1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/BinaryFormat/MsgPackDocument.h" 33 #include "llvm/Demangle/Demangle.h" 34 #include "llvm/Object/Archive.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Object/ELFObjectFile.h" 37 #include "llvm/Object/ELFTypes.h" 38 #include "llvm/Object/Error.h" 39 #include "llvm/Object/ObjectFile.h" 40 #include "llvm/Object/RelocationResolver.h" 41 #include "llvm/Object/StackMapParser.h" 42 #include "llvm/Support/AMDGPUMetadata.h" 43 #include "llvm/Support/ARMAttributeParser.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Endian.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/FormatVariadic.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/MSP430AttributeParser.h" 54 #include "llvm/Support/MSP430Attributes.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/MipsABIFlags.h" 57 #include "llvm/Support/RISCVAttributeParser.h" 58 #include "llvm/Support/RISCVAttributes.h" 59 #include "llvm/Support/ScopedPrinter.h" 60 #include "llvm/Support/SystemZ/zOSSupport.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cinttypes> 64 #include <cstddef> 65 #include <cstdint> 66 #include <cstdlib> 67 #include <iterator> 68 #include <memory> 69 #include <optional> 70 #include <string> 71 #include <system_error> 72 #include <vector> 73 74 using namespace llvm; 75 using namespace llvm::object; 76 using namespace ELF; 77 78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 79 case ns::enum: \ 80 return #enum; 81 82 #define ENUM_ENT(enum, altName) \ 83 { #enum, altName, ELF::enum } 84 85 #define ENUM_ENT_1(enum) \ 86 { #enum, #enum, ELF::enum } 87 88 namespace { 89 90 template <class ELFT> struct RelSymbol { 91 RelSymbol(const typename ELFT::Sym *S, StringRef N) 92 : Sym(S), Name(N.str()) {} 93 const typename ELFT::Sym *Sym; 94 std::string Name; 95 }; 96 97 /// Represents a contiguous uniform range in the file. We cannot just create a 98 /// range directly because when creating one of these from the .dynamic table 99 /// the size, entity size and virtual address are different entries in arbitrary 100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 101 struct DynRegionInfo { 102 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 103 : Obj(&Owner), Dumper(&D) {} 104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 105 uint64_t S, uint64_t ES) 106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 107 108 /// Address in current address space. 109 const uint8_t *Addr = nullptr; 110 /// Size in bytes of the region. 111 uint64_t Size = 0; 112 /// Size of each entity in the region. 113 uint64_t EntSize = 0; 114 115 /// Owner object. Used for error reporting. 116 const Binary *Obj; 117 /// Dumper used for error reporting. 118 const ObjDumper *Dumper; 119 /// Error prefix. Used for error reporting to provide more information. 120 std::string Context; 121 /// Region size name. Used for error reporting. 122 StringRef SizePrintName = "size"; 123 /// Entry size name. Used for error reporting. If this field is empty, errors 124 /// will not mention the entry size. 125 StringRef EntSizePrintName = "entry size"; 126 127 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 128 const Type *Start = reinterpret_cast<const Type *>(Addr); 129 if (!Start) 130 return {Start, Start}; 131 132 const uint64_t Offset = 133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 135 136 if (Size > ObjSize - Offset) { 137 Dumper->reportUniqueWarning( 138 "unable to read data at 0x" + Twine::utohexstr(Offset) + 139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 140 "): it goes past the end of the file of size 0x" + 141 Twine::utohexstr(ObjSize)); 142 return {Start, Start}; 143 } 144 145 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 146 return {Start, Start + (Size / EntSize)}; 147 148 std::string Msg; 149 if (!Context.empty()) 150 Msg += Context + " has "; 151 152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 153 .str(); 154 if (!EntSizePrintName.empty()) 155 Msg += 156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 157 .str(); 158 159 Dumper->reportUniqueWarning(Msg); 160 return {Start, Start}; 161 } 162 }; 163 164 struct GroupMember { 165 StringRef Name; 166 uint64_t Index; 167 }; 168 169 struct GroupSection { 170 StringRef Name; 171 std::string Signature; 172 uint64_t ShName; 173 uint64_t Index; 174 uint32_t Link; 175 uint32_t Info; 176 uint32_t Type; 177 std::vector<GroupMember> Members; 178 }; 179 180 namespace { 181 182 struct NoteType { 183 uint32_t ID; 184 StringRef Name; 185 }; 186 187 } // namespace 188 189 template <class ELFT> class Relocation { 190 public: 191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 193 Offset(R.r_offset), Info(R.r_info) {} 194 195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 197 Addend = R.r_addend; 198 } 199 200 uint32_t Type; 201 uint32_t Symbol; 202 typename ELFT::uint Offset; 203 typename ELFT::uint Info; 204 std::optional<int64_t> Addend; 205 }; 206 207 template <class ELFT> class MipsGOTParser; 208 209 template <typename ELFT> class ELFDumper : public ObjDumper { 210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 211 212 public: 213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 214 215 void printUnwindInfo() override; 216 void printNeededLibraries() override; 217 void printHashTable() override; 218 void printGnuHashTable() override; 219 void printLoadName() override; 220 void printVersionInfo() override; 221 void printArchSpecificInfo() override; 222 void printStackMap() const override; 223 void printMemtag() override; 224 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr); 225 226 // Hash histogram shows statistics of how efficient the hash was for the 227 // dynamic symbol table. The table shows the number of hash buckets for 228 // different lengths of chains as an absolute number and percentage of the 229 // total buckets, and the cumulative coverage of symbols for each set of 230 // buckets. 231 void printHashHistograms() override; 232 233 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 234 235 std::string describe(const Elf_Shdr &Sec) const; 236 237 unsigned getHashTableEntSize() const { 238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 239 // sections. This violates the ELF specification. 240 if (Obj.getHeader().e_machine == ELF::EM_S390 || 241 Obj.getHeader().e_machine == ELF::EM_ALPHA) 242 return 8; 243 return 4; 244 } 245 246 std::vector<EnumEntry<unsigned>> 247 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const; 248 249 Elf_Dyn_Range dynamic_table() const { 250 // A valid .dynamic section contains an array of entries terminated 251 // with a DT_NULL entry. However, sometimes the section content may 252 // continue past the DT_NULL entry, so to dump the section correctly, 253 // we first find the end of the entries by iterating over them. 254 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 255 256 size_t Size = 0; 257 while (Size < Table.size()) 258 if (Table[Size++].getTag() == DT_NULL) 259 break; 260 261 return Table.slice(0, Size); 262 } 263 264 Elf_Sym_Range dynamic_symbols() const { 265 if (!DynSymRegion) 266 return Elf_Sym_Range(); 267 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 268 } 269 270 const Elf_Shdr *findSectionByName(StringRef Name) const; 271 272 StringRef getDynamicStringTable() const { return DynamicStringTable; } 273 274 protected: 275 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 276 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 277 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 278 279 void 280 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 281 function_ref<void(StringRef, uint64_t)> OnLibEntry); 282 283 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 284 const RelSymbol<ELFT> &RelSym) = 0; 285 virtual void printRelrReloc(const Elf_Relr &R) = 0; 286 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 287 const DynRegionInfo &Reg) {} 288 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 289 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 290 void printDynamicReloc(const Relocation<ELFT> &R); 291 void printDynamicRelocationsHelper(); 292 void printRelocationsHelper(const Elf_Shdr &Sec); 293 void forEachRelocationDo( 294 const Elf_Shdr &Sec, bool RawRelr, 295 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 296 const Elf_Shdr &, const Elf_Shdr *)> 297 RelRelaFn, 298 llvm::function_ref<void(const Elf_Relr &)> RelrFn); 299 300 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 301 bool NonVisibilityBitsUsed, 302 bool ExtraSymInfo) const {}; 303 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 304 DataRegion<Elf_Word> ShndxTable, 305 std::optional<StringRef> StrTable, bool IsDynamic, 306 bool NonVisibilityBitsUsed, 307 bool ExtraSymInfo) const = 0; 308 309 virtual void printMipsABIFlags() = 0; 310 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 311 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 312 313 virtual void printMemtag( 314 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 315 const ArrayRef<uint8_t> AndroidNoteDesc, 316 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0; 317 318 virtual void printHashHistogram(const Elf_Hash &HashTable) const; 319 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const; 320 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain, 321 size_t TotalSyms, ArrayRef<size_t> Count, 322 bool IsGnu) const = 0; 323 324 Expected<ArrayRef<Elf_Versym>> 325 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 326 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 327 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 328 329 std::vector<GroupSection> getGroups(); 330 331 // Returns the function symbol index for the given address. Matches the 332 // symbol's section with FunctionSec when specified. 333 // Returns std::nullopt if no function symbol can be found for the address or 334 // in case it is not defined in the specified section. 335 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress( 336 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec); 337 bool printFunctionStackSize(uint64_t SymValue, 338 std::optional<const Elf_Shdr *> FunctionSec, 339 const Elf_Shdr &StackSizeSec, DataExtractor Data, 340 uint64_t *Offset); 341 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 342 unsigned Ndx, const Elf_Shdr *SymTab, 343 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 344 const RelocationResolver &Resolver, DataExtractor Data); 345 virtual void printStackSizeEntry(uint64_t Size, 346 ArrayRef<std::string> FuncNames) = 0; 347 348 void printRelocatableStackSizes(std::function<void()> PrintHeader); 349 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 350 351 const object::ELFObjectFile<ELFT> &ObjF; 352 const ELFFile<ELFT> &Obj; 353 StringRef FileName; 354 355 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 356 uint64_t EntSize) { 357 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 358 return createError("offset (0x" + Twine::utohexstr(Offset) + 359 ") + size (0x" + Twine::utohexstr(Size) + 360 ") is greater than the file size (0x" + 361 Twine::utohexstr(Obj.getBufSize()) + ")"); 362 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 363 } 364 365 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, 366 llvm::endianness); 367 void printMipsReginfo(); 368 void printMipsOptions(); 369 370 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 371 void loadDynamicTable(); 372 void parseDynamicTable(); 373 374 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 375 bool &IsDefault) const; 376 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const; 377 378 DynRegionInfo DynRelRegion; 379 DynRegionInfo DynRelaRegion; 380 DynRegionInfo DynRelrRegion; 381 DynRegionInfo DynPLTRelRegion; 382 std::optional<DynRegionInfo> DynSymRegion; 383 DynRegionInfo DynSymTabShndxRegion; 384 DynRegionInfo DynamicTable; 385 StringRef DynamicStringTable; 386 const Elf_Hash *HashTable = nullptr; 387 const Elf_GnuHash *GnuHashTable = nullptr; 388 const Elf_Shdr *DotSymtabSec = nullptr; 389 const Elf_Shdr *DotDynsymSec = nullptr; 390 const Elf_Shdr *DotAddrsigSec = nullptr; 391 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 392 std::optional<uint64_t> SONameOffset; 393 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; 394 395 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 396 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 397 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 398 399 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 400 DataRegion<Elf_Word> ShndxTable, 401 std::optional<StringRef> StrTable, 402 bool IsDynamic) const; 403 Expected<unsigned> 404 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 405 DataRegion<Elf_Word> ShndxTable) const; 406 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 407 unsigned SectionIndex) const; 408 std::string getStaticSymbolName(uint32_t Index) const; 409 StringRef getDynamicString(uint64_t Value) const; 410 411 void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const; 412 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 413 414 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 415 const Elf_Shdr *SymTab) const; 416 417 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 418 419 private: 420 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap; 421 }; 422 423 template <class ELFT> 424 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 425 return ::describe(Obj, Sec); 426 } 427 428 namespace { 429 430 template <class ELFT> struct SymtabLink { 431 typename ELFT::SymRange Symbols; 432 StringRef StringTable; 433 const typename ELFT::Shdr *SymTab; 434 }; 435 436 // Returns the linked symbol table, symbols and associated string table for a 437 // given section. 438 template <class ELFT> 439 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 440 const typename ELFT::Shdr &Sec, 441 unsigned ExpectedType) { 442 Expected<const typename ELFT::Shdr *> SymtabOrErr = 443 Obj.getSection(Sec.sh_link); 444 if (!SymtabOrErr) 445 return createError("invalid section linked to " + describe(Obj, Sec) + 446 ": " + toString(SymtabOrErr.takeError())); 447 448 if ((*SymtabOrErr)->sh_type != ExpectedType) 449 return createError( 450 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 451 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 452 ", but got " + 453 object::getELFSectionTypeName(Obj.getHeader().e_machine, 454 (*SymtabOrErr)->sh_type)); 455 456 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 457 if (!StrTabOrErr) 458 return createError( 459 "can't get a string table for the symbol table linked to " + 460 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 461 462 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 463 if (!SymsOrErr) 464 return createError("unable to read symbols from the " + describe(Obj, Sec) + 465 ": " + toString(SymsOrErr.takeError())); 466 467 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 468 } 469 470 } // namespace 471 472 template <class ELFT> 473 Expected<ArrayRef<typename ELFT::Versym>> 474 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 475 StringRef *StrTab, 476 const Elf_Shdr **SymTabSec) const { 477 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 478 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 479 sizeof(uint16_t) != 480 0) 481 return createError("the " + describe(Sec) + " is misaligned"); 482 483 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 484 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 485 if (!VersionsOrErr) 486 return createError("cannot read content of " + describe(Sec) + ": " + 487 toString(VersionsOrErr.takeError())); 488 489 Expected<SymtabLink<ELFT>> SymTabOrErr = 490 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 491 if (!SymTabOrErr) { 492 reportUniqueWarning(SymTabOrErr.takeError()); 493 return *VersionsOrErr; 494 } 495 496 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 497 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 498 Twine(VersionsOrErr->size()) + 499 ") does not match the number of symbols (" + 500 Twine(SymTabOrErr->Symbols.size()) + 501 ") in the symbol table with index " + 502 Twine(Sec.sh_link)); 503 504 if (SymTab) { 505 *SymTab = SymTabOrErr->Symbols; 506 *StrTab = SymTabOrErr->StringTable; 507 *SymTabSec = SymTabOrErr->SymTab; 508 } 509 return *VersionsOrErr; 510 } 511 512 template <class ELFT> 513 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic, 514 bool ExtraSymInfo) const { 515 std::optional<StringRef> StrTable; 516 size_t Entries = 0; 517 Elf_Sym_Range Syms(nullptr, nullptr); 518 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 519 520 if (IsDynamic) { 521 StrTable = DynamicStringTable; 522 Syms = dynamic_symbols(); 523 Entries = Syms.size(); 524 } else if (DotSymtabSec) { 525 if (Expected<StringRef> StrTableOrErr = 526 Obj.getStringTableForSymtab(*DotSymtabSec)) 527 StrTable = *StrTableOrErr; 528 else 529 reportUniqueWarning( 530 "unable to get the string table for the SHT_SYMTAB section: " + 531 toString(StrTableOrErr.takeError())); 532 533 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 534 Syms = *SymsOrErr; 535 else 536 reportUniqueWarning( 537 "unable to read symbols from the SHT_SYMTAB section: " + 538 toString(SymsOrErr.takeError())); 539 Entries = DotSymtabSec->getEntityCount(); 540 } 541 if (Syms.empty()) 542 return; 543 544 // The st_other field has 2 logical parts. The first two bits hold the symbol 545 // visibility (STV_*) and the remainder hold other platform-specific values. 546 bool NonVisibilityBitsUsed = 547 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 548 549 DataRegion<Elf_Word> ShndxTable = 550 IsDynamic ? DataRegion<Elf_Word>( 551 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 552 this->getElfObject().getELFFile().end()) 553 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 554 555 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo); 556 for (const Elf_Sym &Sym : Syms) 557 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 558 NonVisibilityBitsUsed, ExtraSymInfo); 559 } 560 561 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 562 formatted_raw_ostream &OS; 563 564 public: 565 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 566 567 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 568 : ELFDumper<ELFT>(ObjF, Writer), 569 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 570 assert(&this->W.getOStream() == &llvm::fouts()); 571 } 572 573 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 574 ArrayRef<std::string> InputFilenames, 575 const Archive *A) override; 576 void printFileHeaders() override; 577 void printGroupSections() override; 578 void printRelocations() override; 579 void printSectionHeaders() override; 580 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, 581 bool ExtraSymInfo) override; 582 void printHashSymbols() override; 583 void printSectionDetails() override; 584 void printDependentLibs() override; 585 void printDynamicTable() override; 586 void printDynamicRelocations() override; 587 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 588 bool NonVisibilityBitsUsed, 589 bool ExtraSymInfo) const override; 590 void printProgramHeaders(bool PrintProgramHeaders, 591 cl::boolOrDefault PrintSectionMapping) override; 592 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 593 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 594 void printVersionDependencySection(const Elf_Shdr *Sec) override; 595 void printCGProfile() override; 596 void printBBAddrMaps() override; 597 void printAddrsig() override; 598 void printNotes() override; 599 void printELFLinkerOptions() override; 600 void printStackSizes() override; 601 void printMemtag( 602 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 603 const ArrayRef<uint8_t> AndroidNoteDesc, 604 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 605 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 606 size_t TotalSyms, ArrayRef<size_t> Count, 607 bool IsGnu) const override; 608 609 private: 610 void printHashTableSymbols(const Elf_Hash &HashTable); 611 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 612 613 struct Field { 614 std::string Str; 615 unsigned Column; 616 617 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 618 Field(unsigned Col) : Column(Col) {} 619 }; 620 621 template <typename T, typename TEnum> 622 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 623 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 624 TEnum EnumMask3 = {}) const { 625 std::string Str; 626 for (const EnumEntry<TEnum> &Flag : EnumValues) { 627 if (Flag.Value == 0) 628 continue; 629 630 TEnum EnumMask{}; 631 if (Flag.Value & EnumMask1) 632 EnumMask = EnumMask1; 633 else if (Flag.Value & EnumMask2) 634 EnumMask = EnumMask2; 635 else if (Flag.Value & EnumMask3) 636 EnumMask = EnumMask3; 637 bool IsEnum = (Flag.Value & EnumMask) != 0; 638 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 639 (IsEnum && (Value & EnumMask) == Flag.Value)) { 640 if (!Str.empty()) 641 Str += ", "; 642 Str += Flag.AltName; 643 } 644 } 645 return Str; 646 } 647 648 formatted_raw_ostream &printField(struct Field F) const { 649 if (F.Column != 0) 650 OS.PadToColumn(F.Column); 651 OS << F.Str; 652 OS.flush(); 653 return OS; 654 } 655 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 656 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 657 uint32_t Bucket); 658 void printRelrReloc(const Elf_Relr &R) override; 659 void printRelRelaReloc(const Relocation<ELFT> &R, 660 const RelSymbol<ELFT> &RelSym) override; 661 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 662 DataRegion<Elf_Word> ShndxTable, 663 std::optional<StringRef> StrTable, bool IsDynamic, 664 bool NonVisibilityBitsUsed, 665 bool ExtraSymInfo) const override; 666 void printDynamicRelocHeader(unsigned Type, StringRef Name, 667 const DynRegionInfo &Reg) override; 668 669 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 670 DataRegion<Elf_Word> ShndxTable, 671 bool ExtraSymInfo = false) const; 672 void printProgramHeaders() override; 673 void printSectionMapping() override; 674 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 675 const Twine &Label, unsigned EntriesNum); 676 677 void printStackSizeEntry(uint64_t Size, 678 ArrayRef<std::string> FuncNames) override; 679 680 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 681 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 682 void printMipsABIFlags() override; 683 }; 684 685 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 686 public: 687 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 688 689 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 690 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 691 692 void printFileHeaders() override; 693 void printGroupSections() override; 694 void printRelocations() override; 695 void printSectionHeaders() override; 696 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, 697 bool ExtraSymInfo) override; 698 void printDependentLibs() override; 699 void printDynamicTable() override; 700 void printDynamicRelocations() override; 701 void printProgramHeaders(bool PrintProgramHeaders, 702 cl::boolOrDefault PrintSectionMapping) override; 703 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 704 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 705 void printVersionDependencySection(const Elf_Shdr *Sec) override; 706 void printCGProfile() override; 707 void printBBAddrMaps() override; 708 void printAddrsig() override; 709 void printNotes() override; 710 void printELFLinkerOptions() override; 711 void printStackSizes() override; 712 void printMemtag( 713 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 714 const ArrayRef<uint8_t> AndroidNoteDesc, 715 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 716 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 717 DataRegion<Elf_Word> ShndxTable) const; 718 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 719 size_t TotalSyms, ArrayRef<size_t> Count, 720 bool IsGnu) const override; 721 722 private: 723 void printRelrReloc(const Elf_Relr &R) override; 724 void printRelRelaReloc(const Relocation<ELFT> &R, 725 const RelSymbol<ELFT> &RelSym) override; 726 727 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 728 DataRegion<Elf_Word> ShndxTable, 729 std::optional<StringRef> StrTable, bool IsDynamic, 730 bool /*NonVisibilityBitsUsed*/, 731 bool /*ExtraSymInfo*/) const override; 732 void printProgramHeaders() override; 733 void printSectionMapping() override {} 734 void printStackSizeEntry(uint64_t Size, 735 ArrayRef<std::string> FuncNames) override; 736 737 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 738 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 739 void printMipsABIFlags() override; 740 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const; 741 742 protected: 743 virtual std::string getGroupSectionHeaderName() const; 744 void printSymbolOtherField(const Elf_Sym &Symbol) const; 745 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R, 746 StringRef SymbolName, 747 StringRef RelocName); 748 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 749 StringRef SymbolName, 750 StringRef RelocName); 751 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 752 const unsigned SecNdx); 753 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const; 754 virtual void printEmptyGroupMessage() const; 755 756 ScopedPrinter &W; 757 }; 758 759 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except 760 // it uses a JSONScopedPrinter. 761 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> { 762 public: 763 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 764 765 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 766 : LLVMELFDumper<ELFT>(ObjF, Writer) {} 767 768 std::string getGroupSectionHeaderName() const override; 769 770 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 771 ArrayRef<std::string> InputFilenames, 772 const Archive *A) override; 773 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override; 774 775 void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 776 StringRef SymbolName, 777 StringRef RelocName) override; 778 779 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 780 const unsigned SecNdx) override; 781 782 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override; 783 784 void printEmptyGroupMessage() const override; 785 786 private: 787 std::unique_ptr<DictScope> FileScope; 788 }; 789 790 } // end anonymous namespace 791 792 namespace llvm { 793 794 template <class ELFT> 795 static std::unique_ptr<ObjDumper> 796 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 797 if (opts::Output == opts::GNU) 798 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 799 else if (opts::Output == opts::JSON) 800 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer); 801 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 802 } 803 804 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 805 ScopedPrinter &Writer) { 806 // Little-endian 32-bit 807 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 808 return createELFDumper(*ELFObj, Writer); 809 810 // Big-endian 32-bit 811 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 812 return createELFDumper(*ELFObj, Writer); 813 814 // Little-endian 64-bit 815 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 816 return createELFDumper(*ELFObj, Writer); 817 818 // Big-endian 64-bit 819 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 820 } 821 822 } // end namespace llvm 823 824 template <class ELFT> 825 Expected<SmallVector<std::optional<VersionEntry>, 0> *> 826 ELFDumper<ELFT>::getVersionMap() const { 827 // If the VersionMap has already been loaded or if there is no dynamic symtab 828 // or version table, there is nothing to do. 829 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 830 return &VersionMap; 831 832 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr = 833 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 834 if (MapOrErr) 835 VersionMap = *MapOrErr; 836 else 837 return MapOrErr.takeError(); 838 839 return &VersionMap; 840 } 841 842 template <typename ELFT> 843 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 844 bool &IsDefault) const { 845 // This is a dynamic symbol. Look in the GNU symbol version table. 846 if (!SymbolVersionSection) { 847 // No version table. 848 IsDefault = false; 849 return ""; 850 } 851 852 assert(DynSymRegion && "DynSymRegion has not been initialised"); 853 // Determine the position in the symbol table of this entry. 854 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 855 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 856 sizeof(Elf_Sym); 857 858 // Get the corresponding version index entry. 859 Expected<const Elf_Versym *> EntryOrErr = 860 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 861 if (!EntryOrErr) 862 return EntryOrErr.takeError(); 863 864 unsigned Version = (*EntryOrErr)->vs_index; 865 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 866 IsDefault = false; 867 return ""; 868 } 869 870 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 871 getVersionMap(); 872 if (!MapOrErr) 873 return MapOrErr.takeError(); 874 875 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 876 Sym.st_shndx == ELF::SHN_UNDEF); 877 } 878 879 template <typename ELFT> 880 Expected<RelSymbol<ELFT>> 881 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 882 const Elf_Shdr *SymTab) const { 883 if (R.Symbol == 0) 884 return RelSymbol<ELFT>(nullptr, ""); 885 886 Expected<const Elf_Sym *> SymOrErr = 887 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 888 if (!SymOrErr) 889 return createError("unable to read an entry with index " + Twine(R.Symbol) + 890 " from " + describe(*SymTab) + ": " + 891 toString(SymOrErr.takeError())); 892 const Elf_Sym *Sym = *SymOrErr; 893 if (!Sym) 894 return RelSymbol<ELFT>(nullptr, ""); 895 896 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 897 if (!StrTableOrErr) 898 return StrTableOrErr.takeError(); 899 900 const Elf_Sym *FirstSym = 901 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 902 std::string SymbolName = 903 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 904 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 905 return RelSymbol<ELFT>(Sym, SymbolName); 906 } 907 908 template <typename ELFT> 909 ArrayRef<typename ELFT::Word> 910 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 911 if (Symtab) { 912 auto It = ShndxTables.find(Symtab); 913 if (It != ShndxTables.end()) 914 return It->second; 915 } 916 return {}; 917 } 918 919 static std::string maybeDemangle(StringRef Name) { 920 return opts::Demangle ? demangle(Name) : Name.str(); 921 } 922 923 template <typename ELFT> 924 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 925 auto Warn = [&](Error E) -> std::string { 926 reportUniqueWarning("unable to read the name of symbol with index " + 927 Twine(Index) + ": " + toString(std::move(E))); 928 return "<?>"; 929 }; 930 931 Expected<const typename ELFT::Sym *> SymOrErr = 932 Obj.getSymbol(DotSymtabSec, Index); 933 if (!SymOrErr) 934 return Warn(SymOrErr.takeError()); 935 936 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 937 if (!StrTabOrErr) 938 return Warn(StrTabOrErr.takeError()); 939 940 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 941 if (!NameOrErr) 942 return Warn(NameOrErr.takeError()); 943 return maybeDemangle(*NameOrErr); 944 } 945 946 template <typename ELFT> 947 std::string ELFDumper<ELFT>::getFullSymbolName( 948 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 949 std::optional<StringRef> StrTable, bool IsDynamic) const { 950 if (!StrTable) 951 return "<?>"; 952 953 std::string SymbolName; 954 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 955 SymbolName = maybeDemangle(*NameOrErr); 956 } else { 957 reportUniqueWarning(NameOrErr.takeError()); 958 return "<?>"; 959 } 960 961 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 962 Expected<unsigned> SectionIndex = 963 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 964 if (!SectionIndex) { 965 reportUniqueWarning(SectionIndex.takeError()); 966 return "<?>"; 967 } 968 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 969 if (!NameOrErr) { 970 reportUniqueWarning(NameOrErr.takeError()); 971 return ("<section " + Twine(*SectionIndex) + ">").str(); 972 } 973 return std::string(*NameOrErr); 974 } 975 976 if (!IsDynamic) 977 return SymbolName; 978 979 bool IsDefault; 980 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 981 if (!VersionOrErr) { 982 reportUniqueWarning(VersionOrErr.takeError()); 983 return SymbolName + "@<corrupt>"; 984 } 985 986 if (!VersionOrErr->empty()) { 987 SymbolName += (IsDefault ? "@@" : "@"); 988 SymbolName += *VersionOrErr; 989 } 990 return SymbolName; 991 } 992 993 template <typename ELFT> 994 Expected<unsigned> 995 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 996 DataRegion<Elf_Word> ShndxTable) const { 997 unsigned Ndx = Symbol.st_shndx; 998 if (Ndx == SHN_XINDEX) 999 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 1000 ShndxTable); 1001 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 1002 return Ndx; 1003 1004 auto CreateErr = [&](const Twine &Name, 1005 std::optional<unsigned> Offset = std::nullopt) { 1006 std::string Desc; 1007 if (Offset) 1008 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 1009 else 1010 Desc = Name.str(); 1011 return createError( 1012 "unable to get section index for symbol with st_shndx = 0x" + 1013 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 1014 }; 1015 1016 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 1017 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 1018 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 1019 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 1020 if (Ndx == ELF::SHN_UNDEF) 1021 return CreateErr("SHN_UNDEF"); 1022 if (Ndx == ELF::SHN_ABS) 1023 return CreateErr("SHN_ABS"); 1024 if (Ndx == ELF::SHN_COMMON) 1025 return CreateErr("SHN_COMMON"); 1026 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 1027 } 1028 1029 template <typename ELFT> 1030 Expected<StringRef> 1031 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 1032 unsigned SectionIndex) const { 1033 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 1034 if (!SecOrErr) 1035 return SecOrErr.takeError(); 1036 return Obj.getSectionName(**SecOrErr); 1037 } 1038 1039 template <class ELFO> 1040 static const typename ELFO::Elf_Shdr * 1041 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 1042 uint64_t Addr) { 1043 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 1044 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 1045 return &Shdr; 1046 return nullptr; 1047 } 1048 1049 const EnumEntry<unsigned> ElfClass[] = { 1050 {"None", "none", ELF::ELFCLASSNONE}, 1051 {"32-bit", "ELF32", ELF::ELFCLASS32}, 1052 {"64-bit", "ELF64", ELF::ELFCLASS64}, 1053 }; 1054 1055 const EnumEntry<unsigned> ElfDataEncoding[] = { 1056 {"None", "none", ELF::ELFDATANONE}, 1057 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 1058 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 1059 }; 1060 1061 const EnumEntry<unsigned> ElfObjectFileType[] = { 1062 {"None", "NONE (none)", ELF::ET_NONE}, 1063 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 1064 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 1065 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 1066 {"Core", "CORE (Core file)", ELF::ET_CORE}, 1067 }; 1068 1069 const EnumEntry<unsigned> ElfOSABI[] = { 1070 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 1071 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 1072 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 1073 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 1074 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 1075 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 1076 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 1077 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 1078 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 1079 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 1080 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 1081 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 1082 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 1083 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 1084 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 1085 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 1086 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 1087 {"CUDA", "NVIDIA - CUDA", ELF::ELFOSABI_CUDA}, 1088 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 1089 }; 1090 1091 const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 1092 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 1093 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 1094 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 1095 }; 1096 1097 const EnumEntry<unsigned> ARMElfOSABI[] = { 1098 {"ARM", "ARM", ELF::ELFOSABI_ARM} 1099 }; 1100 1101 const EnumEntry<unsigned> C6000ElfOSABI[] = { 1102 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1103 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1104 }; 1105 1106 const EnumEntry<unsigned> ElfMachineType[] = { 1107 ENUM_ENT(EM_NONE, "None"), 1108 ENUM_ENT(EM_M32, "WE32100"), 1109 ENUM_ENT(EM_SPARC, "Sparc"), 1110 ENUM_ENT(EM_386, "Intel 80386"), 1111 ENUM_ENT(EM_68K, "MC68000"), 1112 ENUM_ENT(EM_88K, "MC88000"), 1113 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1114 ENUM_ENT(EM_860, "Intel 80860"), 1115 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1116 ENUM_ENT(EM_S370, "IBM System/370"), 1117 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1118 ENUM_ENT(EM_PARISC, "HPPA"), 1119 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1120 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1121 ENUM_ENT(EM_960, "Intel 80960"), 1122 ENUM_ENT(EM_PPC, "PowerPC"), 1123 ENUM_ENT(EM_PPC64, "PowerPC64"), 1124 ENUM_ENT(EM_S390, "IBM S/390"), 1125 ENUM_ENT(EM_SPU, "SPU"), 1126 ENUM_ENT(EM_V800, "NEC V800 series"), 1127 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1128 ENUM_ENT(EM_RH32, "TRW RH-32"), 1129 ENUM_ENT(EM_RCE, "Motorola RCE"), 1130 ENUM_ENT(EM_ARM, "ARM"), 1131 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1132 ENUM_ENT(EM_SH, "Hitachi SH"), 1133 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1134 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1135 ENUM_ENT(EM_ARC, "ARC"), 1136 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1137 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1138 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1139 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1140 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1141 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1142 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1143 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1144 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1145 ENUM_ENT(EM_PCP, "Siemens PCP"), 1146 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1147 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1148 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1149 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1150 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1151 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1152 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1153 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1154 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1155 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1156 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1157 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1158 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1159 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1160 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1161 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1162 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1163 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1164 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1165 ENUM_ENT(EM_VAX, "Digital VAX"), 1166 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1167 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1168 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1169 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1170 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1171 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1172 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1173 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1174 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1175 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1176 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1177 ENUM_ENT(EM_V850, "NEC v850"), 1178 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1179 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1180 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1181 ENUM_ENT(EM_PJ, "picoJava"), 1182 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1183 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1184 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1185 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1186 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1187 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1188 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1189 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1190 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1191 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1192 ENUM_ENT(EM_MAX, "MAX Processor"), 1193 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1194 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1195 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1196 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1197 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1198 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1199 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1200 ENUM_ENT(EM_UNICORE, "Unicore"), 1201 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1202 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1203 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1204 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1205 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1206 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1207 ENUM_ENT(EM_M16C, "Renesas M16C"), 1208 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1209 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1210 ENUM_ENT(EM_M32C, "Renesas M32C"), 1211 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1212 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1213 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1214 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1215 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1216 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1217 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1218 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1219 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1220 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1221 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1222 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1223 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1224 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1225 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1226 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1227 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1228 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1229 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1230 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1231 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1232 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1233 // an identical number to EM_ECOG1. 1234 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1235 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1236 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1237 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1238 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1239 ENUM_ENT(EM_RX, "Renesas RX"), 1240 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1241 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1242 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1243 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"), 1244 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1245 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1246 ENUM_ENT(EM_L10M, "EM_L10M"), 1247 ENUM_ENT(EM_K10M, "EM_K10M"), 1248 ENUM_ENT(EM_AARCH64, "AArch64"), 1249 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1250 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1251 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1252 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1253 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"), 1254 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1255 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1256 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1257 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1258 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1259 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1260 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1261 ENUM_ENT(EM_RL78, "Renesas RL78"), 1262 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1263 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1264 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1265 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1266 ENUM_ENT(EM_RISCV, "RISC-V"), 1267 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1268 ENUM_ENT(EM_BPF, "EM_BPF"), 1269 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1270 ENUM_ENT(EM_LOONGARCH, "LoongArch"), 1271 }; 1272 1273 const EnumEntry<unsigned> ElfSymbolBindings[] = { 1274 {"Local", "LOCAL", ELF::STB_LOCAL}, 1275 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1276 {"Weak", "WEAK", ELF::STB_WEAK}, 1277 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1278 1279 const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1280 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1281 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1282 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1283 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1284 1285 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1286 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1287 }; 1288 1289 static const char *getGroupType(uint32_t Flag) { 1290 if (Flag & ELF::GRP_COMDAT) 1291 return "COMDAT"; 1292 else 1293 return "(unknown)"; 1294 } 1295 1296 const EnumEntry<unsigned> ElfSectionFlags[] = { 1297 ENUM_ENT(SHF_WRITE, "W"), 1298 ENUM_ENT(SHF_ALLOC, "A"), 1299 ENUM_ENT(SHF_EXECINSTR, "X"), 1300 ENUM_ENT(SHF_MERGE, "M"), 1301 ENUM_ENT(SHF_STRINGS, "S"), 1302 ENUM_ENT(SHF_INFO_LINK, "I"), 1303 ENUM_ENT(SHF_LINK_ORDER, "L"), 1304 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1305 ENUM_ENT(SHF_GROUP, "G"), 1306 ENUM_ENT(SHF_TLS, "T"), 1307 ENUM_ENT(SHF_COMPRESSED, "C"), 1308 ENUM_ENT(SHF_EXCLUDE, "E"), 1309 }; 1310 1311 const EnumEntry<unsigned> ElfGNUSectionFlags[] = { 1312 ENUM_ENT(SHF_GNU_RETAIN, "R") 1313 }; 1314 1315 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = { 1316 ENUM_ENT(SHF_SUNW_NODISCARD, "R") 1317 }; 1318 1319 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1320 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1321 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1322 }; 1323 1324 const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1325 ENUM_ENT(SHF_ARM_PURECODE, "y") 1326 }; 1327 1328 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1329 ENUM_ENT(SHF_HEX_GPREL, "") 1330 }; 1331 1332 const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1333 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1334 ENUM_ENT(SHF_MIPS_NAMES, ""), 1335 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1336 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1337 ENUM_ENT(SHF_MIPS_GPREL, ""), 1338 ENUM_ENT(SHF_MIPS_MERGE, ""), 1339 ENUM_ENT(SHF_MIPS_ADDR, ""), 1340 ENUM_ENT(SHF_MIPS_STRING, "") 1341 }; 1342 1343 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1344 ENUM_ENT(SHF_X86_64_LARGE, "l") 1345 }; 1346 1347 static std::vector<EnumEntry<unsigned>> 1348 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) { 1349 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1350 std::end(ElfSectionFlags)); 1351 switch (EOSAbi) { 1352 case ELFOSABI_SOLARIS: 1353 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags), 1354 std::end(ElfSolarisSectionFlags)); 1355 break; 1356 default: 1357 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags), 1358 std::end(ElfGNUSectionFlags)); 1359 break; 1360 } 1361 switch (EMachine) { 1362 case EM_ARM: 1363 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1364 std::end(ElfARMSectionFlags)); 1365 break; 1366 case EM_HEXAGON: 1367 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1368 std::end(ElfHexagonSectionFlags)); 1369 break; 1370 case EM_MIPS: 1371 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1372 std::end(ElfMipsSectionFlags)); 1373 break; 1374 case EM_X86_64: 1375 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1376 std::end(ElfX86_64SectionFlags)); 1377 break; 1378 case EM_XCORE: 1379 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1380 std::end(ElfXCoreSectionFlags)); 1381 break; 1382 default: 1383 break; 1384 } 1385 return Ret; 1386 } 1387 1388 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine, 1389 uint64_t Flags) { 1390 // Here we are trying to build the flags string in the same way as GNU does. 1391 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1392 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1393 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1394 // "p". It only will print "E" when no other processor flag is set. 1395 std::string Str; 1396 bool HasUnknownFlag = false; 1397 bool HasOSFlag = false; 1398 bool HasProcFlag = false; 1399 std::vector<EnumEntry<unsigned>> FlagsList = 1400 getSectionFlagsForTarget(EOSAbi, EMachine); 1401 while (Flags) { 1402 // Take the least significant bit as a flag. 1403 uint64_t Flag = Flags & -Flags; 1404 Flags -= Flag; 1405 1406 // Find the flag in the known flags list. 1407 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1408 // Flags with empty names are not printed in GNU style output. 1409 return E.Value == Flag && !E.AltName.empty(); 1410 }); 1411 if (I != FlagsList.end()) { 1412 Str += I->AltName; 1413 continue; 1414 } 1415 1416 // If we did not find a matching regular flag, then we deal with an OS 1417 // specific flag, processor specific flag or an unknown flag. 1418 if (Flag & ELF::SHF_MASKOS) { 1419 HasOSFlag = true; 1420 Flags &= ~ELF::SHF_MASKOS; 1421 } else if (Flag & ELF::SHF_MASKPROC) { 1422 HasProcFlag = true; 1423 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1424 // bit if set so that it doesn't also get printed. 1425 Flags &= ~ELF::SHF_MASKPROC; 1426 } else { 1427 HasUnknownFlag = true; 1428 } 1429 } 1430 1431 // "o", "p" and "x" are printed last. 1432 if (HasOSFlag) 1433 Str += "o"; 1434 if (HasProcFlag) 1435 Str += "p"; 1436 if (HasUnknownFlag) 1437 Str += "x"; 1438 return Str; 1439 } 1440 1441 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1442 // Check potentially overlapped processor-specific program header type. 1443 switch (Arch) { 1444 case ELF::EM_ARM: 1445 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1446 break; 1447 case ELF::EM_MIPS: 1448 case ELF::EM_MIPS_RS3_LE: 1449 switch (Type) { 1450 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1451 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1452 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1453 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1454 } 1455 break; 1456 case ELF::EM_RISCV: 1457 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); } 1458 } 1459 1460 switch (Type) { 1461 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1462 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1463 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1464 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1465 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1466 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1468 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1469 1470 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1471 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1472 1473 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1474 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1475 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1476 1477 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE); 1478 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1479 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1480 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI); 1481 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS); 1482 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1483 default: 1484 return ""; 1485 } 1486 } 1487 1488 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1489 StringRef Seg = segmentTypeToString(Arch, Type); 1490 if (Seg.empty()) 1491 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1492 1493 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1494 if (Seg.consume_front("PT_ARM_")) 1495 return Seg.str(); 1496 1497 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1498 if (Seg.consume_front("PT_MIPS_")) 1499 return Seg.str(); 1500 1501 // E.g. "PT_RISCV_ATTRIBUTES" 1502 if (Seg.consume_front("PT_RISCV_")) 1503 return Seg.str(); 1504 1505 // E.g. "PT_LOAD" -> "LOAD". 1506 assert(Seg.starts_with("PT_")); 1507 return Seg.drop_front(3).str(); 1508 } 1509 1510 const EnumEntry<unsigned> ElfSegmentFlags[] = { 1511 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1512 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1513 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1514 }; 1515 1516 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1517 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1518 ENUM_ENT(EF_MIPS_PIC, "pic"), 1519 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1520 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1521 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1522 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1523 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1524 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1525 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1526 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1527 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1528 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1529 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1530 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1531 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1532 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1533 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1534 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1535 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1536 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1537 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1538 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1539 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1540 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1541 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1542 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1543 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1544 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1545 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1546 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1547 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1548 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1549 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1550 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1551 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1552 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1553 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1554 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1555 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1556 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1557 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1558 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1559 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1560 }; 1561 1562 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = { 1563 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), 1564 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), 1565 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), 1566 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), 1567 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), 1568 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), 1569 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), 1570 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), 1571 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), 1572 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), 1573 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), 1574 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), 1575 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), 1576 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), 1577 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), 1578 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), 1579 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), 1580 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), 1581 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), 1582 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), 1583 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), 1584 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), 1585 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), 1586 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), 1587 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), 1588 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), 1589 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), 1590 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), 1591 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), 1592 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), 1593 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), 1594 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), 1595 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), 1596 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), 1597 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), 1598 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), 1599 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), 1600 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), 1601 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), 1602 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), 1603 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), 1604 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), 1605 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), 1606 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), 1607 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), 1608 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), 1609 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), 1610 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), 1611 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), 1612 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), 1613 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), 1614 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), 1615 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), 1616 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), 1617 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), 1618 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), 1619 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), 1620 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), 1621 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), 1622 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), 1623 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), 1624 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack"), 1625 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc"), 1626 }; 1627 1628 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = { 1629 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), 1630 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), 1631 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), 1632 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), 1633 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), 1634 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), 1635 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), 1636 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), 1637 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), 1638 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), 1639 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), 1640 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), 1641 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), 1642 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), 1643 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), 1644 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), 1645 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), 1646 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), 1647 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), 1648 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), 1649 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), 1650 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), 1651 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), 1652 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), 1653 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), 1654 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), 1655 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), 1656 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), 1657 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), 1658 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), 1659 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), 1660 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), 1661 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), 1662 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), 1663 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), 1664 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), 1665 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), 1666 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), 1667 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), 1668 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), 1669 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), 1670 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), 1671 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), 1672 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), 1673 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), 1674 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), 1675 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), 1676 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), 1677 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), 1678 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), 1679 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), 1680 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), 1681 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), 1682 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), 1683 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), 1684 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), 1685 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), 1686 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), 1687 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), 1688 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), 1689 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), 1690 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack"), 1691 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-"), 1692 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+"), 1693 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc"), 1694 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-"), 1695 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+"), 1696 }; 1697 1698 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = { 1699 ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"), 1700 ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"), 1701 ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"), 1702 ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"), 1703 ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"), 1704 ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"), 1705 ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"), 1706 ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"), 1707 ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"), 1708 ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"), 1709 }; 1710 1711 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1712 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1713 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1714 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1715 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1716 ENUM_ENT(EF_RISCV_RVE, "RVE"), 1717 ENUM_ENT(EF_RISCV_TSO, "TSO"), 1718 }; 1719 1720 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = { 1721 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), 1722 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), 1723 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), 1724 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), 1725 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), 1726 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), 1727 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), 1728 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), 1729 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), 1730 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), 1731 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), 1732 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), 1733 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), 1734 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), 1735 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), 1736 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), 1737 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), 1738 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), 1739 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"), 1740 }; 1741 1742 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = { 1743 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"), 1744 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"), 1745 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"), 1746 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"), 1747 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"), 1748 }; 1749 1750 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = { 1751 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE), 1752 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN), 1753 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT) 1754 }; 1755 1756 const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1757 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1758 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1759 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1760 }; 1761 1762 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1763 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1764 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1765 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1766 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1767 }; 1768 1769 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1770 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1771 }; 1772 1773 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1774 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1775 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1776 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1777 }; 1778 1779 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { 1780 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; 1781 1782 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1783 switch (Odk) { 1784 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1785 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1786 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1787 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1788 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1789 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1790 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1791 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1792 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1793 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1794 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1795 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1796 default: 1797 return "Unknown"; 1798 } 1799 } 1800 1801 template <typename ELFT> 1802 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1803 ELFDumper<ELFT>::findDynamic() { 1804 // Try to locate the PT_DYNAMIC header. 1805 const Elf_Phdr *DynamicPhdr = nullptr; 1806 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1807 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1808 if (Phdr.p_type != ELF::PT_DYNAMIC) 1809 continue; 1810 DynamicPhdr = &Phdr; 1811 break; 1812 } 1813 } else { 1814 reportUniqueWarning( 1815 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1816 toString(PhdrsOrErr.takeError())); 1817 } 1818 1819 // Try to locate the .dynamic section in the sections header table. 1820 const Elf_Shdr *DynamicSec = nullptr; 1821 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1822 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1823 continue; 1824 DynamicSec = &Sec; 1825 break; 1826 } 1827 1828 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1829 ObjF.getMemoryBufferRef().getBufferSize()) || 1830 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1831 DynamicPhdr->p_offset))) { 1832 reportUniqueWarning( 1833 "PT_DYNAMIC segment offset (0x" + 1834 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1835 Twine::utohexstr(DynamicPhdr->p_filesz) + 1836 ") exceeds the size of the file (0x" + 1837 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1838 // Don't use the broken dynamic header. 1839 DynamicPhdr = nullptr; 1840 } 1841 1842 if (DynamicPhdr && DynamicSec) { 1843 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1844 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1845 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1846 reportUniqueWarning(describe(*DynamicSec) + 1847 " is not contained within the " 1848 "PT_DYNAMIC segment"); 1849 1850 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1851 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1852 "PT_DYNAMIC segment"); 1853 } 1854 1855 return std::make_pair(DynamicPhdr, DynamicSec); 1856 } 1857 1858 template <typename ELFT> 1859 void ELFDumper<ELFT>::loadDynamicTable() { 1860 const Elf_Phdr *DynamicPhdr; 1861 const Elf_Shdr *DynamicSec; 1862 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1863 if (!DynamicPhdr && !DynamicSec) 1864 return; 1865 1866 DynRegionInfo FromPhdr(ObjF, *this); 1867 bool IsPhdrTableValid = false; 1868 if (DynamicPhdr) { 1869 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1870 // validated in findDynamic() and so createDRI() is not expected to fail. 1871 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1872 sizeof(Elf_Dyn))); 1873 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1874 FromPhdr.EntSizePrintName = ""; 1875 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1876 } 1877 1878 // Locate the dynamic table described in a section header. 1879 // Ignore sh_entsize and use the expected value for entry size explicitly. 1880 // This allows us to dump dynamic sections with a broken sh_entsize 1881 // field. 1882 DynRegionInfo FromSec(ObjF, *this); 1883 bool IsSecTableValid = false; 1884 if (DynamicSec) { 1885 Expected<DynRegionInfo> RegOrErr = 1886 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1887 if (RegOrErr) { 1888 FromSec = *RegOrErr; 1889 FromSec.Context = describe(*DynamicSec); 1890 FromSec.EntSizePrintName = ""; 1891 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1892 } else { 1893 reportUniqueWarning("unable to read the dynamic table from " + 1894 describe(*DynamicSec) + ": " + 1895 toString(RegOrErr.takeError())); 1896 } 1897 } 1898 1899 // When we only have information from one of the SHT_DYNAMIC section header or 1900 // PT_DYNAMIC program header, just use that. 1901 if (!DynamicPhdr || !DynamicSec) { 1902 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1903 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1904 parseDynamicTable(); 1905 } else { 1906 reportUniqueWarning("no valid dynamic table was found"); 1907 } 1908 return; 1909 } 1910 1911 // At this point we have tables found from the section header and from the 1912 // dynamic segment. Usually they match, but we have to do sanity checks to 1913 // verify that. 1914 1915 if (FromPhdr.Addr != FromSec.Addr) 1916 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1917 "program header disagree about " 1918 "the location of the dynamic table"); 1919 1920 if (!IsPhdrTableValid && !IsSecTableValid) { 1921 reportUniqueWarning("no valid dynamic table was found"); 1922 return; 1923 } 1924 1925 // Information in the PT_DYNAMIC program header has priority over the 1926 // information in a section header. 1927 if (IsPhdrTableValid) { 1928 if (!IsSecTableValid) 1929 reportUniqueWarning( 1930 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1931 DynamicTable = FromPhdr; 1932 } else { 1933 reportUniqueWarning( 1934 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1935 DynamicTable = FromSec; 1936 } 1937 1938 parseDynamicTable(); 1939 } 1940 1941 template <typename ELFT> 1942 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1943 ScopedPrinter &Writer) 1944 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1945 FileName(O.getFileName()), DynRelRegion(O, *this), 1946 DynRelaRegion(O, *this), DynRelrRegion(O, *this), 1947 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1948 DynamicTable(O, *this) { 1949 if (!O.IsContentValid()) 1950 return; 1951 1952 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1953 for (const Elf_Shdr &Sec : Sections) { 1954 switch (Sec.sh_type) { 1955 case ELF::SHT_SYMTAB: 1956 if (!DotSymtabSec) 1957 DotSymtabSec = &Sec; 1958 break; 1959 case ELF::SHT_DYNSYM: 1960 if (!DotDynsymSec) 1961 DotDynsymSec = &Sec; 1962 1963 if (!DynSymRegion) { 1964 Expected<DynRegionInfo> RegOrErr = 1965 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1966 if (RegOrErr) { 1967 DynSymRegion = *RegOrErr; 1968 DynSymRegion->Context = describe(Sec); 1969 1970 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1971 DynamicStringTable = *E; 1972 else 1973 reportUniqueWarning("unable to get the string table for the " + 1974 describe(Sec) + ": " + toString(E.takeError())); 1975 } else { 1976 reportUniqueWarning("unable to read dynamic symbols from " + 1977 describe(Sec) + ": " + 1978 toString(RegOrErr.takeError())); 1979 } 1980 } 1981 break; 1982 case ELF::SHT_SYMTAB_SHNDX: { 1983 uint32_t SymtabNdx = Sec.sh_link; 1984 if (SymtabNdx >= Sections.size()) { 1985 reportUniqueWarning( 1986 "unable to get the associated symbol table for " + describe(Sec) + 1987 ": sh_link (" + Twine(SymtabNdx) + 1988 ") is greater than or equal to the total number of sections (" + 1989 Twine(Sections.size()) + ")"); 1990 continue; 1991 } 1992 1993 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1994 Obj.getSHNDXTable(Sec)) { 1995 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1996 .second) 1997 reportUniqueWarning( 1998 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1999 describe(Sec)); 2000 } else { 2001 reportUniqueWarning(ShndxTableOrErr.takeError()); 2002 } 2003 break; 2004 } 2005 case ELF::SHT_GNU_versym: 2006 if (!SymbolVersionSection) 2007 SymbolVersionSection = &Sec; 2008 break; 2009 case ELF::SHT_GNU_verdef: 2010 if (!SymbolVersionDefSection) 2011 SymbolVersionDefSection = &Sec; 2012 break; 2013 case ELF::SHT_GNU_verneed: 2014 if (!SymbolVersionNeedSection) 2015 SymbolVersionNeedSection = &Sec; 2016 break; 2017 case ELF::SHT_LLVM_ADDRSIG: 2018 if (!DotAddrsigSec) 2019 DotAddrsigSec = &Sec; 2020 break; 2021 } 2022 } 2023 2024 loadDynamicTable(); 2025 } 2026 2027 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 2028 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 2029 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 2030 this->reportUniqueWarning(Msg); 2031 return Error::success(); 2032 }); 2033 if (!MappedAddrOrError) { 2034 this->reportUniqueWarning("unable to parse DT_" + 2035 Obj.getDynamicTagAsString(Tag) + ": " + 2036 llvm::toString(MappedAddrOrError.takeError())); 2037 return nullptr; 2038 } 2039 return MappedAddrOrError.get(); 2040 }; 2041 2042 const char *StringTableBegin = nullptr; 2043 uint64_t StringTableSize = 0; 2044 std::optional<DynRegionInfo> DynSymFromTable; 2045 for (const Elf_Dyn &Dyn : dynamic_table()) { 2046 if (Obj.getHeader().e_machine == EM_AARCH64) { 2047 switch (Dyn.d_tag) { 2048 case ELF::DT_AARCH64_AUTH_RELRSZ: 2049 DynRelrRegion.Size = Dyn.getVal(); 2050 DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value"; 2051 continue; 2052 case ELF::DT_AARCH64_AUTH_RELRENT: 2053 DynRelrRegion.EntSize = Dyn.getVal(); 2054 DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value"; 2055 continue; 2056 } 2057 } 2058 switch (Dyn.d_tag) { 2059 case ELF::DT_HASH: 2060 HashTable = reinterpret_cast<const Elf_Hash *>( 2061 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2062 break; 2063 case ELF::DT_GNU_HASH: 2064 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 2065 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2066 break; 2067 case ELF::DT_STRTAB: 2068 StringTableBegin = reinterpret_cast<const char *>( 2069 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2070 break; 2071 case ELF::DT_STRSZ: 2072 StringTableSize = Dyn.getVal(); 2073 break; 2074 case ELF::DT_SYMTAB: { 2075 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 2076 // no program headers), we ignore its value. 2077 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 2078 DynSymFromTable.emplace(ObjF, *this); 2079 DynSymFromTable->Addr = VA; 2080 DynSymFromTable->EntSize = sizeof(Elf_Sym); 2081 DynSymFromTable->EntSizePrintName = ""; 2082 } 2083 break; 2084 } 2085 case ELF::DT_SYMENT: { 2086 uint64_t Val = Dyn.getVal(); 2087 if (Val != sizeof(Elf_Sym)) 2088 this->reportUniqueWarning("DT_SYMENT value of 0x" + 2089 Twine::utohexstr(Val) + 2090 " is not the size of a symbol (0x" + 2091 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 2092 break; 2093 } 2094 case ELF::DT_RELA: 2095 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2096 break; 2097 case ELF::DT_RELASZ: 2098 DynRelaRegion.Size = Dyn.getVal(); 2099 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 2100 break; 2101 case ELF::DT_RELAENT: 2102 DynRelaRegion.EntSize = Dyn.getVal(); 2103 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 2104 break; 2105 case ELF::DT_SONAME: 2106 SONameOffset = Dyn.getVal(); 2107 break; 2108 case ELF::DT_REL: 2109 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2110 break; 2111 case ELF::DT_RELSZ: 2112 DynRelRegion.Size = Dyn.getVal(); 2113 DynRelRegion.SizePrintName = "DT_RELSZ value"; 2114 break; 2115 case ELF::DT_RELENT: 2116 DynRelRegion.EntSize = Dyn.getVal(); 2117 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 2118 break; 2119 case ELF::DT_RELR: 2120 case ELF::DT_ANDROID_RELR: 2121 case ELF::DT_AARCH64_AUTH_RELR: 2122 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2123 break; 2124 case ELF::DT_RELRSZ: 2125 case ELF::DT_ANDROID_RELRSZ: 2126 case ELF::DT_AARCH64_AUTH_RELRSZ: 2127 DynRelrRegion.Size = Dyn.getVal(); 2128 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 2129 ? "DT_RELRSZ value" 2130 : "DT_ANDROID_RELRSZ value"; 2131 break; 2132 case ELF::DT_RELRENT: 2133 case ELF::DT_ANDROID_RELRENT: 2134 case ELF::DT_AARCH64_AUTH_RELRENT: 2135 DynRelrRegion.EntSize = Dyn.getVal(); 2136 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 2137 ? "DT_RELRENT value" 2138 : "DT_ANDROID_RELRENT value"; 2139 break; 2140 case ELF::DT_PLTREL: 2141 if (Dyn.getVal() == DT_REL) 2142 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 2143 else if (Dyn.getVal() == DT_RELA) 2144 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 2145 else 2146 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 2147 Twine((uint64_t)Dyn.getVal())); 2148 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 2149 break; 2150 case ELF::DT_JMPREL: 2151 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2152 break; 2153 case ELF::DT_PLTRELSZ: 2154 DynPLTRelRegion.Size = Dyn.getVal(); 2155 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 2156 break; 2157 case ELF::DT_SYMTAB_SHNDX: 2158 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2159 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 2160 break; 2161 } 2162 } 2163 2164 if (StringTableBegin) { 2165 const uint64_t FileSize = Obj.getBufSize(); 2166 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 2167 if (StringTableSize > FileSize - Offset) 2168 reportUniqueWarning( 2169 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 2170 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 2171 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 2172 else 2173 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 2174 } 2175 2176 const bool IsHashTableSupported = getHashTableEntSize() == 4; 2177 if (DynSymRegion) { 2178 // Often we find the information about the dynamic symbol table 2179 // location in the SHT_DYNSYM section header. However, the value in 2180 // DT_SYMTAB has priority, because it is used by dynamic loaders to 2181 // locate .dynsym at runtime. The location we find in the section header 2182 // and the location we find here should match. 2183 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 2184 reportUniqueWarning( 2185 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 2186 "the location of the dynamic symbol table")); 2187 2188 // According to the ELF gABI: "The number of symbol table entries should 2189 // equal nchain". Check to see if the DT_HASH hash table nchain value 2190 // conflicts with the number of symbols in the dynamic symbol table 2191 // according to the section header. 2192 if (HashTable && IsHashTableSupported) { 2193 if (DynSymRegion->EntSize == 0) 2194 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 2195 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 2196 reportUniqueWarning( 2197 "hash table nchain (" + Twine(HashTable->nchain) + 2198 ") differs from symbol count derived from SHT_DYNSYM section " 2199 "header (" + 2200 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 2201 } 2202 } 2203 2204 // Delay the creation of the actual dynamic symbol table until now, so that 2205 // checks can always be made against the section header-based properties, 2206 // without worrying about tag order. 2207 if (DynSymFromTable) { 2208 if (!DynSymRegion) { 2209 DynSymRegion = DynSymFromTable; 2210 } else { 2211 DynSymRegion->Addr = DynSymFromTable->Addr; 2212 DynSymRegion->EntSize = DynSymFromTable->EntSize; 2213 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 2214 } 2215 } 2216 2217 // Derive the dynamic symbol table size from the DT_HASH hash table, if 2218 // present. 2219 if (HashTable && IsHashTableSupported && DynSymRegion) { 2220 const uint64_t FileSize = Obj.getBufSize(); 2221 const uint64_t DerivedSize = 2222 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 2223 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 2224 if (DerivedSize > FileSize - Offset) 2225 reportUniqueWarning( 2226 "the size (0x" + Twine::utohexstr(DerivedSize) + 2227 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 2228 ", derived from the hash table, goes past the end of the file (0x" + 2229 Twine::utohexstr(FileSize) + ") and will be ignored"); 2230 else 2231 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 2232 } 2233 } 2234 2235 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 2236 // Dump version symbol section. 2237 printVersionSymbolSection(SymbolVersionSection); 2238 2239 // Dump version definition section. 2240 printVersionDefinitionSection(SymbolVersionDefSection); 2241 2242 // Dump version dependency section. 2243 printVersionDependencySection(SymbolVersionNeedSection); 2244 } 2245 2246 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 2247 { #enum, prefix##_##enum } 2248 2249 const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 2250 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 2251 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 2252 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 2253 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 2254 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 2255 }; 2256 2257 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 2258 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 2259 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 2260 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 2261 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 2262 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 2263 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 2264 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 2265 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 2266 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 2267 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 2268 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 2269 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 2270 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 2271 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 2272 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 2273 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 2274 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 2275 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 2276 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 2277 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 2278 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 2279 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 2280 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 2281 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2282 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2283 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2284 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2285 }; 2286 2287 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2288 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2289 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2290 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2291 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2292 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2293 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2294 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2295 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2296 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2297 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2298 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2299 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2300 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2301 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2302 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2303 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2304 }; 2305 2306 #undef LLVM_READOBJ_DT_FLAG_ENT 2307 2308 template <typename T, typename TFlag> 2309 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2310 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2311 for (const EnumEntry<TFlag> &Flag : Flags) 2312 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2313 SetFlags.push_back(Flag); 2314 2315 for (const EnumEntry<TFlag> &Flag : SetFlags) 2316 OS << Flag.Name << " "; 2317 } 2318 2319 template <class ELFT> 2320 const typename ELFT::Shdr * 2321 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2322 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2323 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2324 if (*NameOrErr == Name) 2325 return &Shdr; 2326 } else { 2327 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2328 ": " + toString(NameOrErr.takeError())); 2329 } 2330 } 2331 return nullptr; 2332 } 2333 2334 template <class ELFT> 2335 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2336 uint64_t Value) const { 2337 auto FormatHexValue = [](uint64_t V) { 2338 std::string Str; 2339 raw_string_ostream OS(Str); 2340 const char *ConvChar = 2341 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2342 OS << format(ConvChar, V); 2343 return OS.str(); 2344 }; 2345 2346 auto FormatFlags = [](uint64_t V, 2347 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2348 std::string Str; 2349 raw_string_ostream OS(Str); 2350 printFlags(V, Array, OS); 2351 return OS.str(); 2352 }; 2353 2354 // Handle custom printing of architecture specific tags 2355 switch (Obj.getHeader().e_machine) { 2356 case EM_AARCH64: 2357 switch (Type) { 2358 case DT_AARCH64_BTI_PLT: 2359 case DT_AARCH64_PAC_PLT: 2360 case DT_AARCH64_VARIANT_PCS: 2361 case DT_AARCH64_MEMTAG_GLOBALSSZ: 2362 return std::to_string(Value); 2363 case DT_AARCH64_MEMTAG_MODE: 2364 switch (Value) { 2365 case 0: 2366 return "Synchronous (0)"; 2367 case 1: 2368 return "Asynchronous (1)"; 2369 default: 2370 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2371 } 2372 case DT_AARCH64_MEMTAG_HEAP: 2373 case DT_AARCH64_MEMTAG_STACK: 2374 switch (Value) { 2375 case 0: 2376 return "Disabled (0)"; 2377 case 1: 2378 return "Enabled (1)"; 2379 default: 2380 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2381 } 2382 case DT_AARCH64_MEMTAG_GLOBALS: 2383 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str(); 2384 default: 2385 break; 2386 } 2387 break; 2388 case EM_HEXAGON: 2389 switch (Type) { 2390 case DT_HEXAGON_VER: 2391 return std::to_string(Value); 2392 case DT_HEXAGON_SYMSZ: 2393 case DT_HEXAGON_PLT: 2394 return FormatHexValue(Value); 2395 default: 2396 break; 2397 } 2398 break; 2399 case EM_MIPS: 2400 switch (Type) { 2401 case DT_MIPS_RLD_VERSION: 2402 case DT_MIPS_LOCAL_GOTNO: 2403 case DT_MIPS_SYMTABNO: 2404 case DT_MIPS_UNREFEXTNO: 2405 return std::to_string(Value); 2406 case DT_MIPS_TIME_STAMP: 2407 case DT_MIPS_ICHECKSUM: 2408 case DT_MIPS_IVERSION: 2409 case DT_MIPS_BASE_ADDRESS: 2410 case DT_MIPS_MSYM: 2411 case DT_MIPS_CONFLICT: 2412 case DT_MIPS_LIBLIST: 2413 case DT_MIPS_CONFLICTNO: 2414 case DT_MIPS_LIBLISTNO: 2415 case DT_MIPS_GOTSYM: 2416 case DT_MIPS_HIPAGENO: 2417 case DT_MIPS_RLD_MAP: 2418 case DT_MIPS_DELTA_CLASS: 2419 case DT_MIPS_DELTA_CLASS_NO: 2420 case DT_MIPS_DELTA_INSTANCE: 2421 case DT_MIPS_DELTA_RELOC: 2422 case DT_MIPS_DELTA_RELOC_NO: 2423 case DT_MIPS_DELTA_SYM: 2424 case DT_MIPS_DELTA_SYM_NO: 2425 case DT_MIPS_DELTA_CLASSSYM: 2426 case DT_MIPS_DELTA_CLASSSYM_NO: 2427 case DT_MIPS_CXX_FLAGS: 2428 case DT_MIPS_PIXIE_INIT: 2429 case DT_MIPS_SYMBOL_LIB: 2430 case DT_MIPS_LOCALPAGE_GOTIDX: 2431 case DT_MIPS_LOCAL_GOTIDX: 2432 case DT_MIPS_HIDDEN_GOTIDX: 2433 case DT_MIPS_PROTECTED_GOTIDX: 2434 case DT_MIPS_OPTIONS: 2435 case DT_MIPS_INTERFACE: 2436 case DT_MIPS_DYNSTR_ALIGN: 2437 case DT_MIPS_INTERFACE_SIZE: 2438 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2439 case DT_MIPS_PERF_SUFFIX: 2440 case DT_MIPS_COMPACT_SIZE: 2441 case DT_MIPS_GP_VALUE: 2442 case DT_MIPS_AUX_DYNAMIC: 2443 case DT_MIPS_PLTGOT: 2444 case DT_MIPS_RWPLT: 2445 case DT_MIPS_RLD_MAP_REL: 2446 case DT_MIPS_XHASH: 2447 return FormatHexValue(Value); 2448 case DT_MIPS_FLAGS: 2449 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags)); 2450 default: 2451 break; 2452 } 2453 break; 2454 default: 2455 break; 2456 } 2457 2458 switch (Type) { 2459 case DT_PLTREL: 2460 if (Value == DT_REL) 2461 return "REL"; 2462 if (Value == DT_RELA) 2463 return "RELA"; 2464 [[fallthrough]]; 2465 case DT_PLTGOT: 2466 case DT_HASH: 2467 case DT_STRTAB: 2468 case DT_SYMTAB: 2469 case DT_RELA: 2470 case DT_INIT: 2471 case DT_FINI: 2472 case DT_REL: 2473 case DT_JMPREL: 2474 case DT_INIT_ARRAY: 2475 case DT_FINI_ARRAY: 2476 case DT_PREINIT_ARRAY: 2477 case DT_DEBUG: 2478 case DT_VERDEF: 2479 case DT_VERNEED: 2480 case DT_VERSYM: 2481 case DT_GNU_HASH: 2482 case DT_NULL: 2483 return FormatHexValue(Value); 2484 case DT_RELACOUNT: 2485 case DT_RELCOUNT: 2486 case DT_VERDEFNUM: 2487 case DT_VERNEEDNUM: 2488 return std::to_string(Value); 2489 case DT_PLTRELSZ: 2490 case DT_RELASZ: 2491 case DT_RELAENT: 2492 case DT_STRSZ: 2493 case DT_SYMENT: 2494 case DT_RELSZ: 2495 case DT_RELENT: 2496 case DT_INIT_ARRAYSZ: 2497 case DT_FINI_ARRAYSZ: 2498 case DT_PREINIT_ARRAYSZ: 2499 case DT_RELRSZ: 2500 case DT_RELRENT: 2501 case DT_AARCH64_AUTH_RELRSZ: 2502 case DT_AARCH64_AUTH_RELRENT: 2503 case DT_ANDROID_RELSZ: 2504 case DT_ANDROID_RELASZ: 2505 return std::to_string(Value) + " (bytes)"; 2506 case DT_NEEDED: 2507 case DT_SONAME: 2508 case DT_AUXILIARY: 2509 case DT_USED: 2510 case DT_FILTER: 2511 case DT_RPATH: 2512 case DT_RUNPATH: { 2513 const std::map<uint64_t, const char *> TagNames = { 2514 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2515 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2516 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2517 {DT_RUNPATH, "Library runpath"}, 2518 }; 2519 2520 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2521 .str(); 2522 } 2523 case DT_FLAGS: 2524 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags)); 2525 case DT_FLAGS_1: 2526 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1)); 2527 default: 2528 return FormatHexValue(Value); 2529 } 2530 } 2531 2532 template <class ELFT> 2533 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2534 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2535 reportUniqueWarning("string table was not found"); 2536 return "<?>"; 2537 } 2538 2539 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2540 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2541 Msg); 2542 return "<?>"; 2543 }; 2544 2545 const uint64_t FileSize = Obj.getBufSize(); 2546 const uint64_t Offset = 2547 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2548 if (DynamicStringTable.size() > FileSize - Offset) 2549 return WarnAndReturn(" with size 0x" + 2550 Twine::utohexstr(DynamicStringTable.size()) + 2551 " goes past the end of the file (0x" + 2552 Twine::utohexstr(FileSize) + ")", 2553 Offset); 2554 2555 if (Value >= DynamicStringTable.size()) 2556 return WarnAndReturn( 2557 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2558 ": it goes past the end of the table (0x" + 2559 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2560 Offset); 2561 2562 if (DynamicStringTable.back() != '\0') 2563 return WarnAndReturn(": unable to read the string at 0x" + 2564 Twine::utohexstr(Offset + Value) + 2565 ": the string table is not null-terminated", 2566 Offset); 2567 2568 return DynamicStringTable.data() + Value; 2569 } 2570 2571 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2572 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2573 Ctx.printUnwindInformation(); 2574 } 2575 2576 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2577 namespace { 2578 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2579 if (Obj.getHeader().e_machine == EM_ARM) { 2580 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2581 DotSymtabSec); 2582 Ctx.PrintUnwindInformation(); 2583 } 2584 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2585 Ctx.printUnwindInformation(); 2586 } 2587 } // namespace 2588 2589 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2590 ListScope D(W, "NeededLibraries"); 2591 2592 std::vector<StringRef> Libs; 2593 for (const auto &Entry : dynamic_table()) 2594 if (Entry.d_tag == ELF::DT_NEEDED) 2595 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2596 2597 llvm::sort(Libs); 2598 2599 for (StringRef L : Libs) 2600 W.printString(L); 2601 } 2602 2603 template <class ELFT> 2604 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2605 const typename ELFT::Hash *H, 2606 bool *IsHeaderValid = nullptr) { 2607 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2608 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2609 if (Dumper.getHashTableEntSize() == 8) { 2610 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2611 return E.Value == Obj.getHeader().e_machine; 2612 }); 2613 if (IsHeaderValid) 2614 *IsHeaderValid = false; 2615 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2616 " is not supported: it contains non-standard 8 " 2617 "byte entries on " + 2618 It->AltName + " platform"); 2619 } 2620 2621 auto MakeError = [&](const Twine &Msg = "") { 2622 return createError("the hash table at offset 0x" + 2623 Twine::utohexstr(SecOffset) + 2624 " goes past the end of the file (0x" + 2625 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2626 }; 2627 2628 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2629 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2630 2631 if (IsHeaderValid) 2632 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2633 2634 if (Obj.getBufSize() - SecOffset < HeaderSize) 2635 return MakeError(); 2636 2637 if (Obj.getBufSize() - SecOffset - HeaderSize < 2638 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2639 return MakeError(", nbucket = " + Twine(H->nbucket) + 2640 ", nchain = " + Twine(H->nchain)); 2641 return Error::success(); 2642 } 2643 2644 template <class ELFT> 2645 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2646 const typename ELFT::GnuHash *GnuHashTable, 2647 bool *IsHeaderValid = nullptr) { 2648 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2649 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2650 "GnuHashTable must always point to a location inside the file"); 2651 2652 uint64_t TableOffset = TableData - Obj.base(); 2653 if (IsHeaderValid) 2654 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2655 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2656 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2657 Obj.getBufSize()) 2658 return createError("unable to dump the SHT_GNU_HASH " 2659 "section at 0x" + 2660 Twine::utohexstr(TableOffset) + 2661 ": it goes past the end of the file"); 2662 return Error::success(); 2663 } 2664 2665 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2666 DictScope D(W, "HashTable"); 2667 if (!HashTable) 2668 return; 2669 2670 bool IsHeaderValid; 2671 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2672 if (IsHeaderValid) { 2673 W.printNumber("Num Buckets", HashTable->nbucket); 2674 W.printNumber("Num Chains", HashTable->nchain); 2675 } 2676 2677 if (Err) { 2678 reportUniqueWarning(std::move(Err)); 2679 return; 2680 } 2681 2682 W.printList("Buckets", HashTable->buckets()); 2683 W.printList("Chains", HashTable->chains()); 2684 } 2685 2686 template <class ELFT> 2687 static Expected<ArrayRef<typename ELFT::Word>> 2688 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion, 2689 const typename ELFT::GnuHash *GnuHashTable) { 2690 if (!DynSymRegion) 2691 return createError("no dynamic symbol table found"); 2692 2693 ArrayRef<typename ELFT::Sym> DynSymTable = 2694 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2695 size_t NumSyms = DynSymTable.size(); 2696 if (!NumSyms) 2697 return createError("the dynamic symbol table is empty"); 2698 2699 if (GnuHashTable->symndx < NumSyms) 2700 return GnuHashTable->values(NumSyms); 2701 2702 // A normal empty GNU hash table section produced by linker might have 2703 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2704 // and have dummy null values in the Bloom filter and in the buckets 2705 // vector (or no values at all). It happens because the value of symndx is not 2706 // important for dynamic loaders when the GNU hash table is empty. They just 2707 // skip the whole object during symbol lookup. In such cases, the symndx value 2708 // is irrelevant and we should not report a warning. 2709 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2710 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2711 return createError( 2712 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2713 ") is greater than or equal to the number of dynamic symbols (" + 2714 Twine(NumSyms) + ")"); 2715 // There is no way to represent an array of (dynamic symbols count - symndx) 2716 // length. 2717 return ArrayRef<typename ELFT::Word>(); 2718 } 2719 2720 template <typename ELFT> 2721 void ELFDumper<ELFT>::printGnuHashTable() { 2722 DictScope D(W, "GnuHashTable"); 2723 if (!GnuHashTable) 2724 return; 2725 2726 bool IsHeaderValid; 2727 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2728 if (IsHeaderValid) { 2729 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2730 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2731 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2732 W.printNumber("Shift Count", GnuHashTable->shift2); 2733 } 2734 2735 if (Err) { 2736 reportUniqueWarning(std::move(Err)); 2737 return; 2738 } 2739 2740 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2741 W.printHexList("Bloom Filter", BloomFilter); 2742 2743 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2744 W.printList("Buckets", Buckets); 2745 2746 Expected<ArrayRef<Elf_Word>> Chains = 2747 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2748 if (!Chains) { 2749 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2750 "section: " + 2751 toString(Chains.takeError())); 2752 return; 2753 } 2754 2755 W.printHexList("Values", *Chains); 2756 } 2757 2758 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() { 2759 // Print histogram for the .hash section. 2760 if (this->HashTable) { 2761 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 2762 this->reportUniqueWarning(std::move(E)); 2763 else 2764 printHashHistogram(*this->HashTable); 2765 } 2766 2767 // Print histogram for the .gnu.hash section. 2768 if (this->GnuHashTable) { 2769 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 2770 this->reportUniqueWarning(std::move(E)); 2771 else 2772 printGnuHashHistogram(*this->GnuHashTable); 2773 } 2774 } 2775 2776 template <typename ELFT> 2777 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const { 2778 size_t NBucket = HashTable.nbucket; 2779 size_t NChain = HashTable.nchain; 2780 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 2781 ArrayRef<Elf_Word> Chains = HashTable.chains(); 2782 size_t TotalSyms = 0; 2783 // If hash table is correct, we have at least chains with 0 length. 2784 size_t MaxChain = 1; 2785 2786 if (NChain == 0 || NBucket == 0) 2787 return; 2788 2789 std::vector<size_t> ChainLen(NBucket, 0); 2790 // Go over all buckets and note chain lengths of each bucket (total 2791 // unique chain lengths). 2792 for (size_t B = 0; B < NBucket; ++B) { 2793 BitVector Visited(NChain); 2794 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 2795 if (C == ELF::STN_UNDEF) 2796 break; 2797 if (Visited[C]) { 2798 this->reportUniqueWarning( 2799 ".hash section is invalid: bucket " + Twine(C) + 2800 ": a cycle was detected in the linked chain"); 2801 break; 2802 } 2803 Visited[C] = true; 2804 if (MaxChain <= ++ChainLen[B]) 2805 ++MaxChain; 2806 } 2807 TotalSyms += ChainLen[B]; 2808 } 2809 2810 if (!TotalSyms) 2811 return; 2812 2813 std::vector<size_t> Count(MaxChain, 0); 2814 // Count how long is the chain for each bucket. 2815 for (size_t B = 0; B < NBucket; B++) 2816 ++Count[ChainLen[B]]; 2817 // Print Number of buckets with each chain lengths and their cumulative 2818 // coverage of the symbols. 2819 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false); 2820 } 2821 2822 template <class ELFT> 2823 void ELFDumper<ELFT>::printGnuHashHistogram( 2824 const Elf_GnuHash &GnuHashTable) const { 2825 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 2826 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 2827 if (!ChainsOrErr) { 2828 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 2829 toString(ChainsOrErr.takeError())); 2830 return; 2831 } 2832 2833 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 2834 size_t Symndx = GnuHashTable.symndx; 2835 size_t TotalSyms = 0; 2836 size_t MaxChain = 1; 2837 2838 size_t NBucket = GnuHashTable.nbuckets; 2839 if (Chains.empty() || NBucket == 0) 2840 return; 2841 2842 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 2843 std::vector<size_t> ChainLen(NBucket, 0); 2844 for (size_t B = 0; B < NBucket; ++B) { 2845 if (!Buckets[B]) 2846 continue; 2847 size_t Len = 1; 2848 for (size_t C = Buckets[B] - Symndx; 2849 C < Chains.size() && (Chains[C] & 1) == 0; ++C) 2850 if (MaxChain < ++Len) 2851 ++MaxChain; 2852 ChainLen[B] = Len; 2853 TotalSyms += Len; 2854 } 2855 ++MaxChain; 2856 2857 if (!TotalSyms) 2858 return; 2859 2860 std::vector<size_t> Count(MaxChain, 0); 2861 for (size_t B = 0; B < NBucket; ++B) 2862 ++Count[ChainLen[B]]; 2863 // Print Number of buckets with each chain lengths and their cumulative 2864 // coverage of the symbols. 2865 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true); 2866 } 2867 2868 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2869 StringRef SOName = "<Not found>"; 2870 if (SONameOffset) 2871 SOName = getDynamicString(*SONameOffset); 2872 W.printString("LoadName", SOName); 2873 } 2874 2875 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2876 switch (Obj.getHeader().e_machine) { 2877 case EM_ARM: 2878 if (Obj.isLE()) 2879 printAttributes(ELF::SHT_ARM_ATTRIBUTES, 2880 std::make_unique<ARMAttributeParser>(&W), 2881 llvm::endianness::little); 2882 else 2883 reportUniqueWarning("attribute printing not implemented for big-endian " 2884 "ARM objects"); 2885 break; 2886 case EM_RISCV: 2887 if (Obj.isLE()) 2888 printAttributes(ELF::SHT_RISCV_ATTRIBUTES, 2889 std::make_unique<RISCVAttributeParser>(&W), 2890 llvm::endianness::little); 2891 else 2892 reportUniqueWarning("attribute printing not implemented for big-endian " 2893 "RISC-V objects"); 2894 break; 2895 case EM_MSP430: 2896 printAttributes(ELF::SHT_MSP430_ATTRIBUTES, 2897 std::make_unique<MSP430AttributeParser>(&W), 2898 llvm::endianness::little); 2899 break; 2900 case EM_MIPS: { 2901 printMipsABIFlags(); 2902 printMipsOptions(); 2903 printMipsReginfo(); 2904 MipsGOTParser<ELFT> Parser(*this); 2905 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2906 reportUniqueWarning(std::move(E)); 2907 else if (!Parser.isGotEmpty()) 2908 printMipsGOT(Parser); 2909 2910 if (Error E = Parser.findPLT(dynamic_table())) 2911 reportUniqueWarning(std::move(E)); 2912 else if (!Parser.isPltEmpty()) 2913 printMipsPLT(Parser); 2914 break; 2915 } 2916 default: 2917 break; 2918 } 2919 } 2920 2921 template <class ELFT> 2922 void ELFDumper<ELFT>::printAttributes( 2923 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, 2924 llvm::endianness Endianness) { 2925 assert((AttrShType != ELF::SHT_NULL) && AttrParser && 2926 "Incomplete ELF attribute implementation"); 2927 DictScope BA(W, "BuildAttributes"); 2928 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2929 if (Sec.sh_type != AttrShType) 2930 continue; 2931 2932 ArrayRef<uint8_t> Contents; 2933 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2934 Obj.getSectionContents(Sec)) { 2935 Contents = *ContentOrErr; 2936 if (Contents.empty()) { 2937 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2938 continue; 2939 } 2940 } else { 2941 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2942 ": " + toString(ContentOrErr.takeError())); 2943 continue; 2944 } 2945 2946 W.printHex("FormatVersion", Contents[0]); 2947 2948 if (Error E = AttrParser->parse(Contents, Endianness)) 2949 reportUniqueWarning("unable to dump attributes from the " + 2950 describe(Sec) + ": " + toString(std::move(E))); 2951 } 2952 } 2953 2954 namespace { 2955 2956 template <class ELFT> class MipsGOTParser { 2957 public: 2958 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2959 using Entry = typename ELFT::Addr; 2960 using Entries = ArrayRef<Entry>; 2961 2962 const bool IsStatic; 2963 const ELFFile<ELFT> &Obj; 2964 const ELFDumper<ELFT> &Dumper; 2965 2966 MipsGOTParser(const ELFDumper<ELFT> &D); 2967 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2968 Error findPLT(Elf_Dyn_Range DynTable); 2969 2970 bool isGotEmpty() const { return GotEntries.empty(); } 2971 bool isPltEmpty() const { return PltEntries.empty(); } 2972 2973 uint64_t getGp() const; 2974 2975 const Entry *getGotLazyResolver() const; 2976 const Entry *getGotModulePointer() const; 2977 const Entry *getPltLazyResolver() const; 2978 const Entry *getPltModulePointer() const; 2979 2980 Entries getLocalEntries() const; 2981 Entries getGlobalEntries() const; 2982 Entries getOtherEntries() const; 2983 Entries getPltEntries() const; 2984 2985 uint64_t getGotAddress(const Entry * E) const; 2986 int64_t getGotOffset(const Entry * E) const; 2987 const Elf_Sym *getGotSym(const Entry *E) const; 2988 2989 uint64_t getPltAddress(const Entry * E) const; 2990 const Elf_Sym *getPltSym(const Entry *E) const; 2991 2992 StringRef getPltStrTable() const { return PltStrTable; } 2993 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2994 2995 private: 2996 const Elf_Shdr *GotSec; 2997 size_t LocalNum; 2998 size_t GlobalNum; 2999 3000 const Elf_Shdr *PltSec; 3001 const Elf_Shdr *PltRelSec; 3002 const Elf_Shdr *PltSymTable; 3003 StringRef FileName; 3004 3005 Elf_Sym_Range GotDynSyms; 3006 StringRef PltStrTable; 3007 3008 Entries GotEntries; 3009 Entries PltEntries; 3010 }; 3011 3012 } // end anonymous namespace 3013 3014 template <class ELFT> 3015 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 3016 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 3017 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 3018 PltRelSec(nullptr), PltSymTable(nullptr), 3019 FileName(D.getElfObject().getFileName()) {} 3020 3021 template <class ELFT> 3022 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 3023 Elf_Sym_Range DynSyms) { 3024 // See "Global Offset Table" in Chapter 5 in the following document 3025 // for detailed GOT description. 3026 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 3027 3028 // Find static GOT secton. 3029 if (IsStatic) { 3030 GotSec = Dumper.findSectionByName(".got"); 3031 if (!GotSec) 3032 return Error::success(); 3033 3034 ArrayRef<uint8_t> Content = 3035 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3036 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3037 Content.size() / sizeof(Entry)); 3038 LocalNum = GotEntries.size(); 3039 return Error::success(); 3040 } 3041 3042 // Lookup dynamic table tags which define the GOT layout. 3043 std::optional<uint64_t> DtPltGot; 3044 std::optional<uint64_t> DtLocalGotNum; 3045 std::optional<uint64_t> DtGotSym; 3046 for (const auto &Entry : DynTable) { 3047 switch (Entry.getTag()) { 3048 case ELF::DT_PLTGOT: 3049 DtPltGot = Entry.getVal(); 3050 break; 3051 case ELF::DT_MIPS_LOCAL_GOTNO: 3052 DtLocalGotNum = Entry.getVal(); 3053 break; 3054 case ELF::DT_MIPS_GOTSYM: 3055 DtGotSym = Entry.getVal(); 3056 break; 3057 } 3058 } 3059 3060 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 3061 return Error::success(); 3062 3063 if (!DtPltGot) 3064 return createError("cannot find PLTGOT dynamic tag"); 3065 if (!DtLocalGotNum) 3066 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 3067 if (!DtGotSym) 3068 return createError("cannot find MIPS_GOTSYM dynamic tag"); 3069 3070 size_t DynSymTotal = DynSyms.size(); 3071 if (*DtGotSym > DynSymTotal) 3072 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 3073 ") exceeds the number of dynamic symbols (" + 3074 Twine(DynSymTotal) + ")"); 3075 3076 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 3077 if (!GotSec) 3078 return createError("there is no non-empty GOT section at 0x" + 3079 Twine::utohexstr(*DtPltGot)); 3080 3081 LocalNum = *DtLocalGotNum; 3082 GlobalNum = DynSymTotal - *DtGotSym; 3083 3084 ArrayRef<uint8_t> Content = 3085 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3086 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3087 Content.size() / sizeof(Entry)); 3088 GotDynSyms = DynSyms.drop_front(*DtGotSym); 3089 3090 return Error::success(); 3091 } 3092 3093 template <class ELFT> 3094 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 3095 // Lookup dynamic table tags which define the PLT layout. 3096 std::optional<uint64_t> DtMipsPltGot; 3097 std::optional<uint64_t> DtJmpRel; 3098 for (const auto &Entry : DynTable) { 3099 switch (Entry.getTag()) { 3100 case ELF::DT_MIPS_PLTGOT: 3101 DtMipsPltGot = Entry.getVal(); 3102 break; 3103 case ELF::DT_JMPREL: 3104 DtJmpRel = Entry.getVal(); 3105 break; 3106 } 3107 } 3108 3109 if (!DtMipsPltGot && !DtJmpRel) 3110 return Error::success(); 3111 3112 // Find PLT section. 3113 if (!DtMipsPltGot) 3114 return createError("cannot find MIPS_PLTGOT dynamic tag"); 3115 if (!DtJmpRel) 3116 return createError("cannot find JMPREL dynamic tag"); 3117 3118 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 3119 if (!PltSec) 3120 return createError("there is no non-empty PLTGOT section at 0x" + 3121 Twine::utohexstr(*DtMipsPltGot)); 3122 3123 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 3124 if (!PltRelSec) 3125 return createError("there is no non-empty RELPLT section at 0x" + 3126 Twine::utohexstr(*DtJmpRel)); 3127 3128 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 3129 Obj.getSectionContents(*PltSec)) 3130 PltEntries = 3131 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 3132 PltContentOrErr->size() / sizeof(Entry)); 3133 else 3134 return createError("unable to read PLTGOT section content: " + 3135 toString(PltContentOrErr.takeError())); 3136 3137 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 3138 Obj.getSection(PltRelSec->sh_link)) 3139 PltSymTable = *PltSymTableOrErr; 3140 else 3141 return createError("unable to get a symbol table linked to the " + 3142 describe(Obj, *PltRelSec) + ": " + 3143 toString(PltSymTableOrErr.takeError())); 3144 3145 if (Expected<StringRef> StrTabOrErr = 3146 Obj.getStringTableForSymtab(*PltSymTable)) 3147 PltStrTable = *StrTabOrErr; 3148 else 3149 return createError("unable to get a string table for the " + 3150 describe(Obj, *PltSymTable) + ": " + 3151 toString(StrTabOrErr.takeError())); 3152 3153 return Error::success(); 3154 } 3155 3156 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 3157 return GotSec->sh_addr + 0x7ff0; 3158 } 3159 3160 template <class ELFT> 3161 const typename MipsGOTParser<ELFT>::Entry * 3162 MipsGOTParser<ELFT>::getGotLazyResolver() const { 3163 return LocalNum > 0 ? &GotEntries[0] : nullptr; 3164 } 3165 3166 template <class ELFT> 3167 const typename MipsGOTParser<ELFT>::Entry * 3168 MipsGOTParser<ELFT>::getGotModulePointer() const { 3169 if (LocalNum < 2) 3170 return nullptr; 3171 const Entry &E = GotEntries[1]; 3172 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 3173 return nullptr; 3174 return &E; 3175 } 3176 3177 template <class ELFT> 3178 typename MipsGOTParser<ELFT>::Entries 3179 MipsGOTParser<ELFT>::getLocalEntries() const { 3180 size_t Skip = getGotModulePointer() ? 2 : 1; 3181 if (LocalNum - Skip <= 0) 3182 return Entries(); 3183 return GotEntries.slice(Skip, LocalNum - Skip); 3184 } 3185 3186 template <class ELFT> 3187 typename MipsGOTParser<ELFT>::Entries 3188 MipsGOTParser<ELFT>::getGlobalEntries() const { 3189 if (GlobalNum == 0) 3190 return Entries(); 3191 return GotEntries.slice(LocalNum, GlobalNum); 3192 } 3193 3194 template <class ELFT> 3195 typename MipsGOTParser<ELFT>::Entries 3196 MipsGOTParser<ELFT>::getOtherEntries() const { 3197 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 3198 if (OtherNum == 0) 3199 return Entries(); 3200 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 3201 } 3202 3203 template <class ELFT> 3204 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 3205 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3206 return GotSec->sh_addr + Offset; 3207 } 3208 3209 template <class ELFT> 3210 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 3211 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3212 return Offset - 0x7ff0; 3213 } 3214 3215 template <class ELFT> 3216 const typename MipsGOTParser<ELFT>::Elf_Sym * 3217 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 3218 int64_t Offset = std::distance(GotEntries.data(), E); 3219 return &GotDynSyms[Offset - LocalNum]; 3220 } 3221 3222 template <class ELFT> 3223 const typename MipsGOTParser<ELFT>::Entry * 3224 MipsGOTParser<ELFT>::getPltLazyResolver() const { 3225 return PltEntries.empty() ? nullptr : &PltEntries[0]; 3226 } 3227 3228 template <class ELFT> 3229 const typename MipsGOTParser<ELFT>::Entry * 3230 MipsGOTParser<ELFT>::getPltModulePointer() const { 3231 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 3232 } 3233 3234 template <class ELFT> 3235 typename MipsGOTParser<ELFT>::Entries 3236 MipsGOTParser<ELFT>::getPltEntries() const { 3237 if (PltEntries.size() <= 2) 3238 return Entries(); 3239 return PltEntries.slice(2, PltEntries.size() - 2); 3240 } 3241 3242 template <class ELFT> 3243 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 3244 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 3245 return PltSec->sh_addr + Offset; 3246 } 3247 3248 template <class ELFT> 3249 const typename MipsGOTParser<ELFT>::Elf_Sym * 3250 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 3251 int64_t Offset = std::distance(getPltEntries().data(), E); 3252 if (PltRelSec->sh_type == ELF::SHT_REL) { 3253 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 3254 return unwrapOrError(FileName, 3255 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3256 } else { 3257 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 3258 return unwrapOrError(FileName, 3259 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3260 } 3261 } 3262 3263 const EnumEntry<unsigned> ElfMipsISAExtType[] = { 3264 {"None", Mips::AFL_EXT_NONE}, 3265 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 3266 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 3267 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 3268 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 3269 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 3270 {"LSI R4010", Mips::AFL_EXT_4010}, 3271 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 3272 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 3273 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 3274 {"MIPS R4650", Mips::AFL_EXT_4650}, 3275 {"MIPS R5900", Mips::AFL_EXT_5900}, 3276 {"MIPS R10000", Mips::AFL_EXT_10000}, 3277 {"NEC VR4100", Mips::AFL_EXT_4100}, 3278 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 3279 {"NEC VR4120", Mips::AFL_EXT_4120}, 3280 {"NEC VR5400", Mips::AFL_EXT_5400}, 3281 {"NEC VR5500", Mips::AFL_EXT_5500}, 3282 {"RMI Xlr", Mips::AFL_EXT_XLR}, 3283 {"Toshiba R3900", Mips::AFL_EXT_3900} 3284 }; 3285 3286 const EnumEntry<unsigned> ElfMipsASEFlags[] = { 3287 {"DSP", Mips::AFL_ASE_DSP}, 3288 {"DSPR2", Mips::AFL_ASE_DSPR2}, 3289 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 3290 {"MCU", Mips::AFL_ASE_MCU}, 3291 {"MDMX", Mips::AFL_ASE_MDMX}, 3292 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 3293 {"MT", Mips::AFL_ASE_MT}, 3294 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 3295 {"VZ", Mips::AFL_ASE_VIRT}, 3296 {"MSA", Mips::AFL_ASE_MSA}, 3297 {"MIPS16", Mips::AFL_ASE_MIPS16}, 3298 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 3299 {"XPA", Mips::AFL_ASE_XPA}, 3300 {"CRC", Mips::AFL_ASE_CRC}, 3301 {"GINV", Mips::AFL_ASE_GINV}, 3302 }; 3303 3304 const EnumEntry<unsigned> ElfMipsFpABIType[] = { 3305 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 3306 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 3307 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 3308 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 3309 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 3310 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 3311 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 3312 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 3313 {"Hard float compat (32-bit CPU, 64-bit FPU)", 3314 Mips::Val_GNU_MIPS_ABI_FP_64A} 3315 }; 3316 3317 static const EnumEntry<unsigned> ElfMipsFlags1[] { 3318 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 3319 }; 3320 3321 static int getMipsRegisterSize(uint8_t Flag) { 3322 switch (Flag) { 3323 case Mips::AFL_REG_NONE: 3324 return 0; 3325 case Mips::AFL_REG_32: 3326 return 32; 3327 case Mips::AFL_REG_64: 3328 return 64; 3329 case Mips::AFL_REG_128: 3330 return 128; 3331 default: 3332 return -1; 3333 } 3334 } 3335 3336 template <class ELFT> 3337 static void printMipsReginfoData(ScopedPrinter &W, 3338 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 3339 W.printHex("GP", Reginfo.ri_gp_value); 3340 W.printHex("General Mask", Reginfo.ri_gprmask); 3341 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 3342 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 3343 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 3344 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 3345 } 3346 3347 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 3348 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 3349 if (!RegInfoSec) { 3350 W.startLine() << "There is no .reginfo section in the file.\n"; 3351 return; 3352 } 3353 3354 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3355 Obj.getSectionContents(*RegInfoSec); 3356 if (!ContentsOrErr) { 3357 this->reportUniqueWarning( 3358 "unable to read the content of the .reginfo section (" + 3359 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 3360 return; 3361 } 3362 3363 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 3364 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 3365 Twine::utohexstr(ContentsOrErr->size()) + ")"); 3366 return; 3367 } 3368 3369 DictScope GS(W, "MIPS RegInfo"); 3370 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 3371 ContentsOrErr->data())); 3372 } 3373 3374 template <class ELFT> 3375 static Expected<const Elf_Mips_Options<ELFT> *> 3376 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 3377 bool &IsSupported) { 3378 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 3379 return createError("the .MIPS.options section has an invalid size (0x" + 3380 Twine::utohexstr(SecData.size()) + ")"); 3381 3382 const Elf_Mips_Options<ELFT> *O = 3383 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 3384 const uint8_t Size = O->size; 3385 if (Size > SecData.size()) { 3386 const uint64_t Offset = SecData.data() - SecBegin; 3387 const uint64_t SecSize = Offset + SecData.size(); 3388 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 3389 " at offset 0x" + Twine::utohexstr(Offset) + 3390 " goes past the end of the .MIPS.options " 3391 "section of size 0x" + 3392 Twine::utohexstr(SecSize)); 3393 } 3394 3395 IsSupported = O->kind == ODK_REGINFO; 3396 const size_t ExpectedSize = 3397 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 3398 3399 if (IsSupported) 3400 if (Size < ExpectedSize) 3401 return createError( 3402 "a .MIPS.options entry of kind " + 3403 Twine(getElfMipsOptionsOdkType(O->kind)) + 3404 " has an invalid size (0x" + Twine::utohexstr(Size) + 3405 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 3406 3407 SecData = SecData.drop_front(Size); 3408 return O; 3409 } 3410 3411 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 3412 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 3413 if (!MipsOpts) { 3414 W.startLine() << "There is no .MIPS.options section in the file.\n"; 3415 return; 3416 } 3417 3418 DictScope GS(W, "MIPS Options"); 3419 3420 ArrayRef<uint8_t> Data = 3421 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 3422 const uint8_t *const SecBegin = Data.begin(); 3423 while (!Data.empty()) { 3424 bool IsSupported; 3425 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 3426 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3427 if (!OptsOrErr) { 3428 reportUniqueWarning(OptsOrErr.takeError()); 3429 break; 3430 } 3431 3432 unsigned Kind = (*OptsOrErr)->kind; 3433 const char *Type = getElfMipsOptionsOdkType(Kind); 3434 if (!IsSupported) { 3435 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3436 << ")\n"; 3437 continue; 3438 } 3439 3440 DictScope GS(W, Type); 3441 if (Kind == ODK_REGINFO) 3442 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3443 else 3444 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3445 } 3446 } 3447 3448 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3449 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3450 if (!StackMapSection) 3451 return; 3452 3453 auto Warn = [&](Error &&E) { 3454 this->reportUniqueWarning("unable to read the stack map from " + 3455 describe(*StackMapSection) + ": " + 3456 toString(std::move(E))); 3457 }; 3458 3459 Expected<ArrayRef<uint8_t>> ContentOrErr = 3460 Obj.getSectionContents(*StackMapSection); 3461 if (!ContentOrErr) { 3462 Warn(ContentOrErr.takeError()); 3463 return; 3464 } 3465 3466 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader( 3467 *ContentOrErr)) { 3468 Warn(std::move(E)); 3469 return; 3470 } 3471 3472 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr)); 3473 } 3474 3475 template <class ELFT> 3476 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3477 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3478 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3479 if (!Target) 3480 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3481 " in " + describe(Sec) + ": " + 3482 toString(Target.takeError())); 3483 else 3484 printRelRelaReloc(R, *Target); 3485 } 3486 3487 template <class ELFT> 3488 std::vector<EnumEntry<unsigned>> 3489 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header, 3490 const Elf_Sym &Symbol) const { 3491 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 3492 std::end(ElfSymOtherFlags)); 3493 if (Header.e_machine == EM_MIPS) { 3494 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16 3495 // flag overlap with other ST_MIPS_xxx flags. So consider both 3496 // cases separately. 3497 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 3498 SymOtherFlags.insert(SymOtherFlags.end(), 3499 std::begin(ElfMips16SymOtherFlags), 3500 std::end(ElfMips16SymOtherFlags)); 3501 else 3502 SymOtherFlags.insert(SymOtherFlags.end(), 3503 std::begin(ElfMipsSymOtherFlags), 3504 std::end(ElfMipsSymOtherFlags)); 3505 } else if (Header.e_machine == EM_AARCH64) { 3506 SymOtherFlags.insert(SymOtherFlags.end(), 3507 std::begin(ElfAArch64SymOtherFlags), 3508 std::end(ElfAArch64SymOtherFlags)); 3509 } else if (Header.e_machine == EM_RISCV) { 3510 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags), 3511 std::end(ElfRISCVSymOtherFlags)); 3512 } 3513 return SymOtherFlags; 3514 } 3515 3516 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3517 StringRef Str2) { 3518 OS.PadToColumn(2u); 3519 OS << Str1; 3520 OS.PadToColumn(37u); 3521 OS << Str2 << "\n"; 3522 OS.flush(); 3523 } 3524 3525 template <class ELFT> 3526 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3527 StringRef FileName) { 3528 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3529 if (ElfHeader.e_shnum != 0) 3530 return to_string(ElfHeader.e_shnum); 3531 3532 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3533 if (!ArrOrErr) { 3534 // In this case we can ignore an error, because we have already reported a 3535 // warning about the broken section header table earlier. 3536 consumeError(ArrOrErr.takeError()); 3537 return "<?>"; 3538 } 3539 3540 if (ArrOrErr->empty()) 3541 return "0"; 3542 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3543 } 3544 3545 template <class ELFT> 3546 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3547 StringRef FileName) { 3548 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3549 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3550 return to_string(ElfHeader.e_shstrndx); 3551 3552 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3553 if (!ArrOrErr) { 3554 // In this case we can ignore an error, because we have already reported a 3555 // warning about the broken section header table earlier. 3556 consumeError(ArrOrErr.takeError()); 3557 return "<?>"; 3558 } 3559 3560 if (ArrOrErr->empty()) 3561 return "65535 (corrupt: out of range)"; 3562 return to_string(ElfHeader.e_shstrndx) + " (" + 3563 to_string((*ArrOrErr)[0].sh_link) + ")"; 3564 } 3565 3566 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3567 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3568 return E.Value == Type; 3569 }); 3570 if (It != ArrayRef(ElfObjectFileType).end()) 3571 return It; 3572 return nullptr; 3573 } 3574 3575 template <class ELFT> 3576 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 3577 ArrayRef<std::string> InputFilenames, 3578 const Archive *A) { 3579 if (InputFilenames.size() > 1 || A) { 3580 this->W.startLine() << "\n"; 3581 this->W.printString("File", FileStr); 3582 } 3583 } 3584 3585 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3586 const Elf_Ehdr &e = this->Obj.getHeader(); 3587 OS << "ELF Header:\n"; 3588 OS << " Magic: "; 3589 std::string Str; 3590 for (int i = 0; i < ELF::EI_NIDENT; i++) 3591 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3592 OS << "\n"; 3593 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 3594 printFields(OS, "Class:", Str); 3595 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding)); 3596 printFields(OS, "Data:", Str); 3597 OS.PadToColumn(2u); 3598 OS << "Version:"; 3599 OS.PadToColumn(37u); 3600 OS << utohexstr(e.e_ident[ELF::EI_VERSION]); 3601 if (e.e_version == ELF::EV_CURRENT) 3602 OS << " (current)"; 3603 OS << "\n"; 3604 auto OSABI = ArrayRef(ElfOSABI); 3605 if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 3606 e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 3607 switch (e.e_machine) { 3608 case ELF::EM_AMDGPU: 3609 OSABI = ArrayRef(AMDGPUElfOSABI); 3610 break; 3611 default: 3612 break; 3613 } 3614 } 3615 Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI); 3616 printFields(OS, "OS/ABI:", Str); 3617 printFields(OS, 3618 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3619 3620 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3621 Str = E->AltName.str(); 3622 } else { 3623 if (e.e_type >= ET_LOPROC) 3624 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3625 else if (e.e_type >= ET_LOOS) 3626 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3627 else 3628 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true); 3629 } 3630 printFields(OS, "Type:", Str); 3631 3632 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType)); 3633 printFields(OS, "Machine:", Str); 3634 Str = "0x" + utohexstr(e.e_version); 3635 printFields(OS, "Version:", Str); 3636 Str = "0x" + utohexstr(e.e_entry); 3637 printFields(OS, "Entry point address:", Str); 3638 Str = to_string(e.e_phoff) + " (bytes into file)"; 3639 printFields(OS, "Start of program headers:", Str); 3640 Str = to_string(e.e_shoff) + " (bytes into file)"; 3641 printFields(OS, "Start of section headers:", Str); 3642 std::string ElfFlags; 3643 if (e.e_machine == EM_MIPS) 3644 ElfFlags = printFlags( 3645 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), 3646 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); 3647 else if (e.e_machine == EM_RISCV) 3648 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 3649 else if (e.e_machine == EM_AVR) 3650 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags), 3651 unsigned(ELF::EF_AVR_ARCH_MASK)); 3652 else if (e.e_machine == EM_LOONGARCH) 3653 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 3654 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 3655 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 3656 else if (e.e_machine == EM_XTENSA) 3657 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags), 3658 unsigned(ELF::EF_XTENSA_MACH)); 3659 else if (e.e_machine == EM_CUDA) 3660 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags), 3661 unsigned(ELF::EF_CUDA_SM)); 3662 else if (e.e_machine == EM_AMDGPU) { 3663 switch (e.e_ident[ELF::EI_ABIVERSION]) { 3664 default: 3665 break; 3666 case 0: 3667 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 3668 [[fallthrough]]; 3669 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 3670 ElfFlags = 3671 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 3672 unsigned(ELF::EF_AMDGPU_MACH)); 3673 break; 3674 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 3675 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 3676 ElfFlags = 3677 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 3678 unsigned(ELF::EF_AMDGPU_MACH), 3679 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 3680 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 3681 break; 3682 } 3683 } 3684 Str = "0x" + utohexstr(e.e_flags); 3685 if (!ElfFlags.empty()) 3686 Str = Str + ", " + ElfFlags; 3687 printFields(OS, "Flags:", Str); 3688 Str = to_string(e.e_ehsize) + " (bytes)"; 3689 printFields(OS, "Size of this header:", Str); 3690 Str = to_string(e.e_phentsize) + " (bytes)"; 3691 printFields(OS, "Size of program headers:", Str); 3692 Str = to_string(e.e_phnum); 3693 printFields(OS, "Number of program headers:", Str); 3694 Str = to_string(e.e_shentsize) + " (bytes)"; 3695 printFields(OS, "Size of section headers:", Str); 3696 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3697 printFields(OS, "Number of section headers:", Str); 3698 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3699 printFields(OS, "Section header string table index:", Str); 3700 } 3701 3702 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3703 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3704 const Elf_Shdr &Symtab) -> StringRef { 3705 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3706 if (!StrTableOrErr) { 3707 reportUniqueWarning("unable to get the string table for " + 3708 describe(Symtab) + ": " + 3709 toString(StrTableOrErr.takeError())); 3710 return "<?>"; 3711 } 3712 3713 StringRef Strings = *StrTableOrErr; 3714 if (Sym.st_name >= Strings.size()) { 3715 reportUniqueWarning("unable to get the name of the symbol with index " + 3716 Twine(SymNdx) + ": st_name (0x" + 3717 Twine::utohexstr(Sym.st_name) + 3718 ") is past the end of the string table of size 0x" + 3719 Twine::utohexstr(Strings.size())); 3720 return "<?>"; 3721 } 3722 3723 return StrTableOrErr->data() + Sym.st_name; 3724 }; 3725 3726 std::vector<GroupSection> Ret; 3727 uint64_t I = 0; 3728 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3729 ++I; 3730 if (Sec.sh_type != ELF::SHT_GROUP) 3731 continue; 3732 3733 StringRef Signature = "<?>"; 3734 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3735 if (Expected<const Elf_Sym *> SymOrErr = 3736 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3737 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3738 else 3739 reportUniqueWarning("unable to get the signature symbol for " + 3740 describe(Sec) + ": " + 3741 toString(SymOrErr.takeError())); 3742 } else { 3743 reportUniqueWarning("unable to get the symbol table for " + 3744 describe(Sec) + ": " + 3745 toString(SymtabOrErr.takeError())); 3746 } 3747 3748 ArrayRef<Elf_Word> Data; 3749 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3750 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3751 if (ContentsOrErr->empty()) 3752 reportUniqueWarning("unable to read the section group flag from the " + 3753 describe(Sec) + ": the section is empty"); 3754 else 3755 Data = *ContentsOrErr; 3756 } else { 3757 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3758 ": " + toString(ContentsOrErr.takeError())); 3759 } 3760 3761 Ret.push_back({getPrintableSectionName(Sec), 3762 maybeDemangle(Signature), 3763 Sec.sh_name, 3764 I - 1, 3765 Sec.sh_link, 3766 Sec.sh_info, 3767 Data.empty() ? Elf_Word(0) : Data[0], 3768 {}}); 3769 3770 if (Data.empty()) 3771 continue; 3772 3773 std::vector<GroupMember> &GM = Ret.back().Members; 3774 for (uint32_t Ndx : Data.slice(1)) { 3775 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3776 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3777 } else { 3778 reportUniqueWarning("unable to get the section with index " + 3779 Twine(Ndx) + " when dumping the " + describe(Sec) + 3780 ": " + toString(SecOrErr.takeError())); 3781 GM.push_back({"<?>", Ndx}); 3782 } 3783 } 3784 } 3785 return Ret; 3786 } 3787 3788 static DenseMap<uint64_t, const GroupSection *> 3789 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3790 DenseMap<uint64_t, const GroupSection *> Ret; 3791 for (const GroupSection &G : Groups) 3792 for (const GroupMember &GM : G.Members) 3793 Ret.insert({GM.Index, &G}); 3794 return Ret; 3795 } 3796 3797 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3798 std::vector<GroupSection> V = this->getGroups(); 3799 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3800 for (const GroupSection &G : V) { 3801 OS << "\n" 3802 << getGroupType(G.Type) << " group section [" 3803 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3804 << "] contains " << G.Members.size() << " sections:\n" 3805 << " [Index] Name\n"; 3806 for (const GroupMember &GM : G.Members) { 3807 const GroupSection *MainGroup = Map[GM.Index]; 3808 if (MainGroup != &G) 3809 this->reportUniqueWarning( 3810 "section with index " + Twine(GM.Index) + 3811 ", included in the group section with index " + 3812 Twine(MainGroup->Index) + 3813 ", was also found in the group section with index " + 3814 Twine(G.Index)); 3815 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3816 } 3817 } 3818 3819 if (V.empty()) 3820 OS << "There are no section groups in this file.\n"; 3821 } 3822 3823 template <class ELFT> 3824 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 3825 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; 3826 } 3827 3828 template <class ELFT> 3829 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3830 const RelSymbol<ELFT> &RelSym) { 3831 // First two fields are bit width dependent. The rest of them are fixed width. 3832 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3833 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3834 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3835 3836 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3837 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3838 3839 SmallString<32> RelocName; 3840 this->Obj.getRelocationTypeName(R.Type, RelocName); 3841 Fields[2].Str = RelocName.c_str(); 3842 3843 if (RelSym.Sym) 3844 Fields[3].Str = 3845 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3846 if (RelSym.Sym && RelSym.Name.empty()) 3847 Fields[4].Str = "<null>"; 3848 else 3849 Fields[4].Str = std::string(RelSym.Name); 3850 3851 for (const Field &F : Fields) 3852 printField(F); 3853 3854 std::string Addend; 3855 if (std::optional<int64_t> A = R.Addend) { 3856 int64_t RelAddend = *A; 3857 if (!Fields[4].Str.empty()) { 3858 if (RelAddend < 0) { 3859 Addend = " - "; 3860 RelAddend = -static_cast<uint64_t>(RelAddend); 3861 } else { 3862 Addend = " + "; 3863 } 3864 } 3865 Addend += utohexstr(RelAddend, /*LowerCase=*/true); 3866 } 3867 OS << Addend << "\n"; 3868 } 3869 3870 template <class ELFT> 3871 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType, 3872 const typename ELFT::Ehdr &EHeader) { 3873 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3874 bool IsRelr = 3875 SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR || 3876 (EHeader.e_machine == EM_AARCH64 && SType == ELF::SHT_AARCH64_AUTH_RELR); 3877 if (ELFT::Is64Bits) 3878 OS << " "; 3879 else 3880 OS << " "; 3881 if (IsRelr && opts::RawRelr) 3882 OS << "Data "; 3883 else 3884 OS << "Offset"; 3885 if (ELFT::Is64Bits) 3886 OS << " Info Type" 3887 << " Symbol's Value Symbol's Name"; 3888 else 3889 OS << " Info Type Sym. Value Symbol's Name"; 3890 if (IsRela) 3891 OS << " + Addend"; 3892 OS << "\n"; 3893 } 3894 3895 template <class ELFT> 3896 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3897 const DynRegionInfo &Reg) { 3898 uint64_t Offset = Reg.Addr - this->Obj.base(); 3899 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3900 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n"; 3901 printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader()); 3902 } 3903 3904 template <class ELFT> 3905 static bool isRelocationSec(const typename ELFT::Shdr &Sec, 3906 const typename ELFT::Ehdr &EHeader) { 3907 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3908 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || 3909 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3910 Sec.sh_type == ELF::SHT_ANDROID_RELR || 3911 (EHeader.e_machine == EM_AARCH64 && 3912 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR); 3913 } 3914 3915 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3916 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3917 // Android's packed relocation section needs to be unpacked first 3918 // to get the actual number of entries. 3919 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3920 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3921 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3922 this->Obj.android_relas(Sec); 3923 if (!RelasOrErr) 3924 return RelasOrErr.takeError(); 3925 return RelasOrErr->size(); 3926 } 3927 3928 if (!opts::RawRelr && 3929 (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR || 3930 (this->Obj.getHeader().e_machine == EM_AARCH64 && 3931 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR))) { 3932 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3933 if (!RelrsOrErr) 3934 return RelrsOrErr.takeError(); 3935 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3936 } 3937 3938 return Sec.getEntityCount(); 3939 }; 3940 3941 bool HasRelocSections = false; 3942 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3943 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) 3944 continue; 3945 HasRelocSections = true; 3946 3947 std::string EntriesNum = "<?>"; 3948 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3949 EntriesNum = std::to_string(*NumOrErr); 3950 else 3951 this->reportUniqueWarning("unable to get the number of relocations in " + 3952 this->describe(Sec) + ": " + 3953 toString(NumOrErr.takeError())); 3954 3955 uintX_t Offset = Sec.sh_offset; 3956 StringRef Name = this->getPrintableSectionName(Sec); 3957 OS << "\nRelocation section '" << Name << "' at offset 0x" 3958 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum 3959 << " entries:\n"; 3960 printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader()); 3961 this->printRelocationsHelper(Sec); 3962 } 3963 if (!HasRelocSections) 3964 OS << "\nThere are no relocations in this file.\n"; 3965 } 3966 3967 // Print the offset of a particular section from anyone of the ranges: 3968 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3969 // If 'Type' does not fall within any of those ranges, then a string is 3970 // returned as '<unknown>' followed by the type value. 3971 static std::string getSectionTypeOffsetString(unsigned Type) { 3972 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3973 return "LOOS+0x" + utohexstr(Type - SHT_LOOS); 3974 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3975 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC); 3976 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3977 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER); 3978 return "0x" + utohexstr(Type) + ": <unknown>"; 3979 } 3980 3981 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 3982 StringRef Name = getELFSectionTypeName(Machine, Type); 3983 3984 // Handle SHT_GNU_* type names. 3985 if (Name.consume_front("SHT_GNU_")) { 3986 if (Name == "HASH") 3987 return "GNU_HASH"; 3988 // E.g. SHT_GNU_verneed -> VERNEED. 3989 return Name.upper(); 3990 } 3991 3992 if (Name == "SHT_SYMTAB_SHNDX") 3993 return "SYMTAB SECTION INDICES"; 3994 3995 if (Name.consume_front("SHT_")) 3996 return Name.str(); 3997 return getSectionTypeOffsetString(Type); 3998 } 3999 4000 static void printSectionDescription(formatted_raw_ostream &OS, 4001 unsigned EMachine) { 4002 OS << "Key to Flags:\n"; 4003 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 4004 "(info),\n"; 4005 OS << " L (link order), O (extra OS processing required), G (group), T " 4006 "(TLS),\n"; 4007 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 4008 OS << " R (retain)"; 4009 4010 if (EMachine == EM_X86_64) 4011 OS << ", l (large)"; 4012 else if (EMachine == EM_ARM) 4013 OS << ", y (purecode)"; 4014 4015 OS << ", p (processor specific)\n"; 4016 } 4017 4018 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 4019 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4020 if (Sections.empty()) { 4021 OS << "\nThere are no sections in this file.\n"; 4022 Expected<StringRef> SecStrTableOrErr = 4023 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4024 if (!SecStrTableOrErr) 4025 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4026 return; 4027 } 4028 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 4029 OS << "There are " << to_string(Sections.size()) 4030 << " section headers, starting at offset " 4031 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4032 OS << "Section Headers:\n"; 4033 Field Fields[11] = { 4034 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 4035 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 4036 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 4037 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 4038 for (const Field &F : Fields) 4039 printField(F); 4040 OS << "\n"; 4041 4042 StringRef SecStrTable; 4043 if (Expected<StringRef> SecStrTableOrErr = 4044 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4045 SecStrTable = *SecStrTableOrErr; 4046 else 4047 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4048 4049 size_t SectionIndex = 0; 4050 for (const Elf_Shdr &Sec : Sections) { 4051 Fields[0].Str = to_string(SectionIndex); 4052 if (SecStrTable.empty()) 4053 Fields[1].Str = "<no-strings>"; 4054 else 4055 Fields[1].Str = std::string(unwrapOrError<StringRef>( 4056 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 4057 Fields[2].Str = 4058 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 4059 Fields[3].Str = 4060 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 4061 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 4062 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 4063 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 4064 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 4065 this->Obj.getHeader().e_machine, Sec.sh_flags); 4066 Fields[8].Str = to_string(Sec.sh_link); 4067 Fields[9].Str = to_string(Sec.sh_info); 4068 Fields[10].Str = to_string(Sec.sh_addralign); 4069 4070 OS.PadToColumn(Fields[0].Column); 4071 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 4072 for (int i = 1; i < 7; i++) 4073 printField(Fields[i]); 4074 OS.PadToColumn(Fields[7].Column); 4075 OS << right_justify(Fields[7].Str, 3); 4076 OS.PadToColumn(Fields[8].Column); 4077 OS << right_justify(Fields[8].Str, 2); 4078 OS.PadToColumn(Fields[9].Column); 4079 OS << right_justify(Fields[9].Str, 3); 4080 OS.PadToColumn(Fields[10].Column); 4081 OS << right_justify(Fields[10].Str, 2); 4082 OS << "\n"; 4083 ++SectionIndex; 4084 } 4085 printSectionDescription(OS, this->Obj.getHeader().e_machine); 4086 } 4087 4088 template <class ELFT> 4089 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 4090 size_t Entries, 4091 bool NonVisibilityBitsUsed, 4092 bool ExtraSymInfo) const { 4093 StringRef Name; 4094 if (Symtab) 4095 Name = this->getPrintableSectionName(*Symtab); 4096 if (!Name.empty()) 4097 OS << "\nSymbol table '" << Name << "'"; 4098 else 4099 OS << "\nSymbol table for image"; 4100 OS << " contains " << Entries << " entries:\n"; 4101 4102 if (ELFT::Is64Bits) { 4103 OS << " Num: Value Size Type Bind Vis"; 4104 if (ExtraSymInfo) 4105 OS << "+Other"; 4106 } else { 4107 OS << " Num: Value Size Type Bind Vis"; 4108 if (ExtraSymInfo) 4109 OS << "+Other"; 4110 } 4111 4112 OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0)); 4113 if (ExtraSymInfo) 4114 OS << "Ndx(SecName) Name [+ Version Info]\n"; 4115 else 4116 OS << "Ndx Name\n"; 4117 } 4118 4119 template <class ELFT> 4120 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx( 4121 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 4122 bool ExtraSymInfo) const { 4123 unsigned SectionIndex = Symbol.st_shndx; 4124 switch (SectionIndex) { 4125 case ELF::SHN_UNDEF: 4126 return "UND"; 4127 case ELF::SHN_ABS: 4128 return "ABS"; 4129 case ELF::SHN_COMMON: 4130 return "COM"; 4131 case ELF::SHN_XINDEX: { 4132 Expected<uint32_t> IndexOrErr = 4133 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 4134 if (!IndexOrErr) { 4135 assert(Symbol.st_shndx == SHN_XINDEX && 4136 "getExtendedSymbolTableIndex should only fail due to an invalid " 4137 "SHT_SYMTAB_SHNDX table/reference"); 4138 this->reportUniqueWarning(IndexOrErr.takeError()); 4139 return "RSV[0xffff]"; 4140 } 4141 SectionIndex = *IndexOrErr; 4142 break; 4143 } 4144 default: 4145 // Find if: 4146 // Processor specific 4147 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 4148 return std::string("PRC[0x") + 4149 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4150 // OS specific 4151 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 4152 return std::string("OS[0x") + 4153 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4154 // Architecture reserved: 4155 if (SectionIndex >= ELF::SHN_LORESERVE && 4156 SectionIndex <= ELF::SHN_HIRESERVE) 4157 return std::string("RSV[0x") + 4158 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4159 break; 4160 } 4161 4162 std::string Extra; 4163 if (ExtraSymInfo) { 4164 auto Sec = this->Obj.getSection(SectionIndex); 4165 if (!Sec) { 4166 this->reportUniqueWarning(Sec.takeError()); 4167 } else { 4168 auto SecName = this->Obj.getSectionName(**Sec); 4169 if (!SecName) 4170 this->reportUniqueWarning(SecName.takeError()); 4171 else 4172 Extra = Twine(" (" + *SecName + ")").str(); 4173 } 4174 } 4175 return to_string(format_decimal(SectionIndex, 3)) + Extra; 4176 } 4177 4178 template <class ELFT> 4179 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 4180 DataRegion<Elf_Word> ShndxTable, 4181 std::optional<StringRef> StrTable, 4182 bool IsDynamic, bool NonVisibilityBitsUsed, 4183 bool ExtraSymInfo) const { 4184 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4185 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 4186 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 4187 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 4188 Fields[1].Str = 4189 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 4190 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 4191 4192 unsigned char SymbolType = Symbol.getType(); 4193 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4194 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4195 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4196 else 4197 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4198 4199 Fields[4].Str = 4200 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 4201 Fields[5].Str = 4202 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4203 4204 if (Symbol.st_other & ~0x3) { 4205 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 4206 uint8_t Other = Symbol.st_other & ~0x3; 4207 if (Other & STO_AARCH64_VARIANT_PCS) { 4208 Other &= ~STO_AARCH64_VARIANT_PCS; 4209 Fields[5].Str += " [VARIANT_PCS"; 4210 if (Other != 0) 4211 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4212 Fields[5].Str.append("]"); 4213 } 4214 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { 4215 uint8_t Other = Symbol.st_other & ~0x3; 4216 if (Other & STO_RISCV_VARIANT_CC) { 4217 Other &= ~STO_RISCV_VARIANT_CC; 4218 Fields[5].Str += " [VARIANT_CC"; 4219 if (Other != 0) 4220 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4221 Fields[5].Str.append("]"); 4222 } 4223 } else { 4224 Fields[5].Str += 4225 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 4226 } 4227 } 4228 4229 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 4230 Fields[6].Str = 4231 getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo); 4232 4233 Fields[7].Column += ExtraSymInfo ? 10 : 0; 4234 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 4235 StrTable, IsDynamic); 4236 for (const Field &Entry : Fields) 4237 printField(Entry); 4238 OS << "\n"; 4239 } 4240 4241 template <class ELFT> 4242 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 4243 unsigned SymIndex, 4244 DataRegion<Elf_Word> ShndxTable, 4245 StringRef StrTable, 4246 uint32_t Bucket) { 4247 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4248 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 4249 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 4250 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 4251 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 4252 4253 Fields[2].Str = to_string( 4254 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 4255 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 4256 4257 unsigned char SymbolType = Symbol->getType(); 4258 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4259 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4260 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4261 else 4262 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4263 4264 Fields[5].Str = 4265 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings)); 4266 Fields[6].Str = 4267 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4268 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 4269 Fields[8].Str = 4270 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 4271 4272 for (const Field &Entry : Fields) 4273 printField(Entry); 4274 OS << "\n"; 4275 } 4276 4277 template <class ELFT> 4278 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 4279 bool PrintDynamicSymbols, 4280 bool ExtraSymInfo) { 4281 if (!PrintSymbols && !PrintDynamicSymbols) 4282 return; 4283 // GNU readelf prints both the .dynsym and .symtab with --symbols. 4284 this->printSymbolsHelper(true, ExtraSymInfo); 4285 if (PrintSymbols) 4286 this->printSymbolsHelper(false, ExtraSymInfo); 4287 } 4288 4289 template <class ELFT> 4290 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 4291 if (this->DynamicStringTable.empty()) 4292 return; 4293 4294 if (ELFT::Is64Bits) 4295 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4296 else 4297 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4298 OS << "\n"; 4299 4300 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4301 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4302 if (!FirstSym) { 4303 this->reportUniqueWarning( 4304 Twine("unable to print symbols for the .hash table: the " 4305 "dynamic symbol table ") + 4306 (this->DynSymRegion ? "is empty" : "was not found")); 4307 return; 4308 } 4309 4310 DataRegion<Elf_Word> ShndxTable( 4311 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4312 auto Buckets = SysVHash.buckets(); 4313 auto Chains = SysVHash.chains(); 4314 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 4315 if (Buckets[Buc] == ELF::STN_UNDEF) 4316 continue; 4317 BitVector Visited(SysVHash.nchain); 4318 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 4319 if (Ch == ELF::STN_UNDEF) 4320 break; 4321 4322 if (Visited[Ch]) { 4323 this->reportUniqueWarning(".hash section is invalid: bucket " + 4324 Twine(Ch) + 4325 ": a cycle was detected in the linked chain"); 4326 break; 4327 } 4328 4329 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 4330 Buc); 4331 Visited[Ch] = true; 4332 } 4333 } 4334 } 4335 4336 template <class ELFT> 4337 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 4338 if (this->DynamicStringTable.empty()) 4339 return; 4340 4341 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4342 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4343 if (!FirstSym) { 4344 this->reportUniqueWarning( 4345 Twine("unable to print symbols for the .gnu.hash table: the " 4346 "dynamic symbol table ") + 4347 (this->DynSymRegion ? "is empty" : "was not found")); 4348 return; 4349 } 4350 4351 auto GetSymbol = [&](uint64_t SymIndex, 4352 uint64_t SymsTotal) -> const Elf_Sym * { 4353 if (SymIndex >= SymsTotal) { 4354 this->reportUniqueWarning( 4355 "unable to print hashed symbol with index " + Twine(SymIndex) + 4356 ", which is greater than or equal to the number of dynamic symbols " 4357 "(" + 4358 Twine::utohexstr(SymsTotal) + ")"); 4359 return nullptr; 4360 } 4361 return FirstSym + SymIndex; 4362 }; 4363 4364 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 4365 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 4366 ArrayRef<Elf_Word> Values; 4367 if (!ValuesOrErr) 4368 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 4369 "section: " + 4370 toString(ValuesOrErr.takeError())); 4371 else 4372 Values = *ValuesOrErr; 4373 4374 DataRegion<Elf_Word> ShndxTable( 4375 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4376 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 4377 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 4378 if (Buckets[Buc] == ELF::STN_UNDEF) 4379 continue; 4380 uint32_t Index = Buckets[Buc]; 4381 // Print whole chain. 4382 while (true) { 4383 uint32_t SymIndex = Index++; 4384 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 4385 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 4386 Buc); 4387 else 4388 break; 4389 4390 if (SymIndex < GnuHash.symndx) { 4391 this->reportUniqueWarning( 4392 "unable to read the hash value for symbol with index " + 4393 Twine(SymIndex) + 4394 ", which is less than the index of the first hashed symbol (" + 4395 Twine(GnuHash.symndx) + ")"); 4396 break; 4397 } 4398 4399 // Chain ends at symbol with stopper bit. 4400 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 4401 break; 4402 } 4403 } 4404 } 4405 4406 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 4407 if (this->HashTable) { 4408 OS << "\n Symbol table of .hash for image:\n"; 4409 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4410 this->reportUniqueWarning(std::move(E)); 4411 else 4412 printHashTableSymbols(*this->HashTable); 4413 } 4414 4415 // Try printing the .gnu.hash table. 4416 if (this->GnuHashTable) { 4417 OS << "\n Symbol table of .gnu.hash for image:\n"; 4418 if (ELFT::Is64Bits) 4419 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4420 else 4421 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4422 OS << "\n"; 4423 4424 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4425 this->reportUniqueWarning(std::move(E)); 4426 else 4427 printGnuHashTableSymbols(*this->GnuHashTable); 4428 } 4429 } 4430 4431 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 4432 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4433 if (Sections.empty()) { 4434 OS << "\nThere are no sections in this file.\n"; 4435 Expected<StringRef> SecStrTableOrErr = 4436 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4437 if (!SecStrTableOrErr) 4438 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4439 return; 4440 } 4441 OS << "There are " << to_string(Sections.size()) 4442 << " section headers, starting at offset " 4443 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4444 4445 OS << "Section Headers:\n"; 4446 4447 auto PrintFields = [&](ArrayRef<Field> V) { 4448 for (const Field &F : V) 4449 printField(F); 4450 OS << "\n"; 4451 }; 4452 4453 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 4454 4455 constexpr bool Is64 = ELFT::Is64Bits; 4456 PrintFields({{"Type", 7}, 4457 {Is64 ? "Address" : "Addr", 23}, 4458 {"Off", Is64 ? 40 : 32}, 4459 {"Size", Is64 ? 47 : 39}, 4460 {"ES", Is64 ? 54 : 46}, 4461 {"Lk", Is64 ? 59 : 51}, 4462 {"Inf", Is64 ? 62 : 54}, 4463 {"Al", Is64 ? 66 : 57}}); 4464 PrintFields({{"Flags", 7}}); 4465 4466 StringRef SecStrTable; 4467 if (Expected<StringRef> SecStrTableOrErr = 4468 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4469 SecStrTable = *SecStrTableOrErr; 4470 else 4471 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4472 4473 size_t SectionIndex = 0; 4474 const unsigned AddrSize = Is64 ? 16 : 8; 4475 for (const Elf_Shdr &S : Sections) { 4476 StringRef Name = "<?>"; 4477 if (Expected<StringRef> NameOrErr = 4478 this->Obj.getSectionName(S, SecStrTable)) 4479 Name = *NameOrErr; 4480 else 4481 this->reportUniqueWarning(NameOrErr.takeError()); 4482 4483 OS.PadToColumn(2); 4484 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 4485 PrintFields({{Name, 7}}); 4486 PrintFields( 4487 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 4488 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 4489 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 4490 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 4491 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 4492 {to_string(S.sh_link), Is64 ? 59 : 51}, 4493 {to_string(S.sh_info), Is64 ? 63 : 55}, 4494 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 4495 4496 OS.PadToColumn(7); 4497 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 4498 4499 DenseMap<unsigned, StringRef> FlagToName = { 4500 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 4501 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 4502 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 4503 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 4504 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 4505 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 4506 4507 uint64_t Flags = S.sh_flags; 4508 uint64_t UnknownFlags = 0; 4509 ListSeparator LS; 4510 while (Flags) { 4511 // Take the least significant bit as a flag. 4512 uint64_t Flag = Flags & -Flags; 4513 Flags -= Flag; 4514 4515 auto It = FlagToName.find(Flag); 4516 if (It != FlagToName.end()) 4517 OS << LS << It->second; 4518 else 4519 UnknownFlags |= Flag; 4520 } 4521 4522 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 4523 uint64_t FlagsToPrint = UnknownFlags & Mask; 4524 if (!FlagsToPrint) 4525 return; 4526 4527 OS << LS << Name << " (" 4528 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 4529 UnknownFlags &= ~Mask; 4530 }; 4531 4532 PrintUnknownFlags(SHF_MASKOS, "OS"); 4533 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 4534 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 4535 4536 OS << "\n"; 4537 ++SectionIndex; 4538 4539 if (!(S.sh_flags & SHF_COMPRESSED)) 4540 continue; 4541 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S); 4542 if (!Data || Data->size() < sizeof(Elf_Chdr)) { 4543 consumeError(Data.takeError()); 4544 reportWarning(createError("SHF_COMPRESSED section '" + Name + 4545 "' does not have an Elf_Chdr header"), 4546 this->FileName); 4547 OS.indent(7); 4548 OS << "[<corrupt>]"; 4549 } else { 4550 OS.indent(7); 4551 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data()); 4552 if (Chdr->ch_type == ELFCOMPRESS_ZLIB) 4553 OS << "ZLIB"; 4554 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD) 4555 OS << "ZSTD"; 4556 else 4557 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type)); 4558 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8) 4559 << ", " << Chdr->ch_addralign; 4560 } 4561 OS << '\n'; 4562 } 4563 } 4564 4565 static inline std::string printPhdrFlags(unsigned Flag) { 4566 std::string Str; 4567 Str = (Flag & PF_R) ? "R" : " "; 4568 Str += (Flag & PF_W) ? "W" : " "; 4569 Str += (Flag & PF_X) ? "E" : " "; 4570 return Str; 4571 } 4572 4573 template <class ELFT> 4574 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 4575 const typename ELFT::Shdr &Sec) { 4576 if (Sec.sh_flags & ELF::SHF_TLS) { 4577 // .tbss must only be shown in the PT_TLS segment. 4578 if (Sec.sh_type == ELF::SHT_NOBITS) 4579 return Phdr.p_type == ELF::PT_TLS; 4580 4581 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 4582 // segments. 4583 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 4584 (Phdr.p_type == ELF::PT_GNU_RELRO); 4585 } 4586 4587 // PT_TLS must only have SHF_TLS sections. 4588 return Phdr.p_type != ELF::PT_TLS; 4589 } 4590 4591 template <class ELFT> 4592 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4593 const typename ELFT::Shdr &Sec) { 4594 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4595 return true; 4596 4597 // We get here when we have an empty section. Only non-empty sections can be 4598 // at the start or at the end of PT_DYNAMIC. 4599 // Is section within the phdr both based on offset and VMA? 4600 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4601 (Sec.sh_offset > Phdr.p_offset && 4602 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4603 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4604 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4605 return CheckOffset && CheckVA; 4606 } 4607 4608 template <class ELFT> 4609 void GNUELFDumper<ELFT>::printProgramHeaders( 4610 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4611 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE); 4612 // Exit early if no program header or section mapping details were requested. 4613 if (!PrintProgramHeaders && !ShouldPrintSectionMapping) 4614 return; 4615 4616 if (PrintProgramHeaders) { 4617 const Elf_Ehdr &Header = this->Obj.getHeader(); 4618 if (Header.e_phnum == 0) { 4619 OS << "\nThere are no program headers in this file.\n"; 4620 } else { 4621 printProgramHeaders(); 4622 } 4623 } 4624 4625 if (ShouldPrintSectionMapping) 4626 printSectionMapping(); 4627 } 4628 4629 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4630 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4631 const Elf_Ehdr &Header = this->Obj.getHeader(); 4632 Field Fields[8] = {2, 17, 26, 37 + Bias, 4633 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4634 OS << "\nElf file type is " 4635 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n" 4636 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4637 << "There are " << Header.e_phnum << " program headers," 4638 << " starting at offset " << Header.e_phoff << "\n\n" 4639 << "Program Headers:\n"; 4640 if (ELFT::Is64Bits) 4641 OS << " Type Offset VirtAddr PhysAddr " 4642 << " FileSiz MemSiz Flg Align\n"; 4643 else 4644 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4645 << "MemSiz Flg Align\n"; 4646 4647 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4648 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4649 4650 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4651 if (!PhdrsOrErr) { 4652 this->reportUniqueWarning("unable to dump program headers: " + 4653 toString(PhdrsOrErr.takeError())); 4654 return; 4655 } 4656 4657 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4658 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4659 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4660 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4661 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4662 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4663 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4664 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4665 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4666 for (const Field &F : Fields) 4667 printField(F); 4668 if (Phdr.p_type == ELF::PT_INTERP) { 4669 OS << "\n"; 4670 auto ReportBadInterp = [&](const Twine &Msg) { 4671 this->reportUniqueWarning( 4672 "unable to read program interpreter name at offset 0x" + 4673 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4674 }; 4675 4676 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4677 ReportBadInterp("it goes past the end of the file (0x" + 4678 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4679 continue; 4680 } 4681 4682 const char *Data = 4683 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4684 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4685 size_t Len = strnlen(Data, MaxSize); 4686 if (Len == MaxSize) { 4687 ReportBadInterp("it is not null-terminated"); 4688 continue; 4689 } 4690 4691 OS << " [Requesting program interpreter: "; 4692 OS << StringRef(Data, Len) << "]"; 4693 } 4694 OS << "\n"; 4695 } 4696 } 4697 4698 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4699 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4700 DenseSet<const Elf_Shdr *> BelongsToSegment; 4701 int Phnum = 0; 4702 4703 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4704 if (!PhdrsOrErr) { 4705 this->reportUniqueWarning( 4706 "can't read program headers to build section to segment mapping: " + 4707 toString(PhdrsOrErr.takeError())); 4708 return; 4709 } 4710 4711 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4712 std::string Sections; 4713 OS << format(" %2.2d ", Phnum++); 4714 // Check if each section is in a segment and then print mapping. 4715 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4716 if (Sec.sh_type == ELF::SHT_NULL) 4717 continue; 4718 4719 // readelf additionally makes sure it does not print zero sized sections 4720 // at end of segments and for PT_DYNAMIC both start and end of section 4721 // .tbss must only be shown in PT_TLS section. 4722 if (isSectionInSegment<ELFT>(Phdr, Sec) && 4723 checkTLSSections<ELFT>(Phdr, Sec) && 4724 checkPTDynamic<ELFT>(Phdr, Sec)) { 4725 Sections += 4726 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4727 " "; 4728 BelongsToSegment.insert(&Sec); 4729 } 4730 } 4731 OS << Sections << "\n"; 4732 OS.flush(); 4733 } 4734 4735 // Display sections that do not belong to a segment. 4736 std::string Sections; 4737 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4738 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4739 Sections += 4740 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4741 ' '; 4742 } 4743 if (!Sections.empty()) { 4744 OS << " None " << Sections << '\n'; 4745 OS.flush(); 4746 } 4747 } 4748 4749 namespace { 4750 4751 template <class ELFT> 4752 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4753 const Relocation<ELFT> &Reloc) { 4754 using Elf_Sym = typename ELFT::Sym; 4755 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4756 const Twine &Reason) -> RelSymbol<ELFT> { 4757 Dumper.reportUniqueWarning( 4758 "unable to get name of the dynamic symbol with index " + 4759 Twine(Reloc.Symbol) + ": " + Reason); 4760 return {Sym, "<corrupt>"}; 4761 }; 4762 4763 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4764 const Elf_Sym *FirstSym = Symbols.begin(); 4765 if (!FirstSym) 4766 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4767 4768 // We might have an object without a section header. In this case the size of 4769 // Symbols is zero, because there is no way to know the size of the dynamic 4770 // table. We should allow this case and not print a warning. 4771 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4772 return WarnAndReturn( 4773 nullptr, 4774 "index is greater than or equal to the number of dynamic symbols (" + 4775 Twine(Symbols.size()) + ")"); 4776 4777 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4778 const uint64_t FileSize = Obj.getBufSize(); 4779 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4780 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4781 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4782 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4783 " goes past the end of the file (0x" + 4784 Twine::utohexstr(FileSize) + ")"); 4785 4786 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4787 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4788 if (!ErrOrName) 4789 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4790 4791 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4792 } 4793 } // namespace 4794 4795 template <class ELFT> 4796 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4797 typename ELFT::DynRange Tags) { 4798 size_t Max = 0; 4799 for (const typename ELFT::Dyn &Dyn : Tags) 4800 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4801 return Max; 4802 } 4803 4804 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4805 Elf_Dyn_Range Table = this->dynamic_table(); 4806 if (Table.empty()) 4807 return; 4808 4809 OS << "Dynamic section at offset " 4810 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4811 this->Obj.base(), 4812 1) 4813 << " contains " << Table.size() << " entries:\n"; 4814 4815 // The type name is surrounded with round brackets, hence add 2. 4816 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4817 // The "Name/Value" column should be indented from the "Type" column by N 4818 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4819 // space (1) = 3. 4820 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4821 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4822 4823 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4824 for (auto Entry : Table) { 4825 uintX_t Tag = Entry.getTag(); 4826 std::string Type = 4827 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")"; 4828 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4829 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4830 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4831 } 4832 } 4833 4834 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4835 this->printDynamicRelocationsHelper(); 4836 } 4837 4838 template <class ELFT> 4839 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4840 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4841 } 4842 4843 template <class ELFT> 4844 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4845 this->forEachRelocationDo( 4846 Sec, opts::RawRelr, 4847 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4848 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }, 4849 [&](const Elf_Relr &R) { printRelrReloc(R); }); 4850 } 4851 4852 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4853 const bool IsMips64EL = this->Obj.isMips64EL(); 4854 if (this->DynRelaRegion.Size > 0) { 4855 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4856 for (const Elf_Rela &Rela : 4857 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4858 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4859 } 4860 4861 if (this->DynRelRegion.Size > 0) { 4862 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4863 for (const Elf_Rel &Rel : 4864 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4865 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4866 } 4867 4868 if (this->DynRelrRegion.Size > 0) { 4869 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4870 Elf_Relr_Range Relrs = 4871 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4872 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4873 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4874 } 4875 4876 if (this->DynPLTRelRegion.Size) { 4877 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4878 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4879 for (const Elf_Rela &Rela : 4880 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4881 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4882 } else { 4883 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4884 for (const Elf_Rel &Rel : 4885 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4886 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4887 } 4888 } 4889 } 4890 4891 template <class ELFT> 4892 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 4893 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 4894 // Don't inline the SecName, because it might report a warning to stderr and 4895 // corrupt the output. 4896 StringRef SecName = this->getPrintableSectionName(Sec); 4897 OS << Label << " section '" << SecName << "' " 4898 << "contains " << EntriesNum << " entries:\n"; 4899 4900 StringRef LinkedSecName = "<corrupt>"; 4901 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 4902 this->Obj.getSection(Sec.sh_link)) 4903 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 4904 else 4905 this->reportUniqueWarning("invalid section linked to " + 4906 this->describe(Sec) + ": " + 4907 toString(LinkedSecOrErr.takeError())); 4908 4909 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 4910 << " Offset: " << format_hex(Sec.sh_offset, 8) 4911 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 4912 } 4913 4914 template <class ELFT> 4915 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 4916 if (!Sec) 4917 return; 4918 4919 printGNUVersionSectionProlog(*Sec, "Version symbols", 4920 Sec->sh_size / sizeof(Elf_Versym)); 4921 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 4922 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 4923 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 4924 if (!VerTableOrErr) { 4925 this->reportUniqueWarning(VerTableOrErr.takeError()); 4926 return; 4927 } 4928 4929 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr; 4930 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 4931 this->getVersionMap()) 4932 VersionMap = *MapOrErr; 4933 else 4934 this->reportUniqueWarning(MapOrErr.takeError()); 4935 4936 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 4937 std::vector<StringRef> Versions; 4938 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 4939 unsigned Ndx = VerTable[I].vs_index; 4940 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 4941 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 4942 continue; 4943 } 4944 4945 if (!VersionMap) { 4946 Versions.emplace_back("<corrupt>"); 4947 continue; 4948 } 4949 4950 bool IsDefault; 4951 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 4952 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt); 4953 if (!NameOrErr) { 4954 this->reportUniqueWarning("unable to get a version for entry " + 4955 Twine(I) + " of " + this->describe(*Sec) + 4956 ": " + toString(NameOrErr.takeError())); 4957 Versions.emplace_back("<corrupt>"); 4958 continue; 4959 } 4960 Versions.emplace_back(*NameOrErr); 4961 } 4962 4963 // readelf prints 4 entries per line. 4964 uint64_t Entries = VerTable.size(); 4965 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 4966 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 4967 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 4968 unsigned Ndx = VerTable[VersymRow + I].vs_index; 4969 OS << format("%4x%c", Ndx & VERSYM_VERSION, 4970 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 4971 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 4972 } 4973 OS << '\n'; 4974 } 4975 OS << '\n'; 4976 } 4977 4978 static std::string versionFlagToString(unsigned Flags) { 4979 if (Flags == 0) 4980 return "none"; 4981 4982 std::string Ret; 4983 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 4984 if (!(Flags & Flag)) 4985 return; 4986 if (!Ret.empty()) 4987 Ret += " | "; 4988 Ret += Name; 4989 Flags &= ~Flag; 4990 }; 4991 4992 AddFlag(VER_FLG_BASE, "BASE"); 4993 AddFlag(VER_FLG_WEAK, "WEAK"); 4994 AddFlag(VER_FLG_INFO, "INFO"); 4995 AddFlag(~0, "<unknown>"); 4996 return Ret; 4997 } 4998 4999 template <class ELFT> 5000 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 5001 if (!Sec) 5002 return; 5003 5004 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 5005 5006 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 5007 if (!V) { 5008 this->reportUniqueWarning(V.takeError()); 5009 return; 5010 } 5011 5012 for (const VerDef &Def : *V) { 5013 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 5014 Def.Offset, Def.Version, 5015 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 5016 Def.Name.data()); 5017 unsigned I = 0; 5018 for (const VerdAux &Aux : Def.AuxV) 5019 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 5020 Aux.Name.data()); 5021 } 5022 5023 OS << '\n'; 5024 } 5025 5026 template <class ELFT> 5027 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 5028 if (!Sec) 5029 return; 5030 5031 unsigned VerneedNum = Sec->sh_info; 5032 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 5033 5034 Expected<std::vector<VerNeed>> V = 5035 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 5036 if (!V) { 5037 this->reportUniqueWarning(V.takeError()); 5038 return; 5039 } 5040 5041 for (const VerNeed &VN : *V) { 5042 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 5043 VN.Version, VN.File.data(), VN.Cnt); 5044 for (const VernAux &Aux : VN.AuxV) 5045 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 5046 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 5047 Aux.Other); 5048 } 5049 OS << '\n'; 5050 } 5051 5052 template <class ELFT> 5053 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 5054 size_t MaxChain, 5055 size_t TotalSyms, 5056 ArrayRef<size_t> Count, 5057 bool IsGnu) const { 5058 size_t CumulativeNonZero = 0; 5059 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "") 5060 << " bucket list length (total of " << NBucket << " buckets)\n" 5061 << " Length Number % of total Coverage\n"; 5062 for (size_t I = 0; I < MaxChain; ++I) { 5063 CumulativeNonZero += Count[I] * I; 5064 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 5065 (Count[I] * 100.0) / NBucket, 5066 (CumulativeNonZero * 100.0) / TotalSyms); 5067 } 5068 } 5069 5070 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 5071 OS << "GNUStyle::printCGProfile not implemented\n"; 5072 } 5073 5074 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() { 5075 OS << "GNUStyle::printBBAddrMaps not implemented\n"; 5076 } 5077 5078 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 5079 std::vector<uint64_t> Ret; 5080 const uint8_t *Cur = Data.begin(); 5081 const uint8_t *End = Data.end(); 5082 while (Cur != End) { 5083 unsigned Size; 5084 const char *Err = nullptr; 5085 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 5086 if (Err) 5087 return createError(Err); 5088 Cur += Size; 5089 } 5090 return Ret; 5091 } 5092 5093 template <class ELFT> 5094 static Expected<std::vector<uint64_t>> 5095 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 5096 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 5097 if (!ContentsOrErr) 5098 return ContentsOrErr.takeError(); 5099 5100 if (Expected<std::vector<uint64_t>> SymsOrErr = 5101 toULEB128Array(*ContentsOrErr)) 5102 return *SymsOrErr; 5103 else 5104 return createError("unable to decode " + describe(Obj, Sec) + ": " + 5105 toString(SymsOrErr.takeError())); 5106 } 5107 5108 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 5109 if (!this->DotAddrsigSec) 5110 return; 5111 5112 Expected<std::vector<uint64_t>> SymsOrErr = 5113 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 5114 if (!SymsOrErr) { 5115 this->reportUniqueWarning(SymsOrErr.takeError()); 5116 return; 5117 } 5118 5119 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 5120 OS << "\nAddress-significant symbols section '" << Name << "'" 5121 << " contains " << SymsOrErr->size() << " entries:\n"; 5122 OS << " Num: Name\n"; 5123 5124 Field Fields[2] = {0, 8}; 5125 size_t SymIndex = 0; 5126 for (uint64_t Sym : *SymsOrErr) { 5127 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 5128 Fields[1].Str = this->getStaticSymbolName(Sym); 5129 for (const Field &Entry : Fields) 5130 printField(Entry); 5131 OS << "\n"; 5132 } 5133 } 5134 5135 template <typename ELFT> 5136 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 5137 ArrayRef<uint8_t> Data) { 5138 std::string str; 5139 raw_string_ostream OS(str); 5140 uint32_t PrData; 5141 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 5142 if (PrData & Flag) { 5143 PrData &= ~Flag; 5144 OS << Name; 5145 if (PrData) 5146 OS << ", "; 5147 } 5148 }; 5149 5150 switch (Type) { 5151 default: 5152 OS << format("<application-specific type 0x%x>", Type); 5153 return OS.str(); 5154 case GNU_PROPERTY_STACK_SIZE: { 5155 OS << "stack size: "; 5156 if (DataSize == sizeof(typename ELFT::uint)) 5157 OS << formatv("{0:x}", 5158 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 5159 else 5160 OS << format("<corrupt length: 0x%x>", DataSize); 5161 return OS.str(); 5162 } 5163 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 5164 OS << "no copy on protected"; 5165 if (DataSize) 5166 OS << format(" <corrupt length: 0x%x>", DataSize); 5167 return OS.str(); 5168 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 5169 case GNU_PROPERTY_X86_FEATURE_1_AND: 5170 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 5171 : "x86 feature: "); 5172 if (DataSize != 4) { 5173 OS << format("<corrupt length: 0x%x>", DataSize); 5174 return OS.str(); 5175 } 5176 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5177 if (PrData == 0) { 5178 OS << "<None>"; 5179 return OS.str(); 5180 } 5181 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 5182 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 5183 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 5184 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS"); 5185 } else { 5186 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 5187 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 5188 } 5189 if (PrData) 5190 OS << format("<unknown flags: 0x%x>", PrData); 5191 return OS.str(); 5192 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 5193 case GNU_PROPERTY_X86_FEATURE_2_USED: 5194 OS << "x86 feature " 5195 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 5196 if (DataSize != 4) { 5197 OS << format("<corrupt length: 0x%x>", DataSize); 5198 return OS.str(); 5199 } 5200 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5201 if (PrData == 0) { 5202 OS << "<None>"; 5203 return OS.str(); 5204 } 5205 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 5206 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 5207 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 5208 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 5209 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 5210 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 5211 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 5212 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 5213 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 5214 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 5215 if (PrData) 5216 OS << format("<unknown flags: 0x%x>", PrData); 5217 return OS.str(); 5218 case GNU_PROPERTY_X86_ISA_1_NEEDED: 5219 case GNU_PROPERTY_X86_ISA_1_USED: 5220 OS << "x86 ISA " 5221 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 5222 if (DataSize != 4) { 5223 OS << format("<corrupt length: 0x%x>", DataSize); 5224 return OS.str(); 5225 } 5226 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5227 if (PrData == 0) { 5228 OS << "<None>"; 5229 return OS.str(); 5230 } 5231 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline"); 5232 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2"); 5233 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3"); 5234 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4"); 5235 if (PrData) 5236 OS << format("<unknown flags: 0x%x>", PrData); 5237 return OS.str(); 5238 } 5239 } 5240 5241 template <typename ELFT> 5242 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 5243 using Elf_Word = typename ELFT::Word; 5244 5245 SmallVector<std::string, 4> Properties; 5246 while (Arr.size() >= 8) { 5247 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 5248 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 5249 Arr = Arr.drop_front(8); 5250 5251 // Take padding size into account if present. 5252 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 5253 std::string str; 5254 raw_string_ostream OS(str); 5255 if (Arr.size() < PaddedSize) { 5256 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 5257 Properties.push_back(OS.str()); 5258 break; 5259 } 5260 Properties.push_back( 5261 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 5262 Arr = Arr.drop_front(PaddedSize); 5263 } 5264 5265 if (!Arr.empty()) 5266 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 5267 5268 return Properties; 5269 } 5270 5271 struct GNUAbiTag { 5272 std::string OSName; 5273 std::string ABI; 5274 bool IsValid; 5275 }; 5276 5277 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 5278 typedef typename ELFT::Word Elf_Word; 5279 5280 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 5281 reinterpret_cast<const Elf_Word *>(Desc.end())); 5282 5283 if (Words.size() < 4) 5284 return {"", "", /*IsValid=*/false}; 5285 5286 static const char *OSNames[] = { 5287 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 5288 }; 5289 StringRef OSName = "Unknown"; 5290 if (Words[0] < std::size(OSNames)) 5291 OSName = OSNames[Words[0]]; 5292 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 5293 std::string str; 5294 raw_string_ostream ABI(str); 5295 ABI << Major << "." << Minor << "." << Patch; 5296 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 5297 } 5298 5299 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 5300 std::string str; 5301 raw_string_ostream OS(str); 5302 for (uint8_t B : Desc) 5303 OS << format_hex_no_prefix(B, 2); 5304 return OS.str(); 5305 } 5306 5307 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { 5308 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5309 } 5310 5311 template <typename ELFT> 5312 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, 5313 ArrayRef<uint8_t> Desc) { 5314 // Return true if we were able to pretty-print the note, false otherwise. 5315 switch (NoteType) { 5316 default: 5317 return false; 5318 case ELF::NT_GNU_ABI_TAG: { 5319 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 5320 if (!AbiTag.IsValid) 5321 OS << " <corrupt GNU_ABI_TAG>"; 5322 else 5323 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 5324 break; 5325 } 5326 case ELF::NT_GNU_BUILD_ID: { 5327 OS << " Build ID: " << getGNUBuildId(Desc); 5328 break; 5329 } 5330 case ELF::NT_GNU_GOLD_VERSION: 5331 OS << " Version: " << getDescAsStringRef(Desc); 5332 break; 5333 case ELF::NT_GNU_PROPERTY_TYPE_0: 5334 OS << " Properties:"; 5335 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 5336 OS << " " << Property << "\n"; 5337 break; 5338 } 5339 OS << '\n'; 5340 return true; 5341 } 5342 5343 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>; 5344 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType, 5345 ArrayRef<uint8_t> Desc) { 5346 AndroidNoteProperties Props; 5347 switch (NoteType) { 5348 case ELF::NT_ANDROID_TYPE_MEMTAG: 5349 if (Desc.empty()) { 5350 Props.emplace_back("Invalid .note.android.memtag", ""); 5351 return Props; 5352 } 5353 5354 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) { 5355 case NT_MEMTAG_LEVEL_NONE: 5356 Props.emplace_back("Tagging Mode", "NONE"); 5357 break; 5358 case NT_MEMTAG_LEVEL_ASYNC: 5359 Props.emplace_back("Tagging Mode", "ASYNC"); 5360 break; 5361 case NT_MEMTAG_LEVEL_SYNC: 5362 Props.emplace_back("Tagging Mode", "SYNC"); 5363 break; 5364 default: 5365 Props.emplace_back( 5366 "Tagging Mode", 5367 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")") 5368 .str()); 5369 break; 5370 } 5371 Props.emplace_back("Heap", 5372 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled"); 5373 Props.emplace_back("Stack", 5374 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled"); 5375 break; 5376 default: 5377 return Props; 5378 } 5379 return Props; 5380 } 5381 5382 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType, 5383 ArrayRef<uint8_t> Desc) { 5384 // Return true if we were able to pretty-print the note, false otherwise. 5385 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 5386 if (Props.empty()) 5387 return false; 5388 for (const auto &KV : Props) 5389 OS << " " << KV.first << ": " << KV.second << '\n'; 5390 return true; 5391 } 5392 5393 template <class ELFT> 5394 static bool printAArch64Note(raw_ostream &OS, uint32_t NoteType, 5395 ArrayRef<uint8_t> Desc) { 5396 if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG) 5397 return false; 5398 5399 OS << " AArch64 PAuth ABI tag: "; 5400 if (Desc.size() < 16) { 5401 OS << format("<corrupted size: expected at least 16, got %d>", Desc.size()); 5402 return false; 5403 } 5404 5405 uint64_t Platform = 5406 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0); 5407 uint64_t Version = 5408 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8); 5409 OS << format("platform 0x%" PRIx64 ", version 0x%" PRIx64, Platform, Version); 5410 5411 if (Desc.size() > 16) 5412 OS << ", additional info 0x" 5413 << toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16)); 5414 5415 return true; 5416 } 5417 5418 template <class ELFT> 5419 void GNUELFDumper<ELFT>::printMemtag( 5420 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 5421 const ArrayRef<uint8_t> AndroidNoteDesc, 5422 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 5423 OS << "Memtag Dynamic Entries:\n"; 5424 if (DynamicEntries.empty()) 5425 OS << " < none found >\n"; 5426 for (const auto &DynamicEntryKV : DynamicEntries) 5427 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second 5428 << "\n"; 5429 5430 if (!AndroidNoteDesc.empty()) { 5431 OS << "Memtag Android Note:\n"; 5432 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc); 5433 } 5434 5435 if (Descriptors.empty()) 5436 return; 5437 5438 OS << "Memtag Global Descriptors:\n"; 5439 for (const auto &[Addr, BytesToTag] : Descriptors) { 5440 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x" 5441 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n"; 5442 } 5443 } 5444 5445 template <typename ELFT> 5446 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, 5447 ArrayRef<uint8_t> Desc) { 5448 switch (NoteType) { 5449 default: 5450 return false; 5451 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 5452 OS << " Version: " << getDescAsStringRef(Desc); 5453 break; 5454 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 5455 OS << " Producer: " << getDescAsStringRef(Desc); 5456 break; 5457 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 5458 OS << " Producer version: " << getDescAsStringRef(Desc); 5459 break; 5460 } 5461 OS << '\n'; 5462 return true; 5463 } 5464 5465 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { 5466 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE}, 5467 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE}, 5468 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE}, 5469 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED}, 5470 {"LA48", NT_FREEBSD_FCTL_LA48}, 5471 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE}, 5472 }; 5473 5474 struct FreeBSDNote { 5475 std::string Type; 5476 std::string Value; 5477 }; 5478 5479 template <typename ELFT> 5480 static std::optional<FreeBSDNote> 5481 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { 5482 if (IsCore) 5483 return std::nullopt; // No pretty-printing yet. 5484 switch (NoteType) { 5485 case ELF::NT_FREEBSD_ABI_TAG: 5486 if (Desc.size() != 4) 5487 return std::nullopt; 5488 return FreeBSDNote{ 5489 "ABI tag", 5490 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))}; 5491 case ELF::NT_FREEBSD_ARCH_TAG: 5492 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()}; 5493 case ELF::NT_FREEBSD_FEATURE_CTL: { 5494 if (Desc.size() != 4) 5495 return std::nullopt; 5496 unsigned Value = 5497 support::endian::read32<ELFT::TargetEndianness>(Desc.data()); 5498 std::string FlagsStr; 5499 raw_string_ostream OS(FlagsStr); 5500 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS); 5501 if (OS.str().empty()) 5502 OS << "0x" << utohexstr(Value); 5503 else 5504 OS << "(0x" << utohexstr(Value) << ")"; 5505 return FreeBSDNote{"Feature flags", OS.str()}; 5506 } 5507 default: 5508 return std::nullopt; 5509 } 5510 } 5511 5512 struct AMDNote { 5513 std::string Type; 5514 std::string Value; 5515 }; 5516 5517 template <typename ELFT> 5518 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5519 switch (NoteType) { 5520 default: 5521 return {"", ""}; 5522 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { 5523 struct CodeObjectVersion { 5524 support::aligned_ulittle32_t MajorVersion; 5525 support::aligned_ulittle32_t MinorVersion; 5526 }; 5527 if (Desc.size() != sizeof(CodeObjectVersion)) 5528 return {"AMD HSA Code Object Version", 5529 "Invalid AMD HSA Code Object Version"}; 5530 std::string VersionString; 5531 raw_string_ostream StrOS(VersionString); 5532 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); 5533 StrOS << "[Major: " << Version->MajorVersion 5534 << ", Minor: " << Version->MinorVersion << "]"; 5535 return {"AMD HSA Code Object Version", VersionString}; 5536 } 5537 case ELF::NT_AMD_HSA_HSAIL: { 5538 struct HSAILProperties { 5539 support::aligned_ulittle32_t HSAILMajorVersion; 5540 support::aligned_ulittle32_t HSAILMinorVersion; 5541 uint8_t Profile; 5542 uint8_t MachineModel; 5543 uint8_t DefaultFloatRound; 5544 }; 5545 if (Desc.size() != sizeof(HSAILProperties)) 5546 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"}; 5547 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); 5548 std::string HSAILPropetiesString; 5549 raw_string_ostream StrOS(HSAILPropetiesString); 5550 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion 5551 << ", HSAIL Minor: " << Properties->HSAILMinorVersion 5552 << ", Profile: " << uint32_t(Properties->Profile) 5553 << ", Machine Model: " << uint32_t(Properties->MachineModel) 5554 << ", Default Float Round: " 5555 << uint32_t(Properties->DefaultFloatRound) << "]"; 5556 return {"AMD HSA HSAIL Properties", HSAILPropetiesString}; 5557 } 5558 case ELF::NT_AMD_HSA_ISA_VERSION: { 5559 struct IsaVersion { 5560 support::aligned_ulittle16_t VendorNameSize; 5561 support::aligned_ulittle16_t ArchitectureNameSize; 5562 support::aligned_ulittle32_t Major; 5563 support::aligned_ulittle32_t Minor; 5564 support::aligned_ulittle32_t Stepping; 5565 }; 5566 if (Desc.size() < sizeof(IsaVersion)) 5567 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5568 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); 5569 if (Desc.size() < sizeof(IsaVersion) + 5570 Isa->VendorNameSize + Isa->ArchitectureNameSize || 5571 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) 5572 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5573 std::string IsaString; 5574 raw_string_ostream StrOS(IsaString); 5575 StrOS << "[Vendor: " 5576 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) 5577 << ", Architecture: " 5578 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, 5579 Isa->ArchitectureNameSize - 1) 5580 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor 5581 << ", Stepping: " << Isa->Stepping << "]"; 5582 return {"AMD HSA ISA Version", IsaString}; 5583 } 5584 case ELF::NT_AMD_HSA_METADATA: { 5585 if (Desc.size() == 0) 5586 return {"AMD HSA Metadata", ""}; 5587 return { 5588 "AMD HSA Metadata", 5589 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; 5590 } 5591 case ELF::NT_AMD_HSA_ISA_NAME: { 5592 if (Desc.size() == 0) 5593 return {"AMD HSA ISA Name", ""}; 5594 return { 5595 "AMD HSA ISA Name", 5596 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 5597 } 5598 case ELF::NT_AMD_PAL_METADATA: { 5599 struct PALMetadata { 5600 support::aligned_ulittle32_t Key; 5601 support::aligned_ulittle32_t Value; 5602 }; 5603 if (Desc.size() % sizeof(PALMetadata) != 0) 5604 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"}; 5605 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); 5606 std::string MetadataString; 5607 raw_string_ostream StrOS(MetadataString); 5608 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { 5609 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]"; 5610 } 5611 return {"AMD PAL Metadata", MetadataString}; 5612 } 5613 } 5614 } 5615 5616 struct AMDGPUNote { 5617 std::string Type; 5618 std::string Value; 5619 }; 5620 5621 template <typename ELFT> 5622 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5623 switch (NoteType) { 5624 default: 5625 return {"", ""}; 5626 case ELF::NT_AMDGPU_METADATA: { 5627 StringRef MsgPackString = 5628 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5629 msgpack::Document MsgPackDoc; 5630 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 5631 return {"", ""}; 5632 5633 std::string MetadataString; 5634 5635 // FIXME: Metadata Verifier only works with AMDHSA. 5636 // This is an ugly workaround to avoid the verifier for other MD 5637 // formats (e.g. amdpal) 5638 if (MsgPackString.contains("amdhsa.")) { 5639 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 5640 if (!Verifier.verify(MsgPackDoc.getRoot())) 5641 MetadataString = "Invalid AMDGPU Metadata\n"; 5642 } 5643 5644 raw_string_ostream StrOS(MetadataString); 5645 if (MsgPackDoc.getRoot().isScalar()) { 5646 // TODO: passing a scalar root to toYAML() asserts: 5647 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && 5648 // "plain scalar documents are not supported") 5649 // To avoid this crash we print the raw data instead. 5650 return {"", ""}; 5651 } 5652 MsgPackDoc.toYAML(StrOS); 5653 return {"AMDGPU Metadata", StrOS.str()}; 5654 } 5655 } 5656 } 5657 5658 struct CoreFileMapping { 5659 uint64_t Start, End, Offset; 5660 StringRef Filename; 5661 }; 5662 5663 struct CoreNote { 5664 uint64_t PageSize; 5665 std::vector<CoreFileMapping> Mappings; 5666 }; 5667 5668 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 5669 // Expected format of the NT_FILE note description: 5670 // 1. # of file mappings (call it N) 5671 // 2. Page size 5672 // 3. N (start, end, offset) triples 5673 // 4. N packed filenames (null delimited) 5674 // Each field is an Elf_Addr, except for filenames which are char* strings. 5675 5676 CoreNote Ret; 5677 const int Bytes = Desc.getAddressSize(); 5678 5679 if (!Desc.isValidOffsetForAddress(2)) 5680 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 5681 " is too short, expected at least 0x" + 5682 Twine::utohexstr(Bytes * 2)); 5683 if (Desc.getData().back() != 0) 5684 return createError("the note is not NUL terminated"); 5685 5686 uint64_t DescOffset = 0; 5687 uint64_t FileCount = Desc.getAddress(&DescOffset); 5688 Ret.PageSize = Desc.getAddress(&DescOffset); 5689 5690 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 5691 return createError("unable to read file mappings (found " + 5692 Twine(FileCount) + "): the note of size 0x" + 5693 Twine::utohexstr(Desc.size()) + " is too short"); 5694 5695 uint64_t FilenamesOffset = 0; 5696 DataExtractor Filenames( 5697 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5698 Desc.isLittleEndian(), Desc.getAddressSize()); 5699 5700 Ret.Mappings.resize(FileCount); 5701 size_t I = 0; 5702 for (CoreFileMapping &Mapping : Ret.Mappings) { 5703 ++I; 5704 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5705 return createError( 5706 "unable to read the file name for the mapping with index " + 5707 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5708 " is truncated"); 5709 Mapping.Start = Desc.getAddress(&DescOffset); 5710 Mapping.End = Desc.getAddress(&DescOffset); 5711 Mapping.Offset = Desc.getAddress(&DescOffset); 5712 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5713 } 5714 5715 return Ret; 5716 } 5717 5718 template <typename ELFT> 5719 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5720 // Length of "0x<address>" string. 5721 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5722 5723 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5724 OS << " " << right_justify("Start", FieldWidth) << " " 5725 << right_justify("End", FieldWidth) << " " 5726 << right_justify("Page Offset", FieldWidth) << '\n'; 5727 for (const CoreFileMapping &Mapping : Note.Mappings) { 5728 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5729 << format_hex(Mapping.End, FieldWidth) << " " 5730 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5731 << Mapping.Filename << '\n'; 5732 } 5733 } 5734 5735 const NoteType GenericNoteTypes[] = { 5736 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5737 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5738 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5739 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5740 }; 5741 5742 const NoteType GNUNoteTypes[] = { 5743 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5744 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5745 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5746 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5747 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5748 }; 5749 5750 const NoteType FreeBSDCoreNoteTypes[] = { 5751 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5752 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5753 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5754 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5755 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5756 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5757 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5758 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5759 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5760 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5761 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5762 }; 5763 5764 const NoteType FreeBSDNoteTypes[] = { 5765 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"}, 5766 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"}, 5767 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"}, 5768 {ELF::NT_FREEBSD_FEATURE_CTL, 5769 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"}, 5770 }; 5771 5772 const NoteType NetBSDCoreNoteTypes[] = { 5773 {ELF::NT_NETBSDCORE_PROCINFO, 5774 "NT_NETBSDCORE_PROCINFO (procinfo structure)"}, 5775 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"}, 5776 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"}, 5777 }; 5778 5779 const NoteType OpenBSDCoreNoteTypes[] = { 5780 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"}, 5781 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"}, 5782 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"}, 5783 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"}, 5784 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"}, 5785 }; 5786 5787 const NoteType AMDNoteTypes[] = { 5788 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, 5789 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"}, 5790 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"}, 5791 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"}, 5792 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"}, 5793 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"}, 5794 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"}, 5795 }; 5796 5797 const NoteType AMDGPUNoteTypes[] = { 5798 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5799 }; 5800 5801 const NoteType LLVMOMPOFFLOADNoteTypes[] = { 5802 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, 5803 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"}, 5804 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, 5805 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"}, 5806 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, 5807 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"}, 5808 }; 5809 5810 const NoteType AndroidNoteTypes[] = { 5811 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"}, 5812 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"}, 5813 {ELF::NT_ANDROID_TYPE_MEMTAG, 5814 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"}, 5815 }; 5816 5817 const NoteType ARMNoteTypes[] = { 5818 {ELF::NT_ARM_TYPE_PAUTH_ABI_TAG, "NT_ARM_TYPE_PAUTH_ABI_TAG"}, 5819 }; 5820 5821 const NoteType CoreNoteTypes[] = { 5822 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5823 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5824 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5825 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5826 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5827 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5828 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5829 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5830 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5831 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5832 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5833 5834 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5835 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5836 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5837 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5838 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5839 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5840 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5841 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5842 {ELF::NT_PPC_TM_CFPR, 5843 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5844 {ELF::NT_PPC_TM_CVMX, 5845 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5846 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5847 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5848 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5849 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5850 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5851 5852 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 5853 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 5854 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 5855 5856 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 5857 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 5858 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 5859 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 5860 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 5861 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 5862 {ELF::NT_S390_LAST_BREAK, 5863 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 5864 {ELF::NT_S390_SYSTEM_CALL, 5865 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 5866 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 5867 {ELF::NT_S390_VXRS_LOW, 5868 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 5869 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 5870 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 5871 {ELF::NT_S390_GS_BC, 5872 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 5873 5874 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 5875 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 5876 {ELF::NT_ARM_HW_BREAK, 5877 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 5878 {ELF::NT_ARM_HW_WATCH, 5879 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 5880 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"}, 5881 {ELF::NT_ARM_PAC_MASK, 5882 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"}, 5883 {ELF::NT_ARM_TAGGED_ADDR_CTRL, 5884 "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"}, 5885 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"}, 5886 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"}, 5887 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"}, 5888 5889 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 5890 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 5891 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 5892 }; 5893 5894 template <class ELFT> 5895 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { 5896 uint32_t Type = Note.getType(); 5897 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 5898 for (const NoteType &N : V) 5899 if (N.ID == Type) 5900 return N.Name; 5901 return ""; 5902 }; 5903 5904 StringRef Name = Note.getName(); 5905 if (Name == "GNU") 5906 return FindNote(GNUNoteTypes); 5907 if (Name == "FreeBSD") { 5908 if (ELFType == ELF::ET_CORE) { 5909 // FreeBSD also places the generic core notes in the FreeBSD namespace. 5910 StringRef Result = FindNote(FreeBSDCoreNoteTypes); 5911 if (!Result.empty()) 5912 return Result; 5913 return FindNote(CoreNoteTypes); 5914 } else { 5915 return FindNote(FreeBSDNoteTypes); 5916 } 5917 } 5918 if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) { 5919 StringRef Result = FindNote(NetBSDCoreNoteTypes); 5920 if (!Result.empty()) 5921 return Result; 5922 return FindNote(CoreNoteTypes); 5923 } 5924 if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) { 5925 // OpenBSD also places the generic core notes in the OpenBSD namespace. 5926 StringRef Result = FindNote(OpenBSDCoreNoteTypes); 5927 if (!Result.empty()) 5928 return Result; 5929 return FindNote(CoreNoteTypes); 5930 } 5931 if (Name == "AMD") 5932 return FindNote(AMDNoteTypes); 5933 if (Name == "AMDGPU") 5934 return FindNote(AMDGPUNoteTypes); 5935 if (Name == "LLVMOMPOFFLOAD") 5936 return FindNote(LLVMOMPOFFLOADNoteTypes); 5937 if (Name == "Android") 5938 return FindNote(AndroidNoteTypes); 5939 if (Name == "ARM") 5940 return FindNote(ARMNoteTypes); 5941 5942 if (ELFType == ELF::ET_CORE) 5943 return FindNote(CoreNoteTypes); 5944 return FindNote(GenericNoteTypes); 5945 } 5946 5947 template <class ELFT> 5948 static void processNotesHelper( 5949 const ELFDumper<ELFT> &Dumper, 5950 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off, 5951 typename ELFT::Addr, size_t)> 5952 StartNotesFn, 5953 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, 5954 llvm::function_ref<void()> FinishNotesFn) { 5955 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 5956 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; 5957 5958 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 5959 if (!IsCoreFile && !Sections.empty()) { 5960 for (const typename ELFT::Shdr &S : Sections) { 5961 if (S.sh_type != SHT_NOTE) 5962 continue; 5963 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset, 5964 S.sh_size, S.sh_addralign); 5965 Error Err = Error::success(); 5966 size_t I = 0; 5967 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 5968 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5969 Dumper.reportUniqueWarning( 5970 "unable to read note with index " + Twine(I) + " from the " + 5971 describe(Obj, S) + ": " + toString(std::move(E))); 5972 ++I; 5973 } 5974 if (Err) 5975 Dumper.reportUniqueWarning("unable to read notes from the " + 5976 describe(Obj, S) + ": " + 5977 toString(std::move(Err))); 5978 FinishNotesFn(); 5979 } 5980 return; 5981 } 5982 5983 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 5984 if (!PhdrsOrErr) { 5985 Dumper.reportUniqueWarning( 5986 "unable to read program headers to locate the PT_NOTE segment: " + 5987 toString(PhdrsOrErr.takeError())); 5988 return; 5989 } 5990 5991 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 5992 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 5993 if (P.p_type != PT_NOTE) 5994 continue; 5995 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align); 5996 Error Err = Error::success(); 5997 size_t Index = 0; 5998 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 5999 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 6000 Dumper.reportUniqueWarning("unable to read note with index " + 6001 Twine(Index) + 6002 " from the PT_NOTE segment with index " + 6003 Twine(I) + ": " + toString(std::move(E))); 6004 ++Index; 6005 } 6006 if (Err) 6007 Dumper.reportUniqueWarning( 6008 "unable to read notes from the PT_NOTE segment with index " + 6009 Twine(I) + ": " + toString(std::move(Err))); 6010 FinishNotesFn(); 6011 } 6012 } 6013 6014 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 6015 size_t Align = 0; 6016 bool IsFirstHeader = true; 6017 auto PrintHeader = [&](std::optional<StringRef> SecName, 6018 const typename ELFT::Off Offset, 6019 const typename ELFT::Addr Size, size_t Al) { 6020 Align = std::max<size_t>(Al, 4); 6021 // Print a newline between notes sections to match GNU readelf. 6022 if (!IsFirstHeader) { 6023 OS << '\n'; 6024 } else { 6025 IsFirstHeader = false; 6026 } 6027 6028 OS << "Displaying notes found "; 6029 6030 if (SecName) 6031 OS << "in: " << *SecName << "\n"; 6032 else 6033 OS << "at file offset " << format_hex(Offset, 10) << " with length " 6034 << format_hex(Size, 10) << ":\n"; 6035 6036 OS << " Owner Data size \tDescription\n"; 6037 }; 6038 6039 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6040 StringRef Name = Note.getName(); 6041 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 6042 Elf_Word Type = Note.getType(); 6043 6044 // Print the note owner/type. 6045 OS << " " << left_justify(Name, 20) << ' ' 6046 << format_hex(Descriptor.size(), 10) << '\t'; 6047 6048 StringRef NoteType = 6049 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 6050 if (!NoteType.empty()) 6051 OS << NoteType << '\n'; 6052 else 6053 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 6054 6055 // Print the description, or fallback to printing raw bytes for unknown 6056 // owners/if we fail to pretty-print the contents. 6057 if (Name == "GNU") { 6058 if (printGNUNote<ELFT>(OS, Type, Descriptor)) 6059 return Error::success(); 6060 } else if (Name == "FreeBSD") { 6061 if (std::optional<FreeBSDNote> N = 6062 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 6063 OS << " " << N->Type << ": " << N->Value << '\n'; 6064 return Error::success(); 6065 } 6066 } else if (Name == "AMD") { 6067 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 6068 if (!N.Type.empty()) { 6069 OS << " " << N.Type << ":\n " << N.Value << '\n'; 6070 return Error::success(); 6071 } 6072 } else if (Name == "AMDGPU") { 6073 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 6074 if (!N.Type.empty()) { 6075 OS << " " << N.Type << ":\n " << N.Value << '\n'; 6076 return Error::success(); 6077 } 6078 } else if (Name == "LLVMOMPOFFLOAD") { 6079 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) 6080 return Error::success(); 6081 } else if (Name == "CORE") { 6082 if (Type == ELF::NT_FILE) { 6083 DataExtractor DescExtractor( 6084 Descriptor, ELFT::TargetEndianness == llvm::endianness::little, 6085 sizeof(Elf_Addr)); 6086 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) { 6087 printCoreNote<ELFT>(OS, *NoteOrErr); 6088 return Error::success(); 6089 } else { 6090 return NoteOrErr.takeError(); 6091 } 6092 } 6093 } else if (Name == "Android") { 6094 if (printAndroidNote(OS, Type, Descriptor)) 6095 return Error::success(); 6096 } else if (Name == "ARM") { 6097 if (printAArch64Note<ELFT>(OS, Type, Descriptor)) 6098 return Error::success(); 6099 } 6100 if (!Descriptor.empty()) { 6101 OS << " description data:"; 6102 for (uint8_t B : Descriptor) 6103 OS << " " << format("%02x", B); 6104 OS << '\n'; 6105 } 6106 return Error::success(); 6107 }; 6108 6109 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader, 6110 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {}); 6111 } 6112 6113 template <class ELFT> 6114 ArrayRef<uint8_t> 6115 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) { 6116 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) { 6117 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC) 6118 continue; 6119 if (Sec.sh_addr != ExpectedAddr) { 6120 reportUniqueWarning( 6121 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" + 6122 Twine::utohexstr(Sec.sh_addr) + 6123 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" + 6124 Twine::utohexstr(ExpectedAddr)); 6125 return ArrayRef<uint8_t>(); 6126 } 6127 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec); 6128 if (auto E = Contents.takeError()) { 6129 reportUniqueWarning( 6130 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " + 6131 toString(std::move(E))); 6132 return ArrayRef<uint8_t>(); 6133 } 6134 return Contents.get(); 6135 } 6136 return ArrayRef<uint8_t>(); 6137 } 6138 6139 // Reserve the lower three bits of the first byte of the step distance when 6140 // encoding the memtag descriptors. Found to be the best overall size tradeoff 6141 // when compiling Android T with full MTE globals enabled. 6142 constexpr uint64_t MemtagStepVarintReservedBits = 3; 6143 constexpr uint64_t MemtagGranuleSize = 16; 6144 6145 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() { 6146 if (Obj.getHeader().e_machine != EM_AARCH64) return; 6147 std::vector<std::pair<std::string, std::string>> DynamicEntries; 6148 uint64_t MemtagGlobalsSz = 0; 6149 uint64_t MemtagGlobals = 0; 6150 for (const typename ELFT::Dyn &Entry : dynamic_table()) { 6151 uintX_t Tag = Entry.getTag(); 6152 switch (Tag) { 6153 case DT_AARCH64_MEMTAG_GLOBALSSZ: 6154 MemtagGlobalsSz = Entry.getVal(); 6155 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6156 getDynamicEntry(Tag, Entry.getVal())); 6157 break; 6158 case DT_AARCH64_MEMTAG_GLOBALS: 6159 MemtagGlobals = Entry.getVal(); 6160 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6161 getDynamicEntry(Tag, Entry.getVal())); 6162 break; 6163 case DT_AARCH64_MEMTAG_MODE: 6164 case DT_AARCH64_MEMTAG_HEAP: 6165 case DT_AARCH64_MEMTAG_STACK: 6166 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6167 getDynamicEntry(Tag, Entry.getVal())); 6168 break; 6169 } 6170 } 6171 6172 ArrayRef<uint8_t> AndroidNoteDesc; 6173 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6174 if (Note.getName() == "Android" && 6175 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG) 6176 AndroidNoteDesc = Note.getDesc(4); 6177 return Error::success(); 6178 }; 6179 6180 processNotesHelper( 6181 *this, 6182 /*StartNotesFn=*/ 6183 [](std::optional<StringRef>, const typename ELFT::Off, 6184 const typename ELFT::Addr, size_t) {}, 6185 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {}); 6186 6187 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals); 6188 if (Contents.size() != MemtagGlobalsSz) { 6189 reportUniqueWarning( 6190 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" + 6191 Twine::utohexstr(MemtagGlobalsSz) + 6192 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" + 6193 Twine::utohexstr(Contents.size()) + ")"); 6194 Contents = ArrayRef<uint8_t>(); 6195 } 6196 6197 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors; 6198 uint64_t Address = 0; 6199 // See the AArch64 MemtagABI document for a description of encoding scheme: 6200 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic 6201 for (size_t I = 0; I < Contents.size();) { 6202 const char *Error = nullptr; 6203 unsigned DecodedBytes = 0; 6204 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes, 6205 Contents.end(), &Error); 6206 I += DecodedBytes; 6207 if (Error) { 6208 reportUniqueWarning( 6209 "error decoding distance uleb, " + Twine(DecodedBytes) + 6210 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6211 GlobalDescriptors.clear(); 6212 break; 6213 } 6214 uint64_t Distance = Value >> MemtagStepVarintReservedBits; 6215 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1); 6216 if (GranulesToTag == 0) { 6217 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes, 6218 Contents.end(), &Error) + 6219 1; 6220 I += DecodedBytes; 6221 if (Error) { 6222 reportUniqueWarning( 6223 "error decoding size-only uleb, " + Twine(DecodedBytes) + 6224 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6225 GlobalDescriptors.clear(); 6226 break; 6227 } 6228 } 6229 Address += Distance * MemtagGranuleSize; 6230 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize); 6231 Address += GranulesToTag * MemtagGranuleSize; 6232 } 6233 6234 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors); 6235 } 6236 6237 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 6238 OS << "printELFLinkerOptions not implemented!\n"; 6239 } 6240 6241 template <class ELFT> 6242 void ELFDumper<ELFT>::printDependentLibsHelper( 6243 function_ref<void(const Elf_Shdr &)> OnSectionStart, 6244 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 6245 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 6246 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 6247 Twine(SecNdx) + " is broken: " + Msg); 6248 }; 6249 6250 unsigned I = -1; 6251 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 6252 ++I; 6253 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 6254 continue; 6255 6256 OnSectionStart(Shdr); 6257 6258 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 6259 if (!ContentsOrErr) { 6260 Warn(I, toString(ContentsOrErr.takeError())); 6261 continue; 6262 } 6263 6264 ArrayRef<uint8_t> Contents = *ContentsOrErr; 6265 if (!Contents.empty() && Contents.back() != 0) { 6266 Warn(I, "the content is not null-terminated"); 6267 continue; 6268 } 6269 6270 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 6271 StringRef Lib((const char *)I); 6272 OnLibEntry(Lib, I - Contents.begin()); 6273 I += Lib.size() + 1; 6274 } 6275 } 6276 } 6277 6278 template <class ELFT> 6279 void ELFDumper<ELFT>::forEachRelocationDo( 6280 const Elf_Shdr &Sec, bool RawRelr, 6281 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 6282 const Elf_Shdr &, const Elf_Shdr *)> 6283 RelRelaFn, 6284 llvm::function_ref<void(const Elf_Relr &)> RelrFn) { 6285 auto Warn = [&](Error &&E, 6286 const Twine &Prefix = "unable to read relocations from") { 6287 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 6288 toString(std::move(E))); 6289 }; 6290 6291 // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an 6292 // associated symbol table. For them we should not treat the value of the 6293 // sh_link field as an index of a symbol table. 6294 const Elf_Shdr *SymTab; 6295 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR && 6296 !(Obj.getHeader().e_machine == EM_AARCH64 && 6297 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) { 6298 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 6299 if (!SymTabOrErr) { 6300 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 6301 return; 6302 } 6303 SymTab = *SymTabOrErr; 6304 } 6305 6306 unsigned RelNdx = 0; 6307 const bool IsMips64EL = this->Obj.isMips64EL(); 6308 switch (Sec.sh_type) { 6309 case ELF::SHT_REL: 6310 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 6311 for (const Elf_Rel &R : *RangeOrErr) 6312 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6313 } else { 6314 Warn(RangeOrErr.takeError()); 6315 } 6316 break; 6317 case ELF::SHT_RELA: 6318 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 6319 for (const Elf_Rela &R : *RangeOrErr) 6320 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6321 } else { 6322 Warn(RangeOrErr.takeError()); 6323 } 6324 break; 6325 case ELF::SHT_AARCH64_AUTH_RELR: 6326 if (Obj.getHeader().e_machine != EM_AARCH64) 6327 break; 6328 [[fallthrough]]; 6329 case ELF::SHT_RELR: 6330 case ELF::SHT_ANDROID_RELR: { 6331 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 6332 if (!RangeOrErr) { 6333 Warn(RangeOrErr.takeError()); 6334 break; 6335 } 6336 if (RawRelr) { 6337 for (const Elf_Relr &R : *RangeOrErr) 6338 RelrFn(R); 6339 break; 6340 } 6341 6342 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 6343 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 6344 /*SymTab=*/nullptr); 6345 break; 6346 } 6347 case ELF::SHT_ANDROID_REL: 6348 case ELF::SHT_ANDROID_RELA: 6349 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 6350 for (const Elf_Rela &R : *RelasOrErr) 6351 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6352 } else { 6353 Warn(RelasOrErr.takeError()); 6354 } 6355 break; 6356 } 6357 } 6358 6359 template <class ELFT> 6360 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 6361 StringRef Name = "<?>"; 6362 if (Expected<StringRef> SecNameOrErr = 6363 Obj.getSectionName(Sec, this->WarningHandler)) 6364 Name = *SecNameOrErr; 6365 else 6366 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 6367 ": " + toString(SecNameOrErr.takeError())); 6368 return Name; 6369 } 6370 6371 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 6372 bool SectionStarted = false; 6373 struct NameOffset { 6374 StringRef Name; 6375 uint64_t Offset; 6376 }; 6377 std::vector<NameOffset> SecEntries; 6378 NameOffset Current; 6379 auto PrintSection = [&]() { 6380 OS << "Dependent libraries section " << Current.Name << " at offset " 6381 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 6382 << " entries:\n"; 6383 for (NameOffset Entry : SecEntries) 6384 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 6385 << "\n"; 6386 OS << "\n"; 6387 SecEntries.clear(); 6388 }; 6389 6390 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 6391 if (SectionStarted) 6392 PrintSection(); 6393 SectionStarted = true; 6394 Current.Offset = Shdr.sh_offset; 6395 Current.Name = this->getPrintableSectionName(Shdr); 6396 }; 6397 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 6398 SecEntries.push_back(NameOffset{Lib, Offset}); 6399 }; 6400 6401 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 6402 if (SectionStarted) 6403 PrintSection(); 6404 } 6405 6406 template <class ELFT> 6407 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( 6408 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) { 6409 SmallVector<uint32_t> SymbolIndexes; 6410 if (!this->AddressToIndexMap) { 6411 // Populate the address to index map upon the first invocation of this 6412 // function. 6413 this->AddressToIndexMap.emplace(); 6414 if (this->DotSymtabSec) { 6415 if (Expected<Elf_Sym_Range> SymsOrError = 6416 Obj.symbols(this->DotSymtabSec)) { 6417 uint32_t Index = (uint32_t)-1; 6418 for (const Elf_Sym &Sym : *SymsOrError) { 6419 ++Index; 6420 6421 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 6422 continue; 6423 6424 Expected<uint64_t> SymAddrOrErr = 6425 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); 6426 if (!SymAddrOrErr) { 6427 std::string Name = this->getStaticSymbolName(Index); 6428 reportUniqueWarning("unable to get address of symbol '" + Name + 6429 "': " + toString(SymAddrOrErr.takeError())); 6430 return SymbolIndexes; 6431 } 6432 6433 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); 6434 } 6435 } else { 6436 reportUniqueWarning("unable to read the symbol table: " + 6437 toString(SymsOrError.takeError())); 6438 } 6439 } 6440 } 6441 6442 auto Symbols = this->AddressToIndexMap->find(SymValue); 6443 if (Symbols == this->AddressToIndexMap->end()) 6444 return SymbolIndexes; 6445 6446 for (uint32_t Index : Symbols->second) { 6447 // Check if the symbol is in the right section. FunctionSec == None 6448 // means "any section". 6449 if (FunctionSec) { 6450 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); 6451 if (Expected<const Elf_Shdr *> SecOrErr = 6452 Obj.getSection(Sym, this->DotSymtabSec, 6453 this->getShndxTable(this->DotSymtabSec))) { 6454 if (*FunctionSec != *SecOrErr) 6455 continue; 6456 } else { 6457 std::string Name = this->getStaticSymbolName(Index); 6458 // Note: it is impossible to trigger this error currently, it is 6459 // untested. 6460 reportUniqueWarning("unable to get section of symbol '" + Name + 6461 "': " + toString(SecOrErr.takeError())); 6462 return SymbolIndexes; 6463 } 6464 } 6465 6466 SymbolIndexes.push_back(Index); 6467 } 6468 6469 return SymbolIndexes; 6470 } 6471 6472 template <class ELFT> 6473 bool ELFDumper<ELFT>::printFunctionStackSize( 6474 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec, 6475 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 6476 SmallVector<uint32_t> FuncSymIndexes = 6477 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); 6478 if (FuncSymIndexes.empty()) 6479 reportUniqueWarning( 6480 "could not identify function symbol for stack size entry in " + 6481 describe(StackSizeSec)); 6482 6483 // Extract the size. The expectation is that Offset is pointing to the right 6484 // place, i.e. past the function address. 6485 Error Err = Error::success(); 6486 uint64_t StackSize = Data.getULEB128(Offset, &Err); 6487 if (Err) { 6488 reportUniqueWarning("could not extract a valid stack size from " + 6489 describe(StackSizeSec) + ": " + 6490 toString(std::move(Err))); 6491 return false; 6492 } 6493 6494 if (FuncSymIndexes.empty()) { 6495 printStackSizeEntry(StackSize, {"?"}); 6496 } else { 6497 SmallVector<std::string> FuncSymNames; 6498 for (uint32_t Index : FuncSymIndexes) 6499 FuncSymNames.push_back(this->getStaticSymbolName(Index)); 6500 printStackSizeEntry(StackSize, FuncSymNames); 6501 } 6502 6503 return true; 6504 } 6505 6506 template <class ELFT> 6507 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 6508 ArrayRef<std::string> FuncNames) { 6509 OS.PadToColumn(2); 6510 OS << format_decimal(Size, 11); 6511 OS.PadToColumn(18); 6512 6513 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n"; 6514 } 6515 6516 template <class ELFT> 6517 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 6518 const Elf_Shdr &RelocSec, unsigned Ndx, 6519 const Elf_Shdr *SymTab, 6520 const Elf_Shdr *FunctionSec, 6521 const Elf_Shdr &StackSizeSec, 6522 const RelocationResolver &Resolver, 6523 DataExtractor Data) { 6524 // This function ignores potentially erroneous input, unless it is directly 6525 // related to stack size reporting. 6526 const Elf_Sym *Sym = nullptr; 6527 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 6528 if (!TargetOrErr) 6529 reportUniqueWarning("unable to get the target of relocation with index " + 6530 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 6531 toString(TargetOrErr.takeError())); 6532 else 6533 Sym = TargetOrErr->Sym; 6534 6535 uint64_t RelocSymValue = 0; 6536 if (Sym) { 6537 Expected<const Elf_Shdr *> SectionOrErr = 6538 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 6539 if (!SectionOrErr) { 6540 reportUniqueWarning( 6541 "cannot identify the section for relocation symbol '" + 6542 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 6543 } else if (*SectionOrErr != FunctionSec) { 6544 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 6545 "' is not in the expected section"); 6546 // Pretend that the symbol is in the correct section and report its 6547 // stack size anyway. 6548 FunctionSec = *SectionOrErr; 6549 } 6550 6551 RelocSymValue = Sym->st_value; 6552 } 6553 6554 uint64_t Offset = R.Offset; 6555 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6556 reportUniqueWarning("found invalid relocation offset (0x" + 6557 Twine::utohexstr(Offset) + ") into " + 6558 describe(StackSizeSec) + 6559 " while trying to extract a stack size entry"); 6560 return; 6561 } 6562 6563 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue, 6564 Data.getAddress(&Offset), R.Addend.value_or(0)); 6565 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 6566 &Offset); 6567 } 6568 6569 template <class ELFT> 6570 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 6571 std::function<void()> PrintHeader) { 6572 // This function ignores potentially erroneous input, unless it is directly 6573 // related to stack size reporting. 6574 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 6575 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 6576 continue; 6577 PrintHeader(); 6578 ArrayRef<uint8_t> Contents = 6579 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 6580 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6581 uint64_t Offset = 0; 6582 while (Offset < Contents.size()) { 6583 // The function address is followed by a ULEB representing the stack 6584 // size. Check for an extra byte before we try to process the entry. 6585 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6586 reportUniqueWarning( 6587 describe(Sec) + 6588 " ended while trying to extract a stack size entry"); 6589 break; 6590 } 6591 uint64_t SymValue = Data.getAddress(&Offset); 6592 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec, 6593 Data, &Offset)) 6594 break; 6595 } 6596 } 6597 } 6598 6599 template <class ELFT> 6600 void ELFDumper<ELFT>::printRelocatableStackSizes( 6601 std::function<void()> PrintHeader) { 6602 // Build a map between stack size sections and their corresponding relocation 6603 // sections. 6604 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { 6605 StringRef SectionName; 6606 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 6607 SectionName = *NameOrErr; 6608 else 6609 consumeError(NameOrErr.takeError()); 6610 6611 return SectionName == ".stack_sizes"; 6612 }; 6613 6614 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> 6615 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch); 6616 if (!StackSizeRelocMapOrErr) { 6617 reportUniqueWarning("unable to get stack size map section(s): " + 6618 toString(StackSizeRelocMapOrErr.takeError())); 6619 return; 6620 } 6621 6622 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) { 6623 PrintHeader(); 6624 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 6625 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 6626 6627 // Warn about stack size sections without a relocation section. 6628 if (!RelocSec) { 6629 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 6630 ") does not have a corresponding " 6631 "relocation section"), 6632 FileName); 6633 continue; 6634 } 6635 6636 // A .stack_sizes section header's sh_link field is supposed to point 6637 // to the section that contains the functions whose stack sizes are 6638 // described in it. 6639 const Elf_Shdr *FunctionSec = unwrapOrError( 6640 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 6641 6642 SupportsRelocation IsSupportedFn; 6643 RelocationResolver Resolver; 6644 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 6645 ArrayRef<uint8_t> Contents = 6646 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 6647 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6648 6649 forEachRelocationDo( 6650 *RelocSec, /*RawRelr=*/false, 6651 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 6652 const Elf_Shdr *SymTab) { 6653 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 6654 reportUniqueWarning( 6655 describe(*RelocSec) + 6656 " contains an unsupported relocation with index " + Twine(Ndx) + 6657 ": " + Obj.getRelocationTypeName(R.Type)); 6658 return; 6659 } 6660 6661 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 6662 *StackSizesELFSec, Resolver, Data); 6663 }, 6664 [](const Elf_Relr &) { 6665 llvm_unreachable("can't get here, because we only support " 6666 "SHT_REL/SHT_RELA sections"); 6667 }); 6668 } 6669 } 6670 6671 template <class ELFT> 6672 void GNUELFDumper<ELFT>::printStackSizes() { 6673 bool HeaderHasBeenPrinted = false; 6674 auto PrintHeader = [&]() { 6675 if (HeaderHasBeenPrinted) 6676 return; 6677 OS << "\nStack Sizes:\n"; 6678 OS.PadToColumn(9); 6679 OS << "Size"; 6680 OS.PadToColumn(18); 6681 OS << "Functions\n"; 6682 HeaderHasBeenPrinted = true; 6683 }; 6684 6685 // For non-relocatable objects, look directly for sections whose name starts 6686 // with .stack_sizes and process the contents. 6687 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6688 this->printRelocatableStackSizes(PrintHeader); 6689 else 6690 this->printNonRelocatableStackSizes(PrintHeader); 6691 } 6692 6693 template <class ELFT> 6694 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6695 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6696 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6697 OS.PadToColumn(2); 6698 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 6699 OS.PadToColumn(11 + Bias); 6700 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 6701 OS.PadToColumn(22 + Bias); 6702 OS << format_hex_no_prefix(*E, 8 + Bias); 6703 OS.PadToColumn(31 + 2 * Bias); 6704 OS << Purpose << "\n"; 6705 }; 6706 6707 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 6708 OS << " Canonical gp value: " 6709 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 6710 6711 OS << " Reserved entries:\n"; 6712 if (ELFT::Is64Bits) 6713 OS << " Address Access Initial Purpose\n"; 6714 else 6715 OS << " Address Access Initial Purpose\n"; 6716 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 6717 if (Parser.getGotModulePointer()) 6718 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 6719 6720 if (!Parser.getLocalEntries().empty()) { 6721 OS << "\n"; 6722 OS << " Local entries:\n"; 6723 if (ELFT::Is64Bits) 6724 OS << " Address Access Initial\n"; 6725 else 6726 OS << " Address Access Initial\n"; 6727 for (auto &E : Parser.getLocalEntries()) 6728 PrintEntry(&E, ""); 6729 } 6730 6731 if (Parser.IsStatic) 6732 return; 6733 6734 if (!Parser.getGlobalEntries().empty()) { 6735 OS << "\n"; 6736 OS << " Global entries:\n"; 6737 if (ELFT::Is64Bits) 6738 OS << " Address Access Initial Sym.Val." 6739 << " Type Ndx Name\n"; 6740 else 6741 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 6742 6743 DataRegion<Elf_Word> ShndxTable( 6744 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6745 for (auto &E : Parser.getGlobalEntries()) { 6746 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6747 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 6748 std::string SymName = this->getFullSymbolName( 6749 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6750 6751 OS.PadToColumn(2); 6752 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 6753 OS.PadToColumn(11 + Bias); 6754 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 6755 OS.PadToColumn(22 + Bias); 6756 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6757 OS.PadToColumn(31 + 2 * Bias); 6758 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6759 OS.PadToColumn(40 + 3 * Bias); 6760 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6761 OS.PadToColumn(48 + 3 * Bias); 6762 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6763 ShndxTable); 6764 OS.PadToColumn(52 + 3 * Bias); 6765 OS << SymName << "\n"; 6766 } 6767 } 6768 6769 if (!Parser.getOtherEntries().empty()) 6770 OS << "\n Number of TLS and multi-GOT entries " 6771 << Parser.getOtherEntries().size() << "\n"; 6772 } 6773 6774 template <class ELFT> 6775 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6776 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6777 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6778 OS.PadToColumn(2); 6779 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 6780 OS.PadToColumn(11 + Bias); 6781 OS << format_hex_no_prefix(*E, 8 + Bias); 6782 OS.PadToColumn(20 + 2 * Bias); 6783 OS << Purpose << "\n"; 6784 }; 6785 6786 OS << "PLT GOT:\n\n"; 6787 6788 OS << " Reserved entries:\n"; 6789 OS << " Address Initial Purpose\n"; 6790 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 6791 if (Parser.getPltModulePointer()) 6792 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 6793 6794 if (!Parser.getPltEntries().empty()) { 6795 OS << "\n"; 6796 OS << " Entries:\n"; 6797 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 6798 DataRegion<Elf_Word> ShndxTable( 6799 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6800 for (auto &E : Parser.getPltEntries()) { 6801 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6802 const Elf_Sym &FirstSym = *cantFail( 6803 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6804 std::string SymName = this->getFullSymbolName( 6805 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6806 6807 OS.PadToColumn(2); 6808 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 6809 OS.PadToColumn(11 + Bias); 6810 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6811 OS.PadToColumn(20 + 2 * Bias); 6812 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6813 OS.PadToColumn(29 + 3 * Bias); 6814 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6815 OS.PadToColumn(37 + 3 * Bias); 6816 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6817 ShndxTable); 6818 OS.PadToColumn(41 + 3 * Bias); 6819 OS << SymName << "\n"; 6820 } 6821 } 6822 } 6823 6824 template <class ELFT> 6825 Expected<const Elf_Mips_ABIFlags<ELFT> *> 6826 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 6827 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 6828 if (Sec == nullptr) 6829 return nullptr; 6830 6831 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 6832 Expected<ArrayRef<uint8_t>> DataOrErr = 6833 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 6834 if (!DataOrErr) 6835 return createError(ErrPrefix + toString(DataOrErr.takeError())); 6836 6837 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 6838 return createError(ErrPrefix + "it has a wrong size (" + 6839 Twine(DataOrErr->size()) + ")"); 6840 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 6841 } 6842 6843 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 6844 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 6845 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6846 getMipsAbiFlagsSection(*this)) 6847 Flags = *SecOrErr; 6848 else 6849 this->reportUniqueWarning(SecOrErr.takeError()); 6850 if (!Flags) 6851 return; 6852 6853 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 6854 OS << "ISA: MIPS" << int(Flags->isa_level); 6855 if (Flags->isa_rev > 1) 6856 OS << "r" << int(Flags->isa_rev); 6857 OS << "\n"; 6858 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 6859 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 6860 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 6861 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType)) 6862 << "\n"; 6863 OS << "ISA Extension: " 6864 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n"; 6865 if (Flags->ases == 0) 6866 OS << "ASEs: None\n"; 6867 else 6868 // FIXME: Print each flag on a separate line. 6869 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags)) 6870 << "\n"; 6871 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 6872 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 6873 OS << "\n"; 6874 } 6875 6876 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 6877 const Elf_Ehdr &E = this->Obj.getHeader(); 6878 { 6879 DictScope D(W, "ElfHeader"); 6880 { 6881 DictScope D(W, "Ident"); 6882 W.printBinary("Magic", 6883 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4)); 6884 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 6885 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 6886 ArrayRef(ElfDataEncoding)); 6887 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 6888 6889 auto OSABI = ArrayRef(ElfOSABI); 6890 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 6891 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 6892 switch (E.e_machine) { 6893 case ELF::EM_AMDGPU: 6894 OSABI = ArrayRef(AMDGPUElfOSABI); 6895 break; 6896 case ELF::EM_ARM: 6897 OSABI = ArrayRef(ARMElfOSABI); 6898 break; 6899 case ELF::EM_TI_C6000: 6900 OSABI = ArrayRef(C6000ElfOSABI); 6901 break; 6902 } 6903 } 6904 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 6905 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 6906 W.printBinary("Unused", 6907 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD)); 6908 } 6909 6910 std::string TypeStr; 6911 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 6912 TypeStr = Ent->Name.str(); 6913 } else { 6914 if (E.e_type >= ET_LOPROC) 6915 TypeStr = "Processor Specific"; 6916 else if (E.e_type >= ET_LOOS) 6917 TypeStr = "OS Specific"; 6918 else 6919 TypeStr = "Unknown"; 6920 } 6921 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")"); 6922 6923 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType)); 6924 W.printNumber("Version", E.e_version); 6925 W.printHex("Entry", E.e_entry); 6926 W.printHex("ProgramHeaderOffset", E.e_phoff); 6927 W.printHex("SectionHeaderOffset", E.e_shoff); 6928 if (E.e_machine == EM_MIPS) 6929 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags), 6930 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 6931 unsigned(ELF::EF_MIPS_MACH)); 6932 else if (E.e_machine == EM_AMDGPU) { 6933 switch (E.e_ident[ELF::EI_ABIVERSION]) { 6934 default: 6935 W.printHex("Flags", E.e_flags); 6936 break; 6937 case 0: 6938 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 6939 [[fallthrough]]; 6940 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 6941 W.printFlags("Flags", E.e_flags, 6942 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 6943 unsigned(ELF::EF_AMDGPU_MACH)); 6944 break; 6945 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 6946 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 6947 W.printFlags("Flags", E.e_flags, 6948 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 6949 unsigned(ELF::EF_AMDGPU_MACH), 6950 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 6951 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 6952 break; 6953 } 6954 } else if (E.e_machine == EM_RISCV) 6955 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 6956 else if (E.e_machine == EM_AVR) 6957 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags), 6958 unsigned(ELF::EF_AVR_ARCH_MASK)); 6959 else if (E.e_machine == EM_LOONGARCH) 6960 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 6961 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 6962 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 6963 else if (E.e_machine == EM_XTENSA) 6964 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags), 6965 unsigned(ELF::EF_XTENSA_MACH)); 6966 else if (E.e_machine == EM_CUDA) 6967 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags), 6968 unsigned(ELF::EF_CUDA_SM)); 6969 else 6970 W.printFlags("Flags", E.e_flags); 6971 W.printNumber("HeaderSize", E.e_ehsize); 6972 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 6973 W.printNumber("ProgramHeaderCount", E.e_phnum); 6974 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 6975 W.printString("SectionHeaderCount", 6976 getSectionHeadersNumString(this->Obj, this->FileName)); 6977 W.printString("StringTableSectionIndex", 6978 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 6979 } 6980 } 6981 6982 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 6983 DictScope Lists(W, "Groups"); 6984 std::vector<GroupSection> V = this->getGroups(); 6985 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 6986 for (const GroupSection &G : V) { 6987 DictScope D(W, "Group"); 6988 W.printNumber("Name", G.Name, G.ShName); 6989 W.printNumber("Index", G.Index); 6990 W.printNumber("Link", G.Link); 6991 W.printNumber("Info", G.Info); 6992 W.printHex("Type", getGroupType(G.Type), G.Type); 6993 W.printString("Signature", G.Signature); 6994 6995 ListScope L(W, getGroupSectionHeaderName()); 6996 for (const GroupMember &GM : G.Members) { 6997 const GroupSection *MainGroup = Map[GM.Index]; 6998 if (MainGroup != &G) 6999 this->reportUniqueWarning( 7000 "section with index " + Twine(GM.Index) + 7001 ", included in the group section with index " + 7002 Twine(MainGroup->Index) + 7003 ", was also found in the group section with index " + 7004 Twine(G.Index)); 7005 printSectionGroupMembers(GM.Name, GM.Index); 7006 } 7007 } 7008 7009 if (V.empty()) 7010 printEmptyGroupMessage(); 7011 } 7012 7013 template <class ELFT> 7014 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const { 7015 return "Section(s) in group"; 7016 } 7017 7018 template <class ELFT> 7019 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 7020 uint64_t Idx) const { 7021 W.startLine() << Name << " (" << Idx << ")\n"; 7022 } 7023 7024 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 7025 ListScope D(W, "Relocations"); 7026 7027 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 7028 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) 7029 continue; 7030 7031 StringRef Name = this->getPrintableSectionName(Sec); 7032 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 7033 printRelocationSectionInfo(Sec, Name, SecNdx); 7034 } 7035 } 7036 7037 template <class ELFT> 7038 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 7039 W.startLine() << W.hex(R) << "\n"; 7040 } 7041 7042 template <class ELFT> 7043 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R, 7044 StringRef SymbolName, 7045 StringRef RelocName) { 7046 DictScope Group(W, "Relocation"); 7047 W.printHex("Offset", R.Offset); 7048 W.printNumber("Type", RelocName, R.Type); 7049 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 7050 if (R.Addend) 7051 W.printHex("Addend", (uintX_t)*R.Addend); 7052 } 7053 7054 template <class ELFT> 7055 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 7056 StringRef SymbolName, 7057 StringRef RelocName) { 7058 raw_ostream &OS = W.startLine(); 7059 OS << W.hex(R.Offset) << " " << RelocName << " " 7060 << (!SymbolName.empty() ? SymbolName : "-"); 7061 if (R.Addend) 7062 OS << " " << W.hex((uintX_t)*R.Addend); 7063 OS << "\n"; 7064 } 7065 7066 template <class ELFT> 7067 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 7068 StringRef Name, 7069 const unsigned SecNdx) { 7070 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str()); 7071 this->printRelocationsHelper(Sec); 7072 } 7073 7074 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const { 7075 W.startLine() << "There are no group sections in the file.\n"; 7076 } 7077 7078 template <class ELFT> 7079 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 7080 const RelSymbol<ELFT> &RelSym) { 7081 StringRef SymbolName = RelSym.Name; 7082 if (RelSym.Sym && RelSym.Name.empty()) 7083 SymbolName = "<null>"; 7084 SmallString<32> RelocName; 7085 this->Obj.getRelocationTypeName(R.Type, RelocName); 7086 7087 if (opts::ExpandRelocs) { 7088 printExpandedRelRelaReloc(R, SymbolName, RelocName); 7089 } else { 7090 printDefaultRelRelaReloc(R, SymbolName, RelocName); 7091 } 7092 } 7093 7094 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 7095 ListScope SectionsD(W, "Sections"); 7096 7097 int SectionIndex = -1; 7098 std::vector<EnumEntry<unsigned>> FlagsList = 7099 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 7100 this->Obj.getHeader().e_machine); 7101 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 7102 DictScope SectionD(W, "Section"); 7103 W.printNumber("Index", ++SectionIndex); 7104 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 7105 W.printHex("Type", 7106 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 7107 Sec.sh_type), 7108 Sec.sh_type); 7109 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList)); 7110 W.printHex("Address", Sec.sh_addr); 7111 W.printHex("Offset", Sec.sh_offset); 7112 W.printNumber("Size", Sec.sh_size); 7113 W.printNumber("Link", Sec.sh_link); 7114 W.printNumber("Info", Sec.sh_info); 7115 W.printNumber("AddressAlignment", Sec.sh_addralign); 7116 W.printNumber("EntrySize", Sec.sh_entsize); 7117 7118 if (opts::SectionRelocations) { 7119 ListScope D(W, "Relocations"); 7120 this->printRelocationsHelper(Sec); 7121 } 7122 7123 if (opts::SectionSymbols) { 7124 ListScope D(W, "Symbols"); 7125 if (this->DotSymtabSec) { 7126 StringRef StrTable = unwrapOrError( 7127 this->FileName, 7128 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 7129 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 7130 7131 typename ELFT::SymRange Symbols = unwrapOrError( 7132 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 7133 for (const Elf_Sym &Sym : Symbols) { 7134 const Elf_Shdr *SymSec = unwrapOrError( 7135 this->FileName, 7136 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 7137 if (SymSec == &Sec) 7138 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 7139 /*NonVisibilityBitsUsed=*/false, 7140 /*ExtraSymInfo=*/false); 7141 } 7142 } 7143 } 7144 7145 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 7146 ArrayRef<uint8_t> Data = 7147 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 7148 W.printBinaryBlock( 7149 "SectionData", 7150 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 7151 } 7152 } 7153 } 7154 7155 template <class ELFT> 7156 void LLVMELFDumper<ELFT>::printSymbolSection( 7157 const Elf_Sym &Symbol, unsigned SymIndex, 7158 DataRegion<Elf_Word> ShndxTable) const { 7159 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> { 7160 if (Symbol.isUndefined()) 7161 return StringRef("Undefined"); 7162 if (Symbol.isProcessorSpecific()) 7163 return StringRef("Processor Specific"); 7164 if (Symbol.isOSSpecific()) 7165 return StringRef("Operating System Specific"); 7166 if (Symbol.isAbsolute()) 7167 return StringRef("Absolute"); 7168 if (Symbol.isCommon()) 7169 return StringRef("Common"); 7170 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 7171 return StringRef("Reserved"); 7172 return std::nullopt; 7173 }; 7174 7175 if (std::optional<StringRef> Type = GetSectionSpecialType()) { 7176 W.printHex("Section", *Type, Symbol.st_shndx); 7177 return; 7178 } 7179 7180 Expected<unsigned> SectionIndex = 7181 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 7182 if (!SectionIndex) { 7183 assert(Symbol.st_shndx == SHN_XINDEX && 7184 "getSymbolSectionIndex should only fail due to an invalid " 7185 "SHT_SYMTAB_SHNDX table/reference"); 7186 this->reportUniqueWarning(SectionIndex.takeError()); 7187 W.printHex("Section", "Reserved", SHN_XINDEX); 7188 return; 7189 } 7190 7191 Expected<StringRef> SectionName = 7192 this->getSymbolSectionName(Symbol, *SectionIndex); 7193 if (!SectionName) { 7194 // Don't report an invalid section name if the section headers are missing. 7195 // In such situations, all sections will be "invalid". 7196 if (!this->ObjF.sections().empty()) 7197 this->reportUniqueWarning(SectionName.takeError()); 7198 else 7199 consumeError(SectionName.takeError()); 7200 W.printHex("Section", "<?>", *SectionIndex); 7201 } else { 7202 W.printHex("Section", *SectionName, *SectionIndex); 7203 } 7204 } 7205 7206 template <class ELFT> 7207 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const { 7208 std::vector<EnumEntry<unsigned>> SymOtherFlags = 7209 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol); 7210 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u); 7211 } 7212 7213 template <class ELFT> 7214 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField( 7215 const Elf_Sym &Symbol) const { 7216 assert(Symbol.st_other == 0 && "non-zero Other Field"); 7217 // Usually st_other flag is zero. Do not pollute the output 7218 // by flags enumeration in that case. 7219 W.printNumber("Other", 0); 7220 } 7221 7222 template <class ELFT> 7223 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 7224 DataRegion<Elf_Word> ShndxTable, 7225 std::optional<StringRef> StrTable, 7226 bool IsDynamic, 7227 bool /*NonVisibilityBitsUsed*/, 7228 bool /*ExtraSymInfo*/) const { 7229 std::string FullSymbolName = this->getFullSymbolName( 7230 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 7231 unsigned char SymbolType = Symbol.getType(); 7232 7233 DictScope D(W, "Symbol"); 7234 W.printNumber("Name", FullSymbolName, Symbol.st_name); 7235 W.printHex("Value", Symbol.st_value); 7236 W.printNumber("Size", Symbol.st_size); 7237 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 7238 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 7239 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 7240 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes)); 7241 else 7242 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes)); 7243 if (Symbol.st_other == 0) 7244 printZeroSymbolOtherField(Symbol); 7245 else 7246 printSymbolOtherField(Symbol); 7247 printSymbolSection(Symbol, SymIndex, ShndxTable); 7248 } 7249 7250 template <class ELFT> 7251 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 7252 bool PrintDynamicSymbols, 7253 bool ExtraSymInfo) { 7254 if (PrintSymbols) { 7255 ListScope Group(W, "Symbols"); 7256 this->printSymbolsHelper(false, ExtraSymInfo); 7257 } 7258 if (PrintDynamicSymbols) { 7259 ListScope Group(W, "DynamicSymbols"); 7260 this->printSymbolsHelper(true, ExtraSymInfo); 7261 } 7262 } 7263 7264 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 7265 Elf_Dyn_Range Table = this->dynamic_table(); 7266 if (Table.empty()) 7267 return; 7268 7269 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 7270 7271 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 7272 // The "Name/Value" column should be indented from the "Type" column by N 7273 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 7274 // space (1) = -3. 7275 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 7276 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 7277 7278 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 7279 for (auto Entry : Table) { 7280 uintX_t Tag = Entry.getTag(); 7281 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 7282 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 7283 << " " 7284 << format(ValueFmt.c_str(), 7285 this->Obj.getDynamicTagAsString(Tag).c_str()) 7286 << Value << "\n"; 7287 } 7288 W.startLine() << "]\n"; 7289 } 7290 7291 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 7292 W.startLine() << "Dynamic Relocations {\n"; 7293 W.indent(); 7294 this->printDynamicRelocationsHelper(); 7295 W.unindent(); 7296 W.startLine() << "}\n"; 7297 } 7298 7299 template <class ELFT> 7300 void LLVMELFDumper<ELFT>::printProgramHeaders( 7301 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 7302 if (PrintProgramHeaders) 7303 printProgramHeaders(); 7304 if (PrintSectionMapping == cl::BOU_TRUE) 7305 printSectionMapping(); 7306 } 7307 7308 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 7309 ListScope L(W, "ProgramHeaders"); 7310 7311 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 7312 if (!PhdrsOrErr) { 7313 this->reportUniqueWarning("unable to dump program headers: " + 7314 toString(PhdrsOrErr.takeError())); 7315 return; 7316 } 7317 7318 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 7319 DictScope P(W, "ProgramHeader"); 7320 StringRef Type = 7321 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 7322 7323 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 7324 W.printHex("Offset", Phdr.p_offset); 7325 W.printHex("VirtualAddress", Phdr.p_vaddr); 7326 W.printHex("PhysicalAddress", Phdr.p_paddr); 7327 W.printNumber("FileSize", Phdr.p_filesz); 7328 W.printNumber("MemSize", Phdr.p_memsz); 7329 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags)); 7330 W.printNumber("Alignment", Phdr.p_align); 7331 } 7332 } 7333 7334 template <class ELFT> 7335 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 7336 ListScope SS(W, "VersionSymbols"); 7337 if (!Sec) 7338 return; 7339 7340 StringRef StrTable; 7341 ArrayRef<Elf_Sym> Syms; 7342 const Elf_Shdr *SymTabSec; 7343 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 7344 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 7345 if (!VerTableOrErr) { 7346 this->reportUniqueWarning(VerTableOrErr.takeError()); 7347 return; 7348 } 7349 7350 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 7351 return; 7352 7353 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 7354 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 7355 DictScope S(W, "Symbol"); 7356 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 7357 W.printString("Name", 7358 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 7359 /*IsDynamic=*/true)); 7360 } 7361 } 7362 7363 const EnumEntry<unsigned> SymVersionFlags[] = { 7364 {"Base", "BASE", VER_FLG_BASE}, 7365 {"Weak", "WEAK", VER_FLG_WEAK}, 7366 {"Info", "INFO", VER_FLG_INFO}}; 7367 7368 template <class ELFT> 7369 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 7370 ListScope SD(W, "VersionDefinitions"); 7371 if (!Sec) 7372 return; 7373 7374 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 7375 if (!V) { 7376 this->reportUniqueWarning(V.takeError()); 7377 return; 7378 } 7379 7380 for (const VerDef &D : *V) { 7381 DictScope Def(W, "Definition"); 7382 W.printNumber("Version", D.Version); 7383 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags)); 7384 W.printNumber("Index", D.Ndx); 7385 W.printNumber("Hash", D.Hash); 7386 W.printString("Name", D.Name.c_str()); 7387 W.printList( 7388 "Predecessors", D.AuxV, 7389 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 7390 } 7391 } 7392 7393 template <class ELFT> 7394 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 7395 ListScope SD(W, "VersionRequirements"); 7396 if (!Sec) 7397 return; 7398 7399 Expected<std::vector<VerNeed>> V = 7400 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 7401 if (!V) { 7402 this->reportUniqueWarning(V.takeError()); 7403 return; 7404 } 7405 7406 for (const VerNeed &VN : *V) { 7407 DictScope Entry(W, "Dependency"); 7408 W.printNumber("Version", VN.Version); 7409 W.printNumber("Count", VN.Cnt); 7410 W.printString("FileName", VN.File.c_str()); 7411 7412 ListScope L(W, "Entries"); 7413 for (const VernAux &Aux : VN.AuxV) { 7414 DictScope Entry(W, "Entry"); 7415 W.printNumber("Hash", Aux.Hash); 7416 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags)); 7417 W.printNumber("Index", Aux.Other); 7418 W.printString("Name", Aux.Name.c_str()); 7419 } 7420 } 7421 } 7422 7423 template <class ELFT> 7424 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 7425 size_t MaxChain, 7426 size_t TotalSyms, 7427 ArrayRef<size_t> Count, 7428 bool IsGnu) const { 7429 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram"; 7430 StringRef BucketName = IsGnu ? "Bucket" : "Chain"; 7431 StringRef ListName = IsGnu ? "Buckets" : "Chains"; 7432 DictScope Outer(W, HistName); 7433 W.printNumber("TotalBuckets", NBucket); 7434 ListScope Buckets(W, ListName); 7435 size_t CumulativeNonZero = 0; 7436 for (size_t I = 0; I < MaxChain; ++I) { 7437 CumulativeNonZero += Count[I] * I; 7438 DictScope Bucket(W, BucketName); 7439 W.printNumber("Length", I); 7440 W.printNumber("Count", Count[I]); 7441 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket); 7442 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms); 7443 } 7444 } 7445 7446 // Returns true if rel/rela section exists, and populates SymbolIndices. 7447 // Otherwise returns false. 7448 template <class ELFT> 7449 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, 7450 const ELFFile<ELFT> &Obj, 7451 const LLVMELFDumper<ELFT> *Dumper, 7452 SmallVector<uint32_t, 128> &SymbolIndices) { 7453 if (!CGRelSection) { 7454 Dumper->reportUniqueWarning( 7455 "relocation section for a call graph section doesn't exist"); 7456 return false; 7457 } 7458 7459 if (CGRelSection->sh_type == SHT_REL) { 7460 typename ELFT::RelRange CGProfileRel; 7461 Expected<typename ELFT::RelRange> CGProfileRelOrError = 7462 Obj.rels(*CGRelSection); 7463 if (!CGProfileRelOrError) { 7464 Dumper->reportUniqueWarning("unable to load relocations for " 7465 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7466 toString(CGProfileRelOrError.takeError())); 7467 return false; 7468 } 7469 7470 CGProfileRel = *CGProfileRelOrError; 7471 for (const typename ELFT::Rel &Rel : CGProfileRel) 7472 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL())); 7473 } else { 7474 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert 7475 // the format to SHT_RELA 7476 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) 7477 typename ELFT::RelaRange CGProfileRela; 7478 Expected<typename ELFT::RelaRange> CGProfileRelaOrError = 7479 Obj.relas(*CGRelSection); 7480 if (!CGProfileRelaOrError) { 7481 Dumper->reportUniqueWarning("unable to load relocations for " 7482 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7483 toString(CGProfileRelaOrError.takeError())); 7484 return false; 7485 } 7486 7487 CGProfileRela = *CGProfileRelaOrError; 7488 for (const typename ELFT::Rela &Rela : CGProfileRela) 7489 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL())); 7490 } 7491 7492 return true; 7493 } 7494 7495 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 7496 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7497 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 7498 }; 7499 7500 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr = 7501 this->Obj.getSectionAndRelocations(IsMatch); 7502 if (!SecToRelocMapOrErr) { 7503 this->reportUniqueWarning("unable to get CG Profile section(s): " + 7504 toString(SecToRelocMapOrErr.takeError())); 7505 return; 7506 } 7507 7508 for (const auto &CGMapEntry : *SecToRelocMapOrErr) { 7509 const Elf_Shdr *CGSection = CGMapEntry.first; 7510 const Elf_Shdr *CGRelSection = CGMapEntry.second; 7511 7512 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 7513 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); 7514 if (!CGProfileOrErr) { 7515 this->reportUniqueWarning( 7516 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7517 toString(CGProfileOrErr.takeError())); 7518 return; 7519 } 7520 7521 SmallVector<uint32_t, 128> SymbolIndices; 7522 bool UseReloc = 7523 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); 7524 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { 7525 this->reportUniqueWarning( 7526 "number of from/to pairs does not match number of frequencies"); 7527 UseReloc = false; 7528 } 7529 7530 ListScope L(W, "CGProfile"); 7531 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { 7532 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; 7533 DictScope D(W, "CGProfileEntry"); 7534 if (UseReloc) { 7535 uint32_t From = SymbolIndices[I * 2]; 7536 uint32_t To = SymbolIndices[I * 2 + 1]; 7537 W.printNumber("From", this->getStaticSymbolName(From), From); 7538 W.printNumber("To", this->getStaticSymbolName(To), To); 7539 } 7540 W.printNumber("Weight", CGPE.cgp_weight); 7541 } 7542 } 7543 } 7544 7545 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() { 7546 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; 7547 using Elf_Shdr = typename ELFT::Shdr; 7548 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7549 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP || 7550 Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0; 7551 }; 7552 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr = 7553 this->Obj.getSectionAndRelocations(IsMatch); 7554 if (!SecRelocMapOrErr) { 7555 this->reportUniqueWarning( 7556 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " + 7557 toString(SecRelocMapOrErr.takeError())); 7558 return; 7559 } 7560 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) { 7561 std::optional<const Elf_Shdr *> FunctionSec; 7562 if (IsRelocatable) 7563 FunctionSec = 7564 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link)); 7565 ListScope L(W, "BBAddrMap"); 7566 if (IsRelocatable && !RelocSec) { 7567 this->reportUniqueWarning("unable to get relocation section for " + 7568 this->describe(*Sec)); 7569 continue; 7570 } 7571 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = 7572 this->Obj.decodeBBAddrMap(*Sec, RelocSec); 7573 if (!BBAddrMapOrErr) { 7574 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) + 7575 ": " + toString(BBAddrMapOrErr.takeError())); 7576 continue; 7577 } 7578 for (const BBAddrMap &AM : *BBAddrMapOrErr) { 7579 DictScope D(W, "Function"); 7580 W.printHex("At", AM.Addr); 7581 SmallVector<uint32_t> FuncSymIndex = 7582 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec); 7583 std::string FuncName = "<?>"; 7584 if (FuncSymIndex.empty()) 7585 this->reportUniqueWarning( 7586 "could not identify function symbol for address (0x" + 7587 Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec)); 7588 else 7589 FuncName = this->getStaticSymbolName(FuncSymIndex.front()); 7590 W.printString("Name", FuncName); 7591 7592 ListScope L(W, "BB entries"); 7593 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) { 7594 DictScope L(W); 7595 W.printNumber("ID", BBE.ID); 7596 W.printHex("Offset", BBE.Offset); 7597 W.printHex("Size", BBE.Size); 7598 W.printBoolean("HasReturn", BBE.hasReturn()); 7599 W.printBoolean("HasTailCall", BBE.hasTailCall()); 7600 W.printBoolean("IsEHPad", BBE.isEHPad()); 7601 W.printBoolean("CanFallThrough", BBE.canFallThrough()); 7602 W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch()); 7603 } 7604 } 7605 } 7606 } 7607 7608 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 7609 ListScope L(W, "Addrsig"); 7610 if (!this->DotAddrsigSec) 7611 return; 7612 7613 Expected<std::vector<uint64_t>> SymsOrErr = 7614 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 7615 if (!SymsOrErr) { 7616 this->reportUniqueWarning(SymsOrErr.takeError()); 7617 return; 7618 } 7619 7620 for (uint64_t Sym : *SymsOrErr) 7621 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 7622 } 7623 7624 template <typename ELFT> 7625 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7626 ScopedPrinter &W) { 7627 // Return true if we were able to pretty-print the note, false otherwise. 7628 switch (NoteType) { 7629 default: 7630 return false; 7631 case ELF::NT_GNU_ABI_TAG: { 7632 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 7633 if (!AbiTag.IsValid) { 7634 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 7635 return false; 7636 } else { 7637 W.printString("OS", AbiTag.OSName); 7638 W.printString("ABI", AbiTag.ABI); 7639 } 7640 break; 7641 } 7642 case ELF::NT_GNU_BUILD_ID: { 7643 W.printString("Build ID", getGNUBuildId(Desc)); 7644 break; 7645 } 7646 case ELF::NT_GNU_GOLD_VERSION: 7647 W.printString("Version", getDescAsStringRef(Desc)); 7648 break; 7649 case ELF::NT_GNU_PROPERTY_TYPE_0: 7650 ListScope D(W, "Property"); 7651 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 7652 W.printString(Property); 7653 break; 7654 } 7655 return true; 7656 } 7657 7658 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7659 ScopedPrinter &W) { 7660 // Return true if we were able to pretty-print the note, false otherwise. 7661 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 7662 if (Props.empty()) 7663 return false; 7664 for (const auto &KV : Props) 7665 W.printString(KV.first, KV.second); 7666 return true; 7667 } 7668 7669 template <class ELFT> 7670 static bool printAarch64NoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7671 ScopedPrinter &W) { 7672 if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG) 7673 return false; 7674 7675 if (Desc.size() < 16) 7676 return false; 7677 7678 uint64_t platform = 7679 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0); 7680 uint64_t version = 7681 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8); 7682 W.printNumber("Platform", platform); 7683 W.printNumber("Version", version); 7684 7685 if (Desc.size() > 16) 7686 W.printString("Additional info", 7687 toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16))); 7688 7689 return true; 7690 } 7691 7692 template <class ELFT> 7693 void LLVMELFDumper<ELFT>::printMemtag( 7694 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 7695 const ArrayRef<uint8_t> AndroidNoteDesc, 7696 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 7697 { 7698 ListScope L(W, "Memtag Dynamic Entries:"); 7699 if (DynamicEntries.empty()) 7700 W.printString("< none found >"); 7701 for (const auto &DynamicEntryKV : DynamicEntries) 7702 W.printString(DynamicEntryKV.first, DynamicEntryKV.second); 7703 } 7704 7705 if (!AndroidNoteDesc.empty()) { 7706 ListScope L(W, "Memtag Android Note:"); 7707 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W); 7708 } 7709 7710 if (Descriptors.empty()) 7711 return; 7712 7713 { 7714 ListScope L(W, "Memtag Global Descriptors:"); 7715 for (const auto &[Addr, BytesToTag] : Descriptors) { 7716 W.printHex("0x" + utohexstr(Addr), BytesToTag); 7717 } 7718 } 7719 } 7720 7721 template <typename ELFT> 7722 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, 7723 ArrayRef<uint8_t> Desc, 7724 ScopedPrinter &W) { 7725 switch (NoteType) { 7726 default: 7727 return false; 7728 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 7729 W.printString("Version", getDescAsStringRef(Desc)); 7730 break; 7731 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 7732 W.printString("Producer", getDescAsStringRef(Desc)); 7733 break; 7734 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 7735 W.printString("Producer version", getDescAsStringRef(Desc)); 7736 break; 7737 } 7738 return true; 7739 } 7740 7741 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 7742 W.printNumber("Page Size", Note.PageSize); 7743 for (const CoreFileMapping &Mapping : Note.Mappings) { 7744 ListScope D(W, "Mapping"); 7745 W.printHex("Start", Mapping.Start); 7746 W.printHex("End", Mapping.End); 7747 W.printHex("Offset", Mapping.Offset); 7748 W.printString("Filename", Mapping.Filename); 7749 } 7750 } 7751 7752 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 7753 ListScope L(W, "Notes"); 7754 7755 std::unique_ptr<DictScope> NoteScope; 7756 size_t Align = 0; 7757 auto StartNotes = [&](std::optional<StringRef> SecName, 7758 const typename ELFT::Off Offset, 7759 const typename ELFT::Addr Size, size_t Al) { 7760 Align = std::max<size_t>(Al, 4); 7761 NoteScope = std::make_unique<DictScope>(W, "NoteSection"); 7762 W.printString("Name", SecName ? *SecName : "<?>"); 7763 W.printHex("Offset", Offset); 7764 W.printHex("Size", Size); 7765 }; 7766 7767 auto EndNotes = [&] { NoteScope.reset(); }; 7768 7769 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 7770 DictScope D2(W, "Note"); 7771 StringRef Name = Note.getName(); 7772 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 7773 Elf_Word Type = Note.getType(); 7774 7775 // Print the note owner/type. 7776 W.printString("Owner", Name); 7777 W.printHex("Data size", Descriptor.size()); 7778 7779 StringRef NoteType = 7780 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 7781 if (!NoteType.empty()) 7782 W.printString("Type", NoteType); 7783 else 7784 W.printString("Type", 7785 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 7786 7787 // Print the description, or fallback to printing raw bytes for unknown 7788 // owners/if we fail to pretty-print the contents. 7789 if (Name == "GNU") { 7790 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7791 return Error::success(); 7792 } else if (Name == "FreeBSD") { 7793 if (std::optional<FreeBSDNote> N = 7794 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 7795 W.printString(N->Type, N->Value); 7796 return Error::success(); 7797 } 7798 } else if (Name == "AMD") { 7799 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 7800 if (!N.Type.empty()) { 7801 W.printString(N.Type, N.Value); 7802 return Error::success(); 7803 } 7804 } else if (Name == "AMDGPU") { 7805 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 7806 if (!N.Type.empty()) { 7807 W.printString(N.Type, N.Value); 7808 return Error::success(); 7809 } 7810 } else if (Name == "LLVMOMPOFFLOAD") { 7811 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7812 return Error::success(); 7813 } else if (Name == "CORE") { 7814 if (Type == ELF::NT_FILE) { 7815 DataExtractor DescExtractor( 7816 Descriptor, ELFT::TargetEndianness == llvm::endianness::little, 7817 sizeof(Elf_Addr)); 7818 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) { 7819 printCoreNoteLLVMStyle(*N, W); 7820 return Error::success(); 7821 } else { 7822 return N.takeError(); 7823 } 7824 } 7825 } else if (Name == "Android") { 7826 if (printAndroidNoteLLVMStyle(Type, Descriptor, W)) 7827 return Error::success(); 7828 } else if (Name == "ARM") { 7829 if (printAarch64NoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7830 return Error::success(); 7831 } 7832 if (!Descriptor.empty()) { 7833 W.printBinaryBlock("Description data", Descriptor); 7834 } 7835 return Error::success(); 7836 }; 7837 7838 processNotesHelper(*this, /*StartNotesFn=*/StartNotes, 7839 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes); 7840 } 7841 7842 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 7843 ListScope L(W, "LinkerOptions"); 7844 7845 unsigned I = -1; 7846 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 7847 ++I; 7848 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 7849 continue; 7850 7851 Expected<ArrayRef<uint8_t>> ContentsOrErr = 7852 this->Obj.getSectionContents(Shdr); 7853 if (!ContentsOrErr) { 7854 this->reportUniqueWarning("unable to read the content of the " 7855 "SHT_LLVM_LINKER_OPTIONS section: " + 7856 toString(ContentsOrErr.takeError())); 7857 continue; 7858 } 7859 if (ContentsOrErr->empty()) 7860 continue; 7861 7862 if (ContentsOrErr->back() != 0) { 7863 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 7864 Twine(I) + 7865 " is broken: the " 7866 "content is not null-terminated"); 7867 continue; 7868 } 7869 7870 SmallVector<StringRef, 16> Strings; 7871 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 7872 if (Strings.size() % 2 != 0) { 7873 this->reportUniqueWarning( 7874 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 7875 " is broken: an incomplete " 7876 "key-value pair was found. The last possible key was: \"" + 7877 Strings.back() + "\""); 7878 continue; 7879 } 7880 7881 for (size_t I = 0; I < Strings.size(); I += 2) 7882 W.printString(Strings[I], Strings[I + 1]); 7883 } 7884 } 7885 7886 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 7887 ListScope L(W, "DependentLibs"); 7888 this->printDependentLibsHelper( 7889 [](const Elf_Shdr &) {}, 7890 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 7891 } 7892 7893 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 7894 ListScope L(W, "StackSizes"); 7895 if (this->Obj.getHeader().e_type == ELF::ET_REL) 7896 this->printRelocatableStackSizes([]() {}); 7897 else 7898 this->printNonRelocatableStackSizes([]() {}); 7899 } 7900 7901 template <class ELFT> 7902 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 7903 ArrayRef<std::string> FuncNames) { 7904 DictScope D(W, "Entry"); 7905 W.printList("Functions", FuncNames); 7906 W.printHex("Size", Size); 7907 } 7908 7909 template <class ELFT> 7910 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 7911 auto PrintEntry = [&](const Elf_Addr *E) { 7912 W.printHex("Address", Parser.getGotAddress(E)); 7913 W.printNumber("Access", Parser.getGotOffset(E)); 7914 W.printHex("Initial", *E); 7915 }; 7916 7917 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 7918 7919 W.printHex("Canonical gp value", Parser.getGp()); 7920 { 7921 ListScope RS(W, "Reserved entries"); 7922 { 7923 DictScope D(W, "Entry"); 7924 PrintEntry(Parser.getGotLazyResolver()); 7925 W.printString("Purpose", StringRef("Lazy resolver")); 7926 } 7927 7928 if (Parser.getGotModulePointer()) { 7929 DictScope D(W, "Entry"); 7930 PrintEntry(Parser.getGotModulePointer()); 7931 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 7932 } 7933 } 7934 { 7935 ListScope LS(W, "Local entries"); 7936 for (auto &E : Parser.getLocalEntries()) { 7937 DictScope D(W, "Entry"); 7938 PrintEntry(&E); 7939 } 7940 } 7941 7942 if (Parser.IsStatic) 7943 return; 7944 7945 { 7946 ListScope GS(W, "Global entries"); 7947 for (auto &E : Parser.getGlobalEntries()) { 7948 DictScope D(W, "Entry"); 7949 7950 PrintEntry(&E); 7951 7952 const Elf_Sym &Sym = *Parser.getGotSym(&E); 7953 W.printHex("Value", Sym.st_value); 7954 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 7955 7956 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 7957 DataRegion<Elf_Word> ShndxTable( 7958 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7959 printSymbolSection(Sym, SymIndex, ShndxTable); 7960 7961 std::string SymName = this->getFullSymbolName( 7962 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 7963 W.printNumber("Name", SymName, Sym.st_name); 7964 } 7965 } 7966 7967 W.printNumber("Number of TLS and multi-GOT entries", 7968 uint64_t(Parser.getOtherEntries().size())); 7969 } 7970 7971 template <class ELFT> 7972 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 7973 auto PrintEntry = [&](const Elf_Addr *E) { 7974 W.printHex("Address", Parser.getPltAddress(E)); 7975 W.printHex("Initial", *E); 7976 }; 7977 7978 DictScope GS(W, "PLT GOT"); 7979 7980 { 7981 ListScope RS(W, "Reserved entries"); 7982 { 7983 DictScope D(W, "Entry"); 7984 PrintEntry(Parser.getPltLazyResolver()); 7985 W.printString("Purpose", StringRef("PLT lazy resolver")); 7986 } 7987 7988 if (auto E = Parser.getPltModulePointer()) { 7989 DictScope D(W, "Entry"); 7990 PrintEntry(E); 7991 W.printString("Purpose", StringRef("Module pointer")); 7992 } 7993 } 7994 { 7995 ListScope LS(W, "Entries"); 7996 DataRegion<Elf_Word> ShndxTable( 7997 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7998 for (auto &E : Parser.getPltEntries()) { 7999 DictScope D(W, "Entry"); 8000 PrintEntry(&E); 8001 8002 const Elf_Sym &Sym = *Parser.getPltSym(&E); 8003 W.printHex("Value", Sym.st_value); 8004 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 8005 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 8006 ShndxTable); 8007 8008 const Elf_Sym *FirstSym = cantFail( 8009 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 8010 std::string SymName = this->getFullSymbolName( 8011 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 8012 W.printNumber("Name", SymName, Sym.st_name); 8013 } 8014 } 8015 } 8016 8017 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 8018 const Elf_Mips_ABIFlags<ELFT> *Flags; 8019 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 8020 getMipsAbiFlagsSection(*this)) { 8021 Flags = *SecOrErr; 8022 if (!Flags) { 8023 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 8024 return; 8025 } 8026 } else { 8027 this->reportUniqueWarning(SecOrErr.takeError()); 8028 return; 8029 } 8030 8031 raw_ostream &OS = W.getOStream(); 8032 DictScope GS(W, "MIPS ABI Flags"); 8033 8034 W.printNumber("Version", Flags->version); 8035 W.startLine() << "ISA: "; 8036 if (Flags->isa_rev <= 1) 8037 OS << format("MIPS%u", Flags->isa_level); 8038 else 8039 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 8040 OS << "\n"; 8041 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType)); 8042 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags)); 8043 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType)); 8044 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 8045 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 8046 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 8047 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1)); 8048 W.printHex("Flags 2", Flags->flags2); 8049 } 8050 8051 template <class ELFT> 8052 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 8053 ArrayRef<std::string> InputFilenames, 8054 const Archive *A) { 8055 FileScope = std::make_unique<DictScope>(this->W); 8056 DictScope D(this->W, "FileSummary"); 8057 this->W.printString("File", FileStr); 8058 this->W.printString("Format", Obj.getFileFormatName()); 8059 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch())); 8060 this->W.printString( 8061 "AddressSize", 8062 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress()))); 8063 this->printLoadName(); 8064 } 8065 8066 template <class ELFT> 8067 void JSONELFDumper<ELFT>::printZeroSymbolOtherField( 8068 const Elf_Sym &Symbol) const { 8069 // We want the JSON format to be uniform, since it is machine readable, so 8070 // always print the `Other` field the same way. 8071 this->printSymbolOtherField(Symbol); 8072 } 8073 8074 template <class ELFT> 8075 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 8076 StringRef SymbolName, 8077 StringRef RelocName) { 8078 this->printExpandedRelRelaReloc(R, SymbolName, RelocName); 8079 } 8080 8081 template <class ELFT> 8082 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 8083 StringRef Name, 8084 const unsigned SecNdx) { 8085 DictScope Group(this->W); 8086 this->W.printNumber("SectionIndex", SecNdx); 8087 ListScope D(this->W, "Relocs"); 8088 this->printRelocationsHelper(Sec); 8089 } 8090 8091 template <class ELFT> 8092 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const { 8093 return "GroupSections"; 8094 } 8095 8096 template <class ELFT> 8097 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 8098 uint64_t Idx) const { 8099 DictScope Grp(this->W); 8100 this->W.printString("Name", Name); 8101 this->W.printNumber("Index", Idx); 8102 } 8103 8104 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const { 8105 // JSON output does not need to print anything for empty groups 8106 } 8107