xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp (revision aa1a8ff2d6dbc51ef058f46f3db5a8bb77967145)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/BinaryFormat/MsgPackDocument.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/Archive.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MSP430AttributeParser.h"
54 #include "llvm/Support/MSP430Attributes.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/MipsABIFlags.h"
57 #include "llvm/Support/RISCVAttributeParser.h"
58 #include "llvm/Support/RISCVAttributes.h"
59 #include "llvm/Support/ScopedPrinter.h"
60 #include "llvm/Support/SystemZ/zOSSupport.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   std::optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223   void printMemtag() override;
224   ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr);
225 
226   // Hash histogram shows statistics of how efficient the hash was for the
227   // dynamic symbol table. The table shows the number of hash buckets for
228   // different lengths of chains as an absolute number and percentage of the
229   // total buckets, and the cumulative coverage of symbols for each set of
230   // buckets.
231   void printHashHistograms() override;
232 
233   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
234 
235   std::string describe(const Elf_Shdr &Sec) const;
236 
237   unsigned getHashTableEntSize() const {
238     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
239     // sections. This violates the ELF specification.
240     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
241         Obj.getHeader().e_machine == ELF::EM_ALPHA)
242       return 8;
243     return 4;
244   }
245 
246   std::vector<EnumEntry<unsigned>>
247   getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const;
248 
249   Elf_Dyn_Range dynamic_table() const {
250     // A valid .dynamic section contains an array of entries terminated
251     // with a DT_NULL entry. However, sometimes the section content may
252     // continue past the DT_NULL entry, so to dump the section correctly,
253     // we first find the end of the entries by iterating over them.
254     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
255 
256     size_t Size = 0;
257     while (Size < Table.size())
258       if (Table[Size++].getTag() == DT_NULL)
259         break;
260 
261     return Table.slice(0, Size);
262   }
263 
264   Elf_Sym_Range dynamic_symbols() const {
265     if (!DynSymRegion)
266       return Elf_Sym_Range();
267     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
268   }
269 
270   const Elf_Shdr *findSectionByName(StringRef Name) const;
271 
272   StringRef getDynamicStringTable() const { return DynamicStringTable; }
273 
274 protected:
275   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
276   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
277   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
278 
279   void
280   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
281                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
282 
283   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
284                                  const RelSymbol<ELFT> &RelSym) = 0;
285   virtual void printRelrReloc(const Elf_Relr &R) = 0;
286   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
287                                        const DynRegionInfo &Reg) {}
288   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
289                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
290   void printDynamicReloc(const Relocation<ELFT> &R);
291   void printDynamicRelocationsHelper();
292   void printRelocationsHelper(const Elf_Shdr &Sec);
293   void forEachRelocationDo(
294       const Elf_Shdr &Sec, bool RawRelr,
295       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
296                               const Elf_Shdr &, const Elf_Shdr *)>
297           RelRelaFn,
298       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
299 
300   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
301                                   bool NonVisibilityBitsUsed,
302                                   bool ExtraSymInfo) const {};
303   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
304                            DataRegion<Elf_Word> ShndxTable,
305                            std::optional<StringRef> StrTable, bool IsDynamic,
306                            bool NonVisibilityBitsUsed,
307                            bool ExtraSymInfo) const = 0;
308 
309   virtual void printMipsABIFlags() = 0;
310   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
311   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
312 
313   virtual void printMemtag(
314       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
315       const ArrayRef<uint8_t> AndroidNoteDesc,
316       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0;
317 
318   virtual void printHashHistogram(const Elf_Hash &HashTable) const;
319   virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const;
320   virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain,
321                                        size_t TotalSyms, ArrayRef<size_t> Count,
322                                        bool IsGnu) const = 0;
323 
324   Expected<ArrayRef<Elf_Versym>>
325   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
326                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
327   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
328 
329   std::vector<GroupSection> getGroups();
330 
331   // Returns the function symbol index for the given address. Matches the
332   // symbol's section with FunctionSec when specified.
333   // Returns std::nullopt if no function symbol can be found for the address or
334   // in case it is not defined in the specified section.
335   SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
336       uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
337   bool printFunctionStackSize(uint64_t SymValue,
338                               std::optional<const Elf_Shdr *> FunctionSec,
339                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
340                               uint64_t *Offset);
341   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
342                       unsigned Ndx, const Elf_Shdr *SymTab,
343                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
344                       const RelocationResolver &Resolver, DataExtractor Data);
345   virtual void printStackSizeEntry(uint64_t Size,
346                                    ArrayRef<std::string> FuncNames) = 0;
347 
348   void printRelocatableStackSizes(std::function<void()> PrintHeader);
349   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
350 
351   const object::ELFObjectFile<ELFT> &ObjF;
352   const ELFFile<ELFT> &Obj;
353   StringRef FileName;
354 
355   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
356                                     uint64_t EntSize) {
357     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
358       return createError("offset (0x" + Twine::utohexstr(Offset) +
359                          ") + size (0x" + Twine::utohexstr(Size) +
360                          ") is greater than the file size (0x" +
361                          Twine::utohexstr(Obj.getBufSize()) + ")");
362     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
363   }
364 
365   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
366                        llvm::endianness);
367   void printMipsReginfo();
368   void printMipsOptions();
369 
370   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
371   void loadDynamicTable();
372   void parseDynamicTable();
373 
374   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
375                                        bool &IsDefault) const;
376   Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
377 
378   DynRegionInfo DynRelRegion;
379   DynRegionInfo DynRelaRegion;
380   DynRegionInfo DynRelrRegion;
381   DynRegionInfo DynPLTRelRegion;
382   std::optional<DynRegionInfo> DynSymRegion;
383   DynRegionInfo DynSymTabShndxRegion;
384   DynRegionInfo DynamicTable;
385   StringRef DynamicStringTable;
386   const Elf_Hash *HashTable = nullptr;
387   const Elf_GnuHash *GnuHashTable = nullptr;
388   const Elf_Shdr *DotSymtabSec = nullptr;
389   const Elf_Shdr *DotDynsymSec = nullptr;
390   const Elf_Shdr *DotAddrsigSec = nullptr;
391   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
392   std::optional<uint64_t> SONameOffset;
393   std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
394 
395   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
396   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
397   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
398 
399   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
400                                 DataRegion<Elf_Word> ShndxTable,
401                                 std::optional<StringRef> StrTable,
402                                 bool IsDynamic) const;
403   Expected<unsigned>
404   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
405                         DataRegion<Elf_Word> ShndxTable) const;
406   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
407                                            unsigned SectionIndex) const;
408   std::string getStaticSymbolName(uint32_t Index) const;
409   StringRef getDynamicString(uint64_t Value) const;
410 
411   void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const;
412   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
413 
414   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
415                                                 const Elf_Shdr *SymTab) const;
416 
417   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
418 
419 private:
420   mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
421 };
422 
423 template <class ELFT>
424 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
425   return ::describe(Obj, Sec);
426 }
427 
428 namespace {
429 
430 template <class ELFT> struct SymtabLink {
431   typename ELFT::SymRange Symbols;
432   StringRef StringTable;
433   const typename ELFT::Shdr *SymTab;
434 };
435 
436 // Returns the linked symbol table, symbols and associated string table for a
437 // given section.
438 template <class ELFT>
439 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
440                                            const typename ELFT::Shdr &Sec,
441                                            unsigned ExpectedType) {
442   Expected<const typename ELFT::Shdr *> SymtabOrErr =
443       Obj.getSection(Sec.sh_link);
444   if (!SymtabOrErr)
445     return createError("invalid section linked to " + describe(Obj, Sec) +
446                        ": " + toString(SymtabOrErr.takeError()));
447 
448   if ((*SymtabOrErr)->sh_type != ExpectedType)
449     return createError(
450         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
451         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
452         ", but got " +
453         object::getELFSectionTypeName(Obj.getHeader().e_machine,
454                                       (*SymtabOrErr)->sh_type));
455 
456   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
457   if (!StrTabOrErr)
458     return createError(
459         "can't get a string table for the symbol table linked to " +
460         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
461 
462   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
463   if (!SymsOrErr)
464     return createError("unable to read symbols from the " + describe(Obj, Sec) +
465                        ": " + toString(SymsOrErr.takeError()));
466 
467   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
468 }
469 
470 } // namespace
471 
472 template <class ELFT>
473 Expected<ArrayRef<typename ELFT::Versym>>
474 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
475                                  StringRef *StrTab,
476                                  const Elf_Shdr **SymTabSec) const {
477   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
478   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
479           sizeof(uint16_t) !=
480       0)
481     return createError("the " + describe(Sec) + " is misaligned");
482 
483   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
484       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
485   if (!VersionsOrErr)
486     return createError("cannot read content of " + describe(Sec) + ": " +
487                        toString(VersionsOrErr.takeError()));
488 
489   Expected<SymtabLink<ELFT>> SymTabOrErr =
490       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
491   if (!SymTabOrErr) {
492     reportUniqueWarning(SymTabOrErr.takeError());
493     return *VersionsOrErr;
494   }
495 
496   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
497     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
498                         Twine(VersionsOrErr->size()) +
499                         ") does not match the number of symbols (" +
500                         Twine(SymTabOrErr->Symbols.size()) +
501                         ") in the symbol table with index " +
502                         Twine(Sec.sh_link));
503 
504   if (SymTab) {
505     *SymTab = SymTabOrErr->Symbols;
506     *StrTab = SymTabOrErr->StringTable;
507     *SymTabSec = SymTabOrErr->SymTab;
508   }
509   return *VersionsOrErr;
510 }
511 
512 template <class ELFT>
513 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic,
514                                          bool ExtraSymInfo) const {
515   std::optional<StringRef> StrTable;
516   size_t Entries = 0;
517   Elf_Sym_Range Syms(nullptr, nullptr);
518   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
519 
520   if (IsDynamic) {
521     StrTable = DynamicStringTable;
522     Syms = dynamic_symbols();
523     Entries = Syms.size();
524   } else if (DotSymtabSec) {
525     if (Expected<StringRef> StrTableOrErr =
526             Obj.getStringTableForSymtab(*DotSymtabSec))
527       StrTable = *StrTableOrErr;
528     else
529       reportUniqueWarning(
530           "unable to get the string table for the SHT_SYMTAB section: " +
531           toString(StrTableOrErr.takeError()));
532 
533     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
534       Syms = *SymsOrErr;
535     else
536       reportUniqueWarning(
537           "unable to read symbols from the SHT_SYMTAB section: " +
538           toString(SymsOrErr.takeError()));
539     Entries = DotSymtabSec->getEntityCount();
540   }
541   if (Syms.empty())
542     return;
543 
544   // The st_other field has 2 logical parts. The first two bits hold the symbol
545   // visibility (STV_*) and the remainder hold other platform-specific values.
546   bool NonVisibilityBitsUsed =
547       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
548 
549   DataRegion<Elf_Word> ShndxTable =
550       IsDynamic ? DataRegion<Elf_Word>(
551                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
552                       this->getElfObject().getELFFile().end())
553                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
554 
555   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo);
556   for (const Elf_Sym &Sym : Syms)
557     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
558                 NonVisibilityBitsUsed, ExtraSymInfo);
559 }
560 
561 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
562   formatted_raw_ostream &OS;
563 
564 public:
565   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
566 
567   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
568       : ELFDumper<ELFT>(ObjF, Writer),
569         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
570     assert(&this->W.getOStream() == &llvm::fouts());
571   }
572 
573   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
574                         ArrayRef<std::string> InputFilenames,
575                         const Archive *A) override;
576   void printFileHeaders() override;
577   void printGroupSections() override;
578   void printRelocations() override;
579   void printSectionHeaders() override;
580   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
581                     bool ExtraSymInfo) override;
582   void printHashSymbols() override;
583   void printSectionDetails() override;
584   void printDependentLibs() override;
585   void printDynamicTable() override;
586   void printDynamicRelocations() override;
587   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
588                           bool NonVisibilityBitsUsed,
589                           bool ExtraSymInfo) const override;
590   void printProgramHeaders(bool PrintProgramHeaders,
591                            cl::boolOrDefault PrintSectionMapping) override;
592   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
593   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
594   void printVersionDependencySection(const Elf_Shdr *Sec) override;
595   void printCGProfile() override;
596   void printBBAddrMaps() override;
597   void printAddrsig() override;
598   void printNotes() override;
599   void printELFLinkerOptions() override;
600   void printStackSizes() override;
601   void printMemtag(
602       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
603       const ArrayRef<uint8_t> AndroidNoteDesc,
604       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
605   void printHashHistogramStats(size_t NBucket, size_t MaxChain,
606                                size_t TotalSyms, ArrayRef<size_t> Count,
607                                bool IsGnu) const override;
608 
609 private:
610   void printHashTableSymbols(const Elf_Hash &HashTable);
611   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
612 
613   struct Field {
614     std::string Str;
615     unsigned Column;
616 
617     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
618     Field(unsigned Col) : Column(Col) {}
619   };
620 
621   template <typename T, typename TEnum>
622   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
623                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
624                          TEnum EnumMask3 = {}) const {
625     std::string Str;
626     for (const EnumEntry<TEnum> &Flag : EnumValues) {
627       if (Flag.Value == 0)
628         continue;
629 
630       TEnum EnumMask{};
631       if (Flag.Value & EnumMask1)
632         EnumMask = EnumMask1;
633       else if (Flag.Value & EnumMask2)
634         EnumMask = EnumMask2;
635       else if (Flag.Value & EnumMask3)
636         EnumMask = EnumMask3;
637       bool IsEnum = (Flag.Value & EnumMask) != 0;
638       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
639           (IsEnum && (Value & EnumMask) == Flag.Value)) {
640         if (!Str.empty())
641           Str += ", ";
642         Str += Flag.AltName;
643       }
644     }
645     return Str;
646   }
647 
648   formatted_raw_ostream &printField(struct Field F) const {
649     if (F.Column != 0)
650       OS.PadToColumn(F.Column);
651     OS << F.Str;
652     OS.flush();
653     return OS;
654   }
655   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
656                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
657                          uint32_t Bucket);
658   void printRelrReloc(const Elf_Relr &R) override;
659   void printRelRelaReloc(const Relocation<ELFT> &R,
660                          const RelSymbol<ELFT> &RelSym) override;
661   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
662                    DataRegion<Elf_Word> ShndxTable,
663                    std::optional<StringRef> StrTable, bool IsDynamic,
664                    bool NonVisibilityBitsUsed,
665                    bool ExtraSymInfo) const override;
666   void printDynamicRelocHeader(unsigned Type, StringRef Name,
667                                const DynRegionInfo &Reg) override;
668 
669   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
670                                   DataRegion<Elf_Word> ShndxTable,
671                                   bool ExtraSymInfo = false) const;
672   void printProgramHeaders() override;
673   void printSectionMapping() override;
674   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
675                                     const Twine &Label, unsigned EntriesNum);
676 
677   void printStackSizeEntry(uint64_t Size,
678                            ArrayRef<std::string> FuncNames) override;
679 
680   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
681   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
682   void printMipsABIFlags() override;
683 };
684 
685 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
686 public:
687   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
688 
689   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
690       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
691 
692   void printFileHeaders() override;
693   void printGroupSections() override;
694   void printRelocations() override;
695   void printSectionHeaders() override;
696   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
697                     bool ExtraSymInfo) override;
698   void printDependentLibs() override;
699   void printDynamicTable() override;
700   void printDynamicRelocations() override;
701   void printProgramHeaders(bool PrintProgramHeaders,
702                            cl::boolOrDefault PrintSectionMapping) override;
703   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
704   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
705   void printVersionDependencySection(const Elf_Shdr *Sec) override;
706   void printCGProfile() override;
707   void printBBAddrMaps() override;
708   void printAddrsig() override;
709   void printNotes() override;
710   void printELFLinkerOptions() override;
711   void printStackSizes() override;
712   void printMemtag(
713       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
714       const ArrayRef<uint8_t> AndroidNoteDesc,
715       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
716   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
717                           DataRegion<Elf_Word> ShndxTable) const;
718   void printHashHistogramStats(size_t NBucket, size_t MaxChain,
719                                size_t TotalSyms, ArrayRef<size_t> Count,
720                                bool IsGnu) const override;
721 
722 private:
723   void printRelrReloc(const Elf_Relr &R) override;
724   void printRelRelaReloc(const Relocation<ELFT> &R,
725                          const RelSymbol<ELFT> &RelSym) override;
726 
727   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
728                    DataRegion<Elf_Word> ShndxTable,
729                    std::optional<StringRef> StrTable, bool IsDynamic,
730                    bool /*NonVisibilityBitsUsed*/,
731                    bool /*ExtraSymInfo*/) const override;
732   void printProgramHeaders() override;
733   void printSectionMapping() override {}
734   void printStackSizeEntry(uint64_t Size,
735                            ArrayRef<std::string> FuncNames) override;
736 
737   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
738   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
739   void printMipsABIFlags() override;
740   virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const;
741 
742 protected:
743   virtual std::string getGroupSectionHeaderName() const;
744   void printSymbolOtherField(const Elf_Sym &Symbol) const;
745   virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R,
746                                          StringRef SymbolName,
747                                          StringRef RelocName);
748   virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
749                                         StringRef SymbolName,
750                                         StringRef RelocName);
751   virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
752                                           const unsigned SecNdx);
753   virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const;
754   virtual void printEmptyGroupMessage() const;
755 
756   ScopedPrinter &W;
757 };
758 
759 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
760 // it uses a JSONScopedPrinter.
761 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
762 public:
763   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
764 
765   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
766       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
767 
768   std::string getGroupSectionHeaderName() const override;
769 
770   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
771                         ArrayRef<std::string> InputFilenames,
772                         const Archive *A) override;
773   virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override;
774 
775   void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
776                                 StringRef SymbolName,
777                                 StringRef RelocName) override;
778 
779   void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
780                                   const unsigned SecNdx) override;
781 
782   void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override;
783 
784   void printEmptyGroupMessage() const override;
785 
786 private:
787   std::unique_ptr<DictScope> FileScope;
788 };
789 
790 } // end anonymous namespace
791 
792 namespace llvm {
793 
794 template <class ELFT>
795 static std::unique_ptr<ObjDumper>
796 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
797   if (opts::Output == opts::GNU)
798     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
799   else if (opts::Output == opts::JSON)
800     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
801   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
802 }
803 
804 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
805                                            ScopedPrinter &Writer) {
806   // Little-endian 32-bit
807   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
808     return createELFDumper(*ELFObj, Writer);
809 
810   // Big-endian 32-bit
811   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
812     return createELFDumper(*ELFObj, Writer);
813 
814   // Little-endian 64-bit
815   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
816     return createELFDumper(*ELFObj, Writer);
817 
818   // Big-endian 64-bit
819   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
820 }
821 
822 } // end namespace llvm
823 
824 template <class ELFT>
825 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
826 ELFDumper<ELFT>::getVersionMap() const {
827   // If the VersionMap has already been loaded or if there is no dynamic symtab
828   // or version table, there is nothing to do.
829   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
830     return &VersionMap;
831 
832   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
833       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
834   if (MapOrErr)
835     VersionMap = *MapOrErr;
836   else
837     return MapOrErr.takeError();
838 
839   return &VersionMap;
840 }
841 
842 template <typename ELFT>
843 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
844                                                       bool &IsDefault) const {
845   // This is a dynamic symbol. Look in the GNU symbol version table.
846   if (!SymbolVersionSection) {
847     // No version table.
848     IsDefault = false;
849     return "";
850   }
851 
852   assert(DynSymRegion && "DynSymRegion has not been initialised");
853   // Determine the position in the symbol table of this entry.
854   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
855                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
856                       sizeof(Elf_Sym);
857 
858   // Get the corresponding version index entry.
859   Expected<const Elf_Versym *> EntryOrErr =
860       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
861   if (!EntryOrErr)
862     return EntryOrErr.takeError();
863 
864   unsigned Version = (*EntryOrErr)->vs_index;
865   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
866     IsDefault = false;
867     return "";
868   }
869 
870   Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
871       getVersionMap();
872   if (!MapOrErr)
873     return MapOrErr.takeError();
874 
875   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
876                                      Sym.st_shndx == ELF::SHN_UNDEF);
877 }
878 
879 template <typename ELFT>
880 Expected<RelSymbol<ELFT>>
881 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
882                                      const Elf_Shdr *SymTab) const {
883   if (R.Symbol == 0)
884     return RelSymbol<ELFT>(nullptr, "");
885 
886   Expected<const Elf_Sym *> SymOrErr =
887       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
888   if (!SymOrErr)
889     return createError("unable to read an entry with index " + Twine(R.Symbol) +
890                        " from " + describe(*SymTab) + ": " +
891                        toString(SymOrErr.takeError()));
892   const Elf_Sym *Sym = *SymOrErr;
893   if (!Sym)
894     return RelSymbol<ELFT>(nullptr, "");
895 
896   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
897   if (!StrTableOrErr)
898     return StrTableOrErr.takeError();
899 
900   const Elf_Sym *FirstSym =
901       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
902   std::string SymbolName =
903       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
904                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
905   return RelSymbol<ELFT>(Sym, SymbolName);
906 }
907 
908 template <typename ELFT>
909 ArrayRef<typename ELFT::Word>
910 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
911   if (Symtab) {
912     auto It = ShndxTables.find(Symtab);
913     if (It != ShndxTables.end())
914       return It->second;
915   }
916   return {};
917 }
918 
919 static std::string maybeDemangle(StringRef Name) {
920   return opts::Demangle ? demangle(Name) : Name.str();
921 }
922 
923 template <typename ELFT>
924 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
925   auto Warn = [&](Error E) -> std::string {
926     reportUniqueWarning("unable to read the name of symbol with index " +
927                         Twine(Index) + ": " + toString(std::move(E)));
928     return "<?>";
929   };
930 
931   Expected<const typename ELFT::Sym *> SymOrErr =
932       Obj.getSymbol(DotSymtabSec, Index);
933   if (!SymOrErr)
934     return Warn(SymOrErr.takeError());
935 
936   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
937   if (!StrTabOrErr)
938     return Warn(StrTabOrErr.takeError());
939 
940   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
941   if (!NameOrErr)
942     return Warn(NameOrErr.takeError());
943   return maybeDemangle(*NameOrErr);
944 }
945 
946 template <typename ELFT>
947 std::string ELFDumper<ELFT>::getFullSymbolName(
948     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
949     std::optional<StringRef> StrTable, bool IsDynamic) const {
950   if (!StrTable)
951     return "<?>";
952 
953   std::string SymbolName;
954   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
955     SymbolName = maybeDemangle(*NameOrErr);
956   } else {
957     reportUniqueWarning(NameOrErr.takeError());
958     return "<?>";
959   }
960 
961   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
962     Expected<unsigned> SectionIndex =
963         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
964     if (!SectionIndex) {
965       reportUniqueWarning(SectionIndex.takeError());
966       return "<?>";
967     }
968     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
969     if (!NameOrErr) {
970       reportUniqueWarning(NameOrErr.takeError());
971       return ("<section " + Twine(*SectionIndex) + ">").str();
972     }
973     return std::string(*NameOrErr);
974   }
975 
976   if (!IsDynamic)
977     return SymbolName;
978 
979   bool IsDefault;
980   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
981   if (!VersionOrErr) {
982     reportUniqueWarning(VersionOrErr.takeError());
983     return SymbolName + "@<corrupt>";
984   }
985 
986   if (!VersionOrErr->empty()) {
987     SymbolName += (IsDefault ? "@@" : "@");
988     SymbolName += *VersionOrErr;
989   }
990   return SymbolName;
991 }
992 
993 template <typename ELFT>
994 Expected<unsigned>
995 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
996                                        DataRegion<Elf_Word> ShndxTable) const {
997   unsigned Ndx = Symbol.st_shndx;
998   if (Ndx == SHN_XINDEX)
999     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
1000                                                      ShndxTable);
1001   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
1002     return Ndx;
1003 
1004   auto CreateErr = [&](const Twine &Name,
1005                        std::optional<unsigned> Offset = std::nullopt) {
1006     std::string Desc;
1007     if (Offset)
1008       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1009     else
1010       Desc = Name.str();
1011     return createError(
1012         "unable to get section index for symbol with st_shndx = 0x" +
1013         Twine::utohexstr(Ndx) + " (" + Desc + ")");
1014   };
1015 
1016   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1017     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1018   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1019     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1020   if (Ndx == ELF::SHN_UNDEF)
1021     return CreateErr("SHN_UNDEF");
1022   if (Ndx == ELF::SHN_ABS)
1023     return CreateErr("SHN_ABS");
1024   if (Ndx == ELF::SHN_COMMON)
1025     return CreateErr("SHN_COMMON");
1026   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1027 }
1028 
1029 template <typename ELFT>
1030 Expected<StringRef>
1031 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1032                                       unsigned SectionIndex) const {
1033   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1034   if (!SecOrErr)
1035     return SecOrErr.takeError();
1036   return Obj.getSectionName(**SecOrErr);
1037 }
1038 
1039 template <class ELFO>
1040 static const typename ELFO::Elf_Shdr *
1041 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1042                              uint64_t Addr) {
1043   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1044     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1045       return &Shdr;
1046   return nullptr;
1047 }
1048 
1049 const EnumEntry<unsigned> ElfClass[] = {
1050   {"None",   "none",   ELF::ELFCLASSNONE},
1051   {"32-bit", "ELF32",  ELF::ELFCLASS32},
1052   {"64-bit", "ELF64",  ELF::ELFCLASS64},
1053 };
1054 
1055 const EnumEntry<unsigned> ElfDataEncoding[] = {
1056   {"None",         "none",                          ELF::ELFDATANONE},
1057   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1058   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
1059 };
1060 
1061 const EnumEntry<unsigned> ElfObjectFileType[] = {
1062   {"None",         "NONE (none)",              ELF::ET_NONE},
1063   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1064   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1065   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1066   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1067 };
1068 
1069 const EnumEntry<unsigned> ElfOSABI[] = {
1070   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1071   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1072   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1073   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1074   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1075   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1076   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1077   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1078   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1079   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1080   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1081   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1082   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1083   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1084   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1085   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1086   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1087   {"CUDA",         "NVIDIA - CUDA",        ELF::ELFOSABI_CUDA},
1088   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1089 };
1090 
1091 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1092   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1093   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1094   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1095 };
1096 
1097 const EnumEntry<unsigned> ARMElfOSABI[] = {
1098   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1099 };
1100 
1101 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1102   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1103   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1104 };
1105 
1106 const EnumEntry<unsigned> ElfMachineType[] = {
1107   ENUM_ENT(EM_NONE,          "None"),
1108   ENUM_ENT(EM_M32,           "WE32100"),
1109   ENUM_ENT(EM_SPARC,         "Sparc"),
1110   ENUM_ENT(EM_386,           "Intel 80386"),
1111   ENUM_ENT(EM_68K,           "MC68000"),
1112   ENUM_ENT(EM_88K,           "MC88000"),
1113   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1114   ENUM_ENT(EM_860,           "Intel 80860"),
1115   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1116   ENUM_ENT(EM_S370,          "IBM System/370"),
1117   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1118   ENUM_ENT(EM_PARISC,        "HPPA"),
1119   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1120   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1121   ENUM_ENT(EM_960,           "Intel 80960"),
1122   ENUM_ENT(EM_PPC,           "PowerPC"),
1123   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1124   ENUM_ENT(EM_S390,          "IBM S/390"),
1125   ENUM_ENT(EM_SPU,           "SPU"),
1126   ENUM_ENT(EM_V800,          "NEC V800 series"),
1127   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1128   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1129   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1130   ENUM_ENT(EM_ARM,           "ARM"),
1131   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1132   ENUM_ENT(EM_SH,            "Hitachi SH"),
1133   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1134   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1135   ENUM_ENT(EM_ARC,           "ARC"),
1136   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1137   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1138   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1139   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1140   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1141   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1142   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1143   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1144   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1145   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1146   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1147   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1148   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1149   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1150   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1151   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1152   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1153   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1154   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1155   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1156   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1157   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1158   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1159   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1160   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1161   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1162   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1163   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1164   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1165   ENUM_ENT(EM_VAX,           "Digital VAX"),
1166   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1167   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1168   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1169   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1170   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1171   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1172   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1173   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1174   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1175   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1176   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1177   ENUM_ENT(EM_V850,          "NEC v850"),
1178   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1179   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1180   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1181   ENUM_ENT(EM_PJ,            "picoJava"),
1182   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1183   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1184   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1185   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1186   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1187   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1188   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1189   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1190   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1191   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1192   ENUM_ENT(EM_MAX,           "MAX Processor"),
1193   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1194   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1195   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1196   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1197   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1198   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1199   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1200   ENUM_ENT(EM_UNICORE,       "Unicore"),
1201   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1202   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1203   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1204   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1205   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1206   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1207   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1208   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1209   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1210   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1211   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1212   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1213   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1214   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1215   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1216   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1217   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1218   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1219   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1220   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1221   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1222   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1223   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1224   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1225   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1226   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1227   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1228   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1229   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1230   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1231   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1232   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1233   //        an identical number to EM_ECOG1.
1234   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1235   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1236   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1237   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1238   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1239   ENUM_ENT(EM_RX,            "Renesas RX"),
1240   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1241   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1242   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1243   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1244   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1245   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1246   ENUM_ENT(EM_L10M,          "EM_L10M"),
1247   ENUM_ENT(EM_K10M,          "EM_K10M"),
1248   ENUM_ENT(EM_AARCH64,       "AArch64"),
1249   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1250   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1251   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1252   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1253   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1254   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1255   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1256   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1257   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1258   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1259   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1260   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1261   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1262   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1263   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1264   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1265   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1266   ENUM_ENT(EM_RISCV,         "RISC-V"),
1267   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1268   ENUM_ENT(EM_BPF,           "EM_BPF"),
1269   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1270   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1271 };
1272 
1273 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1274     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1275     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1276     {"Weak",   "WEAK",   ELF::STB_WEAK},
1277     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1278 
1279 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1280     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1281     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1282     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1283     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1284 
1285 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1286   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1287 };
1288 
1289 static const char *getGroupType(uint32_t Flag) {
1290   if (Flag & ELF::GRP_COMDAT)
1291     return "COMDAT";
1292   else
1293     return "(unknown)";
1294 }
1295 
1296 const EnumEntry<unsigned> ElfSectionFlags[] = {
1297   ENUM_ENT(SHF_WRITE,            "W"),
1298   ENUM_ENT(SHF_ALLOC,            "A"),
1299   ENUM_ENT(SHF_EXECINSTR,        "X"),
1300   ENUM_ENT(SHF_MERGE,            "M"),
1301   ENUM_ENT(SHF_STRINGS,          "S"),
1302   ENUM_ENT(SHF_INFO_LINK,        "I"),
1303   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1304   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1305   ENUM_ENT(SHF_GROUP,            "G"),
1306   ENUM_ENT(SHF_TLS,              "T"),
1307   ENUM_ENT(SHF_COMPRESSED,       "C"),
1308   ENUM_ENT(SHF_EXCLUDE,          "E"),
1309 };
1310 
1311 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1312   ENUM_ENT(SHF_GNU_RETAIN, "R")
1313 };
1314 
1315 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1316   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1317 };
1318 
1319 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1320   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1321   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1322 };
1323 
1324 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1325   ENUM_ENT(SHF_ARM_PURECODE, "y")
1326 };
1327 
1328 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1329   ENUM_ENT(SHF_HEX_GPREL, "")
1330 };
1331 
1332 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1333   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1334   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1335   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1336   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1337   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1338   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1339   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1340   ENUM_ENT(SHF_MIPS_STRING,  "")
1341 };
1342 
1343 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1344   ENUM_ENT(SHF_X86_64_LARGE, "l")
1345 };
1346 
1347 static std::vector<EnumEntry<unsigned>>
1348 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1349   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1350                                        std::end(ElfSectionFlags));
1351   switch (EOSAbi) {
1352   case ELFOSABI_SOLARIS:
1353     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1354                std::end(ElfSolarisSectionFlags));
1355     break;
1356   default:
1357     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1358                std::end(ElfGNUSectionFlags));
1359     break;
1360   }
1361   switch (EMachine) {
1362   case EM_ARM:
1363     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1364                std::end(ElfARMSectionFlags));
1365     break;
1366   case EM_HEXAGON:
1367     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1368                std::end(ElfHexagonSectionFlags));
1369     break;
1370   case EM_MIPS:
1371     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1372                std::end(ElfMipsSectionFlags));
1373     break;
1374   case EM_X86_64:
1375     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1376                std::end(ElfX86_64SectionFlags));
1377     break;
1378   case EM_XCORE:
1379     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1380                std::end(ElfXCoreSectionFlags));
1381     break;
1382   default:
1383     break;
1384   }
1385   return Ret;
1386 }
1387 
1388 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1389                                uint64_t Flags) {
1390   // Here we are trying to build the flags string in the same way as GNU does.
1391   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1392   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1393   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1394   // "p". It only will print "E" when no other processor flag is set.
1395   std::string Str;
1396   bool HasUnknownFlag = false;
1397   bool HasOSFlag = false;
1398   bool HasProcFlag = false;
1399   std::vector<EnumEntry<unsigned>> FlagsList =
1400       getSectionFlagsForTarget(EOSAbi, EMachine);
1401   while (Flags) {
1402     // Take the least significant bit as a flag.
1403     uint64_t Flag = Flags & -Flags;
1404     Flags -= Flag;
1405 
1406     // Find the flag in the known flags list.
1407     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1408       // Flags with empty names are not printed in GNU style output.
1409       return E.Value == Flag && !E.AltName.empty();
1410     });
1411     if (I != FlagsList.end()) {
1412       Str += I->AltName;
1413       continue;
1414     }
1415 
1416     // If we did not find a matching regular flag, then we deal with an OS
1417     // specific flag, processor specific flag or an unknown flag.
1418     if (Flag & ELF::SHF_MASKOS) {
1419       HasOSFlag = true;
1420       Flags &= ~ELF::SHF_MASKOS;
1421     } else if (Flag & ELF::SHF_MASKPROC) {
1422       HasProcFlag = true;
1423       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1424       // bit if set so that it doesn't also get printed.
1425       Flags &= ~ELF::SHF_MASKPROC;
1426     } else {
1427       HasUnknownFlag = true;
1428     }
1429   }
1430 
1431   // "o", "p" and "x" are printed last.
1432   if (HasOSFlag)
1433     Str += "o";
1434   if (HasProcFlag)
1435     Str += "p";
1436   if (HasUnknownFlag)
1437     Str += "x";
1438   return Str;
1439 }
1440 
1441 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1442   // Check potentially overlapped processor-specific program header type.
1443   switch (Arch) {
1444   case ELF::EM_ARM:
1445     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1446     break;
1447   case ELF::EM_MIPS:
1448   case ELF::EM_MIPS_RS3_LE:
1449     switch (Type) {
1450       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1451       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1452       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1453       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1454     }
1455     break;
1456   case ELF::EM_RISCV:
1457     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1458   }
1459 
1460   switch (Type) {
1461     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1462     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1463     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1464     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1465     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1466     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1467     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1468     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1469 
1470     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1471     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1472 
1473     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1474     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1475     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1476 
1477     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1478     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1479     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1480     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1481     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS);
1482     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1483   default:
1484     return "";
1485   }
1486 }
1487 
1488 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1489   StringRef Seg = segmentTypeToString(Arch, Type);
1490   if (Seg.empty())
1491     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1492 
1493   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1494   if (Seg.consume_front("PT_ARM_"))
1495     return Seg.str();
1496 
1497   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1498   if (Seg.consume_front("PT_MIPS_"))
1499     return Seg.str();
1500 
1501   // E.g. "PT_RISCV_ATTRIBUTES"
1502   if (Seg.consume_front("PT_RISCV_"))
1503     return Seg.str();
1504 
1505   // E.g. "PT_LOAD" -> "LOAD".
1506   assert(Seg.starts_with("PT_"));
1507   return Seg.drop_front(3).str();
1508 }
1509 
1510 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1511   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1512   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1513   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1514 };
1515 
1516 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1517   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1518   ENUM_ENT(EF_MIPS_PIC, "pic"),
1519   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1520   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1521   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1522   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1523   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1524   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1525   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1526   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1527   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1528   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1529   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1530   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1531   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1532   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1533   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1534   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1535   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1536   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1537   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1538   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1539   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1540   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1541   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1542   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1543   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1544   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1545   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1546   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1547   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1548   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1549   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1550   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1551   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1552   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1553   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1554   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1555   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1556   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1557   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1558   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1559   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1560 };
1561 
1562 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1563     ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"),
1564     ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"),
1565     ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"),
1566     ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"),
1567     ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"),
1568     ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"),
1569     ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"),
1570     ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"),
1571     ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"),
1572     ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"),
1573     ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"),
1574     ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"),
1575     ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"),
1576     ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"),
1577     ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"),
1578     ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"),
1579     ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"),
1580     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"),
1581     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"),
1582     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"),
1583     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"),
1584     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"),
1585     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"),
1586     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"),
1587     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"),
1588     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"),
1589     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"),
1590     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"),
1591     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"),
1592     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"),
1593     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"),
1594     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"),
1595     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"),
1596     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"),
1597     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"),
1598     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"),
1599     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"),
1600     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"),
1601     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"),
1602     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"),
1603     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"),
1604     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"),
1605     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"),
1606     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"),
1607     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"),
1608     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"),
1609     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"),
1610     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"),
1611     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"),
1612     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"),
1613     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"),
1614     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"),
1615     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"),
1616     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"),
1617     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"),
1618     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"),
1619     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"),
1620     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"),
1621     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"),
1622     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"),
1623     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"),
1624     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack"),
1625     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc"),
1626 };
1627 
1628 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1629     ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"),
1630     ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"),
1631     ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"),
1632     ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"),
1633     ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"),
1634     ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"),
1635     ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"),
1636     ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"),
1637     ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"),
1638     ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"),
1639     ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"),
1640     ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"),
1641     ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"),
1642     ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"),
1643     ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"),
1644     ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"),
1645     ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"),
1646     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"),
1647     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"),
1648     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"),
1649     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"),
1650     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"),
1651     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"),
1652     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"),
1653     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"),
1654     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"),
1655     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"),
1656     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"),
1657     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"),
1658     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"),
1659     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"),
1660     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"),
1661     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"),
1662     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"),
1663     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"),
1664     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"),
1665     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"),
1666     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"),
1667     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"),
1668     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"),
1669     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"),
1670     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"),
1671     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"),
1672     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"),
1673     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"),
1674     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"),
1675     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"),
1676     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"),
1677     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"),
1678     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"),
1679     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"),
1680     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"),
1681     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"),
1682     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"),
1683     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"),
1684     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"),
1685     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"),
1686     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"),
1687     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"),
1688     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"),
1689     ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"),
1690     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack"),
1691     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-"),
1692     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+"),
1693     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc"),
1694     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-"),
1695     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+"),
1696 };
1697 
1698 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = {
1699     ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"),
1700     ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"),
1701     ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"),
1702     ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"),
1703     ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"),
1704     ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"),
1705     ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"),
1706     ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"),
1707     ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"),
1708     ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"),
1709 };
1710 
1711 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1712   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1713   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1714   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1715   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1716   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1717   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1718 };
1719 
1720 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1721   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1722   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1723   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1724   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1725   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1726   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1727   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1728   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1729   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1730   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1731   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1732   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1733   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1734   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1735   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1736   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1737   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1738   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1739   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1740 };
1741 
1742 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1743   ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1744   ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1745   ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1746   ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1747   ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1748 };
1749 
1750 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1751   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1752   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1753   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1754 };
1755 
1756 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1757   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1758   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1759   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1760 };
1761 
1762 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1763   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1764   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1765   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1766   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1767 };
1768 
1769 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1770   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1771 };
1772 
1773 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1774   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1775   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1776   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1777 };
1778 
1779 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1780     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1781 
1782 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1783   switch (Odk) {
1784   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1785   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1786   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1787   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1788   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1789   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1790   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1791   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1792   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1793   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1794   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1795   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1796   default:
1797     return "Unknown";
1798   }
1799 }
1800 
1801 template <typename ELFT>
1802 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1803 ELFDumper<ELFT>::findDynamic() {
1804   // Try to locate the PT_DYNAMIC header.
1805   const Elf_Phdr *DynamicPhdr = nullptr;
1806   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1807     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1808       if (Phdr.p_type != ELF::PT_DYNAMIC)
1809         continue;
1810       DynamicPhdr = &Phdr;
1811       break;
1812     }
1813   } else {
1814     reportUniqueWarning(
1815         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1816         toString(PhdrsOrErr.takeError()));
1817   }
1818 
1819   // Try to locate the .dynamic section in the sections header table.
1820   const Elf_Shdr *DynamicSec = nullptr;
1821   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1822     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1823       continue;
1824     DynamicSec = &Sec;
1825     break;
1826   }
1827 
1828   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1829                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1830                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1831                        DynamicPhdr->p_offset))) {
1832     reportUniqueWarning(
1833         "PT_DYNAMIC segment offset (0x" +
1834         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1835         Twine::utohexstr(DynamicPhdr->p_filesz) +
1836         ") exceeds the size of the file (0x" +
1837         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1838     // Don't use the broken dynamic header.
1839     DynamicPhdr = nullptr;
1840   }
1841 
1842   if (DynamicPhdr && DynamicSec) {
1843     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1844             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1845         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1846       reportUniqueWarning(describe(*DynamicSec) +
1847                           " is not contained within the "
1848                           "PT_DYNAMIC segment");
1849 
1850     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1851       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1852                                                   "PT_DYNAMIC segment");
1853   }
1854 
1855   return std::make_pair(DynamicPhdr, DynamicSec);
1856 }
1857 
1858 template <typename ELFT>
1859 void ELFDumper<ELFT>::loadDynamicTable() {
1860   const Elf_Phdr *DynamicPhdr;
1861   const Elf_Shdr *DynamicSec;
1862   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1863   if (!DynamicPhdr && !DynamicSec)
1864     return;
1865 
1866   DynRegionInfo FromPhdr(ObjF, *this);
1867   bool IsPhdrTableValid = false;
1868   if (DynamicPhdr) {
1869     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1870     // validated in findDynamic() and so createDRI() is not expected to fail.
1871     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1872                                   sizeof(Elf_Dyn)));
1873     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1874     FromPhdr.EntSizePrintName = "";
1875     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1876   }
1877 
1878   // Locate the dynamic table described in a section header.
1879   // Ignore sh_entsize and use the expected value for entry size explicitly.
1880   // This allows us to dump dynamic sections with a broken sh_entsize
1881   // field.
1882   DynRegionInfo FromSec(ObjF, *this);
1883   bool IsSecTableValid = false;
1884   if (DynamicSec) {
1885     Expected<DynRegionInfo> RegOrErr =
1886         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1887     if (RegOrErr) {
1888       FromSec = *RegOrErr;
1889       FromSec.Context = describe(*DynamicSec);
1890       FromSec.EntSizePrintName = "";
1891       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1892     } else {
1893       reportUniqueWarning("unable to read the dynamic table from " +
1894                           describe(*DynamicSec) + ": " +
1895                           toString(RegOrErr.takeError()));
1896     }
1897   }
1898 
1899   // When we only have information from one of the SHT_DYNAMIC section header or
1900   // PT_DYNAMIC program header, just use that.
1901   if (!DynamicPhdr || !DynamicSec) {
1902     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1903       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1904       parseDynamicTable();
1905     } else {
1906       reportUniqueWarning("no valid dynamic table was found");
1907     }
1908     return;
1909   }
1910 
1911   // At this point we have tables found from the section header and from the
1912   // dynamic segment. Usually they match, but we have to do sanity checks to
1913   // verify that.
1914 
1915   if (FromPhdr.Addr != FromSec.Addr)
1916     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1917                         "program header disagree about "
1918                         "the location of the dynamic table");
1919 
1920   if (!IsPhdrTableValid && !IsSecTableValid) {
1921     reportUniqueWarning("no valid dynamic table was found");
1922     return;
1923   }
1924 
1925   // Information in the PT_DYNAMIC program header has priority over the
1926   // information in a section header.
1927   if (IsPhdrTableValid) {
1928     if (!IsSecTableValid)
1929       reportUniqueWarning(
1930           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1931     DynamicTable = FromPhdr;
1932   } else {
1933     reportUniqueWarning(
1934         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1935     DynamicTable = FromSec;
1936   }
1937 
1938   parseDynamicTable();
1939 }
1940 
1941 template <typename ELFT>
1942 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1943                            ScopedPrinter &Writer)
1944     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1945       FileName(O.getFileName()), DynRelRegion(O, *this),
1946       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1947       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1948       DynamicTable(O, *this) {
1949   if (!O.IsContentValid())
1950     return;
1951 
1952   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1953   for (const Elf_Shdr &Sec : Sections) {
1954     switch (Sec.sh_type) {
1955     case ELF::SHT_SYMTAB:
1956       if (!DotSymtabSec)
1957         DotSymtabSec = &Sec;
1958       break;
1959     case ELF::SHT_DYNSYM:
1960       if (!DotDynsymSec)
1961         DotDynsymSec = &Sec;
1962 
1963       if (!DynSymRegion) {
1964         Expected<DynRegionInfo> RegOrErr =
1965             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1966         if (RegOrErr) {
1967           DynSymRegion = *RegOrErr;
1968           DynSymRegion->Context = describe(Sec);
1969 
1970           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1971             DynamicStringTable = *E;
1972           else
1973             reportUniqueWarning("unable to get the string table for the " +
1974                                 describe(Sec) + ": " + toString(E.takeError()));
1975         } else {
1976           reportUniqueWarning("unable to read dynamic symbols from " +
1977                               describe(Sec) + ": " +
1978                               toString(RegOrErr.takeError()));
1979         }
1980       }
1981       break;
1982     case ELF::SHT_SYMTAB_SHNDX: {
1983       uint32_t SymtabNdx = Sec.sh_link;
1984       if (SymtabNdx >= Sections.size()) {
1985         reportUniqueWarning(
1986             "unable to get the associated symbol table for " + describe(Sec) +
1987             ": sh_link (" + Twine(SymtabNdx) +
1988             ") is greater than or equal to the total number of sections (" +
1989             Twine(Sections.size()) + ")");
1990         continue;
1991       }
1992 
1993       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1994               Obj.getSHNDXTable(Sec)) {
1995         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1996                  .second)
1997           reportUniqueWarning(
1998               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1999               describe(Sec));
2000       } else {
2001         reportUniqueWarning(ShndxTableOrErr.takeError());
2002       }
2003       break;
2004     }
2005     case ELF::SHT_GNU_versym:
2006       if (!SymbolVersionSection)
2007         SymbolVersionSection = &Sec;
2008       break;
2009     case ELF::SHT_GNU_verdef:
2010       if (!SymbolVersionDefSection)
2011         SymbolVersionDefSection = &Sec;
2012       break;
2013     case ELF::SHT_GNU_verneed:
2014       if (!SymbolVersionNeedSection)
2015         SymbolVersionNeedSection = &Sec;
2016       break;
2017     case ELF::SHT_LLVM_ADDRSIG:
2018       if (!DotAddrsigSec)
2019         DotAddrsigSec = &Sec;
2020       break;
2021     }
2022   }
2023 
2024   loadDynamicTable();
2025 }
2026 
2027 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
2028   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2029     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
2030       this->reportUniqueWarning(Msg);
2031       return Error::success();
2032     });
2033     if (!MappedAddrOrError) {
2034       this->reportUniqueWarning("unable to parse DT_" +
2035                                 Obj.getDynamicTagAsString(Tag) + ": " +
2036                                 llvm::toString(MappedAddrOrError.takeError()));
2037       return nullptr;
2038     }
2039     return MappedAddrOrError.get();
2040   };
2041 
2042   const char *StringTableBegin = nullptr;
2043   uint64_t StringTableSize = 0;
2044   std::optional<DynRegionInfo> DynSymFromTable;
2045   for (const Elf_Dyn &Dyn : dynamic_table()) {
2046     if (Obj.getHeader().e_machine == EM_AARCH64) {
2047       switch (Dyn.d_tag) {
2048       case ELF::DT_AARCH64_AUTH_RELRSZ:
2049         DynRelrRegion.Size = Dyn.getVal();
2050         DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value";
2051         continue;
2052       case ELF::DT_AARCH64_AUTH_RELRENT:
2053         DynRelrRegion.EntSize = Dyn.getVal();
2054         DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value";
2055         continue;
2056       }
2057     }
2058     switch (Dyn.d_tag) {
2059     case ELF::DT_HASH:
2060       HashTable = reinterpret_cast<const Elf_Hash *>(
2061           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2062       break;
2063     case ELF::DT_GNU_HASH:
2064       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2065           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2066       break;
2067     case ELF::DT_STRTAB:
2068       StringTableBegin = reinterpret_cast<const char *>(
2069           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2070       break;
2071     case ELF::DT_STRSZ:
2072       StringTableSize = Dyn.getVal();
2073       break;
2074     case ELF::DT_SYMTAB: {
2075       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2076       // no program headers), we ignore its value.
2077       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2078         DynSymFromTable.emplace(ObjF, *this);
2079         DynSymFromTable->Addr = VA;
2080         DynSymFromTable->EntSize = sizeof(Elf_Sym);
2081         DynSymFromTable->EntSizePrintName = "";
2082       }
2083       break;
2084     }
2085     case ELF::DT_SYMENT: {
2086       uint64_t Val = Dyn.getVal();
2087       if (Val != sizeof(Elf_Sym))
2088         this->reportUniqueWarning("DT_SYMENT value of 0x" +
2089                                   Twine::utohexstr(Val) +
2090                                   " is not the size of a symbol (0x" +
2091                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2092       break;
2093     }
2094     case ELF::DT_RELA:
2095       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2096       break;
2097     case ELF::DT_RELASZ:
2098       DynRelaRegion.Size = Dyn.getVal();
2099       DynRelaRegion.SizePrintName = "DT_RELASZ value";
2100       break;
2101     case ELF::DT_RELAENT:
2102       DynRelaRegion.EntSize = Dyn.getVal();
2103       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2104       break;
2105     case ELF::DT_SONAME:
2106       SONameOffset = Dyn.getVal();
2107       break;
2108     case ELF::DT_REL:
2109       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2110       break;
2111     case ELF::DT_RELSZ:
2112       DynRelRegion.Size = Dyn.getVal();
2113       DynRelRegion.SizePrintName = "DT_RELSZ value";
2114       break;
2115     case ELF::DT_RELENT:
2116       DynRelRegion.EntSize = Dyn.getVal();
2117       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2118       break;
2119     case ELF::DT_RELR:
2120     case ELF::DT_ANDROID_RELR:
2121     case ELF::DT_AARCH64_AUTH_RELR:
2122       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2123       break;
2124     case ELF::DT_RELRSZ:
2125     case ELF::DT_ANDROID_RELRSZ:
2126     case ELF::DT_AARCH64_AUTH_RELRSZ:
2127       DynRelrRegion.Size = Dyn.getVal();
2128       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2129                                         ? "DT_RELRSZ value"
2130                                         : "DT_ANDROID_RELRSZ value";
2131       break;
2132     case ELF::DT_RELRENT:
2133     case ELF::DT_ANDROID_RELRENT:
2134     case ELF::DT_AARCH64_AUTH_RELRENT:
2135       DynRelrRegion.EntSize = Dyn.getVal();
2136       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2137                                            ? "DT_RELRENT value"
2138                                            : "DT_ANDROID_RELRENT value";
2139       break;
2140     case ELF::DT_PLTREL:
2141       if (Dyn.getVal() == DT_REL)
2142         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2143       else if (Dyn.getVal() == DT_RELA)
2144         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2145       else
2146         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2147                             Twine((uint64_t)Dyn.getVal()));
2148       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2149       break;
2150     case ELF::DT_JMPREL:
2151       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2152       break;
2153     case ELF::DT_PLTRELSZ:
2154       DynPLTRelRegion.Size = Dyn.getVal();
2155       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2156       break;
2157     case ELF::DT_SYMTAB_SHNDX:
2158       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2159       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2160       break;
2161     }
2162   }
2163 
2164   if (StringTableBegin) {
2165     const uint64_t FileSize = Obj.getBufSize();
2166     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2167     if (StringTableSize > FileSize - Offset)
2168       reportUniqueWarning(
2169           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2170           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2171           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2172     else
2173       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2174   }
2175 
2176   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2177   if (DynSymRegion) {
2178     // Often we find the information about the dynamic symbol table
2179     // location in the SHT_DYNSYM section header. However, the value in
2180     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2181     // locate .dynsym at runtime. The location we find in the section header
2182     // and the location we find here should match.
2183     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2184       reportUniqueWarning(
2185           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2186                       "the location of the dynamic symbol table"));
2187 
2188     // According to the ELF gABI: "The number of symbol table entries should
2189     // equal nchain". Check to see if the DT_HASH hash table nchain value
2190     // conflicts with the number of symbols in the dynamic symbol table
2191     // according to the section header.
2192     if (HashTable && IsHashTableSupported) {
2193       if (DynSymRegion->EntSize == 0)
2194         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2195       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2196         reportUniqueWarning(
2197             "hash table nchain (" + Twine(HashTable->nchain) +
2198             ") differs from symbol count derived from SHT_DYNSYM section "
2199             "header (" +
2200             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2201     }
2202   }
2203 
2204   // Delay the creation of the actual dynamic symbol table until now, so that
2205   // checks can always be made against the section header-based properties,
2206   // without worrying about tag order.
2207   if (DynSymFromTable) {
2208     if (!DynSymRegion) {
2209       DynSymRegion = DynSymFromTable;
2210     } else {
2211       DynSymRegion->Addr = DynSymFromTable->Addr;
2212       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2213       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2214     }
2215   }
2216 
2217   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2218   // present.
2219   if (HashTable && IsHashTableSupported && DynSymRegion) {
2220     const uint64_t FileSize = Obj.getBufSize();
2221     const uint64_t DerivedSize =
2222         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2223     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2224     if (DerivedSize > FileSize - Offset)
2225       reportUniqueWarning(
2226           "the size (0x" + Twine::utohexstr(DerivedSize) +
2227           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2228           ", derived from the hash table, goes past the end of the file (0x" +
2229           Twine::utohexstr(FileSize) + ") and will be ignored");
2230     else
2231       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2232   }
2233 }
2234 
2235 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2236   // Dump version symbol section.
2237   printVersionSymbolSection(SymbolVersionSection);
2238 
2239   // Dump version definition section.
2240   printVersionDefinitionSection(SymbolVersionDefSection);
2241 
2242   // Dump version dependency section.
2243   printVersionDependencySection(SymbolVersionNeedSection);
2244 }
2245 
2246 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2247   { #enum, prefix##_##enum }
2248 
2249 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2250   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2251   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2252   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2253   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2254   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2255 };
2256 
2257 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2258   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2259   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2260   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2261   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2262   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2263   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2264   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2265   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2266   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2267   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2268   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2269   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2270   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2271   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2272   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2273   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2274   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2275   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2276   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2277   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2278   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2279   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2280   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2281   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2282   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2283   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2284   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2285 };
2286 
2287 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2288   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2289   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2290   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2291   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2292   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2293   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2294   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2295   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2296   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2297   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2298   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2299   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2300   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2301   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2302   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2303   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2304 };
2305 
2306 #undef LLVM_READOBJ_DT_FLAG_ENT
2307 
2308 template <typename T, typename TFlag>
2309 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2310   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2311   for (const EnumEntry<TFlag> &Flag : Flags)
2312     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2313       SetFlags.push_back(Flag);
2314 
2315   for (const EnumEntry<TFlag> &Flag : SetFlags)
2316     OS << Flag.Name << " ";
2317 }
2318 
2319 template <class ELFT>
2320 const typename ELFT::Shdr *
2321 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2322   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2323     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2324       if (*NameOrErr == Name)
2325         return &Shdr;
2326     } else {
2327       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2328                           ": " + toString(NameOrErr.takeError()));
2329     }
2330   }
2331   return nullptr;
2332 }
2333 
2334 template <class ELFT>
2335 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2336                                              uint64_t Value) const {
2337   auto FormatHexValue = [](uint64_t V) {
2338     std::string Str;
2339     raw_string_ostream OS(Str);
2340     const char *ConvChar =
2341         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2342     OS << format(ConvChar, V);
2343     return OS.str();
2344   };
2345 
2346   auto FormatFlags = [](uint64_t V,
2347                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2348     std::string Str;
2349     raw_string_ostream OS(Str);
2350     printFlags(V, Array, OS);
2351     return OS.str();
2352   };
2353 
2354   // Handle custom printing of architecture specific tags
2355   switch (Obj.getHeader().e_machine) {
2356   case EM_AARCH64:
2357     switch (Type) {
2358     case DT_AARCH64_BTI_PLT:
2359     case DT_AARCH64_PAC_PLT:
2360     case DT_AARCH64_VARIANT_PCS:
2361     case DT_AARCH64_MEMTAG_GLOBALSSZ:
2362       return std::to_string(Value);
2363     case DT_AARCH64_MEMTAG_MODE:
2364       switch (Value) {
2365         case 0:
2366           return "Synchronous (0)";
2367         case 1:
2368           return "Asynchronous (1)";
2369         default:
2370           return (Twine("Unknown (") + Twine(Value) + ")").str();
2371       }
2372     case DT_AARCH64_MEMTAG_HEAP:
2373     case DT_AARCH64_MEMTAG_STACK:
2374       switch (Value) {
2375         case 0:
2376           return "Disabled (0)";
2377         case 1:
2378           return "Enabled (1)";
2379         default:
2380           return (Twine("Unknown (") + Twine(Value) + ")").str();
2381       }
2382     case DT_AARCH64_MEMTAG_GLOBALS:
2383       return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str();
2384     default:
2385       break;
2386     }
2387     break;
2388   case EM_HEXAGON:
2389     switch (Type) {
2390     case DT_HEXAGON_VER:
2391       return std::to_string(Value);
2392     case DT_HEXAGON_SYMSZ:
2393     case DT_HEXAGON_PLT:
2394       return FormatHexValue(Value);
2395     default:
2396       break;
2397     }
2398     break;
2399   case EM_MIPS:
2400     switch (Type) {
2401     case DT_MIPS_RLD_VERSION:
2402     case DT_MIPS_LOCAL_GOTNO:
2403     case DT_MIPS_SYMTABNO:
2404     case DT_MIPS_UNREFEXTNO:
2405       return std::to_string(Value);
2406     case DT_MIPS_TIME_STAMP:
2407     case DT_MIPS_ICHECKSUM:
2408     case DT_MIPS_IVERSION:
2409     case DT_MIPS_BASE_ADDRESS:
2410     case DT_MIPS_MSYM:
2411     case DT_MIPS_CONFLICT:
2412     case DT_MIPS_LIBLIST:
2413     case DT_MIPS_CONFLICTNO:
2414     case DT_MIPS_LIBLISTNO:
2415     case DT_MIPS_GOTSYM:
2416     case DT_MIPS_HIPAGENO:
2417     case DT_MIPS_RLD_MAP:
2418     case DT_MIPS_DELTA_CLASS:
2419     case DT_MIPS_DELTA_CLASS_NO:
2420     case DT_MIPS_DELTA_INSTANCE:
2421     case DT_MIPS_DELTA_RELOC:
2422     case DT_MIPS_DELTA_RELOC_NO:
2423     case DT_MIPS_DELTA_SYM:
2424     case DT_MIPS_DELTA_SYM_NO:
2425     case DT_MIPS_DELTA_CLASSSYM:
2426     case DT_MIPS_DELTA_CLASSSYM_NO:
2427     case DT_MIPS_CXX_FLAGS:
2428     case DT_MIPS_PIXIE_INIT:
2429     case DT_MIPS_SYMBOL_LIB:
2430     case DT_MIPS_LOCALPAGE_GOTIDX:
2431     case DT_MIPS_LOCAL_GOTIDX:
2432     case DT_MIPS_HIDDEN_GOTIDX:
2433     case DT_MIPS_PROTECTED_GOTIDX:
2434     case DT_MIPS_OPTIONS:
2435     case DT_MIPS_INTERFACE:
2436     case DT_MIPS_DYNSTR_ALIGN:
2437     case DT_MIPS_INTERFACE_SIZE:
2438     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2439     case DT_MIPS_PERF_SUFFIX:
2440     case DT_MIPS_COMPACT_SIZE:
2441     case DT_MIPS_GP_VALUE:
2442     case DT_MIPS_AUX_DYNAMIC:
2443     case DT_MIPS_PLTGOT:
2444     case DT_MIPS_RWPLT:
2445     case DT_MIPS_RLD_MAP_REL:
2446     case DT_MIPS_XHASH:
2447       return FormatHexValue(Value);
2448     case DT_MIPS_FLAGS:
2449       return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2450     default:
2451       break;
2452     }
2453     break;
2454   default:
2455     break;
2456   }
2457 
2458   switch (Type) {
2459   case DT_PLTREL:
2460     if (Value == DT_REL)
2461       return "REL";
2462     if (Value == DT_RELA)
2463       return "RELA";
2464     [[fallthrough]];
2465   case DT_PLTGOT:
2466   case DT_HASH:
2467   case DT_STRTAB:
2468   case DT_SYMTAB:
2469   case DT_RELA:
2470   case DT_INIT:
2471   case DT_FINI:
2472   case DT_REL:
2473   case DT_JMPREL:
2474   case DT_INIT_ARRAY:
2475   case DT_FINI_ARRAY:
2476   case DT_PREINIT_ARRAY:
2477   case DT_DEBUG:
2478   case DT_VERDEF:
2479   case DT_VERNEED:
2480   case DT_VERSYM:
2481   case DT_GNU_HASH:
2482   case DT_NULL:
2483     return FormatHexValue(Value);
2484   case DT_RELACOUNT:
2485   case DT_RELCOUNT:
2486   case DT_VERDEFNUM:
2487   case DT_VERNEEDNUM:
2488     return std::to_string(Value);
2489   case DT_PLTRELSZ:
2490   case DT_RELASZ:
2491   case DT_RELAENT:
2492   case DT_STRSZ:
2493   case DT_SYMENT:
2494   case DT_RELSZ:
2495   case DT_RELENT:
2496   case DT_INIT_ARRAYSZ:
2497   case DT_FINI_ARRAYSZ:
2498   case DT_PREINIT_ARRAYSZ:
2499   case DT_RELRSZ:
2500   case DT_RELRENT:
2501   case DT_AARCH64_AUTH_RELRSZ:
2502   case DT_AARCH64_AUTH_RELRENT:
2503   case DT_ANDROID_RELSZ:
2504   case DT_ANDROID_RELASZ:
2505     return std::to_string(Value) + " (bytes)";
2506   case DT_NEEDED:
2507   case DT_SONAME:
2508   case DT_AUXILIARY:
2509   case DT_USED:
2510   case DT_FILTER:
2511   case DT_RPATH:
2512   case DT_RUNPATH: {
2513     const std::map<uint64_t, const char *> TagNames = {
2514         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2515         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2516         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2517         {DT_RUNPATH, "Library runpath"},
2518     };
2519 
2520     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2521         .str();
2522   }
2523   case DT_FLAGS:
2524     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2525   case DT_FLAGS_1:
2526     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2527   default:
2528     return FormatHexValue(Value);
2529   }
2530 }
2531 
2532 template <class ELFT>
2533 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2534   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2535     reportUniqueWarning("string table was not found");
2536     return "<?>";
2537   }
2538 
2539   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2540     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2541                         Msg);
2542     return "<?>";
2543   };
2544 
2545   const uint64_t FileSize = Obj.getBufSize();
2546   const uint64_t Offset =
2547       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2548   if (DynamicStringTable.size() > FileSize - Offset)
2549     return WarnAndReturn(" with size 0x" +
2550                              Twine::utohexstr(DynamicStringTable.size()) +
2551                              " goes past the end of the file (0x" +
2552                              Twine::utohexstr(FileSize) + ")",
2553                          Offset);
2554 
2555   if (Value >= DynamicStringTable.size())
2556     return WarnAndReturn(
2557         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2558             ": it goes past the end of the table (0x" +
2559             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2560         Offset);
2561 
2562   if (DynamicStringTable.back() != '\0')
2563     return WarnAndReturn(": unable to read the string at 0x" +
2564                              Twine::utohexstr(Offset + Value) +
2565                              ": the string table is not null-terminated",
2566                          Offset);
2567 
2568   return DynamicStringTable.data() + Value;
2569 }
2570 
2571 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2572   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2573   Ctx.printUnwindInformation();
2574 }
2575 
2576 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2577 namespace {
2578 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2579   if (Obj.getHeader().e_machine == EM_ARM) {
2580     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2581                                             DotSymtabSec);
2582     Ctx.PrintUnwindInformation();
2583   }
2584   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2585   Ctx.printUnwindInformation();
2586 }
2587 } // namespace
2588 
2589 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2590   ListScope D(W, "NeededLibraries");
2591 
2592   std::vector<StringRef> Libs;
2593   for (const auto &Entry : dynamic_table())
2594     if (Entry.d_tag == ELF::DT_NEEDED)
2595       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2596 
2597   llvm::sort(Libs);
2598 
2599   for (StringRef L : Libs)
2600     W.printString(L);
2601 }
2602 
2603 template <class ELFT>
2604 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2605                             const typename ELFT::Hash *H,
2606                             bool *IsHeaderValid = nullptr) {
2607   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2608   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2609   if (Dumper.getHashTableEntSize() == 8) {
2610     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2611       return E.Value == Obj.getHeader().e_machine;
2612     });
2613     if (IsHeaderValid)
2614       *IsHeaderValid = false;
2615     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2616                        " is not supported: it contains non-standard 8 "
2617                        "byte entries on " +
2618                        It->AltName + " platform");
2619   }
2620 
2621   auto MakeError = [&](const Twine &Msg = "") {
2622     return createError("the hash table at offset 0x" +
2623                        Twine::utohexstr(SecOffset) +
2624                        " goes past the end of the file (0x" +
2625                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2626   };
2627 
2628   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2629   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2630 
2631   if (IsHeaderValid)
2632     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2633 
2634   if (Obj.getBufSize() - SecOffset < HeaderSize)
2635     return MakeError();
2636 
2637   if (Obj.getBufSize() - SecOffset - HeaderSize <
2638       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2639     return MakeError(", nbucket = " + Twine(H->nbucket) +
2640                      ", nchain = " + Twine(H->nchain));
2641   return Error::success();
2642 }
2643 
2644 template <class ELFT>
2645 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2646                                const typename ELFT::GnuHash *GnuHashTable,
2647                                bool *IsHeaderValid = nullptr) {
2648   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2649   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2650          "GnuHashTable must always point to a location inside the file");
2651 
2652   uint64_t TableOffset = TableData - Obj.base();
2653   if (IsHeaderValid)
2654     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2655   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2656           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2657       Obj.getBufSize())
2658     return createError("unable to dump the SHT_GNU_HASH "
2659                        "section at 0x" +
2660                        Twine::utohexstr(TableOffset) +
2661                        ": it goes past the end of the file");
2662   return Error::success();
2663 }
2664 
2665 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2666   DictScope D(W, "HashTable");
2667   if (!HashTable)
2668     return;
2669 
2670   bool IsHeaderValid;
2671   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2672   if (IsHeaderValid) {
2673     W.printNumber("Num Buckets", HashTable->nbucket);
2674     W.printNumber("Num Chains", HashTable->nchain);
2675   }
2676 
2677   if (Err) {
2678     reportUniqueWarning(std::move(Err));
2679     return;
2680   }
2681 
2682   W.printList("Buckets", HashTable->buckets());
2683   W.printList("Chains", HashTable->chains());
2684 }
2685 
2686 template <class ELFT>
2687 static Expected<ArrayRef<typename ELFT::Word>>
2688 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2689                       const typename ELFT::GnuHash *GnuHashTable) {
2690   if (!DynSymRegion)
2691     return createError("no dynamic symbol table found");
2692 
2693   ArrayRef<typename ELFT::Sym> DynSymTable =
2694       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2695   size_t NumSyms = DynSymTable.size();
2696   if (!NumSyms)
2697     return createError("the dynamic symbol table is empty");
2698 
2699   if (GnuHashTable->symndx < NumSyms)
2700     return GnuHashTable->values(NumSyms);
2701 
2702   // A normal empty GNU hash table section produced by linker might have
2703   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2704   // and have dummy null values in the Bloom filter and in the buckets
2705   // vector (or no values at all). It happens because the value of symndx is not
2706   // important for dynamic loaders when the GNU hash table is empty. They just
2707   // skip the whole object during symbol lookup. In such cases, the symndx value
2708   // is irrelevant and we should not report a warning.
2709   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2710   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2711     return createError(
2712         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2713         ") is greater than or equal to the number of dynamic symbols (" +
2714         Twine(NumSyms) + ")");
2715   // There is no way to represent an array of (dynamic symbols count - symndx)
2716   // length.
2717   return ArrayRef<typename ELFT::Word>();
2718 }
2719 
2720 template <typename ELFT>
2721 void ELFDumper<ELFT>::printGnuHashTable() {
2722   DictScope D(W, "GnuHashTable");
2723   if (!GnuHashTable)
2724     return;
2725 
2726   bool IsHeaderValid;
2727   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2728   if (IsHeaderValid) {
2729     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2730     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2731     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2732     W.printNumber("Shift Count", GnuHashTable->shift2);
2733   }
2734 
2735   if (Err) {
2736     reportUniqueWarning(std::move(Err));
2737     return;
2738   }
2739 
2740   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2741   W.printHexList("Bloom Filter", BloomFilter);
2742 
2743   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2744   W.printList("Buckets", Buckets);
2745 
2746   Expected<ArrayRef<Elf_Word>> Chains =
2747       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2748   if (!Chains) {
2749     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2750                         "section: " +
2751                         toString(Chains.takeError()));
2752     return;
2753   }
2754 
2755   W.printHexList("Values", *Chains);
2756 }
2757 
2758 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2759   // Print histogram for the .hash section.
2760   if (this->HashTable) {
2761     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
2762       this->reportUniqueWarning(std::move(E));
2763     else
2764       printHashHistogram(*this->HashTable);
2765   }
2766 
2767   // Print histogram for the .gnu.hash section.
2768   if (this->GnuHashTable) {
2769     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
2770       this->reportUniqueWarning(std::move(E));
2771     else
2772       printGnuHashHistogram(*this->GnuHashTable);
2773   }
2774 }
2775 
2776 template <typename ELFT>
2777 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const {
2778   size_t NBucket = HashTable.nbucket;
2779   size_t NChain = HashTable.nchain;
2780   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
2781   ArrayRef<Elf_Word> Chains = HashTable.chains();
2782   size_t TotalSyms = 0;
2783   // If hash table is correct, we have at least chains with 0 length.
2784   size_t MaxChain = 1;
2785 
2786   if (NChain == 0 || NBucket == 0)
2787     return;
2788 
2789   std::vector<size_t> ChainLen(NBucket, 0);
2790   // Go over all buckets and note chain lengths of each bucket (total
2791   // unique chain lengths).
2792   for (size_t B = 0; B < NBucket; ++B) {
2793     BitVector Visited(NChain);
2794     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
2795       if (C == ELF::STN_UNDEF)
2796           break;
2797       if (Visited[C]) {
2798           this->reportUniqueWarning(
2799               ".hash section is invalid: bucket " + Twine(C) +
2800               ": a cycle was detected in the linked chain");
2801           break;
2802       }
2803       Visited[C] = true;
2804       if (MaxChain <= ++ChainLen[B])
2805           ++MaxChain;
2806     }
2807     TotalSyms += ChainLen[B];
2808   }
2809 
2810   if (!TotalSyms)
2811     return;
2812 
2813   std::vector<size_t> Count(MaxChain, 0);
2814   // Count how long is the chain for each bucket.
2815   for (size_t B = 0; B < NBucket; B++)
2816     ++Count[ChainLen[B]];
2817   // Print Number of buckets with each chain lengths and their cumulative
2818   // coverage of the symbols.
2819   printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false);
2820 }
2821 
2822 template <class ELFT>
2823 void ELFDumper<ELFT>::printGnuHashHistogram(
2824     const Elf_GnuHash &GnuHashTable) const {
2825   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
2826       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
2827   if (!ChainsOrErr) {
2828     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2829                               toString(ChainsOrErr.takeError()));
2830     return;
2831   }
2832 
2833   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
2834   size_t Symndx = GnuHashTable.symndx;
2835   size_t TotalSyms = 0;
2836   size_t MaxChain = 1;
2837 
2838   size_t NBucket = GnuHashTable.nbuckets;
2839   if (Chains.empty() || NBucket == 0)
2840     return;
2841 
2842   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
2843   std::vector<size_t> ChainLen(NBucket, 0);
2844   for (size_t B = 0; B < NBucket; ++B) {
2845     if (!Buckets[B])
2846       continue;
2847     size_t Len = 1;
2848     for (size_t C = Buckets[B] - Symndx;
2849          C < Chains.size() && (Chains[C] & 1) == 0; ++C)
2850       if (MaxChain < ++Len)
2851           ++MaxChain;
2852     ChainLen[B] = Len;
2853     TotalSyms += Len;
2854   }
2855   ++MaxChain;
2856 
2857   if (!TotalSyms)
2858     return;
2859 
2860   std::vector<size_t> Count(MaxChain, 0);
2861   for (size_t B = 0; B < NBucket; ++B)
2862     ++Count[ChainLen[B]];
2863   // Print Number of buckets with each chain lengths and their cumulative
2864   // coverage of the symbols.
2865   printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true);
2866 }
2867 
2868 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2869   StringRef SOName = "<Not found>";
2870   if (SONameOffset)
2871     SOName = getDynamicString(*SONameOffset);
2872   W.printString("LoadName", SOName);
2873 }
2874 
2875 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2876   switch (Obj.getHeader().e_machine) {
2877   case EM_ARM:
2878     if (Obj.isLE())
2879       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2880                       std::make_unique<ARMAttributeParser>(&W),
2881                       llvm::endianness::little);
2882     else
2883       reportUniqueWarning("attribute printing not implemented for big-endian "
2884                           "ARM objects");
2885     break;
2886   case EM_RISCV:
2887     if (Obj.isLE())
2888       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2889                       std::make_unique<RISCVAttributeParser>(&W),
2890                       llvm::endianness::little);
2891     else
2892       reportUniqueWarning("attribute printing not implemented for big-endian "
2893                           "RISC-V objects");
2894     break;
2895   case EM_MSP430:
2896     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2897                     std::make_unique<MSP430AttributeParser>(&W),
2898                     llvm::endianness::little);
2899     break;
2900   case EM_MIPS: {
2901     printMipsABIFlags();
2902     printMipsOptions();
2903     printMipsReginfo();
2904     MipsGOTParser<ELFT> Parser(*this);
2905     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2906       reportUniqueWarning(std::move(E));
2907     else if (!Parser.isGotEmpty())
2908       printMipsGOT(Parser);
2909 
2910     if (Error E = Parser.findPLT(dynamic_table()))
2911       reportUniqueWarning(std::move(E));
2912     else if (!Parser.isPltEmpty())
2913       printMipsPLT(Parser);
2914     break;
2915   }
2916   default:
2917     break;
2918   }
2919 }
2920 
2921 template <class ELFT>
2922 void ELFDumper<ELFT>::printAttributes(
2923     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2924     llvm::endianness Endianness) {
2925   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2926          "Incomplete ELF attribute implementation");
2927   DictScope BA(W, "BuildAttributes");
2928   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2929     if (Sec.sh_type != AttrShType)
2930       continue;
2931 
2932     ArrayRef<uint8_t> Contents;
2933     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2934             Obj.getSectionContents(Sec)) {
2935       Contents = *ContentOrErr;
2936       if (Contents.empty()) {
2937         reportUniqueWarning("the " + describe(Sec) + " is empty");
2938         continue;
2939       }
2940     } else {
2941       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2942                           ": " + toString(ContentOrErr.takeError()));
2943       continue;
2944     }
2945 
2946     W.printHex("FormatVersion", Contents[0]);
2947 
2948     if (Error E = AttrParser->parse(Contents, Endianness))
2949       reportUniqueWarning("unable to dump attributes from the " +
2950                           describe(Sec) + ": " + toString(std::move(E)));
2951   }
2952 }
2953 
2954 namespace {
2955 
2956 template <class ELFT> class MipsGOTParser {
2957 public:
2958   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2959   using Entry = typename ELFT::Addr;
2960   using Entries = ArrayRef<Entry>;
2961 
2962   const bool IsStatic;
2963   const ELFFile<ELFT> &Obj;
2964   const ELFDumper<ELFT> &Dumper;
2965 
2966   MipsGOTParser(const ELFDumper<ELFT> &D);
2967   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2968   Error findPLT(Elf_Dyn_Range DynTable);
2969 
2970   bool isGotEmpty() const { return GotEntries.empty(); }
2971   bool isPltEmpty() const { return PltEntries.empty(); }
2972 
2973   uint64_t getGp() const;
2974 
2975   const Entry *getGotLazyResolver() const;
2976   const Entry *getGotModulePointer() const;
2977   const Entry *getPltLazyResolver() const;
2978   const Entry *getPltModulePointer() const;
2979 
2980   Entries getLocalEntries() const;
2981   Entries getGlobalEntries() const;
2982   Entries getOtherEntries() const;
2983   Entries getPltEntries() const;
2984 
2985   uint64_t getGotAddress(const Entry * E) const;
2986   int64_t getGotOffset(const Entry * E) const;
2987   const Elf_Sym *getGotSym(const Entry *E) const;
2988 
2989   uint64_t getPltAddress(const Entry * E) const;
2990   const Elf_Sym *getPltSym(const Entry *E) const;
2991 
2992   StringRef getPltStrTable() const { return PltStrTable; }
2993   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2994 
2995 private:
2996   const Elf_Shdr *GotSec;
2997   size_t LocalNum;
2998   size_t GlobalNum;
2999 
3000   const Elf_Shdr *PltSec;
3001   const Elf_Shdr *PltRelSec;
3002   const Elf_Shdr *PltSymTable;
3003   StringRef FileName;
3004 
3005   Elf_Sym_Range GotDynSyms;
3006   StringRef PltStrTable;
3007 
3008   Entries GotEntries;
3009   Entries PltEntries;
3010 };
3011 
3012 } // end anonymous namespace
3013 
3014 template <class ELFT>
3015 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
3016     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
3017       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
3018       PltRelSec(nullptr), PltSymTable(nullptr),
3019       FileName(D.getElfObject().getFileName()) {}
3020 
3021 template <class ELFT>
3022 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
3023                                    Elf_Sym_Range DynSyms) {
3024   // See "Global Offset Table" in Chapter 5 in the following document
3025   // for detailed GOT description.
3026   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3027 
3028   // Find static GOT secton.
3029   if (IsStatic) {
3030     GotSec = Dumper.findSectionByName(".got");
3031     if (!GotSec)
3032       return Error::success();
3033 
3034     ArrayRef<uint8_t> Content =
3035         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3036     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3037                          Content.size() / sizeof(Entry));
3038     LocalNum = GotEntries.size();
3039     return Error::success();
3040   }
3041 
3042   // Lookup dynamic table tags which define the GOT layout.
3043   std::optional<uint64_t> DtPltGot;
3044   std::optional<uint64_t> DtLocalGotNum;
3045   std::optional<uint64_t> DtGotSym;
3046   for (const auto &Entry : DynTable) {
3047     switch (Entry.getTag()) {
3048     case ELF::DT_PLTGOT:
3049       DtPltGot = Entry.getVal();
3050       break;
3051     case ELF::DT_MIPS_LOCAL_GOTNO:
3052       DtLocalGotNum = Entry.getVal();
3053       break;
3054     case ELF::DT_MIPS_GOTSYM:
3055       DtGotSym = Entry.getVal();
3056       break;
3057     }
3058   }
3059 
3060   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3061     return Error::success();
3062 
3063   if (!DtPltGot)
3064     return createError("cannot find PLTGOT dynamic tag");
3065   if (!DtLocalGotNum)
3066     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3067   if (!DtGotSym)
3068     return createError("cannot find MIPS_GOTSYM dynamic tag");
3069 
3070   size_t DynSymTotal = DynSyms.size();
3071   if (*DtGotSym > DynSymTotal)
3072     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3073                        ") exceeds the number of dynamic symbols (" +
3074                        Twine(DynSymTotal) + ")");
3075 
3076   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3077   if (!GotSec)
3078     return createError("there is no non-empty GOT section at 0x" +
3079                        Twine::utohexstr(*DtPltGot));
3080 
3081   LocalNum = *DtLocalGotNum;
3082   GlobalNum = DynSymTotal - *DtGotSym;
3083 
3084   ArrayRef<uint8_t> Content =
3085       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3086   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3087                        Content.size() / sizeof(Entry));
3088   GotDynSyms = DynSyms.drop_front(*DtGotSym);
3089 
3090   return Error::success();
3091 }
3092 
3093 template <class ELFT>
3094 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3095   // Lookup dynamic table tags which define the PLT layout.
3096   std::optional<uint64_t> DtMipsPltGot;
3097   std::optional<uint64_t> DtJmpRel;
3098   for (const auto &Entry : DynTable) {
3099     switch (Entry.getTag()) {
3100     case ELF::DT_MIPS_PLTGOT:
3101       DtMipsPltGot = Entry.getVal();
3102       break;
3103     case ELF::DT_JMPREL:
3104       DtJmpRel = Entry.getVal();
3105       break;
3106     }
3107   }
3108 
3109   if (!DtMipsPltGot && !DtJmpRel)
3110     return Error::success();
3111 
3112   // Find PLT section.
3113   if (!DtMipsPltGot)
3114     return createError("cannot find MIPS_PLTGOT dynamic tag");
3115   if (!DtJmpRel)
3116     return createError("cannot find JMPREL dynamic tag");
3117 
3118   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3119   if (!PltSec)
3120     return createError("there is no non-empty PLTGOT section at 0x" +
3121                        Twine::utohexstr(*DtMipsPltGot));
3122 
3123   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3124   if (!PltRelSec)
3125     return createError("there is no non-empty RELPLT section at 0x" +
3126                        Twine::utohexstr(*DtJmpRel));
3127 
3128   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3129           Obj.getSectionContents(*PltSec))
3130     PltEntries =
3131         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3132                 PltContentOrErr->size() / sizeof(Entry));
3133   else
3134     return createError("unable to read PLTGOT section content: " +
3135                        toString(PltContentOrErr.takeError()));
3136 
3137   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3138           Obj.getSection(PltRelSec->sh_link))
3139     PltSymTable = *PltSymTableOrErr;
3140   else
3141     return createError("unable to get a symbol table linked to the " +
3142                        describe(Obj, *PltRelSec) + ": " +
3143                        toString(PltSymTableOrErr.takeError()));
3144 
3145   if (Expected<StringRef> StrTabOrErr =
3146           Obj.getStringTableForSymtab(*PltSymTable))
3147     PltStrTable = *StrTabOrErr;
3148   else
3149     return createError("unable to get a string table for the " +
3150                        describe(Obj, *PltSymTable) + ": " +
3151                        toString(StrTabOrErr.takeError()));
3152 
3153   return Error::success();
3154 }
3155 
3156 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3157   return GotSec->sh_addr + 0x7ff0;
3158 }
3159 
3160 template <class ELFT>
3161 const typename MipsGOTParser<ELFT>::Entry *
3162 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3163   return LocalNum > 0 ? &GotEntries[0] : nullptr;
3164 }
3165 
3166 template <class ELFT>
3167 const typename MipsGOTParser<ELFT>::Entry *
3168 MipsGOTParser<ELFT>::getGotModulePointer() const {
3169   if (LocalNum < 2)
3170     return nullptr;
3171   const Entry &E = GotEntries[1];
3172   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3173     return nullptr;
3174   return &E;
3175 }
3176 
3177 template <class ELFT>
3178 typename MipsGOTParser<ELFT>::Entries
3179 MipsGOTParser<ELFT>::getLocalEntries() const {
3180   size_t Skip = getGotModulePointer() ? 2 : 1;
3181   if (LocalNum - Skip <= 0)
3182     return Entries();
3183   return GotEntries.slice(Skip, LocalNum - Skip);
3184 }
3185 
3186 template <class ELFT>
3187 typename MipsGOTParser<ELFT>::Entries
3188 MipsGOTParser<ELFT>::getGlobalEntries() const {
3189   if (GlobalNum == 0)
3190     return Entries();
3191   return GotEntries.slice(LocalNum, GlobalNum);
3192 }
3193 
3194 template <class ELFT>
3195 typename MipsGOTParser<ELFT>::Entries
3196 MipsGOTParser<ELFT>::getOtherEntries() const {
3197   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3198   if (OtherNum == 0)
3199     return Entries();
3200   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3201 }
3202 
3203 template <class ELFT>
3204 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3205   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3206   return GotSec->sh_addr + Offset;
3207 }
3208 
3209 template <class ELFT>
3210 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3211   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3212   return Offset - 0x7ff0;
3213 }
3214 
3215 template <class ELFT>
3216 const typename MipsGOTParser<ELFT>::Elf_Sym *
3217 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3218   int64_t Offset = std::distance(GotEntries.data(), E);
3219   return &GotDynSyms[Offset - LocalNum];
3220 }
3221 
3222 template <class ELFT>
3223 const typename MipsGOTParser<ELFT>::Entry *
3224 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3225   return PltEntries.empty() ? nullptr : &PltEntries[0];
3226 }
3227 
3228 template <class ELFT>
3229 const typename MipsGOTParser<ELFT>::Entry *
3230 MipsGOTParser<ELFT>::getPltModulePointer() const {
3231   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3232 }
3233 
3234 template <class ELFT>
3235 typename MipsGOTParser<ELFT>::Entries
3236 MipsGOTParser<ELFT>::getPltEntries() const {
3237   if (PltEntries.size() <= 2)
3238     return Entries();
3239   return PltEntries.slice(2, PltEntries.size() - 2);
3240 }
3241 
3242 template <class ELFT>
3243 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3244   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3245   return PltSec->sh_addr + Offset;
3246 }
3247 
3248 template <class ELFT>
3249 const typename MipsGOTParser<ELFT>::Elf_Sym *
3250 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3251   int64_t Offset = std::distance(getPltEntries().data(), E);
3252   if (PltRelSec->sh_type == ELF::SHT_REL) {
3253     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3254     return unwrapOrError(FileName,
3255                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3256   } else {
3257     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3258     return unwrapOrError(FileName,
3259                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3260   }
3261 }
3262 
3263 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3264   {"None",                    Mips::AFL_EXT_NONE},
3265   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3266   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3267   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3268   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3269   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3270   {"LSI R4010",               Mips::AFL_EXT_4010},
3271   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3272   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3273   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3274   {"MIPS R4650",              Mips::AFL_EXT_4650},
3275   {"MIPS R5900",              Mips::AFL_EXT_5900},
3276   {"MIPS R10000",             Mips::AFL_EXT_10000},
3277   {"NEC VR4100",              Mips::AFL_EXT_4100},
3278   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3279   {"NEC VR4120",              Mips::AFL_EXT_4120},
3280   {"NEC VR5400",              Mips::AFL_EXT_5400},
3281   {"NEC VR5500",              Mips::AFL_EXT_5500},
3282   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3283   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3284 };
3285 
3286 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3287   {"DSP",                Mips::AFL_ASE_DSP},
3288   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3289   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3290   {"MCU",                Mips::AFL_ASE_MCU},
3291   {"MDMX",               Mips::AFL_ASE_MDMX},
3292   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3293   {"MT",                 Mips::AFL_ASE_MT},
3294   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3295   {"VZ",                 Mips::AFL_ASE_VIRT},
3296   {"MSA",                Mips::AFL_ASE_MSA},
3297   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3298   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3299   {"XPA",                Mips::AFL_ASE_XPA},
3300   {"CRC",                Mips::AFL_ASE_CRC},
3301   {"GINV",               Mips::AFL_ASE_GINV},
3302 };
3303 
3304 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3305   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3306   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3307   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3308   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3309   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3310    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3311   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3312   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3313   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3314    Mips::Val_GNU_MIPS_ABI_FP_64A}
3315 };
3316 
3317 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3318   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3319 };
3320 
3321 static int getMipsRegisterSize(uint8_t Flag) {
3322   switch (Flag) {
3323   case Mips::AFL_REG_NONE:
3324     return 0;
3325   case Mips::AFL_REG_32:
3326     return 32;
3327   case Mips::AFL_REG_64:
3328     return 64;
3329   case Mips::AFL_REG_128:
3330     return 128;
3331   default:
3332     return -1;
3333   }
3334 }
3335 
3336 template <class ELFT>
3337 static void printMipsReginfoData(ScopedPrinter &W,
3338                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3339   W.printHex("GP", Reginfo.ri_gp_value);
3340   W.printHex("General Mask", Reginfo.ri_gprmask);
3341   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3342   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3343   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3344   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3345 }
3346 
3347 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3348   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3349   if (!RegInfoSec) {
3350     W.startLine() << "There is no .reginfo section in the file.\n";
3351     return;
3352   }
3353 
3354   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3355       Obj.getSectionContents(*RegInfoSec);
3356   if (!ContentsOrErr) {
3357     this->reportUniqueWarning(
3358         "unable to read the content of the .reginfo section (" +
3359         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3360     return;
3361   }
3362 
3363   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3364     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3365                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3366     return;
3367   }
3368 
3369   DictScope GS(W, "MIPS RegInfo");
3370   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3371                               ContentsOrErr->data()));
3372 }
3373 
3374 template <class ELFT>
3375 static Expected<const Elf_Mips_Options<ELFT> *>
3376 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3377                 bool &IsSupported) {
3378   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3379     return createError("the .MIPS.options section has an invalid size (0x" +
3380                        Twine::utohexstr(SecData.size()) + ")");
3381 
3382   const Elf_Mips_Options<ELFT> *O =
3383       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3384   const uint8_t Size = O->size;
3385   if (Size > SecData.size()) {
3386     const uint64_t Offset = SecData.data() - SecBegin;
3387     const uint64_t SecSize = Offset + SecData.size();
3388     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3389                        " at offset 0x" + Twine::utohexstr(Offset) +
3390                        " goes past the end of the .MIPS.options "
3391                        "section of size 0x" +
3392                        Twine::utohexstr(SecSize));
3393   }
3394 
3395   IsSupported = O->kind == ODK_REGINFO;
3396   const size_t ExpectedSize =
3397       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3398 
3399   if (IsSupported)
3400     if (Size < ExpectedSize)
3401       return createError(
3402           "a .MIPS.options entry of kind " +
3403           Twine(getElfMipsOptionsOdkType(O->kind)) +
3404           " has an invalid size (0x" + Twine::utohexstr(Size) +
3405           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3406 
3407   SecData = SecData.drop_front(Size);
3408   return O;
3409 }
3410 
3411 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3412   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3413   if (!MipsOpts) {
3414     W.startLine() << "There is no .MIPS.options section in the file.\n";
3415     return;
3416   }
3417 
3418   DictScope GS(W, "MIPS Options");
3419 
3420   ArrayRef<uint8_t> Data =
3421       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3422   const uint8_t *const SecBegin = Data.begin();
3423   while (!Data.empty()) {
3424     bool IsSupported;
3425     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3426         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3427     if (!OptsOrErr) {
3428       reportUniqueWarning(OptsOrErr.takeError());
3429       break;
3430     }
3431 
3432     unsigned Kind = (*OptsOrErr)->kind;
3433     const char *Type = getElfMipsOptionsOdkType(Kind);
3434     if (!IsSupported) {
3435       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3436                     << ")\n";
3437       continue;
3438     }
3439 
3440     DictScope GS(W, Type);
3441     if (Kind == ODK_REGINFO)
3442       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3443     else
3444       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3445   }
3446 }
3447 
3448 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3449   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3450   if (!StackMapSection)
3451     return;
3452 
3453   auto Warn = [&](Error &&E) {
3454     this->reportUniqueWarning("unable to read the stack map from " +
3455                               describe(*StackMapSection) + ": " +
3456                               toString(std::move(E)));
3457   };
3458 
3459   Expected<ArrayRef<uint8_t>> ContentOrErr =
3460       Obj.getSectionContents(*StackMapSection);
3461   if (!ContentOrErr) {
3462     Warn(ContentOrErr.takeError());
3463     return;
3464   }
3465 
3466   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3467           *ContentOrErr)) {
3468     Warn(std::move(E));
3469     return;
3470   }
3471 
3472   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3473 }
3474 
3475 template <class ELFT>
3476 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3477                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3478   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3479   if (!Target)
3480     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3481                         " in " + describe(Sec) + ": " +
3482                         toString(Target.takeError()));
3483   else
3484     printRelRelaReloc(R, *Target);
3485 }
3486 
3487 template <class ELFT>
3488 std::vector<EnumEntry<unsigned>>
3489 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header,
3490                                          const Elf_Sym &Symbol) const {
3491   std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3492                                                  std::end(ElfSymOtherFlags));
3493   if (Header.e_machine == EM_MIPS) {
3494     // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3495     // flag overlap with other ST_MIPS_xxx flags. So consider both
3496     // cases separately.
3497     if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3498       SymOtherFlags.insert(SymOtherFlags.end(),
3499                            std::begin(ElfMips16SymOtherFlags),
3500                            std::end(ElfMips16SymOtherFlags));
3501     else
3502       SymOtherFlags.insert(SymOtherFlags.end(),
3503                            std::begin(ElfMipsSymOtherFlags),
3504                            std::end(ElfMipsSymOtherFlags));
3505   } else if (Header.e_machine == EM_AARCH64) {
3506     SymOtherFlags.insert(SymOtherFlags.end(),
3507                          std::begin(ElfAArch64SymOtherFlags),
3508                          std::end(ElfAArch64SymOtherFlags));
3509   } else if (Header.e_machine == EM_RISCV) {
3510     SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags),
3511                          std::end(ElfRISCVSymOtherFlags));
3512   }
3513   return SymOtherFlags;
3514 }
3515 
3516 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3517                                StringRef Str2) {
3518   OS.PadToColumn(2u);
3519   OS << Str1;
3520   OS.PadToColumn(37u);
3521   OS << Str2 << "\n";
3522   OS.flush();
3523 }
3524 
3525 template <class ELFT>
3526 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3527                                               StringRef FileName) {
3528   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3529   if (ElfHeader.e_shnum != 0)
3530     return to_string(ElfHeader.e_shnum);
3531 
3532   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3533   if (!ArrOrErr) {
3534     // In this case we can ignore an error, because we have already reported a
3535     // warning about the broken section header table earlier.
3536     consumeError(ArrOrErr.takeError());
3537     return "<?>";
3538   }
3539 
3540   if (ArrOrErr->empty())
3541     return "0";
3542   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3543 }
3544 
3545 template <class ELFT>
3546 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3547                                                     StringRef FileName) {
3548   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3549   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3550     return to_string(ElfHeader.e_shstrndx);
3551 
3552   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3553   if (!ArrOrErr) {
3554     // In this case we can ignore an error, because we have already reported a
3555     // warning about the broken section header table earlier.
3556     consumeError(ArrOrErr.takeError());
3557     return "<?>";
3558   }
3559 
3560   if (ArrOrErr->empty())
3561     return "65535 (corrupt: out of range)";
3562   return to_string(ElfHeader.e_shstrndx) + " (" +
3563          to_string((*ArrOrErr)[0].sh_link) + ")";
3564 }
3565 
3566 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3567   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3568     return E.Value == Type;
3569   });
3570   if (It != ArrayRef(ElfObjectFileType).end())
3571     return It;
3572   return nullptr;
3573 }
3574 
3575 template <class ELFT>
3576 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3577                                           ArrayRef<std::string> InputFilenames,
3578                                           const Archive *A) {
3579   if (InputFilenames.size() > 1 || A) {
3580     this->W.startLine() << "\n";
3581     this->W.printString("File", FileStr);
3582   }
3583 }
3584 
3585 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3586   const Elf_Ehdr &e = this->Obj.getHeader();
3587   OS << "ELF Header:\n";
3588   OS << "  Magic:  ";
3589   std::string Str;
3590   for (int i = 0; i < ELF::EI_NIDENT; i++)
3591     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3592   OS << "\n";
3593   Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3594   printFields(OS, "Class:", Str);
3595   Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3596   printFields(OS, "Data:", Str);
3597   OS.PadToColumn(2u);
3598   OS << "Version:";
3599   OS.PadToColumn(37u);
3600   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3601   if (e.e_version == ELF::EV_CURRENT)
3602     OS << " (current)";
3603   OS << "\n";
3604   auto OSABI = ArrayRef(ElfOSABI);
3605   if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
3606       e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
3607     switch (e.e_machine) {
3608     case ELF::EM_AMDGPU:
3609       OSABI = ArrayRef(AMDGPUElfOSABI);
3610       break;
3611     default:
3612       break;
3613     }
3614   }
3615   Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI);
3616   printFields(OS, "OS/ABI:", Str);
3617   printFields(OS,
3618               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3619 
3620   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3621     Str = E->AltName.str();
3622   } else {
3623     if (e.e_type >= ET_LOPROC)
3624       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3625     else if (e.e_type >= ET_LOOS)
3626       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3627     else
3628       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3629   }
3630   printFields(OS, "Type:", Str);
3631 
3632   Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3633   printFields(OS, "Machine:", Str);
3634   Str = "0x" + utohexstr(e.e_version);
3635   printFields(OS, "Version:", Str);
3636   Str = "0x" + utohexstr(e.e_entry);
3637   printFields(OS, "Entry point address:", Str);
3638   Str = to_string(e.e_phoff) + " (bytes into file)";
3639   printFields(OS, "Start of program headers:", Str);
3640   Str = to_string(e.e_shoff) + " (bytes into file)";
3641   printFields(OS, "Start of section headers:", Str);
3642   std::string ElfFlags;
3643   if (e.e_machine == EM_MIPS)
3644     ElfFlags = printFlags(
3645         e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3646         unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3647   else if (e.e_machine == EM_RISCV)
3648     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3649   else if (e.e_machine == EM_AVR)
3650     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3651                           unsigned(ELF::EF_AVR_ARCH_MASK));
3652   else if (e.e_machine == EM_LOONGARCH)
3653     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3654                           unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3655                           unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3656   else if (e.e_machine == EM_XTENSA)
3657     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3658                           unsigned(ELF::EF_XTENSA_MACH));
3659   else if (e.e_machine == EM_CUDA)
3660     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
3661                           unsigned(ELF::EF_CUDA_SM));
3662   else if (e.e_machine == EM_AMDGPU) {
3663     switch (e.e_ident[ELF::EI_ABIVERSION]) {
3664     default:
3665       break;
3666     case 0:
3667       // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
3668       [[fallthrough]];
3669     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
3670       ElfFlags =
3671           printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
3672                      unsigned(ELF::EF_AMDGPU_MACH));
3673       break;
3674     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
3675     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
3676       ElfFlags =
3677           printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
3678                      unsigned(ELF::EF_AMDGPU_MACH),
3679                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
3680                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
3681       break;
3682     }
3683   }
3684   Str = "0x" + utohexstr(e.e_flags);
3685   if (!ElfFlags.empty())
3686     Str = Str + ", " + ElfFlags;
3687   printFields(OS, "Flags:", Str);
3688   Str = to_string(e.e_ehsize) + " (bytes)";
3689   printFields(OS, "Size of this header:", Str);
3690   Str = to_string(e.e_phentsize) + " (bytes)";
3691   printFields(OS, "Size of program headers:", Str);
3692   Str = to_string(e.e_phnum);
3693   printFields(OS, "Number of program headers:", Str);
3694   Str = to_string(e.e_shentsize) + " (bytes)";
3695   printFields(OS, "Size of section headers:", Str);
3696   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3697   printFields(OS, "Number of section headers:", Str);
3698   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3699   printFields(OS, "Section header string table index:", Str);
3700 }
3701 
3702 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3703   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3704                           const Elf_Shdr &Symtab) -> StringRef {
3705     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3706     if (!StrTableOrErr) {
3707       reportUniqueWarning("unable to get the string table for " +
3708                           describe(Symtab) + ": " +
3709                           toString(StrTableOrErr.takeError()));
3710       return "<?>";
3711     }
3712 
3713     StringRef Strings = *StrTableOrErr;
3714     if (Sym.st_name >= Strings.size()) {
3715       reportUniqueWarning("unable to get the name of the symbol with index " +
3716                           Twine(SymNdx) + ": st_name (0x" +
3717                           Twine::utohexstr(Sym.st_name) +
3718                           ") is past the end of the string table of size 0x" +
3719                           Twine::utohexstr(Strings.size()));
3720       return "<?>";
3721     }
3722 
3723     return StrTableOrErr->data() + Sym.st_name;
3724   };
3725 
3726   std::vector<GroupSection> Ret;
3727   uint64_t I = 0;
3728   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3729     ++I;
3730     if (Sec.sh_type != ELF::SHT_GROUP)
3731       continue;
3732 
3733     StringRef Signature = "<?>";
3734     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3735       if (Expected<const Elf_Sym *> SymOrErr =
3736               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3737         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3738       else
3739         reportUniqueWarning("unable to get the signature symbol for " +
3740                             describe(Sec) + ": " +
3741                             toString(SymOrErr.takeError()));
3742     } else {
3743       reportUniqueWarning("unable to get the symbol table for " +
3744                           describe(Sec) + ": " +
3745                           toString(SymtabOrErr.takeError()));
3746     }
3747 
3748     ArrayRef<Elf_Word> Data;
3749     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3750             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3751       if (ContentsOrErr->empty())
3752         reportUniqueWarning("unable to read the section group flag from the " +
3753                             describe(Sec) + ": the section is empty");
3754       else
3755         Data = *ContentsOrErr;
3756     } else {
3757       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3758                           ": " + toString(ContentsOrErr.takeError()));
3759     }
3760 
3761     Ret.push_back({getPrintableSectionName(Sec),
3762                    maybeDemangle(Signature),
3763                    Sec.sh_name,
3764                    I - 1,
3765                    Sec.sh_link,
3766                    Sec.sh_info,
3767                    Data.empty() ? Elf_Word(0) : Data[0],
3768                    {}});
3769 
3770     if (Data.empty())
3771       continue;
3772 
3773     std::vector<GroupMember> &GM = Ret.back().Members;
3774     for (uint32_t Ndx : Data.slice(1)) {
3775       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3776         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3777       } else {
3778         reportUniqueWarning("unable to get the section with index " +
3779                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3780                             ": " + toString(SecOrErr.takeError()));
3781         GM.push_back({"<?>", Ndx});
3782       }
3783     }
3784   }
3785   return Ret;
3786 }
3787 
3788 static DenseMap<uint64_t, const GroupSection *>
3789 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3790   DenseMap<uint64_t, const GroupSection *> Ret;
3791   for (const GroupSection &G : Groups)
3792     for (const GroupMember &GM : G.Members)
3793       Ret.insert({GM.Index, &G});
3794   return Ret;
3795 }
3796 
3797 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3798   std::vector<GroupSection> V = this->getGroups();
3799   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3800   for (const GroupSection &G : V) {
3801     OS << "\n"
3802        << getGroupType(G.Type) << " group section ["
3803        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3804        << "] contains " << G.Members.size() << " sections:\n"
3805        << "   [Index]    Name\n";
3806     for (const GroupMember &GM : G.Members) {
3807       const GroupSection *MainGroup = Map[GM.Index];
3808       if (MainGroup != &G)
3809         this->reportUniqueWarning(
3810             "section with index " + Twine(GM.Index) +
3811             ", included in the group section with index " +
3812             Twine(MainGroup->Index) +
3813             ", was also found in the group section with index " +
3814             Twine(G.Index));
3815       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3816     }
3817   }
3818 
3819   if (V.empty())
3820     OS << "There are no section groups in this file.\n";
3821 }
3822 
3823 template <class ELFT>
3824 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3825   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3826 }
3827 
3828 template <class ELFT>
3829 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3830                                            const RelSymbol<ELFT> &RelSym) {
3831   // First two fields are bit width dependent. The rest of them are fixed width.
3832   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3833   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3834   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3835 
3836   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3837   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3838 
3839   SmallString<32> RelocName;
3840   this->Obj.getRelocationTypeName(R.Type, RelocName);
3841   Fields[2].Str = RelocName.c_str();
3842 
3843   if (RelSym.Sym)
3844     Fields[3].Str =
3845         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3846   if (RelSym.Sym && RelSym.Name.empty())
3847     Fields[4].Str = "<null>";
3848   else
3849     Fields[4].Str = std::string(RelSym.Name);
3850 
3851   for (const Field &F : Fields)
3852     printField(F);
3853 
3854   std::string Addend;
3855   if (std::optional<int64_t> A = R.Addend) {
3856     int64_t RelAddend = *A;
3857     if (!Fields[4].Str.empty()) {
3858       if (RelAddend < 0) {
3859         Addend = " - ";
3860         RelAddend = -static_cast<uint64_t>(RelAddend);
3861       } else {
3862         Addend = " + ";
3863       }
3864     }
3865     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3866   }
3867   OS << Addend << "\n";
3868 }
3869 
3870 template <class ELFT>
3871 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType,
3872                                    const typename ELFT::Ehdr &EHeader) {
3873   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3874   bool IsRelr =
3875       SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR ||
3876       (EHeader.e_machine == EM_AARCH64 && SType == ELF::SHT_AARCH64_AUTH_RELR);
3877   if (ELFT::Is64Bits)
3878     OS << "    ";
3879   else
3880     OS << " ";
3881   if (IsRelr && opts::RawRelr)
3882     OS << "Data  ";
3883   else
3884     OS << "Offset";
3885   if (ELFT::Is64Bits)
3886     OS << "             Info             Type"
3887        << "               Symbol's Value  Symbol's Name";
3888   else
3889     OS << "     Info    Type                Sym. Value  Symbol's Name";
3890   if (IsRela)
3891     OS << " + Addend";
3892   OS << "\n";
3893 }
3894 
3895 template <class ELFT>
3896 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3897                                                  const DynRegionInfo &Reg) {
3898   uint64_t Offset = Reg.Addr - this->Obj.base();
3899   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3900      << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3901   printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader());
3902 }
3903 
3904 template <class ELFT>
3905 static bool isRelocationSec(const typename ELFT::Shdr &Sec,
3906                             const typename ELFT::Ehdr &EHeader) {
3907   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3908          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3909          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3910          Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3911          (EHeader.e_machine == EM_AARCH64 &&
3912           Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR);
3913 }
3914 
3915 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3916   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3917     // Android's packed relocation section needs to be unpacked first
3918     // to get the actual number of entries.
3919     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3920         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3921       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3922           this->Obj.android_relas(Sec);
3923       if (!RelasOrErr)
3924         return RelasOrErr.takeError();
3925       return RelasOrErr->size();
3926     }
3927 
3928     if (!opts::RawRelr &&
3929         (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3930          (this->Obj.getHeader().e_machine == EM_AARCH64 &&
3931           Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR))) {
3932       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3933       if (!RelrsOrErr)
3934         return RelrsOrErr.takeError();
3935       return this->Obj.decode_relrs(*RelrsOrErr).size();
3936     }
3937 
3938     return Sec.getEntityCount();
3939   };
3940 
3941   bool HasRelocSections = false;
3942   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3943     if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
3944       continue;
3945     HasRelocSections = true;
3946 
3947     std::string EntriesNum = "<?>";
3948     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3949       EntriesNum = std::to_string(*NumOrErr);
3950     else
3951       this->reportUniqueWarning("unable to get the number of relocations in " +
3952                                 this->describe(Sec) + ": " +
3953                                 toString(NumOrErr.takeError()));
3954 
3955     uintX_t Offset = Sec.sh_offset;
3956     StringRef Name = this->getPrintableSectionName(Sec);
3957     OS << "\nRelocation section '" << Name << "' at offset 0x"
3958        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3959        << " entries:\n";
3960     printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader());
3961     this->printRelocationsHelper(Sec);
3962   }
3963   if (!HasRelocSections)
3964     OS << "\nThere are no relocations in this file.\n";
3965 }
3966 
3967 // Print the offset of a particular section from anyone of the ranges:
3968 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3969 // If 'Type' does not fall within any of those ranges, then a string is
3970 // returned as '<unknown>' followed by the type value.
3971 static std::string getSectionTypeOffsetString(unsigned Type) {
3972   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3973     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3974   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3975     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3976   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3977     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3978   return "0x" + utohexstr(Type) + ": <unknown>";
3979 }
3980 
3981 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3982   StringRef Name = getELFSectionTypeName(Machine, Type);
3983 
3984   // Handle SHT_GNU_* type names.
3985   if (Name.consume_front("SHT_GNU_")) {
3986     if (Name == "HASH")
3987       return "GNU_HASH";
3988     // E.g. SHT_GNU_verneed -> VERNEED.
3989     return Name.upper();
3990   }
3991 
3992   if (Name == "SHT_SYMTAB_SHNDX")
3993     return "SYMTAB SECTION INDICES";
3994 
3995   if (Name.consume_front("SHT_"))
3996     return Name.str();
3997   return getSectionTypeOffsetString(Type);
3998 }
3999 
4000 static void printSectionDescription(formatted_raw_ostream &OS,
4001                                     unsigned EMachine) {
4002   OS << "Key to Flags:\n";
4003   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
4004         "(info),\n";
4005   OS << "  L (link order), O (extra OS processing required), G (group), T "
4006         "(TLS),\n";
4007   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
4008   OS << "  R (retain)";
4009 
4010   if (EMachine == EM_X86_64)
4011     OS << ", l (large)";
4012   else if (EMachine == EM_ARM)
4013     OS << ", y (purecode)";
4014 
4015   OS << ", p (processor specific)\n";
4016 }
4017 
4018 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
4019   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4020   if (Sections.empty()) {
4021     OS << "\nThere are no sections in this file.\n";
4022     Expected<StringRef> SecStrTableOrErr =
4023         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4024     if (!SecStrTableOrErr)
4025       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4026     return;
4027   }
4028   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
4029   OS << "There are " << to_string(Sections.size())
4030      << " section headers, starting at offset "
4031      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4032   OS << "Section Headers:\n";
4033   Field Fields[11] = {
4034       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
4035       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
4036       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
4037       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
4038   for (const Field &F : Fields)
4039     printField(F);
4040   OS << "\n";
4041 
4042   StringRef SecStrTable;
4043   if (Expected<StringRef> SecStrTableOrErr =
4044           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4045     SecStrTable = *SecStrTableOrErr;
4046   else
4047     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4048 
4049   size_t SectionIndex = 0;
4050   for (const Elf_Shdr &Sec : Sections) {
4051     Fields[0].Str = to_string(SectionIndex);
4052     if (SecStrTable.empty())
4053       Fields[1].Str = "<no-strings>";
4054     else
4055       Fields[1].Str = std::string(unwrapOrError<StringRef>(
4056           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
4057     Fields[2].Str =
4058         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
4059     Fields[3].Str =
4060         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
4061     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
4062     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
4063     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
4064     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
4065                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
4066     Fields[8].Str = to_string(Sec.sh_link);
4067     Fields[9].Str = to_string(Sec.sh_info);
4068     Fields[10].Str = to_string(Sec.sh_addralign);
4069 
4070     OS.PadToColumn(Fields[0].Column);
4071     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
4072     for (int i = 1; i < 7; i++)
4073       printField(Fields[i]);
4074     OS.PadToColumn(Fields[7].Column);
4075     OS << right_justify(Fields[7].Str, 3);
4076     OS.PadToColumn(Fields[8].Column);
4077     OS << right_justify(Fields[8].Str, 2);
4078     OS.PadToColumn(Fields[9].Column);
4079     OS << right_justify(Fields[9].Str, 3);
4080     OS.PadToColumn(Fields[10].Column);
4081     OS << right_justify(Fields[10].Str, 2);
4082     OS << "\n";
4083     ++SectionIndex;
4084   }
4085   printSectionDescription(OS, this->Obj.getHeader().e_machine);
4086 }
4087 
4088 template <class ELFT>
4089 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
4090                                             size_t Entries,
4091                                             bool NonVisibilityBitsUsed,
4092                                             bool ExtraSymInfo) const {
4093   StringRef Name;
4094   if (Symtab)
4095     Name = this->getPrintableSectionName(*Symtab);
4096   if (!Name.empty())
4097     OS << "\nSymbol table '" << Name << "'";
4098   else
4099     OS << "\nSymbol table for image";
4100   OS << " contains " << Entries << " entries:\n";
4101 
4102   if (ELFT::Is64Bits) {
4103     OS << "   Num:    Value          Size Type    Bind   Vis";
4104     if (ExtraSymInfo)
4105       OS << "+Other";
4106   } else {
4107     OS << "   Num:    Value  Size Type    Bind   Vis";
4108     if (ExtraSymInfo)
4109       OS << "+Other";
4110   }
4111 
4112   OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0));
4113   if (ExtraSymInfo)
4114     OS << "Ndx(SecName) Name [+ Version Info]\n";
4115   else
4116     OS << "Ndx Name\n";
4117 }
4118 
4119 template <class ELFT>
4120 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx(
4121     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
4122     bool ExtraSymInfo) const {
4123   unsigned SectionIndex = Symbol.st_shndx;
4124   switch (SectionIndex) {
4125   case ELF::SHN_UNDEF:
4126     return "UND";
4127   case ELF::SHN_ABS:
4128     return "ABS";
4129   case ELF::SHN_COMMON:
4130     return "COM";
4131   case ELF::SHN_XINDEX: {
4132     Expected<uint32_t> IndexOrErr =
4133         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
4134     if (!IndexOrErr) {
4135       assert(Symbol.st_shndx == SHN_XINDEX &&
4136              "getExtendedSymbolTableIndex should only fail due to an invalid "
4137              "SHT_SYMTAB_SHNDX table/reference");
4138       this->reportUniqueWarning(IndexOrErr.takeError());
4139       return "RSV[0xffff]";
4140     }
4141     SectionIndex = *IndexOrErr;
4142     break;
4143   }
4144   default:
4145     // Find if:
4146     // Processor specific
4147     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4148       return std::string("PRC[0x") +
4149              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4150     // OS specific
4151     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4152       return std::string("OS[0x") +
4153              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4154     // Architecture reserved:
4155     if (SectionIndex >= ELF::SHN_LORESERVE &&
4156         SectionIndex <= ELF::SHN_HIRESERVE)
4157       return std::string("RSV[0x") +
4158              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4159     break;
4160   }
4161 
4162   std::string Extra;
4163   if (ExtraSymInfo) {
4164     auto Sec = this->Obj.getSection(SectionIndex);
4165     if (!Sec) {
4166       this->reportUniqueWarning(Sec.takeError());
4167     } else {
4168       auto SecName = this->Obj.getSectionName(**Sec);
4169       if (!SecName)
4170         this->reportUniqueWarning(SecName.takeError());
4171       else
4172         Extra = Twine(" (" + *SecName + ")").str();
4173     }
4174   }
4175   return to_string(format_decimal(SectionIndex, 3)) + Extra;
4176 }
4177 
4178 template <class ELFT>
4179 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4180                                      DataRegion<Elf_Word> ShndxTable,
4181                                      std::optional<StringRef> StrTable,
4182                                      bool IsDynamic, bool NonVisibilityBitsUsed,
4183                                      bool ExtraSymInfo) const {
4184   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4185   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
4186                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4187   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4188   Fields[1].Str =
4189       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4190   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4191 
4192   unsigned char SymbolType = Symbol.getType();
4193   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4194       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4195     Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4196   else
4197     Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4198 
4199   Fields[4].Str =
4200       enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
4201   Fields[5].Str =
4202       enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
4203 
4204   if (Symbol.st_other & ~0x3) {
4205     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4206       uint8_t Other = Symbol.st_other & ~0x3;
4207       if (Other & STO_AARCH64_VARIANT_PCS) {
4208         Other &= ~STO_AARCH64_VARIANT_PCS;
4209         Fields[5].Str += " [VARIANT_PCS";
4210         if (Other != 0)
4211           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4212         Fields[5].Str.append("]");
4213       }
4214     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
4215       uint8_t Other = Symbol.st_other & ~0x3;
4216       if (Other & STO_RISCV_VARIANT_CC) {
4217         Other &= ~STO_RISCV_VARIANT_CC;
4218         Fields[5].Str += " [VARIANT_CC";
4219         if (Other != 0)
4220           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4221         Fields[5].Str.append("]");
4222       }
4223     } else {
4224       Fields[5].Str +=
4225           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4226     }
4227   }
4228 
4229   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4230   Fields[6].Str =
4231       getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo);
4232 
4233   Fields[7].Column += ExtraSymInfo ? 10 : 0;
4234   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
4235                                           StrTable, IsDynamic);
4236   for (const Field &Entry : Fields)
4237     printField(Entry);
4238   OS << "\n";
4239 }
4240 
4241 template <class ELFT>
4242 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
4243                                            unsigned SymIndex,
4244                                            DataRegion<Elf_Word> ShndxTable,
4245                                            StringRef StrTable,
4246                                            uint32_t Bucket) {
4247   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4248   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
4249                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4250   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4251   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4252 
4253   Fields[2].Str = to_string(
4254       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4255   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4256 
4257   unsigned char SymbolType = Symbol->getType();
4258   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4259       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4260     Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4261   else
4262     Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4263 
4264   Fields[5].Str =
4265       enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
4266   Fields[6].Str =
4267       enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
4268   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
4269   Fields[8].Str =
4270       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
4271 
4272   for (const Field &Entry : Fields)
4273     printField(Entry);
4274   OS << "\n";
4275 }
4276 
4277 template <class ELFT>
4278 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
4279                                       bool PrintDynamicSymbols,
4280                                       bool ExtraSymInfo) {
4281   if (!PrintSymbols && !PrintDynamicSymbols)
4282     return;
4283   // GNU readelf prints both the .dynsym and .symtab with --symbols.
4284   this->printSymbolsHelper(true, ExtraSymInfo);
4285   if (PrintSymbols)
4286     this->printSymbolsHelper(false, ExtraSymInfo);
4287 }
4288 
4289 template <class ELFT>
4290 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4291   if (this->DynamicStringTable.empty())
4292     return;
4293 
4294   if (ELFT::Is64Bits)
4295     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4296   else
4297     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4298   OS << "\n";
4299 
4300   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4301   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4302   if (!FirstSym) {
4303     this->reportUniqueWarning(
4304         Twine("unable to print symbols for the .hash table: the "
4305               "dynamic symbol table ") +
4306         (this->DynSymRegion ? "is empty" : "was not found"));
4307     return;
4308   }
4309 
4310   DataRegion<Elf_Word> ShndxTable(
4311       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4312   auto Buckets = SysVHash.buckets();
4313   auto Chains = SysVHash.chains();
4314   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4315     if (Buckets[Buc] == ELF::STN_UNDEF)
4316       continue;
4317     BitVector Visited(SysVHash.nchain);
4318     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4319       if (Ch == ELF::STN_UNDEF)
4320         break;
4321 
4322       if (Visited[Ch]) {
4323         this->reportUniqueWarning(".hash section is invalid: bucket " +
4324                                   Twine(Ch) +
4325                                   ": a cycle was detected in the linked chain");
4326         break;
4327       }
4328 
4329       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
4330                         Buc);
4331       Visited[Ch] = true;
4332     }
4333   }
4334 }
4335 
4336 template <class ELFT>
4337 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4338   if (this->DynamicStringTable.empty())
4339     return;
4340 
4341   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4342   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4343   if (!FirstSym) {
4344     this->reportUniqueWarning(
4345         Twine("unable to print symbols for the .gnu.hash table: the "
4346               "dynamic symbol table ") +
4347         (this->DynSymRegion ? "is empty" : "was not found"));
4348     return;
4349   }
4350 
4351   auto GetSymbol = [&](uint64_t SymIndex,
4352                        uint64_t SymsTotal) -> const Elf_Sym * {
4353     if (SymIndex >= SymsTotal) {
4354       this->reportUniqueWarning(
4355           "unable to print hashed symbol with index " + Twine(SymIndex) +
4356           ", which is greater than or equal to the number of dynamic symbols "
4357           "(" +
4358           Twine::utohexstr(SymsTotal) + ")");
4359       return nullptr;
4360     }
4361     return FirstSym + SymIndex;
4362   };
4363 
4364   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4365       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4366   ArrayRef<Elf_Word> Values;
4367   if (!ValuesOrErr)
4368     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4369                               "section: " +
4370                               toString(ValuesOrErr.takeError()));
4371   else
4372     Values = *ValuesOrErr;
4373 
4374   DataRegion<Elf_Word> ShndxTable(
4375       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4376   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4377   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4378     if (Buckets[Buc] == ELF::STN_UNDEF)
4379       continue;
4380     uint32_t Index = Buckets[Buc];
4381     // Print whole chain.
4382     while (true) {
4383       uint32_t SymIndex = Index++;
4384       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4385         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4386                           Buc);
4387       else
4388         break;
4389 
4390       if (SymIndex < GnuHash.symndx) {
4391         this->reportUniqueWarning(
4392             "unable to read the hash value for symbol with index " +
4393             Twine(SymIndex) +
4394             ", which is less than the index of the first hashed symbol (" +
4395             Twine(GnuHash.symndx) + ")");
4396         break;
4397       }
4398 
4399        // Chain ends at symbol with stopper bit.
4400       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4401         break;
4402     }
4403   }
4404 }
4405 
4406 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4407   if (this->HashTable) {
4408     OS << "\n Symbol table of .hash for image:\n";
4409     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4410       this->reportUniqueWarning(std::move(E));
4411     else
4412       printHashTableSymbols(*this->HashTable);
4413   }
4414 
4415   // Try printing the .gnu.hash table.
4416   if (this->GnuHashTable) {
4417     OS << "\n Symbol table of .gnu.hash for image:\n";
4418     if (ELFT::Is64Bits)
4419       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4420     else
4421       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4422     OS << "\n";
4423 
4424     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4425       this->reportUniqueWarning(std::move(E));
4426     else
4427       printGnuHashTableSymbols(*this->GnuHashTable);
4428   }
4429 }
4430 
4431 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4432   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4433   if (Sections.empty()) {
4434     OS << "\nThere are no sections in this file.\n";
4435     Expected<StringRef> SecStrTableOrErr =
4436         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4437     if (!SecStrTableOrErr)
4438       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4439     return;
4440   }
4441   OS << "There are " << to_string(Sections.size())
4442      << " section headers, starting at offset "
4443      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4444 
4445   OS << "Section Headers:\n";
4446 
4447   auto PrintFields = [&](ArrayRef<Field> V) {
4448     for (const Field &F : V)
4449       printField(F);
4450     OS << "\n";
4451   };
4452 
4453   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4454 
4455   constexpr bool Is64 = ELFT::Is64Bits;
4456   PrintFields({{"Type", 7},
4457                {Is64 ? "Address" : "Addr", 23},
4458                {"Off", Is64 ? 40 : 32},
4459                {"Size", Is64 ? 47 : 39},
4460                {"ES", Is64 ? 54 : 46},
4461                {"Lk", Is64 ? 59 : 51},
4462                {"Inf", Is64 ? 62 : 54},
4463                {"Al", Is64 ? 66 : 57}});
4464   PrintFields({{"Flags", 7}});
4465 
4466   StringRef SecStrTable;
4467   if (Expected<StringRef> SecStrTableOrErr =
4468           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4469     SecStrTable = *SecStrTableOrErr;
4470   else
4471     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4472 
4473   size_t SectionIndex = 0;
4474   const unsigned AddrSize = Is64 ? 16 : 8;
4475   for (const Elf_Shdr &S : Sections) {
4476     StringRef Name = "<?>";
4477     if (Expected<StringRef> NameOrErr =
4478             this->Obj.getSectionName(S, SecStrTable))
4479       Name = *NameOrErr;
4480     else
4481       this->reportUniqueWarning(NameOrErr.takeError());
4482 
4483     OS.PadToColumn(2);
4484     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4485     PrintFields({{Name, 7}});
4486     PrintFields(
4487         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4488          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4489          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4490          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4491          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4492          {to_string(S.sh_link), Is64 ? 59 : 51},
4493          {to_string(S.sh_info), Is64 ? 63 : 55},
4494          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4495 
4496     OS.PadToColumn(7);
4497     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4498 
4499     DenseMap<unsigned, StringRef> FlagToName = {
4500         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4501         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4502         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4503         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4504         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4505         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4506 
4507     uint64_t Flags = S.sh_flags;
4508     uint64_t UnknownFlags = 0;
4509     ListSeparator LS;
4510     while (Flags) {
4511       // Take the least significant bit as a flag.
4512       uint64_t Flag = Flags & -Flags;
4513       Flags -= Flag;
4514 
4515       auto It = FlagToName.find(Flag);
4516       if (It != FlagToName.end())
4517         OS << LS << It->second;
4518       else
4519         UnknownFlags |= Flag;
4520     }
4521 
4522     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4523       uint64_t FlagsToPrint = UnknownFlags & Mask;
4524       if (!FlagsToPrint)
4525         return;
4526 
4527       OS << LS << Name << " ("
4528          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4529       UnknownFlags &= ~Mask;
4530     };
4531 
4532     PrintUnknownFlags(SHF_MASKOS, "OS");
4533     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4534     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4535 
4536     OS << "\n";
4537     ++SectionIndex;
4538 
4539     if (!(S.sh_flags & SHF_COMPRESSED))
4540       continue;
4541     Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4542     if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4543       consumeError(Data.takeError());
4544       reportWarning(createError("SHF_COMPRESSED section '" + Name +
4545                                 "' does not have an Elf_Chdr header"),
4546                     this->FileName);
4547       OS.indent(7);
4548       OS << "[<corrupt>]";
4549     } else {
4550       OS.indent(7);
4551       auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4552       if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4553         OS << "ZLIB";
4554       else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4555         OS << "ZSTD";
4556       else
4557         OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4558       OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4559          << ", " << Chdr->ch_addralign;
4560     }
4561     OS << '\n';
4562   }
4563 }
4564 
4565 static inline std::string printPhdrFlags(unsigned Flag) {
4566   std::string Str;
4567   Str = (Flag & PF_R) ? "R" : " ";
4568   Str += (Flag & PF_W) ? "W" : " ";
4569   Str += (Flag & PF_X) ? "E" : " ";
4570   return Str;
4571 }
4572 
4573 template <class ELFT>
4574 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4575                              const typename ELFT::Shdr &Sec) {
4576   if (Sec.sh_flags & ELF::SHF_TLS) {
4577     // .tbss must only be shown in the PT_TLS segment.
4578     if (Sec.sh_type == ELF::SHT_NOBITS)
4579       return Phdr.p_type == ELF::PT_TLS;
4580 
4581     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4582     // segments.
4583     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4584            (Phdr.p_type == ELF::PT_GNU_RELRO);
4585   }
4586 
4587   // PT_TLS must only have SHF_TLS sections.
4588   return Phdr.p_type != ELF::PT_TLS;
4589 }
4590 
4591 template <class ELFT>
4592 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4593                            const typename ELFT::Shdr &Sec) {
4594   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4595     return true;
4596 
4597   // We get here when we have an empty section. Only non-empty sections can be
4598   // at the start or at the end of PT_DYNAMIC.
4599   // Is section within the phdr both based on offset and VMA?
4600   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4601                      (Sec.sh_offset > Phdr.p_offset &&
4602                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4603   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4604                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4605   return CheckOffset && CheckVA;
4606 }
4607 
4608 template <class ELFT>
4609 void GNUELFDumper<ELFT>::printProgramHeaders(
4610     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4611   const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4612   // Exit early if no program header or section mapping details were requested.
4613   if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4614     return;
4615 
4616   if (PrintProgramHeaders) {
4617     const Elf_Ehdr &Header = this->Obj.getHeader();
4618     if (Header.e_phnum == 0) {
4619       OS << "\nThere are no program headers in this file.\n";
4620     } else {
4621       printProgramHeaders();
4622     }
4623   }
4624 
4625   if (ShouldPrintSectionMapping)
4626     printSectionMapping();
4627 }
4628 
4629 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4630   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4631   const Elf_Ehdr &Header = this->Obj.getHeader();
4632   Field Fields[8] = {2,         17,        26,        37 + Bias,
4633                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4634   OS << "\nElf file type is "
4635      << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4636      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4637      << "There are " << Header.e_phnum << " program headers,"
4638      << " starting at offset " << Header.e_phoff << "\n\n"
4639      << "Program Headers:\n";
4640   if (ELFT::Is64Bits)
4641     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4642        << "  FileSiz  MemSiz   Flg Align\n";
4643   else
4644     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4645        << "MemSiz  Flg Align\n";
4646 
4647   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4648   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4649 
4650   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4651   if (!PhdrsOrErr) {
4652     this->reportUniqueWarning("unable to dump program headers: " +
4653                               toString(PhdrsOrErr.takeError()));
4654     return;
4655   }
4656 
4657   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4658     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4659     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4660     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4661     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4662     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4663     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4664     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4665     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4666     for (const Field &F : Fields)
4667       printField(F);
4668     if (Phdr.p_type == ELF::PT_INTERP) {
4669       OS << "\n";
4670       auto ReportBadInterp = [&](const Twine &Msg) {
4671         this->reportUniqueWarning(
4672             "unable to read program interpreter name at offset 0x" +
4673             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4674       };
4675 
4676       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4677         ReportBadInterp("it goes past the end of the file (0x" +
4678                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4679         continue;
4680       }
4681 
4682       const char *Data =
4683           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4684       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4685       size_t Len = strnlen(Data, MaxSize);
4686       if (Len == MaxSize) {
4687         ReportBadInterp("it is not null-terminated");
4688         continue;
4689       }
4690 
4691       OS << "      [Requesting program interpreter: ";
4692       OS << StringRef(Data, Len) << "]";
4693     }
4694     OS << "\n";
4695   }
4696 }
4697 
4698 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4699   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4700   DenseSet<const Elf_Shdr *> BelongsToSegment;
4701   int Phnum = 0;
4702 
4703   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4704   if (!PhdrsOrErr) {
4705     this->reportUniqueWarning(
4706         "can't read program headers to build section to segment mapping: " +
4707         toString(PhdrsOrErr.takeError()));
4708     return;
4709   }
4710 
4711   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4712     std::string Sections;
4713     OS << format("   %2.2d     ", Phnum++);
4714     // Check if each section is in a segment and then print mapping.
4715     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4716       if (Sec.sh_type == ELF::SHT_NULL)
4717         continue;
4718 
4719       // readelf additionally makes sure it does not print zero sized sections
4720       // at end of segments and for PT_DYNAMIC both start and end of section
4721       // .tbss must only be shown in PT_TLS section.
4722       if (isSectionInSegment<ELFT>(Phdr, Sec) &&
4723           checkTLSSections<ELFT>(Phdr, Sec) &&
4724           checkPTDynamic<ELFT>(Phdr, Sec)) {
4725         Sections +=
4726             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4727             " ";
4728         BelongsToSegment.insert(&Sec);
4729       }
4730     }
4731     OS << Sections << "\n";
4732     OS.flush();
4733   }
4734 
4735   // Display sections that do not belong to a segment.
4736   std::string Sections;
4737   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4738     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4739       Sections +=
4740           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4741           ' ';
4742   }
4743   if (!Sections.empty()) {
4744     OS << "   None  " << Sections << '\n';
4745     OS.flush();
4746   }
4747 }
4748 
4749 namespace {
4750 
4751 template <class ELFT>
4752 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4753                                   const Relocation<ELFT> &Reloc) {
4754   using Elf_Sym = typename ELFT::Sym;
4755   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4756                            const Twine &Reason) -> RelSymbol<ELFT> {
4757     Dumper.reportUniqueWarning(
4758         "unable to get name of the dynamic symbol with index " +
4759         Twine(Reloc.Symbol) + ": " + Reason);
4760     return {Sym, "<corrupt>"};
4761   };
4762 
4763   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4764   const Elf_Sym *FirstSym = Symbols.begin();
4765   if (!FirstSym)
4766     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4767 
4768   // We might have an object without a section header. In this case the size of
4769   // Symbols is zero, because there is no way to know the size of the dynamic
4770   // table. We should allow this case and not print a warning.
4771   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4772     return WarnAndReturn(
4773         nullptr,
4774         "index is greater than or equal to the number of dynamic symbols (" +
4775             Twine(Symbols.size()) + ")");
4776 
4777   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4778   const uint64_t FileSize = Obj.getBufSize();
4779   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4780                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4781   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4782     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4783                                       " goes past the end of the file (0x" +
4784                                       Twine::utohexstr(FileSize) + ")");
4785 
4786   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4787   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4788   if (!ErrOrName)
4789     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4790 
4791   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4792 }
4793 } // namespace
4794 
4795 template <class ELFT>
4796 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4797                                    typename ELFT::DynRange Tags) {
4798   size_t Max = 0;
4799   for (const typename ELFT::Dyn &Dyn : Tags)
4800     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4801   return Max;
4802 }
4803 
4804 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4805   Elf_Dyn_Range Table = this->dynamic_table();
4806   if (Table.empty())
4807     return;
4808 
4809   OS << "Dynamic section at offset "
4810      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4811                        this->Obj.base(),
4812                    1)
4813      << " contains " << Table.size() << " entries:\n";
4814 
4815   // The type name is surrounded with round brackets, hence add 2.
4816   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4817   // The "Name/Value" column should be indented from the "Type" column by N
4818   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4819   // space (1) = 3.
4820   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4821      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4822 
4823   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4824   for (auto Entry : Table) {
4825     uintX_t Tag = Entry.getTag();
4826     std::string Type =
4827         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4828     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4829     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4830        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4831   }
4832 }
4833 
4834 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4835   this->printDynamicRelocationsHelper();
4836 }
4837 
4838 template <class ELFT>
4839 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4840   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4841 }
4842 
4843 template <class ELFT>
4844 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4845   this->forEachRelocationDo(
4846       Sec, opts::RawRelr,
4847       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4848           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4849       [&](const Elf_Relr &R) { printRelrReloc(R); });
4850 }
4851 
4852 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4853   const bool IsMips64EL = this->Obj.isMips64EL();
4854   if (this->DynRelaRegion.Size > 0) {
4855     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4856     for (const Elf_Rela &Rela :
4857          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4858       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4859   }
4860 
4861   if (this->DynRelRegion.Size > 0) {
4862     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4863     for (const Elf_Rel &Rel :
4864          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4865       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4866   }
4867 
4868   if (this->DynRelrRegion.Size > 0) {
4869     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4870     Elf_Relr_Range Relrs =
4871         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4872     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4873       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4874   }
4875 
4876   if (this->DynPLTRelRegion.Size) {
4877     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4878       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4879       for (const Elf_Rela &Rela :
4880            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4881         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4882     } else {
4883       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4884       for (const Elf_Rel &Rel :
4885            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4886         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4887     }
4888   }
4889 }
4890 
4891 template <class ELFT>
4892 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4893     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4894   // Don't inline the SecName, because it might report a warning to stderr and
4895   // corrupt the output.
4896   StringRef SecName = this->getPrintableSectionName(Sec);
4897   OS << Label << " section '" << SecName << "' "
4898      << "contains " << EntriesNum << " entries:\n";
4899 
4900   StringRef LinkedSecName = "<corrupt>";
4901   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4902           this->Obj.getSection(Sec.sh_link))
4903     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4904   else
4905     this->reportUniqueWarning("invalid section linked to " +
4906                               this->describe(Sec) + ": " +
4907                               toString(LinkedSecOrErr.takeError()));
4908 
4909   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4910      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4911      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4912 }
4913 
4914 template <class ELFT>
4915 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4916   if (!Sec)
4917     return;
4918 
4919   printGNUVersionSectionProlog(*Sec, "Version symbols",
4920                                Sec->sh_size / sizeof(Elf_Versym));
4921   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4922       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4923                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4924   if (!VerTableOrErr) {
4925     this->reportUniqueWarning(VerTableOrErr.takeError());
4926     return;
4927   }
4928 
4929   SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4930   if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4931           this->getVersionMap())
4932     VersionMap = *MapOrErr;
4933   else
4934     this->reportUniqueWarning(MapOrErr.takeError());
4935 
4936   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4937   std::vector<StringRef> Versions;
4938   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4939     unsigned Ndx = VerTable[I].vs_index;
4940     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4941       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4942       continue;
4943     }
4944 
4945     if (!VersionMap) {
4946       Versions.emplace_back("<corrupt>");
4947       continue;
4948     }
4949 
4950     bool IsDefault;
4951     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4952         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4953     if (!NameOrErr) {
4954       this->reportUniqueWarning("unable to get a version for entry " +
4955                                 Twine(I) + " of " + this->describe(*Sec) +
4956                                 ": " + toString(NameOrErr.takeError()));
4957       Versions.emplace_back("<corrupt>");
4958       continue;
4959     }
4960     Versions.emplace_back(*NameOrErr);
4961   }
4962 
4963   // readelf prints 4 entries per line.
4964   uint64_t Entries = VerTable.size();
4965   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4966     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4967     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4968       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4969       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4970                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4971       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4972     }
4973     OS << '\n';
4974   }
4975   OS << '\n';
4976 }
4977 
4978 static std::string versionFlagToString(unsigned Flags) {
4979   if (Flags == 0)
4980     return "none";
4981 
4982   std::string Ret;
4983   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4984     if (!(Flags & Flag))
4985       return;
4986     if (!Ret.empty())
4987       Ret += " | ";
4988     Ret += Name;
4989     Flags &= ~Flag;
4990   };
4991 
4992   AddFlag(VER_FLG_BASE, "BASE");
4993   AddFlag(VER_FLG_WEAK, "WEAK");
4994   AddFlag(VER_FLG_INFO, "INFO");
4995   AddFlag(~0, "<unknown>");
4996   return Ret;
4997 }
4998 
4999 template <class ELFT>
5000 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
5001   if (!Sec)
5002     return;
5003 
5004   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
5005 
5006   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
5007   if (!V) {
5008     this->reportUniqueWarning(V.takeError());
5009     return;
5010   }
5011 
5012   for (const VerDef &Def : *V) {
5013     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
5014                  Def.Offset, Def.Version,
5015                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
5016                  Def.Name.data());
5017     unsigned I = 0;
5018     for (const VerdAux &Aux : Def.AuxV)
5019       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
5020                    Aux.Name.data());
5021   }
5022 
5023   OS << '\n';
5024 }
5025 
5026 template <class ELFT>
5027 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
5028   if (!Sec)
5029     return;
5030 
5031   unsigned VerneedNum = Sec->sh_info;
5032   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
5033 
5034   Expected<std::vector<VerNeed>> V =
5035       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
5036   if (!V) {
5037     this->reportUniqueWarning(V.takeError());
5038     return;
5039   }
5040 
5041   for (const VerNeed &VN : *V) {
5042     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
5043                  VN.Version, VN.File.data(), VN.Cnt);
5044     for (const VernAux &Aux : VN.AuxV)
5045       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
5046                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
5047                    Aux.Other);
5048   }
5049   OS << '\n';
5050 }
5051 
5052 template <class ELFT>
5053 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
5054                                                  size_t MaxChain,
5055                                                  size_t TotalSyms,
5056                                                  ArrayRef<size_t> Count,
5057                                                  bool IsGnu) const {
5058   size_t CumulativeNonZero = 0;
5059   OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "")
5060      << " bucket list length (total of " << NBucket << " buckets)\n"
5061      << " Length  Number     % of total  Coverage\n";
5062   for (size_t I = 0; I < MaxChain; ++I) {
5063     CumulativeNonZero += Count[I] * I;
5064     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
5065                  (Count[I] * 100.0) / NBucket,
5066                  (CumulativeNonZero * 100.0) / TotalSyms);
5067   }
5068 }
5069 
5070 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
5071   OS << "GNUStyle::printCGProfile not implemented\n";
5072 }
5073 
5074 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
5075   OS << "GNUStyle::printBBAddrMaps not implemented\n";
5076 }
5077 
5078 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5079   std::vector<uint64_t> Ret;
5080   const uint8_t *Cur = Data.begin();
5081   const uint8_t *End = Data.end();
5082   while (Cur != End) {
5083     unsigned Size;
5084     const char *Err = nullptr;
5085     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5086     if (Err)
5087       return createError(Err);
5088     Cur += Size;
5089   }
5090   return Ret;
5091 }
5092 
5093 template <class ELFT>
5094 static Expected<std::vector<uint64_t>>
5095 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5096   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5097   if (!ContentsOrErr)
5098     return ContentsOrErr.takeError();
5099 
5100   if (Expected<std::vector<uint64_t>> SymsOrErr =
5101           toULEB128Array(*ContentsOrErr))
5102     return *SymsOrErr;
5103   else
5104     return createError("unable to decode " + describe(Obj, Sec) + ": " +
5105                        toString(SymsOrErr.takeError()));
5106 }
5107 
5108 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
5109   if (!this->DotAddrsigSec)
5110     return;
5111 
5112   Expected<std::vector<uint64_t>> SymsOrErr =
5113       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
5114   if (!SymsOrErr) {
5115     this->reportUniqueWarning(SymsOrErr.takeError());
5116     return;
5117   }
5118 
5119   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
5120   OS << "\nAddress-significant symbols section '" << Name << "'"
5121      << " contains " << SymsOrErr->size() << " entries:\n";
5122   OS << "   Num: Name\n";
5123 
5124   Field Fields[2] = {0, 8};
5125   size_t SymIndex = 0;
5126   for (uint64_t Sym : *SymsOrErr) {
5127     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5128     Fields[1].Str = this->getStaticSymbolName(Sym);
5129     for (const Field &Entry : Fields)
5130       printField(Entry);
5131     OS << "\n";
5132   }
5133 }
5134 
5135 template <typename ELFT>
5136 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5137                                   ArrayRef<uint8_t> Data) {
5138   std::string str;
5139   raw_string_ostream OS(str);
5140   uint32_t PrData;
5141   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5142     if (PrData & Flag) {
5143       PrData &= ~Flag;
5144       OS << Name;
5145       if (PrData)
5146         OS << ", ";
5147     }
5148   };
5149 
5150   switch (Type) {
5151   default:
5152     OS << format("<application-specific type 0x%x>", Type);
5153     return OS.str();
5154   case GNU_PROPERTY_STACK_SIZE: {
5155     OS << "stack size: ";
5156     if (DataSize == sizeof(typename ELFT::uint))
5157       OS << formatv("{0:x}",
5158                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5159     else
5160       OS << format("<corrupt length: 0x%x>", DataSize);
5161     return OS.str();
5162   }
5163   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5164     OS << "no copy on protected";
5165     if (DataSize)
5166       OS << format(" <corrupt length: 0x%x>", DataSize);
5167     return OS.str();
5168   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5169   case GNU_PROPERTY_X86_FEATURE_1_AND:
5170     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5171                                                         : "x86 feature: ");
5172     if (DataSize != 4) {
5173       OS << format("<corrupt length: 0x%x>", DataSize);
5174       return OS.str();
5175     }
5176     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5177     if (PrData == 0) {
5178       OS << "<None>";
5179       return OS.str();
5180     }
5181     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5182       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5183       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5184       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS");
5185     } else {
5186       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5187       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5188     }
5189     if (PrData)
5190       OS << format("<unknown flags: 0x%x>", PrData);
5191     return OS.str();
5192   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5193   case GNU_PROPERTY_X86_FEATURE_2_USED:
5194     OS << "x86 feature "
5195        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5196     if (DataSize != 4) {
5197       OS << format("<corrupt length: 0x%x>", DataSize);
5198       return OS.str();
5199     }
5200     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5201     if (PrData == 0) {
5202       OS << "<None>";
5203       return OS.str();
5204     }
5205     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5206     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5207     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5208     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5209     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5210     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5211     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5212     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5213     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5214     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5215     if (PrData)
5216       OS << format("<unknown flags: 0x%x>", PrData);
5217     return OS.str();
5218   case GNU_PROPERTY_X86_ISA_1_NEEDED:
5219   case GNU_PROPERTY_X86_ISA_1_USED:
5220     OS << "x86 ISA "
5221        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5222     if (DataSize != 4) {
5223       OS << format("<corrupt length: 0x%x>", DataSize);
5224       return OS.str();
5225     }
5226     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5227     if (PrData == 0) {
5228       OS << "<None>";
5229       return OS.str();
5230     }
5231     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5232     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5233     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5234     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5235     if (PrData)
5236       OS << format("<unknown flags: 0x%x>", PrData);
5237     return OS.str();
5238   }
5239 }
5240 
5241 template <typename ELFT>
5242 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5243   using Elf_Word = typename ELFT::Word;
5244 
5245   SmallVector<std::string, 4> Properties;
5246   while (Arr.size() >= 8) {
5247     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5248     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5249     Arr = Arr.drop_front(8);
5250 
5251     // Take padding size into account if present.
5252     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5253     std::string str;
5254     raw_string_ostream OS(str);
5255     if (Arr.size() < PaddedSize) {
5256       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5257       Properties.push_back(OS.str());
5258       break;
5259     }
5260     Properties.push_back(
5261         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5262     Arr = Arr.drop_front(PaddedSize);
5263   }
5264 
5265   if (!Arr.empty())
5266     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5267 
5268   return Properties;
5269 }
5270 
5271 struct GNUAbiTag {
5272   std::string OSName;
5273   std::string ABI;
5274   bool IsValid;
5275 };
5276 
5277 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5278   typedef typename ELFT::Word Elf_Word;
5279 
5280   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5281                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5282 
5283   if (Words.size() < 4)
5284     return {"", "", /*IsValid=*/false};
5285 
5286   static const char *OSNames[] = {
5287       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5288   };
5289   StringRef OSName = "Unknown";
5290   if (Words[0] < std::size(OSNames))
5291     OSName = OSNames[Words[0]];
5292   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5293   std::string str;
5294   raw_string_ostream ABI(str);
5295   ABI << Major << "." << Minor << "." << Patch;
5296   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5297 }
5298 
5299 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5300   std::string str;
5301   raw_string_ostream OS(str);
5302   for (uint8_t B : Desc)
5303     OS << format_hex_no_prefix(B, 2);
5304   return OS.str();
5305 }
5306 
5307 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5308   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5309 }
5310 
5311 template <typename ELFT>
5312 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5313                          ArrayRef<uint8_t> Desc) {
5314   // Return true if we were able to pretty-print the note, false otherwise.
5315   switch (NoteType) {
5316   default:
5317     return false;
5318   case ELF::NT_GNU_ABI_TAG: {
5319     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5320     if (!AbiTag.IsValid)
5321       OS << "    <corrupt GNU_ABI_TAG>";
5322     else
5323       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5324     break;
5325   }
5326   case ELF::NT_GNU_BUILD_ID: {
5327     OS << "    Build ID: " << getGNUBuildId(Desc);
5328     break;
5329   }
5330   case ELF::NT_GNU_GOLD_VERSION:
5331     OS << "    Version: " << getDescAsStringRef(Desc);
5332     break;
5333   case ELF::NT_GNU_PROPERTY_TYPE_0:
5334     OS << "    Properties:";
5335     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5336       OS << "    " << Property << "\n";
5337     break;
5338   }
5339   OS << '\n';
5340   return true;
5341 }
5342 
5343 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5344 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5345                                                       ArrayRef<uint8_t> Desc) {
5346   AndroidNoteProperties Props;
5347   switch (NoteType) {
5348   case ELF::NT_ANDROID_TYPE_MEMTAG:
5349     if (Desc.empty()) {
5350       Props.emplace_back("Invalid .note.android.memtag", "");
5351       return Props;
5352     }
5353 
5354     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5355     case NT_MEMTAG_LEVEL_NONE:
5356       Props.emplace_back("Tagging Mode", "NONE");
5357       break;
5358     case NT_MEMTAG_LEVEL_ASYNC:
5359       Props.emplace_back("Tagging Mode", "ASYNC");
5360       break;
5361     case NT_MEMTAG_LEVEL_SYNC:
5362       Props.emplace_back("Tagging Mode", "SYNC");
5363       break;
5364     default:
5365       Props.emplace_back(
5366           "Tagging Mode",
5367           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5368               .str());
5369       break;
5370     }
5371     Props.emplace_back("Heap",
5372                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5373     Props.emplace_back("Stack",
5374                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5375     break;
5376   default:
5377     return Props;
5378   }
5379   return Props;
5380 }
5381 
5382 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5383                              ArrayRef<uint8_t> Desc) {
5384   // Return true if we were able to pretty-print the note, false otherwise.
5385   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5386   if (Props.empty())
5387     return false;
5388   for (const auto &KV : Props)
5389     OS << "    " << KV.first << ": " << KV.second << '\n';
5390   return true;
5391 }
5392 
5393 template <class ELFT>
5394 static bool printAArch64Note(raw_ostream &OS, uint32_t NoteType,
5395                              ArrayRef<uint8_t> Desc) {
5396   if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG)
5397     return false;
5398 
5399   OS << "    AArch64 PAuth ABI tag: ";
5400   if (Desc.size() < 16) {
5401     OS << format("<corrupted size: expected at least 16, got %d>", Desc.size());
5402     return false;
5403   }
5404 
5405   uint64_t Platform =
5406       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0);
5407   uint64_t Version =
5408       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8);
5409   OS << format("platform 0x%" PRIx64 ", version 0x%" PRIx64, Platform, Version);
5410 
5411   if (Desc.size() > 16)
5412     OS << ", additional info 0x"
5413        << toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16));
5414 
5415   return true;
5416 }
5417 
5418 template <class ELFT>
5419 void GNUELFDumper<ELFT>::printMemtag(
5420     const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
5421     const ArrayRef<uint8_t> AndroidNoteDesc,
5422     const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
5423   OS << "Memtag Dynamic Entries:\n";
5424   if (DynamicEntries.empty())
5425     OS << "    < none found >\n";
5426   for (const auto &DynamicEntryKV : DynamicEntries)
5427     OS << "    " << DynamicEntryKV.first << ": " << DynamicEntryKV.second
5428        << "\n";
5429 
5430   if (!AndroidNoteDesc.empty()) {
5431     OS << "Memtag Android Note:\n";
5432     printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc);
5433   }
5434 
5435   if (Descriptors.empty())
5436     return;
5437 
5438   OS << "Memtag Global Descriptors:\n";
5439   for (const auto &[Addr, BytesToTag] : Descriptors) {
5440     OS << "    0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x"
5441        << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n";
5442   }
5443 }
5444 
5445 template <typename ELFT>
5446 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5447                                     ArrayRef<uint8_t> Desc) {
5448   switch (NoteType) {
5449   default:
5450     return false;
5451   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5452     OS << "    Version: " << getDescAsStringRef(Desc);
5453     break;
5454   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5455     OS << "    Producer: " << getDescAsStringRef(Desc);
5456     break;
5457   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5458     OS << "    Producer version: " << getDescAsStringRef(Desc);
5459     break;
5460   }
5461   OS << '\n';
5462   return true;
5463 }
5464 
5465 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5466     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5467     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5468     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5469     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5470     {"LA48", NT_FREEBSD_FCTL_LA48},
5471     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5472 };
5473 
5474 struct FreeBSDNote {
5475   std::string Type;
5476   std::string Value;
5477 };
5478 
5479 template <typename ELFT>
5480 static std::optional<FreeBSDNote>
5481 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5482   if (IsCore)
5483     return std::nullopt; // No pretty-printing yet.
5484   switch (NoteType) {
5485   case ELF::NT_FREEBSD_ABI_TAG:
5486     if (Desc.size() != 4)
5487       return std::nullopt;
5488     return FreeBSDNote{
5489         "ABI tag",
5490         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5491   case ELF::NT_FREEBSD_ARCH_TAG:
5492     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5493   case ELF::NT_FREEBSD_FEATURE_CTL: {
5494     if (Desc.size() != 4)
5495       return std::nullopt;
5496     unsigned Value =
5497         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5498     std::string FlagsStr;
5499     raw_string_ostream OS(FlagsStr);
5500     printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5501     if (OS.str().empty())
5502       OS << "0x" << utohexstr(Value);
5503     else
5504       OS << "(0x" << utohexstr(Value) << ")";
5505     return FreeBSDNote{"Feature flags", OS.str()};
5506   }
5507   default:
5508     return std::nullopt;
5509   }
5510 }
5511 
5512 struct AMDNote {
5513   std::string Type;
5514   std::string Value;
5515 };
5516 
5517 template <typename ELFT>
5518 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5519   switch (NoteType) {
5520   default:
5521     return {"", ""};
5522   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5523     struct CodeObjectVersion {
5524       support::aligned_ulittle32_t MajorVersion;
5525       support::aligned_ulittle32_t MinorVersion;
5526     };
5527     if (Desc.size() != sizeof(CodeObjectVersion))
5528       return {"AMD HSA Code Object Version",
5529               "Invalid AMD HSA Code Object Version"};
5530     std::string VersionString;
5531     raw_string_ostream StrOS(VersionString);
5532     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5533     StrOS << "[Major: " << Version->MajorVersion
5534           << ", Minor: " << Version->MinorVersion << "]";
5535     return {"AMD HSA Code Object Version", VersionString};
5536   }
5537   case ELF::NT_AMD_HSA_HSAIL: {
5538     struct HSAILProperties {
5539       support::aligned_ulittle32_t HSAILMajorVersion;
5540       support::aligned_ulittle32_t HSAILMinorVersion;
5541       uint8_t Profile;
5542       uint8_t MachineModel;
5543       uint8_t DefaultFloatRound;
5544     };
5545     if (Desc.size() != sizeof(HSAILProperties))
5546       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5547     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5548     std::string HSAILPropetiesString;
5549     raw_string_ostream StrOS(HSAILPropetiesString);
5550     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5551           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5552           << ", Profile: " << uint32_t(Properties->Profile)
5553           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5554           << ", Default Float Round: "
5555           << uint32_t(Properties->DefaultFloatRound) << "]";
5556     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5557   }
5558   case ELF::NT_AMD_HSA_ISA_VERSION: {
5559     struct IsaVersion {
5560       support::aligned_ulittle16_t VendorNameSize;
5561       support::aligned_ulittle16_t ArchitectureNameSize;
5562       support::aligned_ulittle32_t Major;
5563       support::aligned_ulittle32_t Minor;
5564       support::aligned_ulittle32_t Stepping;
5565     };
5566     if (Desc.size() < sizeof(IsaVersion))
5567       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5568     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5569     if (Desc.size() < sizeof(IsaVersion) +
5570                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5571         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5572       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5573     std::string IsaString;
5574     raw_string_ostream StrOS(IsaString);
5575     StrOS << "[Vendor: "
5576           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5577           << ", Architecture: "
5578           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5579                        Isa->ArchitectureNameSize - 1)
5580           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5581           << ", Stepping: " << Isa->Stepping << "]";
5582     return {"AMD HSA ISA Version", IsaString};
5583   }
5584   case ELF::NT_AMD_HSA_METADATA: {
5585     if (Desc.size() == 0)
5586       return {"AMD HSA Metadata", ""};
5587     return {
5588         "AMD HSA Metadata",
5589         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5590   }
5591   case ELF::NT_AMD_HSA_ISA_NAME: {
5592     if (Desc.size() == 0)
5593       return {"AMD HSA ISA Name", ""};
5594     return {
5595         "AMD HSA ISA Name",
5596         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5597   }
5598   case ELF::NT_AMD_PAL_METADATA: {
5599     struct PALMetadata {
5600       support::aligned_ulittle32_t Key;
5601       support::aligned_ulittle32_t Value;
5602     };
5603     if (Desc.size() % sizeof(PALMetadata) != 0)
5604       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5605     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5606     std::string MetadataString;
5607     raw_string_ostream StrOS(MetadataString);
5608     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5609       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5610     }
5611     return {"AMD PAL Metadata", MetadataString};
5612   }
5613   }
5614 }
5615 
5616 struct AMDGPUNote {
5617   std::string Type;
5618   std::string Value;
5619 };
5620 
5621 template <typename ELFT>
5622 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5623   switch (NoteType) {
5624   default:
5625     return {"", ""};
5626   case ELF::NT_AMDGPU_METADATA: {
5627     StringRef MsgPackString =
5628         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5629     msgpack::Document MsgPackDoc;
5630     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5631       return {"", ""};
5632 
5633     std::string MetadataString;
5634 
5635     // FIXME: Metadata Verifier only works with AMDHSA.
5636     //  This is an ugly workaround to avoid the verifier for other MD
5637     //  formats (e.g. amdpal)
5638     if (MsgPackString.contains("amdhsa.")) {
5639       AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5640       if (!Verifier.verify(MsgPackDoc.getRoot()))
5641         MetadataString = "Invalid AMDGPU Metadata\n";
5642     }
5643 
5644     raw_string_ostream StrOS(MetadataString);
5645     if (MsgPackDoc.getRoot().isScalar()) {
5646       // TODO: passing a scalar root to toYAML() asserts:
5647       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5648       //    "plain scalar documents are not supported")
5649       // To avoid this crash we print the raw data instead.
5650       return {"", ""};
5651     }
5652     MsgPackDoc.toYAML(StrOS);
5653     return {"AMDGPU Metadata", StrOS.str()};
5654   }
5655   }
5656 }
5657 
5658 struct CoreFileMapping {
5659   uint64_t Start, End, Offset;
5660   StringRef Filename;
5661 };
5662 
5663 struct CoreNote {
5664   uint64_t PageSize;
5665   std::vector<CoreFileMapping> Mappings;
5666 };
5667 
5668 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5669   // Expected format of the NT_FILE note description:
5670   // 1. # of file mappings (call it N)
5671   // 2. Page size
5672   // 3. N (start, end, offset) triples
5673   // 4. N packed filenames (null delimited)
5674   // Each field is an Elf_Addr, except for filenames which are char* strings.
5675 
5676   CoreNote Ret;
5677   const int Bytes = Desc.getAddressSize();
5678 
5679   if (!Desc.isValidOffsetForAddress(2))
5680     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5681                        " is too short, expected at least 0x" +
5682                        Twine::utohexstr(Bytes * 2));
5683   if (Desc.getData().back() != 0)
5684     return createError("the note is not NUL terminated");
5685 
5686   uint64_t DescOffset = 0;
5687   uint64_t FileCount = Desc.getAddress(&DescOffset);
5688   Ret.PageSize = Desc.getAddress(&DescOffset);
5689 
5690   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5691     return createError("unable to read file mappings (found " +
5692                        Twine(FileCount) + "): the note of size 0x" +
5693                        Twine::utohexstr(Desc.size()) + " is too short");
5694 
5695   uint64_t FilenamesOffset = 0;
5696   DataExtractor Filenames(
5697       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5698       Desc.isLittleEndian(), Desc.getAddressSize());
5699 
5700   Ret.Mappings.resize(FileCount);
5701   size_t I = 0;
5702   for (CoreFileMapping &Mapping : Ret.Mappings) {
5703     ++I;
5704     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5705       return createError(
5706           "unable to read the file name for the mapping with index " +
5707           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5708           " is truncated");
5709     Mapping.Start = Desc.getAddress(&DescOffset);
5710     Mapping.End = Desc.getAddress(&DescOffset);
5711     Mapping.Offset = Desc.getAddress(&DescOffset);
5712     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5713   }
5714 
5715   return Ret;
5716 }
5717 
5718 template <typename ELFT>
5719 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5720   // Length of "0x<address>" string.
5721   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5722 
5723   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5724   OS << "    " << right_justify("Start", FieldWidth) << "  "
5725      << right_justify("End", FieldWidth) << "  "
5726      << right_justify("Page Offset", FieldWidth) << '\n';
5727   for (const CoreFileMapping &Mapping : Note.Mappings) {
5728     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5729        << format_hex(Mapping.End, FieldWidth) << "  "
5730        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5731        << Mapping.Filename << '\n';
5732   }
5733 }
5734 
5735 const NoteType GenericNoteTypes[] = {
5736     {ELF::NT_VERSION, "NT_VERSION (version)"},
5737     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5738     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5739     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5740 };
5741 
5742 const NoteType GNUNoteTypes[] = {
5743     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5744     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5745     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5746     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5747     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5748 };
5749 
5750 const NoteType FreeBSDCoreNoteTypes[] = {
5751     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5752     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5753     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5754     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5755     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5756     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5757     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5758     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5759     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5760      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5761     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5762 };
5763 
5764 const NoteType FreeBSDNoteTypes[] = {
5765     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5766     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5767     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5768     {ELF::NT_FREEBSD_FEATURE_CTL,
5769      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5770 };
5771 
5772 const NoteType NetBSDCoreNoteTypes[] = {
5773     {ELF::NT_NETBSDCORE_PROCINFO,
5774      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5775     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5776     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5777 };
5778 
5779 const NoteType OpenBSDCoreNoteTypes[] = {
5780     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5781     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5782     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5783     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5784     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5785 };
5786 
5787 const NoteType AMDNoteTypes[] = {
5788     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5789      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5790     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5791     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5792     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5793     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5794     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5795 };
5796 
5797 const NoteType AMDGPUNoteTypes[] = {
5798     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5799 };
5800 
5801 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5802     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5803      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5804     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5805      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5806     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5807      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5808 };
5809 
5810 const NoteType AndroidNoteTypes[] = {
5811     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5812     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5813     {ELF::NT_ANDROID_TYPE_MEMTAG,
5814      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5815 };
5816 
5817 const NoteType ARMNoteTypes[] = {
5818     {ELF::NT_ARM_TYPE_PAUTH_ABI_TAG, "NT_ARM_TYPE_PAUTH_ABI_TAG"},
5819 };
5820 
5821 const NoteType CoreNoteTypes[] = {
5822     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5823     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5824     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5825     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5826     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5827     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5828     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5829     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5830     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5831     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5832     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5833 
5834     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5835     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5836     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5837     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5838     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5839     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5840     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5841     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5842     {ELF::NT_PPC_TM_CFPR,
5843      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5844     {ELF::NT_PPC_TM_CVMX,
5845      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5846     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5847     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5848     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5849     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5850     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5851 
5852     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5853     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5854     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5855 
5856     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5857     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5858     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5859     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5860     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5861     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5862     {ELF::NT_S390_LAST_BREAK,
5863      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5864     {ELF::NT_S390_SYSTEM_CALL,
5865      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5866     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5867     {ELF::NT_S390_VXRS_LOW,
5868      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5869     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5870     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5871     {ELF::NT_S390_GS_BC,
5872      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5873 
5874     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5875     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5876     {ELF::NT_ARM_HW_BREAK,
5877      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5878     {ELF::NT_ARM_HW_WATCH,
5879      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5880     {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"},
5881     {ELF::NT_ARM_PAC_MASK,
5882      "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
5883     {ELF::NT_ARM_TAGGED_ADDR_CTRL,
5884      "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"},
5885     {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
5886     {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"},
5887     {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"},
5888 
5889     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5890     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5891     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5892 };
5893 
5894 template <class ELFT>
5895 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5896   uint32_t Type = Note.getType();
5897   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5898     for (const NoteType &N : V)
5899       if (N.ID == Type)
5900         return N.Name;
5901     return "";
5902   };
5903 
5904   StringRef Name = Note.getName();
5905   if (Name == "GNU")
5906     return FindNote(GNUNoteTypes);
5907   if (Name == "FreeBSD") {
5908     if (ELFType == ELF::ET_CORE) {
5909       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5910       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5911       if (!Result.empty())
5912         return Result;
5913       return FindNote(CoreNoteTypes);
5914     } else {
5915       return FindNote(FreeBSDNoteTypes);
5916     }
5917   }
5918   if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) {
5919     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5920     if (!Result.empty())
5921       return Result;
5922     return FindNote(CoreNoteTypes);
5923   }
5924   if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) {
5925     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5926     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5927     if (!Result.empty())
5928       return Result;
5929     return FindNote(CoreNoteTypes);
5930   }
5931   if (Name == "AMD")
5932     return FindNote(AMDNoteTypes);
5933   if (Name == "AMDGPU")
5934     return FindNote(AMDGPUNoteTypes);
5935   if (Name == "LLVMOMPOFFLOAD")
5936     return FindNote(LLVMOMPOFFLOADNoteTypes);
5937   if (Name == "Android")
5938     return FindNote(AndroidNoteTypes);
5939   if (Name == "ARM")
5940     return FindNote(ARMNoteTypes);
5941 
5942   if (ELFType == ELF::ET_CORE)
5943     return FindNote(CoreNoteTypes);
5944   return FindNote(GenericNoteTypes);
5945 }
5946 
5947 template <class ELFT>
5948 static void processNotesHelper(
5949     const ELFDumper<ELFT> &Dumper,
5950     llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5951                             typename ELFT::Addr, size_t)>
5952         StartNotesFn,
5953     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5954     llvm::function_ref<void()> FinishNotesFn) {
5955   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5956   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5957 
5958   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5959   if (!IsCoreFile && !Sections.empty()) {
5960     for (const typename ELFT::Shdr &S : Sections) {
5961       if (S.sh_type != SHT_NOTE)
5962         continue;
5963       StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5964                    S.sh_size, S.sh_addralign);
5965       Error Err = Error::success();
5966       size_t I = 0;
5967       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5968         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5969           Dumper.reportUniqueWarning(
5970               "unable to read note with index " + Twine(I) + " from the " +
5971               describe(Obj, S) + ": " + toString(std::move(E)));
5972         ++I;
5973       }
5974       if (Err)
5975         Dumper.reportUniqueWarning("unable to read notes from the " +
5976                                    describe(Obj, S) + ": " +
5977                                    toString(std::move(Err)));
5978       FinishNotesFn();
5979     }
5980     return;
5981   }
5982 
5983   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5984   if (!PhdrsOrErr) {
5985     Dumper.reportUniqueWarning(
5986         "unable to read program headers to locate the PT_NOTE segment: " +
5987         toString(PhdrsOrErr.takeError()));
5988     return;
5989   }
5990 
5991   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5992     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5993     if (P.p_type != PT_NOTE)
5994       continue;
5995     StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align);
5996     Error Err = Error::success();
5997     size_t Index = 0;
5998     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5999       if (Error E = ProcessNoteFn(Note, IsCoreFile))
6000         Dumper.reportUniqueWarning("unable to read note with index " +
6001                                    Twine(Index) +
6002                                    " from the PT_NOTE segment with index " +
6003                                    Twine(I) + ": " + toString(std::move(E)));
6004       ++Index;
6005     }
6006     if (Err)
6007       Dumper.reportUniqueWarning(
6008           "unable to read notes from the PT_NOTE segment with index " +
6009           Twine(I) + ": " + toString(std::move(Err)));
6010     FinishNotesFn();
6011   }
6012 }
6013 
6014 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
6015   size_t Align = 0;
6016   bool IsFirstHeader = true;
6017   auto PrintHeader = [&](std::optional<StringRef> SecName,
6018                          const typename ELFT::Off Offset,
6019                          const typename ELFT::Addr Size, size_t Al) {
6020     Align = std::max<size_t>(Al, 4);
6021     // Print a newline between notes sections to match GNU readelf.
6022     if (!IsFirstHeader) {
6023       OS << '\n';
6024     } else {
6025       IsFirstHeader = false;
6026     }
6027 
6028     OS << "Displaying notes found ";
6029 
6030     if (SecName)
6031       OS << "in: " << *SecName << "\n";
6032     else
6033       OS << "at file offset " << format_hex(Offset, 10) << " with length "
6034          << format_hex(Size, 10) << ":\n";
6035 
6036     OS << "  Owner                Data size \tDescription\n";
6037   };
6038 
6039   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6040     StringRef Name = Note.getName();
6041     ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
6042     Elf_Word Type = Note.getType();
6043 
6044     // Print the note owner/type.
6045     OS << "  " << left_justify(Name, 20) << ' '
6046        << format_hex(Descriptor.size(), 10) << '\t';
6047 
6048     StringRef NoteType =
6049         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6050     if (!NoteType.empty())
6051       OS << NoteType << '\n';
6052     else
6053       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
6054 
6055     // Print the description, or fallback to printing raw bytes for unknown
6056     // owners/if we fail to pretty-print the contents.
6057     if (Name == "GNU") {
6058       if (printGNUNote<ELFT>(OS, Type, Descriptor))
6059         return Error::success();
6060     } else if (Name == "FreeBSD") {
6061       if (std::optional<FreeBSDNote> N =
6062               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
6063         OS << "    " << N->Type << ": " << N->Value << '\n';
6064         return Error::success();
6065       }
6066     } else if (Name == "AMD") {
6067       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6068       if (!N.Type.empty()) {
6069         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
6070         return Error::success();
6071       }
6072     } else if (Name == "AMDGPU") {
6073       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6074       if (!N.Type.empty()) {
6075         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
6076         return Error::success();
6077       }
6078     } else if (Name == "LLVMOMPOFFLOAD") {
6079       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
6080         return Error::success();
6081     } else if (Name == "CORE") {
6082       if (Type == ELF::NT_FILE) {
6083         DataExtractor DescExtractor(
6084             Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
6085             sizeof(Elf_Addr));
6086         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
6087           printCoreNote<ELFT>(OS, *NoteOrErr);
6088           return Error::success();
6089         } else {
6090           return NoteOrErr.takeError();
6091         }
6092       }
6093     } else if (Name == "Android") {
6094       if (printAndroidNote(OS, Type, Descriptor))
6095         return Error::success();
6096     } else if (Name == "ARM") {
6097       if (printAArch64Note<ELFT>(OS, Type, Descriptor))
6098         return Error::success();
6099     }
6100     if (!Descriptor.empty()) {
6101       OS << "   description data:";
6102       for (uint8_t B : Descriptor)
6103         OS << " " << format("%02x", B);
6104       OS << '\n';
6105     }
6106     return Error::success();
6107   };
6108 
6109   processNotesHelper(*this, /*StartNotesFn=*/PrintHeader,
6110                      /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {});
6111 }
6112 
6113 template <class ELFT>
6114 ArrayRef<uint8_t>
6115 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) {
6116   for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) {
6117     if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC)
6118       continue;
6119     if (Sec.sh_addr != ExpectedAddr) {
6120       reportUniqueWarning(
6121           "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
6122           Twine::utohexstr(Sec.sh_addr) +
6123           ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6124           Twine::utohexstr(ExpectedAddr));
6125       return ArrayRef<uint8_t>();
6126     }
6127     Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec);
6128     if (auto E = Contents.takeError()) {
6129       reportUniqueWarning(
6130           "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6131           toString(std::move(E)));
6132       return ArrayRef<uint8_t>();
6133     }
6134     return Contents.get();
6135   }
6136   return ArrayRef<uint8_t>();
6137 }
6138 
6139 // Reserve the lower three bits of the first byte of the step distance when
6140 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6141 // when compiling Android T with full MTE globals enabled.
6142 constexpr uint64_t MemtagStepVarintReservedBits = 3;
6143 constexpr uint64_t MemtagGranuleSize = 16;
6144 
6145 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() {
6146   if (Obj.getHeader().e_machine != EM_AARCH64) return;
6147   std::vector<std::pair<std::string, std::string>> DynamicEntries;
6148   uint64_t MemtagGlobalsSz = 0;
6149   uint64_t MemtagGlobals = 0;
6150   for (const typename ELFT::Dyn &Entry : dynamic_table()) {
6151     uintX_t Tag = Entry.getTag();
6152     switch (Tag) {
6153     case DT_AARCH64_MEMTAG_GLOBALSSZ:
6154       MemtagGlobalsSz = Entry.getVal();
6155       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6156                                   getDynamicEntry(Tag, Entry.getVal()));
6157       break;
6158     case DT_AARCH64_MEMTAG_GLOBALS:
6159       MemtagGlobals = Entry.getVal();
6160       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6161                                   getDynamicEntry(Tag, Entry.getVal()));
6162       break;
6163     case DT_AARCH64_MEMTAG_MODE:
6164     case DT_AARCH64_MEMTAG_HEAP:
6165     case DT_AARCH64_MEMTAG_STACK:
6166       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6167                                   getDynamicEntry(Tag, Entry.getVal()));
6168       break;
6169     }
6170   }
6171 
6172   ArrayRef<uint8_t> AndroidNoteDesc;
6173   auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6174     if (Note.getName() == "Android" &&
6175         Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG)
6176       AndroidNoteDesc = Note.getDesc(4);
6177     return Error::success();
6178   };
6179 
6180   processNotesHelper(
6181       *this,
6182       /*StartNotesFn=*/
6183       [](std::optional<StringRef>, const typename ELFT::Off,
6184          const typename ELFT::Addr, size_t) {},
6185       /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {});
6186 
6187   ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals);
6188   if (Contents.size() != MemtagGlobalsSz) {
6189     reportUniqueWarning(
6190         "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6191         Twine::utohexstr(MemtagGlobalsSz) +
6192         ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6193         Twine::utohexstr(Contents.size()) + ")");
6194     Contents = ArrayRef<uint8_t>();
6195   }
6196 
6197   std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors;
6198   uint64_t Address = 0;
6199   // See the AArch64 MemtagABI document for a description of encoding scheme:
6200   // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6201   for (size_t I = 0; I < Contents.size();) {
6202     const char *Error = nullptr;
6203     unsigned DecodedBytes = 0;
6204     uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes,
6205                                    Contents.end(), &Error);
6206     I += DecodedBytes;
6207     if (Error) {
6208       reportUniqueWarning(
6209           "error decoding distance uleb, " + Twine(DecodedBytes) +
6210           " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6211       GlobalDescriptors.clear();
6212       break;
6213     }
6214     uint64_t Distance = Value >> MemtagStepVarintReservedBits;
6215     uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1);
6216     if (GranulesToTag == 0) {
6217       GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes,
6218                                     Contents.end(), &Error) +
6219                       1;
6220       I += DecodedBytes;
6221       if (Error) {
6222         reportUniqueWarning(
6223             "error decoding size-only uleb, " + Twine(DecodedBytes) +
6224             " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6225         GlobalDescriptors.clear();
6226         break;
6227       }
6228     }
6229     Address += Distance * MemtagGranuleSize;
6230     GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize);
6231     Address += GranulesToTag * MemtagGranuleSize;
6232   }
6233 
6234   printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors);
6235 }
6236 
6237 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
6238   OS << "printELFLinkerOptions not implemented!\n";
6239 }
6240 
6241 template <class ELFT>
6242 void ELFDumper<ELFT>::printDependentLibsHelper(
6243     function_ref<void(const Elf_Shdr &)> OnSectionStart,
6244     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
6245   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6246     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6247                               Twine(SecNdx) + " is broken: " + Msg);
6248   };
6249 
6250   unsigned I = -1;
6251   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
6252     ++I;
6253     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6254       continue;
6255 
6256     OnSectionStart(Shdr);
6257 
6258     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
6259     if (!ContentsOrErr) {
6260       Warn(I, toString(ContentsOrErr.takeError()));
6261       continue;
6262     }
6263 
6264     ArrayRef<uint8_t> Contents = *ContentsOrErr;
6265     if (!Contents.empty() && Contents.back() != 0) {
6266       Warn(I, "the content is not null-terminated");
6267       continue;
6268     }
6269 
6270     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6271       StringRef Lib((const char *)I);
6272       OnLibEntry(Lib, I - Contents.begin());
6273       I += Lib.size() + 1;
6274     }
6275   }
6276 }
6277 
6278 template <class ELFT>
6279 void ELFDumper<ELFT>::forEachRelocationDo(
6280     const Elf_Shdr &Sec, bool RawRelr,
6281     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
6282                             const Elf_Shdr &, const Elf_Shdr *)>
6283         RelRelaFn,
6284     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
6285   auto Warn = [&](Error &&E,
6286                   const Twine &Prefix = "unable to read relocations from") {
6287     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
6288                               toString(std::move(E)));
6289   };
6290 
6291   // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an
6292   // associated symbol table. For them we should not treat the value of the
6293   // sh_link field as an index of a symbol table.
6294   const Elf_Shdr *SymTab;
6295   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR &&
6296       !(Obj.getHeader().e_machine == EM_AARCH64 &&
6297         Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) {
6298     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
6299     if (!SymTabOrErr) {
6300       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
6301       return;
6302     }
6303     SymTab = *SymTabOrErr;
6304   }
6305 
6306   unsigned RelNdx = 0;
6307   const bool IsMips64EL = this->Obj.isMips64EL();
6308   switch (Sec.sh_type) {
6309   case ELF::SHT_REL:
6310     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
6311       for (const Elf_Rel &R : *RangeOrErr)
6312         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6313     } else {
6314       Warn(RangeOrErr.takeError());
6315     }
6316     break;
6317   case ELF::SHT_RELA:
6318     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
6319       for (const Elf_Rela &R : *RangeOrErr)
6320         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6321     } else {
6322       Warn(RangeOrErr.takeError());
6323     }
6324     break;
6325   case ELF::SHT_AARCH64_AUTH_RELR:
6326     if (Obj.getHeader().e_machine != EM_AARCH64)
6327       break;
6328     [[fallthrough]];
6329   case ELF::SHT_RELR:
6330   case ELF::SHT_ANDROID_RELR: {
6331     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
6332     if (!RangeOrErr) {
6333       Warn(RangeOrErr.takeError());
6334       break;
6335     }
6336     if (RawRelr) {
6337       for (const Elf_Relr &R : *RangeOrErr)
6338         RelrFn(R);
6339       break;
6340     }
6341 
6342     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
6343       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
6344                 /*SymTab=*/nullptr);
6345     break;
6346   }
6347   case ELF::SHT_ANDROID_REL:
6348   case ELF::SHT_ANDROID_RELA:
6349     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
6350       for (const Elf_Rela &R : *RelasOrErr)
6351         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6352     } else {
6353       Warn(RelasOrErr.takeError());
6354     }
6355     break;
6356   }
6357 }
6358 
6359 template <class ELFT>
6360 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
6361   StringRef Name = "<?>";
6362   if (Expected<StringRef> SecNameOrErr =
6363           Obj.getSectionName(Sec, this->WarningHandler))
6364     Name = *SecNameOrErr;
6365   else
6366     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
6367                               ": " + toString(SecNameOrErr.takeError()));
6368   return Name;
6369 }
6370 
6371 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
6372   bool SectionStarted = false;
6373   struct NameOffset {
6374     StringRef Name;
6375     uint64_t Offset;
6376   };
6377   std::vector<NameOffset> SecEntries;
6378   NameOffset Current;
6379   auto PrintSection = [&]() {
6380     OS << "Dependent libraries section " << Current.Name << " at offset "
6381        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
6382        << " entries:\n";
6383     for (NameOffset Entry : SecEntries)
6384       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
6385          << "\n";
6386     OS << "\n";
6387     SecEntries.clear();
6388   };
6389 
6390   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
6391     if (SectionStarted)
6392       PrintSection();
6393     SectionStarted = true;
6394     Current.Offset = Shdr.sh_offset;
6395     Current.Name = this->getPrintableSectionName(Shdr);
6396   };
6397   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6398     SecEntries.push_back(NameOffset{Lib, Offset});
6399   };
6400 
6401   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6402   if (SectionStarted)
6403     PrintSection();
6404 }
6405 
6406 template <class ELFT>
6407 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6408     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6409   SmallVector<uint32_t> SymbolIndexes;
6410   if (!this->AddressToIndexMap) {
6411     // Populate the address to index map upon the first invocation of this
6412     // function.
6413     this->AddressToIndexMap.emplace();
6414     if (this->DotSymtabSec) {
6415       if (Expected<Elf_Sym_Range> SymsOrError =
6416               Obj.symbols(this->DotSymtabSec)) {
6417         uint32_t Index = (uint32_t)-1;
6418         for (const Elf_Sym &Sym : *SymsOrError) {
6419           ++Index;
6420 
6421           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6422             continue;
6423 
6424           Expected<uint64_t> SymAddrOrErr =
6425               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6426           if (!SymAddrOrErr) {
6427             std::string Name = this->getStaticSymbolName(Index);
6428             reportUniqueWarning("unable to get address of symbol '" + Name +
6429                                 "': " + toString(SymAddrOrErr.takeError()));
6430             return SymbolIndexes;
6431           }
6432 
6433           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6434         }
6435       } else {
6436         reportUniqueWarning("unable to read the symbol table: " +
6437                             toString(SymsOrError.takeError()));
6438       }
6439     }
6440   }
6441 
6442   auto Symbols = this->AddressToIndexMap->find(SymValue);
6443   if (Symbols == this->AddressToIndexMap->end())
6444     return SymbolIndexes;
6445 
6446   for (uint32_t Index : Symbols->second) {
6447     // Check if the symbol is in the right section. FunctionSec == None
6448     // means "any section".
6449     if (FunctionSec) {
6450       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6451       if (Expected<const Elf_Shdr *> SecOrErr =
6452               Obj.getSection(Sym, this->DotSymtabSec,
6453                              this->getShndxTable(this->DotSymtabSec))) {
6454         if (*FunctionSec != *SecOrErr)
6455           continue;
6456       } else {
6457         std::string Name = this->getStaticSymbolName(Index);
6458         // Note: it is impossible to trigger this error currently, it is
6459         // untested.
6460         reportUniqueWarning("unable to get section of symbol '" + Name +
6461                             "': " + toString(SecOrErr.takeError()));
6462         return SymbolIndexes;
6463       }
6464     }
6465 
6466     SymbolIndexes.push_back(Index);
6467   }
6468 
6469   return SymbolIndexes;
6470 }
6471 
6472 template <class ELFT>
6473 bool ELFDumper<ELFT>::printFunctionStackSize(
6474     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6475     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6476   SmallVector<uint32_t> FuncSymIndexes =
6477       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6478   if (FuncSymIndexes.empty())
6479     reportUniqueWarning(
6480         "could not identify function symbol for stack size entry in " +
6481         describe(StackSizeSec));
6482 
6483   // Extract the size. The expectation is that Offset is pointing to the right
6484   // place, i.e. past the function address.
6485   Error Err = Error::success();
6486   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6487   if (Err) {
6488     reportUniqueWarning("could not extract a valid stack size from " +
6489                         describe(StackSizeSec) + ": " +
6490                         toString(std::move(Err)));
6491     return false;
6492   }
6493 
6494   if (FuncSymIndexes.empty()) {
6495     printStackSizeEntry(StackSize, {"?"});
6496   } else {
6497     SmallVector<std::string> FuncSymNames;
6498     for (uint32_t Index : FuncSymIndexes)
6499       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6500     printStackSizeEntry(StackSize, FuncSymNames);
6501   }
6502 
6503   return true;
6504 }
6505 
6506 template <class ELFT>
6507 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6508                                              ArrayRef<std::string> FuncNames) {
6509   OS.PadToColumn(2);
6510   OS << format_decimal(Size, 11);
6511   OS.PadToColumn(18);
6512 
6513   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6514 }
6515 
6516 template <class ELFT>
6517 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6518                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6519                                      const Elf_Shdr *SymTab,
6520                                      const Elf_Shdr *FunctionSec,
6521                                      const Elf_Shdr &StackSizeSec,
6522                                      const RelocationResolver &Resolver,
6523                                      DataExtractor Data) {
6524   // This function ignores potentially erroneous input, unless it is directly
6525   // related to stack size reporting.
6526   const Elf_Sym *Sym = nullptr;
6527   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6528   if (!TargetOrErr)
6529     reportUniqueWarning("unable to get the target of relocation with index " +
6530                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6531                         toString(TargetOrErr.takeError()));
6532   else
6533     Sym = TargetOrErr->Sym;
6534 
6535   uint64_t RelocSymValue = 0;
6536   if (Sym) {
6537     Expected<const Elf_Shdr *> SectionOrErr =
6538         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6539     if (!SectionOrErr) {
6540       reportUniqueWarning(
6541           "cannot identify the section for relocation symbol '" +
6542           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6543     } else if (*SectionOrErr != FunctionSec) {
6544       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6545                           "' is not in the expected section");
6546       // Pretend that the symbol is in the correct section and report its
6547       // stack size anyway.
6548       FunctionSec = *SectionOrErr;
6549     }
6550 
6551     RelocSymValue = Sym->st_value;
6552   }
6553 
6554   uint64_t Offset = R.Offset;
6555   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6556     reportUniqueWarning("found invalid relocation offset (0x" +
6557                         Twine::utohexstr(Offset) + ") into " +
6558                         describe(StackSizeSec) +
6559                         " while trying to extract a stack size entry");
6560     return;
6561   }
6562 
6563   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6564                                Data.getAddress(&Offset), R.Addend.value_or(0));
6565   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6566                                &Offset);
6567 }
6568 
6569 template <class ELFT>
6570 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6571     std::function<void()> PrintHeader) {
6572   // This function ignores potentially erroneous input, unless it is directly
6573   // related to stack size reporting.
6574   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6575     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6576       continue;
6577     PrintHeader();
6578     ArrayRef<uint8_t> Contents =
6579         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6580     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6581     uint64_t Offset = 0;
6582     while (Offset < Contents.size()) {
6583       // The function address is followed by a ULEB representing the stack
6584       // size. Check for an extra byte before we try to process the entry.
6585       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6586         reportUniqueWarning(
6587             describe(Sec) +
6588             " ended while trying to extract a stack size entry");
6589         break;
6590       }
6591       uint64_t SymValue = Data.getAddress(&Offset);
6592       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6593                                   Data, &Offset))
6594         break;
6595     }
6596   }
6597 }
6598 
6599 template <class ELFT>
6600 void ELFDumper<ELFT>::printRelocatableStackSizes(
6601     std::function<void()> PrintHeader) {
6602   // Build a map between stack size sections and their corresponding relocation
6603   // sections.
6604   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6605     StringRef SectionName;
6606     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6607       SectionName = *NameOrErr;
6608     else
6609       consumeError(NameOrErr.takeError());
6610 
6611     return SectionName == ".stack_sizes";
6612   };
6613 
6614   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>>
6615       StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch);
6616   if (!StackSizeRelocMapOrErr) {
6617     reportUniqueWarning("unable to get stack size map section(s): " +
6618                         toString(StackSizeRelocMapOrErr.takeError()));
6619     return;
6620   }
6621 
6622   for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) {
6623     PrintHeader();
6624     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6625     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6626 
6627     // Warn about stack size sections without a relocation section.
6628     if (!RelocSec) {
6629       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6630                                 ") does not have a corresponding "
6631                                 "relocation section"),
6632                     FileName);
6633       continue;
6634     }
6635 
6636     // A .stack_sizes section header's sh_link field is supposed to point
6637     // to the section that contains the functions whose stack sizes are
6638     // described in it.
6639     const Elf_Shdr *FunctionSec = unwrapOrError(
6640         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6641 
6642     SupportsRelocation IsSupportedFn;
6643     RelocationResolver Resolver;
6644     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6645     ArrayRef<uint8_t> Contents =
6646         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6647     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6648 
6649     forEachRelocationDo(
6650         *RelocSec, /*RawRelr=*/false,
6651         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6652             const Elf_Shdr *SymTab) {
6653           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6654             reportUniqueWarning(
6655                 describe(*RelocSec) +
6656                 " contains an unsupported relocation with index " + Twine(Ndx) +
6657                 ": " + Obj.getRelocationTypeName(R.Type));
6658             return;
6659           }
6660 
6661           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6662                                *StackSizesELFSec, Resolver, Data);
6663         },
6664         [](const Elf_Relr &) {
6665           llvm_unreachable("can't get here, because we only support "
6666                            "SHT_REL/SHT_RELA sections");
6667         });
6668   }
6669 }
6670 
6671 template <class ELFT>
6672 void GNUELFDumper<ELFT>::printStackSizes() {
6673   bool HeaderHasBeenPrinted = false;
6674   auto PrintHeader = [&]() {
6675     if (HeaderHasBeenPrinted)
6676       return;
6677     OS << "\nStack Sizes:\n";
6678     OS.PadToColumn(9);
6679     OS << "Size";
6680     OS.PadToColumn(18);
6681     OS << "Functions\n";
6682     HeaderHasBeenPrinted = true;
6683   };
6684 
6685   // For non-relocatable objects, look directly for sections whose name starts
6686   // with .stack_sizes and process the contents.
6687   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6688     this->printRelocatableStackSizes(PrintHeader);
6689   else
6690     this->printNonRelocatableStackSizes(PrintHeader);
6691 }
6692 
6693 template <class ELFT>
6694 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6695   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6696   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6697     OS.PadToColumn(2);
6698     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6699     OS.PadToColumn(11 + Bias);
6700     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6701     OS.PadToColumn(22 + Bias);
6702     OS << format_hex_no_prefix(*E, 8 + Bias);
6703     OS.PadToColumn(31 + 2 * Bias);
6704     OS << Purpose << "\n";
6705   };
6706 
6707   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6708   OS << " Canonical gp value: "
6709      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6710 
6711   OS << " Reserved entries:\n";
6712   if (ELFT::Is64Bits)
6713     OS << "           Address     Access          Initial Purpose\n";
6714   else
6715     OS << "   Address     Access  Initial Purpose\n";
6716   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6717   if (Parser.getGotModulePointer())
6718     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6719 
6720   if (!Parser.getLocalEntries().empty()) {
6721     OS << "\n";
6722     OS << " Local entries:\n";
6723     if (ELFT::Is64Bits)
6724       OS << "           Address     Access          Initial\n";
6725     else
6726       OS << "   Address     Access  Initial\n";
6727     for (auto &E : Parser.getLocalEntries())
6728       PrintEntry(&E, "");
6729   }
6730 
6731   if (Parser.IsStatic)
6732     return;
6733 
6734   if (!Parser.getGlobalEntries().empty()) {
6735     OS << "\n";
6736     OS << " Global entries:\n";
6737     if (ELFT::Is64Bits)
6738       OS << "           Address     Access          Initial         Sym.Val."
6739          << " Type    Ndx Name\n";
6740     else
6741       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6742 
6743     DataRegion<Elf_Word> ShndxTable(
6744         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6745     for (auto &E : Parser.getGlobalEntries()) {
6746       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6747       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6748       std::string SymName = this->getFullSymbolName(
6749           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6750 
6751       OS.PadToColumn(2);
6752       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6753       OS.PadToColumn(11 + Bias);
6754       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6755       OS.PadToColumn(22 + Bias);
6756       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6757       OS.PadToColumn(31 + 2 * Bias);
6758       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6759       OS.PadToColumn(40 + 3 * Bias);
6760       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6761       OS.PadToColumn(48 + 3 * Bias);
6762       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6763                                 ShndxTable);
6764       OS.PadToColumn(52 + 3 * Bias);
6765       OS << SymName << "\n";
6766     }
6767   }
6768 
6769   if (!Parser.getOtherEntries().empty())
6770     OS << "\n Number of TLS and multi-GOT entries "
6771        << Parser.getOtherEntries().size() << "\n";
6772 }
6773 
6774 template <class ELFT>
6775 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6776   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6777   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6778     OS.PadToColumn(2);
6779     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6780     OS.PadToColumn(11 + Bias);
6781     OS << format_hex_no_prefix(*E, 8 + Bias);
6782     OS.PadToColumn(20 + 2 * Bias);
6783     OS << Purpose << "\n";
6784   };
6785 
6786   OS << "PLT GOT:\n\n";
6787 
6788   OS << " Reserved entries:\n";
6789   OS << "   Address  Initial Purpose\n";
6790   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6791   if (Parser.getPltModulePointer())
6792     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6793 
6794   if (!Parser.getPltEntries().empty()) {
6795     OS << "\n";
6796     OS << " Entries:\n";
6797     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6798     DataRegion<Elf_Word> ShndxTable(
6799         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6800     for (auto &E : Parser.getPltEntries()) {
6801       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6802       const Elf_Sym &FirstSym = *cantFail(
6803           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6804       std::string SymName = this->getFullSymbolName(
6805           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6806 
6807       OS.PadToColumn(2);
6808       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6809       OS.PadToColumn(11 + Bias);
6810       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6811       OS.PadToColumn(20 + 2 * Bias);
6812       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6813       OS.PadToColumn(29 + 3 * Bias);
6814       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6815       OS.PadToColumn(37 + 3 * Bias);
6816       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6817                                 ShndxTable);
6818       OS.PadToColumn(41 + 3 * Bias);
6819       OS << SymName << "\n";
6820     }
6821   }
6822 }
6823 
6824 template <class ELFT>
6825 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6826 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6827   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6828   if (Sec == nullptr)
6829     return nullptr;
6830 
6831   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6832   Expected<ArrayRef<uint8_t>> DataOrErr =
6833       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6834   if (!DataOrErr)
6835     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6836 
6837   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6838     return createError(ErrPrefix + "it has a wrong size (" +
6839         Twine(DataOrErr->size()) + ")");
6840   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6841 }
6842 
6843 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6844   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6845   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6846           getMipsAbiFlagsSection(*this))
6847     Flags = *SecOrErr;
6848   else
6849     this->reportUniqueWarning(SecOrErr.takeError());
6850   if (!Flags)
6851     return;
6852 
6853   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6854   OS << "ISA: MIPS" << int(Flags->isa_level);
6855   if (Flags->isa_rev > 1)
6856     OS << "r" << int(Flags->isa_rev);
6857   OS << "\n";
6858   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6859   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6860   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6861   OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6862      << "\n";
6863   OS << "ISA Extension: "
6864      << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6865   if (Flags->ases == 0)
6866     OS << "ASEs: None\n";
6867   else
6868     // FIXME: Print each flag on a separate line.
6869     OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6870        << "\n";
6871   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6872   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6873   OS << "\n";
6874 }
6875 
6876 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6877   const Elf_Ehdr &E = this->Obj.getHeader();
6878   {
6879     DictScope D(W, "ElfHeader");
6880     {
6881       DictScope D(W, "Ident");
6882       W.printBinary("Magic",
6883                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6884       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6885       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6886                   ArrayRef(ElfDataEncoding));
6887       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6888 
6889       auto OSABI = ArrayRef(ElfOSABI);
6890       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6891           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6892         switch (E.e_machine) {
6893         case ELF::EM_AMDGPU:
6894           OSABI = ArrayRef(AMDGPUElfOSABI);
6895           break;
6896         case ELF::EM_ARM:
6897           OSABI = ArrayRef(ARMElfOSABI);
6898           break;
6899         case ELF::EM_TI_C6000:
6900           OSABI = ArrayRef(C6000ElfOSABI);
6901           break;
6902         }
6903       }
6904       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6905       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6906       W.printBinary("Unused",
6907                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6908     }
6909 
6910     std::string TypeStr;
6911     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6912       TypeStr = Ent->Name.str();
6913     } else {
6914       if (E.e_type >= ET_LOPROC)
6915         TypeStr = "Processor Specific";
6916       else if (E.e_type >= ET_LOOS)
6917         TypeStr = "OS Specific";
6918       else
6919         TypeStr = "Unknown";
6920     }
6921     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6922 
6923     W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6924     W.printNumber("Version", E.e_version);
6925     W.printHex("Entry", E.e_entry);
6926     W.printHex("ProgramHeaderOffset", E.e_phoff);
6927     W.printHex("SectionHeaderOffset", E.e_shoff);
6928     if (E.e_machine == EM_MIPS)
6929       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6930                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6931                    unsigned(ELF::EF_MIPS_MACH));
6932     else if (E.e_machine == EM_AMDGPU) {
6933       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6934       default:
6935         W.printHex("Flags", E.e_flags);
6936         break;
6937       case 0:
6938         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6939         [[fallthrough]];
6940       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6941         W.printFlags("Flags", E.e_flags,
6942                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6943                      unsigned(ELF::EF_AMDGPU_MACH));
6944         break;
6945       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6946       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6947         W.printFlags("Flags", E.e_flags,
6948                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6949                      unsigned(ELF::EF_AMDGPU_MACH),
6950                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6951                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6952         break;
6953       }
6954     } else if (E.e_machine == EM_RISCV)
6955       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6956     else if (E.e_machine == EM_AVR)
6957       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6958                    unsigned(ELF::EF_AVR_ARCH_MASK));
6959     else if (E.e_machine == EM_LOONGARCH)
6960       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6961                    unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6962                    unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6963     else if (E.e_machine == EM_XTENSA)
6964       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6965                    unsigned(ELF::EF_XTENSA_MACH));
6966     else if (E.e_machine == EM_CUDA)
6967       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
6968                    unsigned(ELF::EF_CUDA_SM));
6969     else
6970       W.printFlags("Flags", E.e_flags);
6971     W.printNumber("HeaderSize", E.e_ehsize);
6972     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6973     W.printNumber("ProgramHeaderCount", E.e_phnum);
6974     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6975     W.printString("SectionHeaderCount",
6976                   getSectionHeadersNumString(this->Obj, this->FileName));
6977     W.printString("StringTableSectionIndex",
6978                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6979   }
6980 }
6981 
6982 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6983   DictScope Lists(W, "Groups");
6984   std::vector<GroupSection> V = this->getGroups();
6985   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6986   for (const GroupSection &G : V) {
6987     DictScope D(W, "Group");
6988     W.printNumber("Name", G.Name, G.ShName);
6989     W.printNumber("Index", G.Index);
6990     W.printNumber("Link", G.Link);
6991     W.printNumber("Info", G.Info);
6992     W.printHex("Type", getGroupType(G.Type), G.Type);
6993     W.printString("Signature", G.Signature);
6994 
6995     ListScope L(W, getGroupSectionHeaderName());
6996     for (const GroupMember &GM : G.Members) {
6997       const GroupSection *MainGroup = Map[GM.Index];
6998       if (MainGroup != &G)
6999         this->reportUniqueWarning(
7000             "section with index " + Twine(GM.Index) +
7001             ", included in the group section with index " +
7002             Twine(MainGroup->Index) +
7003             ", was also found in the group section with index " +
7004             Twine(G.Index));
7005       printSectionGroupMembers(GM.Name, GM.Index);
7006     }
7007   }
7008 
7009   if (V.empty())
7010     printEmptyGroupMessage();
7011 }
7012 
7013 template <class ELFT>
7014 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const {
7015   return "Section(s) in group";
7016 }
7017 
7018 template <class ELFT>
7019 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
7020                                                    uint64_t Idx) const {
7021   W.startLine() << Name << " (" << Idx << ")\n";
7022 }
7023 
7024 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
7025   ListScope D(W, "Relocations");
7026 
7027   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7028     if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
7029       continue;
7030 
7031     StringRef Name = this->getPrintableSectionName(Sec);
7032     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
7033     printRelocationSectionInfo(Sec, Name, SecNdx);
7034   }
7035 }
7036 
7037 template <class ELFT>
7038 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
7039   W.startLine() << W.hex(R) << "\n";
7040 }
7041 
7042 template <class ELFT>
7043 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R,
7044                                                     StringRef SymbolName,
7045                                                     StringRef RelocName) {
7046   DictScope Group(W, "Relocation");
7047   W.printHex("Offset", R.Offset);
7048   W.printNumber("Type", RelocName, R.Type);
7049   W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
7050   if (R.Addend)
7051     W.printHex("Addend", (uintX_t)*R.Addend);
7052 }
7053 
7054 template <class ELFT>
7055 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
7056                                                    StringRef SymbolName,
7057                                                    StringRef RelocName) {
7058   raw_ostream &OS = W.startLine();
7059   OS << W.hex(R.Offset) << " " << RelocName << " "
7060      << (!SymbolName.empty() ? SymbolName : "-");
7061   if (R.Addend)
7062     OS << " " << W.hex((uintX_t)*R.Addend);
7063   OS << "\n";
7064 }
7065 
7066 template <class ELFT>
7067 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
7068                                                      StringRef Name,
7069                                                      const unsigned SecNdx) {
7070   DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str());
7071   this->printRelocationsHelper(Sec);
7072 }
7073 
7074 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const {
7075   W.startLine() << "There are no group sections in the file.\n";
7076 }
7077 
7078 template <class ELFT>
7079 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
7080                                             const RelSymbol<ELFT> &RelSym) {
7081   StringRef SymbolName = RelSym.Name;
7082   if (RelSym.Sym && RelSym.Name.empty())
7083     SymbolName = "<null>";
7084   SmallString<32> RelocName;
7085   this->Obj.getRelocationTypeName(R.Type, RelocName);
7086 
7087   if (opts::ExpandRelocs) {
7088     printExpandedRelRelaReloc(R, SymbolName, RelocName);
7089   } else {
7090     printDefaultRelRelaReloc(R, SymbolName, RelocName);
7091   }
7092 }
7093 
7094 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
7095   ListScope SectionsD(W, "Sections");
7096 
7097   int SectionIndex = -1;
7098   std::vector<EnumEntry<unsigned>> FlagsList =
7099       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
7100                                this->Obj.getHeader().e_machine);
7101   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7102     DictScope SectionD(W, "Section");
7103     W.printNumber("Index", ++SectionIndex);
7104     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
7105     W.printHex("Type",
7106                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
7107                                              Sec.sh_type),
7108                Sec.sh_type);
7109     W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
7110     W.printHex("Address", Sec.sh_addr);
7111     W.printHex("Offset", Sec.sh_offset);
7112     W.printNumber("Size", Sec.sh_size);
7113     W.printNumber("Link", Sec.sh_link);
7114     W.printNumber("Info", Sec.sh_info);
7115     W.printNumber("AddressAlignment", Sec.sh_addralign);
7116     W.printNumber("EntrySize", Sec.sh_entsize);
7117 
7118     if (opts::SectionRelocations) {
7119       ListScope D(W, "Relocations");
7120       this->printRelocationsHelper(Sec);
7121     }
7122 
7123     if (opts::SectionSymbols) {
7124       ListScope D(W, "Symbols");
7125       if (this->DotSymtabSec) {
7126         StringRef StrTable = unwrapOrError(
7127             this->FileName,
7128             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
7129         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
7130 
7131         typename ELFT::SymRange Symbols = unwrapOrError(
7132             this->FileName, this->Obj.symbols(this->DotSymtabSec));
7133         for (const Elf_Sym &Sym : Symbols) {
7134           const Elf_Shdr *SymSec = unwrapOrError(
7135               this->FileName,
7136               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
7137           if (SymSec == &Sec)
7138             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
7139                         /*NonVisibilityBitsUsed=*/false,
7140                         /*ExtraSymInfo=*/false);
7141         }
7142       }
7143     }
7144 
7145     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
7146       ArrayRef<uint8_t> Data =
7147           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
7148       W.printBinaryBlock(
7149           "SectionData",
7150           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
7151     }
7152   }
7153 }
7154 
7155 template <class ELFT>
7156 void LLVMELFDumper<ELFT>::printSymbolSection(
7157     const Elf_Sym &Symbol, unsigned SymIndex,
7158     DataRegion<Elf_Word> ShndxTable) const {
7159   auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
7160     if (Symbol.isUndefined())
7161       return StringRef("Undefined");
7162     if (Symbol.isProcessorSpecific())
7163       return StringRef("Processor Specific");
7164     if (Symbol.isOSSpecific())
7165       return StringRef("Operating System Specific");
7166     if (Symbol.isAbsolute())
7167       return StringRef("Absolute");
7168     if (Symbol.isCommon())
7169       return StringRef("Common");
7170     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
7171       return StringRef("Reserved");
7172     return std::nullopt;
7173   };
7174 
7175   if (std::optional<StringRef> Type = GetSectionSpecialType()) {
7176     W.printHex("Section", *Type, Symbol.st_shndx);
7177     return;
7178   }
7179 
7180   Expected<unsigned> SectionIndex =
7181       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
7182   if (!SectionIndex) {
7183     assert(Symbol.st_shndx == SHN_XINDEX &&
7184            "getSymbolSectionIndex should only fail due to an invalid "
7185            "SHT_SYMTAB_SHNDX table/reference");
7186     this->reportUniqueWarning(SectionIndex.takeError());
7187     W.printHex("Section", "Reserved", SHN_XINDEX);
7188     return;
7189   }
7190 
7191   Expected<StringRef> SectionName =
7192       this->getSymbolSectionName(Symbol, *SectionIndex);
7193   if (!SectionName) {
7194     // Don't report an invalid section name if the section headers are missing.
7195     // In such situations, all sections will be "invalid".
7196     if (!this->ObjF.sections().empty())
7197       this->reportUniqueWarning(SectionName.takeError());
7198     else
7199       consumeError(SectionName.takeError());
7200     W.printHex("Section", "<?>", *SectionIndex);
7201   } else {
7202     W.printHex("Section", *SectionName, *SectionIndex);
7203   }
7204 }
7205 
7206 template <class ELFT>
7207 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const {
7208   std::vector<EnumEntry<unsigned>> SymOtherFlags =
7209       this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol);
7210   W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
7211 }
7212 
7213 template <class ELFT>
7214 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField(
7215     const Elf_Sym &Symbol) const {
7216   assert(Symbol.st_other == 0 && "non-zero Other Field");
7217   // Usually st_other flag is zero. Do not pollute the output
7218   // by flags enumeration in that case.
7219   W.printNumber("Other", 0);
7220 }
7221 
7222 template <class ELFT>
7223 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
7224                                       DataRegion<Elf_Word> ShndxTable,
7225                                       std::optional<StringRef> StrTable,
7226                                       bool IsDynamic,
7227                                       bool /*NonVisibilityBitsUsed*/,
7228                                       bool /*ExtraSymInfo*/) const {
7229   std::string FullSymbolName = this->getFullSymbolName(
7230       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
7231   unsigned char SymbolType = Symbol.getType();
7232 
7233   DictScope D(W, "Symbol");
7234   W.printNumber("Name", FullSymbolName, Symbol.st_name);
7235   W.printHex("Value", Symbol.st_value);
7236   W.printNumber("Size", Symbol.st_size);
7237   W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
7238   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
7239       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
7240     W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
7241   else
7242     W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
7243   if (Symbol.st_other == 0)
7244     printZeroSymbolOtherField(Symbol);
7245   else
7246     printSymbolOtherField(Symbol);
7247   printSymbolSection(Symbol, SymIndex, ShndxTable);
7248 }
7249 
7250 template <class ELFT>
7251 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
7252                                        bool PrintDynamicSymbols,
7253                                        bool ExtraSymInfo) {
7254   if (PrintSymbols) {
7255     ListScope Group(W, "Symbols");
7256     this->printSymbolsHelper(false, ExtraSymInfo);
7257   }
7258   if (PrintDynamicSymbols) {
7259     ListScope Group(W, "DynamicSymbols");
7260     this->printSymbolsHelper(true, ExtraSymInfo);
7261   }
7262 }
7263 
7264 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
7265   Elf_Dyn_Range Table = this->dynamic_table();
7266   if (Table.empty())
7267     return;
7268 
7269   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
7270 
7271   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
7272   // The "Name/Value" column should be indented from the "Type" column by N
7273   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7274   // space (1) = -3.
7275   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
7276                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
7277 
7278   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
7279   for (auto Entry : Table) {
7280     uintX_t Tag = Entry.getTag();
7281     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
7282     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
7283                   << " "
7284                   << format(ValueFmt.c_str(),
7285                             this->Obj.getDynamicTagAsString(Tag).c_str())
7286                   << Value << "\n";
7287   }
7288   W.startLine() << "]\n";
7289 }
7290 
7291 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
7292   W.startLine() << "Dynamic Relocations {\n";
7293   W.indent();
7294   this->printDynamicRelocationsHelper();
7295   W.unindent();
7296   W.startLine() << "}\n";
7297 }
7298 
7299 template <class ELFT>
7300 void LLVMELFDumper<ELFT>::printProgramHeaders(
7301     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
7302   if (PrintProgramHeaders)
7303     printProgramHeaders();
7304   if (PrintSectionMapping == cl::BOU_TRUE)
7305     printSectionMapping();
7306 }
7307 
7308 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
7309   ListScope L(W, "ProgramHeaders");
7310 
7311   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
7312   if (!PhdrsOrErr) {
7313     this->reportUniqueWarning("unable to dump program headers: " +
7314                               toString(PhdrsOrErr.takeError()));
7315     return;
7316   }
7317 
7318   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
7319     DictScope P(W, "ProgramHeader");
7320     StringRef Type =
7321         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
7322 
7323     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
7324     W.printHex("Offset", Phdr.p_offset);
7325     W.printHex("VirtualAddress", Phdr.p_vaddr);
7326     W.printHex("PhysicalAddress", Phdr.p_paddr);
7327     W.printNumber("FileSize", Phdr.p_filesz);
7328     W.printNumber("MemSize", Phdr.p_memsz);
7329     W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
7330     W.printNumber("Alignment", Phdr.p_align);
7331   }
7332 }
7333 
7334 template <class ELFT>
7335 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
7336   ListScope SS(W, "VersionSymbols");
7337   if (!Sec)
7338     return;
7339 
7340   StringRef StrTable;
7341   ArrayRef<Elf_Sym> Syms;
7342   const Elf_Shdr *SymTabSec;
7343   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
7344       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
7345   if (!VerTableOrErr) {
7346     this->reportUniqueWarning(VerTableOrErr.takeError());
7347     return;
7348   }
7349 
7350   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
7351     return;
7352 
7353   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
7354   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
7355     DictScope S(W, "Symbol");
7356     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
7357     W.printString("Name",
7358                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
7359                                           /*IsDynamic=*/true));
7360   }
7361 }
7362 
7363 const EnumEntry<unsigned> SymVersionFlags[] = {
7364     {"Base", "BASE", VER_FLG_BASE},
7365     {"Weak", "WEAK", VER_FLG_WEAK},
7366     {"Info", "INFO", VER_FLG_INFO}};
7367 
7368 template <class ELFT>
7369 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
7370   ListScope SD(W, "VersionDefinitions");
7371   if (!Sec)
7372     return;
7373 
7374   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
7375   if (!V) {
7376     this->reportUniqueWarning(V.takeError());
7377     return;
7378   }
7379 
7380   for (const VerDef &D : *V) {
7381     DictScope Def(W, "Definition");
7382     W.printNumber("Version", D.Version);
7383     W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
7384     W.printNumber("Index", D.Ndx);
7385     W.printNumber("Hash", D.Hash);
7386     W.printString("Name", D.Name.c_str());
7387     W.printList(
7388         "Predecessors", D.AuxV,
7389         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
7390   }
7391 }
7392 
7393 template <class ELFT>
7394 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
7395   ListScope SD(W, "VersionRequirements");
7396   if (!Sec)
7397     return;
7398 
7399   Expected<std::vector<VerNeed>> V =
7400       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
7401   if (!V) {
7402     this->reportUniqueWarning(V.takeError());
7403     return;
7404   }
7405 
7406   for (const VerNeed &VN : *V) {
7407     DictScope Entry(W, "Dependency");
7408     W.printNumber("Version", VN.Version);
7409     W.printNumber("Count", VN.Cnt);
7410     W.printString("FileName", VN.File.c_str());
7411 
7412     ListScope L(W, "Entries");
7413     for (const VernAux &Aux : VN.AuxV) {
7414       DictScope Entry(W, "Entry");
7415       W.printNumber("Hash", Aux.Hash);
7416       W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7417       W.printNumber("Index", Aux.Other);
7418       W.printString("Name", Aux.Name.c_str());
7419     }
7420   }
7421 }
7422 
7423 template <class ELFT>
7424 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
7425                                                   size_t MaxChain,
7426                                                   size_t TotalSyms,
7427                                                   ArrayRef<size_t> Count,
7428                                                   bool IsGnu) const {
7429   StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram";
7430   StringRef BucketName = IsGnu ? "Bucket" : "Chain";
7431   StringRef ListName = IsGnu ? "Buckets" : "Chains";
7432   DictScope Outer(W, HistName);
7433   W.printNumber("TotalBuckets", NBucket);
7434   ListScope Buckets(W, ListName);
7435   size_t CumulativeNonZero = 0;
7436   for (size_t I = 0; I < MaxChain; ++I) {
7437     CumulativeNonZero += Count[I] * I;
7438     DictScope Bucket(W, BucketName);
7439     W.printNumber("Length", I);
7440     W.printNumber("Count", Count[I]);
7441     W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket);
7442     W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms);
7443   }
7444 }
7445 
7446 // Returns true if rel/rela section exists, and populates SymbolIndices.
7447 // Otherwise returns false.
7448 template <class ELFT>
7449 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7450                              const ELFFile<ELFT> &Obj,
7451                              const LLVMELFDumper<ELFT> *Dumper,
7452                              SmallVector<uint32_t, 128> &SymbolIndices) {
7453   if (!CGRelSection) {
7454     Dumper->reportUniqueWarning(
7455         "relocation section for a call graph section doesn't exist");
7456     return false;
7457   }
7458 
7459   if (CGRelSection->sh_type == SHT_REL) {
7460     typename ELFT::RelRange CGProfileRel;
7461     Expected<typename ELFT::RelRange> CGProfileRelOrError =
7462         Obj.rels(*CGRelSection);
7463     if (!CGProfileRelOrError) {
7464       Dumper->reportUniqueWarning("unable to load relocations for "
7465                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7466                                   toString(CGProfileRelOrError.takeError()));
7467       return false;
7468     }
7469 
7470     CGProfileRel = *CGProfileRelOrError;
7471     for (const typename ELFT::Rel &Rel : CGProfileRel)
7472       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7473   } else {
7474     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7475     // the format to SHT_RELA
7476     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7477     typename ELFT::RelaRange CGProfileRela;
7478     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7479         Obj.relas(*CGRelSection);
7480     if (!CGProfileRelaOrError) {
7481       Dumper->reportUniqueWarning("unable to load relocations for "
7482                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7483                                   toString(CGProfileRelaOrError.takeError()));
7484       return false;
7485     }
7486 
7487     CGProfileRela = *CGProfileRelaOrError;
7488     for (const typename ELFT::Rela &Rela : CGProfileRela)
7489       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7490   }
7491 
7492   return true;
7493 }
7494 
7495 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7496   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7497     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7498   };
7499 
7500   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr =
7501       this->Obj.getSectionAndRelocations(IsMatch);
7502   if (!SecToRelocMapOrErr) {
7503     this->reportUniqueWarning("unable to get CG Profile section(s): " +
7504                               toString(SecToRelocMapOrErr.takeError()));
7505     return;
7506   }
7507 
7508   for (const auto &CGMapEntry : *SecToRelocMapOrErr) {
7509     const Elf_Shdr *CGSection = CGMapEntry.first;
7510     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7511 
7512     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7513         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7514     if (!CGProfileOrErr) {
7515       this->reportUniqueWarning(
7516           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7517           toString(CGProfileOrErr.takeError()));
7518       return;
7519     }
7520 
7521     SmallVector<uint32_t, 128> SymbolIndices;
7522     bool UseReloc =
7523         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7524     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7525       this->reportUniqueWarning(
7526           "number of from/to pairs does not match number of frequencies");
7527       UseReloc = false;
7528     }
7529 
7530     ListScope L(W, "CGProfile");
7531     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7532       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7533       DictScope D(W, "CGProfileEntry");
7534       if (UseReloc) {
7535         uint32_t From = SymbolIndices[I * 2];
7536         uint32_t To = SymbolIndices[I * 2 + 1];
7537         W.printNumber("From", this->getStaticSymbolName(From), From);
7538         W.printNumber("To", this->getStaticSymbolName(To), To);
7539       }
7540       W.printNumber("Weight", CGPE.cgp_weight);
7541     }
7542   }
7543 }
7544 
7545 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7546   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7547   using Elf_Shdr = typename ELFT::Shdr;
7548   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7549     return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP ||
7550            Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0;
7551   };
7552   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr =
7553       this->Obj.getSectionAndRelocations(IsMatch);
7554   if (!SecRelocMapOrErr) {
7555     this->reportUniqueWarning(
7556         "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7557         toString(SecRelocMapOrErr.takeError()));
7558     return;
7559   }
7560   for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) {
7561     std::optional<const Elf_Shdr *> FunctionSec;
7562     if (IsRelocatable)
7563       FunctionSec =
7564           unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link));
7565     ListScope L(W, "BBAddrMap");
7566     if (IsRelocatable && !RelocSec) {
7567       this->reportUniqueWarning("unable to get relocation section for " +
7568                                 this->describe(*Sec));
7569       continue;
7570     }
7571     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7572         this->Obj.decodeBBAddrMap(*Sec, RelocSec);
7573     if (!BBAddrMapOrErr) {
7574       this->reportUniqueWarning("unable to dump " + this->describe(*Sec) +
7575                                 ": " + toString(BBAddrMapOrErr.takeError()));
7576       continue;
7577     }
7578     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7579       DictScope D(W, "Function");
7580       W.printHex("At", AM.Addr);
7581       SmallVector<uint32_t> FuncSymIndex =
7582           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7583       std::string FuncName = "<?>";
7584       if (FuncSymIndex.empty())
7585         this->reportUniqueWarning(
7586             "could not identify function symbol for address (0x" +
7587             Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec));
7588       else
7589         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7590       W.printString("Name", FuncName);
7591 
7592       ListScope L(W, "BB entries");
7593       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7594         DictScope L(W);
7595         W.printNumber("ID", BBE.ID);
7596         W.printHex("Offset", BBE.Offset);
7597         W.printHex("Size", BBE.Size);
7598         W.printBoolean("HasReturn", BBE.hasReturn());
7599         W.printBoolean("HasTailCall", BBE.hasTailCall());
7600         W.printBoolean("IsEHPad", BBE.isEHPad());
7601         W.printBoolean("CanFallThrough", BBE.canFallThrough());
7602         W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch());
7603       }
7604     }
7605   }
7606 }
7607 
7608 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7609   ListScope L(W, "Addrsig");
7610   if (!this->DotAddrsigSec)
7611     return;
7612 
7613   Expected<std::vector<uint64_t>> SymsOrErr =
7614       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7615   if (!SymsOrErr) {
7616     this->reportUniqueWarning(SymsOrErr.takeError());
7617     return;
7618   }
7619 
7620   for (uint64_t Sym : *SymsOrErr)
7621     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7622 }
7623 
7624 template <typename ELFT>
7625 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7626                                   ScopedPrinter &W) {
7627   // Return true if we were able to pretty-print the note, false otherwise.
7628   switch (NoteType) {
7629   default:
7630     return false;
7631   case ELF::NT_GNU_ABI_TAG: {
7632     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7633     if (!AbiTag.IsValid) {
7634       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7635       return false;
7636     } else {
7637       W.printString("OS", AbiTag.OSName);
7638       W.printString("ABI", AbiTag.ABI);
7639     }
7640     break;
7641   }
7642   case ELF::NT_GNU_BUILD_ID: {
7643     W.printString("Build ID", getGNUBuildId(Desc));
7644     break;
7645   }
7646   case ELF::NT_GNU_GOLD_VERSION:
7647     W.printString("Version", getDescAsStringRef(Desc));
7648     break;
7649   case ELF::NT_GNU_PROPERTY_TYPE_0:
7650     ListScope D(W, "Property");
7651     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7652       W.printString(Property);
7653     break;
7654   }
7655   return true;
7656 }
7657 
7658 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7659                                       ScopedPrinter &W) {
7660   // Return true if we were able to pretty-print the note, false otherwise.
7661   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7662   if (Props.empty())
7663     return false;
7664   for (const auto &KV : Props)
7665     W.printString(KV.first, KV.second);
7666   return true;
7667 }
7668 
7669 template <class ELFT>
7670 static bool printAarch64NoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7671                                       ScopedPrinter &W) {
7672   if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG)
7673     return false;
7674 
7675   if (Desc.size() < 16)
7676     return false;
7677 
7678   uint64_t platform =
7679       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0);
7680   uint64_t version =
7681       support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8);
7682   W.printNumber("Platform", platform);
7683   W.printNumber("Version", version);
7684 
7685   if (Desc.size() > 16)
7686     W.printString("Additional info",
7687                   toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16)));
7688 
7689   return true;
7690 }
7691 
7692 template <class ELFT>
7693 void LLVMELFDumper<ELFT>::printMemtag(
7694     const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
7695     const ArrayRef<uint8_t> AndroidNoteDesc,
7696     const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
7697   {
7698     ListScope L(W, "Memtag Dynamic Entries:");
7699     if (DynamicEntries.empty())
7700       W.printString("< none found >");
7701     for (const auto &DynamicEntryKV : DynamicEntries)
7702       W.printString(DynamicEntryKV.first, DynamicEntryKV.second);
7703   }
7704 
7705   if (!AndroidNoteDesc.empty()) {
7706     ListScope L(W, "Memtag Android Note:");
7707     printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W);
7708   }
7709 
7710   if (Descriptors.empty())
7711     return;
7712 
7713   {
7714     ListScope L(W, "Memtag Global Descriptors:");
7715     for (const auto &[Addr, BytesToTag] : Descriptors) {
7716       W.printHex("0x" + utohexstr(Addr), BytesToTag);
7717     }
7718   }
7719 }
7720 
7721 template <typename ELFT>
7722 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7723                                              ArrayRef<uint8_t> Desc,
7724                                              ScopedPrinter &W) {
7725   switch (NoteType) {
7726   default:
7727     return false;
7728   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7729     W.printString("Version", getDescAsStringRef(Desc));
7730     break;
7731   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7732     W.printString("Producer", getDescAsStringRef(Desc));
7733     break;
7734   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7735     W.printString("Producer version", getDescAsStringRef(Desc));
7736     break;
7737   }
7738   return true;
7739 }
7740 
7741 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7742   W.printNumber("Page Size", Note.PageSize);
7743   for (const CoreFileMapping &Mapping : Note.Mappings) {
7744     ListScope D(W, "Mapping");
7745     W.printHex("Start", Mapping.Start);
7746     W.printHex("End", Mapping.End);
7747     W.printHex("Offset", Mapping.Offset);
7748     W.printString("Filename", Mapping.Filename);
7749   }
7750 }
7751 
7752 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7753   ListScope L(W, "Notes");
7754 
7755   std::unique_ptr<DictScope> NoteScope;
7756   size_t Align = 0;
7757   auto StartNotes = [&](std::optional<StringRef> SecName,
7758                         const typename ELFT::Off Offset,
7759                         const typename ELFT::Addr Size, size_t Al) {
7760     Align = std::max<size_t>(Al, 4);
7761     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7762     W.printString("Name", SecName ? *SecName : "<?>");
7763     W.printHex("Offset", Offset);
7764     W.printHex("Size", Size);
7765   };
7766 
7767   auto EndNotes = [&] { NoteScope.reset(); };
7768 
7769   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7770     DictScope D2(W, "Note");
7771     StringRef Name = Note.getName();
7772     ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
7773     Elf_Word Type = Note.getType();
7774 
7775     // Print the note owner/type.
7776     W.printString("Owner", Name);
7777     W.printHex("Data size", Descriptor.size());
7778 
7779     StringRef NoteType =
7780         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7781     if (!NoteType.empty())
7782       W.printString("Type", NoteType);
7783     else
7784       W.printString("Type",
7785                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7786 
7787     // Print the description, or fallback to printing raw bytes for unknown
7788     // owners/if we fail to pretty-print the contents.
7789     if (Name == "GNU") {
7790       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7791         return Error::success();
7792     } else if (Name == "FreeBSD") {
7793       if (std::optional<FreeBSDNote> N =
7794               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7795         W.printString(N->Type, N->Value);
7796         return Error::success();
7797       }
7798     } else if (Name == "AMD") {
7799       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7800       if (!N.Type.empty()) {
7801         W.printString(N.Type, N.Value);
7802         return Error::success();
7803       }
7804     } else if (Name == "AMDGPU") {
7805       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7806       if (!N.Type.empty()) {
7807         W.printString(N.Type, N.Value);
7808         return Error::success();
7809       }
7810     } else if (Name == "LLVMOMPOFFLOAD") {
7811       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7812         return Error::success();
7813     } else if (Name == "CORE") {
7814       if (Type == ELF::NT_FILE) {
7815         DataExtractor DescExtractor(
7816             Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
7817             sizeof(Elf_Addr));
7818         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7819           printCoreNoteLLVMStyle(*N, W);
7820           return Error::success();
7821         } else {
7822           return N.takeError();
7823         }
7824       }
7825     } else if (Name == "Android") {
7826       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7827         return Error::success();
7828     } else if (Name == "ARM") {
7829       if (printAarch64NoteLLVMStyle<ELFT>(Type, Descriptor, W))
7830         return Error::success();
7831     }
7832     if (!Descriptor.empty()) {
7833       W.printBinaryBlock("Description data", Descriptor);
7834     }
7835     return Error::success();
7836   };
7837 
7838   processNotesHelper(*this, /*StartNotesFn=*/StartNotes,
7839                      /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes);
7840 }
7841 
7842 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7843   ListScope L(W, "LinkerOptions");
7844 
7845   unsigned I = -1;
7846   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7847     ++I;
7848     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7849       continue;
7850 
7851     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7852         this->Obj.getSectionContents(Shdr);
7853     if (!ContentsOrErr) {
7854       this->reportUniqueWarning("unable to read the content of the "
7855                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7856                                 toString(ContentsOrErr.takeError()));
7857       continue;
7858     }
7859     if (ContentsOrErr->empty())
7860       continue;
7861 
7862     if (ContentsOrErr->back() != 0) {
7863       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7864                                 Twine(I) +
7865                                 " is broken: the "
7866                                 "content is not null-terminated");
7867       continue;
7868     }
7869 
7870     SmallVector<StringRef, 16> Strings;
7871     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7872     if (Strings.size() % 2 != 0) {
7873       this->reportUniqueWarning(
7874           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7875           " is broken: an incomplete "
7876           "key-value pair was found. The last possible key was: \"" +
7877           Strings.back() + "\"");
7878       continue;
7879     }
7880 
7881     for (size_t I = 0; I < Strings.size(); I += 2)
7882       W.printString(Strings[I], Strings[I + 1]);
7883   }
7884 }
7885 
7886 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7887   ListScope L(W, "DependentLibs");
7888   this->printDependentLibsHelper(
7889       [](const Elf_Shdr &) {},
7890       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7891 }
7892 
7893 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7894   ListScope L(W, "StackSizes");
7895   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7896     this->printRelocatableStackSizes([]() {});
7897   else
7898     this->printNonRelocatableStackSizes([]() {});
7899 }
7900 
7901 template <class ELFT>
7902 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7903                                               ArrayRef<std::string> FuncNames) {
7904   DictScope D(W, "Entry");
7905   W.printList("Functions", FuncNames);
7906   W.printHex("Size", Size);
7907 }
7908 
7909 template <class ELFT>
7910 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7911   auto PrintEntry = [&](const Elf_Addr *E) {
7912     W.printHex("Address", Parser.getGotAddress(E));
7913     W.printNumber("Access", Parser.getGotOffset(E));
7914     W.printHex("Initial", *E);
7915   };
7916 
7917   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7918 
7919   W.printHex("Canonical gp value", Parser.getGp());
7920   {
7921     ListScope RS(W, "Reserved entries");
7922     {
7923       DictScope D(W, "Entry");
7924       PrintEntry(Parser.getGotLazyResolver());
7925       W.printString("Purpose", StringRef("Lazy resolver"));
7926     }
7927 
7928     if (Parser.getGotModulePointer()) {
7929       DictScope D(W, "Entry");
7930       PrintEntry(Parser.getGotModulePointer());
7931       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7932     }
7933   }
7934   {
7935     ListScope LS(W, "Local entries");
7936     for (auto &E : Parser.getLocalEntries()) {
7937       DictScope D(W, "Entry");
7938       PrintEntry(&E);
7939     }
7940   }
7941 
7942   if (Parser.IsStatic)
7943     return;
7944 
7945   {
7946     ListScope GS(W, "Global entries");
7947     for (auto &E : Parser.getGlobalEntries()) {
7948       DictScope D(W, "Entry");
7949 
7950       PrintEntry(&E);
7951 
7952       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7953       W.printHex("Value", Sym.st_value);
7954       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7955 
7956       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7957       DataRegion<Elf_Word> ShndxTable(
7958           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7959       printSymbolSection(Sym, SymIndex, ShndxTable);
7960 
7961       std::string SymName = this->getFullSymbolName(
7962           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7963       W.printNumber("Name", SymName, Sym.st_name);
7964     }
7965   }
7966 
7967   W.printNumber("Number of TLS and multi-GOT entries",
7968                 uint64_t(Parser.getOtherEntries().size()));
7969 }
7970 
7971 template <class ELFT>
7972 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7973   auto PrintEntry = [&](const Elf_Addr *E) {
7974     W.printHex("Address", Parser.getPltAddress(E));
7975     W.printHex("Initial", *E);
7976   };
7977 
7978   DictScope GS(W, "PLT GOT");
7979 
7980   {
7981     ListScope RS(W, "Reserved entries");
7982     {
7983       DictScope D(W, "Entry");
7984       PrintEntry(Parser.getPltLazyResolver());
7985       W.printString("Purpose", StringRef("PLT lazy resolver"));
7986     }
7987 
7988     if (auto E = Parser.getPltModulePointer()) {
7989       DictScope D(W, "Entry");
7990       PrintEntry(E);
7991       W.printString("Purpose", StringRef("Module pointer"));
7992     }
7993   }
7994   {
7995     ListScope LS(W, "Entries");
7996     DataRegion<Elf_Word> ShndxTable(
7997         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7998     for (auto &E : Parser.getPltEntries()) {
7999       DictScope D(W, "Entry");
8000       PrintEntry(&E);
8001 
8002       const Elf_Sym &Sym = *Parser.getPltSym(&E);
8003       W.printHex("Value", Sym.st_value);
8004       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
8005       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
8006                          ShndxTable);
8007 
8008       const Elf_Sym *FirstSym = cantFail(
8009           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
8010       std::string SymName = this->getFullSymbolName(
8011           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
8012       W.printNumber("Name", SymName, Sym.st_name);
8013     }
8014   }
8015 }
8016 
8017 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
8018   const Elf_Mips_ABIFlags<ELFT> *Flags;
8019   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
8020           getMipsAbiFlagsSection(*this)) {
8021     Flags = *SecOrErr;
8022     if (!Flags) {
8023       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
8024       return;
8025     }
8026   } else {
8027     this->reportUniqueWarning(SecOrErr.takeError());
8028     return;
8029   }
8030 
8031   raw_ostream &OS = W.getOStream();
8032   DictScope GS(W, "MIPS ABI Flags");
8033 
8034   W.printNumber("Version", Flags->version);
8035   W.startLine() << "ISA: ";
8036   if (Flags->isa_rev <= 1)
8037     OS << format("MIPS%u", Flags->isa_level);
8038   else
8039     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
8040   OS << "\n";
8041   W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
8042   W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
8043   W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
8044   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
8045   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
8046   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
8047   W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
8048   W.printHex("Flags 2", Flags->flags2);
8049 }
8050 
8051 template <class ELFT>
8052 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
8053                                            ArrayRef<std::string> InputFilenames,
8054                                            const Archive *A) {
8055   FileScope = std::make_unique<DictScope>(this->W);
8056   DictScope D(this->W, "FileSummary");
8057   this->W.printString("File", FileStr);
8058   this->W.printString("Format", Obj.getFileFormatName());
8059   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
8060   this->W.printString(
8061       "AddressSize",
8062       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
8063   this->printLoadName();
8064 }
8065 
8066 template <class ELFT>
8067 void JSONELFDumper<ELFT>::printZeroSymbolOtherField(
8068     const Elf_Sym &Symbol) const {
8069   // We want the JSON format to be uniform, since it is machine readable, so
8070   // always print the `Other` field the same way.
8071   this->printSymbolOtherField(Symbol);
8072 }
8073 
8074 template <class ELFT>
8075 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
8076                                                    StringRef SymbolName,
8077                                                    StringRef RelocName) {
8078   this->printExpandedRelRelaReloc(R, SymbolName, RelocName);
8079 }
8080 
8081 template <class ELFT>
8082 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
8083                                                      StringRef Name,
8084                                                      const unsigned SecNdx) {
8085   DictScope Group(this->W);
8086   this->W.printNumber("SectionIndex", SecNdx);
8087   ListScope D(this->W, "Relocs");
8088   this->printRelocationsHelper(Sec);
8089 }
8090 
8091 template <class ELFT>
8092 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const {
8093   return "GroupSections";
8094 }
8095 
8096 template <class ELFT>
8097 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
8098                                                    uint64_t Idx) const {
8099   DictScope Grp(this->W);
8100   this->W.printString("Name", Name);
8101   this->W.printNumber("Index", Idx);
8102 }
8103 
8104 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const {
8105   // JSON output does not need to print anything for empty groups
8106 }
8107