return PT->at(getRandom() % PT->size());
215   }
216 
217   Constant *getRandomConstant(Type *Tp) {
218     if (Tp->isIntegerTy()) {
219       if (getRandom() & 1)
220         return ConstantInt::getAllOnesValue(Tp);
221       return ConstantInt::getNullValue(Tp);
222     } else if (Tp->isFloatingPointTy()) {
223       if (getRandom() & 1)
224         return ConstantFP::getAllOnesValue(Tp);
225       return ConstantFP::getNullValue(Tp);
226     }
227     return UndefValue::get(Tp);
228   }
229 
230   /// Return a random value with a known type.
231   Value *getRandomValue(Type *Tp) {
232     unsigned index = getRandom();
233     for (unsigned i=0; i<PT->size(); ++i) {
234       Value *V = PT->at((index + i) % PT->size());
235       if (V->getType() == Tp)
236         return V;
237     }
238 
239     // If the requested type was not found, generate a constant value.
240     if (Tp->isIntegerTy()) {
241       if (getRandom() & 1)
242         return ConstantInt::getAllOnesValue(Tp);
243       return ConstantInt::getNullValue(Tp);
244     } else if (Tp->isFloatingPointTy()) {
245       if (getRandom() & 1)
246         return ConstantFP::getAllOnesValue(Tp);
247       return ConstantFP::getNullValue(Tp);
248     } else if (auto *VTp = dyn_cast<FixedVectorType>(Tp)) {
249       std::vector<Constant*> TempValues;
250       TempValues.reserve(VTp->getNumElements());
251       for (unsigned i = 0; i < VTp->getNumElements(); ++i)
252         TempValues.push_back(getRandomConstant(VTp->getScalarType()));
253 
254       ArrayRef<Constant*> VectorValue(TempValues);
255       return ConstantVector::get(VectorValue);
256     }
257 
258     return UndefValue::get(Tp);
259   }
260 
261   /// Return a random value of any pointer type.
262   Value *getRandomPointerValue() {
263     unsigned index = getRandom();
264     for (unsigned i=0; i<PT->size(); ++i) {
265       Value *V = PT->at((index + i) % PT->size());
266       if (V->getType()->isPointerTy())
267         return V;
268     }
269     return UndefValue::get(pickPointerType());
270   }
271 
272   /// Return a random value of any vector type.
273   Value *getRandomVectorValue() {
274     unsigned index = getRandom();
275     for (unsigned i=0; i<PT->size(); ++i) {
276       Value *V = PT->at((index + i) % PT->size());
277       if (V->getType()->isVectorTy())
278         return V;
279     }
280     return UndefValue::get(pickVectorType());
281   }
282 
283   /// Pick a random type.
284   Type *pickType() {
285     return (getRandom() & 1) ? pickVectorType() : pickScalarType();
286   }
287 
288   /// Pick a random pointer type.
289   Type *pickPointerType() {
290     Type *Ty = pickType();
291     return PointerType::get(Ty, 0);
292   }
293 
294   /// Pick a random vector type.
295   Type *pickVectorType(VectorType *VTy = nullptr) {
296 
297     // Vectors of x86mmx are illegal; keep trying till we get something else.
298     Type *Ty;
299     do {
300       Ty = pickScalarType();
301     } while (Ty->isX86_MMXTy());
302 
303     if (VTy)
304       return VectorType::get(Ty, VTy->getElementCount());
305 
306     // Select either fixed length or scalable vectors with 50% probability
307     // (only if scalable vectors are enabled)
308     bool Scalable = EnableScalableVectors && getRandom() & 1;
309 
310     // Pick a random vector width in the range 2**0 to 2**4.
311     // by adding two randoms we are generating a normal-like distribution
312     // around 2**3.
313     unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3));
314     return VectorType::get(Ty, width, Scalable);
315   }
316 
317   /// Pick a random scalar type.
318   Type *pickScalarType() {
319     return ScalarTypes[getRandom() % ScalarTypes.size()];
320   }
321 
322   /// Basic block to populate
323   BasicBlock *BB;
324 
325   /// Value table
326   PieceTable *PT;
327 
328   /// Random number generator
329   Random *Ran;
330 
331   /// Context
332   LLVMContext &Context;
333 
334   std::vector<Type *> ScalarTypes;
335 };
336 
337 struct LoadModifier: public Modifier {
338   LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R)
339       : Modifier(BB, PT, R) {}
340 
341   void Act() override {
342     // Try to use predefined pointers. If non-exist, use undef pointer value;
343     Value *Ptr = getRandomPointerValue();
344     Type *Ty = Ptr->getType()->isOpaquePointerTy()
345                    ? pickType()
346                    : Ptr->getType()->getNonOpaquePointerElementType();
347     Value *V = new LoadInst(Ty, Ptr, "L", BB->getTerminator());
348     PT->push_back(V);
349   }
350 };
351 
352 struct StoreModifier: public Modifier {
353   StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R)
354       : Modifier(BB, PT, R) {}
355 
356   void Act() override {
357     // Try to use predefined pointers. If non-exist, use undef pointer value;
358     Value *Ptr = getRandomPointerValue();
359     Type *ValTy = Ptr->getType()->isOpaquePointerTy()
360                       ? pickType()
361                       : Ptr->getType()->getNonOpaquePointerElementType();
362 
363     // Do not store vectors of i1s because they are unsupported
364     // by the codegen.
365     if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
366       return;
367 
368     Value *Val = getRandomValue(ValTy);
369     new StoreInst(Val, Ptr, BB->getTerminator());
370   }
371 };
372 
373 struct BinModifier: public Modifier {
374   BinModifier(BasicBlock *BB, PieceTable *PT, Random *R)
375       : Modifier(BB, PT, R) {}
376 
377   void Act() override {
378     Value *Val0 = getRandomVal();
379     Value *Val1 = getRandomValue(Val0->getType());
380 
381     // Don't handle pointer types.
382     if (Val0->getType()->isPointerTy() ||
383         Val1->getType()->isPointerTy())
384       return;
385 
386     // Don't handle i1 types.
387     if (Val0->getType()->getScalarSizeInBits() == 1)
388       return;
389 
390     bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
391     Instruction* Term = BB->getTerminator();
392     unsigned R = getRandom() % (isFloat ? 7 : 13);
393     Instruction::BinaryOps Op;
394 
395     switch (R) {
396     default: llvm_unreachable("Invalid BinOp");
397     case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
398     case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
399     case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
400     case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
401     case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
402     case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
403     case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
404     case 7: {Op = Instruction::Shl;  break; }
405     case 8: {Op = Instruction::LShr; break; }
406     case 9: {Op = Instruction::AShr; break; }
407     case 10:{Op = Instruction::And;  break; }
408     case 11:{Op = Instruction::Or;   break; }
409     case 12:{Op = Instruction::Xor;  break; }
410     }
411 
412     PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
413   }
414 };
415 
416 /// Generate constant values.
417 struct ConstModifier: public Modifier {
418   ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R)
419       : Modifier(BB, PT, R) {}
420 
421   void Act() override {
422     Type *Ty = pickType();
423 
424     if (Ty->isVectorTy()) {
425       switch (getRandom() % 2) {
426       case 0: if (Ty->isIntOrIntVectorTy())
427                 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
428               break;
429       case 1: if (Ty->isIntOrIntVectorTy())
430                 return PT->push_back(ConstantVector::getNullValue(Ty));
431       }
432     }
433 
434     if (Ty->isFloatingPointTy()) {
435       // Generate 128 random bits, the size of the (currently)
436       // largest floating-point types.
437       uint64_t RandomBits[2];
438       for (unsigned i = 0; i < 2; ++i)
439         RandomBits[i] = Ran->Rand64();
440 
441       APInt RandomInt(Ty->getPrimitiveSizeInBits(), ArrayRef(RandomBits));
442       APFloat RandomFloat(Ty->getFltSemantics(), RandomInt);
443 
444       if (getRandom() & 1)
445         return PT->push_back(ConstantFP::getNullValue(Ty));
446       return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
447     }
448 
449     if (Ty->isIntegerTy()) {
450       switch (getRandom() % 7) {
451       case 0:
452         return PT->push_back(ConstantInt::get(
453             Ty, APInt::getAllOnes(Ty->getPrimitiveSizeInBits())));
454       case 1:
455         return PT->push_back(
456             ConstantInt::get(Ty, APInt::getZero(Ty->getPrimitiveSizeInBits())));
457       case 2:
458       case 3:
459       case 4:
460       case 5:
461       case 6:
462         PT->push_back(ConstantInt::get(Ty, getRandom()));
463       }
464     }
465   }
466 };
467 
468 struct AllocaModifier: public Modifier {
469   AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R)
470       : Modifier(BB, PT, R) {}
471 
472   void Act() override {
473     Type *Tp = pickType();
474     const DataLayout &DL = BB->getModule()->getDataLayout();
475     PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(),
476                                  "A", BB->getFirstNonPHI()));
477   }
478 };
479 
480 struct ExtractElementModifier: public Modifier {
481   ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
482       : Modifier(BB, PT, R) {}
483 
484   void Act() override {
485     Value *Val0 = getRandomVectorValue();
486     Value *V = ExtractElementInst::Create(
487         Val0,
488         getRandomValue(Type::getInt32Ty(BB->getContext())),
489         "E", BB->getTerminator());
490     return PT->push_back(V);
491   }
492 };
493 
494 struct ShuffModifier: public Modifier {
495   ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R)
496       : Modifier(BB, PT, R) {}
497 
498   void Act() override {
499     Value *Val0 = getRandomVectorValue();
500     Value *Val1 = getRandomValue(Val0->getType());
501 
502     // Can't express arbitrary shufflevectors for scalable vectors
503     if (isa<ScalableVectorType>(Val0->getType()))
504       return;
505 
506     unsigned Width = cast<FixedVectorType>(Val0->getType())->getNumElements();
507     std::vector<Constant*> Idxs;
508 
509     Type *I32 = Type::getInt32Ty(BB->getContext());
510     for (unsigned i=0; i<Width; ++i) {
511       Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2));
512       // Pick some undef values.
513       if (!(getRandom() % 5))
514         CI = UndefValue::get(I32);
515       Idxs.push_back(CI);
516     }
517 
518     Constant *Mask = ConstantVector::get(Idxs);
519 
520     Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
521                                      BB->getTerminator());
522     PT->push_back(V);
523   }
524 };
525 
526 struct InsertElementModifier: public Modifier {
527   InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
528       : Modifier(BB, PT, R) {}
529 
530   void Act() override {
531     Value *Val0 = getRandomVectorValue();
532     Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
533 
534     Value *V = InsertElementInst::Create(
535         Val0, Val1,
536         getRandomValue(Type::getInt32Ty(BB->getContext())),
537         "I", BB->getTerminator());
538     return PT->push_back(V);
539   }
540 };
541 
542 struct CastModifier: public Modifier {
543   CastModifier(BasicBlock *BB, PieceTable *PT, Random *R)
544       : Modifier(BB, PT, R) {}
545 
546   void Act() override {
547     Value *V = getRandomVal();
548     Type *VTy = V->getType();
549     Type *DestTy = pickScalarType();
550 
551     // Handle vector casts vectors.
552     if (VTy->isVectorTy())
553       DestTy = pickVectorType(cast<VectorType>(VTy));
554 
555     // no need to cast.
556     if (VTy == DestTy) return;
557 
558     // Pointers:
559     if (VTy->isPointerTy()) {
560       if (!DestTy->isPointerTy())
561         DestTy = PointerType::get(DestTy, 0);
562       return PT->push_back(
563         new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
564     }
565 
566     unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
567     unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
568 
569     // Generate lots of bitcasts.
570     if ((getRandom() & 1) && VSize == DestSize) {
571       return PT->push_back(
572         new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
573     }
574 
575     // Both types are integers:
576     if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) {
577       if (VSize > DestSize) {
578         return PT->push_back(
579           new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
580       } else {
581         assert(VSize < DestSize && "Different int types with the same size?");
582         if (getRandom() & 1)
583           return PT->push_back(
584             new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
585         return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
586       }
587     }
588 
589     // Fp to int.
590     if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) {
591       if (getRandom() & 1)
592         return PT->push_back(
593           new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
594       return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
595     }
596 
597     // Int to fp.
598     if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) {
599       if (getRandom() & 1)
600         return PT->push_back(
601           new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
602       return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
603     }
604 
605     // Both floats.
606     if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) {
607       if (VSize > DestSize) {
608         return PT->push_back(
609           new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
610       } else if (VSize < DestSize) {
611         return PT->push_back(
612           new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
613       }
614       // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
615       // for which there is no defined conversion. So do nothing.
616     }
617   }
618 };
619 
620 struct SelectModifier: public Modifier {
621   SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R)
622       : Modifier(BB, PT, R) {}
623 
624   void Act() override {
625     // Try a bunch of different select configuration until a valid one is found.
626     Value *Val0 = getRandomVal();
627     Value *Val1 = getRandomValue(Val0->getType());
628 
629     Type *CondTy = Type::getInt1Ty(Context);
630 
631     // If the value type is a vector, and we allow vector select, then in 50%
632     // of the cases generate a vector select.
633     if (auto *VTy = dyn_cast<VectorType>(Val0->getType()))
634       if (getRandom() & 1)
635         CondTy = VectorType::get(CondTy, VTy->getElementCount());
636 
637     Value *Cond = getRandomValue(CondTy);
638     Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
639     return PT->push_back(V);
640   }
641 };
642 
643 struct CmpModifier: public Modifier {
644   CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R)
645       : Modifier(BB, PT, R) {}
646 
647   void Act() override {
648     Value *Val0 = getRandomVal();
649     Value *Val1 = getRandomValue(Val0->getType());
650 
651     if (Val0->getType()->isPointerTy()) return;
652     bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
653 
654     int op;
655     if (fp) {
656       op = getRandom() %
657       (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
658        CmpInst::FIRST_FCMP_PREDICATE;
659     } else {
660       op = getRandom() %
661       (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
662        CmpInst::FIRST_ICMP_PREDICATE;
663     }
664 
665     Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
666                                (CmpInst::Predicate)op, Val0, Val1, "Cmp",
667                                BB->getTerminator());
668     return PT->push_back(V);
669   }
670 };
671 
672 } // end anonymous namespace
673 
674 static void FillFunction(Function *F, Random &R) {
675   // Create a legal entry block.
676   BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
677   ReturnInst::Create(F->getContext(), BB);
678 
679   // Create the value table.
680   Modifier::PieceTable PT;
681 
682   // Consider arguments as legal values.
683   for (auto &arg : F->args())
684     PT.push_back(&arg);
685 
686   // List of modifiers which add new random instructions.
687   std::vector<std::unique_ptr<Modifier>> Modifiers;
688   Modifiers.emplace_back(new LoadModifier(BB, &PT, &R));
689   Modifiers.emplace_back(new StoreModifier(BB, &PT, &R));
690   auto SM = Modifiers.back().get();
691   Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R));
692   Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R));
693   Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R));
694   Modifiers.emplace_back(new BinModifier(BB, &PT, &R));
695   Modifiers.emplace_back(new CastModifier(BB, &PT, &R));
696   Modifiers.emplace_back(new SelectModifier(BB, &PT, &R));
697   Modifiers.emplace_back(new CmpModifier(BB, &PT, &R));
698 
699   // Generate the random instructions
700   AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas
701   ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants
702 
703   for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i)
704     for (auto &Mod : Modifiers)
705       Mod->Act();
706 
707   SM->ActN(5); // Throw in a few stores.
708 }
709 
710 static void IntroduceControlFlow(Function *F, Random &R) {
711   std::vector<Instruction*> BoolInst;
712   for (auto &Instr : F->front()) {
713     if (Instr.getType() == IntegerType::getInt1Ty(F->getContext()))
714       BoolInst.push_back(&Instr);
715   }
716 
717   llvm::shuffle(BoolInst.begin(), BoolInst.end(), R);
718 
719   for (auto *Instr : BoolInst) {
720     BasicBlock *Curr = Instr->getParent();
721     BasicBlock::iterator Loc = Instr->getIterator();
722     BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
723     Instr->moveBefore(Curr->getTerminator());
724     if (Curr != &F->getEntryBlock()) {
725       BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
726       Curr->getTerminator()->eraseFromParent();
727     }
728   }
729 }
730 
731 } // end namespace llvm
732 
733 int main(int argc, char **argv) {
734   using namespace llvm;
735 
736   InitLLVM X(argc, argv);
737   cl::HideUnrelatedOptions({&StressCategory, &getColorCategory()});
738   cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
739 
740   LLVMContext Context;
741   auto M = std::make_unique<Module>("/tmp/autogen.bc", Context);
742   Function *F = GenEmptyFunction(M.get());
743 
744   // Pick an initial seed value
745   Random R(SeedCL);
746   // Generate lots of random instructions inside a single basic block.
747   FillFunction(F, R);
748   // Break the basic block into many loops.
749   IntroduceControlFlow(F, R);
750 
751   // Figure out what stream we are supposed to write to...
752   std::unique_ptr<ToolOutputFile> Out;
753   // Default to standard output.
754   if (OutputFilename.empty())
755     OutputFilename = "-";
756 
757   std::error_code EC;
758   Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None));
759   if (EC) {
760     errs() << EC.message() << '\n';
761     return 1;
762   }
763 
764   // Check that the generated module is accepted by the verifier.
765   if (verifyModule(*M.get(), &Out->os()))
766     report_fatal_error("Broken module found, compilation aborted!");
767 
768   // Output textual IR.
769   M->print(Out->os(), nullptr);
770 
771   Out->keep();
772 
773   return 0;
774 }
775