xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-stress/llvm-stress.cpp (revision 3a56015a2f5d630910177fa79a522bb95511ccf7)
1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/InitLLVM.h"
40 #include "llvm/Support/ToolOutputFile.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <memory>
48 #include <string>
49 #include <system_error>
50 #include <vector>
51 
52 namespace llvm {
53 
54 static cl::OptionCategory StressCategory("Stress Options");
55 
56 static cl::opt<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"),
57                                 cl::init(0), cl::cat(StressCategory));
58 
59 static cl::opt<unsigned> SizeCL(
60     "size",
61     cl::desc("The estimated size of the generated function (# of instrs)"),
62     cl::init(100), cl::cat(StressCategory));
63 
64 static cl::opt<std::string> OutputFilename("o",
65                                            cl::desc("Override output filename"),
66                                            cl::value_desc("filename"),
67                                            cl::cat(StressCategory));
68 
69 static cl::list<StringRef> AdditionalScalarTypes(
70     "types", cl::CommaSeparated,
71     cl::desc("Additional IR scalar types "
72              "(always includes i1, i8, i16, i32, i64, float and double)"));
73 
74 static cl::opt<bool> EnableScalableVectors(
75     "enable-scalable-vectors",
76     cl::desc("Generate IR involving scalable vector types"),
77     cl::init(false), cl::cat(StressCategory));
78 
79 
80 namespace {
81 
82 /// A utility class to provide a pseudo-random number generator which is
83 /// the same across all platforms. This is somewhat close to the libc
84 /// implementation. Note: This is not a cryptographically secure pseudorandom
85 /// number generator.
86 class Random {
87 public:
88   /// C'tor
89   Random(unsigned _seed):Seed(_seed) {}
90 
91   /// Return a random integer, up to a
92   /// maximum of 2**19 - 1.
93   uint32_t Rand() {
94     uint32_t Val = Seed + 0x000b07a1;
95     Seed = (Val * 0x3c7c0ac1);
96     // Only lowest 19 bits are random-ish.
97     return Seed & 0x7ffff;
98   }
99 
100   /// Return a random 64 bit integer.
101   uint64_t Rand64() {
102     uint64_t Val = Rand() & 0xffff;
103     Val |= uint64_t(Rand() & 0xffff) << 16;
104     Val |= uint64_t(Rand() & 0xffff) << 32;
105     Val |= uint64_t(Rand() & 0xffff) << 48;
106     return Val;
107   }
108 
109   /// Rand operator for STL algorithms.
110   ptrdiff_t operator()(ptrdiff_t y) {
111     return  Rand64() % y;
112   }
113 
114   /// Make this like a C++11 random device
115   using result_type = uint32_t ;
116 
117   static constexpr result_type min() { return 0; }
118   static constexpr result_type max() { return 0x7ffff; }
119 
120   uint32_t operator()() {
121     uint32_t Val = Rand();
122     assert(Val <= max() && "Random value out of range");
123     return Val;
124   }
125 
126 private:
127   unsigned Seed;
128 };
129 
130 /// Generate an empty function with a default argument list.
131 Function *GenEmptyFunction(Module *M) {
132   // Define a few arguments
133   LLVMContext &Context = M->getContext();
134   Type* ArgsTy[] = {
135     PointerType::get(Context, 0),
136     PointerType::get(Context, 0),
137     PointerType::get(Context, 0),
138     Type::getInt32Ty(Context),
139     Type::getInt64Ty(Context),
140     Type::getInt8Ty(Context)
141   };
142 
143   auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false);
144   // Pick a unique name to describe the input parameters
145   Twine Name = "autogen_SD" + Twine{SeedCL};
146   auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M);
147   Func->setCallingConv(CallingConv::C);
148   return Func;
149 }
150 
151 /// A base class, implementing utilities needed for
152 /// modifying and adding new random instructions.
153 struct Modifier {
154   /// Used to store the randomly generated values.
155   using PieceTable = std::vector<Value *>;
156 
157 public:
158   /// C'tor
159   Modifier(BasicBlock *Block, PieceTable *PT, Random *R)
160       : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) {
161     ScalarTypes.assign({Type::getInt1Ty(Context), Type::getInt8Ty(Context),
162                         Type::getInt16Ty(Context), Type::getInt32Ty(Context),
163                         Type::getInt64Ty(Context), Type::getFloatTy(Context),
164                         Type::getDoubleTy(Context)});
165 
166     for (auto &Arg : AdditionalScalarTypes) {
167       Type *Ty = nullptr;
168       if (Arg == "half")
169         Ty = Type::getHalfTy(Context);
170       else if (Arg == "fp128")
171         Ty = Type::getFP128Ty(Context);
172       else if (Arg == "x86_fp80")
173         Ty = Type::getX86_FP80Ty(Context);
174       else if (Arg == "ppc_fp128")
175         Ty = Type::getPPC_FP128Ty(Context);
176       else if (Arg == "x86_mmx")
177         Ty = Type::getX86_MMXTy(Context);
178       else if (Arg.starts_with("i")) {
179         unsigned N = 0;
180         Arg.drop_front().getAsInteger(10, N);
181         if (N > 0)
182           Ty = Type::getIntNTy(Context, N);
183       }
184       if (!Ty) {
185         errs() << "Invalid IR scalar type: '" << Arg << "'!\n";
186         exit(1);
187       }
188 
189       ScalarTypes.push_back(Ty);
190     }
191   }
192 
193   /// virtual D'tor to silence warnings.
194   virtual ~Modifier() = default;
195 
196   /// Add a new instruction.
197   virtual void Act() = 0;
198 
199   /// Add N new instructions,
200   virtual void ActN(unsigned n) {
201     for (unsigned i=0; i<n; ++i)
202       Act();
203   }
204 
205 protected:
206   /// Return a random integer.
207   uint32_t getRandom() {
208     return Ran->Rand();
209   }
210 
211   /// Return a random value from the list of known values.
212   Value *getRandomVal() {
213     assert(PT->size());
214     return PT->at(getRandom() % PT->size());
215   }
216 
217   Constant *getRandomConstant(Type *Tp) {
218     if (Tp->isIntegerTy()) {
219       if (getRandom() & 1)
220         return ConstantInt::getAllOnesValue(Tp);
221       return ConstantInt::getNullValue(Tp);
222     } else if (Tp->isFloatingPointTy()) {
223       if (getRandom() & 1)
224         return ConstantFP::getAllOnesValue(Tp);
225       return ConstantFP::getZero(Tp);
226     }
227     return UndefValue::get(Tp);
228   }
229 
230   /// Return a random value with a known type.
231   Value *getRandomValue(Type *Tp) {
232     unsigned index = getRandom();
233     for (unsigned i=0; i<PT->size(); ++i) {
234       Value *V = PT->at((index + i) % PT->size());
235       if (V->getType() == Tp)
236         return V;
237     }
238 
239     // If the requested type was not found, generate a constant value.
240     if (Tp->isIntegerTy()) {
241       if (getRandom() & 1)
242         return ConstantInt::getAllOnesValue(Tp);
243       return ConstantInt::getNullValue(Tp);
244     } else if (Tp->isFloatingPointTy()) {
245       if (getRandom() & 1)
246         return ConstantFP::getAllOnesValue(Tp);
247       return ConstantFP::getZero(Tp);
248     } else if (auto *VTp = dyn_cast<FixedVectorType>(Tp)) {
249       std::vector<Constant*> TempValues;
250       TempValues.reserve(VTp->getNumElements());
251       for (unsigned i = 0; i < VTp->getNumElements(); ++i)
252         TempValues.push_back(getRandomConstant(VTp->getScalarType()));
253 
254       ArrayRef<Constant*> VectorValue(TempValues);
255       return ConstantVector::get(VectorValue);
256     }
257 
258     return UndefValue::get(Tp);
259   }
260 
261   /// Return a random value of any pointer type.
262   Value *getRandomPointerValue() {
263     unsigned index = getRandom();
264     for (unsigned i=0; i<PT->size(); ++i) {
265       Value *V = PT->at((index + i) % PT->size());
266       if (V->getType()->isPointerTy())
267         return V;
268     }
269     return UndefValue::get(pickPointerType());
270   }
271 
272   /// Return a random value of any vector type.
273   Value *getRandomVectorValue() {
274     unsigned index = getRandom();
275     for (unsigned i=0; i<PT->size(); ++i) {
276       Value *V = PT->at((index + i) % PT->size());
277       if (V->getType()->isVectorTy())
278         return V;
279     }
280     return UndefValue::get(pickVectorType());
281   }
282 
283   /// Pick a random type.
284   Type *pickType() {
285     return (getRandom() & 1) ? pickVectorType() : pickScalarType();
286   }
287 
288   /// Pick a random pointer type.
289   Type *pickPointerType() {
290     Type *Ty = pickType();
291     return PointerType::get(Ty, 0);
292   }
293 
294   /// Pick a random vector type.
295   Type *pickVectorType(VectorType *VTy = nullptr) {
296 
297     // Vectors of x86mmx are illegal; keep trying till we get something else.
298     Type *Ty;
299     do {
300       Ty = pickScalarType();
301     } while (Ty->isX86_MMXTy());
302 
303     if (VTy)
304       return VectorType::get(Ty, VTy->getElementCount());
305 
306     // Select either fixed length or scalable vectors with 50% probability
307     // (only if scalable vectors are enabled)
308     bool Scalable = EnableScalableVectors && getRandom() & 1;
309 
310     // Pick a random vector width in the range 2**0 to 2**4.
311     // by adding two randoms we are generating a normal-like distribution
312     // around 2**3.
313     unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3));
314     return VectorType::get(Ty, width, Scalable);
315   }
316 
317   /// Pick a random scalar type.
318   Type *pickScalarType() {
319     return ScalarTypes[getRandom() % ScalarTypes.size()];
320   }
321 
322   /// Basic block to populate
323   BasicBlock *BB;
324 
325   /// Value table
326   PieceTable *PT;
327 
328   /// Random number generator
329   Random *Ran;
330 
331   /// Context
332   LLVMContext &Context;
333 
334   std::vector<Type *> ScalarTypes;
335 };
336 
337 struct LoadModifier: public Modifier {
338   LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R)
339       : Modifier(BB, PT, R) {}
340 
341   void Act() override {
342     // Try to use predefined pointers. If non-exist, use undef pointer value;
343     Value *Ptr = getRandomPointerValue();
344     Type *Ty = pickType();
345     Value *V = new LoadInst(Ty, Ptr, "L", BB->getTerminator());
346     PT->push_back(V);
347   }
348 };
349 
350 struct StoreModifier: public Modifier {
351   StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R)
352       : Modifier(BB, PT, R) {}
353 
354   void Act() override {
355     // Try to use predefined pointers. If non-exist, use undef pointer value;
356     Value *Ptr = getRandomPointerValue();
357     Type *ValTy = pickType();
358 
359     // Do not store vectors of i1s because they are unsupported
360     // by the codegen.
361     if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
362       return;
363 
364     Value *Val = getRandomValue(ValTy);
365     new StoreInst(Val, Ptr, BB->getTerminator());
366   }
367 };
368 
369 struct BinModifier: public Modifier {
370   BinModifier(BasicBlock *BB, PieceTable *PT, Random *R)
371       : Modifier(BB, PT, R) {}
372 
373   void Act() override {
374     Value *Val0 = getRandomVal();
375     Value *Val1 = getRandomValue(Val0->getType());
376 
377     // Don't handle pointer types.
378     if (Val0->getType()->isPointerTy() ||
379         Val1->getType()->isPointerTy())
380       return;
381 
382     // Don't handle i1 types.
383     if (Val0->getType()->getScalarSizeInBits() == 1)
384       return;
385 
386     bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
387     Instruction* Term = BB->getTerminator();
388     unsigned R = getRandom() % (isFloat ? 7 : 13);
389     Instruction::BinaryOps Op;
390 
391     switch (R) {
392     default: llvm_unreachable("Invalid BinOp");
393     case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
394     case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
395     case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
396     case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
397     case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
398     case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
399     case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
400     case 7: {Op = Instruction::Shl;  break; }
401     case 8: {Op = Instruction::LShr; break; }
402     case 9: {Op = Instruction::AShr; break; }
403     case 10:{Op = Instruction::And;  break; }
404     case 11:{Op = Instruction::Or;   break; }
405     case 12:{Op = Instruction::Xor;  break; }
406     }
407 
408     PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
409   }
410 };
411 
412 /// Generate constant values.
413 struct ConstModifier: public Modifier {
414   ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R)
415       : Modifier(BB, PT, R) {}
416 
417   void Act() override {
418     Type *Ty = pickType();
419 
420     if (Ty->isVectorTy()) {
421       switch (getRandom() % 2) {
422       case 0: if (Ty->isIntOrIntVectorTy())
423                 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
424               break;
425       case 1: if (Ty->isIntOrIntVectorTy())
426                 return PT->push_back(ConstantVector::getNullValue(Ty));
427       }
428     }
429 
430     if (Ty->isFloatingPointTy()) {
431       // Generate 128 random bits, the size of the (currently)
432       // largest floating-point types.
433       uint64_t RandomBits[2];
434       for (unsigned i = 0; i < 2; ++i)
435         RandomBits[i] = Ran->Rand64();
436 
437       APInt RandomInt(Ty->getPrimitiveSizeInBits(), ArrayRef(RandomBits));
438       APFloat RandomFloat(Ty->getFltSemantics(), RandomInt);
439 
440       if (getRandom() & 1)
441         return PT->push_back(ConstantFP::getZero(Ty));
442       return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
443     }
444 
445     if (Ty->isIntegerTy()) {
446       switch (getRandom() % 7) {
447       case 0:
448         return PT->push_back(ConstantInt::get(
449             Ty, APInt::getAllOnes(Ty->getPrimitiveSizeInBits())));
450       case 1:
451         return PT->push_back(
452             ConstantInt::get(Ty, APInt::getZero(Ty->getPrimitiveSizeInBits())));
453       case 2:
454       case 3:
455       case 4:
456       case 5:
457       case 6:
458         PT->push_back(ConstantInt::get(Ty, getRandom()));
459       }
460     }
461   }
462 };
463 
464 struct AllocaModifier: public Modifier {
465   AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R)
466       : Modifier(BB, PT, R) {}
467 
468   void Act() override {
469     Type *Tp = pickType();
470     const DataLayout &DL = BB->getDataLayout();
471     PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(),
472                                  "A", BB->getFirstNonPHI()));
473   }
474 };
475 
476 struct ExtractElementModifier: public Modifier {
477   ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
478       : Modifier(BB, PT, R) {}
479 
480   void Act() override {
481     Value *Val0 = getRandomVectorValue();
482     Value *V = ExtractElementInst::Create(
483         Val0,
484         getRandomValue(Type::getInt32Ty(BB->getContext())),
485         "E", BB->getTerminator());
486     return PT->push_back(V);
487   }
488 };
489 
490 struct ShuffModifier: public Modifier {
491   ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R)
492       : Modifier(BB, PT, R) {}
493 
494   void Act() override {
495     Value *Val0 = getRandomVectorValue();
496     Value *Val1 = getRandomValue(Val0->getType());
497 
498     // Can't express arbitrary shufflevectors for scalable vectors
499     if (isa<ScalableVectorType>(Val0->getType()))
500       return;
501 
502     unsigned Width = cast<FixedVectorType>(Val0->getType())->getNumElements();
503     std::vector<Constant*> Idxs;
504 
505     Type *I32 = Type::getInt32Ty(BB->getContext());
506     for (unsigned i=0; i<Width; ++i) {
507       Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2));
508       // Pick some undef values.
509       if (!(getRandom() % 5))
510         CI = UndefValue::get(I32);
511       Idxs.push_back(CI);
512     }
513 
514     Constant *Mask = ConstantVector::get(Idxs);
515 
516     Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
517                                      BB->getTerminator());
518     PT->push_back(V);
519   }
520 };
521 
522 struct InsertElementModifier: public Modifier {
523   InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
524       : Modifier(BB, PT, R) {}
525 
526   void Act() override {
527     Value *Val0 = getRandomVectorValue();
528     Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
529 
530     Value *V = InsertElementInst::Create(
531         Val0, Val1,
532         getRandomValue(Type::getInt32Ty(BB->getContext())),
533         "I", BB->getTerminator());
534     return PT->push_back(V);
535   }
536 };
537 
538 struct CastModifier: public Modifier {
539   CastModifier(BasicBlock *BB, PieceTable *PT, Random *R)
540       : Modifier(BB, PT, R) {}
541 
542   void Act() override {
543     Value *V = getRandomVal();
544     Type *VTy = V->getType();
545     Type *DestTy = pickScalarType();
546 
547     // Handle vector casts vectors.
548     if (VTy->isVectorTy())
549       DestTy = pickVectorType(cast<VectorType>(VTy));
550 
551     // no need to cast.
552     if (VTy == DestTy) return;
553 
554     // Pointers:
555     if (VTy->isPointerTy()) {
556       if (!DestTy->isPointerTy())
557         DestTy = PointerType::get(DestTy, 0);
558       return PT->push_back(
559         new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
560     }
561 
562     unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
563     unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
564 
565     // Generate lots of bitcasts.
566     if ((getRandom() & 1) && VSize == DestSize) {
567       return PT->push_back(
568         new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
569     }
570 
571     // Both types are integers:
572     if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) {
573       if (VSize > DestSize) {
574         return PT->push_back(
575           new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
576       } else {
577         assert(VSize < DestSize && "Different int types with the same size?");
578         if (getRandom() & 1)
579           return PT->push_back(
580             new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
581         return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
582       }
583     }
584 
585     // Fp to int.
586     if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) {
587       if (getRandom() & 1)
588         return PT->push_back(
589           new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
590       return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
591     }
592 
593     // Int to fp.
594     if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) {
595       if (getRandom() & 1)
596         return PT->push_back(
597           new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
598       return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
599     }
600 
601     // Both floats.
602     if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) {
603       if (VSize > DestSize) {
604         return PT->push_back(
605           new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
606       } else if (VSize < DestSize) {
607         return PT->push_back(
608           new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
609       }
610       // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
611       // for which there is no defined conversion. So do nothing.
612     }
613   }
614 };
615 
616 struct SelectModifier: public Modifier {
617   SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R)
618       : Modifier(BB, PT, R) {}
619 
620   void Act() override {
621     // Try a bunch of different select configuration until a valid one is found.
622     Value *Val0 = getRandomVal();
623     Value *Val1 = getRandomValue(Val0->getType());
624 
625     Type *CondTy = Type::getInt1Ty(Context);
626 
627     // If the value type is a vector, and we allow vector select, then in 50%
628     // of the cases generate a vector select.
629     if (auto *VTy = dyn_cast<VectorType>(Val0->getType()))
630       if (getRandom() & 1)
631         CondTy = VectorType::get(CondTy, VTy->getElementCount());
632 
633     Value *Cond = getRandomValue(CondTy);
634     Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
635     return PT->push_back(V);
636   }
637 };
638 
639 struct CmpModifier: public Modifier {
640   CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R)
641       : Modifier(BB, PT, R) {}
642 
643   void Act() override {
644     Value *Val0 = getRandomVal();
645     Value *Val1 = getRandomValue(Val0->getType());
646 
647     if (Val0->getType()->isPointerTy()) return;
648     bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
649 
650     int op;
651     if (fp) {
652       op = getRandom() %
653       (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
654        CmpInst::FIRST_FCMP_PREDICATE;
655     } else {
656       op = getRandom() %
657       (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
658        CmpInst::FIRST_ICMP_PREDICATE;
659     }
660 
661     Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
662                                (CmpInst::Predicate)op, Val0, Val1, "Cmp",
663                                BB->getTerminator());
664     return PT->push_back(V);
665   }
666 };
667 
668 } // end anonymous namespace
669 
670 static void FillFunction(Function *F, Random &R) {
671   // Create a legal entry block.
672   BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
673   ReturnInst::Create(F->getContext(), BB);
674 
675   // Create the value table.
676   Modifier::PieceTable PT;
677 
678   // Consider arguments as legal values.
679   for (auto &arg : F->args())
680     PT.push_back(&arg);
681 
682   // List of modifiers which add new random instructions.
683   std::vector<std::unique_ptr<Modifier>> Modifiers;
684   Modifiers.emplace_back(new LoadModifier(BB, &PT, &R));
685   Modifiers.emplace_back(new StoreModifier(BB, &PT, &R));
686   auto SM = Modifiers.back().get();
687   Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R));
688   Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R));
689   Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R));
690   Modifiers.emplace_back(new BinModifier(BB, &PT, &R));
691   Modifiers.emplace_back(new CastModifier(BB, &PT, &R));
692   Modifiers.emplace_back(new SelectModifier(BB, &PT, &R));
693   Modifiers.emplace_back(new CmpModifier(BB, &PT, &R));
694 
695   // Generate the random instructions
696   AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas
697   ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants
698 
699   for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i)
700     for (auto &Mod : Modifiers)
701       Mod->Act();
702 
703   SM->ActN(5); // Throw in a few stores.
704 }
705 
706 static void IntroduceControlFlow(Function *F, Random &R) {
707   std::vector<Instruction*> BoolInst;
708   for (auto &Instr : F->front()) {
709     if (Instr.getType() == IntegerType::getInt1Ty(F->getContext()))
710       BoolInst.push_back(&Instr);
711   }
712 
713   llvm::shuffle(BoolInst.begin(), BoolInst.end(), R);
714 
715   for (auto *Instr : BoolInst) {
716     BasicBlock *Curr = Instr->getParent();
717     BasicBlock::iterator Loc = Instr->getIterator();
718     BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
719     Instr->moveBefore(Curr->getTerminator());
720     if (Curr != &F->getEntryBlock()) {
721       BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
722       Curr->getTerminator()->eraseFromParent();
723     }
724   }
725 }
726 
727 } // end namespace llvm
728 
729 int main(int argc, char **argv) {
730   using namespace llvm;
731 
732   InitLLVM X(argc, argv);
733   cl::HideUnrelatedOptions({&StressCategory, &getColorCategory()});
734   cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
735 
736   LLVMContext Context;
737   auto M = std::make_unique<Module>("/tmp/autogen.bc", Context);
738   Function *F = GenEmptyFunction(M.get());
739 
740   // Pick an initial seed value
741   Random R(SeedCL);
742   // Generate lots of random instructions inside a single basic block.
743   FillFunction(F, R);
744   // Break the basic block into many loops.
745   IntroduceControlFlow(F, R);
746 
747   // Figure out what stream we are supposed to write to...
748   std::unique_ptr<ToolOutputFile> Out;
749   // Default to standard output.
750   if (OutputFilename.empty())
751     OutputFilename = "-";
752 
753   std::error_code EC;
754   Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None));
755   if (EC) {
756     errs() << EC.message() << '\n';
757     return 1;
758   }
759 
760   // Check that the generated module is accepted by the verifier.
761   if (verifyModule(*M.get(), &Out->os()))
762     report_fatal_error("Broken module found, compilation aborted!");
763 
764   // Output textual IR.
765   M->print(Out->os(), nullptr);
766 
767   Out->keep();
768 
769   return 0;
770 }
771