xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "Error.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/ELF.h"
35 #include "llvm/Object/ELFObjectFile.h"
36 #include "llvm/Object/ELFTypes.h"
37 #include "llvm/Object/Error.h"
38 #include "llvm/Object/ObjectFile.h"
39 #include "llvm/Object/StackMapParser.h"
40 #include "llvm/Support/AMDGPUMetadata.h"
41 #include "llvm/Support/ARMAttributeParser.h"
42 #include "llvm/Support/ARMBuildAttributes.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Endian.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/Format.h"
48 #include "llvm/Support/FormatVariadic.h"
49 #include "llvm/Support/FormattedStream.h"
50 #include "llvm/Support/LEB128.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/MipsABIFlags.h"
53 #include "llvm/Support/ScopedPrinter.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 #include <cinttypes>
57 #include <cstddef>
58 #include <cstdint>
59 #include <cstdlib>
60 #include <iterator>
61 #include <memory>
62 #include <string>
63 #include <system_error>
64 #include <vector>
65 
66 using namespace llvm;
67 using namespace llvm::object;
68 using namespace ELF;
69 
70 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
71   case ns::enum:                                                               \
72     return #enum;
73 
74 #define ENUM_ENT(enum, altName)                                                \
75   { #enum, altName, ELF::enum }
76 
77 #define ENUM_ENT_1(enum)                                                       \
78   { #enum, #enum, ELF::enum }
79 
80 #define LLVM_READOBJ_PHDR_ENUM(ns, enum)                                       \
81   case ns::enum:                                                               \
82     return std::string(#enum).substr(3);
83 
84 #define TYPEDEF_ELF_TYPES(ELFT)                                                \
85   using ELFO = ELFFile<ELFT>;                                                  \
86   using Elf_Addr = typename ELFT::Addr;                                        \
87   using Elf_Shdr = typename ELFT::Shdr;                                        \
88   using Elf_Sym = typename ELFT::Sym;                                          \
89   using Elf_Dyn = typename ELFT::Dyn;                                          \
90   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
91   using Elf_Rel = typename ELFT::Rel;                                          \
92   using Elf_Rela = typename ELFT::Rela;                                        \
93   using Elf_Relr = typename ELFT::Relr;                                        \
94   using Elf_Rel_Range = typename ELFT::RelRange;                               \
95   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
96   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
97   using Elf_Phdr = typename ELFT::Phdr;                                        \
98   using Elf_Half = typename ELFT::Half;                                        \
99   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
100   using Elf_Word = typename ELFT::Word;                                        \
101   using Elf_Hash = typename ELFT::Hash;                                        \
102   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
103   using Elf_Note  = typename ELFT::Note;                                       \
104   using Elf_Sym_Range = typename ELFT::SymRange;                               \
105   using Elf_Versym = typename ELFT::Versym;                                    \
106   using Elf_Verneed = typename ELFT::Verneed;                                  \
107   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
108   using Elf_Verdef = typename ELFT::Verdef;                                    \
109   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
110   using Elf_CGProfile = typename ELFT::CGProfile;                              \
111   using uintX_t = typename ELFT::uint;
112 
113 namespace {
114 
115 template <class ELFT> class DumpStyle;
116 
117 /// Represents a contiguous uniform range in the file. We cannot just create a
118 /// range directly because when creating one of these from the .dynamic table
119 /// the size, entity size and virtual address are different entries in arbitrary
120 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
121 struct DynRegionInfo {
122   DynRegionInfo() = default;
123   DynRegionInfo(const void *A, uint64_t S, uint64_t ES)
124       : Addr(A), Size(S), EntSize(ES) {}
125 
126   /// Address in current address space.
127   const void *Addr = nullptr;
128   /// Size in bytes of the region.
129   uint64_t Size = 0;
130   /// Size of each entity in the region.
131   uint64_t EntSize = 0;
132 
133   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
134     const Type *Start = reinterpret_cast<const Type *>(Addr);
135     if (!Start)
136       return {Start, Start};
137     if (EntSize != sizeof(Type) || Size % EntSize) {
138       // TODO: Add a section index to this warning.
139       reportWarning("invalid section size (" + Twine(Size) +
140                     ") or entity size (" + Twine(EntSize) + ")");
141       return {Start, Start};
142     }
143     return {Start, Start + (Size / EntSize)};
144   }
145 };
146 
147 template <typename ELFT> class ELFDumper : public ObjDumper {
148 public:
149   ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
150 
151   void printFileHeaders() override;
152   void printSectionHeaders() override;
153   void printRelocations() override;
154   void printDynamicRelocations() override;
155   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
156   void printHashSymbols() override;
157   void printUnwindInfo() override;
158 
159   void printDynamicTable() override;
160   void printNeededLibraries() override;
161   void printProgramHeaders(bool PrintProgramHeaders,
162                            cl::boolOrDefault PrintSectionMapping) override;
163   void printHashTable() override;
164   void printGnuHashTable() override;
165   void printLoadName() override;
166   void printVersionInfo() override;
167   void printGroupSections() override;
168 
169   void printAttributes() override;
170   void printMipsPLTGOT() override;
171   void printMipsABIFlags() override;
172   void printMipsReginfo() override;
173   void printMipsOptions() override;
174 
175   void printStackMap() const override;
176 
177   void printHashHistogram() override;
178 
179   void printCGProfile() override;
180   void printAddrsig() override;
181 
182   void printNotes() override;
183 
184   void printELFLinkerOptions() override;
185 
186   const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
187 
188 private:
189   std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
190 
191   TYPEDEF_ELF_TYPES(ELFT)
192 
193   DynRegionInfo checkDRI(DynRegionInfo DRI) {
194     const ELFFile<ELFT> *Obj = ObjF->getELFFile();
195     if (DRI.Addr < Obj->base() ||
196         reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
197             Obj->base() + Obj->getBufSize())
198       error(llvm::object::object_error::parse_failed);
199     return DRI;
200   }
201 
202   DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
203     return checkDRI(
204         {ObjF->getELFFile()->base() + P->p_offset, P->p_filesz, EntSize});
205   }
206 
207   DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
208     return checkDRI(
209         {ObjF->getELFFile()->base() + S->sh_offset, S->sh_size, S->sh_entsize});
210   }
211 
212   void loadDynamicTable(const ELFFile<ELFT> *Obj);
213   void parseDynamicTable();
214 
215   StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb,
216                              bool &IsDefault) const;
217   void LoadVersionMap() const;
218   void LoadVersionNeeds(const Elf_Shdr *ec) const;
219   void LoadVersionDefs(const Elf_Shdr *sec) const;
220 
221   const object::ELFObjectFile<ELFT> *ObjF;
222   DynRegionInfo DynRelRegion;
223   DynRegionInfo DynRelaRegion;
224   DynRegionInfo DynRelrRegion;
225   DynRegionInfo DynPLTRelRegion;
226   DynRegionInfo DynSymRegion;
227   DynRegionInfo DynamicTable;
228   StringRef DynamicStringTable;
229   StringRef SOName = "<Not found>";
230   const Elf_Hash *HashTable = nullptr;
231   const Elf_GnuHash *GnuHashTable = nullptr;
232   const Elf_Shdr *DotSymtabSec = nullptr;
233   const Elf_Shdr *DotCGProfileSec = nullptr;
234   const Elf_Shdr *DotAddrsigSec = nullptr;
235   StringRef DynSymtabName;
236   ArrayRef<Elf_Word> ShndxTable;
237 
238   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
239   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
240   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
241 
242   // Records for each version index the corresponding Verdef or Vernaux entry.
243   // This is filled the first time LoadVersionMap() is called.
244   class VersionMapEntry : public PointerIntPair<const void *, 1> {
245   public:
246     // If the integer is 0, this is an Elf_Verdef*.
247     // If the integer is 1, this is an Elf_Vernaux*.
248     VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {}
249     VersionMapEntry(const Elf_Verdef *verdef)
250         : PointerIntPair<const void *, 1>(verdef, 0) {}
251     VersionMapEntry(const Elf_Vernaux *vernaux)
252         : PointerIntPair<const void *, 1>(vernaux, 1) {}
253 
254     bool isNull() const { return getPointer() == nullptr; }
255     bool isVerdef() const { return !isNull() && getInt() == 0; }
256     bool isVernaux() const { return !isNull() && getInt() == 1; }
257     const Elf_Verdef *getVerdef() const {
258       return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr;
259     }
260     const Elf_Vernaux *getVernaux() const {
261       return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr;
262     }
263   };
264   mutable SmallVector<VersionMapEntry, 16> VersionMap;
265 
266 public:
267   Elf_Dyn_Range dynamic_table() const {
268     // A valid .dynamic section contains an array of entries terminated
269     // with a DT_NULL entry. However, sometimes the section content may
270     // continue past the DT_NULL entry, so to dump the section correctly,
271     // we first find the end of the entries by iterating over them.
272     Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
273 
274     size_t Size = 0;
275     while (Size < Table.size())
276       if (Table[Size++].getTag() == DT_NULL)
277         break;
278 
279     return Table.slice(0, Size);
280   }
281 
282   Elf_Sym_Range dynamic_symbols() const {
283     return DynSymRegion.getAsArrayRef<Elf_Sym>();
284   }
285 
286   Elf_Rel_Range dyn_rels() const;
287   Elf_Rela_Range dyn_relas() const;
288   Elf_Relr_Range dyn_relrs() const;
289   std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable,
290                                 bool IsDynamic) const;
291   void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym,
292                            StringRef &SectionName,
293                            unsigned &SectionIndex) const;
294   std::string getStaticSymbolName(uint32_t Index) const;
295   StringRef getSymbolVersionByIndex(StringRef StrTab,
296                                     uint32_t VersionSymbolIndex,
297                                     bool &IsDefault) const;
298 
299   void printSymbolsHelper(bool IsDynamic) const;
300   void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const;
301 
302   const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
303   const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
304   const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
305   ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
306   StringRef getDynamicStringTable() const { return DynamicStringTable; }
307   const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
308   const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
309   const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
310   const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
311   const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
312   const Elf_Hash *getHashTable() const { return HashTable; }
313   const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
314 };
315 
316 template <class ELFT>
317 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
318   StringRef StrTable, SymtabName;
319   size_t Entries = 0;
320   Elf_Sym_Range Syms(nullptr, nullptr);
321   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
322   if (IsDynamic) {
323     StrTable = DynamicStringTable;
324     Syms = dynamic_symbols();
325     SymtabName = DynSymtabName;
326     if (DynSymRegion.Addr)
327       Entries = DynSymRegion.Size / DynSymRegion.EntSize;
328   } else {
329     if (!DotSymtabSec)
330       return;
331     StrTable = unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
332     Syms = unwrapOrError(Obj->symbols(DotSymtabSec));
333     SymtabName = unwrapOrError(Obj->getSectionName(DotSymtabSec));
334     Entries = DotSymtabSec->getEntityCount();
335   }
336   if (Syms.begin() == Syms.end())
337     return;
338   ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries);
339   for (const auto &Sym : Syms)
340     ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic);
341 }
342 
343 template <class ELFT> class MipsGOTParser;
344 
345 template <typename ELFT> class DumpStyle {
346 public:
347   using Elf_Shdr = typename ELFT::Shdr;
348   using Elf_Sym = typename ELFT::Sym;
349 
350   DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {}
351   virtual ~DumpStyle() = default;
352 
353   virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
354   virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
355   virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
356   virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
357   virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
358                             bool PrintDynamicSymbols) = 0;
359   virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
360   virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
361   virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
362   virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
363                                   size_t Offset) {}
364   virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
365                            const Elf_Sym *FirstSym, StringRef StrTable,
366                            bool IsDynamic) = 0;
367   virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
368                                    bool PrintProgramHeaders,
369                                    cl::boolOrDefault PrintSectionMapping) = 0;
370   virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
371                                          const Elf_Shdr *Sec) = 0;
372   virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
373                                              const Elf_Shdr *Sec) = 0;
374   virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
375                                              const Elf_Shdr *Sec) = 0;
376   virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0;
377   virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
378   virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
379   virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
380   virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
381   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
382   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
383   const ELFDumper<ELFT> *dumper() const { return Dumper; }
384 
385 private:
386   const ELFDumper<ELFT> *Dumper;
387 };
388 
389 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
390   formatted_raw_ostream &OS;
391 
392 public:
393   TYPEDEF_ELF_TYPES(ELFT)
394 
395   GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
396       : DumpStyle<ELFT>(Dumper),
397         OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
398     assert (&W.getOStream() == &llvm::fouts());
399   }
400 
401   void printFileHeaders(const ELFO *Obj) override;
402   void printGroupSections(const ELFFile<ELFT> *Obj) override;
403   void printRelocations(const ELFO *Obj) override;
404   void printSectionHeaders(const ELFO *Obj) override;
405   void printSymbols(const ELFO *Obj, bool PrintSymbols,
406                     bool PrintDynamicSymbols) override;
407   void printHashSymbols(const ELFO *Obj) override;
408   void printDynamic(const ELFFile<ELFT> *Obj) override;
409   void printDynamicRelocations(const ELFO *Obj) override;
410   void printSymtabMessage(const ELFO *Obj, StringRef Name,
411                           size_t Offset) override;
412   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
413                            cl::boolOrDefault PrintSectionMapping) override;
414   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
415                                  const Elf_Shdr *Sec) override;
416   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
417                                      const Elf_Shdr *Sec) override;
418   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
419                                      const Elf_Shdr *Sec) override;
420   void printHashHistogram(const ELFFile<ELFT> *Obj) override;
421   void printCGProfile(const ELFFile<ELFT> *Obj) override;
422   void printAddrsig(const ELFFile<ELFT> *Obj) override;
423   void printNotes(const ELFFile<ELFT> *Obj) override;
424   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
425   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
426   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
427 
428 private:
429   struct Field {
430     std::string Str;
431     unsigned Column;
432 
433     Field(StringRef S, unsigned Col) : Str(S), Column(Col) {}
434     Field(unsigned Col) : Column(Col) {}
435   };
436 
437   template <typename T, typename TEnum>
438   std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
439     for (const auto &EnumItem : EnumValues)
440       if (EnumItem.Value == Value)
441         return EnumItem.AltName;
442     return to_hexString(Value, false);
443   }
444 
445   template <typename T, typename TEnum>
446   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
447                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
448                          TEnum EnumMask3 = {}) {
449     std::string Str;
450     for (const auto &Flag : EnumValues) {
451       if (Flag.Value == 0)
452         continue;
453 
454       TEnum EnumMask{};
455       if (Flag.Value & EnumMask1)
456         EnumMask = EnumMask1;
457       else if (Flag.Value & EnumMask2)
458         EnumMask = EnumMask2;
459       else if (Flag.Value & EnumMask3)
460         EnumMask = EnumMask3;
461       bool IsEnum = (Flag.Value & EnumMask) != 0;
462       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
463           (IsEnum && (Value & EnumMask) == Flag.Value)) {
464         if (!Str.empty())
465           Str += ", ";
466         Str += Flag.AltName;
467       }
468     }
469     return Str;
470   }
471 
472   formatted_raw_ostream &printField(struct Field F) {
473     if (F.Column != 0)
474       OS.PadToColumn(F.Column);
475     OS << F.Str;
476     OS.flush();
477     return OS;
478   }
479   void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
480                          StringRef StrTable, uint32_t Bucket);
481   void printRelocHeader(unsigned SType);
482   void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
483                        const Elf_Rela &R, bool IsRela);
484   void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
485                        StringRef SymbolName, const Elf_Rela &R, bool IsRela);
486   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
487                    StringRef StrTable, bool IsDynamic) override;
488   std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
489                                   const Elf_Sym *FirstSym);
490   void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
491   bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
492   bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
493   bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
494   bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec);
495   void printProgramHeaders(const ELFO *Obj);
496   void printSectionMapping(const ELFO *Obj);
497 };
498 
499 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
500 public:
501   TYPEDEF_ELF_TYPES(ELFT)
502 
503   LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
504       : DumpStyle<ELFT>(Dumper), W(W) {}
505 
506   void printFileHeaders(const ELFO *Obj) override;
507   void printGroupSections(const ELFFile<ELFT> *Obj) override;
508   void printRelocations(const ELFO *Obj) override;
509   void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
510   void printSectionHeaders(const ELFO *Obj) override;
511   void printSymbols(const ELFO *Obj, bool PrintSymbols,
512                     bool PrintDynamicSymbols) override;
513   void printDynamic(const ELFFile<ELFT> *Obj) override;
514   void printDynamicRelocations(const ELFO *Obj) override;
515   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
516                            cl::boolOrDefault PrintSectionMapping) override;
517   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
518                                  const Elf_Shdr *Sec) override;
519   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
520                                      const Elf_Shdr *Sec) override;
521   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
522                                      const Elf_Shdr *Sec) override;
523   void printHashHistogram(const ELFFile<ELFT> *Obj) override;
524   void printCGProfile(const ELFFile<ELFT> *Obj) override;
525   void printAddrsig(const ELFFile<ELFT> *Obj) override;
526   void printNotes(const ELFFile<ELFT> *Obj) override;
527   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
528   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
529   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
530 
531 private:
532   void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab);
533   void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
534   void printSymbols(const ELFO *Obj);
535   void printDynamicSymbols(const ELFO *Obj);
536   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
537                    StringRef StrTable, bool IsDynamic) override;
538   void printProgramHeaders(const ELFO *Obj);
539   void printSectionMapping(const ELFO *Obj) {}
540 
541   ScopedPrinter &W;
542 };
543 
544 } // end anonymous namespace
545 
546 namespace llvm {
547 
548 template <class ELFT>
549 static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
550                                        ScopedPrinter &Writer,
551                                        std::unique_ptr<ObjDumper> &Result) {
552   Result.reset(new ELFDumper<ELFT>(Obj, Writer));
553   return readobj_error::success;
554 }
555 
556 std::error_code createELFDumper(const object::ObjectFile *Obj,
557                                 ScopedPrinter &Writer,
558                                 std::unique_ptr<ObjDumper> &Result) {
559   // Little-endian 32-bit
560   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
561     return createELFDumper(ELFObj, Writer, Result);
562 
563   // Big-endian 32-bit
564   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
565     return createELFDumper(ELFObj, Writer, Result);
566 
567   // Little-endian 64-bit
568   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
569     return createELFDumper(ELFObj, Writer, Result);
570 
571   // Big-endian 64-bit
572   if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
573     return createELFDumper(ELFObj, Writer, Result);
574 
575   return readobj_error::unsupported_obj_file_format;
576 }
577 
578 } // end namespace llvm
579 
580 // Iterate through the versions needed section, and place each Elf_Vernaux
581 // in the VersionMap according to its index.
582 template <class ELFT>
583 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *Sec) const {
584   unsigned VerneedSize = Sec->sh_size;    // Size of section in bytes
585   unsigned VerneedEntries = Sec->sh_info; // Number of Verneed entries
586   const uint8_t *VerneedStart = reinterpret_cast<const uint8_t *>(
587       ObjF->getELFFile()->base() + Sec->sh_offset);
588   const uint8_t *VerneedEnd = VerneedStart + VerneedSize;
589   // The first Verneed entry is at the start of the section.
590   const uint8_t *VerneedBuf = VerneedStart;
591   for (unsigned VerneedIndex = 0; VerneedIndex < VerneedEntries;
592        ++VerneedIndex) {
593     if (VerneedBuf + sizeof(Elf_Verneed) > VerneedEnd)
594       report_fatal_error("Section ended unexpectedly while scanning "
595                          "version needed records.");
596     const Elf_Verneed *Verneed =
597         reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
598     if (Verneed->vn_version != ELF::VER_NEED_CURRENT)
599       report_fatal_error("Unexpected verneed version");
600     // Iterate through the Vernaux entries
601     const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
602     for (unsigned VernauxIndex = 0; VernauxIndex < Verneed->vn_cnt;
603          ++VernauxIndex) {
604       if (VernauxBuf + sizeof(Elf_Vernaux) > VerneedEnd)
605         report_fatal_error("Section ended unexpected while scanning auxiliary "
606                            "version needed records.");
607       const Elf_Vernaux *Vernaux =
608           reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
609       size_t Index = Vernaux->vna_other & ELF::VERSYM_VERSION;
610       if (Index >= VersionMap.size())
611         VersionMap.resize(Index + 1);
612       VersionMap[Index] = VersionMapEntry(Vernaux);
613       VernauxBuf += Vernaux->vna_next;
614     }
615     VerneedBuf += Verneed->vn_next;
616   }
617 }
618 
619 // Iterate through the version definitions, and place each Elf_Verdef
620 // in the VersionMap according to its index.
621 template <class ELFT>
622 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *Sec) const {
623   unsigned VerdefSize = Sec->sh_size;    // Size of section in bytes
624   unsigned VerdefEntries = Sec->sh_info; // Number of Verdef entries
625   const uint8_t *VerdefStart = reinterpret_cast<const uint8_t *>(
626       ObjF->getELFFile()->base() + Sec->sh_offset);
627   const uint8_t *VerdefEnd = VerdefStart + VerdefSize;
628   // The first Verdef entry is at the start of the section.
629   const uint8_t *VerdefBuf = VerdefStart;
630   for (unsigned VerdefIndex = 0; VerdefIndex < VerdefEntries; ++VerdefIndex) {
631     if (VerdefBuf + sizeof(Elf_Verdef) > VerdefEnd)
632       report_fatal_error("Section ended unexpectedly while scanning "
633                          "version definitions.");
634     const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
635     if (Verdef->vd_version != ELF::VER_DEF_CURRENT)
636       report_fatal_error("Unexpected verdef version");
637     size_t Index = Verdef->vd_ndx & ELF::VERSYM_VERSION;
638     if (Index >= VersionMap.size())
639       VersionMap.resize(Index + 1);
640     VersionMap[Index] = VersionMapEntry(Verdef);
641     VerdefBuf += Verdef->vd_next;
642   }
643 }
644 
645 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const {
646   // If there is no dynamic symtab or version table, there is nothing to do.
647   if (!DynSymRegion.Addr || !SymbolVersionSection)
648     return;
649 
650   // Has the VersionMap already been loaded?
651   if (!VersionMap.empty())
652     return;
653 
654   // The first two version indexes are reserved.
655   // Index 0 is LOCAL, index 1 is GLOBAL.
656   VersionMap.push_back(VersionMapEntry());
657   VersionMap.push_back(VersionMapEntry());
658 
659   if (SymbolVersionDefSection)
660     LoadVersionDefs(SymbolVersionDefSection);
661 
662   if (SymbolVersionNeedSection)
663     LoadVersionNeeds(SymbolVersionNeedSection);
664 }
665 
666 template <typename ELFT>
667 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab,
668                                             const Elf_Sym *Sym,
669                                             bool &IsDefault) const {
670   // This is a dynamic symbol. Look in the GNU symbol version table.
671   if (!SymbolVersionSection) {
672     // No version table.
673     IsDefault = false;
674     return "";
675   }
676 
677   // Determine the position in the symbol table of this entry.
678   size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
679                         reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) /
680                        sizeof(Elf_Sym);
681 
682   // Get the corresponding version index entry.
683   const Elf_Versym *Versym =
684       unwrapOrError(ObjF->getELFFile()->template getEntry<Elf_Versym>(
685           SymbolVersionSection, EntryIndex));
686   return this->getSymbolVersionByIndex(StrTab, Versym->vs_index, IsDefault);
687 }
688 
689 static std::string maybeDemangle(StringRef Name) {
690   return opts::Demangle ? demangle(Name) : Name.str();
691 }
692 
693 template <typename ELFT>
694 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
695   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
696   StringRef StrTable =
697       unwrapOrError(Obj->getStringTableForSymtab(*DotSymtabSec));
698   Elf_Sym_Range Syms = unwrapOrError(Obj->symbols(DotSymtabSec));
699   if (Index >= Syms.size())
700     reportError("Invalid symbol index");
701   const Elf_Sym *Sym = &Syms[Index];
702   return maybeDemangle(unwrapOrError(Sym->getName(StrTable)));
703 }
704 
705 template <typename ELFT>
706 StringRef ELFDumper<ELFT>::getSymbolVersionByIndex(StringRef StrTab,
707                                                    uint32_t SymbolVersionIndex,
708                                                    bool &IsDefault) const {
709   size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
710 
711   // Special markers for unversioned symbols.
712   if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
713     IsDefault = false;
714     return "";
715   }
716 
717   // Lookup this symbol in the version table.
718   LoadVersionMap();
719   if (VersionIndex >= VersionMap.size() || VersionMap[VersionIndex].isNull())
720     reportError("Invalid version entry");
721   const VersionMapEntry &Entry = VersionMap[VersionIndex];
722 
723   // Get the version name string.
724   size_t NameOffset;
725   if (Entry.isVerdef()) {
726     // The first Verdaux entry holds the name.
727     NameOffset = Entry.getVerdef()->getAux()->vda_name;
728     IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
729   } else {
730     NameOffset = Entry.getVernaux()->vna_name;
731     IsDefault = false;
732   }
733   if (NameOffset >= StrTab.size())
734     reportError("Invalid string offset");
735   return StrTab.data() + NameOffset;
736 }
737 
738 template <typename ELFT>
739 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
740                                                StringRef StrTable,
741                                                bool IsDynamic) const {
742   std::string SymbolName =
743       maybeDemangle(unwrapOrError(Symbol->getName(StrTable)));
744 
745   if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
746     unsigned SectionIndex;
747     StringRef SectionName;
748     Elf_Sym_Range Syms =
749         unwrapOrError(ObjF->getELFFile()->symbols(DotSymtabSec));
750     getSectionNameIndex(Symbol, Syms.begin(), SectionName, SectionIndex);
751     return SectionName;
752   }
753 
754   if (!IsDynamic)
755     return SymbolName;
756 
757   bool IsDefault;
758   StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault);
759   if (!Version.empty()) {
760     SymbolName += (IsDefault ? "@@" : "@");
761     SymbolName += Version;
762   }
763   return SymbolName;
764 }
765 
766 template <typename ELFT>
767 void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol,
768                                           const Elf_Sym *FirstSym,
769                                           StringRef &SectionName,
770                                           unsigned &SectionIndex) const {
771   SectionIndex = Symbol->st_shndx;
772   if (Symbol->isUndefined())
773     SectionName = "Undefined";
774   else if (Symbol->isProcessorSpecific())
775     SectionName = "Processor Specific";
776   else if (Symbol->isOSSpecific())
777     SectionName = "Operating System Specific";
778   else if (Symbol->isAbsolute())
779     SectionName = "Absolute";
780   else if (Symbol->isCommon())
781     SectionName = "Common";
782   else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
783     SectionName = "Reserved";
784   else {
785     if (SectionIndex == SHN_XINDEX)
786       SectionIndex = unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
787           Symbol, FirstSym, ShndxTable));
788     const ELFFile<ELFT> *Obj = ObjF->getELFFile();
789     const typename ELFT::Shdr *Sec =
790         unwrapOrError(Obj->getSection(SectionIndex));
791     SectionName = unwrapOrError(Obj->getSectionName(Sec));
792   }
793 }
794 
795 template <class ELFO>
796 static const typename ELFO::Elf_Shdr *
797 findNotEmptySectionByAddress(const ELFO *Obj, uint64_t Addr) {
798   for (const auto &Shdr : unwrapOrError(Obj->sections()))
799     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
800       return &Shdr;
801   return nullptr;
802 }
803 
804 template <class ELFO>
805 static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj,
806                                                         StringRef Name) {
807   for (const auto &Shdr : unwrapOrError(Obj.sections())) {
808     if (Name == unwrapOrError(Obj.getSectionName(&Shdr)))
809       return &Shdr;
810   }
811   return nullptr;
812 }
813 
814 static const EnumEntry<unsigned> ElfClass[] = {
815   {"None",   "none",   ELF::ELFCLASSNONE},
816   {"32-bit", "ELF32",  ELF::ELFCLASS32},
817   {"64-bit", "ELF64",  ELF::ELFCLASS64},
818 };
819 
820 static const EnumEntry<unsigned> ElfDataEncoding[] = {
821   {"None",         "none",                          ELF::ELFDATANONE},
822   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
823   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
824 };
825 
826 static const EnumEntry<unsigned> ElfObjectFileType[] = {
827   {"None",         "NONE (none)",              ELF::ET_NONE},
828   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
829   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
830   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
831   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
832 };
833 
834 static const EnumEntry<unsigned> ElfOSABI[] = {
835   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
836   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
837   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
838   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
839   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
840   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
841   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
842   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
843   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
844   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
845   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
846   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
847   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
848   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
849   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
850   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
851   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
852   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
853 };
854 
855 static const EnumEntry<unsigned> SymVersionFlags[] = {
856     {"Base", "BASE", VER_FLG_BASE},
857     {"Weak", "WEAK", VER_FLG_WEAK},
858     {"Info", "INFO", VER_FLG_INFO}};
859 
860 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
861   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
862   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
863   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
864 };
865 
866 static const EnumEntry<unsigned> ARMElfOSABI[] = {
867   {"ARM", "ARM", ELF::ELFOSABI_ARM}
868 };
869 
870 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
871   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
872   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
873 };
874 
875 static const EnumEntry<unsigned> ElfMachineType[] = {
876   ENUM_ENT(EM_NONE,          "None"),
877   ENUM_ENT(EM_M32,           "WE32100"),
878   ENUM_ENT(EM_SPARC,         "Sparc"),
879   ENUM_ENT(EM_386,           "Intel 80386"),
880   ENUM_ENT(EM_68K,           "MC68000"),
881   ENUM_ENT(EM_88K,           "MC88000"),
882   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
883   ENUM_ENT(EM_860,           "Intel 80860"),
884   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
885   ENUM_ENT(EM_S370,          "IBM System/370"),
886   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
887   ENUM_ENT(EM_PARISC,        "HPPA"),
888   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
889   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
890   ENUM_ENT(EM_960,           "Intel 80960"),
891   ENUM_ENT(EM_PPC,           "PowerPC"),
892   ENUM_ENT(EM_PPC64,         "PowerPC64"),
893   ENUM_ENT(EM_S390,          "IBM S/390"),
894   ENUM_ENT(EM_SPU,           "SPU"),
895   ENUM_ENT(EM_V800,          "NEC V800 series"),
896   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
897   ENUM_ENT(EM_RH32,          "TRW RH-32"),
898   ENUM_ENT(EM_RCE,           "Motorola RCE"),
899   ENUM_ENT(EM_ARM,           "ARM"),
900   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
901   ENUM_ENT(EM_SH,            "Hitachi SH"),
902   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
903   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
904   ENUM_ENT(EM_ARC,           "ARC"),
905   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
906   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
907   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
908   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
909   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
910   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
911   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
912   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
913   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
914   ENUM_ENT(EM_PCP,           "Siemens PCP"),
915   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
916   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
917   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
918   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
919   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
920   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
921   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
922   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
923   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
924   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
925   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
926   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
927   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
928   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
929   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
930   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
931   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
932   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
933   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
934   ENUM_ENT(EM_VAX,           "Digital VAX"),
935   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
936   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
937   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
938   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
939   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
940   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
941   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
942   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
943   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
944   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
945   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
946   ENUM_ENT(EM_V850,          "NEC v850"),
947   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
948   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
949   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
950   ENUM_ENT(EM_PJ,            "picoJava"),
951   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
952   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
953   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
954   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
955   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
956   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
957   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
958   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
959   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
960   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
961   ENUM_ENT(EM_MAX,           "MAX Processor"),
962   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
963   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
964   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
965   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
966   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
967   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
968   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
969   ENUM_ENT(EM_UNICORE,       "Unicore"),
970   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
971   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
972   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
973   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
974   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
975   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
976   ENUM_ENT(EM_M16C,          "Renesas M16C"),
977   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
978   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
979   ENUM_ENT(EM_M32C,          "Renesas M32C"),
980   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
981   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
982   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
983   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
984   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
985   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
986   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
987   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
988   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
989   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
990   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
991   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
992   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
993   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
994   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
995   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
996   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
997   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
998   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
999   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1000   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1001   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1002   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1003   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1004   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1005   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1006   ENUM_ENT(EM_RX,            "Renesas RX"),
1007   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1008   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1009   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1010   ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
1011   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1012   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1013   ENUM_ENT(EM_L10M,          "EM_L10M"),
1014   ENUM_ENT(EM_K10M,          "EM_K10M"),
1015   ENUM_ENT(EM_AARCH64,       "AArch64"),
1016   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1017   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1018   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1019   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1020   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1021   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1022   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1023   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1024   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1025   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1026   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1027   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1028   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1029   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1030   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1031   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1032   ENUM_ENT(EM_RISCV,         "RISC-V"),
1033   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1034   ENUM_ENT(EM_BPF,           "EM_BPF"),
1035 };
1036 
1037 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1038     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1039     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1040     {"Weak",   "WEAK",   ELF::STB_WEAK},
1041     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1042 
1043 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1044     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1045     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1046     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1047     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1048 
1049 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1050   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1051 };
1052 
1053 static const char *getGroupType(uint32_t Flag) {
1054   if (Flag & ELF::GRP_COMDAT)
1055     return "COMDAT";
1056   else
1057     return "(unknown)";
1058 }
1059 
1060 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1061   ENUM_ENT(SHF_WRITE,            "W"),
1062   ENUM_ENT(SHF_ALLOC,            "A"),
1063   ENUM_ENT(SHF_EXCLUDE,          "E"),
1064   ENUM_ENT(SHF_EXECINSTR,        "X"),
1065   ENUM_ENT(SHF_MERGE,            "M"),
1066   ENUM_ENT(SHF_STRINGS,          "S"),
1067   ENUM_ENT(SHF_INFO_LINK,        "I"),
1068   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1069   ENUM_ENT(SHF_OS_NONCONFORMING, "o"),
1070   ENUM_ENT(SHF_GROUP,            "G"),
1071   ENUM_ENT(SHF_TLS,              "T"),
1072   ENUM_ENT(SHF_MASKOS,           "o"),
1073   ENUM_ENT(SHF_MASKPROC,         "p"),
1074   ENUM_ENT_1(SHF_COMPRESSED),
1075 };
1076 
1077 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1078   LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
1079   LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION)
1080 };
1081 
1082 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1083   LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE)
1084 };
1085 
1086 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1087   LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL)
1088 };
1089 
1090 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1091   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES),
1092   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES  ),
1093   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL  ),
1094   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP),
1095   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL  ),
1096   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE  ),
1097   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR   ),
1098   LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING )
1099 };
1100 
1101 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1102   LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE)
1103 };
1104 
1105 static std::string getGNUFlags(uint64_t Flags) {
1106   std::string Str;
1107   for (auto Entry : ElfSectionFlags) {
1108     uint64_t Flag = Entry.Value & Flags;
1109     Flags &= ~Entry.Value;
1110     switch (Flag) {
1111     case ELF::SHF_WRITE:
1112     case ELF::SHF_ALLOC:
1113     case ELF::SHF_EXECINSTR:
1114     case ELF::SHF_MERGE:
1115     case ELF::SHF_STRINGS:
1116     case ELF::SHF_INFO_LINK:
1117     case ELF::SHF_LINK_ORDER:
1118     case ELF::SHF_OS_NONCONFORMING:
1119     case ELF::SHF_GROUP:
1120     case ELF::SHF_TLS:
1121     case ELF::SHF_EXCLUDE:
1122       Str += Entry.AltName;
1123       break;
1124     default:
1125       if (Flag & ELF::SHF_MASKOS)
1126         Str += "o";
1127       else if (Flag & ELF::SHF_MASKPROC)
1128         Str += "p";
1129       else if (Flag)
1130         Str += "x";
1131     }
1132   }
1133   return Str;
1134 }
1135 
1136 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1137   // Check potentially overlapped processor-specific
1138   // program header type.
1139   switch (Arch) {
1140   case ELF::EM_ARM:
1141     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1142     break;
1143   case ELF::EM_MIPS:
1144   case ELF::EM_MIPS_RS3_LE:
1145     switch (Type) {
1146       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1147     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1148     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1149     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1150     }
1151     break;
1152   }
1153 
1154   switch (Type) {
1155   LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
1156   LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
1157   LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1158   LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1159   LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
1160   LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
1161   LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
1162   LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );
1163 
1164   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1165   LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1166 
1167     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1168     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1169 
1170     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1171     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1172     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1173 
1174   default:
1175     return "";
1176   }
1177 }
1178 
1179 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1180   switch (Type) {
1181     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1182     LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1183     LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1184     LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1185     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1186     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1187     LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1188     LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1189     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1190     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1191     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1192     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1193   default:
1194     // All machine specific PT_* types
1195     switch (Arch) {
1196     case ELF::EM_ARM:
1197       if (Type == ELF::PT_ARM_EXIDX)
1198         return "EXIDX";
1199       break;
1200     case ELF::EM_MIPS:
1201     case ELF::EM_MIPS_RS3_LE:
1202       switch (Type) {
1203       case PT_MIPS_REGINFO:
1204         return "REGINFO";
1205       case PT_MIPS_RTPROC:
1206         return "RTPROC";
1207       case PT_MIPS_OPTIONS:
1208         return "OPTIONS";
1209       case PT_MIPS_ABIFLAGS:
1210         return "ABIFLAGS";
1211       }
1212       break;
1213     }
1214   }
1215   return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1216 }
1217 
1218 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1219   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1220   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1221   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1222 };
1223 
1224 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1225   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1226   ENUM_ENT(EF_MIPS_PIC, "pic"),
1227   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1228   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1229   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1230   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1231   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1232   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1233   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1234   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1235   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1236   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1237   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1238   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1239   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1240   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1241   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1242   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1243   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1244   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1245   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1246   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1247   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1248   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1249   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1250   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1251   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1252   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1253   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1254   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1255   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1256   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1257   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1258   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1259   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1260   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1261   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1262   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1263   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1264   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1265   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1266   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1267   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1268 };
1269 
1270 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1271   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1272   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1273   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1274   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1275   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1276   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1277   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1278   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1279   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1280   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1281   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1282   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1283   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1284   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1285   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1286   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1287   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1288   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1289   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1290   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1291   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1292   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1293   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1294   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1295   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1296   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1297   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1298   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1299   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1300   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1301   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1302   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1303   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1304   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1305   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1306   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1307   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1308   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
1309   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
1310 };
1311 
1312 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1313   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1314   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1315   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1316   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1317   ENUM_ENT(EF_RISCV_RVE, "RVE")
1318 };
1319 
1320 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1321   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1322   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1323   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1324 };
1325 
1326 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1327   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1328   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1329   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1330   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1331 };
1332 
1333 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1334   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1335   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1336   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1337 };
1338 
1339 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1340   switch (Odk) {
1341   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1342   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1343   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1344   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1345   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1346   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1347   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1348   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1349   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1350   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1351   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1352   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1353   default:
1354     return "Unknown";
1355   }
1356 }
1357 
1358 template <typename ELFT>
1359 void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
1360   // Try to locate the PT_DYNAMIC header.
1361   const Elf_Phdr *DynamicPhdr = nullptr;
1362   for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
1363     if (Phdr.p_type != ELF::PT_DYNAMIC)
1364       continue;
1365     DynamicPhdr = &Phdr;
1366     break;
1367   }
1368 
1369   // Try to locate the .dynamic section in the sections header table.
1370   const Elf_Shdr *DynamicSec = nullptr;
1371   for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1372     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1373       continue;
1374     DynamicSec = &Sec;
1375     break;
1376   }
1377 
1378   // Information in the section header has priority over the information
1379   // in a PT_DYNAMIC header.
1380   // Ignore sh_entsize and use the expected value for entry size explicitly.
1381   // This allows us to dump the dynamic sections with a broken sh_entsize
1382   // field.
1383   if (DynamicSec) {
1384     DynamicTable = checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
1385                              DynamicSec->sh_size, sizeof(Elf_Dyn)});
1386     parseDynamicTable();
1387   }
1388 
1389   // If we have a PT_DYNAMIC header, we will either check the found dynamic
1390   // section or take the dynamic table data directly from the header.
1391   if (!DynamicPhdr)
1392     return;
1393 
1394   if (DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1395       ObjF->getMemoryBufferRef().getBufferSize())
1396     reportError(
1397         "PT_DYNAMIC segment offset + size exceeds the size of the file");
1398 
1399   if (!DynamicSec) {
1400     DynamicTable = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
1401     parseDynamicTable();
1402     return;
1403   }
1404 
1405   StringRef Name = unwrapOrError(Obj->getSectionName(DynamicSec));
1406   if (DynamicSec->sh_addr + DynamicSec->sh_size >
1407           DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1408       DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1409     reportWarning("The SHT_DYNAMIC section '" + Name +
1410                   "' is not contained within the "
1411                   "PT_DYNAMIC segment");
1412 
1413   if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1414     reportWarning("The SHT_DYNAMIC section '" + Name +
1415                   "' is not at the start of "
1416                   "PT_DYNAMIC segment");
1417 }
1418 
1419 template <typename ELFT>
1420 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
1421     ScopedPrinter &Writer)
1422     : ObjDumper(Writer), ObjF(ObjF) {
1423   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1424 
1425   for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
1426     switch (Sec.sh_type) {
1427     case ELF::SHT_SYMTAB:
1428       if (!DotSymtabSec)
1429         DotSymtabSec = &Sec;
1430       break;
1431     case ELF::SHT_DYNSYM:
1432       if (!DynSymRegion.Size) {
1433         DynSymRegion = createDRIFrom(&Sec);
1434         // This is only used (if Elf_Shdr present)for naming section in GNU
1435         // style
1436         DynSymtabName = unwrapOrError(Obj->getSectionName(&Sec));
1437 
1438         if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
1439           DynamicStringTable = *E;
1440         else
1441           warn(E.takeError());
1442       }
1443       break;
1444     case ELF::SHT_SYMTAB_SHNDX:
1445       ShndxTable = unwrapOrError(Obj->getSHNDXTable(Sec));
1446       break;
1447     case ELF::SHT_GNU_versym:
1448       if (!SymbolVersionSection)
1449         SymbolVersionSection = &Sec;
1450       break;
1451     case ELF::SHT_GNU_verdef:
1452       if (!SymbolVersionDefSection)
1453         SymbolVersionDefSection = &Sec;
1454       break;
1455     case ELF::SHT_GNU_verneed:
1456       if (!SymbolVersionNeedSection)
1457         SymbolVersionNeedSection = &Sec;
1458       break;
1459     case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
1460       if (!DotCGProfileSec)
1461         DotCGProfileSec = &Sec;
1462       break;
1463     case ELF::SHT_LLVM_ADDRSIG:
1464       if (!DotAddrsigSec)
1465         DotAddrsigSec = &Sec;
1466       break;
1467     }
1468   }
1469 
1470   loadDynamicTable(Obj);
1471 
1472   if (opts::Output == opts::GNU)
1473     ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
1474   else
1475     ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
1476 }
1477 
1478 static const char *getTypeString(unsigned Arch, uint64_t Type) {
1479 #define DYNAMIC_TAG(n, v)
1480   switch (Arch) {
1481 
1482   case EM_AARCH64:
1483     switch (Type) {
1484 #define AARCH64_DYNAMIC_TAG(name, value)                                       \
1485     case DT_##name:                                                            \
1486       return #name;
1487 #include "llvm/BinaryFormat/DynamicTags.def"
1488 #undef AARCH64_DYNAMIC_TAG
1489     }
1490     break;
1491 
1492   case EM_HEXAGON:
1493     switch (Type) {
1494 #define HEXAGON_DYNAMIC_TAG(name, value)                                       \
1495   case DT_##name:                                                              \
1496     return #name;
1497 #include "llvm/BinaryFormat/DynamicTags.def"
1498 #undef HEXAGON_DYNAMIC_TAG
1499     }
1500     break;
1501 
1502   case EM_MIPS:
1503     switch (Type) {
1504 #define MIPS_DYNAMIC_TAG(name, value)                                          \
1505   case DT_##name:                                                              \
1506     return #name;
1507 #include "llvm/BinaryFormat/DynamicTags.def"
1508 #undef MIPS_DYNAMIC_TAG
1509     }
1510     break;
1511 
1512   case EM_PPC64:
1513     switch (Type) {
1514 #define PPC64_DYNAMIC_TAG(name, value)                                         \
1515   case DT_##name:                                                              \
1516     return #name;
1517 #include "llvm/BinaryFormat/DynamicTags.def"
1518 #undef PPC64_DYNAMIC_TAG
1519     }
1520     break;
1521   }
1522 #undef DYNAMIC_TAG
1523   switch (Type) {
1524 // Now handle all dynamic tags except the architecture specific ones
1525 #define AARCH64_DYNAMIC_TAG(name, value)
1526 #define MIPS_DYNAMIC_TAG(name, value)
1527 #define HEXAGON_DYNAMIC_TAG(name, value)
1528 #define PPC64_DYNAMIC_TAG(name, value)
1529 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
1530 #define DYNAMIC_TAG_MARKER(name, value)
1531 #define DYNAMIC_TAG(name, value)                                               \
1532   case DT_##name:                                                              \
1533     return #name;
1534 #include "llvm/BinaryFormat/DynamicTags.def"
1535 #undef DYNAMIC_TAG
1536 #undef AARCH64_DYNAMIC_TAG
1537 #undef MIPS_DYNAMIC_TAG
1538 #undef HEXAGON_DYNAMIC_TAG
1539 #undef PPC64_DYNAMIC_TAG
1540 #undef DYNAMIC_TAG_MARKER
1541   default:
1542     return "unknown";
1543   }
1544 }
1545 
1546 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1547   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1548     auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
1549     if (!MappedAddrOrError) {
1550       reportWarning("Unable to parse DT_" +
1551                     Twine(getTypeString(
1552                         ObjF->getELFFile()->getHeader()->e_machine, Tag)) +
1553                     ": " + llvm::toString(MappedAddrOrError.takeError()));
1554       return nullptr;
1555     }
1556     return MappedAddrOrError.get();
1557   };
1558 
1559   uint64_t SONameOffset = 0;
1560   const char *StringTableBegin = nullptr;
1561   uint64_t StringTableSize = 0;
1562   for (const Elf_Dyn &Dyn : dynamic_table()) {
1563     switch (Dyn.d_tag) {
1564     case ELF::DT_HASH:
1565       HashTable = reinterpret_cast<const Elf_Hash *>(
1566           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1567       break;
1568     case ELF::DT_GNU_HASH:
1569       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1570           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1571       break;
1572     case ELF::DT_STRTAB:
1573       StringTableBegin = reinterpret_cast<const char *>(
1574           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1575       break;
1576     case ELF::DT_STRSZ:
1577       StringTableSize = Dyn.getVal();
1578       break;
1579     case ELF::DT_SYMTAB:
1580       DynSymRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1581       DynSymRegion.EntSize = sizeof(Elf_Sym);
1582       break;
1583     case ELF::DT_RELA:
1584       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1585       break;
1586     case ELF::DT_RELASZ:
1587       DynRelaRegion.Size = Dyn.getVal();
1588       break;
1589     case ELF::DT_RELAENT:
1590       DynRelaRegion.EntSize = Dyn.getVal();
1591       break;
1592     case ELF::DT_SONAME:
1593       SONameOffset = Dyn.getVal();
1594       break;
1595     case ELF::DT_REL:
1596       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1597       break;
1598     case ELF::DT_RELSZ:
1599       DynRelRegion.Size = Dyn.getVal();
1600       break;
1601     case ELF::DT_RELENT:
1602       DynRelRegion.EntSize = Dyn.getVal();
1603       break;
1604     case ELF::DT_RELR:
1605     case ELF::DT_ANDROID_RELR:
1606       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1607       break;
1608     case ELF::DT_RELRSZ:
1609     case ELF::DT_ANDROID_RELRSZ:
1610       DynRelrRegion.Size = Dyn.getVal();
1611       break;
1612     case ELF::DT_RELRENT:
1613     case ELF::DT_ANDROID_RELRENT:
1614       DynRelrRegion.EntSize = Dyn.getVal();
1615       break;
1616     case ELF::DT_PLTREL:
1617       if (Dyn.getVal() == DT_REL)
1618         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
1619       else if (Dyn.getVal() == DT_RELA)
1620         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
1621       else
1622         reportError(Twine("unknown DT_PLTREL value of ") +
1623                     Twine((uint64_t)Dyn.getVal()));
1624       break;
1625     case ELF::DT_JMPREL:
1626       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1627       break;
1628     case ELF::DT_PLTRELSZ:
1629       DynPLTRelRegion.Size = Dyn.getVal();
1630       break;
1631     }
1632   }
1633   if (StringTableBegin)
1634     DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
1635   if (SONameOffset && SONameOffset < DynamicStringTable.size())
1636     SOName = DynamicStringTable.data() + SONameOffset;
1637 }
1638 
1639 template <typename ELFT>
1640 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
1641   return DynRelRegion.getAsArrayRef<Elf_Rel>();
1642 }
1643 
1644 template <typename ELFT>
1645 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
1646   return DynRelaRegion.getAsArrayRef<Elf_Rela>();
1647 }
1648 
1649 template <typename ELFT>
1650 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
1651   return DynRelrRegion.getAsArrayRef<Elf_Relr>();
1652 }
1653 
1654 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
1655   ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
1656 }
1657 
1658 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
1659   ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
1660 }
1661 
1662 template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
1663   ELFDumperStyle->printRelocations(ObjF->getELFFile());
1664 }
1665 
1666 template <class ELFT>
1667 void ELFDumper<ELFT>::printProgramHeaders(
1668     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
1669   ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
1670                                       PrintSectionMapping);
1671 }
1672 
1673 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
1674   // Dump version symbol section.
1675   ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
1676                                             SymbolVersionSection);
1677 
1678   // Dump version definition section.
1679   ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
1680                                                 SymbolVersionDefSection);
1681 
1682   // Dump version dependency section.
1683   ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
1684                                                 SymbolVersionNeedSection);
1685 }
1686 
1687 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
1688   ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
1689 }
1690 
1691 template <class ELFT>
1692 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
1693                                    bool PrintDynamicSymbols) {
1694   ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
1695                                PrintDynamicSymbols);
1696 }
1697 
1698 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
1699   ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
1700 }
1701 
1702 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() {
1703   ELFDumperStyle->printHashHistogram(ObjF->getELFFile());
1704 }
1705 
1706 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
1707   ELFDumperStyle->printCGProfile(ObjF->getELFFile());
1708 }
1709 
1710 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
1711   ELFDumperStyle->printNotes(ObjF->getELFFile());
1712 }
1713 
1714 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
1715   ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
1716 }
1717 
1718 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
1719   { #enum, prefix##_##enum }
1720 
1721 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
1722   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
1723   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
1724   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
1725   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
1726   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
1727 };
1728 
1729 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
1730   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
1731   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
1732   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
1733   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
1734   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
1735   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
1736   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
1737   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
1738   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
1739   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
1740   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
1741   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
1742   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
1743   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
1744   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
1745   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
1746   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
1747   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
1748   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
1749   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
1750   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
1751   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
1752   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
1753   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
1754   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
1755   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
1756 };
1757 
1758 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
1759   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
1760   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
1761   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
1762   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
1763   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
1764   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
1765   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
1766   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
1767   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
1768   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
1769   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
1770   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
1771   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
1772   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
1773   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
1774   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
1775 };
1776 
1777 #undef LLVM_READOBJ_DT_FLAG_ENT
1778 
1779 template <typename T, typename TFlag>
1780 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
1781   using FlagEntry = EnumEntry<TFlag>;
1782   using FlagVector = SmallVector<FlagEntry, 10>;
1783   FlagVector SetFlags;
1784 
1785   for (const auto &Flag : Flags) {
1786     if (Flag.Value == 0)
1787       continue;
1788 
1789     if ((Value & Flag.Value) == Flag.Value)
1790       SetFlags.push_back(Flag);
1791   }
1792 
1793   for (const auto &Flag : SetFlags) {
1794     OS << Flag.Name << " ";
1795   }
1796 }
1797 
1798 template <class ELFT>
1799 void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type,
1800                                         uint64_t Value) const {
1801   const char *ConvChar =
1802       (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
1803 
1804   // Handle custom printing of architecture specific tags
1805   switch (ObjF->getELFFile()->getHeader()->e_machine) {
1806   case EM_AARCH64:
1807     switch (Type) {
1808     case DT_AARCH64_BTI_PLT:
1809     case DT_AARCH64_PAC_PLT:
1810       OS << Value;
1811       return;
1812     default:
1813       break;
1814     }
1815     break;
1816   case EM_HEXAGON:
1817     switch (Type) {
1818     case DT_HEXAGON_VER:
1819       OS << Value;
1820       return;
1821     case DT_HEXAGON_SYMSZ:
1822     case DT_HEXAGON_PLT:
1823       OS << format(ConvChar, Value);
1824       return;
1825     default:
1826       break;
1827     }
1828     break;
1829   case EM_MIPS:
1830     switch (Type) {
1831     case DT_MIPS_RLD_VERSION:
1832     case DT_MIPS_LOCAL_GOTNO:
1833     case DT_MIPS_SYMTABNO:
1834     case DT_MIPS_UNREFEXTNO:
1835       OS << Value;
1836       return;
1837     case DT_MIPS_TIME_STAMP:
1838     case DT_MIPS_ICHECKSUM:
1839     case DT_MIPS_IVERSION:
1840     case DT_MIPS_BASE_ADDRESS:
1841     case DT_MIPS_MSYM:
1842     case DT_MIPS_CONFLICT:
1843     case DT_MIPS_LIBLIST:
1844     case DT_MIPS_CONFLICTNO:
1845     case DT_MIPS_LIBLISTNO:
1846     case DT_MIPS_GOTSYM:
1847     case DT_MIPS_HIPAGENO:
1848     case DT_MIPS_RLD_MAP:
1849     case DT_MIPS_DELTA_CLASS:
1850     case DT_MIPS_DELTA_CLASS_NO:
1851     case DT_MIPS_DELTA_INSTANCE:
1852     case DT_MIPS_DELTA_RELOC:
1853     case DT_MIPS_DELTA_RELOC_NO:
1854     case DT_MIPS_DELTA_SYM:
1855     case DT_MIPS_DELTA_SYM_NO:
1856     case DT_MIPS_DELTA_CLASSSYM:
1857     case DT_MIPS_DELTA_CLASSSYM_NO:
1858     case DT_MIPS_CXX_FLAGS:
1859     case DT_MIPS_PIXIE_INIT:
1860     case DT_MIPS_SYMBOL_LIB:
1861     case DT_MIPS_LOCALPAGE_GOTIDX:
1862     case DT_MIPS_LOCAL_GOTIDX:
1863     case DT_MIPS_HIDDEN_GOTIDX:
1864     case DT_MIPS_PROTECTED_GOTIDX:
1865     case DT_MIPS_OPTIONS:
1866     case DT_MIPS_INTERFACE:
1867     case DT_MIPS_DYNSTR_ALIGN:
1868     case DT_MIPS_INTERFACE_SIZE:
1869     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
1870     case DT_MIPS_PERF_SUFFIX:
1871     case DT_MIPS_COMPACT_SIZE:
1872     case DT_MIPS_GP_VALUE:
1873     case DT_MIPS_AUX_DYNAMIC:
1874     case DT_MIPS_PLTGOT:
1875     case DT_MIPS_RWPLT:
1876     case DT_MIPS_RLD_MAP_REL:
1877       OS << format(ConvChar, Value);
1878       return;
1879     case DT_MIPS_FLAGS:
1880       printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
1881       return;
1882     default:
1883       break;
1884     }
1885     break;
1886   default:
1887     break;
1888   }
1889 
1890   switch (Type) {
1891   case DT_PLTREL:
1892     if (Value == DT_REL) {
1893       OS << "REL";
1894       break;
1895     } else if (Value == DT_RELA) {
1896       OS << "RELA";
1897       break;
1898     }
1899     LLVM_FALLTHROUGH;
1900   case DT_PLTGOT:
1901   case DT_HASH:
1902   case DT_STRTAB:
1903   case DT_SYMTAB:
1904   case DT_RELA:
1905   case DT_INIT:
1906   case DT_FINI:
1907   case DT_REL:
1908   case DT_JMPREL:
1909   case DT_INIT_ARRAY:
1910   case DT_FINI_ARRAY:
1911   case DT_PREINIT_ARRAY:
1912   case DT_DEBUG:
1913   case DT_VERDEF:
1914   case DT_VERNEED:
1915   case DT_VERSYM:
1916   case DT_GNU_HASH:
1917   case DT_NULL:
1918     OS << format(ConvChar, Value);
1919     break;
1920   case DT_RELACOUNT:
1921   case DT_RELCOUNT:
1922   case DT_VERDEFNUM:
1923   case DT_VERNEEDNUM:
1924     OS << Value;
1925     break;
1926   case DT_PLTRELSZ:
1927   case DT_RELASZ:
1928   case DT_RELAENT:
1929   case DT_STRSZ:
1930   case DT_SYMENT:
1931   case DT_RELSZ:
1932   case DT_RELENT:
1933   case DT_INIT_ARRAYSZ:
1934   case DT_FINI_ARRAYSZ:
1935   case DT_PREINIT_ARRAYSZ:
1936   case DT_ANDROID_RELSZ:
1937   case DT_ANDROID_RELASZ:
1938     OS << Value << " (bytes)";
1939     break;
1940   case DT_NEEDED:
1941   case DT_SONAME:
1942   case DT_AUXILIARY:
1943   case DT_USED:
1944   case DT_FILTER:
1945   case DT_RPATH:
1946   case DT_RUNPATH: {
1947     const std::map<uint64_t, const char*> TagNames = {
1948       {DT_NEEDED,    "Shared library"},
1949       {DT_SONAME,    "Library soname"},
1950       {DT_AUXILIARY, "Auxiliary library"},
1951       {DT_USED,      "Not needed object"},
1952       {DT_FILTER,    "Filter library"},
1953       {DT_RPATH,     "Library rpath"},
1954       {DT_RUNPATH,   "Library runpath"},
1955     };
1956     OS << TagNames.at(Type) << ": ";
1957     if (DynamicStringTable.empty())
1958       OS << "<String table is empty or was not found> ";
1959     else if (Value < DynamicStringTable.size())
1960       OS << "[" << StringRef(DynamicStringTable.data() + Value) << "]";
1961     else
1962       OS << "<Invalid offset 0x" << utohexstr(Value) << ">";
1963     break;
1964   }
1965   case DT_FLAGS:
1966     printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
1967     break;
1968   case DT_FLAGS_1:
1969     printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
1970     break;
1971   default:
1972     OS << format(ConvChar, Value);
1973     break;
1974   }
1975 }
1976 
1977 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
1978   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
1979   Ctx.printUnwindInformation();
1980 }
1981 
1982 namespace {
1983 
1984 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
1985   const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
1986   const unsigned Machine = Obj->getHeader()->e_machine;
1987   if (Machine == EM_ARM) {
1988     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, DotSymtabSec);
1989     Ctx.PrintUnwindInformation();
1990   }
1991   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
1992   Ctx.printUnwindInformation();
1993 }
1994 
1995 } // end anonymous namespace
1996 
1997 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
1998   ELFDumperStyle->printDynamic(ObjF->getELFFile());
1999 }
2000 
2001 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2002   ListScope D(W, "NeededLibraries");
2003 
2004   using LibsTy = std::vector<StringRef>;
2005   LibsTy Libs;
2006 
2007   for (const auto &Entry : dynamic_table())
2008     if (Entry.d_tag == ELF::DT_NEEDED) {
2009       uint64_t Value = Entry.d_un.d_val;
2010       if (Value < DynamicStringTable.size())
2011         Libs.push_back(StringRef(DynamicStringTable.data() + Value));
2012       else
2013         Libs.push_back("<Library name index out of range>");
2014     }
2015 
2016   llvm::stable_sort(Libs);
2017 
2018   for (const auto &L : Libs)
2019     W.startLine() << L << "\n";
2020 }
2021 
2022 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2023   DictScope D(W, "HashTable");
2024   if (!HashTable)
2025     return;
2026   W.printNumber("Num Buckets", HashTable->nbucket);
2027   W.printNumber("Num Chains", HashTable->nchain);
2028   W.printList("Buckets", HashTable->buckets());
2029   W.printList("Chains", HashTable->chains());
2030 }
2031 
2032 template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() {
2033   DictScope D(W, "GnuHashTable");
2034   if (!GnuHashTable)
2035     return;
2036   W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2037   W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2038   W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2039   W.printNumber("Shift Count", GnuHashTable->shift2);
2040   W.printHexList("Bloom Filter", GnuHashTable->filter());
2041   W.printList("Buckets", GnuHashTable->buckets());
2042   Elf_Sym_Range Syms = dynamic_symbols();
2043   unsigned NumSyms = std::distance(Syms.begin(), Syms.end());
2044   if (!NumSyms)
2045     reportError("No dynamic symbol section");
2046   W.printHexList("Values", GnuHashTable->values(NumSyms));
2047 }
2048 
2049 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2050   W.printString("LoadName", SOName);
2051 }
2052 
2053 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2054   W.startLine() << "Attributes not implemented.\n";
2055 }
2056 
2057 namespace {
2058 
2059 template <> void ELFDumper<ELF32LE>::printAttributes() {
2060   const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2061   if (Obj->getHeader()->e_machine != EM_ARM) {
2062     W.startLine() << "Attributes not implemented.\n";
2063     return;
2064   }
2065 
2066   DictScope BA(W, "BuildAttributes");
2067   for (const ELFO::Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2068     if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
2069       continue;
2070 
2071     ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Sec));
2072     if (Contents[0] != ARMBuildAttrs::Format_Version) {
2073       errs() << "unrecognised FormatVersion: 0x"
2074              << Twine::utohexstr(Contents[0]) << '\n';
2075       continue;
2076     }
2077 
2078     W.printHex("FormatVersion", Contents[0]);
2079     if (Contents.size() == 1)
2080       continue;
2081 
2082     ARMAttributeParser(&W).Parse(Contents, true);
2083   }
2084 }
2085 
2086 template <class ELFT> class MipsGOTParser {
2087 public:
2088   TYPEDEF_ELF_TYPES(ELFT)
2089   using Entry = typename ELFO::Elf_Addr;
2090   using Entries = ArrayRef<Entry>;
2091 
2092   const bool IsStatic;
2093   const ELFO * const Obj;
2094 
2095   MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2096 
2097   bool hasGot() const { return !GotEntries.empty(); }
2098   bool hasPlt() const { return !PltEntries.empty(); }
2099 
2100   uint64_t getGp() const;
2101 
2102   const Entry *getGotLazyResolver() const;
2103   const Entry *getGotModulePointer() const;
2104   const Entry *getPltLazyResolver() const;
2105   const Entry *getPltModulePointer() const;
2106 
2107   Entries getLocalEntries() const;
2108   Entries getGlobalEntries() const;
2109   Entries getOtherEntries() const;
2110   Entries getPltEntries() const;
2111 
2112   uint64_t getGotAddress(const Entry * E) const;
2113   int64_t getGotOffset(const Entry * E) const;
2114   const Elf_Sym *getGotSym(const Entry *E) const;
2115 
2116   uint64_t getPltAddress(const Entry * E) const;
2117   const Elf_Sym *getPltSym(const Entry *E) const;
2118 
2119   StringRef getPltStrTable() const { return PltStrTable; }
2120 
2121 private:
2122   const Elf_Shdr *GotSec;
2123   size_t LocalNum;
2124   size_t GlobalNum;
2125 
2126   const Elf_Shdr *PltSec;
2127   const Elf_Shdr *PltRelSec;
2128   const Elf_Shdr *PltSymTable;
2129   Elf_Sym_Range GotDynSyms;
2130   StringRef PltStrTable;
2131 
2132   Entries GotEntries;
2133   Entries PltEntries;
2134 };
2135 
2136 } // end anonymous namespace
2137 
2138 template <class ELFT>
2139 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, Elf_Dyn_Range DynTable,
2140                                    Elf_Sym_Range DynSyms)
2141     : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2142       GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr) {
2143   // See "Global Offset Table" in Chapter 5 in the following document
2144   // for detailed GOT description.
2145   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2146 
2147   // Find static GOT secton.
2148   if (IsStatic) {
2149     GotSec = findSectionByName(*Obj, ".got");
2150     if (!GotSec)
2151       reportError("Cannot find .got section");
2152 
2153     ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2154     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2155                          Content.size() / sizeof(Entry));
2156     LocalNum = GotEntries.size();
2157     return;
2158   }
2159 
2160   // Lookup dynamic table tags which define GOT/PLT layouts.
2161   Optional<uint64_t> DtPltGot;
2162   Optional<uint64_t> DtLocalGotNum;
2163   Optional<uint64_t> DtGotSym;
2164   Optional<uint64_t> DtMipsPltGot;
2165   Optional<uint64_t> DtJmpRel;
2166   for (const auto &Entry : DynTable) {
2167     switch (Entry.getTag()) {
2168     case ELF::DT_PLTGOT:
2169       DtPltGot = Entry.getVal();
2170       break;
2171     case ELF::DT_MIPS_LOCAL_GOTNO:
2172       DtLocalGotNum = Entry.getVal();
2173       break;
2174     case ELF::DT_MIPS_GOTSYM:
2175       DtGotSym = Entry.getVal();
2176       break;
2177     case ELF::DT_MIPS_PLTGOT:
2178       DtMipsPltGot = Entry.getVal();
2179       break;
2180     case ELF::DT_JMPREL:
2181       DtJmpRel = Entry.getVal();
2182       break;
2183     }
2184   }
2185 
2186   // Find dynamic GOT section.
2187   if (DtPltGot || DtLocalGotNum || DtGotSym) {
2188     if (!DtPltGot)
2189       report_fatal_error("Cannot find PLTGOT dynamic table tag.");
2190     if (!DtLocalGotNum)
2191       report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag.");
2192     if (!DtGotSym)
2193       report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag.");
2194 
2195     size_t DynSymTotal = DynSyms.size();
2196     if (*DtGotSym > DynSymTotal)
2197       reportError("MIPS_GOTSYM exceeds a number of dynamic symbols");
2198 
2199     GotSec = findNotEmptySectionByAddress(Obj, *DtPltGot);
2200     if (!GotSec)
2201       reportError("There is no not empty GOT section at 0x" +
2202                   Twine::utohexstr(*DtPltGot));
2203 
2204     LocalNum = *DtLocalGotNum;
2205     GlobalNum = DynSymTotal - *DtGotSym;
2206 
2207     ArrayRef<uint8_t> Content = unwrapOrError(Obj->getSectionContents(GotSec));
2208     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2209                          Content.size() / sizeof(Entry));
2210     GotDynSyms = DynSyms.drop_front(*DtGotSym);
2211   }
2212 
2213   // Find PLT section.
2214   if (DtMipsPltGot || DtJmpRel) {
2215     if (!DtMipsPltGot)
2216       report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag.");
2217     if (!DtJmpRel)
2218       report_fatal_error("Cannot find JMPREL dynamic table tag.");
2219 
2220     PltSec = findNotEmptySectionByAddress(Obj, *DtMipsPltGot);
2221     if (!PltSec)
2222       report_fatal_error("There is no not empty PLTGOT section at 0x " +
2223                          Twine::utohexstr(*DtMipsPltGot));
2224 
2225     PltRelSec = findNotEmptySectionByAddress(Obj, *DtJmpRel);
2226     if (!PltRelSec)
2227       report_fatal_error("There is no not empty RELPLT section at 0x" +
2228                          Twine::utohexstr(*DtJmpRel));
2229 
2230     ArrayRef<uint8_t> PltContent =
2231         unwrapOrError(Obj->getSectionContents(PltSec));
2232     PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()),
2233                          PltContent.size() / sizeof(Entry));
2234 
2235     PltSymTable = unwrapOrError(Obj->getSection(PltRelSec->sh_link));
2236     PltStrTable = unwrapOrError(Obj->getStringTableForSymtab(*PltSymTable));
2237   }
2238 }
2239 
2240 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2241   return GotSec->sh_addr + 0x7ff0;
2242 }
2243 
2244 template <class ELFT>
2245 const typename MipsGOTParser<ELFT>::Entry *
2246 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2247   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2248 }
2249 
2250 template <class ELFT>
2251 const typename MipsGOTParser<ELFT>::Entry *
2252 MipsGOTParser<ELFT>::getGotModulePointer() const {
2253   if (LocalNum < 2)
2254     return nullptr;
2255   const Entry &E = GotEntries[1];
2256   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2257     return nullptr;
2258   return &E;
2259 }
2260 
2261 template <class ELFT>
2262 typename MipsGOTParser<ELFT>::Entries
2263 MipsGOTParser<ELFT>::getLocalEntries() const {
2264   size_t Skip = getGotModulePointer() ? 2 : 1;
2265   if (LocalNum - Skip <= 0)
2266     return Entries();
2267   return GotEntries.slice(Skip, LocalNum - Skip);
2268 }
2269 
2270 template <class ELFT>
2271 typename MipsGOTParser<ELFT>::Entries
2272 MipsGOTParser<ELFT>::getGlobalEntries() const {
2273   if (GlobalNum == 0)
2274     return Entries();
2275   return GotEntries.slice(LocalNum, GlobalNum);
2276 }
2277 
2278 template <class ELFT>
2279 typename MipsGOTParser<ELFT>::Entries
2280 MipsGOTParser<ELFT>::getOtherEntries() const {
2281   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2282   if (OtherNum == 0)
2283     return Entries();
2284   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2285 }
2286 
2287 template <class ELFT>
2288 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2289   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2290   return GotSec->sh_addr + Offset;
2291 }
2292 
2293 template <class ELFT>
2294 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2295   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2296   return Offset - 0x7ff0;
2297 }
2298 
2299 template <class ELFT>
2300 const typename MipsGOTParser<ELFT>::Elf_Sym *
2301 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2302   int64_t Offset = std::distance(GotEntries.data(), E);
2303   return &GotDynSyms[Offset - LocalNum];
2304 }
2305 
2306 template <class ELFT>
2307 const typename MipsGOTParser<ELFT>::Entry *
2308 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2309   return PltEntries.empty() ? nullptr : &PltEntries[0];
2310 }
2311 
2312 template <class ELFT>
2313 const typename MipsGOTParser<ELFT>::Entry *
2314 MipsGOTParser<ELFT>::getPltModulePointer() const {
2315   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2316 }
2317 
2318 template <class ELFT>
2319 typename MipsGOTParser<ELFT>::Entries
2320 MipsGOTParser<ELFT>::getPltEntries() const {
2321   if (PltEntries.size() <= 2)
2322     return Entries();
2323   return PltEntries.slice(2, PltEntries.size() - 2);
2324 }
2325 
2326 template <class ELFT>
2327 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
2328   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
2329   return PltSec->sh_addr + Offset;
2330 }
2331 
2332 template <class ELFT>
2333 const typename MipsGOTParser<ELFT>::Elf_Sym *
2334 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
2335   int64_t Offset = std::distance(getPltEntries().data(), E);
2336   if (PltRelSec->sh_type == ELF::SHT_REL) {
2337     Elf_Rel_Range Rels = unwrapOrError(Obj->rels(PltRelSec));
2338     return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2339   } else {
2340     Elf_Rela_Range Rels = unwrapOrError(Obj->relas(PltRelSec));
2341     return unwrapOrError(Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
2342   }
2343 }
2344 
2345 template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
2346   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2347   if (Obj->getHeader()->e_machine != EM_MIPS)
2348     reportError("MIPS PLT GOT is available for MIPS targets only");
2349 
2350   MipsGOTParser<ELFT> Parser(Obj, dynamic_table(), dynamic_symbols());
2351   if (Parser.hasGot())
2352     ELFDumperStyle->printMipsGOT(Parser);
2353   if (Parser.hasPlt())
2354     ELFDumperStyle->printMipsPLT(Parser);
2355 }
2356 
2357 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
2358   {"None",                    Mips::AFL_EXT_NONE},
2359   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
2360   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
2361   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
2362   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
2363   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
2364   {"LSI R4010",               Mips::AFL_EXT_4010},
2365   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
2366   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
2367   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
2368   {"MIPS R4650",              Mips::AFL_EXT_4650},
2369   {"MIPS R5900",              Mips::AFL_EXT_5900},
2370   {"MIPS R10000",             Mips::AFL_EXT_10000},
2371   {"NEC VR4100",              Mips::AFL_EXT_4100},
2372   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
2373   {"NEC VR4120",              Mips::AFL_EXT_4120},
2374   {"NEC VR5400",              Mips::AFL_EXT_5400},
2375   {"NEC VR5500",              Mips::AFL_EXT_5500},
2376   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
2377   {"Toshiba R3900",           Mips::AFL_EXT_3900}
2378 };
2379 
2380 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
2381   {"DSP",                Mips::AFL_ASE_DSP},
2382   {"DSPR2",              Mips::AFL_ASE_DSPR2},
2383   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
2384   {"MCU",                Mips::AFL_ASE_MCU},
2385   {"MDMX",               Mips::AFL_ASE_MDMX},
2386   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
2387   {"MT",                 Mips::AFL_ASE_MT},
2388   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
2389   {"VZ",                 Mips::AFL_ASE_VIRT},
2390   {"MSA",                Mips::AFL_ASE_MSA},
2391   {"MIPS16",             Mips::AFL_ASE_MIPS16},
2392   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
2393   {"XPA",                Mips::AFL_ASE_XPA},
2394   {"CRC",                Mips::AFL_ASE_CRC},
2395   {"GINV",               Mips::AFL_ASE_GINV},
2396 };
2397 
2398 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
2399   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
2400   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
2401   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
2402   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
2403   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
2404    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
2405   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
2406   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
2407   {"Hard float compat (32-bit CPU, 64-bit FPU)",
2408    Mips::Val_GNU_MIPS_ABI_FP_64A}
2409 };
2410 
2411 static const EnumEntry<unsigned> ElfMipsFlags1[] {
2412   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
2413 };
2414 
2415 static int getMipsRegisterSize(uint8_t Flag) {
2416   switch (Flag) {
2417   case Mips::AFL_REG_NONE:
2418     return 0;
2419   case Mips::AFL_REG_32:
2420     return 32;
2421   case Mips::AFL_REG_64:
2422     return 64;
2423   case Mips::AFL_REG_128:
2424     return 128;
2425   default:
2426     return -1;
2427   }
2428 }
2429 
2430 template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
2431   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2432   const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
2433   if (!Shdr) {
2434     W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
2435     return;
2436   }
2437   ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2438   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
2439     W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
2440     return;
2441   }
2442 
2443   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
2444 
2445   raw_ostream &OS = W.getOStream();
2446   DictScope GS(W, "MIPS ABI Flags");
2447 
2448   W.printNumber("Version", Flags->version);
2449   W.startLine() << "ISA: ";
2450   if (Flags->isa_rev <= 1)
2451     OS << format("MIPS%u", Flags->isa_level);
2452   else
2453     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
2454   OS << "\n";
2455   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
2456   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
2457   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
2458   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
2459   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
2460   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
2461   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
2462   W.printHex("Flags 2", Flags->flags2);
2463 }
2464 
2465 template <class ELFT>
2466 static void printMipsReginfoData(ScopedPrinter &W,
2467                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
2468   W.printHex("GP", Reginfo.ri_gp_value);
2469   W.printHex("General Mask", Reginfo.ri_gprmask);
2470   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
2471   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
2472   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
2473   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
2474 }
2475 
2476 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
2477   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2478   const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
2479   if (!Shdr) {
2480     W.startLine() << "There is no .reginfo section in the file.\n";
2481     return;
2482   }
2483   ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2484   if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
2485     W.startLine() << "The .reginfo section has a wrong size.\n";
2486     return;
2487   }
2488 
2489   DictScope GS(W, "MIPS RegInfo");
2490   auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
2491   printMipsReginfoData(W, *Reginfo);
2492 }
2493 
2494 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
2495   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2496   const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.options");
2497   if (!Shdr) {
2498     W.startLine() << "There is no .MIPS.options section in the file.\n";
2499     return;
2500   }
2501 
2502   DictScope GS(W, "MIPS Options");
2503 
2504   ArrayRef<uint8_t> Sec = unwrapOrError(Obj->getSectionContents(Shdr));
2505   while (!Sec.empty()) {
2506     if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
2507       W.startLine() << "The .MIPS.options section has a wrong size.\n";
2508       return;
2509     }
2510     auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
2511     DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
2512     switch (O->kind) {
2513     case ODK_REGINFO:
2514       printMipsReginfoData(W, O->getRegInfo());
2515       break;
2516     default:
2517       W.startLine() << "Unsupported MIPS options tag.\n";
2518       break;
2519     }
2520     Sec = Sec.slice(O->size);
2521   }
2522 }
2523 
2524 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
2525   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2526   const Elf_Shdr *StackMapSection = nullptr;
2527   for (const auto &Sec : unwrapOrError(Obj->sections())) {
2528     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2529     if (Name == ".llvm_stackmaps") {
2530       StackMapSection = &Sec;
2531       break;
2532     }
2533   }
2534 
2535   if (!StackMapSection)
2536     return;
2537 
2538   ArrayRef<uint8_t> StackMapContentsArray =
2539       unwrapOrError(Obj->getSectionContents(StackMapSection));
2540 
2541   prettyPrintStackMap(
2542       W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
2543 }
2544 
2545 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
2546   ELFDumperStyle->printGroupSections(ObjF->getELFFile());
2547 }
2548 
2549 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
2550   ELFDumperStyle->printAddrsig(ObjF->getELFFile());
2551 }
2552 
2553 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
2554                                StringRef Str2) {
2555   OS.PadToColumn(2u);
2556   OS << Str1;
2557   OS.PadToColumn(37u);
2558   OS << Str2 << "\n";
2559   OS.flush();
2560 }
2561 
2562 template <class ELFT>
2563 static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj) {
2564   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
2565   if (ElfHeader->e_shnum != 0)
2566     return to_string(ElfHeader->e_shnum);
2567 
2568   ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(Obj->sections());
2569   if (Arr.empty())
2570     return "0";
2571   return "0 (" + to_string(Arr[0].sh_size) + ")";
2572 }
2573 
2574 template <class ELFT>
2575 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj) {
2576   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
2577   if (ElfHeader->e_shstrndx != SHN_XINDEX)
2578     return to_string(ElfHeader->e_shstrndx);
2579 
2580   ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(Obj->sections());
2581   if (Arr.empty())
2582     return "65535 (corrupt: out of range)";
2583   return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
2584          ")";
2585 }
2586 
2587 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
2588   const Elf_Ehdr *e = Obj->getHeader();
2589   OS << "ELF Header:\n";
2590   OS << "  Magic:  ";
2591   std::string Str;
2592   for (int i = 0; i < ELF::EI_NIDENT; i++)
2593     OS << format(" %02x", static_cast<int>(e->e_ident[i]));
2594   OS << "\n";
2595   Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
2596   printFields(OS, "Class:", Str);
2597   Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
2598   printFields(OS, "Data:", Str);
2599   OS.PadToColumn(2u);
2600   OS << "Version:";
2601   OS.PadToColumn(37u);
2602   OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
2603   if (e->e_version == ELF::EV_CURRENT)
2604     OS << " (current)";
2605   OS << "\n";
2606   Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
2607   printFields(OS, "OS/ABI:", Str);
2608   Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]);
2609   printFields(OS, "ABI Version:", Str);
2610   Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
2611   printFields(OS, "Type:", Str);
2612   Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
2613   printFields(OS, "Machine:", Str);
2614   Str = "0x" + to_hexString(e->e_version);
2615   printFields(OS, "Version:", Str);
2616   Str = "0x" + to_hexString(e->e_entry);
2617   printFields(OS, "Entry point address:", Str);
2618   Str = to_string(e->e_phoff) + " (bytes into file)";
2619   printFields(OS, "Start of program headers:", Str);
2620   Str = to_string(e->e_shoff) + " (bytes into file)";
2621   printFields(OS, "Start of section headers:", Str);
2622   std::string ElfFlags;
2623   if (e->e_machine == EM_MIPS)
2624     ElfFlags =
2625         printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
2626                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
2627                    unsigned(ELF::EF_MIPS_MACH));
2628   else if (e->e_machine == EM_RISCV)
2629     ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
2630   Str = "0x" + to_hexString(e->e_flags);
2631   if (!ElfFlags.empty())
2632     Str = Str + ", " + ElfFlags;
2633   printFields(OS, "Flags:", Str);
2634   Str = to_string(e->e_ehsize) + " (bytes)";
2635   printFields(OS, "Size of this header:", Str);
2636   Str = to_string(e->e_phentsize) + " (bytes)";
2637   printFields(OS, "Size of program headers:", Str);
2638   Str = to_string(e->e_phnum);
2639   printFields(OS, "Number of program headers:", Str);
2640   Str = to_string(e->e_shentsize) + " (bytes)";
2641   printFields(OS, "Size of section headers:", Str);
2642   Str = getSectionHeadersNumString(Obj);
2643   printFields(OS, "Number of section headers:", Str);
2644   Str = getSectionHeaderTableIndexString(Obj);
2645   printFields(OS, "Section header string table index:", Str);
2646 }
2647 
2648 namespace {
2649 struct GroupMember {
2650   StringRef Name;
2651   uint64_t Index;
2652 };
2653 
2654 struct GroupSection {
2655   StringRef Name;
2656   std::string Signature;
2657   uint64_t ShName;
2658   uint64_t Index;
2659   uint32_t Link;
2660   uint32_t Info;
2661   uint32_t Type;
2662   std::vector<GroupMember> Members;
2663 };
2664 
2665 template <class ELFT>
2666 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj) {
2667   using Elf_Shdr = typename ELFT::Shdr;
2668   using Elf_Sym = typename ELFT::Sym;
2669   using Elf_Word = typename ELFT::Word;
2670 
2671   std::vector<GroupSection> Ret;
2672   uint64_t I = 0;
2673   for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2674     ++I;
2675     if (Sec.sh_type != ELF::SHT_GROUP)
2676       continue;
2677 
2678     const Elf_Shdr *Symtab = unwrapOrError(Obj->getSection(Sec.sh_link));
2679     StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
2680     const Elf_Sym *Sym =
2681         unwrapOrError(Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
2682     auto Data =
2683         unwrapOrError(Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
2684 
2685     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2686     StringRef Signature = StrTable.data() + Sym->st_name;
2687     Ret.push_back({Name,
2688                    maybeDemangle(Signature),
2689                    Sec.sh_name,
2690                    I - 1,
2691                    Sec.sh_link,
2692                    Sec.sh_info,
2693                    Data[0],
2694                    {}});
2695 
2696     std::vector<GroupMember> &GM = Ret.back().Members;
2697     for (uint32_t Ndx : Data.slice(1)) {
2698       auto Sec = unwrapOrError(Obj->getSection(Ndx));
2699       const StringRef Name = unwrapOrError(Obj->getSectionName(Sec));
2700       GM.push_back({Name, Ndx});
2701     }
2702   }
2703   return Ret;
2704 }
2705 
2706 DenseMap<uint64_t, const GroupSection *>
2707 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
2708   DenseMap<uint64_t, const GroupSection *> Ret;
2709   for (const GroupSection &G : Groups)
2710     for (const GroupMember &GM : G.Members)
2711       Ret.insert({GM.Index, &G});
2712   return Ret;
2713 }
2714 
2715 } // namespace
2716 
2717 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
2718   std::vector<GroupSection> V = getGroups<ELFT>(Obj);
2719   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
2720   for (const GroupSection &G : V) {
2721     OS << "\n"
2722        << getGroupType(G.Type) << " group section ["
2723        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
2724        << "] contains " << G.Members.size() << " sections:\n"
2725        << "   [Index]    Name\n";
2726     for (const GroupMember &GM : G.Members) {
2727       const GroupSection *MainGroup = Map[GM.Index];
2728       if (MainGroup != &G) {
2729         OS.flush();
2730         errs() << "Error: section [" << format_decimal(GM.Index, 5)
2731                << "] in group section [" << format_decimal(G.Index, 5)
2732                << "] already in group section ["
2733                << format_decimal(MainGroup->Index, 5) << "]";
2734         errs().flush();
2735         continue;
2736       }
2737       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
2738     }
2739   }
2740 
2741   if (V.empty())
2742     OS << "There are no section groups in this file.\n";
2743 }
2744 
2745 template <class ELFT>
2746 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab,
2747                                      const Elf_Rela &R, bool IsRela) {
2748   const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&R, SymTab));
2749   std::string TargetName;
2750   if (Sym && Sym->getType() == ELF::STT_SECTION) {
2751     const Elf_Shdr *Sec = unwrapOrError(
2752         Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
2753     TargetName = unwrapOrError(Obj->getSectionName(Sec));
2754   } else if (Sym) {
2755     StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
2756     TargetName = this->dumper()->getFullSymbolName(
2757         Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
2758   }
2759   printRelocation(Obj, Sym, TargetName, R, IsRela);
2760 }
2761 
2762 template <class ELFT>
2763 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
2764                                      StringRef SymbolName, const Elf_Rela &R,
2765                                      bool IsRela) {
2766   // First two fields are bit width dependent. The rest of them are fixed width.
2767   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
2768   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
2769   unsigned Width = ELFT::Is64Bits ? 16 : 8;
2770 
2771   Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
2772   Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
2773 
2774   SmallString<32> RelocName;
2775   Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
2776   Fields[2].Str = RelocName.c_str();
2777 
2778   if (Sym && (!SymbolName.empty() || Sym->getValue() != 0))
2779     Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
2780 
2781   Fields[4].Str = SymbolName;
2782   for (const Field &F : Fields)
2783     printField(F);
2784 
2785   std::string Addend;
2786   if (IsRela) {
2787     int64_t RelAddend = R.r_addend;
2788     if (!SymbolName.empty()) {
2789       if (R.r_addend < 0) {
2790         Addend = " - ";
2791         RelAddend = std::abs(RelAddend);
2792       } else
2793         Addend = " + ";
2794     }
2795 
2796     Addend += to_hexString(RelAddend, false);
2797   }
2798   OS << Addend << "\n";
2799 }
2800 
2801 template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
2802   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
2803   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
2804   if (ELFT::Is64Bits)
2805     OS << "    ";
2806   else
2807     OS << " ";
2808   if (IsRelr && opts::RawRelr)
2809     OS << "Data  ";
2810   else
2811     OS << "Offset";
2812   if (ELFT::Is64Bits)
2813     OS << "             Info             Type"
2814        << "               Symbol's Value  Symbol's Name";
2815   else
2816     OS << "     Info    Type                Sym. Value  Symbol's Name";
2817   if (IsRela)
2818     OS << " + Addend";
2819   OS << "\n";
2820 }
2821 
2822 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
2823   bool HasRelocSections = false;
2824   for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
2825     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
2826         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
2827         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
2828         Sec.sh_type != ELF::SHT_ANDROID_RELR)
2829       continue;
2830     HasRelocSections = true;
2831     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
2832     unsigned Entries = Sec.getEntityCount();
2833     std::vector<Elf_Rela> AndroidRelas;
2834     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
2835         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
2836       // Android's packed relocation section needs to be unpacked first
2837       // to get the actual number of entries.
2838       AndroidRelas = unwrapOrError(Obj->android_relas(&Sec));
2839       Entries = AndroidRelas.size();
2840     }
2841     std::vector<Elf_Rela> RelrRelas;
2842     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
2843                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
2844       // .relr.dyn relative relocation section needs to be unpacked first
2845       // to get the actual number of entries.
2846       Elf_Relr_Range Relrs = unwrapOrError(Obj->relrs(&Sec));
2847       RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
2848       Entries = RelrRelas.size();
2849     }
2850     uintX_t Offset = Sec.sh_offset;
2851     OS << "\nRelocation section '" << Name << "' at offset 0x"
2852        << to_hexString(Offset, false) << " contains " << Entries
2853        << " entries:\n";
2854     printRelocHeader(Sec.sh_type);
2855     const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec.sh_link));
2856     switch (Sec.sh_type) {
2857     case ELF::SHT_REL:
2858       for (const auto &R : unwrapOrError(Obj->rels(&Sec))) {
2859         Elf_Rela Rela;
2860         Rela.r_offset = R.r_offset;
2861         Rela.r_info = R.r_info;
2862         Rela.r_addend = 0;
2863         printRelocation(Obj, SymTab, Rela, false);
2864       }
2865       break;
2866     case ELF::SHT_RELA:
2867       for (const auto &R : unwrapOrError(Obj->relas(&Sec)))
2868         printRelocation(Obj, SymTab, R, true);
2869       break;
2870     case ELF::SHT_RELR:
2871     case ELF::SHT_ANDROID_RELR:
2872       if (opts::RawRelr)
2873         for (const auto &R : unwrapOrError(Obj->relrs(&Sec)))
2874           OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
2875              << "\n";
2876       else
2877         for (const auto &R : RelrRelas)
2878           printRelocation(Obj, SymTab, R, false);
2879       break;
2880     case ELF::SHT_ANDROID_REL:
2881     case ELF::SHT_ANDROID_RELA:
2882       for (const auto &R : AndroidRelas)
2883         printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA);
2884       break;
2885     }
2886   }
2887   if (!HasRelocSections)
2888     OS << "\nThere are no relocations in this file.\n";
2889 }
2890 
2891 // Print the offset of a particular section from anyone of the ranges:
2892 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
2893 // If 'Type' does not fall within any of those ranges, then a string is
2894 // returned as '<unknown>' followed by the type value.
2895 static std::string getSectionTypeOffsetString(unsigned Type) {
2896   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
2897     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
2898   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
2899     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
2900   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
2901     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
2902   return "0x" + to_hexString(Type) + ": <unknown>";
2903 }
2904 
2905 static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
2906   using namespace ELF;
2907 
2908   switch (Arch) {
2909   case EM_ARM:
2910     switch (Type) {
2911     case SHT_ARM_EXIDX:
2912       return "ARM_EXIDX";
2913     case SHT_ARM_PREEMPTMAP:
2914       return "ARM_PREEMPTMAP";
2915     case SHT_ARM_ATTRIBUTES:
2916       return "ARM_ATTRIBUTES";
2917     case SHT_ARM_DEBUGOVERLAY:
2918       return "ARM_DEBUGOVERLAY";
2919     case SHT_ARM_OVERLAYSECTION:
2920       return "ARM_OVERLAYSECTION";
2921     }
2922     break;
2923   case EM_X86_64:
2924     switch (Type) {
2925     case SHT_X86_64_UNWIND:
2926       return "X86_64_UNWIND";
2927     }
2928     break;
2929   case EM_MIPS:
2930   case EM_MIPS_RS3_LE:
2931     switch (Type) {
2932     case SHT_MIPS_REGINFO:
2933       return "MIPS_REGINFO";
2934     case SHT_MIPS_OPTIONS:
2935       return "MIPS_OPTIONS";
2936     case SHT_MIPS_DWARF:
2937       return "MIPS_DWARF";
2938     case SHT_MIPS_ABIFLAGS:
2939       return "MIPS_ABIFLAGS";
2940     }
2941     break;
2942   }
2943   switch (Type) {
2944   case SHT_NULL:
2945     return "NULL";
2946   case SHT_PROGBITS:
2947     return "PROGBITS";
2948   case SHT_SYMTAB:
2949     return "SYMTAB";
2950   case SHT_STRTAB:
2951     return "STRTAB";
2952   case SHT_RELA:
2953     return "RELA";
2954   case SHT_HASH:
2955     return "HASH";
2956   case SHT_DYNAMIC:
2957     return "DYNAMIC";
2958   case SHT_NOTE:
2959     return "NOTE";
2960   case SHT_NOBITS:
2961     return "NOBITS";
2962   case SHT_REL:
2963     return "REL";
2964   case SHT_SHLIB:
2965     return "SHLIB";
2966   case SHT_DYNSYM:
2967     return "DYNSYM";
2968   case SHT_INIT_ARRAY:
2969     return "INIT_ARRAY";
2970   case SHT_FINI_ARRAY:
2971     return "FINI_ARRAY";
2972   case SHT_PREINIT_ARRAY:
2973     return "PREINIT_ARRAY";
2974   case SHT_GROUP:
2975     return "GROUP";
2976   case SHT_SYMTAB_SHNDX:
2977     return "SYMTAB SECTION INDICES";
2978   case SHT_ANDROID_REL:
2979     return "ANDROID_REL";
2980   case SHT_ANDROID_RELA:
2981     return "ANDROID_RELA";
2982   case SHT_RELR:
2983   case SHT_ANDROID_RELR:
2984     return "RELR";
2985   case SHT_LLVM_ODRTAB:
2986     return "LLVM_ODRTAB";
2987   case SHT_LLVM_LINKER_OPTIONS:
2988     return "LLVM_LINKER_OPTIONS";
2989   case SHT_LLVM_CALL_GRAPH_PROFILE:
2990     return "LLVM_CALL_GRAPH_PROFILE";
2991   case SHT_LLVM_ADDRSIG:
2992     return "LLVM_ADDRSIG";
2993   case SHT_LLVM_DEPENDENT_LIBRARIES:
2994     return "LLVM_DEPENDENT_LIBRARIES";
2995   // FIXME: Parse processor specific GNU attributes
2996   case SHT_GNU_ATTRIBUTES:
2997     return "ATTRIBUTES";
2998   case SHT_GNU_HASH:
2999     return "GNU_HASH";
3000   case SHT_GNU_verdef:
3001     return "VERDEF";
3002   case SHT_GNU_verneed:
3003     return "VERNEED";
3004   case SHT_GNU_versym:
3005     return "VERSYM";
3006   default:
3007     return getSectionTypeOffsetString(Type);
3008   }
3009   return "";
3010 }
3011 
3012 template <class ELFT>
3013 static StringRef getSectionName(const typename ELFT::Shdr &Sec,
3014                                 const ELFObjectFile<ELFT> &ElfObj,
3015                                 ArrayRef<typename ELFT::Shdr> Sections) {
3016   const ELFFile<ELFT> &Obj = *ElfObj.getELFFile();
3017   uint32_t Index = Obj.getHeader()->e_shstrndx;
3018   if (Index == ELF::SHN_XINDEX)
3019     Index = Sections[0].sh_link;
3020   if (!Index) // no section string table.
3021     return "";
3022   // TODO: Test a case when the sh_link of the section with index 0 is broken.
3023   if (Index >= Sections.size())
3024     reportError(ElfObj.getFileName(),
3025                 createError("section header string table index " +
3026                             Twine(Index) + " does not exist"));
3027   StringRef Data = toStringRef(unwrapOrError(
3028       Obj.template getSectionContentsAsArray<uint8_t>(&Sections[Index])));
3029   return unwrapOrError(Obj.getSectionName(&Sec, Data));
3030 }
3031 
3032 template <class ELFT>
3033 void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
3034   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3035   ArrayRef<Elf_Shdr> Sections = unwrapOrError(Obj->sections());
3036   OS << "There are " << to_string(Sections.size())
3037      << " section headers, starting at offset "
3038      << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
3039   OS << "Section Headers:\n";
3040   Field Fields[11] = {
3041       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3042       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3043       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3044       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3045   for (auto &F : Fields)
3046     printField(F);
3047   OS << "\n";
3048 
3049   const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
3050   size_t SectionIndex = 0;
3051   for (const Elf_Shdr &Sec : Sections) {
3052     Fields[0].Str = to_string(SectionIndex);
3053     Fields[1].Str = getSectionName(Sec, *ElfObj, Sections);
3054     Fields[2].Str =
3055         getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
3056     Fields[3].Str =
3057         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3058     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3059     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3060     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3061     Fields[7].Str = getGNUFlags(Sec.sh_flags);
3062     Fields[8].Str = to_string(Sec.sh_link);
3063     Fields[9].Str = to_string(Sec.sh_info);
3064     Fields[10].Str = to_string(Sec.sh_addralign);
3065 
3066     OS.PadToColumn(Fields[0].Column);
3067     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3068     for (int i = 1; i < 7; i++)
3069       printField(Fields[i]);
3070     OS.PadToColumn(Fields[7].Column);
3071     OS << right_justify(Fields[7].Str, 3);
3072     OS.PadToColumn(Fields[8].Column);
3073     OS << right_justify(Fields[8].Str, 2);
3074     OS.PadToColumn(Fields[9].Column);
3075     OS << right_justify(Fields[9].Str, 3);
3076     OS.PadToColumn(Fields[10].Column);
3077     OS << right_justify(Fields[10].Str, 2);
3078     OS << "\n";
3079     ++SectionIndex;
3080   }
3081   OS << "Key to Flags:\n"
3082      << "  W (write), A (alloc), X (execute), M (merge), S (strings), l "
3083         "(large)\n"
3084      << "  I (info), L (link order), G (group), T (TLS), E (exclude),\
3085  x (unknown)\n"
3086      << "  O (extra OS processing required) o (OS specific),\
3087  p (processor specific)\n";
3088 }
3089 
3090 template <class ELFT>
3091 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
3092                                         size_t Entries) {
3093   if (!Name.empty())
3094     OS << "\nSymbol table '" << Name << "' contains " << Entries
3095        << " entries:\n";
3096   else
3097     OS << "\n Symbol table for image:\n";
3098 
3099   if (ELFT::Is64Bits)
3100     OS << "   Num:    Value          Size Type    Bind   Vis      Ndx Name\n";
3101   else
3102     OS << "   Num:    Value  Size Type    Bind   Vis      Ndx Name\n";
3103 }
3104 
3105 template <class ELFT>
3106 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
3107                                                 const Elf_Sym *Symbol,
3108                                                 const Elf_Sym *FirstSym) {
3109   unsigned SectionIndex = Symbol->st_shndx;
3110   switch (SectionIndex) {
3111   case ELF::SHN_UNDEF:
3112     return "UND";
3113   case ELF::SHN_ABS:
3114     return "ABS";
3115   case ELF::SHN_COMMON:
3116     return "COM";
3117   case ELF::SHN_XINDEX:
3118     return to_string(
3119         format_decimal(unwrapOrError(object::getExtendedSymbolTableIndex<ELFT>(
3120                            Symbol, FirstSym, this->dumper()->getShndxTable())),
3121                        3));
3122   default:
3123     // Find if:
3124     // Processor specific
3125     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3126       return std::string("PRC[0x") +
3127              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3128     // OS specific
3129     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3130       return std::string("OS[0x") +
3131              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3132     // Architecture reserved:
3133     if (SectionIndex >= ELF::SHN_LORESERVE &&
3134         SectionIndex <= ELF::SHN_HIRESERVE)
3135       return std::string("RSV[0x") +
3136              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3137     // A normal section with an index
3138     return to_string(format_decimal(SectionIndex, 3));
3139   }
3140 }
3141 
3142 template <class ELFT>
3143 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
3144                                  const Elf_Sym *FirstSym, StringRef StrTable,
3145                                  bool IsDynamic) {
3146   static int Idx = 0;
3147   static bool Dynamic = true;
3148 
3149   // If this function was called with a different value from IsDynamic
3150   // from last call, happens when we move from dynamic to static symbol
3151   // table, "Num" field should be reset.
3152   if (!Dynamic != !IsDynamic) {
3153     Idx = 0;
3154     Dynamic = false;
3155   }
3156 
3157   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3158   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3159                      31 + Bias, 38 + Bias, 47 + Bias, 51 + Bias};
3160   Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
3161   Fields[1].Str = to_string(
3162       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3163   Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
3164 
3165   unsigned char SymbolType = Symbol->getType();
3166   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3167       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3168     Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3169   else
3170     Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3171 
3172   Fields[4].Str =
3173       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3174   Fields[5].Str =
3175       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3176   Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3177   Fields[7].Str =
3178       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
3179   for (auto &Entry : Fields)
3180     printField(Entry);
3181   OS << "\n";
3182 }
3183 
3184 template <class ELFT>
3185 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
3186                                        uint32_t Sym, StringRef StrTable,
3187                                        uint32_t Bucket) {
3188   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3189   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3190                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3191   Fields[0].Str = to_string(format_decimal(Sym, 5));
3192   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3193 
3194   const auto Symbol = FirstSym + Sym;
3195   Fields[2].Str = to_string(
3196       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 18 : 8));
3197   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3198 
3199   unsigned char SymbolType = Symbol->getType();
3200   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
3201       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3202     Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
3203   else
3204     Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
3205 
3206   Fields[5].Str =
3207       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
3208   Fields[6].Str =
3209       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
3210   Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
3211   Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
3212 
3213   for (auto &Entry : Fields)
3214     printField(Entry);
3215   OS << "\n";
3216 }
3217 
3218 template <class ELFT>
3219 void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
3220                                   bool PrintDynamicSymbols) {
3221   if (!PrintSymbols && !PrintDynamicSymbols)
3222     return;
3223   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3224   this->dumper()->printSymbolsHelper(true);
3225   if (PrintSymbols)
3226     this->dumper()->printSymbolsHelper(false);
3227 }
3228 
3229 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
3230   if (this->dumper()->getDynamicStringTable().empty())
3231     return;
3232   auto StringTable = this->dumper()->getDynamicStringTable();
3233   auto DynSyms = this->dumper()->dynamic_symbols();
3234 
3235   // Try printing .hash
3236   if (auto SysVHash = this->dumper()->getHashTable()) {
3237     OS << "\n Symbol table of .hash for image:\n";
3238     if (ELFT::Is64Bits)
3239       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3240     else
3241       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3242     OS << "\n";
3243 
3244     auto Buckets = SysVHash->buckets();
3245     auto Chains = SysVHash->chains();
3246     for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) {
3247       if (Buckets[Buc] == ELF::STN_UNDEF)
3248         continue;
3249       for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) {
3250         if (Ch == ELF::STN_UNDEF)
3251           break;
3252         printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc);
3253       }
3254     }
3255   }
3256 
3257   // Try printing .gnu.hash
3258   if (auto GnuHash = this->dumper()->getGnuHashTable()) {
3259     OS << "\n Symbol table of .gnu.hash for image:\n";
3260     if (ELFT::Is64Bits)
3261       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3262     else
3263       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3264     OS << "\n";
3265     auto Buckets = GnuHash->buckets();
3266     for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) {
3267       if (Buckets[Buc] == ELF::STN_UNDEF)
3268         continue;
3269       uint32_t Index = Buckets[Buc];
3270       uint32_t GnuHashable = Index - GnuHash->symndx;
3271       // Print whole chain
3272       while (true) {
3273         printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc);
3274         // Chain ends at symbol with stopper bit
3275         if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1)
3276           break;
3277       }
3278     }
3279   }
3280 }
3281 
3282 static inline std::string printPhdrFlags(unsigned Flag) {
3283   std::string Str;
3284   Str = (Flag & PF_R) ? "R" : " ";
3285   Str += (Flag & PF_W) ? "W" : " ";
3286   Str += (Flag & PF_X) ? "E" : " ";
3287   return Str;
3288 }
3289 
3290 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO
3291 // PT_TLS must only have SHF_TLS sections
3292 template <class ELFT>
3293 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr,
3294                                       const Elf_Shdr &Sec) {
3295   return (((Sec.sh_flags & ELF::SHF_TLS) &&
3296            ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
3297             (Phdr.p_type == ELF::PT_GNU_RELRO))) ||
3298           (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS));
3299 }
3300 
3301 // Non-SHT_NOBITS must have its offset inside the segment
3302 // Only non-zero section can be at end of segment
3303 template <class ELFT>
3304 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3305   if (Sec.sh_type == ELF::SHT_NOBITS)
3306     return true;
3307   bool IsSpecial =
3308       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3309   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3310   auto SectionSize =
3311       (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3312   if (Sec.sh_offset >= Phdr.p_offset)
3313     return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset)
3314             /*only non-zero sized sections at end*/
3315             && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz));
3316   return false;
3317 }
3318 
3319 // SHF_ALLOC must have VMA inside segment
3320 // Only non-zero section can be at end of segment
3321 template <class ELFT>
3322 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3323   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
3324     return true;
3325   bool IsSpecial =
3326       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
3327   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties
3328   auto SectionSize =
3329       (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size;
3330   if (Sec.sh_addr >= Phdr.p_vaddr)
3331     return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) &&
3332             (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz));
3333   return false;
3334 }
3335 
3336 // No section with zero size must be at start or end of PT_DYNAMIC
3337 template <class ELFT>
3338 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) {
3339   if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0)
3340     return true;
3341   // Is section within the phdr both based on offset and VMA ?
3342   return ((Sec.sh_type == ELF::SHT_NOBITS) ||
3343           (Sec.sh_offset > Phdr.p_offset &&
3344            Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) &&
3345          (!(Sec.sh_flags & ELF::SHF_ALLOC) ||
3346           (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz));
3347 }
3348 
3349 template <class ELFT>
3350 void GNUStyle<ELFT>::printProgramHeaders(
3351     const ELFO *Obj, bool PrintProgramHeaders,
3352     cl::boolOrDefault PrintSectionMapping) {
3353   if (PrintProgramHeaders)
3354     printProgramHeaders(Obj);
3355 
3356   // Display the section mapping along with the program headers, unless
3357   // -section-mapping is explicitly set to false.
3358   if (PrintSectionMapping != cl::BOU_FALSE)
3359     printSectionMapping(Obj);
3360 }
3361 
3362 template <class ELFT>
3363 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
3364   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3365   const Elf_Ehdr *Header = Obj->getHeader();
3366   Field Fields[8] = {2,         17,        26,        37 + Bias,
3367                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
3368   OS << "\nElf file type is "
3369      << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
3370      << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
3371      << "There are " << Header->e_phnum << " program headers,"
3372      << " starting at offset " << Header->e_phoff << "\n\n"
3373      << "Program Headers:\n";
3374   if (ELFT::Is64Bits)
3375     OS << "  Type           Offset   VirtAddr           PhysAddr         "
3376        << "  FileSiz  MemSiz   Flg Align\n";
3377   else
3378     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
3379        << "MemSiz  Flg Align\n";
3380 
3381   unsigned Width = ELFT::Is64Bits ? 18 : 10;
3382   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
3383   for (const auto &Phdr : unwrapOrError(Obj->program_headers())) {
3384     Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
3385     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
3386     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
3387     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
3388     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
3389     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
3390     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
3391     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
3392     for (auto Field : Fields)
3393       printField(Field);
3394     if (Phdr.p_type == ELF::PT_INTERP) {
3395       OS << "\n      [Requesting program interpreter: ";
3396       OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]";
3397     }
3398     OS << "\n";
3399   }
3400 }
3401 
3402 template <class ELFT>
3403 void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
3404   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
3405   DenseSet<const Elf_Shdr *> BelongsToSegment;
3406   int Phnum = 0;
3407   for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
3408     std::string Sections;
3409     OS << format("   %2.2d     ", Phnum++);
3410     for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3411       // Check if each section is in a segment and then print mapping.
3412       // readelf additionally makes sure it does not print zero sized sections
3413       // at end of segments and for PT_DYNAMIC both start and end of section
3414       // .tbss must only be shown in PT_TLS section.
3415       bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) &&
3416                           ((Sec.sh_flags & ELF::SHF_TLS) != 0) &&
3417                           Phdr.p_type != ELF::PT_TLS;
3418       if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) &&
3419           checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) &&
3420           checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) {
3421         Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + " ";
3422         BelongsToSegment.insert(&Sec);
3423       }
3424     }
3425     OS << Sections << "\n";
3426     OS.flush();
3427   }
3428 
3429   // Display sections that do not belong to a segment.
3430   std::string Sections;
3431   for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
3432     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
3433       Sections += unwrapOrError(Obj->getSectionName(&Sec)).str() + ' ';
3434   }
3435   if (!Sections.empty()) {
3436     OS << "   None  " << Sections << '\n';
3437     OS.flush();
3438   }
3439 }
3440 
3441 template <class ELFT>
3442 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
3443                                             bool IsRela) {
3444   uint32_t SymIndex = R.getSymbol(Obj->isMips64EL());
3445   const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
3446   std::string SymbolName = maybeDemangle(
3447       unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable())));
3448   printRelocation(Obj, Sym, SymbolName, R, IsRela);
3449 }
3450 
3451 template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
3452   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
3453   if (Table.empty())
3454     return;
3455 
3456   const DynRegionInfo &DynamicTableRegion =
3457       this->dumper()->getDynamicTableRegion();
3458 
3459   OS << "Dynamic section at offset "
3460      << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
3461                        Obj->base(),
3462                    1)
3463      << " contains " << Table.size() << " entries:\n";
3464 
3465   bool Is64 = ELFT::Is64Bits;
3466   if (Is64)
3467     OS << "  Tag                Type                 Name/Value\n";
3468   else
3469     OS << "  Tag        Type                 Name/Value\n";
3470   for (auto Entry : Table) {
3471     uintX_t Tag = Entry.getTag();
3472     std::string TypeString = std::string("(") +
3473                              getTypeString(Obj->getHeader()->e_machine, Tag) +
3474                              ")";
3475     OS << "  " << format_hex(Tag, Is64 ? 18 : 10)
3476        << format(" %-20s ", TypeString.c_str());
3477     this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
3478     OS << "\n";
3479   }
3480 }
3481 
3482 template <class ELFT>
3483 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
3484   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
3485   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
3486   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
3487   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
3488   if (DynRelaRegion.Size > 0) {
3489     OS << "\n'RELA' relocation section at offset "
3490        << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
3491                          Obj->base(),
3492                      1)
3493        << " contains " << DynRelaRegion.Size << " bytes:\n";
3494     printRelocHeader(ELF::SHT_RELA);
3495     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
3496       printDynamicRelocation(Obj, Rela, true);
3497   }
3498   if (DynRelRegion.Size > 0) {
3499     OS << "\n'REL' relocation section at offset "
3500        << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
3501                          Obj->base(),
3502                      1)
3503        << " contains " << DynRelRegion.Size << " bytes:\n";
3504     printRelocHeader(ELF::SHT_REL);
3505     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
3506       Elf_Rela Rela;
3507       Rela.r_offset = Rel.r_offset;
3508       Rela.r_info = Rel.r_info;
3509       Rela.r_addend = 0;
3510       printDynamicRelocation(Obj, Rela, false);
3511     }
3512   }
3513   if (DynRelrRegion.Size > 0) {
3514     OS << "\n'RELR' relocation section at offset "
3515        << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
3516                          Obj->base(),
3517                      1)
3518        << " contains " << DynRelrRegion.Size << " bytes:\n";
3519     printRelocHeader(ELF::SHT_REL);
3520     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
3521     std::vector<Elf_Rela> RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
3522     for (const Elf_Rela &Rela : RelrRelas) {
3523       printDynamicRelocation(Obj, Rela, false);
3524     }
3525   }
3526   if (DynPLTRelRegion.Size) {
3527     OS << "\n'PLT' relocation section at offset "
3528        << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
3529                          Obj->base(),
3530                      1)
3531        << " contains " << DynPLTRelRegion.Size << " bytes:\n";
3532   }
3533   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
3534     printRelocHeader(ELF::SHT_RELA);
3535     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
3536       printDynamicRelocation(Obj, Rela, true);
3537   } else {
3538     printRelocHeader(ELF::SHT_REL);
3539     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
3540       Elf_Rela Rela;
3541       Rela.r_offset = Rel.r_offset;
3542       Rela.r_info = Rel.r_info;
3543       Rela.r_addend = 0;
3544       printDynamicRelocation(Obj, Rela, false);
3545     }
3546   }
3547 }
3548 
3549 template <class ELFT>
3550 static void printGNUVersionSectionProlog(formatted_raw_ostream &OS,
3551                                          const Twine &Name, unsigned EntriesNum,
3552                                          const ELFFile<ELFT> *Obj,
3553                                          const typename ELFT::Shdr *Sec) {
3554   StringRef SecName = unwrapOrError(Obj->getSectionName(Sec));
3555   OS << Name << " section '" << SecName << "' "
3556      << "contains " << EntriesNum << " entries:\n";
3557 
3558   const typename ELFT::Shdr *SymTab =
3559       unwrapOrError(Obj->getSection(Sec->sh_link));
3560   StringRef SymTabName = unwrapOrError(Obj->getSectionName(SymTab));
3561   OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
3562      << "  Offset: " << format_hex(Sec->sh_offset, 8)
3563      << "  Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
3564 }
3565 
3566 template <class ELFT>
3567 void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
3568                                                const Elf_Shdr *Sec) {
3569   if (!Sec)
3570     return;
3571 
3572   unsigned Entries = Sec->sh_size / sizeof(Elf_Versym);
3573   printGNUVersionSectionProlog(OS, "Version symbols", Entries, Obj, Sec);
3574 
3575   const uint8_t *VersymBuf =
3576       reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
3577   const ELFDumper<ELFT> *Dumper = this->dumper();
3578   StringRef StrTable = Dumper->getDynamicStringTable();
3579 
3580   // readelf prints 4 entries per line.
3581   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
3582     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
3583 
3584     for (uint64_t VersymIndex = 0;
3585          (VersymIndex < 4) && (VersymIndex + VersymRow) < Entries;
3586          ++VersymIndex) {
3587       const Elf_Versym *Versym =
3588           reinterpret_cast<const Elf_Versym *>(VersymBuf);
3589       switch (Versym->vs_index) {
3590       case 0:
3591         OS << "   0 (*local*)    ";
3592         break;
3593       case 1:
3594         OS << "   1 (*global*)   ";
3595         break;
3596       default:
3597         OS << format("%4x%c", Versym->vs_index & VERSYM_VERSION,
3598                      Versym->vs_index & VERSYM_HIDDEN ? 'h' : ' ');
3599 
3600         bool IsDefault = true;
3601         std::string VersionName = Dumper->getSymbolVersionByIndex(
3602             StrTable, Versym->vs_index, IsDefault);
3603 
3604         if (!VersionName.empty())
3605           VersionName = "(" + VersionName + ")";
3606         else
3607           VersionName = "(*invalid*)";
3608         OS << left_justify(VersionName, 13);
3609       }
3610       VersymBuf += sizeof(Elf_Versym);
3611     }
3612     OS << '\n';
3613   }
3614   OS << '\n';
3615 }
3616 
3617 static std::string versionFlagToString(unsigned Flags) {
3618   if (Flags == 0)
3619     return "none";
3620 
3621   std::string Ret;
3622   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
3623     if (!(Flags & Flag))
3624       return;
3625     if (!Ret.empty())
3626       Ret += " | ";
3627     Ret += Name;
3628     Flags &= ~Flag;
3629   };
3630 
3631   AddFlag(VER_FLG_BASE, "BASE");
3632   AddFlag(VER_FLG_WEAK, "WEAK");
3633   AddFlag(VER_FLG_INFO, "INFO");
3634   AddFlag(~0, "<unknown>");
3635   return Ret;
3636 }
3637 
3638 template <class ELFT>
3639 void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
3640                                                    const Elf_Shdr *Sec) {
3641   if (!Sec)
3642     return;
3643 
3644   unsigned VerDefsNum = Sec->sh_info;
3645   printGNUVersionSectionProlog(OS, "Version definition", VerDefsNum, Obj, Sec);
3646 
3647   const Elf_Shdr *StrTabSec = unwrapOrError(Obj->getSection(Sec->sh_link));
3648   StringRef StringTable(
3649       reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
3650       (size_t)StrTabSec->sh_size);
3651 
3652   const uint8_t *VerdefBuf = unwrapOrError(Obj->getSectionContents(Sec)).data();
3653   const uint8_t *Begin = VerdefBuf;
3654 
3655   while (VerDefsNum--) {
3656     const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
3657     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u",
3658                  VerdefBuf - Begin, (unsigned)Verdef->vd_version,
3659                  versionFlagToString(Verdef->vd_flags).c_str(),
3660                  (unsigned)Verdef->vd_ndx, (unsigned)Verdef->vd_cnt);
3661 
3662     const uint8_t *VerdauxBuf = VerdefBuf + Verdef->vd_aux;
3663     const Elf_Verdaux *Verdaux =
3664         reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
3665     OS << format("  Name: %s\n",
3666                  StringTable.drop_front(Verdaux->vda_name).data());
3667 
3668     for (unsigned I = 1; I < Verdef->vd_cnt; ++I) {
3669       VerdauxBuf += Verdaux->vda_next;
3670       Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
3671       OS << format("  0x%04x: Parent %u: %s\n", VerdauxBuf - Begin, I,
3672                    StringTable.drop_front(Verdaux->vda_name).data());
3673     }
3674 
3675     VerdefBuf += Verdef->vd_next;
3676   }
3677   OS << '\n';
3678 }
3679 
3680 template <class ELFT>
3681 void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
3682                                                    const Elf_Shdr *Sec) {
3683   if (!Sec)
3684     return;
3685 
3686   unsigned VerneedNum = Sec->sh_info;
3687   printGNUVersionSectionProlog(OS, "Version needs", VerneedNum, Obj, Sec);
3688 
3689   ArrayRef<uint8_t> SecData = unwrapOrError(Obj->getSectionContents(Sec));
3690 
3691   const Elf_Shdr *StrTabSec = unwrapOrError(Obj->getSection(Sec->sh_link));
3692   StringRef StringTable = {
3693       reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset),
3694       (size_t)StrTabSec->sh_size};
3695 
3696   const uint8_t *VerneedBuf = SecData.data();
3697   for (unsigned I = 0; I < VerneedNum; ++I) {
3698     const Elf_Verneed *Verneed =
3699         reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
3700 
3701     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n",
3702                  reinterpret_cast<const uint8_t *>(Verneed) - SecData.begin(),
3703                  (unsigned)Verneed->vn_version,
3704                  StringTable.drop_front(Verneed->vn_file).data(),
3705                  (unsigned)Verneed->vn_cnt);
3706 
3707     const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
3708     for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
3709       const Elf_Vernaux *Vernaux =
3710           reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
3711 
3712       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n",
3713                    reinterpret_cast<const uint8_t *>(Vernaux) - SecData.begin(),
3714                    StringTable.drop_front(Vernaux->vna_name).data(),
3715                    versionFlagToString(Vernaux->vna_flags).c_str(),
3716                    (unsigned)Vernaux->vna_other);
3717       VernauxBuf += Vernaux->vna_next;
3718     }
3719     VerneedBuf += Verneed->vn_next;
3720   }
3721   OS << '\n';
3722 }
3723 
3724 // Hash histogram shows  statistics of how efficient the hash was for the
3725 // dynamic symbol table. The table shows number of hash buckets for different
3726 // lengths of chains as absolute number and percentage of the total buckets.
3727 // Additionally cumulative coverage of symbols for each set of buckets.
3728 template <class ELFT>
3729 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
3730   // Print histogram for .hash section
3731   if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
3732     size_t NBucket = HashTable->nbucket;
3733     size_t NChain = HashTable->nchain;
3734     ArrayRef<Elf_Word> Buckets = HashTable->buckets();
3735     ArrayRef<Elf_Word> Chains = HashTable->chains();
3736     size_t TotalSyms = 0;
3737     // If hash table is correct, we have at least chains with 0 length
3738     size_t MaxChain = 1;
3739     size_t CumulativeNonZero = 0;
3740 
3741     if (NChain == 0 || NBucket == 0)
3742       return;
3743 
3744     std::vector<size_t> ChainLen(NBucket, 0);
3745     // Go over all buckets and and note chain lengths of each bucket (total
3746     // unique chain lengths).
3747     for (size_t B = 0; B < NBucket; B++) {
3748       for (size_t C = Buckets[B]; C > 0 && C < NChain; C = Chains[C])
3749         if (MaxChain <= ++ChainLen[B])
3750           MaxChain++;
3751       TotalSyms += ChainLen[B];
3752     }
3753 
3754     if (!TotalSyms)
3755       return;
3756 
3757     std::vector<size_t> Count(MaxChain, 0) ;
3758     // Count how long is the chain for each bucket
3759     for (size_t B = 0; B < NBucket; B++)
3760       ++Count[ChainLen[B]];
3761     // Print Number of buckets with each chain lengths and their cumulative
3762     // coverage of the symbols
3763     OS << "Histogram for bucket list length (total of " << NBucket
3764        << " buckets)\n"
3765        << " Length  Number     % of total  Coverage\n";
3766     for (size_t I = 0; I < MaxChain; I++) {
3767       CumulativeNonZero += Count[I] * I;
3768       OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
3769                    (Count[I] * 100.0) / NBucket,
3770                    (CumulativeNonZero * 100.0) / TotalSyms);
3771     }
3772   }
3773 
3774   // Print histogram for .gnu.hash section
3775   if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
3776     size_t NBucket = GnuHashTable->nbuckets;
3777     ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
3778     unsigned NumSyms = this->dumper()->dynamic_symbols().size();
3779     if (!NumSyms)
3780       return;
3781     ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms);
3782     size_t Symndx = GnuHashTable->symndx;
3783     size_t TotalSyms = 0;
3784     size_t MaxChain = 1;
3785     size_t CumulativeNonZero = 0;
3786 
3787     if (Chains.empty() || NBucket == 0)
3788       return;
3789 
3790     std::vector<size_t> ChainLen(NBucket, 0);
3791 
3792     for (size_t B = 0; B < NBucket; B++) {
3793       if (!Buckets[B])
3794         continue;
3795       size_t Len = 1;
3796       for (size_t C = Buckets[B] - Symndx;
3797            C < Chains.size() && (Chains[C] & 1) == 0; C++)
3798         if (MaxChain < ++Len)
3799           MaxChain++;
3800       ChainLen[B] = Len;
3801       TotalSyms += Len;
3802     }
3803     MaxChain++;
3804 
3805     if (!TotalSyms)
3806       return;
3807 
3808     std::vector<size_t> Count(MaxChain, 0) ;
3809     for (size_t B = 0; B < NBucket; B++)
3810       ++Count[ChainLen[B]];
3811     // Print Number of buckets with each chain lengths and their cumulative
3812     // coverage of the symbols
3813     OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
3814        << " buckets)\n"
3815        << " Length  Number     % of total  Coverage\n";
3816     for (size_t I = 0; I <MaxChain; I++) {
3817       CumulativeNonZero += Count[I] * I;
3818       OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
3819                    (Count[I] * 100.0) / NBucket,
3820                    (CumulativeNonZero * 100.0) / TotalSyms);
3821     }
3822   }
3823 }
3824 
3825 template <class ELFT>
3826 void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
3827   OS << "GNUStyle::printCGProfile not implemented\n";
3828 }
3829 
3830 template <class ELFT>
3831 void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
3832     OS << "GNUStyle::printAddrsig not implemented\n";
3833 }
3834 
3835 static StringRef getGenericNoteTypeName(const uint32_t NT) {
3836   static const struct {
3837     uint32_t ID;
3838     const char *Name;
3839   } Notes[] = {
3840       {ELF::NT_VERSION, "NT_VERSION (version)"},
3841       {ELF::NT_ARCH, "NT_ARCH (architecture)"},
3842       {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
3843       {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
3844   };
3845 
3846   for (const auto &Note : Notes)
3847     if (Note.ID == NT)
3848       return Note.Name;
3849 
3850   return "";
3851 }
3852 
3853 static std::string getGNUNoteTypeName(const uint32_t NT) {
3854   static const struct {
3855     uint32_t ID;
3856     const char *Name;
3857   } Notes[] = {
3858       {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
3859       {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
3860       {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
3861       {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
3862       {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
3863   };
3864 
3865   for (const auto &Note : Notes)
3866     if (Note.ID == NT)
3867       return std::string(Note.Name);
3868 
3869   std::string string;
3870   raw_string_ostream OS(string);
3871   OS << format("Unknown note type (0x%08x)", NT);
3872   return OS.str();
3873 }
3874 
3875 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
3876   static const struct {
3877     uint32_t ID;
3878     const char *Name;
3879   } Notes[] = {
3880       {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
3881       {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
3882       {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
3883       {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
3884       {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
3885       {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
3886       {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
3887       {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
3888       {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
3889        "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
3890       {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
3891   };
3892 
3893   for (const auto &Note : Notes)
3894     if (Note.ID == NT)
3895       return std::string(Note.Name);
3896 
3897   std::string string;
3898   raw_string_ostream OS(string);
3899   OS << format("Unknown note type (0x%08x)", NT);
3900   return OS.str();
3901 }
3902 
3903 static std::string getAMDNoteTypeName(const uint32_t NT) {
3904   static const struct {
3905     uint32_t ID;
3906     const char *Name;
3907   } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
3908                 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
3909                {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
3910                {ELF::NT_AMD_AMDGPU_PAL_METADATA,
3911                 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
3912 
3913   for (const auto &Note : Notes)
3914     if (Note.ID == NT)
3915       return std::string(Note.Name);
3916 
3917   std::string string;
3918   raw_string_ostream OS(string);
3919   OS << format("Unknown note type (0x%08x)", NT);
3920   return OS.str();
3921 }
3922 
3923 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
3924   if (NT == ELF::NT_AMDGPU_METADATA)
3925     return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
3926 
3927   std::string string;
3928   raw_string_ostream OS(string);
3929   OS << format("Unknown note type (0x%08x)", NT);
3930   return OS.str();
3931 }
3932 
3933 template <typename ELFT>
3934 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
3935                                   ArrayRef<uint8_t> Data) {
3936   std::string str;
3937   raw_string_ostream OS(str);
3938   uint32_t PrData;
3939   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
3940     if (PrData & Flag) {
3941       PrData &= ~Flag;
3942       OS << Name;
3943       if (PrData)
3944         OS << ", ";
3945     }
3946   };
3947 
3948   switch (Type) {
3949   default:
3950     OS << format("<application-specific type 0x%x>", Type);
3951     return OS.str();
3952   case GNU_PROPERTY_STACK_SIZE: {
3953     OS << "stack size: ";
3954     if (DataSize == sizeof(typename ELFT::uint))
3955       OS << formatv("{0:x}",
3956                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
3957     else
3958       OS << format("<corrupt length: 0x%x>", DataSize);
3959     return OS.str();
3960   }
3961   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
3962     OS << "no copy on protected";
3963     if (DataSize)
3964       OS << format(" <corrupt length: 0x%x>", DataSize);
3965     return OS.str();
3966   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
3967   case GNU_PROPERTY_X86_FEATURE_1_AND:
3968     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
3969                                                         : "x86 feature: ");
3970     if (DataSize != 4) {
3971       OS << format("<corrupt length: 0x%x>", DataSize);
3972       return OS.str();
3973     }
3974     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
3975     if (PrData == 0) {
3976       OS << "<None>";
3977       return OS.str();
3978     }
3979     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
3980       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
3981       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
3982     } else {
3983       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
3984       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
3985     }
3986     if (PrData)
3987       OS << format("<unknown flags: 0x%x>", PrData);
3988     return OS.str();
3989   case GNU_PROPERTY_X86_ISA_1_NEEDED:
3990   case GNU_PROPERTY_X86_ISA_1_USED:
3991     OS << "x86 ISA "
3992        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
3993     if (DataSize != 4) {
3994       OS << format("<corrupt length: 0x%x>", DataSize);
3995       return OS.str();
3996     }
3997     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
3998     if (PrData == 0) {
3999       OS << "<None>";
4000       return OS.str();
4001     }
4002     DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
4003     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
4004     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
4005     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
4006     DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
4007     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
4008     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
4009     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
4010     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
4011     DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
4012     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
4013     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
4014     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
4015     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
4016     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
4017     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
4018     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
4019     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
4020     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
4021     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
4022     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
4023     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
4024     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
4025     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
4026     if (PrData)
4027       OS << format("<unknown flags: 0x%x>", PrData);
4028     return OS.str();
4029     break;
4030   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
4031   case GNU_PROPERTY_X86_FEATURE_2_USED:
4032     OS << "x86 feature "
4033        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
4034     if (DataSize != 4) {
4035       OS << format("<corrupt length: 0x%x>", DataSize);
4036       return OS.str();
4037     }
4038     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4039     if (PrData == 0) {
4040       OS << "<None>";
4041       return OS.str();
4042     }
4043     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
4044     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
4045     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
4046     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
4047     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
4048     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
4049     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
4050     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
4051     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
4052     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
4053     if (PrData)
4054       OS << format("<unknown flags: 0x%x>", PrData);
4055     return OS.str();
4056   }
4057 }
4058 
4059 template <typename ELFT>
4060 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
4061   using Elf_Word = typename ELFT::Word;
4062 
4063   SmallVector<std::string, 4> Properties;
4064   while (Arr.size() >= 8) {
4065     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
4066     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
4067     Arr = Arr.drop_front(8);
4068 
4069     // Take padding size into account if present.
4070     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
4071     std::string str;
4072     raw_string_ostream OS(str);
4073     if (Arr.size() < PaddedSize) {
4074       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
4075       Properties.push_back(OS.str());
4076       break;
4077     }
4078     Properties.push_back(
4079         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
4080     Arr = Arr.drop_front(PaddedSize);
4081   }
4082 
4083   if (!Arr.empty())
4084     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
4085 
4086   return Properties;
4087 }
4088 
4089 struct GNUAbiTag {
4090   std::string OSName;
4091   std::string ABI;
4092   bool IsValid;
4093 };
4094 
4095 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
4096   typedef typename ELFT::Word Elf_Word;
4097 
4098   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
4099                            reinterpret_cast<const Elf_Word *>(Desc.end()));
4100 
4101   if (Words.size() < 4)
4102     return {"", "", /*IsValid=*/false};
4103 
4104   static const char *OSNames[] = {
4105       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
4106   };
4107   StringRef OSName = "Unknown";
4108   if (Words[0] < array_lengthof(OSNames))
4109     OSName = OSNames[Words[0]];
4110   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
4111   std::string str;
4112   raw_string_ostream ABI(str);
4113   ABI << Major << "." << Minor << "." << Patch;
4114   return {OSName, ABI.str(), /*IsValid=*/true};
4115 }
4116 
4117 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
4118   std::string str;
4119   raw_string_ostream OS(str);
4120   for (const auto &B : Desc)
4121     OS << format_hex_no_prefix(B, 2);
4122   return OS.str();
4123 }
4124 
4125 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
4126   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4127 }
4128 
4129 template <typename ELFT>
4130 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
4131                          ArrayRef<uint8_t> Desc) {
4132   switch (NoteType) {
4133   default:
4134     return;
4135   case ELF::NT_GNU_ABI_TAG: {
4136     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
4137     if (!AbiTag.IsValid)
4138       OS << "    <corrupt GNU_ABI_TAG>";
4139     else
4140       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
4141     break;
4142   }
4143   case ELF::NT_GNU_BUILD_ID: {
4144     OS << "    Build ID: " << getGNUBuildId(Desc);
4145     break;
4146   }
4147   case ELF::NT_GNU_GOLD_VERSION:
4148     OS << "    Version: " << getGNUGoldVersion(Desc);
4149     break;
4150   case ELF::NT_GNU_PROPERTY_TYPE_0:
4151     OS << "    Properties:";
4152     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
4153       OS << "    " << Property << "\n";
4154     break;
4155   }
4156   OS << '\n';
4157 }
4158 
4159 struct AMDNote {
4160   std::string Type;
4161   std::string Value;
4162 };
4163 
4164 template <typename ELFT>
4165 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
4166   switch (NoteType) {
4167   default:
4168     return {"", ""};
4169   case ELF::NT_AMD_AMDGPU_HSA_METADATA:
4170     return {
4171         "HSA Metadata",
4172         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
4173   case ELF::NT_AMD_AMDGPU_ISA:
4174     return {
4175         "ISA Version",
4176         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
4177   }
4178 }
4179 
4180 struct AMDGPUNote {
4181   std::string Type;
4182   std::string Value;
4183 };
4184 
4185 template <typename ELFT>
4186 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
4187   switch (NoteType) {
4188   default:
4189     return {"", ""};
4190   case ELF::NT_AMDGPU_METADATA: {
4191     auto MsgPackString =
4192         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
4193     msgpack::Document MsgPackDoc;
4194     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
4195       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4196 
4197     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
4198     if (!Verifier.verify(MsgPackDoc.getRoot()))
4199       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
4200 
4201     std::string HSAMetadataString;
4202     raw_string_ostream StrOS(HSAMetadataString);
4203     MsgPackDoc.toYAML(StrOS);
4204 
4205     return {"AMDGPU Metadata", StrOS.str()};
4206   }
4207   }
4208 }
4209 
4210 template <class ELFT>
4211 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
4212   auto PrintHeader = [&](const typename ELFT::Off Offset,
4213                          const typename ELFT::Addr Size) {
4214     OS << "Displaying notes found at file offset " << format_hex(Offset, 10)
4215        << " with length " << format_hex(Size, 10) << ":\n"
4216        << "  Owner                 Data size\tDescription\n";
4217   };
4218 
4219   auto ProcessNote = [&](const Elf_Note &Note) {
4220     StringRef Name = Note.getName();
4221     ArrayRef<uint8_t> Descriptor = Note.getDesc();
4222     Elf_Word Type = Note.getType();
4223 
4224     OS << "  " << Name << std::string(22 - Name.size(), ' ')
4225        << format_hex(Descriptor.size(), 10) << '\t';
4226 
4227     if (Name == "GNU") {
4228       OS << getGNUNoteTypeName(Type) << '\n';
4229       printGNUNote<ELFT>(OS, Type, Descriptor);
4230     } else if (Name == "FreeBSD") {
4231       OS << getFreeBSDNoteTypeName(Type) << '\n';
4232     } else if (Name == "AMD") {
4233       OS << getAMDNoteTypeName(Type) << '\n';
4234       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
4235       if (!N.Type.empty())
4236         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
4237     } else if (Name == "AMDGPU") {
4238       OS << getAMDGPUNoteTypeName(Type) << '\n';
4239       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
4240       if (!N.Type.empty())
4241         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
4242     } else {
4243       StringRef NoteType = getGenericNoteTypeName(Type);
4244       if (!NoteType.empty())
4245         OS << NoteType;
4246       else
4247         OS << "Unknown note type: (" << format_hex(Type, 10) << ')';
4248     }
4249     OS << '\n';
4250   };
4251 
4252   if (Obj->getHeader()->e_type == ELF::ET_CORE) {
4253     for (const auto &P : unwrapOrError(Obj->program_headers())) {
4254       if (P.p_type != PT_NOTE)
4255         continue;
4256       PrintHeader(P.p_offset, P.p_filesz);
4257       Error Err = Error::success();
4258       for (const auto &Note : Obj->notes(P, Err))
4259         ProcessNote(Note);
4260       if (Err)
4261         error(std::move(Err));
4262     }
4263   } else {
4264     for (const auto &S : unwrapOrError(Obj->sections())) {
4265       if (S.sh_type != SHT_NOTE)
4266         continue;
4267       PrintHeader(S.sh_offset, S.sh_size);
4268       Error Err = Error::success();
4269       for (const auto &Note : Obj->notes(S, Err))
4270         ProcessNote(Note);
4271       if (Err)
4272         error(std::move(Err));
4273     }
4274   }
4275 }
4276 
4277 template <class ELFT>
4278 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
4279   OS << "printELFLinkerOptions not implemented!\n";
4280 }
4281 
4282 template <class ELFT>
4283 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
4284   size_t Bias = ELFT::Is64Bits ? 8 : 0;
4285   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
4286     OS.PadToColumn(2);
4287     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
4288     OS.PadToColumn(11 + Bias);
4289     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
4290     OS.PadToColumn(22 + Bias);
4291     OS << format_hex_no_prefix(*E, 8 + Bias);
4292     OS.PadToColumn(31 + 2 * Bias);
4293     OS << Purpose << "\n";
4294   };
4295 
4296   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
4297   OS << " Canonical gp value: "
4298      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
4299 
4300   OS << " Reserved entries:\n";
4301   if (ELFT::Is64Bits)
4302     OS << "           Address     Access          Initial Purpose\n";
4303   else
4304     OS << "   Address     Access  Initial Purpose\n";
4305   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
4306   if (Parser.getGotModulePointer())
4307     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
4308 
4309   if (!Parser.getLocalEntries().empty()) {
4310     OS << "\n";
4311     OS << " Local entries:\n";
4312     if (ELFT::Is64Bits)
4313       OS << "           Address     Access          Initial\n";
4314     else
4315       OS << "   Address     Access  Initial\n";
4316     for (auto &E : Parser.getLocalEntries())
4317       PrintEntry(&E, "");
4318   }
4319 
4320   if (Parser.IsStatic)
4321     return;
4322 
4323   if (!Parser.getGlobalEntries().empty()) {
4324     OS << "\n";
4325     OS << " Global entries:\n";
4326     if (ELFT::Is64Bits)
4327       OS << "           Address     Access          Initial         Sym.Val."
4328          << " Type    Ndx Name\n";
4329     else
4330       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
4331     for (auto &E : Parser.getGlobalEntries()) {
4332       const Elf_Sym *Sym = Parser.getGotSym(&E);
4333       std::string SymName = this->dumper()->getFullSymbolName(
4334           Sym, this->dumper()->getDynamicStringTable(), false);
4335 
4336       OS.PadToColumn(2);
4337       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
4338       OS.PadToColumn(11 + Bias);
4339       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
4340       OS.PadToColumn(22 + Bias);
4341       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
4342       OS.PadToColumn(31 + 2 * Bias);
4343       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
4344       OS.PadToColumn(40 + 3 * Bias);
4345       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
4346       OS.PadToColumn(48 + 3 * Bias);
4347       OS << getSymbolSectionNdx(Parser.Obj, Sym,
4348                                 this->dumper()->dynamic_symbols().begin());
4349       OS.PadToColumn(52 + 3 * Bias);
4350       OS << SymName << "\n";
4351     }
4352   }
4353 
4354   if (!Parser.getOtherEntries().empty())
4355     OS << "\n Number of TLS and multi-GOT entries "
4356        << Parser.getOtherEntries().size() << "\n";
4357 }
4358 
4359 template <class ELFT>
4360 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
4361   size_t Bias = ELFT::Is64Bits ? 8 : 0;
4362   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
4363     OS.PadToColumn(2);
4364     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
4365     OS.PadToColumn(11 + Bias);
4366     OS << format_hex_no_prefix(*E, 8 + Bias);
4367     OS.PadToColumn(20 + 2 * Bias);
4368     OS << Purpose << "\n";
4369   };
4370 
4371   OS << "PLT GOT:\n\n";
4372 
4373   OS << " Reserved entries:\n";
4374   OS << "   Address  Initial Purpose\n";
4375   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
4376   if (Parser.getPltModulePointer())
4377     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
4378 
4379   if (!Parser.getPltEntries().empty()) {
4380     OS << "\n";
4381     OS << " Entries:\n";
4382     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
4383     for (auto &E : Parser.getPltEntries()) {
4384       const Elf_Sym *Sym = Parser.getPltSym(&E);
4385       std::string SymName = this->dumper()->getFullSymbolName(
4386           Sym, this->dumper()->getDynamicStringTable(), false);
4387 
4388       OS.PadToColumn(2);
4389       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
4390       OS.PadToColumn(11 + Bias);
4391       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
4392       OS.PadToColumn(20 + 2 * Bias);
4393       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
4394       OS.PadToColumn(29 + 3 * Bias);
4395       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
4396       OS.PadToColumn(37 + 3 * Bias);
4397       OS << getSymbolSectionNdx(Parser.Obj, Sym,
4398                                 this->dumper()->dynamic_symbols().begin());
4399       OS.PadToColumn(41 + 3 * Bias);
4400       OS << SymName << "\n";
4401     }
4402   }
4403 }
4404 
4405 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
4406   const Elf_Ehdr *E = Obj->getHeader();
4407   {
4408     DictScope D(W, "ElfHeader");
4409     {
4410       DictScope D(W, "Ident");
4411       W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
4412       W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
4413       W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
4414                   makeArrayRef(ElfDataEncoding));
4415       W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
4416 
4417       auto OSABI = makeArrayRef(ElfOSABI);
4418       if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
4419           E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
4420         switch (E->e_machine) {
4421         case ELF::EM_AMDGPU:
4422           OSABI = makeArrayRef(AMDGPUElfOSABI);
4423           break;
4424         case ELF::EM_ARM:
4425           OSABI = makeArrayRef(ARMElfOSABI);
4426           break;
4427         case ELF::EM_TI_C6000:
4428           OSABI = makeArrayRef(C6000ElfOSABI);
4429           break;
4430         }
4431       }
4432       W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
4433       W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
4434       W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
4435     }
4436 
4437     W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
4438     W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
4439     W.printNumber("Version", E->e_version);
4440     W.printHex("Entry", E->e_entry);
4441     W.printHex("ProgramHeaderOffset", E->e_phoff);
4442     W.printHex("SectionHeaderOffset", E->e_shoff);
4443     if (E->e_machine == EM_MIPS)
4444       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
4445                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
4446                    unsigned(ELF::EF_MIPS_MACH));
4447     else if (E->e_machine == EM_AMDGPU)
4448       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
4449                    unsigned(ELF::EF_AMDGPU_MACH));
4450     else if (E->e_machine == EM_RISCV)
4451       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
4452     else
4453       W.printFlags("Flags", E->e_flags);
4454     W.printNumber("HeaderSize", E->e_ehsize);
4455     W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
4456     W.printNumber("ProgramHeaderCount", E->e_phnum);
4457     W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
4458     W.printString("SectionHeaderCount", getSectionHeadersNumString(Obj));
4459     W.printString("StringTableSectionIndex",
4460                   getSectionHeaderTableIndexString(Obj));
4461   }
4462 }
4463 
4464 template <class ELFT>
4465 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
4466   DictScope Lists(W, "Groups");
4467   std::vector<GroupSection> V = getGroups<ELFT>(Obj);
4468   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
4469   for (const GroupSection &G : V) {
4470     DictScope D(W, "Group");
4471     W.printNumber("Name", G.Name, G.ShName);
4472     W.printNumber("Index", G.Index);
4473     W.printNumber("Link", G.Link);
4474     W.printNumber("Info", G.Info);
4475     W.printHex("Type", getGroupType(G.Type), G.Type);
4476     W.startLine() << "Signature: " << G.Signature << "\n";
4477 
4478     ListScope L(W, "Section(s) in group");
4479     for (const GroupMember &GM : G.Members) {
4480       const GroupSection *MainGroup = Map[GM.Index];
4481       if (MainGroup != &G) {
4482         W.flush();
4483         errs() << "Error: " << GM.Name << " (" << GM.Index
4484                << ") in a group " + G.Name + " (" << G.Index
4485                << ") is already in a group " + MainGroup->Name + " ("
4486                << MainGroup->Index << ")\n";
4487         errs().flush();
4488         continue;
4489       }
4490       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
4491     }
4492   }
4493 
4494   if (V.empty())
4495     W.startLine() << "There are no group sections in the file.\n";
4496 }
4497 
4498 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
4499   ListScope D(W, "Relocations");
4500 
4501   int SectionNumber = -1;
4502   for (const Elf_Shdr &Sec : unwrapOrError(Obj->sections())) {
4503     ++SectionNumber;
4504 
4505     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
4506         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
4507         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
4508         Sec.sh_type != ELF::SHT_ANDROID_RELR)
4509       continue;
4510 
4511     StringRef Name = unwrapOrError(Obj->getSectionName(&Sec));
4512 
4513     W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
4514     W.indent();
4515 
4516     printRelocations(&Sec, Obj);
4517 
4518     W.unindent();
4519     W.startLine() << "}\n";
4520   }
4521 }
4522 
4523 template <class ELFT>
4524 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
4525   const Elf_Shdr *SymTab = unwrapOrError(Obj->getSection(Sec->sh_link));
4526 
4527   switch (Sec->sh_type) {
4528   case ELF::SHT_REL:
4529     for (const Elf_Rel &R : unwrapOrError(Obj->rels(Sec))) {
4530       Elf_Rela Rela;
4531       Rela.r_offset = R.r_offset;
4532       Rela.r_info = R.r_info;
4533       Rela.r_addend = 0;
4534       printRelocation(Obj, Rela, SymTab);
4535     }
4536     break;
4537   case ELF::SHT_RELA:
4538     for (const Elf_Rela &R : unwrapOrError(Obj->relas(Sec)))
4539       printRelocation(Obj, R, SymTab);
4540     break;
4541   case ELF::SHT_RELR:
4542   case ELF::SHT_ANDROID_RELR: {
4543     Elf_Relr_Range Relrs = unwrapOrError(Obj->relrs(Sec));
4544     if (opts::RawRelr) {
4545       for (const Elf_Relr &R : Relrs)
4546         W.startLine() << W.hex(R) << "\n";
4547     } else {
4548       std::vector<Elf_Rela> RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
4549       for (const Elf_Rela &R : RelrRelas)
4550         printRelocation(Obj, R, SymTab);
4551     }
4552     break;
4553   }
4554   case ELF::SHT_ANDROID_REL:
4555   case ELF::SHT_ANDROID_RELA:
4556     for (const Elf_Rela &R : unwrapOrError(Obj->android_relas(Sec)))
4557       printRelocation(Obj, R, SymTab);
4558     break;
4559   }
4560 }
4561 
4562 template <class ELFT>
4563 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel,
4564                                       const Elf_Shdr *SymTab) {
4565   SmallString<32> RelocName;
4566   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
4567   std::string TargetName;
4568   const Elf_Sym *Sym = unwrapOrError(Obj->getRelocationSymbol(&Rel, SymTab));
4569   if (Sym && Sym->getType() == ELF::STT_SECTION) {
4570     const Elf_Shdr *Sec = unwrapOrError(
4571         Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable()));
4572     TargetName = unwrapOrError(Obj->getSectionName(Sec));
4573   } else if (Sym) {
4574     StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*SymTab));
4575     TargetName = this->dumper()->getFullSymbolName(
4576         Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */);
4577   }
4578 
4579   if (opts::ExpandRelocs) {
4580     DictScope Group(W, "Relocation");
4581     W.printHex("Offset", Rel.r_offset);
4582     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
4583     W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
4584                   Rel.getSymbol(Obj->isMips64EL()));
4585     W.printHex("Addend", Rel.r_addend);
4586   } else {
4587     raw_ostream &OS = W.startLine();
4588     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
4589        << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
4590        << "\n";
4591   }
4592 }
4593 
4594 template <class ELFT>
4595 void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
4596   ListScope SectionsD(W, "Sections");
4597 
4598   int SectionIndex = -1;
4599   ArrayRef<Elf_Shdr> Sections = unwrapOrError(Obj->sections());
4600   const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject();
4601   for (const Elf_Shdr &Sec : Sections) {
4602     StringRef Name = getSectionName(Sec, *ElfObj, Sections);
4603     DictScope SectionD(W, "Section");
4604     W.printNumber("Index", ++SectionIndex);
4605     W.printNumber("Name", Name, Sec.sh_name);
4606     W.printHex(
4607         "Type",
4608         object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
4609         Sec.sh_type);
4610     std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags),
4611                                                   std::end(ElfSectionFlags));
4612     switch (Obj->getHeader()->e_machine) {
4613     case EM_ARM:
4614       SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags),
4615                           std::end(ElfARMSectionFlags));
4616       break;
4617     case EM_HEXAGON:
4618       SectionFlags.insert(SectionFlags.end(),
4619                           std::begin(ElfHexagonSectionFlags),
4620                           std::end(ElfHexagonSectionFlags));
4621       break;
4622     case EM_MIPS:
4623       SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags),
4624                           std::end(ElfMipsSectionFlags));
4625       break;
4626     case EM_X86_64:
4627       SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags),
4628                           std::end(ElfX86_64SectionFlags));
4629       break;
4630     case EM_XCORE:
4631       SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags),
4632                           std::end(ElfXCoreSectionFlags));
4633       break;
4634     default:
4635       // Nothing to do.
4636       break;
4637     }
4638     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags));
4639     W.printHex("Address", Sec.sh_addr);
4640     W.printHex("Offset", Sec.sh_offset);
4641     W.printNumber("Size", Sec.sh_size);
4642     W.printNumber("Link", Sec.sh_link);
4643     W.printNumber("Info", Sec.sh_info);
4644     W.printNumber("AddressAlignment", Sec.sh_addralign);
4645     W.printNumber("EntrySize", Sec.sh_entsize);
4646 
4647     if (opts::SectionRelocations) {
4648       ListScope D(W, "Relocations");
4649       printRelocations(&Sec, Obj);
4650     }
4651 
4652     if (opts::SectionSymbols) {
4653       ListScope D(W, "Symbols");
4654       const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
4655       StringRef StrTable = unwrapOrError(Obj->getStringTableForSymtab(*Symtab));
4656 
4657       for (const Elf_Sym &Sym : unwrapOrError(Obj->symbols(Symtab))) {
4658         const Elf_Shdr *SymSec = unwrapOrError(
4659             Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
4660         if (SymSec == &Sec)
4661           printSymbol(Obj, &Sym, unwrapOrError(Obj->symbols(Symtab)).begin(),
4662                       StrTable, false);
4663       }
4664     }
4665 
4666     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
4667       ArrayRef<uint8_t> Data = unwrapOrError(Obj->getSectionContents(&Sec));
4668       W.printBinaryBlock(
4669           "SectionData",
4670           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
4671     }
4672   }
4673 }
4674 
4675 template <class ELFT>
4676 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
4677                                   const Elf_Sym *First, StringRef StrTable,
4678                                   bool IsDynamic) {
4679   unsigned SectionIndex = 0;
4680   StringRef SectionName;
4681   this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex);
4682   std::string FullSymbolName =
4683       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
4684   unsigned char SymbolType = Symbol->getType();
4685 
4686   DictScope D(W, "Symbol");
4687   W.printNumber("Name", FullSymbolName, Symbol->st_name);
4688   W.printHex("Value", Symbol->st_value);
4689   W.printNumber("Size", Symbol->st_size);
4690   W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
4691   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
4692       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4693     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4694   else
4695     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
4696   if (Symbol->st_other == 0)
4697     // Usually st_other flag is zero. Do not pollute the output
4698     // by flags enumeration in that case.
4699     W.printNumber("Other", 0);
4700   else {
4701     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
4702                                                    std::end(ElfSymOtherFlags));
4703     if (Obj->getHeader()->e_machine == EM_MIPS) {
4704       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
4705       // flag overlapped with other ST_MIPS_xxx flags. So consider both
4706       // cases separately.
4707       if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
4708         SymOtherFlags.insert(SymOtherFlags.end(),
4709                              std::begin(ElfMips16SymOtherFlags),
4710                              std::end(ElfMips16SymOtherFlags));
4711       else
4712         SymOtherFlags.insert(SymOtherFlags.end(),
4713                              std::begin(ElfMipsSymOtherFlags),
4714                              std::end(ElfMipsSymOtherFlags));
4715     }
4716     W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
4717   }
4718   W.printHex("Section", SectionName, SectionIndex);
4719 }
4720 
4721 template <class ELFT>
4722 void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
4723                                    bool PrintDynamicSymbols) {
4724   if (PrintSymbols)
4725     printSymbols(Obj);
4726   if (PrintDynamicSymbols)
4727     printDynamicSymbols(Obj);
4728 }
4729 
4730 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
4731   ListScope Group(W, "Symbols");
4732   this->dumper()->printSymbolsHelper(false);
4733 }
4734 
4735 template <class ELFT>
4736 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
4737   ListScope Group(W, "DynamicSymbols");
4738   this->dumper()->printSymbolsHelper(true);
4739 }
4740 
4741 template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
4742   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
4743   if (Table.empty())
4744     return;
4745 
4746   raw_ostream &OS = W.getOStream();
4747   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
4748 
4749   bool Is64 = ELFT::Is64Bits;
4750   if (Is64)
4751     W.startLine() << "  Tag                Type                 Name/Value\n";
4752   else
4753     W.startLine() << "  Tag        Type                 Name/Value\n";
4754   for (auto Entry : Table) {
4755     uintX_t Tag = Entry.getTag();
4756     W.startLine() << "  " << format_hex(Tag, Is64 ? 18 : 10, true) << " "
4757                   << format("%-21s",
4758                             getTypeString(Obj->getHeader()->e_machine, Tag));
4759     this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal());
4760     OS << "\n";
4761   }
4762 
4763   W.startLine() << "]\n";
4764 }
4765 
4766 template <class ELFT>
4767 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4768   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4769   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4770   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
4771   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4772   if (DynRelRegion.Size && DynRelaRegion.Size)
4773     report_fatal_error("There are both REL and RELA dynamic relocations");
4774   W.startLine() << "Dynamic Relocations {\n";
4775   W.indent();
4776   if (DynRelaRegion.Size > 0)
4777     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4778       printDynamicRelocation(Obj, Rela);
4779   else
4780     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4781       Elf_Rela Rela;
4782       Rela.r_offset = Rel.r_offset;
4783       Rela.r_info = Rel.r_info;
4784       Rela.r_addend = 0;
4785       printDynamicRelocation(Obj, Rela);
4786     }
4787   if (DynRelrRegion.Size > 0) {
4788     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
4789     std::vector<Elf_Rela> RelrRelas = unwrapOrError(Obj->decode_relrs(Relrs));
4790     for (const Elf_Rela &Rela : RelrRelas)
4791       printDynamicRelocation(Obj, Rela);
4792   }
4793   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
4794     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4795       printDynamicRelocation(Obj, Rela);
4796   else
4797     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4798       Elf_Rela Rela;
4799       Rela.r_offset = Rel.r_offset;
4800       Rela.r_info = Rel.r_info;
4801       Rela.r_addend = 0;
4802       printDynamicRelocation(Obj, Rela);
4803     }
4804   W.unindent();
4805   W.startLine() << "}\n";
4806 }
4807 
4808 template <class ELFT>
4809 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
4810   SmallString<32> RelocName;
4811   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
4812   std::string SymbolName;
4813   uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
4814   const Elf_Sym *Sym = this->dumper()->dynamic_symbols().begin() + SymIndex;
4815   SymbolName = maybeDemangle(
4816       unwrapOrError(Sym->getName(this->dumper()->getDynamicStringTable())));
4817   if (opts::ExpandRelocs) {
4818     DictScope Group(W, "Relocation");
4819     W.printHex("Offset", Rel.r_offset);
4820     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
4821     W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
4822     W.printHex("Addend", Rel.r_addend);
4823   } else {
4824     raw_ostream &OS = W.startLine();
4825     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
4826        << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
4827        << "\n";
4828   }
4829 }
4830 
4831 template <class ELFT>
4832 void LLVMStyle<ELFT>::printProgramHeaders(
4833     const ELFO *Obj, bool PrintProgramHeaders,
4834     cl::boolOrDefault PrintSectionMapping) {
4835   if (PrintProgramHeaders)
4836     printProgramHeaders(Obj);
4837   if (PrintSectionMapping == cl::BOU_TRUE)
4838     printSectionMapping(Obj);
4839 }
4840 
4841 template <class ELFT>
4842 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
4843   ListScope L(W, "ProgramHeaders");
4844 
4845   for (const Elf_Phdr &Phdr : unwrapOrError(Obj->program_headers())) {
4846     DictScope P(W, "ProgramHeader");
4847     W.printHex("Type",
4848                getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
4849                Phdr.p_type);
4850     W.printHex("Offset", Phdr.p_offset);
4851     W.printHex("VirtualAddress", Phdr.p_vaddr);
4852     W.printHex("PhysicalAddress", Phdr.p_paddr);
4853     W.printNumber("FileSize", Phdr.p_filesz);
4854     W.printNumber("MemSize", Phdr.p_memsz);
4855     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
4856     W.printNumber("Alignment", Phdr.p_align);
4857   }
4858 }
4859 
4860 template <class ELFT>
4861 void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
4862                                                 const Elf_Shdr *Sec) {
4863   DictScope SS(W, "Version symbols");
4864   if (!Sec)
4865     return;
4866 
4867   StringRef SecName = unwrapOrError(Obj->getSectionName(Sec));
4868   W.printNumber("Section Name", SecName, Sec->sh_name);
4869   W.printHex("Address", Sec->sh_addr);
4870   W.printHex("Offset", Sec->sh_offset);
4871   W.printNumber("Link", Sec->sh_link);
4872 
4873   const uint8_t *VersymBuf =
4874       reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
4875   const ELFDumper<ELFT> *Dumper = this->dumper();
4876   StringRef StrTable = Dumper->getDynamicStringTable();
4877 
4878   // Same number of entries in the dynamic symbol table (DT_SYMTAB).
4879   ListScope Syms(W, "Symbols");
4880   for (const Elf_Sym &Sym : Dumper->dynamic_symbols()) {
4881     DictScope S(W, "Symbol");
4882     const Elf_Versym *Versym = reinterpret_cast<const Elf_Versym *>(VersymBuf);
4883     std::string FullSymbolName =
4884         Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */);
4885     W.printNumber("Version", Versym->vs_index & VERSYM_VERSION);
4886     W.printString("Name", FullSymbolName);
4887     VersymBuf += sizeof(Elf_Versym);
4888   }
4889 }
4890 
4891 template <class ELFT>
4892 void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
4893                                                     const Elf_Shdr *Sec) {
4894   DictScope SD(W, "SHT_GNU_verdef");
4895   if (!Sec)
4896     return;
4897 
4898   const uint8_t *SecStartAddress =
4899       reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
4900   const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size;
4901   const uint8_t *VerdefBuf = SecStartAddress;
4902   const Elf_Shdr *StrTab = unwrapOrError(Obj->getSection(Sec->sh_link));
4903 
4904   unsigned VerDefsNum = Sec->sh_info;
4905   while (VerDefsNum--) {
4906     if (VerdefBuf + sizeof(Elf_Verdef) > SecEndAddress)
4907       // FIXME: report_fatal_error is not a good way to report error. We should
4908       // emit a parsing error here and below.
4909       report_fatal_error("invalid offset in the section");
4910 
4911     const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
4912     DictScope Def(W, "Definition");
4913     W.printNumber("Version", Verdef->vd_version);
4914     W.printEnum("Flags", Verdef->vd_flags, makeArrayRef(SymVersionFlags));
4915     W.printNumber("Index", Verdef->vd_ndx);
4916     W.printNumber("Hash", Verdef->vd_hash);
4917     W.printString("Name", StringRef(reinterpret_cast<const char *>(
4918                               Obj->base() + StrTab->sh_offset +
4919                               Verdef->getAux()->vda_name)));
4920     if (!Verdef->vd_cnt)
4921       report_fatal_error("at least one definition string must exist");
4922     if (Verdef->vd_cnt > 2)
4923       report_fatal_error("more than one predecessor is not expected");
4924 
4925     if (Verdef->vd_cnt == 2) {
4926       const uint8_t *VerdauxBuf =
4927           VerdefBuf + Verdef->vd_aux + Verdef->getAux()->vda_next;
4928       const Elf_Verdaux *Verdaux =
4929           reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
4930       W.printString("Predecessor",
4931                     StringRef(reinterpret_cast<const char *>(
4932                         Obj->base() + StrTab->sh_offset + Verdaux->vda_name)));
4933     }
4934     VerdefBuf += Verdef->vd_next;
4935   }
4936 }
4937 
4938 template <class ELFT>
4939 void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
4940                                                     const Elf_Shdr *Sec) {
4941   DictScope SD(W, "SHT_GNU_verneed");
4942   if (!Sec)
4943     return;
4944 
4945   const uint8_t *SecData =
4946       reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset);
4947   const Elf_Shdr *StrTab = unwrapOrError(Obj->getSection(Sec->sh_link));
4948 
4949   const uint8_t *VerneedBuf = SecData;
4950   unsigned VerneedNum = Sec->sh_info;
4951   for (unsigned I = 0; I < VerneedNum; ++I) {
4952     const Elf_Verneed *Verneed =
4953         reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
4954     DictScope Entry(W, "Dependency");
4955     W.printNumber("Version", Verneed->vn_version);
4956     W.printNumber("Count", Verneed->vn_cnt);
4957     W.printString("FileName",
4958                   StringRef(reinterpret_cast<const char *>(
4959                       Obj->base() + StrTab->sh_offset + Verneed->vn_file)));
4960 
4961     const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
4962     ListScope L(W, "Entries");
4963     for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
4964       const Elf_Vernaux *Vernaux =
4965           reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
4966       DictScope Entry(W, "Entry");
4967       W.printNumber("Hash", Vernaux->vna_hash);
4968       W.printEnum("Flags", Vernaux->vna_flags, makeArrayRef(SymVersionFlags));
4969       W.printNumber("Index", Vernaux->vna_other);
4970       W.printString("Name",
4971                     StringRef(reinterpret_cast<const char *>(
4972                         Obj->base() + StrTab->sh_offset + Vernaux->vna_name)));
4973       VernauxBuf += Vernaux->vna_next;
4974     }
4975     VerneedBuf += Verneed->vn_next;
4976   }
4977 }
4978 
4979 template <class ELFT>
4980 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) {
4981   W.startLine() << "Hash Histogram not implemented!\n";
4982 }
4983 
4984 template <class ELFT>
4985 void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
4986   ListScope L(W, "CGProfile");
4987   if (!this->dumper()->getDotCGProfileSec())
4988     return;
4989   auto CGProfile =
4990       unwrapOrError(Obj->template getSectionContentsAsArray<Elf_CGProfile>(
4991           this->dumper()->getDotCGProfileSec()));
4992   for (const Elf_CGProfile &CGPE : CGProfile) {
4993     DictScope D(W, "CGProfileEntry");
4994     W.printNumber("From", this->dumper()->getStaticSymbolName(CGPE.cgp_from),
4995                   CGPE.cgp_from);
4996     W.printNumber("To", this->dumper()->getStaticSymbolName(CGPE.cgp_to),
4997                   CGPE.cgp_to);
4998     W.printNumber("Weight", CGPE.cgp_weight);
4999   }
5000 }
5001 
5002 template <class ELFT>
5003 void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
5004   ListScope L(W, "Addrsig");
5005   if (!this->dumper()->getDotAddrsigSec())
5006     return;
5007   ArrayRef<uint8_t> Contents = unwrapOrError(
5008       Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
5009   const uint8_t *Cur = Contents.begin();
5010   const uint8_t *End = Contents.end();
5011   while (Cur != End) {
5012     unsigned Size;
5013     const char *Err;
5014     uint64_t SymIndex = decodeULEB128(Cur, &Size, End, &Err);
5015     if (Err)
5016       reportError(Err);
5017     W.printNumber("Sym", this->dumper()->getStaticSymbolName(SymIndex),
5018                   SymIndex);
5019     Cur += Size;
5020   }
5021 }
5022 
5023 template <typename ELFT>
5024 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
5025                                   ScopedPrinter &W) {
5026   switch (NoteType) {
5027   default:
5028     return;
5029   case ELF::NT_GNU_ABI_TAG: {
5030     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5031     if (!AbiTag.IsValid) {
5032       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
5033     } else {
5034       W.printString("OS", AbiTag.OSName);
5035       W.printString("ABI", AbiTag.ABI);
5036     }
5037     break;
5038   }
5039   case ELF::NT_GNU_BUILD_ID: {
5040     W.printString("Build ID", getGNUBuildId(Desc));
5041     break;
5042   }
5043   case ELF::NT_GNU_GOLD_VERSION:
5044     W.printString("Version", getGNUGoldVersion(Desc));
5045     break;
5046   case ELF::NT_GNU_PROPERTY_TYPE_0:
5047     ListScope D(W, "Property");
5048     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
5049       W.printString(Property);
5050     break;
5051   }
5052 }
5053 
5054 template <class ELFT>
5055 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
5056   ListScope L(W, "Notes");
5057 
5058   auto PrintHeader = [&](const typename ELFT::Off Offset,
5059                          const typename ELFT::Addr Size) {
5060     W.printHex("Offset", Offset);
5061     W.printHex("Size", Size);
5062   };
5063 
5064   auto ProcessNote = [&](const Elf_Note &Note) {
5065     DictScope D2(W, "Note");
5066     StringRef Name = Note.getName();
5067     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5068     Elf_Word Type = Note.getType();
5069 
5070     W.printString("Owner", Name);
5071     W.printHex("Data size", Descriptor.size());
5072     if (Name == "GNU") {
5073       W.printString("Type", getGNUNoteTypeName(Type));
5074       printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
5075     } else if (Name == "FreeBSD") {
5076       W.printString("Type", getFreeBSDNoteTypeName(Type));
5077     } else if (Name == "AMD") {
5078       W.printString("Type", getAMDNoteTypeName(Type));
5079       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5080       if (!N.Type.empty())
5081         W.printString(N.Type, N.Value);
5082     } else if (Name == "AMDGPU") {
5083       W.printString("Type", getAMDGPUNoteTypeName(Type));
5084       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5085       if (!N.Type.empty())
5086         W.printString(N.Type, N.Value);
5087     } else {
5088       StringRef NoteType = getGenericNoteTypeName(Type);
5089       if (!NoteType.empty())
5090         W.printString("Type", NoteType);
5091       else
5092         W.printString("Type",
5093                       "Unknown (" + to_string(format_hex(Type, 10)) + ")");
5094     }
5095   };
5096 
5097   if (Obj->getHeader()->e_type == ELF::ET_CORE) {
5098     for (const auto &P : unwrapOrError(Obj->program_headers())) {
5099       if (P.p_type != PT_NOTE)
5100         continue;
5101       DictScope D(W, "NoteSection");
5102       PrintHeader(P.p_offset, P.p_filesz);
5103       Error Err = Error::success();
5104       for (const auto &Note : Obj->notes(P, Err))
5105         ProcessNote(Note);
5106       if (Err)
5107         error(std::move(Err));
5108     }
5109   } else {
5110     for (const auto &S : unwrapOrError(Obj->sections())) {
5111       if (S.sh_type != SHT_NOTE)
5112         continue;
5113       DictScope D(W, "NoteSection");
5114       PrintHeader(S.sh_offset, S.sh_size);
5115       Error Err = Error::success();
5116       for (const auto &Note : Obj->notes(S, Err))
5117         ProcessNote(Note);
5118       if (Err)
5119         error(std::move(Err));
5120     }
5121   }
5122 }
5123 
5124 template <class ELFT>
5125 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
5126   ListScope L(W, "LinkerOptions");
5127 
5128   for (const Elf_Shdr &Shdr : unwrapOrError(Obj->sections())) {
5129     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
5130       continue;
5131 
5132     ArrayRef<uint8_t> Contents = unwrapOrError(Obj->getSectionContents(&Shdr));
5133     for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) {
5134       StringRef Key = StringRef(reinterpret_cast<const char *>(P));
5135       StringRef Value =
5136           StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1);
5137 
5138       W.printString(Key, Value);
5139 
5140       P = P + Key.size() + Value.size() + 2;
5141     }
5142   }
5143 }
5144 
5145 template <class ELFT>
5146 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5147   auto PrintEntry = [&](const Elf_Addr *E) {
5148     W.printHex("Address", Parser.getGotAddress(E));
5149     W.printNumber("Access", Parser.getGotOffset(E));
5150     W.printHex("Initial", *E);
5151   };
5152 
5153   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
5154 
5155   W.printHex("Canonical gp value", Parser.getGp());
5156   {
5157     ListScope RS(W, "Reserved entries");
5158     {
5159       DictScope D(W, "Entry");
5160       PrintEntry(Parser.getGotLazyResolver());
5161       W.printString("Purpose", StringRef("Lazy resolver"));
5162     }
5163 
5164     if (Parser.getGotModulePointer()) {
5165       DictScope D(W, "Entry");
5166       PrintEntry(Parser.getGotModulePointer());
5167       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
5168     }
5169   }
5170   {
5171     ListScope LS(W, "Local entries");
5172     for (auto &E : Parser.getLocalEntries()) {
5173       DictScope D(W, "Entry");
5174       PrintEntry(&E);
5175     }
5176   }
5177 
5178   if (Parser.IsStatic)
5179     return;
5180 
5181   {
5182     ListScope GS(W, "Global entries");
5183     for (auto &E : Parser.getGlobalEntries()) {
5184       DictScope D(W, "Entry");
5185 
5186       PrintEntry(&E);
5187 
5188       const Elf_Sym *Sym = Parser.getGotSym(&E);
5189       W.printHex("Value", Sym->st_value);
5190       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
5191 
5192       unsigned SectionIndex = 0;
5193       StringRef SectionName;
5194       this->dumper()->getSectionNameIndex(
5195           Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
5196           SectionIndex);
5197       W.printHex("Section", SectionName, SectionIndex);
5198 
5199       std::string SymName = this->dumper()->getFullSymbolName(
5200           Sym, this->dumper()->getDynamicStringTable(), true);
5201       W.printNumber("Name", SymName, Sym->st_name);
5202     }
5203   }
5204 
5205   W.printNumber("Number of TLS and multi-GOT entries",
5206                 uint64_t(Parser.getOtherEntries().size()));
5207 }
5208 
5209 template <class ELFT>
5210 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
5211   auto PrintEntry = [&](const Elf_Addr *E) {
5212     W.printHex("Address", Parser.getPltAddress(E));
5213     W.printHex("Initial", *E);
5214   };
5215 
5216   DictScope GS(W, "PLT GOT");
5217 
5218   {
5219     ListScope RS(W, "Reserved entries");
5220     {
5221       DictScope D(W, "Entry");
5222       PrintEntry(Parser.getPltLazyResolver());
5223       W.printString("Purpose", StringRef("PLT lazy resolver"));
5224     }
5225 
5226     if (auto E = Parser.getPltModulePointer()) {
5227       DictScope D(W, "Entry");
5228       PrintEntry(E);
5229       W.printString("Purpose", StringRef("Module pointer"));
5230     }
5231   }
5232   {
5233     ListScope LS(W, "Entries");
5234     for (auto &E : Parser.getPltEntries()) {
5235       DictScope D(W, "Entry");
5236       PrintEntry(&E);
5237 
5238       const Elf_Sym *Sym = Parser.getPltSym(&E);
5239       W.printHex("Value", Sym->st_value);
5240       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
5241 
5242       unsigned SectionIndex = 0;
5243       StringRef SectionName;
5244       this->dumper()->getSectionNameIndex(
5245           Sym, this->dumper()->dynamic_symbols().begin(), SectionName,
5246           SectionIndex);
5247       W.printHex("Section", SectionName, SectionIndex);
5248 
5249       std::string SymName =
5250           this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
5251       W.printNumber("Name", SymName, Sym->st_name);
5252     }
5253   }
5254 }
5255