xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/BinaryFormat/MsgPackDocument.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
73 
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
77 
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
79   case ns::enum:                                                               \
80     return #enum;
81 
82 #define ENUM_ENT(enum, altName)                                                \
83   { #enum, altName, ELF::enum }
84 
85 #define ENUM_ENT_1(enum)                                                       \
86   { #enum, #enum, ELF::enum }
87 
88 namespace {
89 
90 template <class ELFT> struct RelSymbol {
91   RelSymbol(const typename ELFT::Sym *S, StringRef N)
92       : Sym(S), Name(N.str()) {}
93   const typename ELFT::Sym *Sym;
94   std::string Name;
95 };
96 
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103       : Obj(&Owner), Dumper(&D) {}
104   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105                 uint64_t S, uint64_t ES)
106       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
107 
108   /// Address in current address space.
109   const uint8_t *Addr = nullptr;
110   /// Size in bytes of the region.
111   uint64_t Size = 0;
112   /// Size of each entity in the region.
113   uint64_t EntSize = 0;
114 
115   /// Owner object. Used for error reporting.
116   const Binary *Obj;
117   /// Dumper used for error reporting.
118   const ObjDumper *Dumper;
119   /// Error prefix. Used for error reporting to provide more information.
120   std::string Context;
121   /// Region size name. Used for error reporting.
122   StringRef SizePrintName = "size";
123   /// Entry size name. Used for error reporting. If this field is empty, errors
124   /// will not mention the entry size.
125   StringRef EntSizePrintName = "entry size";
126 
127   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128     const Type *Start = reinterpret_cast<const Type *>(Addr);
129     if (!Start)
130       return {Start, Start};
131 
132     const uint64_t Offset =
133         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
135 
136     if (Size > ObjSize - Offset) {
137       Dumper->reportUniqueWarning(
138           "unable to read data at 0x" + Twine::utohexstr(Offset) +
139           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140           "): it goes past the end of the file of size 0x" +
141           Twine::utohexstr(ObjSize));
142       return {Start, Start};
143     }
144 
145     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146       return {Start, Start + (Size / EntSize)};
147 
148     std::string Msg;
149     if (!Context.empty())
150       Msg += Context + " has ";
151 
152     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153                .str();
154     if (!EntSizePrintName.empty())
155       Msg +=
156           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157               .str();
158 
159     Dumper->reportUniqueWarning(Msg);
160     return {Start, Start};
161   }
162 };
163 
164 struct GroupMember {
165   StringRef Name;
166   uint64_t Index;
167 };
168 
169 struct GroupSection {
170   StringRef Name;
171   std::string Signature;
172   uint64_t ShName;
173   uint64_t Index;
174   uint32_t Link;
175   uint32_t Info;
176   uint32_t Type;
177   std::vector<GroupMember> Members;
178 };
179 
180 namespace {
181 
182 struct NoteType {
183   uint32_t ID;
184   StringRef Name;
185 };
186 
187 } // namespace
188 
189 template <class ELFT> class Relocation {
190 public:
191   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193         Offset(R.r_offset), Info(R.r_info) {}
194 
195   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197     Addend = R.r_addend;
198   }
199 
200   uint32_t Type;
201   uint32_t Symbol;
202   typename ELFT::uint Offset;
203   typename ELFT::uint Info;
204   std::optional<int64_t> Addend;
205 };
206 
207 template <class ELFT> class MipsGOTParser;
208 
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
211 
212 public:
213   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
214 
215   void printUnwindInfo() override;
216   void printNeededLibraries() override;
217   void printHashTable() override;
218   void printGnuHashTable() override;
219   void printLoadName() override;
220   void printVersionInfo() override;
221   void printArchSpecificInfo() override;
222   void printStackMap() const override;
223 
224   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
225 
226   std::string describe(const Elf_Shdr &Sec) const;
227 
228   unsigned getHashTableEntSize() const {
229     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
230     // sections. This violates the ELF specification.
231     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
232         Obj.getHeader().e_machine == ELF::EM_ALPHA)
233       return 8;
234     return 4;
235   }
236 
237   Elf_Dyn_Range dynamic_table() const {
238     // A valid .dynamic section contains an array of entries terminated
239     // with a DT_NULL entry. However, sometimes the section content may
240     // continue past the DT_NULL entry, so to dump the section correctly,
241     // we first find the end of the entries by iterating over them.
242     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
243 
244     size_t Size = 0;
245     while (Size < Table.size())
246       if (Table[Size++].getTag() == DT_NULL)
247         break;
248 
249     return Table.slice(0, Size);
250   }
251 
252   Elf_Sym_Range dynamic_symbols() const {
253     if (!DynSymRegion)
254       return Elf_Sym_Range();
255     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
256   }
257 
258   const Elf_Shdr *findSectionByName(StringRef Name) const;
259 
260   StringRef getDynamicStringTable() const { return DynamicStringTable; }
261 
262 protected:
263   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
264   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
265   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
266 
267   void
268   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
269                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
270 
271   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
272                                  const RelSymbol<ELFT> &RelSym) = 0;
273   virtual void printRelrReloc(const Elf_Relr &R) = 0;
274   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
275                                        const DynRegionInfo &Reg) {}
276   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
277                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
278   void printDynamicReloc(const Relocation<ELFT> &R);
279   void printDynamicRelocationsHelper();
280   void printRelocationsHelper(const Elf_Shdr &Sec);
281   void forEachRelocationDo(
282       const Elf_Shdr &Sec, bool RawRelr,
283       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
284                               const Elf_Shdr &, const Elf_Shdr *)>
285           RelRelaFn,
286       llvm::function_ref<void(const Elf_Relr &)> RelrFn);
287 
288   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
289                                   bool NonVisibilityBitsUsed) const {};
290   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
291                            DataRegion<Elf_Word> ShndxTable,
292                            std::optional<StringRef> StrTable, bool IsDynamic,
293                            bool NonVisibilityBitsUsed) const = 0;
294 
295   virtual void printMipsABIFlags() = 0;
296   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
297   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
298 
299   Expected<ArrayRef<Elf_Versym>>
300   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
301                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
302   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
303 
304   std::vector<GroupSection> getGroups();
305 
306   // Returns the function symbol index for the given address. Matches the
307   // symbol's section with FunctionSec when specified.
308   // Returns std::nullopt if no function symbol can be found for the address or
309   // in case it is not defined in the specified section.
310   SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
311       uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
312   bool printFunctionStackSize(uint64_t SymValue,
313                               std::optional<const Elf_Shdr *> FunctionSec,
314                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
315                               uint64_t *Offset);
316   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
317                       unsigned Ndx, const Elf_Shdr *SymTab,
318                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
319                       const RelocationResolver &Resolver, DataExtractor Data);
320   virtual void printStackSizeEntry(uint64_t Size,
321                                    ArrayRef<std::string> FuncNames) = 0;
322 
323   void printRelocatableStackSizes(std::function<void()> PrintHeader);
324   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
325 
326   /// Retrieves sections with corresponding relocation sections based on
327   /// IsMatch.
328   void getSectionAndRelocations(
329       std::function<bool(const Elf_Shdr &)> IsMatch,
330       llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap);
331 
332   const object::ELFObjectFile<ELFT> &ObjF;
333   const ELFFile<ELFT> &Obj;
334   StringRef FileName;
335 
336   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
337                                     uint64_t EntSize) {
338     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
339       return createError("offset (0x" + Twine::utohexstr(Offset) +
340                          ") + size (0x" + Twine::utohexstr(Size) +
341                          ") is greater than the file size (0x" +
342                          Twine::utohexstr(Obj.getBufSize()) + ")");
343     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
344   }
345 
346   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
347                        support::endianness);
348   void printMipsReginfo();
349   void printMipsOptions();
350 
351   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
352   void loadDynamicTable();
353   void parseDynamicTable();
354 
355   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
356                                        bool &IsDefault) const;
357   Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
358 
359   DynRegionInfo DynRelRegion;
360   DynRegionInfo DynRelaRegion;
361   DynRegionInfo DynRelrRegion;
362   DynRegionInfo DynPLTRelRegion;
363   std::optional<DynRegionInfo> DynSymRegion;
364   DynRegionInfo DynSymTabShndxRegion;
365   DynRegionInfo DynamicTable;
366   StringRef DynamicStringTable;
367   const Elf_Hash *HashTable = nullptr;
368   const Elf_GnuHash *GnuHashTable = nullptr;
369   const Elf_Shdr *DotSymtabSec = nullptr;
370   const Elf_Shdr *DotDynsymSec = nullptr;
371   const Elf_Shdr *DotAddrsigSec = nullptr;
372   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
373   std::optional<uint64_t> SONameOffset;
374   std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
375 
376   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
377   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
378   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
379 
380   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
381                                 DataRegion<Elf_Word> ShndxTable,
382                                 std::optional<StringRef> StrTable,
383                                 bool IsDynamic) const;
384   Expected<unsigned>
385   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
386                         DataRegion<Elf_Word> ShndxTable) const;
387   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
388                                            unsigned SectionIndex) const;
389   std::string getStaticSymbolName(uint32_t Index) const;
390   StringRef getDynamicString(uint64_t Value) const;
391 
392   void printSymbolsHelper(bool IsDynamic) const;
393   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
394 
395   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
396                                                 const Elf_Shdr *SymTab) const;
397 
398   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
399 
400 private:
401   mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
402 };
403 
404 template <class ELFT>
405 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
406   return ::describe(Obj, Sec);
407 }
408 
409 namespace {
410 
411 template <class ELFT> struct SymtabLink {
412   typename ELFT::SymRange Symbols;
413   StringRef StringTable;
414   const typename ELFT::Shdr *SymTab;
415 };
416 
417 // Returns the linked symbol table, symbols and associated string table for a
418 // given section.
419 template <class ELFT>
420 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
421                                            const typename ELFT::Shdr &Sec,
422                                            unsigned ExpectedType) {
423   Expected<const typename ELFT::Shdr *> SymtabOrErr =
424       Obj.getSection(Sec.sh_link);
425   if (!SymtabOrErr)
426     return createError("invalid section linked to " + describe(Obj, Sec) +
427                        ": " + toString(SymtabOrErr.takeError()));
428 
429   if ((*SymtabOrErr)->sh_type != ExpectedType)
430     return createError(
431         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
432         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
433         ", but got " +
434         object::getELFSectionTypeName(Obj.getHeader().e_machine,
435                                       (*SymtabOrErr)->sh_type));
436 
437   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
438   if (!StrTabOrErr)
439     return createError(
440         "can't get a string table for the symbol table linked to " +
441         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
442 
443   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
444   if (!SymsOrErr)
445     return createError("unable to read symbols from the " + describe(Obj, Sec) +
446                        ": " + toString(SymsOrErr.takeError()));
447 
448   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
449 }
450 
451 } // namespace
452 
453 template <class ELFT>
454 Expected<ArrayRef<typename ELFT::Versym>>
455 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
456                                  StringRef *StrTab,
457                                  const Elf_Shdr **SymTabSec) const {
458   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
459   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
460           sizeof(uint16_t) !=
461       0)
462     return createError("the " + describe(Sec) + " is misaligned");
463 
464   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
465       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
466   if (!VersionsOrErr)
467     return createError("cannot read content of " + describe(Sec) + ": " +
468                        toString(VersionsOrErr.takeError()));
469 
470   Expected<SymtabLink<ELFT>> SymTabOrErr =
471       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
472   if (!SymTabOrErr) {
473     reportUniqueWarning(SymTabOrErr.takeError());
474     return *VersionsOrErr;
475   }
476 
477   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
478     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
479                         Twine(VersionsOrErr->size()) +
480                         ") does not match the number of symbols (" +
481                         Twine(SymTabOrErr->Symbols.size()) +
482                         ") in the symbol table with index " +
483                         Twine(Sec.sh_link));
484 
485   if (SymTab) {
486     *SymTab = SymTabOrErr->Symbols;
487     *StrTab = SymTabOrErr->StringTable;
488     *SymTabSec = SymTabOrErr->SymTab;
489   }
490   return *VersionsOrErr;
491 }
492 
493 template <class ELFT>
494 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
495   std::optional<StringRef> StrTable;
496   size_t Entries = 0;
497   Elf_Sym_Range Syms(nullptr, nullptr);
498   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
499 
500   if (IsDynamic) {
501     StrTable = DynamicStringTable;
502     Syms = dynamic_symbols();
503     Entries = Syms.size();
504   } else if (DotSymtabSec) {
505     if (Expected<StringRef> StrTableOrErr =
506             Obj.getStringTableForSymtab(*DotSymtabSec))
507       StrTable = *StrTableOrErr;
508     else
509       reportUniqueWarning(
510           "unable to get the string table for the SHT_SYMTAB section: " +
511           toString(StrTableOrErr.takeError()));
512 
513     if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
514       Syms = *SymsOrErr;
515     else
516       reportUniqueWarning(
517           "unable to read symbols from the SHT_SYMTAB section: " +
518           toString(SymsOrErr.takeError()));
519     Entries = DotSymtabSec->getEntityCount();
520   }
521   if (Syms.empty())
522     return;
523 
524   // The st_other field has 2 logical parts. The first two bits hold the symbol
525   // visibility (STV_*) and the remainder hold other platform-specific values.
526   bool NonVisibilityBitsUsed =
527       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
528 
529   DataRegion<Elf_Word> ShndxTable =
530       IsDynamic ? DataRegion<Elf_Word>(
531                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
532                       this->getElfObject().getELFFile().end())
533                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
534 
535   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
536   for (const Elf_Sym &Sym : Syms)
537     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
538                 NonVisibilityBitsUsed);
539 }
540 
541 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
542   formatted_raw_ostream &OS;
543 
544 public:
545   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
546 
547   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
548       : ELFDumper<ELFT>(ObjF, Writer),
549         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
550     assert(&this->W.getOStream() == &llvm::fouts());
551   }
552 
553   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
554                         ArrayRef<std::string> InputFilenames,
555                         const Archive *A) override;
556   void printFileHeaders() override;
557   void printGroupSections() override;
558   void printRelocations() override;
559   void printSectionHeaders() override;
560   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
561   void printHashSymbols() override;
562   void printSectionDetails() override;
563   void printDependentLibs() override;
564   void printDynamicTable() override;
565   void printDynamicRelocations() override;
566   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
567                           bool NonVisibilityBitsUsed) const override;
568   void printProgramHeaders(bool PrintProgramHeaders,
569                            cl::boolOrDefault PrintSectionMapping) override;
570   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
571   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
572   void printVersionDependencySection(const Elf_Shdr *Sec) override;
573   void printHashHistograms() override;
574   void printCGProfile() override;
575   void printBBAddrMaps() override;
576   void printAddrsig() override;
577   void printNotes() override;
578   void printELFLinkerOptions() override;
579   void printStackSizes() override;
580 
581 private:
582   void printHashHistogram(const Elf_Hash &HashTable);
583   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
584   void printHashTableSymbols(const Elf_Hash &HashTable);
585   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
586 
587   struct Field {
588     std::string Str;
589     unsigned Column;
590 
591     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
592     Field(unsigned Col) : Column(Col) {}
593   };
594 
595   template <typename T, typename TEnum>
596   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
597                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
598                          TEnum EnumMask3 = {}) const {
599     std::string Str;
600     for (const EnumEntry<TEnum> &Flag : EnumValues) {
601       if (Flag.Value == 0)
602         continue;
603 
604       TEnum EnumMask{};
605       if (Flag.Value & EnumMask1)
606         EnumMask = EnumMask1;
607       else if (Flag.Value & EnumMask2)
608         EnumMask = EnumMask2;
609       else if (Flag.Value & EnumMask3)
610         EnumMask = EnumMask3;
611       bool IsEnum = (Flag.Value & EnumMask) != 0;
612       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
613           (IsEnum && (Value & EnumMask) == Flag.Value)) {
614         if (!Str.empty())
615           Str += ", ";
616         Str += Flag.AltName;
617       }
618     }
619     return Str;
620   }
621 
622   formatted_raw_ostream &printField(struct Field F) const {
623     if (F.Column != 0)
624       OS.PadToColumn(F.Column);
625     OS << F.Str;
626     OS.flush();
627     return OS;
628   }
629   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
630                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
631                          uint32_t Bucket);
632   void printRelrReloc(const Elf_Relr &R) override;
633   void printRelRelaReloc(const Relocation<ELFT> &R,
634                          const RelSymbol<ELFT> &RelSym) override;
635   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
636                    DataRegion<Elf_Word> ShndxTable,
637                    std::optional<StringRef> StrTable, bool IsDynamic,
638                    bool NonVisibilityBitsUsed) const override;
639   void printDynamicRelocHeader(unsigned Type, StringRef Name,
640                                const DynRegionInfo &Reg) override;
641 
642   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
643                                   DataRegion<Elf_Word> ShndxTable) const;
644   void printProgramHeaders() override;
645   void printSectionMapping() override;
646   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
647                                     const Twine &Label, unsigned EntriesNum);
648 
649   void printStackSizeEntry(uint64_t Size,
650                            ArrayRef<std::string> FuncNames) override;
651 
652   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
653   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
654   void printMipsABIFlags() override;
655 };
656 
657 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
658 public:
659   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
660 
661   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
662       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
663 
664   void printFileHeaders() override;
665   void printGroupSections() override;
666   void printRelocations() override;
667   void printSectionHeaders() override;
668   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
669   void printDependentLibs() override;
670   void printDynamicTable() override;
671   void printDynamicRelocations() override;
672   void printProgramHeaders(bool PrintProgramHeaders,
673                            cl::boolOrDefault PrintSectionMapping) override;
674   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
675   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
676   void printVersionDependencySection(const Elf_Shdr *Sec) override;
677   void printHashHistograms() override;
678   void printCGProfile() override;
679   void printBBAddrMaps() override;
680   void printAddrsig() override;
681   void printNotes() override;
682   void printELFLinkerOptions() override;
683   void printStackSizes() override;
684 
685 private:
686   void printRelrReloc(const Elf_Relr &R) override;
687   void printRelRelaReloc(const Relocation<ELFT> &R,
688                          const RelSymbol<ELFT> &RelSym) override;
689 
690   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
691                           DataRegion<Elf_Word> ShndxTable) const;
692   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
693                    DataRegion<Elf_Word> ShndxTable,
694                    std::optional<StringRef> StrTable, bool IsDynamic,
695                    bool /*NonVisibilityBitsUsed*/) const override;
696   void printProgramHeaders() override;
697   void printSectionMapping() override {}
698   void printStackSizeEntry(uint64_t Size,
699                            ArrayRef<std::string> FuncNames) override;
700 
701   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
702   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
703   void printMipsABIFlags() override;
704 
705 protected:
706   ScopedPrinter &W;
707 };
708 
709 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
710 // it uses a JSONScopedPrinter.
711 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
712 public:
713   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
714 
715   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
716       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
717 
718   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
719                         ArrayRef<std::string> InputFilenames,
720                         const Archive *A) override;
721 
722 private:
723   std::unique_ptr<DictScope> FileScope;
724 };
725 
726 } // end anonymous namespace
727 
728 namespace llvm {
729 
730 template <class ELFT>
731 static std::unique_ptr<ObjDumper>
732 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
733   if (opts::Output == opts::GNU)
734     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
735   else if (opts::Output == opts::JSON)
736     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
737   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
738 }
739 
740 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
741                                            ScopedPrinter &Writer) {
742   // Little-endian 32-bit
743   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
744     return createELFDumper(*ELFObj, Writer);
745 
746   // Big-endian 32-bit
747   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
748     return createELFDumper(*ELFObj, Writer);
749 
750   // Little-endian 64-bit
751   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
752     return createELFDumper(*ELFObj, Writer);
753 
754   // Big-endian 64-bit
755   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
756 }
757 
758 } // end namespace llvm
759 
760 template <class ELFT>
761 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
762 ELFDumper<ELFT>::getVersionMap() const {
763   // If the VersionMap has already been loaded or if there is no dynamic symtab
764   // or version table, there is nothing to do.
765   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
766     return &VersionMap;
767 
768   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
769       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
770   if (MapOrErr)
771     VersionMap = *MapOrErr;
772   else
773     return MapOrErr.takeError();
774 
775   return &VersionMap;
776 }
777 
778 template <typename ELFT>
779 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
780                                                       bool &IsDefault) const {
781   // This is a dynamic symbol. Look in the GNU symbol version table.
782   if (!SymbolVersionSection) {
783     // No version table.
784     IsDefault = false;
785     return "";
786   }
787 
788   assert(DynSymRegion && "DynSymRegion has not been initialised");
789   // Determine the position in the symbol table of this entry.
790   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
791                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
792                       sizeof(Elf_Sym);
793 
794   // Get the corresponding version index entry.
795   Expected<const Elf_Versym *> EntryOrErr =
796       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
797   if (!EntryOrErr)
798     return EntryOrErr.takeError();
799 
800   unsigned Version = (*EntryOrErr)->vs_index;
801   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
802     IsDefault = false;
803     return "";
804   }
805 
806   Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
807       getVersionMap();
808   if (!MapOrErr)
809     return MapOrErr.takeError();
810 
811   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
812                                      Sym.st_shndx == ELF::SHN_UNDEF);
813 }
814 
815 template <typename ELFT>
816 Expected<RelSymbol<ELFT>>
817 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
818                                      const Elf_Shdr *SymTab) const {
819   if (R.Symbol == 0)
820     return RelSymbol<ELFT>(nullptr, "");
821 
822   Expected<const Elf_Sym *> SymOrErr =
823       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
824   if (!SymOrErr)
825     return createError("unable to read an entry with index " + Twine(R.Symbol) +
826                        " from " + describe(*SymTab) + ": " +
827                        toString(SymOrErr.takeError()));
828   const Elf_Sym *Sym = *SymOrErr;
829   if (!Sym)
830     return RelSymbol<ELFT>(nullptr, "");
831 
832   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
833   if (!StrTableOrErr)
834     return StrTableOrErr.takeError();
835 
836   const Elf_Sym *FirstSym =
837       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
838   std::string SymbolName =
839       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
840                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
841   return RelSymbol<ELFT>(Sym, SymbolName);
842 }
843 
844 template <typename ELFT>
845 ArrayRef<typename ELFT::Word>
846 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
847   if (Symtab) {
848     auto It = ShndxTables.find(Symtab);
849     if (It != ShndxTables.end())
850       return It->second;
851   }
852   return {};
853 }
854 
855 static std::string maybeDemangle(StringRef Name) {
856   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
857 }
858 
859 template <typename ELFT>
860 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
861   auto Warn = [&](Error E) -> std::string {
862     reportUniqueWarning("unable to read the name of symbol with index " +
863                         Twine(Index) + ": " + toString(std::move(E)));
864     return "<?>";
865   };
866 
867   Expected<const typename ELFT::Sym *> SymOrErr =
868       Obj.getSymbol(DotSymtabSec, Index);
869   if (!SymOrErr)
870     return Warn(SymOrErr.takeError());
871 
872   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
873   if (!StrTabOrErr)
874     return Warn(StrTabOrErr.takeError());
875 
876   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
877   if (!NameOrErr)
878     return Warn(NameOrErr.takeError());
879   return maybeDemangle(*NameOrErr);
880 }
881 
882 template <typename ELFT>
883 std::string ELFDumper<ELFT>::getFullSymbolName(
884     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
885     std::optional<StringRef> StrTable, bool IsDynamic) const {
886   if (!StrTable)
887     return "<?>";
888 
889   std::string SymbolName;
890   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
891     SymbolName = maybeDemangle(*NameOrErr);
892   } else {
893     reportUniqueWarning(NameOrErr.takeError());
894     return "<?>";
895   }
896 
897   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
898     Expected<unsigned> SectionIndex =
899         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
900     if (!SectionIndex) {
901       reportUniqueWarning(SectionIndex.takeError());
902       return "<?>";
903     }
904     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
905     if (!NameOrErr) {
906       reportUniqueWarning(NameOrErr.takeError());
907       return ("<section " + Twine(*SectionIndex) + ">").str();
908     }
909     return std::string(*NameOrErr);
910   }
911 
912   if (!IsDynamic)
913     return SymbolName;
914 
915   bool IsDefault;
916   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
917   if (!VersionOrErr) {
918     reportUniqueWarning(VersionOrErr.takeError());
919     return SymbolName + "@<corrupt>";
920   }
921 
922   if (!VersionOrErr->empty()) {
923     SymbolName += (IsDefault ? "@@" : "@");
924     SymbolName += *VersionOrErr;
925   }
926   return SymbolName;
927 }
928 
929 template <typename ELFT>
930 Expected<unsigned>
931 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
932                                        DataRegion<Elf_Word> ShndxTable) const {
933   unsigned Ndx = Symbol.st_shndx;
934   if (Ndx == SHN_XINDEX)
935     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
936                                                      ShndxTable);
937   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
938     return Ndx;
939 
940   auto CreateErr = [&](const Twine &Name,
941                        std::optional<unsigned> Offset = std::nullopt) {
942     std::string Desc;
943     if (Offset)
944       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
945     else
946       Desc = Name.str();
947     return createError(
948         "unable to get section index for symbol with st_shndx = 0x" +
949         Twine::utohexstr(Ndx) + " (" + Desc + ")");
950   };
951 
952   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
953     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
954   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
955     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
956   if (Ndx == ELF::SHN_UNDEF)
957     return CreateErr("SHN_UNDEF");
958   if (Ndx == ELF::SHN_ABS)
959     return CreateErr("SHN_ABS");
960   if (Ndx == ELF::SHN_COMMON)
961     return CreateErr("SHN_COMMON");
962   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
963 }
964 
965 template <typename ELFT>
966 Expected<StringRef>
967 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
968                                       unsigned SectionIndex) const {
969   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
970   if (!SecOrErr)
971     return SecOrErr.takeError();
972   return Obj.getSectionName(**SecOrErr);
973 }
974 
975 template <class ELFO>
976 static const typename ELFO::Elf_Shdr *
977 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
978                              uint64_t Addr) {
979   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
980     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
981       return &Shdr;
982   return nullptr;
983 }
984 
985 const EnumEntry<unsigned> ElfClass[] = {
986   {"None",   "none",   ELF::ELFCLASSNONE},
987   {"32-bit", "ELF32",  ELF::ELFCLASS32},
988   {"64-bit", "ELF64",  ELF::ELFCLASS64},
989 };
990 
991 const EnumEntry<unsigned> ElfDataEncoding[] = {
992   {"None",         "none",                          ELF::ELFDATANONE},
993   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
994   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
995 };
996 
997 const EnumEntry<unsigned> ElfObjectFileType[] = {
998   {"None",         "NONE (none)",              ELF::ET_NONE},
999   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1000   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1001   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1002   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1003 };
1004 
1005 const EnumEntry<unsigned> ElfOSABI[] = {
1006   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1007   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1008   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1009   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1010   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1011   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1012   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1013   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1014   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1015   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1016   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1017   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1018   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1019   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1020   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1021   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1022   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1023   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1024 };
1025 
1026 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1027   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1028   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1029   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1030 };
1031 
1032 const EnumEntry<unsigned> ARMElfOSABI[] = {
1033   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1034 };
1035 
1036 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1037   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1038   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1039 };
1040 
1041 const EnumEntry<unsigned> ElfMachineType[] = {
1042   ENUM_ENT(EM_NONE,          "None"),
1043   ENUM_ENT(EM_M32,           "WE32100"),
1044   ENUM_ENT(EM_SPARC,         "Sparc"),
1045   ENUM_ENT(EM_386,           "Intel 80386"),
1046   ENUM_ENT(EM_68K,           "MC68000"),
1047   ENUM_ENT(EM_88K,           "MC88000"),
1048   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1049   ENUM_ENT(EM_860,           "Intel 80860"),
1050   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1051   ENUM_ENT(EM_S370,          "IBM System/370"),
1052   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1053   ENUM_ENT(EM_PARISC,        "HPPA"),
1054   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1055   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1056   ENUM_ENT(EM_960,           "Intel 80960"),
1057   ENUM_ENT(EM_PPC,           "PowerPC"),
1058   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1059   ENUM_ENT(EM_S390,          "IBM S/390"),
1060   ENUM_ENT(EM_SPU,           "SPU"),
1061   ENUM_ENT(EM_V800,          "NEC V800 series"),
1062   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1063   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1064   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1065   ENUM_ENT(EM_ARM,           "ARM"),
1066   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1067   ENUM_ENT(EM_SH,            "Hitachi SH"),
1068   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1069   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1070   ENUM_ENT(EM_ARC,           "ARC"),
1071   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1072   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1073   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1074   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1075   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1076   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1077   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1078   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1079   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1080   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1081   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1082   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1083   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1084   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1085   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1086   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1087   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1088   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1089   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1090   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1091   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1092   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1093   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1094   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1095   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1096   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1097   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1098   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1099   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1100   ENUM_ENT(EM_VAX,           "Digital VAX"),
1101   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1102   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1103   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1104   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1105   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1106   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1107   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1108   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1109   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1110   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1111   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1112   ENUM_ENT(EM_V850,          "NEC v850"),
1113   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1114   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1115   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1116   ENUM_ENT(EM_PJ,            "picoJava"),
1117   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1118   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1119   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1120   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1121   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1122   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1123   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1124   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1125   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1126   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1127   ENUM_ENT(EM_MAX,           "MAX Processor"),
1128   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1129   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1130   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1131   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1132   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1133   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1134   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1135   ENUM_ENT(EM_UNICORE,       "Unicore"),
1136   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1137   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1138   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1139   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1140   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1141   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1142   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1143   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1144   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1145   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1146   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1147   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1148   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1149   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1150   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1151   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1152   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1153   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1154   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1155   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1156   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1157   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1158   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1159   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1160   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1161   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1162   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1163   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1164   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1165   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1166   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1167   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1168   //        an identical number to EM_ECOG1.
1169   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1170   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1171   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1172   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1173   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1174   ENUM_ENT(EM_RX,            "Renesas RX"),
1175   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1176   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1177   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1178   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1179   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1180   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1181   ENUM_ENT(EM_L10M,          "EM_L10M"),
1182   ENUM_ENT(EM_K10M,          "EM_K10M"),
1183   ENUM_ENT(EM_AARCH64,       "AArch64"),
1184   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1185   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1186   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1187   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1188   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1189   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1190   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1191   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1192   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1193   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1194   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1195   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1196   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1197   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1198   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1199   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1200   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1201   ENUM_ENT(EM_RISCV,         "RISC-V"),
1202   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1203   ENUM_ENT(EM_BPF,           "EM_BPF"),
1204   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1205   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1206 };
1207 
1208 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1209     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1210     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1211     {"Weak",   "WEAK",   ELF::STB_WEAK},
1212     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1213 
1214 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1215     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1216     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1217     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1218     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1219 
1220 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1221   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1222 };
1223 
1224 static const char *getGroupType(uint32_t Flag) {
1225   if (Flag & ELF::GRP_COMDAT)
1226     return "COMDAT";
1227   else
1228     return "(unknown)";
1229 }
1230 
1231 const EnumEntry<unsigned> ElfSectionFlags[] = {
1232   ENUM_ENT(SHF_WRITE,            "W"),
1233   ENUM_ENT(SHF_ALLOC,            "A"),
1234   ENUM_ENT(SHF_EXECINSTR,        "X"),
1235   ENUM_ENT(SHF_MERGE,            "M"),
1236   ENUM_ENT(SHF_STRINGS,          "S"),
1237   ENUM_ENT(SHF_INFO_LINK,        "I"),
1238   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1239   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1240   ENUM_ENT(SHF_GROUP,            "G"),
1241   ENUM_ENT(SHF_TLS,              "T"),
1242   ENUM_ENT(SHF_COMPRESSED,       "C"),
1243   ENUM_ENT(SHF_EXCLUDE,          "E"),
1244 };
1245 
1246 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1247   ENUM_ENT(SHF_GNU_RETAIN, "R")
1248 };
1249 
1250 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1251   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1252 };
1253 
1254 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1255   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1256   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1257 };
1258 
1259 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1260   ENUM_ENT(SHF_ARM_PURECODE, "y")
1261 };
1262 
1263 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1264   ENUM_ENT(SHF_HEX_GPREL, "")
1265 };
1266 
1267 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1268   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1269   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1270   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1271   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1272   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1273   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1274   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1275   ENUM_ENT(SHF_MIPS_STRING,  "")
1276 };
1277 
1278 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1279   ENUM_ENT(SHF_X86_64_LARGE, "l")
1280 };
1281 
1282 static std::vector<EnumEntry<unsigned>>
1283 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1284   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1285                                        std::end(ElfSectionFlags));
1286   switch (EOSAbi) {
1287   case ELFOSABI_SOLARIS:
1288     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1289                std::end(ElfSolarisSectionFlags));
1290     break;
1291   default:
1292     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1293                std::end(ElfGNUSectionFlags));
1294     break;
1295   }
1296   switch (EMachine) {
1297   case EM_ARM:
1298     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1299                std::end(ElfARMSectionFlags));
1300     break;
1301   case EM_HEXAGON:
1302     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1303                std::end(ElfHexagonSectionFlags));
1304     break;
1305   case EM_MIPS:
1306     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1307                std::end(ElfMipsSectionFlags));
1308     break;
1309   case EM_X86_64:
1310     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1311                std::end(ElfX86_64SectionFlags));
1312     break;
1313   case EM_XCORE:
1314     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1315                std::end(ElfXCoreSectionFlags));
1316     break;
1317   default:
1318     break;
1319   }
1320   return Ret;
1321 }
1322 
1323 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1324                                uint64_t Flags) {
1325   // Here we are trying to build the flags string in the same way as GNU does.
1326   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1327   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1328   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1329   // "p". It only will print "E" when no other processor flag is set.
1330   std::string Str;
1331   bool HasUnknownFlag = false;
1332   bool HasOSFlag = false;
1333   bool HasProcFlag = false;
1334   std::vector<EnumEntry<unsigned>> FlagsList =
1335       getSectionFlagsForTarget(EOSAbi, EMachine);
1336   while (Flags) {
1337     // Take the least significant bit as a flag.
1338     uint64_t Flag = Flags & -Flags;
1339     Flags -= Flag;
1340 
1341     // Find the flag in the known flags list.
1342     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1343       // Flags with empty names are not printed in GNU style output.
1344       return E.Value == Flag && !E.AltName.empty();
1345     });
1346     if (I != FlagsList.end()) {
1347       Str += I->AltName;
1348       continue;
1349     }
1350 
1351     // If we did not find a matching regular flag, then we deal with an OS
1352     // specific flag, processor specific flag or an unknown flag.
1353     if (Flag & ELF::SHF_MASKOS) {
1354       HasOSFlag = true;
1355       Flags &= ~ELF::SHF_MASKOS;
1356     } else if (Flag & ELF::SHF_MASKPROC) {
1357       HasProcFlag = true;
1358       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1359       // bit if set so that it doesn't also get printed.
1360       Flags &= ~ELF::SHF_MASKPROC;
1361     } else {
1362       HasUnknownFlag = true;
1363     }
1364   }
1365 
1366   // "o", "p" and "x" are printed last.
1367   if (HasOSFlag)
1368     Str += "o";
1369   if (HasProcFlag)
1370     Str += "p";
1371   if (HasUnknownFlag)
1372     Str += "x";
1373   return Str;
1374 }
1375 
1376 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1377   // Check potentially overlapped processor-specific program header type.
1378   switch (Arch) {
1379   case ELF::EM_ARM:
1380     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1381     break;
1382   case ELF::EM_MIPS:
1383   case ELF::EM_MIPS_RS3_LE:
1384     switch (Type) {
1385       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1386       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1387       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1388       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1389     }
1390     break;
1391   case ELF::EM_RISCV:
1392     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1393   }
1394 
1395   switch (Type) {
1396     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1397     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1398     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1399     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1400     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1401     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1402     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1403     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1404 
1405     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1406     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1407 
1408     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1409     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1410     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1411 
1412     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1413     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1414     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1415     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1416   default:
1417     return "";
1418   }
1419 }
1420 
1421 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1422   StringRef Seg = segmentTypeToString(Arch, Type);
1423   if (Seg.empty())
1424     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1425 
1426   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1427   if (Seg.consume_front("PT_ARM_"))
1428     return Seg.str();
1429 
1430   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1431   if (Seg.consume_front("PT_MIPS_"))
1432     return Seg.str();
1433 
1434   // E.g. "PT_RISCV_ATTRIBUTES"
1435   if (Seg.consume_front("PT_RISCV_"))
1436     return Seg.str();
1437 
1438   // E.g. "PT_LOAD" -> "LOAD".
1439   assert(Seg.startswith("PT_"));
1440   return Seg.drop_front(3).str();
1441 }
1442 
1443 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1444   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1445   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1446   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1447 };
1448 
1449 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1450   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1451   ENUM_ENT(EF_MIPS_PIC, "pic"),
1452   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1453   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1454   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1455   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1456   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1457   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1458   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1459   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1460   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1461   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1462   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1463   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1464   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1465   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1466   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1467   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1468   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1469   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1470   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1471   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1472   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1473   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1474   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1475   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1476   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1477   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1478   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1479   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1480   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1481   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1482   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1483   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1484   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1485   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1486   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1487   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1488   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1489   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1490   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1491   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1492   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1493 };
1494 
1495 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1496   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1497   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1498   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1499   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1500   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1501   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1502   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1503   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1504   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1505   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1506   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1507   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1508   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1509   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1510   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1511   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1512   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1513   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1514   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1515   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1516   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1517   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1518   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1519   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1520   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1521   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1522   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1523   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1524   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1525   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1526   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1527   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1528   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1529   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1530   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1531   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1532   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1533   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1534   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1535   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1536   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1537   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1538   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1539   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1540   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1541   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1542   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1543   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1544   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1545   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1546   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1547   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1548   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1549   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1550   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1551   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1552   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1553 };
1554 
1555 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1556   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1557   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1558   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1559   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1560   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1561   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1562   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1563   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1564   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1565   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1566   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1567   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1568   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1569   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1570   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1571   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1572   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1573   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1574   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1575   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1576   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1577   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1578   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1579   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1580   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1581   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1582   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1583   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1584   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1585   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1586   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1587   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1588   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1589   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1590   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1591   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1592   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1593   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1594   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1595   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1596   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1597   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1598   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1599   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1600   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1601   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1602   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1603   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1604   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1605   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1606   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1607   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1608   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1609   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1610   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1611   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1612   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1613   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1614   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1615   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1616   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1617 };
1618 
1619 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1620   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1621   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1622   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1623   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1624   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1625   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1626 };
1627 
1628 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1629   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1630   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1631   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1632   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1633   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1634   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1635   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1636   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1637   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1638   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1639   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1640   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1641   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1642   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1643   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1644   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1645   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1646   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1647   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1648 };
1649 
1650 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1651   ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1652   ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1653   ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1654   ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1655   ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1656 };
1657 
1658 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1659   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1660   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1661   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1662 };
1663 
1664 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1665   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1666   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1667   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1668 };
1669 
1670 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1671   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1672   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1673   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1674   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1675 };
1676 
1677 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1678   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1679 };
1680 
1681 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1682   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1683   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1684   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1685 };
1686 
1687 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1688     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1689 
1690 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1691   switch (Odk) {
1692   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1693   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1694   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1695   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1696   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1697   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1698   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1699   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1700   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1701   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1702   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1703   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1704   default:
1705     return "Unknown";
1706   }
1707 }
1708 
1709 template <typename ELFT>
1710 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1711 ELFDumper<ELFT>::findDynamic() {
1712   // Try to locate the PT_DYNAMIC header.
1713   const Elf_Phdr *DynamicPhdr = nullptr;
1714   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1715     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1716       if (Phdr.p_type != ELF::PT_DYNAMIC)
1717         continue;
1718       DynamicPhdr = &Phdr;
1719       break;
1720     }
1721   } else {
1722     reportUniqueWarning(
1723         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1724         toString(PhdrsOrErr.takeError()));
1725   }
1726 
1727   // Try to locate the .dynamic section in the sections header table.
1728   const Elf_Shdr *DynamicSec = nullptr;
1729   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1730     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1731       continue;
1732     DynamicSec = &Sec;
1733     break;
1734   }
1735 
1736   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1737                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1738                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1739                        DynamicPhdr->p_offset))) {
1740     reportUniqueWarning(
1741         "PT_DYNAMIC segment offset (0x" +
1742         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1743         Twine::utohexstr(DynamicPhdr->p_filesz) +
1744         ") exceeds the size of the file (0x" +
1745         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1746     // Don't use the broken dynamic header.
1747     DynamicPhdr = nullptr;
1748   }
1749 
1750   if (DynamicPhdr && DynamicSec) {
1751     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1752             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1753         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1754       reportUniqueWarning(describe(*DynamicSec) +
1755                           " is not contained within the "
1756                           "PT_DYNAMIC segment");
1757 
1758     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1759       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1760                                                   "PT_DYNAMIC segment");
1761   }
1762 
1763   return std::make_pair(DynamicPhdr, DynamicSec);
1764 }
1765 
1766 template <typename ELFT>
1767 void ELFDumper<ELFT>::loadDynamicTable() {
1768   const Elf_Phdr *DynamicPhdr;
1769   const Elf_Shdr *DynamicSec;
1770   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1771   if (!DynamicPhdr && !DynamicSec)
1772     return;
1773 
1774   DynRegionInfo FromPhdr(ObjF, *this);
1775   bool IsPhdrTableValid = false;
1776   if (DynamicPhdr) {
1777     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1778     // validated in findDynamic() and so createDRI() is not expected to fail.
1779     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1780                                   sizeof(Elf_Dyn)));
1781     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1782     FromPhdr.EntSizePrintName = "";
1783     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1784   }
1785 
1786   // Locate the dynamic table described in a section header.
1787   // Ignore sh_entsize and use the expected value for entry size explicitly.
1788   // This allows us to dump dynamic sections with a broken sh_entsize
1789   // field.
1790   DynRegionInfo FromSec(ObjF, *this);
1791   bool IsSecTableValid = false;
1792   if (DynamicSec) {
1793     Expected<DynRegionInfo> RegOrErr =
1794         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1795     if (RegOrErr) {
1796       FromSec = *RegOrErr;
1797       FromSec.Context = describe(*DynamicSec);
1798       FromSec.EntSizePrintName = "";
1799       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1800     } else {
1801       reportUniqueWarning("unable to read the dynamic table from " +
1802                           describe(*DynamicSec) + ": " +
1803                           toString(RegOrErr.takeError()));
1804     }
1805   }
1806 
1807   // When we only have information from one of the SHT_DYNAMIC section header or
1808   // PT_DYNAMIC program header, just use that.
1809   if (!DynamicPhdr || !DynamicSec) {
1810     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1811       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1812       parseDynamicTable();
1813     } else {
1814       reportUniqueWarning("no valid dynamic table was found");
1815     }
1816     return;
1817   }
1818 
1819   // At this point we have tables found from the section header and from the
1820   // dynamic segment. Usually they match, but we have to do sanity checks to
1821   // verify that.
1822 
1823   if (FromPhdr.Addr != FromSec.Addr)
1824     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1825                         "program header disagree about "
1826                         "the location of the dynamic table");
1827 
1828   if (!IsPhdrTableValid && !IsSecTableValid) {
1829     reportUniqueWarning("no valid dynamic table was found");
1830     return;
1831   }
1832 
1833   // Information in the PT_DYNAMIC program header has priority over the
1834   // information in a section header.
1835   if (IsPhdrTableValid) {
1836     if (!IsSecTableValid)
1837       reportUniqueWarning(
1838           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1839     DynamicTable = FromPhdr;
1840   } else {
1841     reportUniqueWarning(
1842         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1843     DynamicTable = FromSec;
1844   }
1845 
1846   parseDynamicTable();
1847 }
1848 
1849 template <typename ELFT>
1850 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1851                            ScopedPrinter &Writer)
1852     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1853       FileName(O.getFileName()), DynRelRegion(O, *this),
1854       DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1855       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1856       DynamicTable(O, *this) {
1857   if (!O.IsContentValid())
1858     return;
1859 
1860   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1861   for (const Elf_Shdr &Sec : Sections) {
1862     switch (Sec.sh_type) {
1863     case ELF::SHT_SYMTAB:
1864       if (!DotSymtabSec)
1865         DotSymtabSec = &Sec;
1866       break;
1867     case ELF::SHT_DYNSYM:
1868       if (!DotDynsymSec)
1869         DotDynsymSec = &Sec;
1870 
1871       if (!DynSymRegion) {
1872         Expected<DynRegionInfo> RegOrErr =
1873             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1874         if (RegOrErr) {
1875           DynSymRegion = *RegOrErr;
1876           DynSymRegion->Context = describe(Sec);
1877 
1878           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1879             DynamicStringTable = *E;
1880           else
1881             reportUniqueWarning("unable to get the string table for the " +
1882                                 describe(Sec) + ": " + toString(E.takeError()));
1883         } else {
1884           reportUniqueWarning("unable to read dynamic symbols from " +
1885                               describe(Sec) + ": " +
1886                               toString(RegOrErr.takeError()));
1887         }
1888       }
1889       break;
1890     case ELF::SHT_SYMTAB_SHNDX: {
1891       uint32_t SymtabNdx = Sec.sh_link;
1892       if (SymtabNdx >= Sections.size()) {
1893         reportUniqueWarning(
1894             "unable to get the associated symbol table for " + describe(Sec) +
1895             ": sh_link (" + Twine(SymtabNdx) +
1896             ") is greater than or equal to the total number of sections (" +
1897             Twine(Sections.size()) + ")");
1898         continue;
1899       }
1900 
1901       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1902               Obj.getSHNDXTable(Sec)) {
1903         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1904                  .second)
1905           reportUniqueWarning(
1906               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1907               describe(Sec));
1908       } else {
1909         reportUniqueWarning(ShndxTableOrErr.takeError());
1910       }
1911       break;
1912     }
1913     case ELF::SHT_GNU_versym:
1914       if (!SymbolVersionSection)
1915         SymbolVersionSection = &Sec;
1916       break;
1917     case ELF::SHT_GNU_verdef:
1918       if (!SymbolVersionDefSection)
1919         SymbolVersionDefSection = &Sec;
1920       break;
1921     case ELF::SHT_GNU_verneed:
1922       if (!SymbolVersionNeedSection)
1923         SymbolVersionNeedSection = &Sec;
1924       break;
1925     case ELF::SHT_LLVM_ADDRSIG:
1926       if (!DotAddrsigSec)
1927         DotAddrsigSec = &Sec;
1928       break;
1929     }
1930   }
1931 
1932   loadDynamicTable();
1933 }
1934 
1935 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1936   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1937     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1938       this->reportUniqueWarning(Msg);
1939       return Error::success();
1940     });
1941     if (!MappedAddrOrError) {
1942       this->reportUniqueWarning("unable to parse DT_" +
1943                                 Obj.getDynamicTagAsString(Tag) + ": " +
1944                                 llvm::toString(MappedAddrOrError.takeError()));
1945       return nullptr;
1946     }
1947     return MappedAddrOrError.get();
1948   };
1949 
1950   const char *StringTableBegin = nullptr;
1951   uint64_t StringTableSize = 0;
1952   std::optional<DynRegionInfo> DynSymFromTable;
1953   for (const Elf_Dyn &Dyn : dynamic_table()) {
1954     switch (Dyn.d_tag) {
1955     case ELF::DT_HASH:
1956       HashTable = reinterpret_cast<const Elf_Hash *>(
1957           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1958       break;
1959     case ELF::DT_GNU_HASH:
1960       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
1961           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1962       break;
1963     case ELF::DT_STRTAB:
1964       StringTableBegin = reinterpret_cast<const char *>(
1965           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
1966       break;
1967     case ELF::DT_STRSZ:
1968       StringTableSize = Dyn.getVal();
1969       break;
1970     case ELF::DT_SYMTAB: {
1971       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
1972       // no program headers), we ignore its value.
1973       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
1974         DynSymFromTable.emplace(ObjF, *this);
1975         DynSymFromTable->Addr = VA;
1976         DynSymFromTable->EntSize = sizeof(Elf_Sym);
1977         DynSymFromTable->EntSizePrintName = "";
1978       }
1979       break;
1980     }
1981     case ELF::DT_SYMENT: {
1982       uint64_t Val = Dyn.getVal();
1983       if (Val != sizeof(Elf_Sym))
1984         this->reportUniqueWarning("DT_SYMENT value of 0x" +
1985                                   Twine::utohexstr(Val) +
1986                                   " is not the size of a symbol (0x" +
1987                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
1988       break;
1989     }
1990     case ELF::DT_RELA:
1991       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
1992       break;
1993     case ELF::DT_RELASZ:
1994       DynRelaRegion.Size = Dyn.getVal();
1995       DynRelaRegion.SizePrintName = "DT_RELASZ value";
1996       break;
1997     case ELF::DT_RELAENT:
1998       DynRelaRegion.EntSize = Dyn.getVal();
1999       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2000       break;
2001     case ELF::DT_SONAME:
2002       SONameOffset = Dyn.getVal();
2003       break;
2004     case ELF::DT_REL:
2005       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2006       break;
2007     case ELF::DT_RELSZ:
2008       DynRelRegion.Size = Dyn.getVal();
2009       DynRelRegion.SizePrintName = "DT_RELSZ value";
2010       break;
2011     case ELF::DT_RELENT:
2012       DynRelRegion.EntSize = Dyn.getVal();
2013       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2014       break;
2015     case ELF::DT_RELR:
2016     case ELF::DT_ANDROID_RELR:
2017       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2018       break;
2019     case ELF::DT_RELRSZ:
2020     case ELF::DT_ANDROID_RELRSZ:
2021       DynRelrRegion.Size = Dyn.getVal();
2022       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2023                                         ? "DT_RELRSZ value"
2024                                         : "DT_ANDROID_RELRSZ value";
2025       break;
2026     case ELF::DT_RELRENT:
2027     case ELF::DT_ANDROID_RELRENT:
2028       DynRelrRegion.EntSize = Dyn.getVal();
2029       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2030                                            ? "DT_RELRENT value"
2031                                            : "DT_ANDROID_RELRENT value";
2032       break;
2033     case ELF::DT_PLTREL:
2034       if (Dyn.getVal() == DT_REL)
2035         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2036       else if (Dyn.getVal() == DT_RELA)
2037         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2038       else
2039         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2040                             Twine((uint64_t)Dyn.getVal()));
2041       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2042       break;
2043     case ELF::DT_JMPREL:
2044       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2045       break;
2046     case ELF::DT_PLTRELSZ:
2047       DynPLTRelRegion.Size = Dyn.getVal();
2048       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2049       break;
2050     case ELF::DT_SYMTAB_SHNDX:
2051       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2052       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2053       break;
2054     }
2055   }
2056 
2057   if (StringTableBegin) {
2058     const uint64_t FileSize = Obj.getBufSize();
2059     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2060     if (StringTableSize > FileSize - Offset)
2061       reportUniqueWarning(
2062           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2063           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2064           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2065     else
2066       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2067   }
2068 
2069   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2070   if (DynSymRegion) {
2071     // Often we find the information about the dynamic symbol table
2072     // location in the SHT_DYNSYM section header. However, the value in
2073     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2074     // locate .dynsym at runtime. The location we find in the section header
2075     // and the location we find here should match.
2076     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2077       reportUniqueWarning(
2078           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2079                       "the location of the dynamic symbol table"));
2080 
2081     // According to the ELF gABI: "The number of symbol table entries should
2082     // equal nchain". Check to see if the DT_HASH hash table nchain value
2083     // conflicts with the number of symbols in the dynamic symbol table
2084     // according to the section header.
2085     if (HashTable && IsHashTableSupported) {
2086       if (DynSymRegion->EntSize == 0)
2087         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2088       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2089         reportUniqueWarning(
2090             "hash table nchain (" + Twine(HashTable->nchain) +
2091             ") differs from symbol count derived from SHT_DYNSYM section "
2092             "header (" +
2093             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2094     }
2095   }
2096 
2097   // Delay the creation of the actual dynamic symbol table until now, so that
2098   // checks can always be made against the section header-based properties,
2099   // without worrying about tag order.
2100   if (DynSymFromTable) {
2101     if (!DynSymRegion) {
2102       DynSymRegion = DynSymFromTable;
2103     } else {
2104       DynSymRegion->Addr = DynSymFromTable->Addr;
2105       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2106       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2107     }
2108   }
2109 
2110   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2111   // present.
2112   if (HashTable && IsHashTableSupported && DynSymRegion) {
2113     const uint64_t FileSize = Obj.getBufSize();
2114     const uint64_t DerivedSize =
2115         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2116     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2117     if (DerivedSize > FileSize - Offset)
2118       reportUniqueWarning(
2119           "the size (0x" + Twine::utohexstr(DerivedSize) +
2120           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2121           ", derived from the hash table, goes past the end of the file (0x" +
2122           Twine::utohexstr(FileSize) + ") and will be ignored");
2123     else
2124       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2125   }
2126 }
2127 
2128 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2129   // Dump version symbol section.
2130   printVersionSymbolSection(SymbolVersionSection);
2131 
2132   // Dump version definition section.
2133   printVersionDefinitionSection(SymbolVersionDefSection);
2134 
2135   // Dump version dependency section.
2136   printVersionDependencySection(SymbolVersionNeedSection);
2137 }
2138 
2139 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2140   { #enum, prefix##_##enum }
2141 
2142 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2143   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2144   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2145   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2146   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2147   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2148 };
2149 
2150 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2151   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2152   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2153   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2154   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2155   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2156   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2157   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2158   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2159   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2160   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2161   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2162   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2163   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2164   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2165   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2166   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2167   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2168   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2169   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2170   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2171   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2172   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2173   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2174   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2175   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2176   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2177   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2178 };
2179 
2180 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2181   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2182   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2183   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2184   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2185   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2186   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2187   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2188   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2189   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2190   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2191   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2192   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2193   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2194   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2195   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2196   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2197 };
2198 
2199 #undef LLVM_READOBJ_DT_FLAG_ENT
2200 
2201 template <typename T, typename TFlag>
2202 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2203   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2204   for (const EnumEntry<TFlag> &Flag : Flags)
2205     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2206       SetFlags.push_back(Flag);
2207 
2208   for (const EnumEntry<TFlag> &Flag : SetFlags)
2209     OS << Flag.Name << " ";
2210 }
2211 
2212 template <class ELFT>
2213 const typename ELFT::Shdr *
2214 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2215   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2216     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2217       if (*NameOrErr == Name)
2218         return &Shdr;
2219     } else {
2220       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2221                           ": " + toString(NameOrErr.takeError()));
2222     }
2223   }
2224   return nullptr;
2225 }
2226 
2227 template <class ELFT>
2228 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2229                                              uint64_t Value) const {
2230   auto FormatHexValue = [](uint64_t V) {
2231     std::string Str;
2232     raw_string_ostream OS(Str);
2233     const char *ConvChar =
2234         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2235     OS << format(ConvChar, V);
2236     return OS.str();
2237   };
2238 
2239   auto FormatFlags = [](uint64_t V,
2240                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2241     std::string Str;
2242     raw_string_ostream OS(Str);
2243     printFlags(V, Array, OS);
2244     return OS.str();
2245   };
2246 
2247   // Handle custom printing of architecture specific tags
2248   switch (Obj.getHeader().e_machine) {
2249   case EM_AARCH64:
2250     switch (Type) {
2251     case DT_AARCH64_BTI_PLT:
2252     case DT_AARCH64_PAC_PLT:
2253     case DT_AARCH64_VARIANT_PCS:
2254       return std::to_string(Value);
2255     default:
2256       break;
2257     }
2258     break;
2259   case EM_HEXAGON:
2260     switch (Type) {
2261     case DT_HEXAGON_VER:
2262       return std::to_string(Value);
2263     case DT_HEXAGON_SYMSZ:
2264     case DT_HEXAGON_PLT:
2265       return FormatHexValue(Value);
2266     default:
2267       break;
2268     }
2269     break;
2270   case EM_MIPS:
2271     switch (Type) {
2272     case DT_MIPS_RLD_VERSION:
2273     case DT_MIPS_LOCAL_GOTNO:
2274     case DT_MIPS_SYMTABNO:
2275     case DT_MIPS_UNREFEXTNO:
2276       return std::to_string(Value);
2277     case DT_MIPS_TIME_STAMP:
2278     case DT_MIPS_ICHECKSUM:
2279     case DT_MIPS_IVERSION:
2280     case DT_MIPS_BASE_ADDRESS:
2281     case DT_MIPS_MSYM:
2282     case DT_MIPS_CONFLICT:
2283     case DT_MIPS_LIBLIST:
2284     case DT_MIPS_CONFLICTNO:
2285     case DT_MIPS_LIBLISTNO:
2286     case DT_MIPS_GOTSYM:
2287     case DT_MIPS_HIPAGENO:
2288     case DT_MIPS_RLD_MAP:
2289     case DT_MIPS_DELTA_CLASS:
2290     case DT_MIPS_DELTA_CLASS_NO:
2291     case DT_MIPS_DELTA_INSTANCE:
2292     case DT_MIPS_DELTA_RELOC:
2293     case DT_MIPS_DELTA_RELOC_NO:
2294     case DT_MIPS_DELTA_SYM:
2295     case DT_MIPS_DELTA_SYM_NO:
2296     case DT_MIPS_DELTA_CLASSSYM:
2297     case DT_MIPS_DELTA_CLASSSYM_NO:
2298     case DT_MIPS_CXX_FLAGS:
2299     case DT_MIPS_PIXIE_INIT:
2300     case DT_MIPS_SYMBOL_LIB:
2301     case DT_MIPS_LOCALPAGE_GOTIDX:
2302     case DT_MIPS_LOCAL_GOTIDX:
2303     case DT_MIPS_HIDDEN_GOTIDX:
2304     case DT_MIPS_PROTECTED_GOTIDX:
2305     case DT_MIPS_OPTIONS:
2306     case DT_MIPS_INTERFACE:
2307     case DT_MIPS_DYNSTR_ALIGN:
2308     case DT_MIPS_INTERFACE_SIZE:
2309     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2310     case DT_MIPS_PERF_SUFFIX:
2311     case DT_MIPS_COMPACT_SIZE:
2312     case DT_MIPS_GP_VALUE:
2313     case DT_MIPS_AUX_DYNAMIC:
2314     case DT_MIPS_PLTGOT:
2315     case DT_MIPS_RWPLT:
2316     case DT_MIPS_RLD_MAP_REL:
2317     case DT_MIPS_XHASH:
2318       return FormatHexValue(Value);
2319     case DT_MIPS_FLAGS:
2320       return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2321     default:
2322       break;
2323     }
2324     break;
2325   default:
2326     break;
2327   }
2328 
2329   switch (Type) {
2330   case DT_PLTREL:
2331     if (Value == DT_REL)
2332       return "REL";
2333     if (Value == DT_RELA)
2334       return "RELA";
2335     [[fallthrough]];
2336   case DT_PLTGOT:
2337   case DT_HASH:
2338   case DT_STRTAB:
2339   case DT_SYMTAB:
2340   case DT_RELA:
2341   case DT_INIT:
2342   case DT_FINI:
2343   case DT_REL:
2344   case DT_JMPREL:
2345   case DT_INIT_ARRAY:
2346   case DT_FINI_ARRAY:
2347   case DT_PREINIT_ARRAY:
2348   case DT_DEBUG:
2349   case DT_VERDEF:
2350   case DT_VERNEED:
2351   case DT_VERSYM:
2352   case DT_GNU_HASH:
2353   case DT_NULL:
2354     return FormatHexValue(Value);
2355   case DT_RELACOUNT:
2356   case DT_RELCOUNT:
2357   case DT_VERDEFNUM:
2358   case DT_VERNEEDNUM:
2359     return std::to_string(Value);
2360   case DT_PLTRELSZ:
2361   case DT_RELASZ:
2362   case DT_RELAENT:
2363   case DT_STRSZ:
2364   case DT_SYMENT:
2365   case DT_RELSZ:
2366   case DT_RELENT:
2367   case DT_INIT_ARRAYSZ:
2368   case DT_FINI_ARRAYSZ:
2369   case DT_PREINIT_ARRAYSZ:
2370   case DT_RELRSZ:
2371   case DT_RELRENT:
2372   case DT_ANDROID_RELSZ:
2373   case DT_ANDROID_RELASZ:
2374     return std::to_string(Value) + " (bytes)";
2375   case DT_NEEDED:
2376   case DT_SONAME:
2377   case DT_AUXILIARY:
2378   case DT_USED:
2379   case DT_FILTER:
2380   case DT_RPATH:
2381   case DT_RUNPATH: {
2382     const std::map<uint64_t, const char *> TagNames = {
2383         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2384         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2385         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2386         {DT_RUNPATH, "Library runpath"},
2387     };
2388 
2389     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2390         .str();
2391   }
2392   case DT_FLAGS:
2393     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2394   case DT_FLAGS_1:
2395     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2396   default:
2397     return FormatHexValue(Value);
2398   }
2399 }
2400 
2401 template <class ELFT>
2402 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2403   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2404     reportUniqueWarning("string table was not found");
2405     return "<?>";
2406   }
2407 
2408   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2409     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2410                         Msg);
2411     return "<?>";
2412   };
2413 
2414   const uint64_t FileSize = Obj.getBufSize();
2415   const uint64_t Offset =
2416       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2417   if (DynamicStringTable.size() > FileSize - Offset)
2418     return WarnAndReturn(" with size 0x" +
2419                              Twine::utohexstr(DynamicStringTable.size()) +
2420                              " goes past the end of the file (0x" +
2421                              Twine::utohexstr(FileSize) + ")",
2422                          Offset);
2423 
2424   if (Value >= DynamicStringTable.size())
2425     return WarnAndReturn(
2426         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2427             ": it goes past the end of the table (0x" +
2428             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2429         Offset);
2430 
2431   if (DynamicStringTable.back() != '\0')
2432     return WarnAndReturn(": unable to read the string at 0x" +
2433                              Twine::utohexstr(Offset + Value) +
2434                              ": the string table is not null-terminated",
2435                          Offset);
2436 
2437   return DynamicStringTable.data() + Value;
2438 }
2439 
2440 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2441   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2442   Ctx.printUnwindInformation();
2443 }
2444 
2445 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2446 namespace {
2447 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2448   if (Obj.getHeader().e_machine == EM_ARM) {
2449     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2450                                             DotSymtabSec);
2451     Ctx.PrintUnwindInformation();
2452   }
2453   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2454   Ctx.printUnwindInformation();
2455 }
2456 } // namespace
2457 
2458 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2459   ListScope D(W, "NeededLibraries");
2460 
2461   std::vector<StringRef> Libs;
2462   for (const auto &Entry : dynamic_table())
2463     if (Entry.d_tag == ELF::DT_NEEDED)
2464       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2465 
2466   llvm::sort(Libs);
2467 
2468   for (StringRef L : Libs)
2469     W.startLine() << L << "\n";
2470 }
2471 
2472 template <class ELFT>
2473 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2474                             const typename ELFT::Hash *H,
2475                             bool *IsHeaderValid = nullptr) {
2476   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2477   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2478   if (Dumper.getHashTableEntSize() == 8) {
2479     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2480       return E.Value == Obj.getHeader().e_machine;
2481     });
2482     if (IsHeaderValid)
2483       *IsHeaderValid = false;
2484     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2485                        " is not supported: it contains non-standard 8 "
2486                        "byte entries on " +
2487                        It->AltName + " platform");
2488   }
2489 
2490   auto MakeError = [&](const Twine &Msg = "") {
2491     return createError("the hash table at offset 0x" +
2492                        Twine::utohexstr(SecOffset) +
2493                        " goes past the end of the file (0x" +
2494                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2495   };
2496 
2497   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2498   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2499 
2500   if (IsHeaderValid)
2501     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2502 
2503   if (Obj.getBufSize() - SecOffset < HeaderSize)
2504     return MakeError();
2505 
2506   if (Obj.getBufSize() - SecOffset - HeaderSize <
2507       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2508     return MakeError(", nbucket = " + Twine(H->nbucket) +
2509                      ", nchain = " + Twine(H->nchain));
2510   return Error::success();
2511 }
2512 
2513 template <class ELFT>
2514 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2515                                const typename ELFT::GnuHash *GnuHashTable,
2516                                bool *IsHeaderValid = nullptr) {
2517   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2518   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2519          "GnuHashTable must always point to a location inside the file");
2520 
2521   uint64_t TableOffset = TableData - Obj.base();
2522   if (IsHeaderValid)
2523     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2524   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2525           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2526       Obj.getBufSize())
2527     return createError("unable to dump the SHT_GNU_HASH "
2528                        "section at 0x" +
2529                        Twine::utohexstr(TableOffset) +
2530                        ": it goes past the end of the file");
2531   return Error::success();
2532 }
2533 
2534 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2535   DictScope D(W, "HashTable");
2536   if (!HashTable)
2537     return;
2538 
2539   bool IsHeaderValid;
2540   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2541   if (IsHeaderValid) {
2542     W.printNumber("Num Buckets", HashTable->nbucket);
2543     W.printNumber("Num Chains", HashTable->nchain);
2544   }
2545 
2546   if (Err) {
2547     reportUniqueWarning(std::move(Err));
2548     return;
2549   }
2550 
2551   W.printList("Buckets", HashTable->buckets());
2552   W.printList("Chains", HashTable->chains());
2553 }
2554 
2555 template <class ELFT>
2556 static Expected<ArrayRef<typename ELFT::Word>>
2557 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2558                       const typename ELFT::GnuHash *GnuHashTable) {
2559   if (!DynSymRegion)
2560     return createError("no dynamic symbol table found");
2561 
2562   ArrayRef<typename ELFT::Sym> DynSymTable =
2563       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2564   size_t NumSyms = DynSymTable.size();
2565   if (!NumSyms)
2566     return createError("the dynamic symbol table is empty");
2567 
2568   if (GnuHashTable->symndx < NumSyms)
2569     return GnuHashTable->values(NumSyms);
2570 
2571   // A normal empty GNU hash table section produced by linker might have
2572   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2573   // and have dummy null values in the Bloom filter and in the buckets
2574   // vector (or no values at all). It happens because the value of symndx is not
2575   // important for dynamic loaders when the GNU hash table is empty. They just
2576   // skip the whole object during symbol lookup. In such cases, the symndx value
2577   // is irrelevant and we should not report a warning.
2578   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2579   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2580     return createError(
2581         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2582         ") is greater than or equal to the number of dynamic symbols (" +
2583         Twine(NumSyms) + ")");
2584   // There is no way to represent an array of (dynamic symbols count - symndx)
2585   // length.
2586   return ArrayRef<typename ELFT::Word>();
2587 }
2588 
2589 template <typename ELFT>
2590 void ELFDumper<ELFT>::printGnuHashTable() {
2591   DictScope D(W, "GnuHashTable");
2592   if (!GnuHashTable)
2593     return;
2594 
2595   bool IsHeaderValid;
2596   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2597   if (IsHeaderValid) {
2598     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2599     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2600     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2601     W.printNumber("Shift Count", GnuHashTable->shift2);
2602   }
2603 
2604   if (Err) {
2605     reportUniqueWarning(std::move(Err));
2606     return;
2607   }
2608 
2609   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2610   W.printHexList("Bloom Filter", BloomFilter);
2611 
2612   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2613   W.printList("Buckets", Buckets);
2614 
2615   Expected<ArrayRef<Elf_Word>> Chains =
2616       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2617   if (!Chains) {
2618     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2619                         "section: " +
2620                         toString(Chains.takeError()));
2621     return;
2622   }
2623 
2624   W.printHexList("Values", *Chains);
2625 }
2626 
2627 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2628   StringRef SOName = "<Not found>";
2629   if (SONameOffset)
2630     SOName = getDynamicString(*SONameOffset);
2631   W.printString("LoadName", SOName);
2632 }
2633 
2634 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2635   switch (Obj.getHeader().e_machine) {
2636   case EM_ARM:
2637     if (Obj.isLE())
2638       printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2639                       std::make_unique<ARMAttributeParser>(&W),
2640                       support::little);
2641     else
2642       reportUniqueWarning("attribute printing not implemented for big-endian "
2643                           "ARM objects");
2644     break;
2645   case EM_RISCV:
2646     if (Obj.isLE())
2647       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2648                       std::make_unique<RISCVAttributeParser>(&W),
2649                       support::little);
2650     else
2651       reportUniqueWarning("attribute printing not implemented for big-endian "
2652                           "RISC-V objects");
2653     break;
2654   case EM_MSP430:
2655     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2656                     std::make_unique<MSP430AttributeParser>(&W),
2657                     support::little);
2658     break;
2659   case EM_MIPS: {
2660     printMipsABIFlags();
2661     printMipsOptions();
2662     printMipsReginfo();
2663     MipsGOTParser<ELFT> Parser(*this);
2664     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2665       reportUniqueWarning(std::move(E));
2666     else if (!Parser.isGotEmpty())
2667       printMipsGOT(Parser);
2668 
2669     if (Error E = Parser.findPLT(dynamic_table()))
2670       reportUniqueWarning(std::move(E));
2671     else if (!Parser.isPltEmpty())
2672       printMipsPLT(Parser);
2673     break;
2674   }
2675   default:
2676     break;
2677   }
2678 }
2679 
2680 template <class ELFT>
2681 void ELFDumper<ELFT>::printAttributes(
2682     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2683     support::endianness Endianness) {
2684   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2685          "Incomplete ELF attribute implementation");
2686   DictScope BA(W, "BuildAttributes");
2687   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2688     if (Sec.sh_type != AttrShType)
2689       continue;
2690 
2691     ArrayRef<uint8_t> Contents;
2692     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2693             Obj.getSectionContents(Sec)) {
2694       Contents = *ContentOrErr;
2695       if (Contents.empty()) {
2696         reportUniqueWarning("the " + describe(Sec) + " is empty");
2697         continue;
2698       }
2699     } else {
2700       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2701                           ": " + toString(ContentOrErr.takeError()));
2702       continue;
2703     }
2704 
2705     W.printHex("FormatVersion", Contents[0]);
2706 
2707     if (Error E = AttrParser->parse(Contents, Endianness))
2708       reportUniqueWarning("unable to dump attributes from the " +
2709                           describe(Sec) + ": " + toString(std::move(E)));
2710   }
2711 }
2712 
2713 namespace {
2714 
2715 template <class ELFT> class MipsGOTParser {
2716 public:
2717   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2718   using Entry = typename ELFT::Addr;
2719   using Entries = ArrayRef<Entry>;
2720 
2721   const bool IsStatic;
2722   const ELFFile<ELFT> &Obj;
2723   const ELFDumper<ELFT> &Dumper;
2724 
2725   MipsGOTParser(const ELFDumper<ELFT> &D);
2726   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2727   Error findPLT(Elf_Dyn_Range DynTable);
2728 
2729   bool isGotEmpty() const { return GotEntries.empty(); }
2730   bool isPltEmpty() const { return PltEntries.empty(); }
2731 
2732   uint64_t getGp() const;
2733 
2734   const Entry *getGotLazyResolver() const;
2735   const Entry *getGotModulePointer() const;
2736   const Entry *getPltLazyResolver() const;
2737   const Entry *getPltModulePointer() const;
2738 
2739   Entries getLocalEntries() const;
2740   Entries getGlobalEntries() const;
2741   Entries getOtherEntries() const;
2742   Entries getPltEntries() const;
2743 
2744   uint64_t getGotAddress(const Entry * E) const;
2745   int64_t getGotOffset(const Entry * E) const;
2746   const Elf_Sym *getGotSym(const Entry *E) const;
2747 
2748   uint64_t getPltAddress(const Entry * E) const;
2749   const Elf_Sym *getPltSym(const Entry *E) const;
2750 
2751   StringRef getPltStrTable() const { return PltStrTable; }
2752   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2753 
2754 private:
2755   const Elf_Shdr *GotSec;
2756   size_t LocalNum;
2757   size_t GlobalNum;
2758 
2759   const Elf_Shdr *PltSec;
2760   const Elf_Shdr *PltRelSec;
2761   const Elf_Shdr *PltSymTable;
2762   StringRef FileName;
2763 
2764   Elf_Sym_Range GotDynSyms;
2765   StringRef PltStrTable;
2766 
2767   Entries GotEntries;
2768   Entries PltEntries;
2769 };
2770 
2771 } // end anonymous namespace
2772 
2773 template <class ELFT>
2774 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2775     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2776       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2777       PltRelSec(nullptr), PltSymTable(nullptr),
2778       FileName(D.getElfObject().getFileName()) {}
2779 
2780 template <class ELFT>
2781 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2782                                    Elf_Sym_Range DynSyms) {
2783   // See "Global Offset Table" in Chapter 5 in the following document
2784   // for detailed GOT description.
2785   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2786 
2787   // Find static GOT secton.
2788   if (IsStatic) {
2789     GotSec = Dumper.findSectionByName(".got");
2790     if (!GotSec)
2791       return Error::success();
2792 
2793     ArrayRef<uint8_t> Content =
2794         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2795     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2796                          Content.size() / sizeof(Entry));
2797     LocalNum = GotEntries.size();
2798     return Error::success();
2799   }
2800 
2801   // Lookup dynamic table tags which define the GOT layout.
2802   std::optional<uint64_t> DtPltGot;
2803   std::optional<uint64_t> DtLocalGotNum;
2804   std::optional<uint64_t> DtGotSym;
2805   for (const auto &Entry : DynTable) {
2806     switch (Entry.getTag()) {
2807     case ELF::DT_PLTGOT:
2808       DtPltGot = Entry.getVal();
2809       break;
2810     case ELF::DT_MIPS_LOCAL_GOTNO:
2811       DtLocalGotNum = Entry.getVal();
2812       break;
2813     case ELF::DT_MIPS_GOTSYM:
2814       DtGotSym = Entry.getVal();
2815       break;
2816     }
2817   }
2818 
2819   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
2820     return Error::success();
2821 
2822   if (!DtPltGot)
2823     return createError("cannot find PLTGOT dynamic tag");
2824   if (!DtLocalGotNum)
2825     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
2826   if (!DtGotSym)
2827     return createError("cannot find MIPS_GOTSYM dynamic tag");
2828 
2829   size_t DynSymTotal = DynSyms.size();
2830   if (*DtGotSym > DynSymTotal)
2831     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
2832                        ") exceeds the number of dynamic symbols (" +
2833                        Twine(DynSymTotal) + ")");
2834 
2835   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
2836   if (!GotSec)
2837     return createError("there is no non-empty GOT section at 0x" +
2838                        Twine::utohexstr(*DtPltGot));
2839 
2840   LocalNum = *DtLocalGotNum;
2841   GlobalNum = DynSymTotal - *DtGotSym;
2842 
2843   ArrayRef<uint8_t> Content =
2844       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
2845   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
2846                        Content.size() / sizeof(Entry));
2847   GotDynSyms = DynSyms.drop_front(*DtGotSym);
2848 
2849   return Error::success();
2850 }
2851 
2852 template <class ELFT>
2853 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
2854   // Lookup dynamic table tags which define the PLT layout.
2855   std::optional<uint64_t> DtMipsPltGot;
2856   std::optional<uint64_t> DtJmpRel;
2857   for (const auto &Entry : DynTable) {
2858     switch (Entry.getTag()) {
2859     case ELF::DT_MIPS_PLTGOT:
2860       DtMipsPltGot = Entry.getVal();
2861       break;
2862     case ELF::DT_JMPREL:
2863       DtJmpRel = Entry.getVal();
2864       break;
2865     }
2866   }
2867 
2868   if (!DtMipsPltGot && !DtJmpRel)
2869     return Error::success();
2870 
2871   // Find PLT section.
2872   if (!DtMipsPltGot)
2873     return createError("cannot find MIPS_PLTGOT dynamic tag");
2874   if (!DtJmpRel)
2875     return createError("cannot find JMPREL dynamic tag");
2876 
2877   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
2878   if (!PltSec)
2879     return createError("there is no non-empty PLTGOT section at 0x" +
2880                        Twine::utohexstr(*DtMipsPltGot));
2881 
2882   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
2883   if (!PltRelSec)
2884     return createError("there is no non-empty RELPLT section at 0x" +
2885                        Twine::utohexstr(*DtJmpRel));
2886 
2887   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
2888           Obj.getSectionContents(*PltSec))
2889     PltEntries =
2890         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
2891                 PltContentOrErr->size() / sizeof(Entry));
2892   else
2893     return createError("unable to read PLTGOT section content: " +
2894                        toString(PltContentOrErr.takeError()));
2895 
2896   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
2897           Obj.getSection(PltRelSec->sh_link))
2898     PltSymTable = *PltSymTableOrErr;
2899   else
2900     return createError("unable to get a symbol table linked to the " +
2901                        describe(Obj, *PltRelSec) + ": " +
2902                        toString(PltSymTableOrErr.takeError()));
2903 
2904   if (Expected<StringRef> StrTabOrErr =
2905           Obj.getStringTableForSymtab(*PltSymTable))
2906     PltStrTable = *StrTabOrErr;
2907   else
2908     return createError("unable to get a string table for the " +
2909                        describe(Obj, *PltSymTable) + ": " +
2910                        toString(StrTabOrErr.takeError()));
2911 
2912   return Error::success();
2913 }
2914 
2915 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
2916   return GotSec->sh_addr + 0x7ff0;
2917 }
2918 
2919 template <class ELFT>
2920 const typename MipsGOTParser<ELFT>::Entry *
2921 MipsGOTParser<ELFT>::getGotLazyResolver() const {
2922   return LocalNum > 0 ? &GotEntries[0] : nullptr;
2923 }
2924 
2925 template <class ELFT>
2926 const typename MipsGOTParser<ELFT>::Entry *
2927 MipsGOTParser<ELFT>::getGotModulePointer() const {
2928   if (LocalNum < 2)
2929     return nullptr;
2930   const Entry &E = GotEntries[1];
2931   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
2932     return nullptr;
2933   return &E;
2934 }
2935 
2936 template <class ELFT>
2937 typename MipsGOTParser<ELFT>::Entries
2938 MipsGOTParser<ELFT>::getLocalEntries() const {
2939   size_t Skip = getGotModulePointer() ? 2 : 1;
2940   if (LocalNum - Skip <= 0)
2941     return Entries();
2942   return GotEntries.slice(Skip, LocalNum - Skip);
2943 }
2944 
2945 template <class ELFT>
2946 typename MipsGOTParser<ELFT>::Entries
2947 MipsGOTParser<ELFT>::getGlobalEntries() const {
2948   if (GlobalNum == 0)
2949     return Entries();
2950   return GotEntries.slice(LocalNum, GlobalNum);
2951 }
2952 
2953 template <class ELFT>
2954 typename MipsGOTParser<ELFT>::Entries
2955 MipsGOTParser<ELFT>::getOtherEntries() const {
2956   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
2957   if (OtherNum == 0)
2958     return Entries();
2959   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
2960 }
2961 
2962 template <class ELFT>
2963 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
2964   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2965   return GotSec->sh_addr + Offset;
2966 }
2967 
2968 template <class ELFT>
2969 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
2970   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
2971   return Offset - 0x7ff0;
2972 }
2973 
2974 template <class ELFT>
2975 const typename MipsGOTParser<ELFT>::Elf_Sym *
2976 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
2977   int64_t Offset = std::distance(GotEntries.data(), E);
2978   return &GotDynSyms[Offset - LocalNum];
2979 }
2980 
2981 template <class ELFT>
2982 const typename MipsGOTParser<ELFT>::Entry *
2983 MipsGOTParser<ELFT>::getPltLazyResolver() const {
2984   return PltEntries.empty() ? nullptr : &PltEntries[0];
2985 }
2986 
2987 template <class ELFT>
2988 const typename MipsGOTParser<ELFT>::Entry *
2989 MipsGOTParser<ELFT>::getPltModulePointer() const {
2990   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
2991 }
2992 
2993 template <class ELFT>
2994 typename MipsGOTParser<ELFT>::Entries
2995 MipsGOTParser<ELFT>::getPltEntries() const {
2996   if (PltEntries.size() <= 2)
2997     return Entries();
2998   return PltEntries.slice(2, PltEntries.size() - 2);
2999 }
3000 
3001 template <class ELFT>
3002 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3003   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3004   return PltSec->sh_addr + Offset;
3005 }
3006 
3007 template <class ELFT>
3008 const typename MipsGOTParser<ELFT>::Elf_Sym *
3009 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3010   int64_t Offset = std::distance(getPltEntries().data(), E);
3011   if (PltRelSec->sh_type == ELF::SHT_REL) {
3012     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3013     return unwrapOrError(FileName,
3014                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3015   } else {
3016     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3017     return unwrapOrError(FileName,
3018                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3019   }
3020 }
3021 
3022 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3023   {"None",                    Mips::AFL_EXT_NONE},
3024   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3025   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3026   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3027   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3028   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3029   {"LSI R4010",               Mips::AFL_EXT_4010},
3030   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3031   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3032   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3033   {"MIPS R4650",              Mips::AFL_EXT_4650},
3034   {"MIPS R5900",              Mips::AFL_EXT_5900},
3035   {"MIPS R10000",             Mips::AFL_EXT_10000},
3036   {"NEC VR4100",              Mips::AFL_EXT_4100},
3037   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3038   {"NEC VR4120",              Mips::AFL_EXT_4120},
3039   {"NEC VR5400",              Mips::AFL_EXT_5400},
3040   {"NEC VR5500",              Mips::AFL_EXT_5500},
3041   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3042   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3043 };
3044 
3045 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3046   {"DSP",                Mips::AFL_ASE_DSP},
3047   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3048   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3049   {"MCU",                Mips::AFL_ASE_MCU},
3050   {"MDMX",               Mips::AFL_ASE_MDMX},
3051   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3052   {"MT",                 Mips::AFL_ASE_MT},
3053   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3054   {"VZ",                 Mips::AFL_ASE_VIRT},
3055   {"MSA",                Mips::AFL_ASE_MSA},
3056   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3057   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3058   {"XPA",                Mips::AFL_ASE_XPA},
3059   {"CRC",                Mips::AFL_ASE_CRC},
3060   {"GINV",               Mips::AFL_ASE_GINV},
3061 };
3062 
3063 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3064   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3065   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3066   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3067   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3068   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3069    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3070   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3071   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3072   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3073    Mips::Val_GNU_MIPS_ABI_FP_64A}
3074 };
3075 
3076 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3077   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3078 };
3079 
3080 static int getMipsRegisterSize(uint8_t Flag) {
3081   switch (Flag) {
3082   case Mips::AFL_REG_NONE:
3083     return 0;
3084   case Mips::AFL_REG_32:
3085     return 32;
3086   case Mips::AFL_REG_64:
3087     return 64;
3088   case Mips::AFL_REG_128:
3089     return 128;
3090   default:
3091     return -1;
3092   }
3093 }
3094 
3095 template <class ELFT>
3096 static void printMipsReginfoData(ScopedPrinter &W,
3097                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3098   W.printHex("GP", Reginfo.ri_gp_value);
3099   W.printHex("General Mask", Reginfo.ri_gprmask);
3100   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3101   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3102   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3103   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3104 }
3105 
3106 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3107   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3108   if (!RegInfoSec) {
3109     W.startLine() << "There is no .reginfo section in the file.\n";
3110     return;
3111   }
3112 
3113   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3114       Obj.getSectionContents(*RegInfoSec);
3115   if (!ContentsOrErr) {
3116     this->reportUniqueWarning(
3117         "unable to read the content of the .reginfo section (" +
3118         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3119     return;
3120   }
3121 
3122   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3123     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3124                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3125     return;
3126   }
3127 
3128   DictScope GS(W, "MIPS RegInfo");
3129   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3130                               ContentsOrErr->data()));
3131 }
3132 
3133 template <class ELFT>
3134 static Expected<const Elf_Mips_Options<ELFT> *>
3135 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3136                 bool &IsSupported) {
3137   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3138     return createError("the .MIPS.options section has an invalid size (0x" +
3139                        Twine::utohexstr(SecData.size()) + ")");
3140 
3141   const Elf_Mips_Options<ELFT> *O =
3142       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3143   const uint8_t Size = O->size;
3144   if (Size > SecData.size()) {
3145     const uint64_t Offset = SecData.data() - SecBegin;
3146     const uint64_t SecSize = Offset + SecData.size();
3147     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3148                        " at offset 0x" + Twine::utohexstr(Offset) +
3149                        " goes past the end of the .MIPS.options "
3150                        "section of size 0x" +
3151                        Twine::utohexstr(SecSize));
3152   }
3153 
3154   IsSupported = O->kind == ODK_REGINFO;
3155   const size_t ExpectedSize =
3156       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3157 
3158   if (IsSupported)
3159     if (Size < ExpectedSize)
3160       return createError(
3161           "a .MIPS.options entry of kind " +
3162           Twine(getElfMipsOptionsOdkType(O->kind)) +
3163           " has an invalid size (0x" + Twine::utohexstr(Size) +
3164           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3165 
3166   SecData = SecData.drop_front(Size);
3167   return O;
3168 }
3169 
3170 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3171   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3172   if (!MipsOpts) {
3173     W.startLine() << "There is no .MIPS.options section in the file.\n";
3174     return;
3175   }
3176 
3177   DictScope GS(W, "MIPS Options");
3178 
3179   ArrayRef<uint8_t> Data =
3180       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3181   const uint8_t *const SecBegin = Data.begin();
3182   while (!Data.empty()) {
3183     bool IsSupported;
3184     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3185         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3186     if (!OptsOrErr) {
3187       reportUniqueWarning(OptsOrErr.takeError());
3188       break;
3189     }
3190 
3191     unsigned Kind = (*OptsOrErr)->kind;
3192     const char *Type = getElfMipsOptionsOdkType(Kind);
3193     if (!IsSupported) {
3194       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3195                     << ")\n";
3196       continue;
3197     }
3198 
3199     DictScope GS(W, Type);
3200     if (Kind == ODK_REGINFO)
3201       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3202     else
3203       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3204   }
3205 }
3206 
3207 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3208   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3209   if (!StackMapSection)
3210     return;
3211 
3212   auto Warn = [&](Error &&E) {
3213     this->reportUniqueWarning("unable to read the stack map from " +
3214                               describe(*StackMapSection) + ": " +
3215                               toString(std::move(E)));
3216   };
3217 
3218   Expected<ArrayRef<uint8_t>> ContentOrErr =
3219       Obj.getSectionContents(*StackMapSection);
3220   if (!ContentOrErr) {
3221     Warn(ContentOrErr.takeError());
3222     return;
3223   }
3224 
3225   if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3226           *ContentOrErr)) {
3227     Warn(std::move(E));
3228     return;
3229   }
3230 
3231   prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3232 }
3233 
3234 template <class ELFT>
3235 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3236                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3237   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3238   if (!Target)
3239     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3240                         " in " + describe(Sec) + ": " +
3241                         toString(Target.takeError()));
3242   else
3243     printRelRelaReloc(R, *Target);
3244 }
3245 
3246 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3247                                StringRef Str2) {
3248   OS.PadToColumn(2u);
3249   OS << Str1;
3250   OS.PadToColumn(37u);
3251   OS << Str2 << "\n";
3252   OS.flush();
3253 }
3254 
3255 template <class ELFT>
3256 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3257                                               StringRef FileName) {
3258   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3259   if (ElfHeader.e_shnum != 0)
3260     return to_string(ElfHeader.e_shnum);
3261 
3262   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3263   if (!ArrOrErr) {
3264     // In this case we can ignore an error, because we have already reported a
3265     // warning about the broken section header table earlier.
3266     consumeError(ArrOrErr.takeError());
3267     return "<?>";
3268   }
3269 
3270   if (ArrOrErr->empty())
3271     return "0";
3272   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3273 }
3274 
3275 template <class ELFT>
3276 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3277                                                     StringRef FileName) {
3278   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3279   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3280     return to_string(ElfHeader.e_shstrndx);
3281 
3282   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3283   if (!ArrOrErr) {
3284     // In this case we can ignore an error, because we have already reported a
3285     // warning about the broken section header table earlier.
3286     consumeError(ArrOrErr.takeError());
3287     return "<?>";
3288   }
3289 
3290   if (ArrOrErr->empty())
3291     return "65535 (corrupt: out of range)";
3292   return to_string(ElfHeader.e_shstrndx) + " (" +
3293          to_string((*ArrOrErr)[0].sh_link) + ")";
3294 }
3295 
3296 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3297   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3298     return E.Value == Type;
3299   });
3300   if (It != ArrayRef(ElfObjectFileType).end())
3301     return It;
3302   return nullptr;
3303 }
3304 
3305 template <class ELFT>
3306 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3307                                           ArrayRef<std::string> InputFilenames,
3308                                           const Archive *A) {
3309   if (InputFilenames.size() > 1 || A) {
3310     this->W.startLine() << "\n";
3311     this->W.printString("File", FileStr);
3312   }
3313 }
3314 
3315 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3316   const Elf_Ehdr &e = this->Obj.getHeader();
3317   OS << "ELF Header:\n";
3318   OS << "  Magic:  ";
3319   std::string Str;
3320   for (int i = 0; i < ELF::EI_NIDENT; i++)
3321     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3322   OS << "\n";
3323   Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3324   printFields(OS, "Class:", Str);
3325   Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3326   printFields(OS, "Data:", Str);
3327   OS.PadToColumn(2u);
3328   OS << "Version:";
3329   OS.PadToColumn(37u);
3330   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3331   if (e.e_version == ELF::EV_CURRENT)
3332     OS << " (current)";
3333   OS << "\n";
3334   Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3335   printFields(OS, "OS/ABI:", Str);
3336   printFields(OS,
3337               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3338 
3339   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3340     Str = E->AltName.str();
3341   } else {
3342     if (e.e_type >= ET_LOPROC)
3343       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3344     else if (e.e_type >= ET_LOOS)
3345       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3346     else
3347       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3348   }
3349   printFields(OS, "Type:", Str);
3350 
3351   Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3352   printFields(OS, "Machine:", Str);
3353   Str = "0x" + utohexstr(e.e_version);
3354   printFields(OS, "Version:", Str);
3355   Str = "0x" + utohexstr(e.e_entry);
3356   printFields(OS, "Entry point address:", Str);
3357   Str = to_string(e.e_phoff) + " (bytes into file)";
3358   printFields(OS, "Start of program headers:", Str);
3359   Str = to_string(e.e_shoff) + " (bytes into file)";
3360   printFields(OS, "Start of section headers:", Str);
3361   std::string ElfFlags;
3362   if (e.e_machine == EM_MIPS)
3363     ElfFlags = printFlags(
3364         e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3365         unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3366   else if (e.e_machine == EM_RISCV)
3367     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3368   else if (e.e_machine == EM_AVR)
3369     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3370                           unsigned(ELF::EF_AVR_ARCH_MASK));
3371   else if (e.e_machine == EM_LOONGARCH)
3372     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3373                           unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3374                           unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3375   else if (e.e_machine == EM_XTENSA)
3376     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3377                           unsigned(ELF::EF_XTENSA_MACH));
3378   Str = "0x" + utohexstr(e.e_flags);
3379   if (!ElfFlags.empty())
3380     Str = Str + ", " + ElfFlags;
3381   printFields(OS, "Flags:", Str);
3382   Str = to_string(e.e_ehsize) + " (bytes)";
3383   printFields(OS, "Size of this header:", Str);
3384   Str = to_string(e.e_phentsize) + " (bytes)";
3385   printFields(OS, "Size of program headers:", Str);
3386   Str = to_string(e.e_phnum);
3387   printFields(OS, "Number of program headers:", Str);
3388   Str = to_string(e.e_shentsize) + " (bytes)";
3389   printFields(OS, "Size of section headers:", Str);
3390   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3391   printFields(OS, "Number of section headers:", Str);
3392   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3393   printFields(OS, "Section header string table index:", Str);
3394 }
3395 
3396 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3397   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3398                           const Elf_Shdr &Symtab) -> StringRef {
3399     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3400     if (!StrTableOrErr) {
3401       reportUniqueWarning("unable to get the string table for " +
3402                           describe(Symtab) + ": " +
3403                           toString(StrTableOrErr.takeError()));
3404       return "<?>";
3405     }
3406 
3407     StringRef Strings = *StrTableOrErr;
3408     if (Sym.st_name >= Strings.size()) {
3409       reportUniqueWarning("unable to get the name of the symbol with index " +
3410                           Twine(SymNdx) + ": st_name (0x" +
3411                           Twine::utohexstr(Sym.st_name) +
3412                           ") is past the end of the string table of size 0x" +
3413                           Twine::utohexstr(Strings.size()));
3414       return "<?>";
3415     }
3416 
3417     return StrTableOrErr->data() + Sym.st_name;
3418   };
3419 
3420   std::vector<GroupSection> Ret;
3421   uint64_t I = 0;
3422   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3423     ++I;
3424     if (Sec.sh_type != ELF::SHT_GROUP)
3425       continue;
3426 
3427     StringRef Signature = "<?>";
3428     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3429       if (Expected<const Elf_Sym *> SymOrErr =
3430               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3431         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3432       else
3433         reportUniqueWarning("unable to get the signature symbol for " +
3434                             describe(Sec) + ": " +
3435                             toString(SymOrErr.takeError()));
3436     } else {
3437       reportUniqueWarning("unable to get the symbol table for " +
3438                           describe(Sec) + ": " +
3439                           toString(SymtabOrErr.takeError()));
3440     }
3441 
3442     ArrayRef<Elf_Word> Data;
3443     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3444             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3445       if (ContentsOrErr->empty())
3446         reportUniqueWarning("unable to read the section group flag from the " +
3447                             describe(Sec) + ": the section is empty");
3448       else
3449         Data = *ContentsOrErr;
3450     } else {
3451       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3452                           ": " + toString(ContentsOrErr.takeError()));
3453     }
3454 
3455     Ret.push_back({getPrintableSectionName(Sec),
3456                    maybeDemangle(Signature),
3457                    Sec.sh_name,
3458                    I - 1,
3459                    Sec.sh_link,
3460                    Sec.sh_info,
3461                    Data.empty() ? Elf_Word(0) : Data[0],
3462                    {}});
3463 
3464     if (Data.empty())
3465       continue;
3466 
3467     std::vector<GroupMember> &GM = Ret.back().Members;
3468     for (uint32_t Ndx : Data.slice(1)) {
3469       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3470         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3471       } else {
3472         reportUniqueWarning("unable to get the section with index " +
3473                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3474                             ": " + toString(SecOrErr.takeError()));
3475         GM.push_back({"<?>", Ndx});
3476       }
3477     }
3478   }
3479   return Ret;
3480 }
3481 
3482 static DenseMap<uint64_t, const GroupSection *>
3483 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3484   DenseMap<uint64_t, const GroupSection *> Ret;
3485   for (const GroupSection &G : Groups)
3486     for (const GroupMember &GM : G.Members)
3487       Ret.insert({GM.Index, &G});
3488   return Ret;
3489 }
3490 
3491 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3492   std::vector<GroupSection> V = this->getGroups();
3493   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3494   for (const GroupSection &G : V) {
3495     OS << "\n"
3496        << getGroupType(G.Type) << " group section ["
3497        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3498        << "] contains " << G.Members.size() << " sections:\n"
3499        << "   [Index]    Name\n";
3500     for (const GroupMember &GM : G.Members) {
3501       const GroupSection *MainGroup = Map[GM.Index];
3502       if (MainGroup != &G)
3503         this->reportUniqueWarning(
3504             "section with index " + Twine(GM.Index) +
3505             ", included in the group section with index " +
3506             Twine(MainGroup->Index) +
3507             ", was also found in the group section with index " +
3508             Twine(G.Index));
3509       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3510     }
3511   }
3512 
3513   if (V.empty())
3514     OS << "There are no section groups in this file.\n";
3515 }
3516 
3517 template <class ELFT>
3518 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3519   OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3520 }
3521 
3522 template <class ELFT>
3523 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3524                                            const RelSymbol<ELFT> &RelSym) {
3525   // First two fields are bit width dependent. The rest of them are fixed width.
3526   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3527   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3528   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3529 
3530   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3531   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3532 
3533   SmallString<32> RelocName;
3534   this->Obj.getRelocationTypeName(R.Type, RelocName);
3535   Fields[2].Str = RelocName.c_str();
3536 
3537   if (RelSym.Sym)
3538     Fields[3].Str =
3539         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3540 
3541   Fields[4].Str = std::string(RelSym.Name);
3542   for (const Field &F : Fields)
3543     printField(F);
3544 
3545   std::string Addend;
3546   if (std::optional<int64_t> A = R.Addend) {
3547     int64_t RelAddend = *A;
3548     if (!RelSym.Name.empty()) {
3549       if (RelAddend < 0) {
3550         Addend = " - ";
3551         RelAddend = std::abs(RelAddend);
3552       } else {
3553         Addend = " + ";
3554       }
3555     }
3556     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3557   }
3558   OS << Addend << "\n";
3559 }
3560 
3561 template <class ELFT>
3562 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3563   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3564   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3565   if (ELFT::Is64Bits)
3566     OS << "    ";
3567   else
3568     OS << " ";
3569   if (IsRelr && opts::RawRelr)
3570     OS << "Data  ";
3571   else
3572     OS << "Offset";
3573   if (ELFT::Is64Bits)
3574     OS << "             Info             Type"
3575        << "               Symbol's Value  Symbol's Name";
3576   else
3577     OS << "     Info    Type                Sym. Value  Symbol's Name";
3578   if (IsRela)
3579     OS << " + Addend";
3580   OS << "\n";
3581 }
3582 
3583 template <class ELFT>
3584 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3585                                                  const DynRegionInfo &Reg) {
3586   uint64_t Offset = Reg.Addr - this->Obj.base();
3587   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3588      << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3589   printRelocHeaderFields<ELFT>(OS, Type);
3590 }
3591 
3592 template <class ELFT>
3593 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3594   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3595          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3596          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3597          Sec.sh_type == ELF::SHT_ANDROID_RELR;
3598 }
3599 
3600 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3601   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3602     // Android's packed relocation section needs to be unpacked first
3603     // to get the actual number of entries.
3604     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3605         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3606       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3607           this->Obj.android_relas(Sec);
3608       if (!RelasOrErr)
3609         return RelasOrErr.takeError();
3610       return RelasOrErr->size();
3611     }
3612 
3613     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3614                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3615       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3616       if (!RelrsOrErr)
3617         return RelrsOrErr.takeError();
3618       return this->Obj.decode_relrs(*RelrsOrErr).size();
3619     }
3620 
3621     return Sec.getEntityCount();
3622   };
3623 
3624   bool HasRelocSections = false;
3625   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3626     if (!isRelocationSec<ELFT>(Sec))
3627       continue;
3628     HasRelocSections = true;
3629 
3630     std::string EntriesNum = "<?>";
3631     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3632       EntriesNum = std::to_string(*NumOrErr);
3633     else
3634       this->reportUniqueWarning("unable to get the number of relocations in " +
3635                                 this->describe(Sec) + ": " +
3636                                 toString(NumOrErr.takeError()));
3637 
3638     uintX_t Offset = Sec.sh_offset;
3639     StringRef Name = this->getPrintableSectionName(Sec);
3640     OS << "\nRelocation section '" << Name << "' at offset 0x"
3641        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3642        << " entries:\n";
3643     printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3644     this->printRelocationsHelper(Sec);
3645   }
3646   if (!HasRelocSections)
3647     OS << "\nThere are no relocations in this file.\n";
3648 }
3649 
3650 // Print the offset of a particular section from anyone of the ranges:
3651 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3652 // If 'Type' does not fall within any of those ranges, then a string is
3653 // returned as '<unknown>' followed by the type value.
3654 static std::string getSectionTypeOffsetString(unsigned Type) {
3655   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3656     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3657   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3658     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3659   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3660     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3661   return "0x" + utohexstr(Type) + ": <unknown>";
3662 }
3663 
3664 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3665   StringRef Name = getELFSectionTypeName(Machine, Type);
3666 
3667   // Handle SHT_GNU_* type names.
3668   if (Name.consume_front("SHT_GNU_")) {
3669     if (Name == "HASH")
3670       return "GNU_HASH";
3671     // E.g. SHT_GNU_verneed -> VERNEED.
3672     return Name.upper();
3673   }
3674 
3675   if (Name == "SHT_SYMTAB_SHNDX")
3676     return "SYMTAB SECTION INDICES";
3677 
3678   if (Name.consume_front("SHT_"))
3679     return Name.str();
3680   return getSectionTypeOffsetString(Type);
3681 }
3682 
3683 static void printSectionDescription(formatted_raw_ostream &OS,
3684                                     unsigned EMachine) {
3685   OS << "Key to Flags:\n";
3686   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3687         "(info),\n";
3688   OS << "  L (link order), O (extra OS processing required), G (group), T "
3689         "(TLS),\n";
3690   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3691   OS << "  R (retain)";
3692 
3693   if (EMachine == EM_X86_64)
3694     OS << ", l (large)";
3695   else if (EMachine == EM_ARM)
3696     OS << ", y (purecode)";
3697 
3698   OS << ", p (processor specific)\n";
3699 }
3700 
3701 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3702   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3703   if (Sections.empty()) {
3704     OS << "\nThere are no sections in this file.\n";
3705     Expected<StringRef> SecStrTableOrErr =
3706         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3707     if (!SecStrTableOrErr)
3708       this->reportUniqueWarning(SecStrTableOrErr.takeError());
3709     return;
3710   }
3711   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3712   OS << "There are " << to_string(Sections.size())
3713      << " section headers, starting at offset "
3714      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3715   OS << "Section Headers:\n";
3716   Field Fields[11] = {
3717       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3718       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3719       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3720       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3721   for (const Field &F : Fields)
3722     printField(F);
3723   OS << "\n";
3724 
3725   StringRef SecStrTable;
3726   if (Expected<StringRef> SecStrTableOrErr =
3727           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3728     SecStrTable = *SecStrTableOrErr;
3729   else
3730     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3731 
3732   size_t SectionIndex = 0;
3733   for (const Elf_Shdr &Sec : Sections) {
3734     Fields[0].Str = to_string(SectionIndex);
3735     if (SecStrTable.empty())
3736       Fields[1].Str = "<no-strings>";
3737     else
3738       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3739           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3740     Fields[2].Str =
3741         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3742     Fields[3].Str =
3743         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3744     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3745     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3746     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3747     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3748                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
3749     Fields[8].Str = to_string(Sec.sh_link);
3750     Fields[9].Str = to_string(Sec.sh_info);
3751     Fields[10].Str = to_string(Sec.sh_addralign);
3752 
3753     OS.PadToColumn(Fields[0].Column);
3754     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3755     for (int i = 1; i < 7; i++)
3756       printField(Fields[i]);
3757     OS.PadToColumn(Fields[7].Column);
3758     OS << right_justify(Fields[7].Str, 3);
3759     OS.PadToColumn(Fields[8].Column);
3760     OS << right_justify(Fields[8].Str, 2);
3761     OS.PadToColumn(Fields[9].Column);
3762     OS << right_justify(Fields[9].Str, 3);
3763     OS.PadToColumn(Fields[10].Column);
3764     OS << right_justify(Fields[10].Str, 2);
3765     OS << "\n";
3766     ++SectionIndex;
3767   }
3768   printSectionDescription(OS, this->Obj.getHeader().e_machine);
3769 }
3770 
3771 template <class ELFT>
3772 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
3773                                             size_t Entries,
3774                                             bool NonVisibilityBitsUsed) const {
3775   StringRef Name;
3776   if (Symtab)
3777     Name = this->getPrintableSectionName(*Symtab);
3778   if (!Name.empty())
3779     OS << "\nSymbol table '" << Name << "'";
3780   else
3781     OS << "\nSymbol table for image";
3782   OS << " contains " << Entries << " entries:\n";
3783 
3784   if (ELFT::Is64Bits)
3785     OS << "   Num:    Value          Size Type    Bind   Vis";
3786   else
3787     OS << "   Num:    Value  Size Type    Bind   Vis";
3788 
3789   if (NonVisibilityBitsUsed)
3790     OS << "             ";
3791   OS << "       Ndx Name\n";
3792 }
3793 
3794 template <class ELFT>
3795 std::string
3796 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3797                                         unsigned SymIndex,
3798                                         DataRegion<Elf_Word> ShndxTable) const {
3799   unsigned SectionIndex = Symbol.st_shndx;
3800   switch (SectionIndex) {
3801   case ELF::SHN_UNDEF:
3802     return "UND";
3803   case ELF::SHN_ABS:
3804     return "ABS";
3805   case ELF::SHN_COMMON:
3806     return "COM";
3807   case ELF::SHN_XINDEX: {
3808     Expected<uint32_t> IndexOrErr =
3809         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
3810     if (!IndexOrErr) {
3811       assert(Symbol.st_shndx == SHN_XINDEX &&
3812              "getExtendedSymbolTableIndex should only fail due to an invalid "
3813              "SHT_SYMTAB_SHNDX table/reference");
3814       this->reportUniqueWarning(IndexOrErr.takeError());
3815       return "RSV[0xffff]";
3816     }
3817     return to_string(format_decimal(*IndexOrErr, 3));
3818   }
3819   default:
3820     // Find if:
3821     // Processor specific
3822     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
3823       return std::string("PRC[0x") +
3824              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3825     // OS specific
3826     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
3827       return std::string("OS[0x") +
3828              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3829     // Architecture reserved:
3830     if (SectionIndex >= ELF::SHN_LORESERVE &&
3831         SectionIndex <= ELF::SHN_HIRESERVE)
3832       return std::string("RSV[0x") +
3833              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
3834     // A normal section with an index
3835     return to_string(format_decimal(SectionIndex, 3));
3836   }
3837 }
3838 
3839 template <class ELFT>
3840 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
3841                                      DataRegion<Elf_Word> ShndxTable,
3842                                      std::optional<StringRef> StrTable,
3843                                      bool IsDynamic,
3844                                      bool NonVisibilityBitsUsed) const {
3845   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3846   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
3847                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
3848   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
3849   Fields[1].Str =
3850       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
3851   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
3852 
3853   unsigned char SymbolType = Symbol.getType();
3854   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3855       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3856     Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3857   else
3858     Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3859 
3860   Fields[4].Str =
3861       enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
3862   Fields[5].Str =
3863       enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
3864 
3865   if (Symbol.st_other & ~0x3) {
3866     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
3867       uint8_t Other = Symbol.st_other & ~0x3;
3868       if (Other & STO_AARCH64_VARIANT_PCS) {
3869         Other &= ~STO_AARCH64_VARIANT_PCS;
3870         Fields[5].Str += " [VARIANT_PCS";
3871         if (Other != 0)
3872           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3873         Fields[5].Str.append("]");
3874       }
3875     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
3876       uint8_t Other = Symbol.st_other & ~0x3;
3877       if (Other & STO_RISCV_VARIANT_CC) {
3878         Other &= ~STO_RISCV_VARIANT_CC;
3879         Fields[5].Str += " [VARIANT_CC";
3880         if (Other != 0)
3881           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
3882         Fields[5].Str.append("]");
3883       }
3884     } else {
3885       Fields[5].Str +=
3886           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
3887     }
3888   }
3889 
3890   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
3891   Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable);
3892 
3893   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
3894                                           StrTable, IsDynamic);
3895   for (const Field &Entry : Fields)
3896     printField(Entry);
3897   OS << "\n";
3898 }
3899 
3900 template <class ELFT>
3901 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
3902                                            unsigned SymIndex,
3903                                            DataRegion<Elf_Word> ShndxTable,
3904                                            StringRef StrTable,
3905                                            uint32_t Bucket) {
3906   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3907   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
3908                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
3909   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
3910   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
3911 
3912   Fields[2].Str = to_string(
3913       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
3914   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
3915 
3916   unsigned char SymbolType = Symbol->getType();
3917   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
3918       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
3919     Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
3920   else
3921     Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
3922 
3923   Fields[5].Str =
3924       enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
3925   Fields[6].Str =
3926       enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
3927   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
3928   Fields[8].Str =
3929       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
3930 
3931   for (const Field &Entry : Fields)
3932     printField(Entry);
3933   OS << "\n";
3934 }
3935 
3936 template <class ELFT>
3937 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
3938                                       bool PrintDynamicSymbols) {
3939   if (!PrintSymbols && !PrintDynamicSymbols)
3940     return;
3941   // GNU readelf prints both the .dynsym and .symtab with --symbols.
3942   this->printSymbolsHelper(true);
3943   if (PrintSymbols)
3944     this->printSymbolsHelper(false);
3945 }
3946 
3947 template <class ELFT>
3948 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
3949   if (this->DynamicStringTable.empty())
3950     return;
3951 
3952   if (ELFT::Is64Bits)
3953     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
3954   else
3955     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
3956   OS << "\n";
3957 
3958   Elf_Sym_Range DynSyms = this->dynamic_symbols();
3959   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
3960   if (!FirstSym) {
3961     this->reportUniqueWarning(
3962         Twine("unable to print symbols for the .hash table: the "
3963               "dynamic symbol table ") +
3964         (this->DynSymRegion ? "is empty" : "was not found"));
3965     return;
3966   }
3967 
3968   DataRegion<Elf_Word> ShndxTable(
3969       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
3970   auto Buckets = SysVHash.buckets();
3971   auto Chains = SysVHash.chains();
3972   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
3973     if (Buckets[Buc] == ELF::STN_UNDEF)
3974       continue;
3975     BitVector Visited(SysVHash.nchain);
3976     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
3977       if (Ch == ELF::STN_UNDEF)
3978         break;
3979 
3980       if (Visited[Ch]) {
3981         this->reportUniqueWarning(".hash section is invalid: bucket " +
3982                                   Twine(Ch) +
3983                                   ": a cycle was detected in the linked chain");
3984         break;
3985       }
3986 
3987       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
3988                         Buc);
3989       Visited[Ch] = true;
3990     }
3991   }
3992 }
3993 
3994 template <class ELFT>
3995 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
3996   if (this->DynamicStringTable.empty())
3997     return;
3998 
3999   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4000   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4001   if (!FirstSym) {
4002     this->reportUniqueWarning(
4003         Twine("unable to print symbols for the .gnu.hash table: the "
4004               "dynamic symbol table ") +
4005         (this->DynSymRegion ? "is empty" : "was not found"));
4006     return;
4007   }
4008 
4009   auto GetSymbol = [&](uint64_t SymIndex,
4010                        uint64_t SymsTotal) -> const Elf_Sym * {
4011     if (SymIndex >= SymsTotal) {
4012       this->reportUniqueWarning(
4013           "unable to print hashed symbol with index " + Twine(SymIndex) +
4014           ", which is greater than or equal to the number of dynamic symbols "
4015           "(" +
4016           Twine::utohexstr(SymsTotal) + ")");
4017       return nullptr;
4018     }
4019     return FirstSym + SymIndex;
4020   };
4021 
4022   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4023       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4024   ArrayRef<Elf_Word> Values;
4025   if (!ValuesOrErr)
4026     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4027                               "section: " +
4028                               toString(ValuesOrErr.takeError()));
4029   else
4030     Values = *ValuesOrErr;
4031 
4032   DataRegion<Elf_Word> ShndxTable(
4033       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4034   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4035   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4036     if (Buckets[Buc] == ELF::STN_UNDEF)
4037       continue;
4038     uint32_t Index = Buckets[Buc];
4039     // Print whole chain.
4040     while (true) {
4041       uint32_t SymIndex = Index++;
4042       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4043         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4044                           Buc);
4045       else
4046         break;
4047 
4048       if (SymIndex < GnuHash.symndx) {
4049         this->reportUniqueWarning(
4050             "unable to read the hash value for symbol with index " +
4051             Twine(SymIndex) +
4052             ", which is less than the index of the first hashed symbol (" +
4053             Twine(GnuHash.symndx) + ")");
4054         break;
4055       }
4056 
4057        // Chain ends at symbol with stopper bit.
4058       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4059         break;
4060     }
4061   }
4062 }
4063 
4064 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4065   if (this->HashTable) {
4066     OS << "\n Symbol table of .hash for image:\n";
4067     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4068       this->reportUniqueWarning(std::move(E));
4069     else
4070       printHashTableSymbols(*this->HashTable);
4071   }
4072 
4073   // Try printing the .gnu.hash table.
4074   if (this->GnuHashTable) {
4075     OS << "\n Symbol table of .gnu.hash for image:\n";
4076     if (ELFT::Is64Bits)
4077       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4078     else
4079       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4080     OS << "\n";
4081 
4082     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4083       this->reportUniqueWarning(std::move(E));
4084     else
4085       printGnuHashTableSymbols(*this->GnuHashTable);
4086   }
4087 }
4088 
4089 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4090   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4091   if (Sections.empty()) {
4092     OS << "\nThere are no sections in this file.\n";
4093     Expected<StringRef> SecStrTableOrErr =
4094         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4095     if (!SecStrTableOrErr)
4096       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4097     return;
4098   }
4099   OS << "There are " << to_string(Sections.size())
4100      << " section headers, starting at offset "
4101      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4102 
4103   OS << "Section Headers:\n";
4104 
4105   auto PrintFields = [&](ArrayRef<Field> V) {
4106     for (const Field &F : V)
4107       printField(F);
4108     OS << "\n";
4109   };
4110 
4111   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4112 
4113   constexpr bool Is64 = ELFT::Is64Bits;
4114   PrintFields({{"Type", 7},
4115                {Is64 ? "Address" : "Addr", 23},
4116                {"Off", Is64 ? 40 : 32},
4117                {"Size", Is64 ? 47 : 39},
4118                {"ES", Is64 ? 54 : 46},
4119                {"Lk", Is64 ? 59 : 51},
4120                {"Inf", Is64 ? 62 : 54},
4121                {"Al", Is64 ? 66 : 57}});
4122   PrintFields({{"Flags", 7}});
4123 
4124   StringRef SecStrTable;
4125   if (Expected<StringRef> SecStrTableOrErr =
4126           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4127     SecStrTable = *SecStrTableOrErr;
4128   else
4129     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4130 
4131   size_t SectionIndex = 0;
4132   const unsigned AddrSize = Is64 ? 16 : 8;
4133   for (const Elf_Shdr &S : Sections) {
4134     StringRef Name = "<?>";
4135     if (Expected<StringRef> NameOrErr =
4136             this->Obj.getSectionName(S, SecStrTable))
4137       Name = *NameOrErr;
4138     else
4139       this->reportUniqueWarning(NameOrErr.takeError());
4140 
4141     OS.PadToColumn(2);
4142     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4143     PrintFields({{Name, 7}});
4144     PrintFields(
4145         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4146          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4147          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4148          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4149          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4150          {to_string(S.sh_link), Is64 ? 59 : 51},
4151          {to_string(S.sh_info), Is64 ? 63 : 55},
4152          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4153 
4154     OS.PadToColumn(7);
4155     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4156 
4157     DenseMap<unsigned, StringRef> FlagToName = {
4158         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4159         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4160         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4161         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4162         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4163         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4164 
4165     uint64_t Flags = S.sh_flags;
4166     uint64_t UnknownFlags = 0;
4167     ListSeparator LS;
4168     while (Flags) {
4169       // Take the least significant bit as a flag.
4170       uint64_t Flag = Flags & -Flags;
4171       Flags -= Flag;
4172 
4173       auto It = FlagToName.find(Flag);
4174       if (It != FlagToName.end())
4175         OS << LS << It->second;
4176       else
4177         UnknownFlags |= Flag;
4178     }
4179 
4180     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4181       uint64_t FlagsToPrint = UnknownFlags & Mask;
4182       if (!FlagsToPrint)
4183         return;
4184 
4185       OS << LS << Name << " ("
4186          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4187       UnknownFlags &= ~Mask;
4188     };
4189 
4190     PrintUnknownFlags(SHF_MASKOS, "OS");
4191     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4192     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4193 
4194     OS << "\n";
4195     ++SectionIndex;
4196 
4197     if (!(S.sh_flags & SHF_COMPRESSED))
4198       continue;
4199     Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4200     if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4201       consumeError(Data.takeError());
4202       reportWarning(createError("SHF_COMPRESSED section '" + Name +
4203                                 "' does not have an Elf_Chdr header"),
4204                     this->FileName);
4205       OS.indent(7);
4206       OS << "[<corrupt>]";
4207     } else {
4208       OS.indent(7);
4209       auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4210       if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4211         OS << "ZLIB";
4212       else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4213         OS << "ZSTD";
4214       else
4215         OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4216       OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4217          << ", " << Chdr->ch_addralign;
4218     }
4219     OS << '\n';
4220   }
4221 }
4222 
4223 static inline std::string printPhdrFlags(unsigned Flag) {
4224   std::string Str;
4225   Str = (Flag & PF_R) ? "R" : " ";
4226   Str += (Flag & PF_W) ? "W" : " ";
4227   Str += (Flag & PF_X) ? "E" : " ";
4228   return Str;
4229 }
4230 
4231 template <class ELFT>
4232 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4233                              const typename ELFT::Shdr &Sec) {
4234   if (Sec.sh_flags & ELF::SHF_TLS) {
4235     // .tbss must only be shown in the PT_TLS segment.
4236     if (Sec.sh_type == ELF::SHT_NOBITS)
4237       return Phdr.p_type == ELF::PT_TLS;
4238 
4239     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4240     // segments.
4241     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4242            (Phdr.p_type == ELF::PT_GNU_RELRO);
4243   }
4244 
4245   // PT_TLS must only have SHF_TLS sections.
4246   return Phdr.p_type != ELF::PT_TLS;
4247 }
4248 
4249 template <class ELFT>
4250 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4251                          const typename ELFT::Shdr &Sec) {
4252   // SHT_NOBITS sections don't need to have an offset inside the segment.
4253   if (Sec.sh_type == ELF::SHT_NOBITS)
4254     return true;
4255 
4256   if (Sec.sh_offset < Phdr.p_offset)
4257     return false;
4258 
4259   // Only non-empty sections can be at the end of a segment.
4260   if (Sec.sh_size == 0)
4261     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4262   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4263 }
4264 
4265 // Check that an allocatable section belongs to a virtual address
4266 // space of a segment.
4267 template <class ELFT>
4268 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4269                      const typename ELFT::Shdr &Sec) {
4270   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4271     return true;
4272 
4273   if (Sec.sh_addr < Phdr.p_vaddr)
4274     return false;
4275 
4276   bool IsTbss =
4277       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4278   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4279   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4280   // Only non-empty sections can be at the end of a segment.
4281   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4282     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4283   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4284 }
4285 
4286 template <class ELFT>
4287 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4288                            const typename ELFT::Shdr &Sec) {
4289   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4290     return true;
4291 
4292   // We get here when we have an empty section. Only non-empty sections can be
4293   // at the start or at the end of PT_DYNAMIC.
4294   // Is section within the phdr both based on offset and VMA?
4295   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4296                      (Sec.sh_offset > Phdr.p_offset &&
4297                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4298   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4299                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4300   return CheckOffset && CheckVA;
4301 }
4302 
4303 template <class ELFT>
4304 void GNUELFDumper<ELFT>::printProgramHeaders(
4305     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4306   const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4307   // Exit early if no program header or section mapping details were requested.
4308   if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4309     return;
4310 
4311   if (PrintProgramHeaders) {
4312     const Elf_Ehdr &Header = this->Obj.getHeader();
4313     if (Header.e_phnum == 0) {
4314       OS << "\nThere are no program headers in this file.\n";
4315     } else {
4316       printProgramHeaders();
4317     }
4318   }
4319 
4320   if (ShouldPrintSectionMapping)
4321     printSectionMapping();
4322 }
4323 
4324 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4325   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4326   const Elf_Ehdr &Header = this->Obj.getHeader();
4327   Field Fields[8] = {2,         17,        26,        37 + Bias,
4328                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4329   OS << "\nElf file type is "
4330      << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4331      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4332      << "There are " << Header.e_phnum << " program headers,"
4333      << " starting at offset " << Header.e_phoff << "\n\n"
4334      << "Program Headers:\n";
4335   if (ELFT::Is64Bits)
4336     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4337        << "  FileSiz  MemSiz   Flg Align\n";
4338   else
4339     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4340        << "MemSiz  Flg Align\n";
4341 
4342   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4343   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4344 
4345   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4346   if (!PhdrsOrErr) {
4347     this->reportUniqueWarning("unable to dump program headers: " +
4348                               toString(PhdrsOrErr.takeError()));
4349     return;
4350   }
4351 
4352   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4353     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4354     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4355     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4356     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4357     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4358     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4359     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4360     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4361     for (const Field &F : Fields)
4362       printField(F);
4363     if (Phdr.p_type == ELF::PT_INTERP) {
4364       OS << "\n";
4365       auto ReportBadInterp = [&](const Twine &Msg) {
4366         this->reportUniqueWarning(
4367             "unable to read program interpreter name at offset 0x" +
4368             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4369       };
4370 
4371       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4372         ReportBadInterp("it goes past the end of the file (0x" +
4373                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4374         continue;
4375       }
4376 
4377       const char *Data =
4378           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4379       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4380       size_t Len = strnlen(Data, MaxSize);
4381       if (Len == MaxSize) {
4382         ReportBadInterp("it is not null-terminated");
4383         continue;
4384       }
4385 
4386       OS << "      [Requesting program interpreter: ";
4387       OS << StringRef(Data, Len) << "]";
4388     }
4389     OS << "\n";
4390   }
4391 }
4392 
4393 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4394   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4395   DenseSet<const Elf_Shdr *> BelongsToSegment;
4396   int Phnum = 0;
4397 
4398   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4399   if (!PhdrsOrErr) {
4400     this->reportUniqueWarning(
4401         "can't read program headers to build section to segment mapping: " +
4402         toString(PhdrsOrErr.takeError()));
4403     return;
4404   }
4405 
4406   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4407     std::string Sections;
4408     OS << format("   %2.2d     ", Phnum++);
4409     // Check if each section is in a segment and then print mapping.
4410     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4411       if (Sec.sh_type == ELF::SHT_NULL)
4412         continue;
4413 
4414       // readelf additionally makes sure it does not print zero sized sections
4415       // at end of segments and for PT_DYNAMIC both start and end of section
4416       // .tbss must only be shown in PT_TLS section.
4417       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4418           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4419         Sections +=
4420             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4421             " ";
4422         BelongsToSegment.insert(&Sec);
4423       }
4424     }
4425     OS << Sections << "\n";
4426     OS.flush();
4427   }
4428 
4429   // Display sections that do not belong to a segment.
4430   std::string Sections;
4431   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4432     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4433       Sections +=
4434           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4435           ' ';
4436   }
4437   if (!Sections.empty()) {
4438     OS << "   None  " << Sections << '\n';
4439     OS.flush();
4440   }
4441 }
4442 
4443 namespace {
4444 
4445 template <class ELFT>
4446 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4447                                   const Relocation<ELFT> &Reloc) {
4448   using Elf_Sym = typename ELFT::Sym;
4449   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4450                            const Twine &Reason) -> RelSymbol<ELFT> {
4451     Dumper.reportUniqueWarning(
4452         "unable to get name of the dynamic symbol with index " +
4453         Twine(Reloc.Symbol) + ": " + Reason);
4454     return {Sym, "<corrupt>"};
4455   };
4456 
4457   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4458   const Elf_Sym *FirstSym = Symbols.begin();
4459   if (!FirstSym)
4460     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4461 
4462   // We might have an object without a section header. In this case the size of
4463   // Symbols is zero, because there is no way to know the size of the dynamic
4464   // table. We should allow this case and not print a warning.
4465   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4466     return WarnAndReturn(
4467         nullptr,
4468         "index is greater than or equal to the number of dynamic symbols (" +
4469             Twine(Symbols.size()) + ")");
4470 
4471   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4472   const uint64_t FileSize = Obj.getBufSize();
4473   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4474                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4475   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4476     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4477                                       " goes past the end of the file (0x" +
4478                                       Twine::utohexstr(FileSize) + ")");
4479 
4480   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4481   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4482   if (!ErrOrName)
4483     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4484 
4485   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4486 }
4487 } // namespace
4488 
4489 template <class ELFT>
4490 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4491                                    typename ELFT::DynRange Tags) {
4492   size_t Max = 0;
4493   for (const typename ELFT::Dyn &Dyn : Tags)
4494     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4495   return Max;
4496 }
4497 
4498 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4499   Elf_Dyn_Range Table = this->dynamic_table();
4500   if (Table.empty())
4501     return;
4502 
4503   OS << "Dynamic section at offset "
4504      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4505                        this->Obj.base(),
4506                    1)
4507      << " contains " << Table.size() << " entries:\n";
4508 
4509   // The type name is surrounded with round brackets, hence add 2.
4510   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4511   // The "Name/Value" column should be indented from the "Type" column by N
4512   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4513   // space (1) = 3.
4514   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4515      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4516 
4517   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4518   for (auto Entry : Table) {
4519     uintX_t Tag = Entry.getTag();
4520     std::string Type =
4521         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4522     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4523     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4524        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4525   }
4526 }
4527 
4528 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4529   this->printDynamicRelocationsHelper();
4530 }
4531 
4532 template <class ELFT>
4533 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4534   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4535 }
4536 
4537 template <class ELFT>
4538 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4539   this->forEachRelocationDo(
4540       Sec, opts::RawRelr,
4541       [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4542           const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4543       [&](const Elf_Relr &R) { printRelrReloc(R); });
4544 }
4545 
4546 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4547   const bool IsMips64EL = this->Obj.isMips64EL();
4548   if (this->DynRelaRegion.Size > 0) {
4549     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4550     for (const Elf_Rela &Rela :
4551          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4552       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4553   }
4554 
4555   if (this->DynRelRegion.Size > 0) {
4556     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4557     for (const Elf_Rel &Rel :
4558          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4559       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4560   }
4561 
4562   if (this->DynRelrRegion.Size > 0) {
4563     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4564     Elf_Relr_Range Relrs =
4565         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4566     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4567       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4568   }
4569 
4570   if (this->DynPLTRelRegion.Size) {
4571     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4572       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4573       for (const Elf_Rela &Rela :
4574            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4575         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4576     } else {
4577       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4578       for (const Elf_Rel &Rel :
4579            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4580         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4581     }
4582   }
4583 }
4584 
4585 template <class ELFT>
4586 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4587     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4588   // Don't inline the SecName, because it might report a warning to stderr and
4589   // corrupt the output.
4590   StringRef SecName = this->getPrintableSectionName(Sec);
4591   OS << Label << " section '" << SecName << "' "
4592      << "contains " << EntriesNum << " entries:\n";
4593 
4594   StringRef LinkedSecName = "<corrupt>";
4595   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4596           this->Obj.getSection(Sec.sh_link))
4597     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4598   else
4599     this->reportUniqueWarning("invalid section linked to " +
4600                               this->describe(Sec) + ": " +
4601                               toString(LinkedSecOrErr.takeError()));
4602 
4603   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4604      << "  Offset: " << format_hex(Sec.sh_offset, 8)
4605      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4606 }
4607 
4608 template <class ELFT>
4609 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4610   if (!Sec)
4611     return;
4612 
4613   printGNUVersionSectionProlog(*Sec, "Version symbols",
4614                                Sec->sh_size / sizeof(Elf_Versym));
4615   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4616       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4617                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4618   if (!VerTableOrErr) {
4619     this->reportUniqueWarning(VerTableOrErr.takeError());
4620     return;
4621   }
4622 
4623   SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4624   if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4625           this->getVersionMap())
4626     VersionMap = *MapOrErr;
4627   else
4628     this->reportUniqueWarning(MapOrErr.takeError());
4629 
4630   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4631   std::vector<StringRef> Versions;
4632   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4633     unsigned Ndx = VerTable[I].vs_index;
4634     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4635       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4636       continue;
4637     }
4638 
4639     if (!VersionMap) {
4640       Versions.emplace_back("<corrupt>");
4641       continue;
4642     }
4643 
4644     bool IsDefault;
4645     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4646         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4647     if (!NameOrErr) {
4648       this->reportUniqueWarning("unable to get a version for entry " +
4649                                 Twine(I) + " of " + this->describe(*Sec) +
4650                                 ": " + toString(NameOrErr.takeError()));
4651       Versions.emplace_back("<corrupt>");
4652       continue;
4653     }
4654     Versions.emplace_back(*NameOrErr);
4655   }
4656 
4657   // readelf prints 4 entries per line.
4658   uint64_t Entries = VerTable.size();
4659   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4660     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4661     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4662       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4663       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4664                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4665       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4666     }
4667     OS << '\n';
4668   }
4669   OS << '\n';
4670 }
4671 
4672 static std::string versionFlagToString(unsigned Flags) {
4673   if (Flags == 0)
4674     return "none";
4675 
4676   std::string Ret;
4677   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4678     if (!(Flags & Flag))
4679       return;
4680     if (!Ret.empty())
4681       Ret += " | ";
4682     Ret += Name;
4683     Flags &= ~Flag;
4684   };
4685 
4686   AddFlag(VER_FLG_BASE, "BASE");
4687   AddFlag(VER_FLG_WEAK, "WEAK");
4688   AddFlag(VER_FLG_INFO, "INFO");
4689   AddFlag(~0, "<unknown>");
4690   return Ret;
4691 }
4692 
4693 template <class ELFT>
4694 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4695   if (!Sec)
4696     return;
4697 
4698   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4699 
4700   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4701   if (!V) {
4702     this->reportUniqueWarning(V.takeError());
4703     return;
4704   }
4705 
4706   for (const VerDef &Def : *V) {
4707     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4708                  Def.Offset, Def.Version,
4709                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4710                  Def.Name.data());
4711     unsigned I = 0;
4712     for (const VerdAux &Aux : Def.AuxV)
4713       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4714                    Aux.Name.data());
4715   }
4716 
4717   OS << '\n';
4718 }
4719 
4720 template <class ELFT>
4721 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4722   if (!Sec)
4723     return;
4724 
4725   unsigned VerneedNum = Sec->sh_info;
4726   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4727 
4728   Expected<std::vector<VerNeed>> V =
4729       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4730   if (!V) {
4731     this->reportUniqueWarning(V.takeError());
4732     return;
4733   }
4734 
4735   for (const VerNeed &VN : *V) {
4736     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4737                  VN.Version, VN.File.data(), VN.Cnt);
4738     for (const VernAux &Aux : VN.AuxV)
4739       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4740                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4741                    Aux.Other);
4742   }
4743   OS << '\n';
4744 }
4745 
4746 template <class ELFT>
4747 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4748   size_t NBucket = HashTable.nbucket;
4749   size_t NChain = HashTable.nchain;
4750   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4751   ArrayRef<Elf_Word> Chains = HashTable.chains();
4752   size_t TotalSyms = 0;
4753   // If hash table is correct, we have at least chains with 0 length
4754   size_t MaxChain = 1;
4755   size_t CumulativeNonZero = 0;
4756 
4757   if (NChain == 0 || NBucket == 0)
4758     return;
4759 
4760   std::vector<size_t> ChainLen(NBucket, 0);
4761   // Go over all buckets and and note chain lengths of each bucket (total
4762   // unique chain lengths).
4763   for (size_t B = 0; B < NBucket; B++) {
4764     BitVector Visited(NChain);
4765     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4766       if (C == ELF::STN_UNDEF)
4767         break;
4768       if (Visited[C]) {
4769         this->reportUniqueWarning(".hash section is invalid: bucket " +
4770                                   Twine(C) +
4771                                   ": a cycle was detected in the linked chain");
4772         break;
4773       }
4774       Visited[C] = true;
4775       if (MaxChain <= ++ChainLen[B])
4776         MaxChain++;
4777     }
4778     TotalSyms += ChainLen[B];
4779   }
4780 
4781   if (!TotalSyms)
4782     return;
4783 
4784   std::vector<size_t> Count(MaxChain, 0);
4785   // Count how long is the chain for each bucket
4786   for (size_t B = 0; B < NBucket; B++)
4787     ++Count[ChainLen[B]];
4788   // Print Number of buckets with each chain lengths and their cumulative
4789   // coverage of the symbols
4790   OS << "Histogram for bucket list length (total of " << NBucket
4791      << " buckets)\n"
4792      << " Length  Number     % of total  Coverage\n";
4793   for (size_t I = 0; I < MaxChain; I++) {
4794     CumulativeNonZero += Count[I] * I;
4795     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4796                  (Count[I] * 100.0) / NBucket,
4797                  (CumulativeNonZero * 100.0) / TotalSyms);
4798   }
4799 }
4800 
4801 template <class ELFT>
4802 void GNUELFDumper<ELFT>::printGnuHashHistogram(
4803     const Elf_GnuHash &GnuHashTable) {
4804   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
4805       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
4806   if (!ChainsOrErr) {
4807     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4808                               toString(ChainsOrErr.takeError()));
4809     return;
4810   }
4811 
4812   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4813   size_t Symndx = GnuHashTable.symndx;
4814   size_t TotalSyms = 0;
4815   size_t MaxChain = 1;
4816   size_t CumulativeNonZero = 0;
4817 
4818   size_t NBucket = GnuHashTable.nbuckets;
4819   if (Chains.empty() || NBucket == 0)
4820     return;
4821 
4822   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4823   std::vector<size_t> ChainLen(NBucket, 0);
4824   for (size_t B = 0; B < NBucket; B++) {
4825     if (!Buckets[B])
4826       continue;
4827     size_t Len = 1;
4828     for (size_t C = Buckets[B] - Symndx;
4829          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4830       if (MaxChain < ++Len)
4831         MaxChain++;
4832     ChainLen[B] = Len;
4833     TotalSyms += Len;
4834   }
4835   MaxChain++;
4836 
4837   if (!TotalSyms)
4838     return;
4839 
4840   std::vector<size_t> Count(MaxChain, 0);
4841   for (size_t B = 0; B < NBucket; B++)
4842     ++Count[ChainLen[B]];
4843   // Print Number of buckets with each chain lengths and their cumulative
4844   // coverage of the symbols
4845   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4846      << " buckets)\n"
4847      << " Length  Number     % of total  Coverage\n";
4848   for (size_t I = 0; I < MaxChain; I++) {
4849     CumulativeNonZero += Count[I] * I;
4850     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4851                  (Count[I] * 100.0) / NBucket,
4852                  (CumulativeNonZero * 100.0) / TotalSyms);
4853   }
4854 }
4855 
4856 // Hash histogram shows statistics of how efficient the hash was for the
4857 // dynamic symbol table. The table shows the number of hash buckets for
4858 // different lengths of chains as an absolute number and percentage of the total
4859 // buckets, and the cumulative coverage of symbols for each set of buckets.
4860 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() {
4861   // Print histogram for the .hash section.
4862   if (this->HashTable) {
4863     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4864       this->reportUniqueWarning(std::move(E));
4865     else
4866       printHashHistogram(*this->HashTable);
4867   }
4868 
4869   // Print histogram for the .gnu.hash section.
4870   if (this->GnuHashTable) {
4871     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4872       this->reportUniqueWarning(std::move(E));
4873     else
4874       printGnuHashHistogram(*this->GnuHashTable);
4875   }
4876 }
4877 
4878 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
4879   OS << "GNUStyle::printCGProfile not implemented\n";
4880 }
4881 
4882 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
4883   OS << "GNUStyle::printBBAddrMaps not implemented\n";
4884 }
4885 
4886 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
4887   std::vector<uint64_t> Ret;
4888   const uint8_t *Cur = Data.begin();
4889   const uint8_t *End = Data.end();
4890   while (Cur != End) {
4891     unsigned Size;
4892     const char *Err;
4893     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
4894     if (Err)
4895       return createError(Err);
4896     Cur += Size;
4897   }
4898   return Ret;
4899 }
4900 
4901 template <class ELFT>
4902 static Expected<std::vector<uint64_t>>
4903 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
4904   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
4905   if (!ContentsOrErr)
4906     return ContentsOrErr.takeError();
4907 
4908   if (Expected<std::vector<uint64_t>> SymsOrErr =
4909           toULEB128Array(*ContentsOrErr))
4910     return *SymsOrErr;
4911   else
4912     return createError("unable to decode " + describe(Obj, Sec) + ": " +
4913                        toString(SymsOrErr.takeError()));
4914 }
4915 
4916 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
4917   if (!this->DotAddrsigSec)
4918     return;
4919 
4920   Expected<std::vector<uint64_t>> SymsOrErr =
4921       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
4922   if (!SymsOrErr) {
4923     this->reportUniqueWarning(SymsOrErr.takeError());
4924     return;
4925   }
4926 
4927   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
4928   OS << "\nAddress-significant symbols section '" << Name << "'"
4929      << " contains " << SymsOrErr->size() << " entries:\n";
4930   OS << "   Num: Name\n";
4931 
4932   Field Fields[2] = {0, 8};
4933   size_t SymIndex = 0;
4934   for (uint64_t Sym : *SymsOrErr) {
4935     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
4936     Fields[1].Str = this->getStaticSymbolName(Sym);
4937     for (const Field &Entry : Fields)
4938       printField(Entry);
4939     OS << "\n";
4940   }
4941 }
4942 
4943 template <typename ELFT>
4944 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
4945                                   ArrayRef<uint8_t> Data) {
4946   std::string str;
4947   raw_string_ostream OS(str);
4948   uint32_t PrData;
4949   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
4950     if (PrData & Flag) {
4951       PrData &= ~Flag;
4952       OS << Name;
4953       if (PrData)
4954         OS << ", ";
4955     }
4956   };
4957 
4958   switch (Type) {
4959   default:
4960     OS << format("<application-specific type 0x%x>", Type);
4961     return OS.str();
4962   case GNU_PROPERTY_STACK_SIZE: {
4963     OS << "stack size: ";
4964     if (DataSize == sizeof(typename ELFT::uint))
4965       OS << formatv("{0:x}",
4966                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
4967     else
4968       OS << format("<corrupt length: 0x%x>", DataSize);
4969     return OS.str();
4970   }
4971   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
4972     OS << "no copy on protected";
4973     if (DataSize)
4974       OS << format(" <corrupt length: 0x%x>", DataSize);
4975     return OS.str();
4976   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
4977   case GNU_PROPERTY_X86_FEATURE_1_AND:
4978     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
4979                                                         : "x86 feature: ");
4980     if (DataSize != 4) {
4981       OS << format("<corrupt length: 0x%x>", DataSize);
4982       return OS.str();
4983     }
4984     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
4985     if (PrData == 0) {
4986       OS << "<None>";
4987       return OS.str();
4988     }
4989     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
4990       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
4991       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
4992     } else {
4993       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
4994       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
4995     }
4996     if (PrData)
4997       OS << format("<unknown flags: 0x%x>", PrData);
4998     return OS.str();
4999   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5000   case GNU_PROPERTY_X86_FEATURE_2_USED:
5001     OS << "x86 feature "
5002        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5003     if (DataSize != 4) {
5004       OS << format("<corrupt length: 0x%x>", DataSize);
5005       return OS.str();
5006     }
5007     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5008     if (PrData == 0) {
5009       OS << "<None>";
5010       return OS.str();
5011     }
5012     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5013     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5014     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5015     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5016     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5017     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5018     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5019     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5020     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5021     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5022     if (PrData)
5023       OS << format("<unknown flags: 0x%x>", PrData);
5024     return OS.str();
5025   case GNU_PROPERTY_X86_ISA_1_NEEDED:
5026   case GNU_PROPERTY_X86_ISA_1_USED:
5027     OS << "x86 ISA "
5028        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5029     if (DataSize != 4) {
5030       OS << format("<corrupt length: 0x%x>", DataSize);
5031       return OS.str();
5032     }
5033     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5034     if (PrData == 0) {
5035       OS << "<None>";
5036       return OS.str();
5037     }
5038     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5039     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5040     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5041     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5042     if (PrData)
5043       OS << format("<unknown flags: 0x%x>", PrData);
5044     return OS.str();
5045   }
5046 }
5047 
5048 template <typename ELFT>
5049 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5050   using Elf_Word = typename ELFT::Word;
5051 
5052   SmallVector<std::string, 4> Properties;
5053   while (Arr.size() >= 8) {
5054     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5055     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5056     Arr = Arr.drop_front(8);
5057 
5058     // Take padding size into account if present.
5059     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5060     std::string str;
5061     raw_string_ostream OS(str);
5062     if (Arr.size() < PaddedSize) {
5063       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5064       Properties.push_back(OS.str());
5065       break;
5066     }
5067     Properties.push_back(
5068         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5069     Arr = Arr.drop_front(PaddedSize);
5070   }
5071 
5072   if (!Arr.empty())
5073     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5074 
5075   return Properties;
5076 }
5077 
5078 struct GNUAbiTag {
5079   std::string OSName;
5080   std::string ABI;
5081   bool IsValid;
5082 };
5083 
5084 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5085   typedef typename ELFT::Word Elf_Word;
5086 
5087   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5088                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5089 
5090   if (Words.size() < 4)
5091     return {"", "", /*IsValid=*/false};
5092 
5093   static const char *OSNames[] = {
5094       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5095   };
5096   StringRef OSName = "Unknown";
5097   if (Words[0] < std::size(OSNames))
5098     OSName = OSNames[Words[0]];
5099   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5100   std::string str;
5101   raw_string_ostream ABI(str);
5102   ABI << Major << "." << Minor << "." << Patch;
5103   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5104 }
5105 
5106 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5107   std::string str;
5108   raw_string_ostream OS(str);
5109   for (uint8_t B : Desc)
5110     OS << format_hex_no_prefix(B, 2);
5111   return OS.str();
5112 }
5113 
5114 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5115   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5116 }
5117 
5118 template <typename ELFT>
5119 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5120                          ArrayRef<uint8_t> Desc) {
5121   // Return true if we were able to pretty-print the note, false otherwise.
5122   switch (NoteType) {
5123   default:
5124     return false;
5125   case ELF::NT_GNU_ABI_TAG: {
5126     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5127     if (!AbiTag.IsValid)
5128       OS << "    <corrupt GNU_ABI_TAG>";
5129     else
5130       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5131     break;
5132   }
5133   case ELF::NT_GNU_BUILD_ID: {
5134     OS << "    Build ID: " << getGNUBuildId(Desc);
5135     break;
5136   }
5137   case ELF::NT_GNU_GOLD_VERSION:
5138     OS << "    Version: " << getDescAsStringRef(Desc);
5139     break;
5140   case ELF::NT_GNU_PROPERTY_TYPE_0:
5141     OS << "    Properties:";
5142     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5143       OS << "    " << Property << "\n";
5144     break;
5145   }
5146   OS << '\n';
5147   return true;
5148 }
5149 
5150 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5151 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5152                                                       ArrayRef<uint8_t> Desc) {
5153   AndroidNoteProperties Props;
5154   switch (NoteType) {
5155   case ELF::NT_ANDROID_TYPE_MEMTAG:
5156     if (Desc.empty()) {
5157       Props.emplace_back("Invalid .note.android.memtag", "");
5158       return Props;
5159     }
5160 
5161     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5162     case NT_MEMTAG_LEVEL_NONE:
5163       Props.emplace_back("Tagging Mode", "NONE");
5164       break;
5165     case NT_MEMTAG_LEVEL_ASYNC:
5166       Props.emplace_back("Tagging Mode", "ASYNC");
5167       break;
5168     case NT_MEMTAG_LEVEL_SYNC:
5169       Props.emplace_back("Tagging Mode", "SYNC");
5170       break;
5171     default:
5172       Props.emplace_back(
5173           "Tagging Mode",
5174           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5175               .str());
5176       break;
5177     }
5178     Props.emplace_back("Heap",
5179                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5180     Props.emplace_back("Stack",
5181                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5182     break;
5183   default:
5184     return Props;
5185   }
5186   return Props;
5187 }
5188 
5189 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5190                              ArrayRef<uint8_t> Desc) {
5191   // Return true if we were able to pretty-print the note, false otherwise.
5192   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5193   if (Props.empty())
5194     return false;
5195   for (const auto &KV : Props)
5196     OS << "    " << KV.first << ": " << KV.second << '\n';
5197   OS << '\n';
5198   return true;
5199 }
5200 
5201 template <typename ELFT>
5202 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5203                                     ArrayRef<uint8_t> Desc) {
5204   switch (NoteType) {
5205   default:
5206     return false;
5207   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5208     OS << "    Version: " << getDescAsStringRef(Desc);
5209     break;
5210   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5211     OS << "    Producer: " << getDescAsStringRef(Desc);
5212     break;
5213   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5214     OS << "    Producer version: " << getDescAsStringRef(Desc);
5215     break;
5216   }
5217   OS << '\n';
5218   return true;
5219 }
5220 
5221 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5222     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5223     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5224     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5225     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5226     {"LA48", NT_FREEBSD_FCTL_LA48},
5227     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5228 };
5229 
5230 struct FreeBSDNote {
5231   std::string Type;
5232   std::string Value;
5233 };
5234 
5235 template <typename ELFT>
5236 static std::optional<FreeBSDNote>
5237 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5238   if (IsCore)
5239     return std::nullopt; // No pretty-printing yet.
5240   switch (NoteType) {
5241   case ELF::NT_FREEBSD_ABI_TAG:
5242     if (Desc.size() != 4)
5243       return std::nullopt;
5244     return FreeBSDNote{
5245         "ABI tag",
5246         utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5247   case ELF::NT_FREEBSD_ARCH_TAG:
5248     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5249   case ELF::NT_FREEBSD_FEATURE_CTL: {
5250     if (Desc.size() != 4)
5251       return std::nullopt;
5252     unsigned Value =
5253         support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5254     std::string FlagsStr;
5255     raw_string_ostream OS(FlagsStr);
5256     printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5257     if (OS.str().empty())
5258       OS << "0x" << utohexstr(Value);
5259     else
5260       OS << "(0x" << utohexstr(Value) << ")";
5261     return FreeBSDNote{"Feature flags", OS.str()};
5262   }
5263   default:
5264     return std::nullopt;
5265   }
5266 }
5267 
5268 struct AMDNote {
5269   std::string Type;
5270   std::string Value;
5271 };
5272 
5273 template <typename ELFT>
5274 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5275   switch (NoteType) {
5276   default:
5277     return {"", ""};
5278   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5279     struct CodeObjectVersion {
5280       uint32_t MajorVersion;
5281       uint32_t MinorVersion;
5282     };
5283     if (Desc.size() != sizeof(CodeObjectVersion))
5284       return {"AMD HSA Code Object Version",
5285               "Invalid AMD HSA Code Object Version"};
5286     std::string VersionString;
5287     raw_string_ostream StrOS(VersionString);
5288     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5289     StrOS << "[Major: " << Version->MajorVersion
5290           << ", Minor: " << Version->MinorVersion << "]";
5291     return {"AMD HSA Code Object Version", VersionString};
5292   }
5293   case ELF::NT_AMD_HSA_HSAIL: {
5294     struct HSAILProperties {
5295       uint32_t HSAILMajorVersion;
5296       uint32_t HSAILMinorVersion;
5297       uint8_t Profile;
5298       uint8_t MachineModel;
5299       uint8_t DefaultFloatRound;
5300     };
5301     if (Desc.size() != sizeof(HSAILProperties))
5302       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5303     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5304     std::string HSAILPropetiesString;
5305     raw_string_ostream StrOS(HSAILPropetiesString);
5306     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5307           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5308           << ", Profile: " << uint32_t(Properties->Profile)
5309           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5310           << ", Default Float Round: "
5311           << uint32_t(Properties->DefaultFloatRound) << "]";
5312     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5313   }
5314   case ELF::NT_AMD_HSA_ISA_VERSION: {
5315     struct IsaVersion {
5316       uint16_t VendorNameSize;
5317       uint16_t ArchitectureNameSize;
5318       uint32_t Major;
5319       uint32_t Minor;
5320       uint32_t Stepping;
5321     };
5322     if (Desc.size() < sizeof(IsaVersion))
5323       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5324     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5325     if (Desc.size() < sizeof(IsaVersion) +
5326                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5327         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5328       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5329     std::string IsaString;
5330     raw_string_ostream StrOS(IsaString);
5331     StrOS << "[Vendor: "
5332           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5333           << ", Architecture: "
5334           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5335                        Isa->ArchitectureNameSize - 1)
5336           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5337           << ", Stepping: " << Isa->Stepping << "]";
5338     return {"AMD HSA ISA Version", IsaString};
5339   }
5340   case ELF::NT_AMD_HSA_METADATA: {
5341     if (Desc.size() == 0)
5342       return {"AMD HSA Metadata", ""};
5343     return {
5344         "AMD HSA Metadata",
5345         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5346   }
5347   case ELF::NT_AMD_HSA_ISA_NAME: {
5348     if (Desc.size() == 0)
5349       return {"AMD HSA ISA Name", ""};
5350     return {
5351         "AMD HSA ISA Name",
5352         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5353   }
5354   case ELF::NT_AMD_PAL_METADATA: {
5355     struct PALMetadata {
5356       uint32_t Key;
5357       uint32_t Value;
5358     };
5359     if (Desc.size() % sizeof(PALMetadata) != 0)
5360       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5361     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5362     std::string MetadataString;
5363     raw_string_ostream StrOS(MetadataString);
5364     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5365       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5366     }
5367     return {"AMD PAL Metadata", MetadataString};
5368   }
5369   }
5370 }
5371 
5372 struct AMDGPUNote {
5373   std::string Type;
5374   std::string Value;
5375 };
5376 
5377 template <typename ELFT>
5378 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5379   switch (NoteType) {
5380   default:
5381     return {"", ""};
5382   case ELF::NT_AMDGPU_METADATA: {
5383     StringRef MsgPackString =
5384         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5385     msgpack::Document MsgPackDoc;
5386     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5387       return {"", ""};
5388 
5389     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5390     std::string MetadataString;
5391     if (!Verifier.verify(MsgPackDoc.getRoot()))
5392       MetadataString = "Invalid AMDGPU Metadata\n";
5393 
5394     raw_string_ostream StrOS(MetadataString);
5395     if (MsgPackDoc.getRoot().isScalar()) {
5396       // TODO: passing a scalar root to toYAML() asserts:
5397       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5398       //    "plain scalar documents are not supported")
5399       // To avoid this crash we print the raw data instead.
5400       return {"", ""};
5401     }
5402     MsgPackDoc.toYAML(StrOS);
5403     return {"AMDGPU Metadata", StrOS.str()};
5404   }
5405   }
5406 }
5407 
5408 struct CoreFileMapping {
5409   uint64_t Start, End, Offset;
5410   StringRef Filename;
5411 };
5412 
5413 struct CoreNote {
5414   uint64_t PageSize;
5415   std::vector<CoreFileMapping> Mappings;
5416 };
5417 
5418 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5419   // Expected format of the NT_FILE note description:
5420   // 1. # of file mappings (call it N)
5421   // 2. Page size
5422   // 3. N (start, end, offset) triples
5423   // 4. N packed filenames (null delimited)
5424   // Each field is an Elf_Addr, except for filenames which are char* strings.
5425 
5426   CoreNote Ret;
5427   const int Bytes = Desc.getAddressSize();
5428 
5429   if (!Desc.isValidOffsetForAddress(2))
5430     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5431                        " is too short, expected at least 0x" +
5432                        Twine::utohexstr(Bytes * 2));
5433   if (Desc.getData().back() != 0)
5434     return createError("the note is not NUL terminated");
5435 
5436   uint64_t DescOffset = 0;
5437   uint64_t FileCount = Desc.getAddress(&DescOffset);
5438   Ret.PageSize = Desc.getAddress(&DescOffset);
5439 
5440   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5441     return createError("unable to read file mappings (found " +
5442                        Twine(FileCount) + "): the note of size 0x" +
5443                        Twine::utohexstr(Desc.size()) + " is too short");
5444 
5445   uint64_t FilenamesOffset = 0;
5446   DataExtractor Filenames(
5447       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5448       Desc.isLittleEndian(), Desc.getAddressSize());
5449 
5450   Ret.Mappings.resize(FileCount);
5451   size_t I = 0;
5452   for (CoreFileMapping &Mapping : Ret.Mappings) {
5453     ++I;
5454     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5455       return createError(
5456           "unable to read the file name for the mapping with index " +
5457           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5458           " is truncated");
5459     Mapping.Start = Desc.getAddress(&DescOffset);
5460     Mapping.End = Desc.getAddress(&DescOffset);
5461     Mapping.Offset = Desc.getAddress(&DescOffset);
5462     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5463   }
5464 
5465   return Ret;
5466 }
5467 
5468 template <typename ELFT>
5469 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5470   // Length of "0x<address>" string.
5471   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5472 
5473   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5474   OS << "    " << right_justify("Start", FieldWidth) << "  "
5475      << right_justify("End", FieldWidth) << "  "
5476      << right_justify("Page Offset", FieldWidth) << '\n';
5477   for (const CoreFileMapping &Mapping : Note.Mappings) {
5478     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5479        << format_hex(Mapping.End, FieldWidth) << "  "
5480        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5481        << Mapping.Filename << '\n';
5482   }
5483 }
5484 
5485 const NoteType GenericNoteTypes[] = {
5486     {ELF::NT_VERSION, "NT_VERSION (version)"},
5487     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5488     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5489     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5490 };
5491 
5492 const NoteType GNUNoteTypes[] = {
5493     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5494     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5495     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5496     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5497     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5498 };
5499 
5500 const NoteType FreeBSDCoreNoteTypes[] = {
5501     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5502     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5503     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5504     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5505     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5506     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5507     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5508     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5509     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5510      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5511     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5512 };
5513 
5514 const NoteType FreeBSDNoteTypes[] = {
5515     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5516     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5517     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5518     {ELF::NT_FREEBSD_FEATURE_CTL,
5519      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5520 };
5521 
5522 const NoteType NetBSDCoreNoteTypes[] = {
5523     {ELF::NT_NETBSDCORE_PROCINFO,
5524      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5525     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5526     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5527 };
5528 
5529 const NoteType OpenBSDCoreNoteTypes[] = {
5530     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5531     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5532     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5533     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5534     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5535 };
5536 
5537 const NoteType AMDNoteTypes[] = {
5538     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5539      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5540     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5541     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5542     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5543     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5544     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5545 };
5546 
5547 const NoteType AMDGPUNoteTypes[] = {
5548     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5549 };
5550 
5551 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5552     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5553      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5554     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5555      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5556     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5557      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5558 };
5559 
5560 const NoteType AndroidNoteTypes[] = {
5561     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5562     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5563     {ELF::NT_ANDROID_TYPE_MEMTAG,
5564      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5565 };
5566 
5567 const NoteType CoreNoteTypes[] = {
5568     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5569     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5570     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5571     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5572     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5573     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5574     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5575     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5576     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5577     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5578     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5579 
5580     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5581     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5582     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5583     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5584     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5585     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5586     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5587     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5588     {ELF::NT_PPC_TM_CFPR,
5589      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5590     {ELF::NT_PPC_TM_CVMX,
5591      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5592     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5593     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5594     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5595     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5596     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5597 
5598     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5599     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5600     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5601 
5602     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5603     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5604     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5605     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5606     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5607     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5608     {ELF::NT_S390_LAST_BREAK,
5609      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5610     {ELF::NT_S390_SYSTEM_CALL,
5611      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5612     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5613     {ELF::NT_S390_VXRS_LOW,
5614      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5615     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5616     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5617     {ELF::NT_S390_GS_BC,
5618      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5619 
5620     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5621     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5622     {ELF::NT_ARM_HW_BREAK,
5623      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5624     {ELF::NT_ARM_HW_WATCH,
5625      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5626 
5627     {ELF::NT_FILE, "NT_FILE (mapped files)"},
5628     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5629     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5630 };
5631 
5632 template <class ELFT>
5633 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5634   uint32_t Type = Note.getType();
5635   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5636     for (const NoteType &N : V)
5637       if (N.ID == Type)
5638         return N.Name;
5639     return "";
5640   };
5641 
5642   StringRef Name = Note.getName();
5643   if (Name == "GNU")
5644     return FindNote(GNUNoteTypes);
5645   if (Name == "FreeBSD") {
5646     if (ELFType == ELF::ET_CORE) {
5647       // FreeBSD also places the generic core notes in the FreeBSD namespace.
5648       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5649       if (!Result.empty())
5650         return Result;
5651       return FindNote(CoreNoteTypes);
5652     } else {
5653       return FindNote(FreeBSDNoteTypes);
5654     }
5655   }
5656   if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5657     StringRef Result = FindNote(NetBSDCoreNoteTypes);
5658     if (!Result.empty())
5659       return Result;
5660     return FindNote(CoreNoteTypes);
5661   }
5662   if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5663     // OpenBSD also places the generic core notes in the OpenBSD namespace.
5664     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5665     if (!Result.empty())
5666       return Result;
5667     return FindNote(CoreNoteTypes);
5668   }
5669   if (Name == "AMD")
5670     return FindNote(AMDNoteTypes);
5671   if (Name == "AMDGPU")
5672     return FindNote(AMDGPUNoteTypes);
5673   if (Name == "LLVMOMPOFFLOAD")
5674     return FindNote(LLVMOMPOFFLOADNoteTypes);
5675   if (Name == "Android")
5676     return FindNote(AndroidNoteTypes);
5677 
5678   if (ELFType == ELF::ET_CORE)
5679     return FindNote(CoreNoteTypes);
5680   return FindNote(GenericNoteTypes);
5681 }
5682 
5683 template <class ELFT>
5684 static void printNotesHelper(
5685     const ELFDumper<ELFT> &Dumper,
5686     llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5687                             typename ELFT::Addr)>
5688         StartNotesFn,
5689     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5690     llvm::function_ref<void()> FinishNotesFn) {
5691   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5692   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5693 
5694   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5695   if (!IsCoreFile && !Sections.empty()) {
5696     for (const typename ELFT::Shdr &S : Sections) {
5697       if (S.sh_type != SHT_NOTE)
5698         continue;
5699       StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5700                    S.sh_size);
5701       Error Err = Error::success();
5702       size_t I = 0;
5703       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5704         if (Error E = ProcessNoteFn(Note, IsCoreFile))
5705           Dumper.reportUniqueWarning(
5706               "unable to read note with index " + Twine(I) + " from the " +
5707               describe(Obj, S) + ": " + toString(std::move(E)));
5708         ++I;
5709       }
5710       if (Err)
5711         Dumper.reportUniqueWarning("unable to read notes from the " +
5712                                    describe(Obj, S) + ": " +
5713                                    toString(std::move(Err)));
5714       FinishNotesFn();
5715     }
5716     return;
5717   }
5718 
5719   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5720   if (!PhdrsOrErr) {
5721     Dumper.reportUniqueWarning(
5722         "unable to read program headers to locate the PT_NOTE segment: " +
5723         toString(PhdrsOrErr.takeError()));
5724     return;
5725   }
5726 
5727   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5728     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5729     if (P.p_type != PT_NOTE)
5730       continue;
5731     StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz);
5732     Error Err = Error::success();
5733     size_t Index = 0;
5734     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5735       if (Error E = ProcessNoteFn(Note, IsCoreFile))
5736         Dumper.reportUniqueWarning("unable to read note with index " +
5737                                    Twine(Index) +
5738                                    " from the PT_NOTE segment with index " +
5739                                    Twine(I) + ": " + toString(std::move(E)));
5740       ++Index;
5741     }
5742     if (Err)
5743       Dumper.reportUniqueWarning(
5744           "unable to read notes from the PT_NOTE segment with index " +
5745           Twine(I) + ": " + toString(std::move(Err)));
5746     FinishNotesFn();
5747   }
5748 }
5749 
5750 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5751   bool IsFirstHeader = true;
5752   auto PrintHeader = [&](std::optional<StringRef> SecName,
5753                          const typename ELFT::Off Offset,
5754                          const typename ELFT::Addr Size) {
5755     // Print a newline between notes sections to match GNU readelf.
5756     if (!IsFirstHeader) {
5757       OS << '\n';
5758     } else {
5759       IsFirstHeader = false;
5760     }
5761 
5762     OS << "Displaying notes found ";
5763 
5764     if (SecName)
5765       OS << "in: " << *SecName << "\n";
5766     else
5767       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5768          << format_hex(Size, 10) << ":\n";
5769 
5770     OS << "  Owner                Data size \tDescription\n";
5771   };
5772 
5773   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5774     StringRef Name = Note.getName();
5775     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5776     Elf_Word Type = Note.getType();
5777 
5778     // Print the note owner/type.
5779     OS << "  " << left_justify(Name, 20) << ' '
5780        << format_hex(Descriptor.size(), 10) << '\t';
5781 
5782     StringRef NoteType =
5783         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5784     if (!NoteType.empty())
5785       OS << NoteType << '\n';
5786     else
5787       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5788 
5789     // Print the description, or fallback to printing raw bytes for unknown
5790     // owners/if we fail to pretty-print the contents.
5791     if (Name == "GNU") {
5792       if (printGNUNote<ELFT>(OS, Type, Descriptor))
5793         return Error::success();
5794     } else if (Name == "FreeBSD") {
5795       if (std::optional<FreeBSDNote> N =
5796               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5797         OS << "    " << N->Type << ": " << N->Value << '\n';
5798         return Error::success();
5799       }
5800     } else if (Name == "AMD") {
5801       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5802       if (!N.Type.empty()) {
5803         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5804         return Error::success();
5805       }
5806     } else if (Name == "AMDGPU") {
5807       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5808       if (!N.Type.empty()) {
5809         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5810         return Error::success();
5811       }
5812     } else if (Name == "LLVMOMPOFFLOAD") {
5813       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
5814         return Error::success();
5815     } else if (Name == "CORE") {
5816       if (Type == ELF::NT_FILE) {
5817         DataExtractor DescExtractor(Descriptor,
5818                                     ELFT::TargetEndianness == support::little,
5819                                     sizeof(Elf_Addr));
5820         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
5821           printCoreNote<ELFT>(OS, *NoteOrErr);
5822           return Error::success();
5823         } else {
5824           return NoteOrErr.takeError();
5825         }
5826       }
5827     } else if (Name == "Android") {
5828       if (printAndroidNote(OS, Type, Descriptor))
5829         return Error::success();
5830     }
5831     if (!Descriptor.empty()) {
5832       OS << "   description data:";
5833       for (uint8_t B : Descriptor)
5834         OS << " " << format("%02x", B);
5835       OS << '\n';
5836     }
5837     return Error::success();
5838   };
5839 
5840   printNotesHelper(*this, PrintHeader, ProcessNote, []() {});
5841 }
5842 
5843 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
5844   OS << "printELFLinkerOptions not implemented!\n";
5845 }
5846 
5847 template <class ELFT>
5848 void ELFDumper<ELFT>::printDependentLibsHelper(
5849     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5850     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5851   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5852     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5853                               Twine(SecNdx) + " is broken: " + Msg);
5854   };
5855 
5856   unsigned I = -1;
5857   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5858     ++I;
5859     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5860       continue;
5861 
5862     OnSectionStart(Shdr);
5863 
5864     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5865     if (!ContentsOrErr) {
5866       Warn(I, toString(ContentsOrErr.takeError()));
5867       continue;
5868     }
5869 
5870     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5871     if (!Contents.empty() && Contents.back() != 0) {
5872       Warn(I, "the content is not null-terminated");
5873       continue;
5874     }
5875 
5876     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5877       StringRef Lib((const char *)I);
5878       OnLibEntry(Lib, I - Contents.begin());
5879       I += Lib.size() + 1;
5880     }
5881   }
5882 }
5883 
5884 template <class ELFT>
5885 void ELFDumper<ELFT>::forEachRelocationDo(
5886     const Elf_Shdr &Sec, bool RawRelr,
5887     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5888                             const Elf_Shdr &, const Elf_Shdr *)>
5889         RelRelaFn,
5890     llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5891   auto Warn = [&](Error &&E,
5892                   const Twine &Prefix = "unable to read relocations from") {
5893     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
5894                               toString(std::move(E)));
5895   };
5896 
5897   // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5898   // For them we should not treat the value of the sh_link field as an index of
5899   // a symbol table.
5900   const Elf_Shdr *SymTab;
5901   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5902     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5903     if (!SymTabOrErr) {
5904       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5905       return;
5906     }
5907     SymTab = *SymTabOrErr;
5908   }
5909 
5910   unsigned RelNdx = 0;
5911   const bool IsMips64EL = this->Obj.isMips64EL();
5912   switch (Sec.sh_type) {
5913   case ELF::SHT_REL:
5914     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5915       for (const Elf_Rel &R : *RangeOrErr)
5916         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5917     } else {
5918       Warn(RangeOrErr.takeError());
5919     }
5920     break;
5921   case ELF::SHT_RELA:
5922     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5923       for (const Elf_Rela &R : *RangeOrErr)
5924         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5925     } else {
5926       Warn(RangeOrErr.takeError());
5927     }
5928     break;
5929   case ELF::SHT_RELR:
5930   case ELF::SHT_ANDROID_RELR: {
5931     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5932     if (!RangeOrErr) {
5933       Warn(RangeOrErr.takeError());
5934       break;
5935     }
5936     if (RawRelr) {
5937       for (const Elf_Relr &R : *RangeOrErr)
5938         RelrFn(R);
5939       break;
5940     }
5941 
5942     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5943       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
5944                 /*SymTab=*/nullptr);
5945     break;
5946   }
5947   case ELF::SHT_ANDROID_REL:
5948   case ELF::SHT_ANDROID_RELA:
5949     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5950       for (const Elf_Rela &R : *RelasOrErr)
5951         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
5952     } else {
5953       Warn(RelasOrErr.takeError());
5954     }
5955     break;
5956   }
5957 }
5958 
5959 template <class ELFT>
5960 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5961   StringRef Name = "<?>";
5962   if (Expected<StringRef> SecNameOrErr =
5963           Obj.getSectionName(Sec, this->WarningHandler))
5964     Name = *SecNameOrErr;
5965   else
5966     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
5967                               ": " + toString(SecNameOrErr.takeError()));
5968   return Name;
5969 }
5970 
5971 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
5972   bool SectionStarted = false;
5973   struct NameOffset {
5974     StringRef Name;
5975     uint64_t Offset;
5976   };
5977   std::vector<NameOffset> SecEntries;
5978   NameOffset Current;
5979   auto PrintSection = [&]() {
5980     OS << "Dependent libraries section " << Current.Name << " at offset "
5981        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5982        << " entries:\n";
5983     for (NameOffset Entry : SecEntries)
5984       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
5985          << "\n";
5986     OS << "\n";
5987     SecEntries.clear();
5988   };
5989 
5990   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5991     if (SectionStarted)
5992       PrintSection();
5993     SectionStarted = true;
5994     Current.Offset = Shdr.sh_offset;
5995     Current.Name = this->getPrintableSectionName(Shdr);
5996   };
5997   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5998     SecEntries.push_back(NameOffset{Lib, Offset});
5999   };
6000 
6001   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6002   if (SectionStarted)
6003     PrintSection();
6004 }
6005 
6006 template <class ELFT>
6007 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6008     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6009   SmallVector<uint32_t> SymbolIndexes;
6010   if (!this->AddressToIndexMap) {
6011     // Populate the address to index map upon the first invocation of this
6012     // function.
6013     this->AddressToIndexMap.emplace();
6014     if (this->DotSymtabSec) {
6015       if (Expected<Elf_Sym_Range> SymsOrError =
6016               Obj.symbols(this->DotSymtabSec)) {
6017         uint32_t Index = (uint32_t)-1;
6018         for (const Elf_Sym &Sym : *SymsOrError) {
6019           ++Index;
6020 
6021           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6022             continue;
6023 
6024           Expected<uint64_t> SymAddrOrErr =
6025               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6026           if (!SymAddrOrErr) {
6027             std::string Name = this->getStaticSymbolName(Index);
6028             reportUniqueWarning("unable to get address of symbol '" + Name +
6029                                 "': " + toString(SymAddrOrErr.takeError()));
6030             return SymbolIndexes;
6031           }
6032 
6033           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6034         }
6035       } else {
6036         reportUniqueWarning("unable to read the symbol table: " +
6037                             toString(SymsOrError.takeError()));
6038       }
6039     }
6040   }
6041 
6042   auto Symbols = this->AddressToIndexMap->find(SymValue);
6043   if (Symbols == this->AddressToIndexMap->end())
6044     return SymbolIndexes;
6045 
6046   for (uint32_t Index : Symbols->second) {
6047     // Check if the symbol is in the right section. FunctionSec == None
6048     // means "any section".
6049     if (FunctionSec) {
6050       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6051       if (Expected<const Elf_Shdr *> SecOrErr =
6052               Obj.getSection(Sym, this->DotSymtabSec,
6053                              this->getShndxTable(this->DotSymtabSec))) {
6054         if (*FunctionSec != *SecOrErr)
6055           continue;
6056       } else {
6057         std::string Name = this->getStaticSymbolName(Index);
6058         // Note: it is impossible to trigger this error currently, it is
6059         // untested.
6060         reportUniqueWarning("unable to get section of symbol '" + Name +
6061                             "': " + toString(SecOrErr.takeError()));
6062         return SymbolIndexes;
6063       }
6064     }
6065 
6066     SymbolIndexes.push_back(Index);
6067   }
6068 
6069   return SymbolIndexes;
6070 }
6071 
6072 template <class ELFT>
6073 bool ELFDumper<ELFT>::printFunctionStackSize(
6074     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6075     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6076   SmallVector<uint32_t> FuncSymIndexes =
6077       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6078   if (FuncSymIndexes.empty())
6079     reportUniqueWarning(
6080         "could not identify function symbol for stack size entry in " +
6081         describe(StackSizeSec));
6082 
6083   // Extract the size. The expectation is that Offset is pointing to the right
6084   // place, i.e. past the function address.
6085   Error Err = Error::success();
6086   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6087   if (Err) {
6088     reportUniqueWarning("could not extract a valid stack size from " +
6089                         describe(StackSizeSec) + ": " +
6090                         toString(std::move(Err)));
6091     return false;
6092   }
6093 
6094   if (FuncSymIndexes.empty()) {
6095     printStackSizeEntry(StackSize, {"?"});
6096   } else {
6097     SmallVector<std::string> FuncSymNames;
6098     for (uint32_t Index : FuncSymIndexes)
6099       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6100     printStackSizeEntry(StackSize, FuncSymNames);
6101   }
6102 
6103   return true;
6104 }
6105 
6106 template <class ELFT>
6107 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6108                                              ArrayRef<std::string> FuncNames) {
6109   OS.PadToColumn(2);
6110   OS << format_decimal(Size, 11);
6111   OS.PadToColumn(18);
6112 
6113   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6114 }
6115 
6116 template <class ELFT>
6117 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6118                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6119                                      const Elf_Shdr *SymTab,
6120                                      const Elf_Shdr *FunctionSec,
6121                                      const Elf_Shdr &StackSizeSec,
6122                                      const RelocationResolver &Resolver,
6123                                      DataExtractor Data) {
6124   // This function ignores potentially erroneous input, unless it is directly
6125   // related to stack size reporting.
6126   const Elf_Sym *Sym = nullptr;
6127   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6128   if (!TargetOrErr)
6129     reportUniqueWarning("unable to get the target of relocation with index " +
6130                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6131                         toString(TargetOrErr.takeError()));
6132   else
6133     Sym = TargetOrErr->Sym;
6134 
6135   uint64_t RelocSymValue = 0;
6136   if (Sym) {
6137     Expected<const Elf_Shdr *> SectionOrErr =
6138         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6139     if (!SectionOrErr) {
6140       reportUniqueWarning(
6141           "cannot identify the section for relocation symbol '" +
6142           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6143     } else if (*SectionOrErr != FunctionSec) {
6144       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6145                           "' is not in the expected section");
6146       // Pretend that the symbol is in the correct section and report its
6147       // stack size anyway.
6148       FunctionSec = *SectionOrErr;
6149     }
6150 
6151     RelocSymValue = Sym->st_value;
6152   }
6153 
6154   uint64_t Offset = R.Offset;
6155   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6156     reportUniqueWarning("found invalid relocation offset (0x" +
6157                         Twine::utohexstr(Offset) + ") into " +
6158                         describe(StackSizeSec) +
6159                         " while trying to extract a stack size entry");
6160     return;
6161   }
6162 
6163   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6164                                Data.getAddress(&Offset), R.Addend.value_or(0));
6165   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6166                                &Offset);
6167 }
6168 
6169 template <class ELFT>
6170 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6171     std::function<void()> PrintHeader) {
6172   // This function ignores potentially erroneous input, unless it is directly
6173   // related to stack size reporting.
6174   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6175     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6176       continue;
6177     PrintHeader();
6178     ArrayRef<uint8_t> Contents =
6179         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6180     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6181     uint64_t Offset = 0;
6182     while (Offset < Contents.size()) {
6183       // The function address is followed by a ULEB representing the stack
6184       // size. Check for an extra byte before we try to process the entry.
6185       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6186         reportUniqueWarning(
6187             describe(Sec) +
6188             " ended while trying to extract a stack size entry");
6189         break;
6190       }
6191       uint64_t SymValue = Data.getAddress(&Offset);
6192       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6193                                   Data, &Offset))
6194         break;
6195     }
6196   }
6197 }
6198 
6199 template <class ELFT>
6200 void ELFDumper<ELFT>::getSectionAndRelocations(
6201     std::function<bool(const Elf_Shdr &)> IsMatch,
6202     llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> &SecToRelocMap) {
6203   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6204     if (IsMatch(Sec))
6205       if (SecToRelocMap.insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6206               .second)
6207         continue;
6208 
6209     if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6210       continue;
6211 
6212     Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6213     if (!RelSecOrErr) {
6214       reportUniqueWarning(describe(Sec) +
6215                           ": failed to get a relocated section: " +
6216                           toString(RelSecOrErr.takeError()));
6217       continue;
6218     }
6219     const Elf_Shdr *ContentsSec = *RelSecOrErr;
6220     if (IsMatch(*ContentsSec))
6221       SecToRelocMap[ContentsSec] = &Sec;
6222   }
6223 }
6224 
6225 template <class ELFT>
6226 void ELFDumper<ELFT>::printRelocatableStackSizes(
6227     std::function<void()> PrintHeader) {
6228   // Build a map between stack size sections and their corresponding relocation
6229   // sections.
6230   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6231   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6232     StringRef SectionName;
6233     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6234       SectionName = *NameOrErr;
6235     else
6236       consumeError(NameOrErr.takeError());
6237 
6238     return SectionName == ".stack_sizes";
6239   };
6240   getSectionAndRelocations(IsMatch, StackSizeRelocMap);
6241 
6242   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6243     PrintHeader();
6244     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6245     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6246 
6247     // Warn about stack size sections without a relocation section.
6248     if (!RelocSec) {
6249       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6250                                 ") does not have a corresponding "
6251                                 "relocation section"),
6252                     FileName);
6253       continue;
6254     }
6255 
6256     // A .stack_sizes section header's sh_link field is supposed to point
6257     // to the section that contains the functions whose stack sizes are
6258     // described in it.
6259     const Elf_Shdr *FunctionSec = unwrapOrError(
6260         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6261 
6262     SupportsRelocation IsSupportedFn;
6263     RelocationResolver Resolver;
6264     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6265     ArrayRef<uint8_t> Contents =
6266         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6267     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6268 
6269     forEachRelocationDo(
6270         *RelocSec, /*RawRelr=*/false,
6271         [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6272             const Elf_Shdr *SymTab) {
6273           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6274             reportUniqueWarning(
6275                 describe(*RelocSec) +
6276                 " contains an unsupported relocation with index " + Twine(Ndx) +
6277                 ": " + Obj.getRelocationTypeName(R.Type));
6278             return;
6279           }
6280 
6281           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6282                                *StackSizesELFSec, Resolver, Data);
6283         },
6284         [](const Elf_Relr &) {
6285           llvm_unreachable("can't get here, because we only support "
6286                            "SHT_REL/SHT_RELA sections");
6287         });
6288   }
6289 }
6290 
6291 template <class ELFT>
6292 void GNUELFDumper<ELFT>::printStackSizes() {
6293   bool HeaderHasBeenPrinted = false;
6294   auto PrintHeader = [&]() {
6295     if (HeaderHasBeenPrinted)
6296       return;
6297     OS << "\nStack Sizes:\n";
6298     OS.PadToColumn(9);
6299     OS << "Size";
6300     OS.PadToColumn(18);
6301     OS << "Functions\n";
6302     HeaderHasBeenPrinted = true;
6303   };
6304 
6305   // For non-relocatable objects, look directly for sections whose name starts
6306   // with .stack_sizes and process the contents.
6307   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6308     this->printRelocatableStackSizes(PrintHeader);
6309   else
6310     this->printNonRelocatableStackSizes(PrintHeader);
6311 }
6312 
6313 template <class ELFT>
6314 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6315   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6316   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6317     OS.PadToColumn(2);
6318     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6319     OS.PadToColumn(11 + Bias);
6320     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6321     OS.PadToColumn(22 + Bias);
6322     OS << format_hex_no_prefix(*E, 8 + Bias);
6323     OS.PadToColumn(31 + 2 * Bias);
6324     OS << Purpose << "\n";
6325   };
6326 
6327   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6328   OS << " Canonical gp value: "
6329      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6330 
6331   OS << " Reserved entries:\n";
6332   if (ELFT::Is64Bits)
6333     OS << "           Address     Access          Initial Purpose\n";
6334   else
6335     OS << "   Address     Access  Initial Purpose\n";
6336   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6337   if (Parser.getGotModulePointer())
6338     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6339 
6340   if (!Parser.getLocalEntries().empty()) {
6341     OS << "\n";
6342     OS << " Local entries:\n";
6343     if (ELFT::Is64Bits)
6344       OS << "           Address     Access          Initial\n";
6345     else
6346       OS << "   Address     Access  Initial\n";
6347     for (auto &E : Parser.getLocalEntries())
6348       PrintEntry(&E, "");
6349   }
6350 
6351   if (Parser.IsStatic)
6352     return;
6353 
6354   if (!Parser.getGlobalEntries().empty()) {
6355     OS << "\n";
6356     OS << " Global entries:\n";
6357     if (ELFT::Is64Bits)
6358       OS << "           Address     Access          Initial         Sym.Val."
6359          << " Type    Ndx Name\n";
6360     else
6361       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6362 
6363     DataRegion<Elf_Word> ShndxTable(
6364         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6365     for (auto &E : Parser.getGlobalEntries()) {
6366       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6367       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6368       std::string SymName = this->getFullSymbolName(
6369           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6370 
6371       OS.PadToColumn(2);
6372       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6373       OS.PadToColumn(11 + Bias);
6374       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6375       OS.PadToColumn(22 + Bias);
6376       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6377       OS.PadToColumn(31 + 2 * Bias);
6378       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6379       OS.PadToColumn(40 + 3 * Bias);
6380       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6381       OS.PadToColumn(48 + 3 * Bias);
6382       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6383                                 ShndxTable);
6384       OS.PadToColumn(52 + 3 * Bias);
6385       OS << SymName << "\n";
6386     }
6387   }
6388 
6389   if (!Parser.getOtherEntries().empty())
6390     OS << "\n Number of TLS and multi-GOT entries "
6391        << Parser.getOtherEntries().size() << "\n";
6392 }
6393 
6394 template <class ELFT>
6395 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6396   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6397   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6398     OS.PadToColumn(2);
6399     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6400     OS.PadToColumn(11 + Bias);
6401     OS << format_hex_no_prefix(*E, 8 + Bias);
6402     OS.PadToColumn(20 + 2 * Bias);
6403     OS << Purpose << "\n";
6404   };
6405 
6406   OS << "PLT GOT:\n\n";
6407 
6408   OS << " Reserved entries:\n";
6409   OS << "   Address  Initial Purpose\n";
6410   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6411   if (Parser.getPltModulePointer())
6412     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6413 
6414   if (!Parser.getPltEntries().empty()) {
6415     OS << "\n";
6416     OS << " Entries:\n";
6417     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6418     DataRegion<Elf_Word> ShndxTable(
6419         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6420     for (auto &E : Parser.getPltEntries()) {
6421       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6422       const Elf_Sym &FirstSym = *cantFail(
6423           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6424       std::string SymName = this->getFullSymbolName(
6425           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6426 
6427       OS.PadToColumn(2);
6428       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6429       OS.PadToColumn(11 + Bias);
6430       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6431       OS.PadToColumn(20 + 2 * Bias);
6432       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6433       OS.PadToColumn(29 + 3 * Bias);
6434       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6435       OS.PadToColumn(37 + 3 * Bias);
6436       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6437                                 ShndxTable);
6438       OS.PadToColumn(41 + 3 * Bias);
6439       OS << SymName << "\n";
6440     }
6441   }
6442 }
6443 
6444 template <class ELFT>
6445 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6446 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6447   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6448   if (Sec == nullptr)
6449     return nullptr;
6450 
6451   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6452   Expected<ArrayRef<uint8_t>> DataOrErr =
6453       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6454   if (!DataOrErr)
6455     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6456 
6457   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6458     return createError(ErrPrefix + "it has a wrong size (" +
6459         Twine(DataOrErr->size()) + ")");
6460   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6461 }
6462 
6463 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6464   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6465   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6466           getMipsAbiFlagsSection(*this))
6467     Flags = *SecOrErr;
6468   else
6469     this->reportUniqueWarning(SecOrErr.takeError());
6470   if (!Flags)
6471     return;
6472 
6473   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6474   OS << "ISA: MIPS" << int(Flags->isa_level);
6475   if (Flags->isa_rev > 1)
6476     OS << "r" << int(Flags->isa_rev);
6477   OS << "\n";
6478   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6479   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6480   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6481   OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6482      << "\n";
6483   OS << "ISA Extension: "
6484      << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6485   if (Flags->ases == 0)
6486     OS << "ASEs: None\n";
6487   else
6488     // FIXME: Print each flag on a separate line.
6489     OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6490        << "\n";
6491   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6492   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6493   OS << "\n";
6494 }
6495 
6496 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6497   const Elf_Ehdr &E = this->Obj.getHeader();
6498   {
6499     DictScope D(W, "ElfHeader");
6500     {
6501       DictScope D(W, "Ident");
6502       W.printBinary("Magic",
6503                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6504       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6505       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6506                   ArrayRef(ElfDataEncoding));
6507       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6508 
6509       auto OSABI = ArrayRef(ElfOSABI);
6510       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6511           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6512         switch (E.e_machine) {
6513         case ELF::EM_AMDGPU:
6514           OSABI = ArrayRef(AMDGPUElfOSABI);
6515           break;
6516         case ELF::EM_ARM:
6517           OSABI = ArrayRef(ARMElfOSABI);
6518           break;
6519         case ELF::EM_TI_C6000:
6520           OSABI = ArrayRef(C6000ElfOSABI);
6521           break;
6522         }
6523       }
6524       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6525       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6526       W.printBinary("Unused",
6527                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6528     }
6529 
6530     std::string TypeStr;
6531     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6532       TypeStr = Ent->Name.str();
6533     } else {
6534       if (E.e_type >= ET_LOPROC)
6535         TypeStr = "Processor Specific";
6536       else if (E.e_type >= ET_LOOS)
6537         TypeStr = "OS Specific";
6538       else
6539         TypeStr = "Unknown";
6540     }
6541     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6542 
6543     W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6544     W.printNumber("Version", E.e_version);
6545     W.printHex("Entry", E.e_entry);
6546     W.printHex("ProgramHeaderOffset", E.e_phoff);
6547     W.printHex("SectionHeaderOffset", E.e_shoff);
6548     if (E.e_machine == EM_MIPS)
6549       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6550                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6551                    unsigned(ELF::EF_MIPS_MACH));
6552     else if (E.e_machine == EM_AMDGPU) {
6553       switch (E.e_ident[ELF::EI_ABIVERSION]) {
6554       default:
6555         W.printHex("Flags", E.e_flags);
6556         break;
6557       case 0:
6558         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6559         [[fallthrough]];
6560       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6561         W.printFlags("Flags", E.e_flags,
6562                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6563                      unsigned(ELF::EF_AMDGPU_MACH));
6564         break;
6565       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6566       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6567         W.printFlags("Flags", E.e_flags,
6568                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6569                      unsigned(ELF::EF_AMDGPU_MACH),
6570                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6571                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6572         break;
6573       }
6574     } else if (E.e_machine == EM_RISCV)
6575       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6576     else if (E.e_machine == EM_AVR)
6577       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6578                    unsigned(ELF::EF_AVR_ARCH_MASK));
6579     else if (E.e_machine == EM_LOONGARCH)
6580       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6581                    unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6582                    unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6583     else if (E.e_machine == EM_XTENSA)
6584       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6585                    unsigned(ELF::EF_XTENSA_MACH));
6586     else
6587       W.printFlags("Flags", E.e_flags);
6588     W.printNumber("HeaderSize", E.e_ehsize);
6589     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6590     W.printNumber("ProgramHeaderCount", E.e_phnum);
6591     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6592     W.printString("SectionHeaderCount",
6593                   getSectionHeadersNumString(this->Obj, this->FileName));
6594     W.printString("StringTableSectionIndex",
6595                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
6596   }
6597 }
6598 
6599 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6600   DictScope Lists(W, "Groups");
6601   std::vector<GroupSection> V = this->getGroups();
6602   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6603   for (const GroupSection &G : V) {
6604     DictScope D(W, "Group");
6605     W.printNumber("Name", G.Name, G.ShName);
6606     W.printNumber("Index", G.Index);
6607     W.printNumber("Link", G.Link);
6608     W.printNumber("Info", G.Info);
6609     W.printHex("Type", getGroupType(G.Type), G.Type);
6610     W.startLine() << "Signature: " << G.Signature << "\n";
6611 
6612     ListScope L(W, "Section(s) in group");
6613     for (const GroupMember &GM : G.Members) {
6614       const GroupSection *MainGroup = Map[GM.Index];
6615       if (MainGroup != &G)
6616         this->reportUniqueWarning(
6617             "section with index " + Twine(GM.Index) +
6618             ", included in the group section with index " +
6619             Twine(MainGroup->Index) +
6620             ", was also found in the group section with index " +
6621             Twine(G.Index));
6622       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6623     }
6624   }
6625 
6626   if (V.empty())
6627     W.startLine() << "There are no group sections in the file.\n";
6628 }
6629 
6630 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6631   ListScope D(W, "Relocations");
6632 
6633   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6634     if (!isRelocationSec<ELFT>(Sec))
6635       continue;
6636 
6637     StringRef Name = this->getPrintableSectionName(Sec);
6638     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6639     W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6640     W.indent();
6641     this->printRelocationsHelper(Sec);
6642     W.unindent();
6643     W.startLine() << "}\n";
6644   }
6645 }
6646 
6647 template <class ELFT>
6648 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6649   W.startLine() << W.hex(R) << "\n";
6650 }
6651 
6652 template <class ELFT>
6653 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6654                                             const RelSymbol<ELFT> &RelSym) {
6655   StringRef SymbolName = RelSym.Name;
6656   SmallString<32> RelocName;
6657   this->Obj.getRelocationTypeName(R.Type, RelocName);
6658 
6659   if (opts::ExpandRelocs) {
6660     DictScope Group(W, "Relocation");
6661     W.printHex("Offset", R.Offset);
6662     W.printNumber("Type", RelocName, R.Type);
6663     W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6664     if (R.Addend)
6665       W.printHex("Addend", (uintX_t)*R.Addend);
6666   } else {
6667     raw_ostream &OS = W.startLine();
6668     OS << W.hex(R.Offset) << " " << RelocName << " "
6669        << (!SymbolName.empty() ? SymbolName : "-");
6670     if (R.Addend)
6671       OS << " " << W.hex((uintX_t)*R.Addend);
6672     OS << "\n";
6673   }
6674 }
6675 
6676 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
6677   ListScope SectionsD(W, "Sections");
6678 
6679   int SectionIndex = -1;
6680   std::vector<EnumEntry<unsigned>> FlagsList =
6681       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
6682                                this->Obj.getHeader().e_machine);
6683   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6684     DictScope SectionD(W, "Section");
6685     W.printNumber("Index", ++SectionIndex);
6686     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6687     W.printHex("Type",
6688                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6689                                              Sec.sh_type),
6690                Sec.sh_type);
6691     W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
6692     W.printHex("Address", Sec.sh_addr);
6693     W.printHex("Offset", Sec.sh_offset);
6694     W.printNumber("Size", Sec.sh_size);
6695     W.printNumber("Link", Sec.sh_link);
6696     W.printNumber("Info", Sec.sh_info);
6697     W.printNumber("AddressAlignment", Sec.sh_addralign);
6698     W.printNumber("EntrySize", Sec.sh_entsize);
6699 
6700     if (opts::SectionRelocations) {
6701       ListScope D(W, "Relocations");
6702       this->printRelocationsHelper(Sec);
6703     }
6704 
6705     if (opts::SectionSymbols) {
6706       ListScope D(W, "Symbols");
6707       if (this->DotSymtabSec) {
6708         StringRef StrTable = unwrapOrError(
6709             this->FileName,
6710             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
6711         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
6712 
6713         typename ELFT::SymRange Symbols = unwrapOrError(
6714             this->FileName, this->Obj.symbols(this->DotSymtabSec));
6715         for (const Elf_Sym &Sym : Symbols) {
6716           const Elf_Shdr *SymSec = unwrapOrError(
6717               this->FileName,
6718               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
6719           if (SymSec == &Sec)
6720             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
6721                         false);
6722         }
6723       }
6724     }
6725 
6726     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6727       ArrayRef<uint8_t> Data =
6728           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6729       W.printBinaryBlock(
6730           "SectionData",
6731           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6732     }
6733   }
6734 }
6735 
6736 template <class ELFT>
6737 void LLVMELFDumper<ELFT>::printSymbolSection(
6738     const Elf_Sym &Symbol, unsigned SymIndex,
6739     DataRegion<Elf_Word> ShndxTable) const {
6740   auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
6741     if (Symbol.isUndefined())
6742       return StringRef("Undefined");
6743     if (Symbol.isProcessorSpecific())
6744       return StringRef("Processor Specific");
6745     if (Symbol.isOSSpecific())
6746       return StringRef("Operating System Specific");
6747     if (Symbol.isAbsolute())
6748       return StringRef("Absolute");
6749     if (Symbol.isCommon())
6750       return StringRef("Common");
6751     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6752       return StringRef("Reserved");
6753     return std::nullopt;
6754   };
6755 
6756   if (std::optional<StringRef> Type = GetSectionSpecialType()) {
6757     W.printHex("Section", *Type, Symbol.st_shndx);
6758     return;
6759   }
6760 
6761   Expected<unsigned> SectionIndex =
6762       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
6763   if (!SectionIndex) {
6764     assert(Symbol.st_shndx == SHN_XINDEX &&
6765            "getSymbolSectionIndex should only fail due to an invalid "
6766            "SHT_SYMTAB_SHNDX table/reference");
6767     this->reportUniqueWarning(SectionIndex.takeError());
6768     W.printHex("Section", "Reserved", SHN_XINDEX);
6769     return;
6770   }
6771 
6772   Expected<StringRef> SectionName =
6773       this->getSymbolSectionName(Symbol, *SectionIndex);
6774   if (!SectionName) {
6775     // Don't report an invalid section name if the section headers are missing.
6776     // In such situations, all sections will be "invalid".
6777     if (!this->ObjF.sections().empty())
6778       this->reportUniqueWarning(SectionName.takeError());
6779     else
6780       consumeError(SectionName.takeError());
6781     W.printHex("Section", "<?>", *SectionIndex);
6782   } else {
6783     W.printHex("Section", *SectionName, *SectionIndex);
6784   }
6785 }
6786 
6787 template <class ELFT>
6788 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6789                                       DataRegion<Elf_Word> ShndxTable,
6790                                       std::optional<StringRef> StrTable,
6791                                       bool IsDynamic,
6792                                       bool /*NonVisibilityBitsUsed*/) const {
6793   std::string FullSymbolName = this->getFullSymbolName(
6794       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
6795   unsigned char SymbolType = Symbol.getType();
6796 
6797   DictScope D(W, "Symbol");
6798   W.printNumber("Name", FullSymbolName, Symbol.st_name);
6799   W.printHex("Value", Symbol.st_value);
6800   W.printNumber("Size", Symbol.st_size);
6801   W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
6802   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6803       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6804     W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
6805   else
6806     W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
6807   if (Symbol.st_other == 0)
6808     // Usually st_other flag is zero. Do not pollute the output
6809     // by flags enumeration in that case.
6810     W.printNumber("Other", 0);
6811   else {
6812     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6813                                                    std::end(ElfSymOtherFlags));
6814     if (this->Obj.getHeader().e_machine == EM_MIPS) {
6815       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6816       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6817       // cases separately.
6818       if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6819         SymOtherFlags.insert(SymOtherFlags.end(),
6820                              std::begin(ElfMips16SymOtherFlags),
6821                              std::end(ElfMips16SymOtherFlags));
6822       else
6823         SymOtherFlags.insert(SymOtherFlags.end(),
6824                              std::begin(ElfMipsSymOtherFlags),
6825                              std::end(ElfMipsSymOtherFlags));
6826     } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6827       SymOtherFlags.insert(SymOtherFlags.end(),
6828                            std::begin(ElfAArch64SymOtherFlags),
6829                            std::end(ElfAArch64SymOtherFlags));
6830     } else if (this->Obj.getHeader().e_machine == EM_RISCV) {
6831       SymOtherFlags.insert(SymOtherFlags.end(),
6832                            std::begin(ElfRISCVSymOtherFlags),
6833                            std::end(ElfRISCVSymOtherFlags));
6834     }
6835     W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
6836   }
6837   printSymbolSection(Symbol, SymIndex, ShndxTable);
6838 }
6839 
6840 template <class ELFT>
6841 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
6842                                        bool PrintDynamicSymbols) {
6843   if (PrintSymbols) {
6844     ListScope Group(W, "Symbols");
6845     this->printSymbolsHelper(false);
6846   }
6847   if (PrintDynamicSymbols) {
6848     ListScope Group(W, "DynamicSymbols");
6849     this->printSymbolsHelper(true);
6850   }
6851 }
6852 
6853 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
6854   Elf_Dyn_Range Table = this->dynamic_table();
6855   if (Table.empty())
6856     return;
6857 
6858   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6859 
6860   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6861   // The "Name/Value" column should be indented from the "Type" column by N
6862   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6863   // space (1) = -3.
6864   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6865                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6866 
6867   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6868   for (auto Entry : Table) {
6869     uintX_t Tag = Entry.getTag();
6870     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
6871     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6872                   << " "
6873                   << format(ValueFmt.c_str(),
6874                             this->Obj.getDynamicTagAsString(Tag).c_str())
6875                   << Value << "\n";
6876   }
6877   W.startLine() << "]\n";
6878 }
6879 
6880 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
6881   W.startLine() << "Dynamic Relocations {\n";
6882   W.indent();
6883   this->printDynamicRelocationsHelper();
6884   W.unindent();
6885   W.startLine() << "}\n";
6886 }
6887 
6888 template <class ELFT>
6889 void LLVMELFDumper<ELFT>::printProgramHeaders(
6890     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6891   if (PrintProgramHeaders)
6892     printProgramHeaders();
6893   if (PrintSectionMapping == cl::BOU_TRUE)
6894     printSectionMapping();
6895 }
6896 
6897 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
6898   ListScope L(W, "ProgramHeaders");
6899 
6900   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6901   if (!PhdrsOrErr) {
6902     this->reportUniqueWarning("unable to dump program headers: " +
6903                               toString(PhdrsOrErr.takeError()));
6904     return;
6905   }
6906 
6907   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6908     DictScope P(W, "ProgramHeader");
6909     StringRef Type =
6910         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6911 
6912     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6913     W.printHex("Offset", Phdr.p_offset);
6914     W.printHex("VirtualAddress", Phdr.p_vaddr);
6915     W.printHex("PhysicalAddress", Phdr.p_paddr);
6916     W.printNumber("FileSize", Phdr.p_filesz);
6917     W.printNumber("MemSize", Phdr.p_memsz);
6918     W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
6919     W.printNumber("Alignment", Phdr.p_align);
6920   }
6921 }
6922 
6923 template <class ELFT>
6924 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6925   ListScope SS(W, "VersionSymbols");
6926   if (!Sec)
6927     return;
6928 
6929   StringRef StrTable;
6930   ArrayRef<Elf_Sym> Syms;
6931   const Elf_Shdr *SymTabSec;
6932   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6933       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
6934   if (!VerTableOrErr) {
6935     this->reportUniqueWarning(VerTableOrErr.takeError());
6936     return;
6937   }
6938 
6939   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6940     return;
6941 
6942   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
6943   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6944     DictScope S(W, "Symbol");
6945     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6946     W.printString("Name",
6947                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
6948                                           /*IsDynamic=*/true));
6949   }
6950 }
6951 
6952 const EnumEntry<unsigned> SymVersionFlags[] = {
6953     {"Base", "BASE", VER_FLG_BASE},
6954     {"Weak", "WEAK", VER_FLG_WEAK},
6955     {"Info", "INFO", VER_FLG_INFO}};
6956 
6957 template <class ELFT>
6958 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6959   ListScope SD(W, "VersionDefinitions");
6960   if (!Sec)
6961     return;
6962 
6963   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
6964   if (!V) {
6965     this->reportUniqueWarning(V.takeError());
6966     return;
6967   }
6968 
6969   for (const VerDef &D : *V) {
6970     DictScope Def(W, "Definition");
6971     W.printNumber("Version", D.Version);
6972     W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
6973     W.printNumber("Index", D.Ndx);
6974     W.printNumber("Hash", D.Hash);
6975     W.printString("Name", D.Name.c_str());
6976     W.printList(
6977         "Predecessors", D.AuxV,
6978         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6979   }
6980 }
6981 
6982 template <class ELFT>
6983 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6984   ListScope SD(W, "VersionRequirements");
6985   if (!Sec)
6986     return;
6987 
6988   Expected<std::vector<VerNeed>> V =
6989       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
6990   if (!V) {
6991     this->reportUniqueWarning(V.takeError());
6992     return;
6993   }
6994 
6995   for (const VerNeed &VN : *V) {
6996     DictScope Entry(W, "Dependency");
6997     W.printNumber("Version", VN.Version);
6998     W.printNumber("Count", VN.Cnt);
6999     W.printString("FileName", VN.File.c_str());
7000 
7001     ListScope L(W, "Entries");
7002     for (const VernAux &Aux : VN.AuxV) {
7003       DictScope Entry(W, "Entry");
7004       W.printNumber("Hash", Aux.Hash);
7005       W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7006       W.printNumber("Index", Aux.Other);
7007       W.printString("Name", Aux.Name.c_str());
7008     }
7009   }
7010 }
7011 
7012 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() {
7013   W.startLine() << "Hash Histogram not implemented!\n";
7014 }
7015 
7016 // Returns true if rel/rela section exists, and populates SymbolIndices.
7017 // Otherwise returns false.
7018 template <class ELFT>
7019 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7020                              const ELFFile<ELFT> &Obj,
7021                              const LLVMELFDumper<ELFT> *Dumper,
7022                              SmallVector<uint32_t, 128> &SymbolIndices) {
7023   if (!CGRelSection) {
7024     Dumper->reportUniqueWarning(
7025         "relocation section for a call graph section doesn't exist");
7026     return false;
7027   }
7028 
7029   if (CGRelSection->sh_type == SHT_REL) {
7030     typename ELFT::RelRange CGProfileRel;
7031     Expected<typename ELFT::RelRange> CGProfileRelOrError =
7032         Obj.rels(*CGRelSection);
7033     if (!CGProfileRelOrError) {
7034       Dumper->reportUniqueWarning("unable to load relocations for "
7035                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7036                                   toString(CGProfileRelOrError.takeError()));
7037       return false;
7038     }
7039 
7040     CGProfileRel = *CGProfileRelOrError;
7041     for (const typename ELFT::Rel &Rel : CGProfileRel)
7042       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7043   } else {
7044     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7045     // the format to SHT_RELA
7046     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7047     typename ELFT::RelaRange CGProfileRela;
7048     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7049         Obj.relas(*CGRelSection);
7050     if (!CGProfileRelaOrError) {
7051       Dumper->reportUniqueWarning("unable to load relocations for "
7052                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7053                                   toString(CGProfileRelaOrError.takeError()));
7054       return false;
7055     }
7056 
7057     CGProfileRela = *CGProfileRelaOrError;
7058     for (const typename ELFT::Rela &Rela : CGProfileRela)
7059       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7060   }
7061 
7062   return true;
7063 }
7064 
7065 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7066   llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> SecToRelocMap;
7067 
7068   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7069     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7070   };
7071   this->getSectionAndRelocations(IsMatch, SecToRelocMap);
7072 
7073   for (const auto &CGMapEntry : SecToRelocMap) {
7074     const Elf_Shdr *CGSection = CGMapEntry.first;
7075     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7076 
7077     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7078         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7079     if (!CGProfileOrErr) {
7080       this->reportUniqueWarning(
7081           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7082           toString(CGProfileOrErr.takeError()));
7083       return;
7084     }
7085 
7086     SmallVector<uint32_t, 128> SymbolIndices;
7087     bool UseReloc =
7088         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7089     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7090       this->reportUniqueWarning(
7091           "number of from/to pairs does not match number of frequencies");
7092       UseReloc = false;
7093     }
7094 
7095     ListScope L(W, "CGProfile");
7096     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7097       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7098       DictScope D(W, "CGProfileEntry");
7099       if (UseReloc) {
7100         uint32_t From = SymbolIndices[I * 2];
7101         uint32_t To = SymbolIndices[I * 2 + 1];
7102         W.printNumber("From", this->getStaticSymbolName(From), From);
7103         W.printNumber("To", this->getStaticSymbolName(To), To);
7104       }
7105       W.printNumber("Weight", CGPE.cgp_weight);
7106     }
7107   }
7108 }
7109 
7110 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7111   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7112   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7113     if (Sec.sh_type != SHT_LLVM_BB_ADDR_MAP &&
7114         Sec.sh_type != SHT_LLVM_BB_ADDR_MAP_V0) {
7115       continue;
7116     }
7117     std::optional<const Elf_Shdr *> FunctionSec;
7118     if (IsRelocatable)
7119       FunctionSec =
7120           unwrapOrError(this->FileName, this->Obj.getSection(Sec.sh_link));
7121     ListScope L(W, "BBAddrMap");
7122     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7123         this->Obj.decodeBBAddrMap(Sec);
7124     if (!BBAddrMapOrErr) {
7125       this->reportUniqueWarning("unable to dump " + this->describe(Sec) + ": " +
7126                                 toString(BBAddrMapOrErr.takeError()));
7127       continue;
7128     }
7129     for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7130       DictScope D(W, "Function");
7131       W.printHex("At", AM.Addr);
7132       SmallVector<uint32_t> FuncSymIndex =
7133           this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7134       std::string FuncName = "<?>";
7135       if (FuncSymIndex.empty())
7136         this->reportUniqueWarning(
7137             "could not identify function symbol for address (0x" +
7138             Twine::utohexstr(AM.Addr) + ") in " + this->describe(Sec));
7139       else
7140         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7141       W.printString("Name", FuncName);
7142 
7143       ListScope L(W, "BB entries");
7144       for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7145         DictScope L(W);
7146         W.printNumber("ID", BBE.ID);
7147         W.printHex("Offset", BBE.Offset);
7148         W.printHex("Size", BBE.Size);
7149         W.printBoolean("HasReturn", BBE.HasReturn);
7150         W.printBoolean("HasTailCall", BBE.HasTailCall);
7151         W.printBoolean("IsEHPad", BBE.IsEHPad);
7152         W.printBoolean("CanFallThrough", BBE.CanFallThrough);
7153       }
7154     }
7155   }
7156 }
7157 
7158 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7159   ListScope L(W, "Addrsig");
7160   if (!this->DotAddrsigSec)
7161     return;
7162 
7163   Expected<std::vector<uint64_t>> SymsOrErr =
7164       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7165   if (!SymsOrErr) {
7166     this->reportUniqueWarning(SymsOrErr.takeError());
7167     return;
7168   }
7169 
7170   for (uint64_t Sym : *SymsOrErr)
7171     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7172 }
7173 
7174 template <typename ELFT>
7175 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7176                                   ScopedPrinter &W) {
7177   // Return true if we were able to pretty-print the note, false otherwise.
7178   switch (NoteType) {
7179   default:
7180     return false;
7181   case ELF::NT_GNU_ABI_TAG: {
7182     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7183     if (!AbiTag.IsValid) {
7184       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7185       return false;
7186     } else {
7187       W.printString("OS", AbiTag.OSName);
7188       W.printString("ABI", AbiTag.ABI);
7189     }
7190     break;
7191   }
7192   case ELF::NT_GNU_BUILD_ID: {
7193     W.printString("Build ID", getGNUBuildId(Desc));
7194     break;
7195   }
7196   case ELF::NT_GNU_GOLD_VERSION:
7197     W.printString("Version", getDescAsStringRef(Desc));
7198     break;
7199   case ELF::NT_GNU_PROPERTY_TYPE_0:
7200     ListScope D(W, "Property");
7201     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7202       W.printString(Property);
7203     break;
7204   }
7205   return true;
7206 }
7207 
7208 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7209                                       ScopedPrinter &W) {
7210   // Return true if we were able to pretty-print the note, false otherwise.
7211   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7212   if (Props.empty())
7213     return false;
7214   for (const auto &KV : Props)
7215     W.printString(KV.first, KV.second);
7216   return true;
7217 }
7218 
7219 template <typename ELFT>
7220 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7221                                              ArrayRef<uint8_t> Desc,
7222                                              ScopedPrinter &W) {
7223   switch (NoteType) {
7224   default:
7225     return false;
7226   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7227     W.printString("Version", getDescAsStringRef(Desc));
7228     break;
7229   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7230     W.printString("Producer", getDescAsStringRef(Desc));
7231     break;
7232   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7233     W.printString("Producer version", getDescAsStringRef(Desc));
7234     break;
7235   }
7236   return true;
7237 }
7238 
7239 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7240   W.printNumber("Page Size", Note.PageSize);
7241   for (const CoreFileMapping &Mapping : Note.Mappings) {
7242     ListScope D(W, "Mapping");
7243     W.printHex("Start", Mapping.Start);
7244     W.printHex("End", Mapping.End);
7245     W.printHex("Offset", Mapping.Offset);
7246     W.printString("Filename", Mapping.Filename);
7247   }
7248 }
7249 
7250 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7251   ListScope L(W, "Notes");
7252 
7253   std::unique_ptr<DictScope> NoteScope;
7254   auto StartNotes = [&](std::optional<StringRef> SecName,
7255                         const typename ELFT::Off Offset,
7256                         const typename ELFT::Addr Size) {
7257     NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7258     W.printString("Name", SecName ? *SecName : "<?>");
7259     W.printHex("Offset", Offset);
7260     W.printHex("Size", Size);
7261   };
7262 
7263   auto EndNotes = [&] { NoteScope.reset(); };
7264 
7265   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7266     DictScope D2(W, "Note");
7267     StringRef Name = Note.getName();
7268     ArrayRef<uint8_t> Descriptor = Note.getDesc();
7269     Elf_Word Type = Note.getType();
7270 
7271     // Print the note owner/type.
7272     W.printString("Owner", Name);
7273     W.printHex("Data size", Descriptor.size());
7274 
7275     StringRef NoteType =
7276         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7277     if (!NoteType.empty())
7278       W.printString("Type", NoteType);
7279     else
7280       W.printString("Type",
7281                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7282 
7283     // Print the description, or fallback to printing raw bytes for unknown
7284     // owners/if we fail to pretty-print the contents.
7285     if (Name == "GNU") {
7286       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7287         return Error::success();
7288     } else if (Name == "FreeBSD") {
7289       if (std::optional<FreeBSDNote> N =
7290               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7291         W.printString(N->Type, N->Value);
7292         return Error::success();
7293       }
7294     } else if (Name == "AMD") {
7295       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7296       if (!N.Type.empty()) {
7297         W.printString(N.Type, N.Value);
7298         return Error::success();
7299       }
7300     } else if (Name == "AMDGPU") {
7301       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7302       if (!N.Type.empty()) {
7303         W.printString(N.Type, N.Value);
7304         return Error::success();
7305       }
7306     } else if (Name == "LLVMOMPOFFLOAD") {
7307       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7308         return Error::success();
7309     } else if (Name == "CORE") {
7310       if (Type == ELF::NT_FILE) {
7311         DataExtractor DescExtractor(Descriptor,
7312                                     ELFT::TargetEndianness == support::little,
7313                                     sizeof(Elf_Addr));
7314         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7315           printCoreNoteLLVMStyle(*N, W);
7316           return Error::success();
7317         } else {
7318           return N.takeError();
7319         }
7320       }
7321     } else if (Name == "Android") {
7322       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7323         return Error::success();
7324     }
7325     if (!Descriptor.empty()) {
7326       W.printBinaryBlock("Description data", Descriptor);
7327     }
7328     return Error::success();
7329   };
7330 
7331   printNotesHelper(*this, StartNotes, ProcessNote, EndNotes);
7332 }
7333 
7334 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7335   ListScope L(W, "LinkerOptions");
7336 
7337   unsigned I = -1;
7338   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7339     ++I;
7340     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7341       continue;
7342 
7343     Expected<ArrayRef<uint8_t>> ContentsOrErr =
7344         this->Obj.getSectionContents(Shdr);
7345     if (!ContentsOrErr) {
7346       this->reportUniqueWarning("unable to read the content of the "
7347                                 "SHT_LLVM_LINKER_OPTIONS section: " +
7348                                 toString(ContentsOrErr.takeError()));
7349       continue;
7350     }
7351     if (ContentsOrErr->empty())
7352       continue;
7353 
7354     if (ContentsOrErr->back() != 0) {
7355       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7356                                 Twine(I) +
7357                                 " is broken: the "
7358                                 "content is not null-terminated");
7359       continue;
7360     }
7361 
7362     SmallVector<StringRef, 16> Strings;
7363     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7364     if (Strings.size() % 2 != 0) {
7365       this->reportUniqueWarning(
7366           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7367           " is broken: an incomplete "
7368           "key-value pair was found. The last possible key was: \"" +
7369           Strings.back() + "\"");
7370       continue;
7371     }
7372 
7373     for (size_t I = 0; I < Strings.size(); I += 2)
7374       W.printString(Strings[I], Strings[I + 1]);
7375   }
7376 }
7377 
7378 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7379   ListScope L(W, "DependentLibs");
7380   this->printDependentLibsHelper(
7381       [](const Elf_Shdr &) {},
7382       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7383 }
7384 
7385 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7386   ListScope L(W, "StackSizes");
7387   if (this->Obj.getHeader().e_type == ELF::ET_REL)
7388     this->printRelocatableStackSizes([]() {});
7389   else
7390     this->printNonRelocatableStackSizes([]() {});
7391 }
7392 
7393 template <class ELFT>
7394 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7395                                               ArrayRef<std::string> FuncNames) {
7396   DictScope D(W, "Entry");
7397   W.printList("Functions", FuncNames);
7398   W.printHex("Size", Size);
7399 }
7400 
7401 template <class ELFT>
7402 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7403   auto PrintEntry = [&](const Elf_Addr *E) {
7404     W.printHex("Address", Parser.getGotAddress(E));
7405     W.printNumber("Access", Parser.getGotOffset(E));
7406     W.printHex("Initial", *E);
7407   };
7408 
7409   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7410 
7411   W.printHex("Canonical gp value", Parser.getGp());
7412   {
7413     ListScope RS(W, "Reserved entries");
7414     {
7415       DictScope D(W, "Entry");
7416       PrintEntry(Parser.getGotLazyResolver());
7417       W.printString("Purpose", StringRef("Lazy resolver"));
7418     }
7419 
7420     if (Parser.getGotModulePointer()) {
7421       DictScope D(W, "Entry");
7422       PrintEntry(Parser.getGotModulePointer());
7423       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7424     }
7425   }
7426   {
7427     ListScope LS(W, "Local entries");
7428     for (auto &E : Parser.getLocalEntries()) {
7429       DictScope D(W, "Entry");
7430       PrintEntry(&E);
7431     }
7432   }
7433 
7434   if (Parser.IsStatic)
7435     return;
7436 
7437   {
7438     ListScope GS(W, "Global entries");
7439     for (auto &E : Parser.getGlobalEntries()) {
7440       DictScope D(W, "Entry");
7441 
7442       PrintEntry(&E);
7443 
7444       const Elf_Sym &Sym = *Parser.getGotSym(&E);
7445       W.printHex("Value", Sym.st_value);
7446       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7447 
7448       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7449       DataRegion<Elf_Word> ShndxTable(
7450           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7451       printSymbolSection(Sym, SymIndex, ShndxTable);
7452 
7453       std::string SymName = this->getFullSymbolName(
7454           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7455       W.printNumber("Name", SymName, Sym.st_name);
7456     }
7457   }
7458 
7459   W.printNumber("Number of TLS and multi-GOT entries",
7460                 uint64_t(Parser.getOtherEntries().size()));
7461 }
7462 
7463 template <class ELFT>
7464 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7465   auto PrintEntry = [&](const Elf_Addr *E) {
7466     W.printHex("Address", Parser.getPltAddress(E));
7467     W.printHex("Initial", *E);
7468   };
7469 
7470   DictScope GS(W, "PLT GOT");
7471 
7472   {
7473     ListScope RS(W, "Reserved entries");
7474     {
7475       DictScope D(W, "Entry");
7476       PrintEntry(Parser.getPltLazyResolver());
7477       W.printString("Purpose", StringRef("PLT lazy resolver"));
7478     }
7479 
7480     if (auto E = Parser.getPltModulePointer()) {
7481       DictScope D(W, "Entry");
7482       PrintEntry(E);
7483       W.printString("Purpose", StringRef("Module pointer"));
7484     }
7485   }
7486   {
7487     ListScope LS(W, "Entries");
7488     DataRegion<Elf_Word> ShndxTable(
7489         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7490     for (auto &E : Parser.getPltEntries()) {
7491       DictScope D(W, "Entry");
7492       PrintEntry(&E);
7493 
7494       const Elf_Sym &Sym = *Parser.getPltSym(&E);
7495       W.printHex("Value", Sym.st_value);
7496       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7497       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7498                          ShndxTable);
7499 
7500       const Elf_Sym *FirstSym = cantFail(
7501           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7502       std::string SymName = this->getFullSymbolName(
7503           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7504       W.printNumber("Name", SymName, Sym.st_name);
7505     }
7506   }
7507 }
7508 
7509 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7510   const Elf_Mips_ABIFlags<ELFT> *Flags;
7511   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7512           getMipsAbiFlagsSection(*this)) {
7513     Flags = *SecOrErr;
7514     if (!Flags) {
7515       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7516       return;
7517     }
7518   } else {
7519     this->reportUniqueWarning(SecOrErr.takeError());
7520     return;
7521   }
7522 
7523   raw_ostream &OS = W.getOStream();
7524   DictScope GS(W, "MIPS ABI Flags");
7525 
7526   W.printNumber("Version", Flags->version);
7527   W.startLine() << "ISA: ";
7528   if (Flags->isa_rev <= 1)
7529     OS << format("MIPS%u", Flags->isa_level);
7530   else
7531     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7532   OS << "\n";
7533   W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
7534   W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
7535   W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
7536   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7537   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7538   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7539   W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
7540   W.printHex("Flags 2", Flags->flags2);
7541 }
7542 
7543 template <class ELFT>
7544 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7545                                            ArrayRef<std::string> InputFilenames,
7546                                            const Archive *A) {
7547   FileScope = std::make_unique<DictScope>(this->W);
7548   DictScope D(this->W, "FileSummary");
7549   this->W.printString("File", FileStr);
7550   this->W.printString("Format", Obj.getFileFormatName());
7551   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7552   this->W.printString(
7553       "AddressSize",
7554       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7555   this->printLoadName();
7556 }
7557