xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp (revision 914752d0f7f874ab4fc8393aee28c22df87324f2)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
31 #include "llvm/BinaryFormat/ELF.h"
32 #include "llvm/BinaryFormat/MsgPackDocument.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/Archive.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/HexagonAttributeParser.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/SystemZ/zOSSupport.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <algorithm>
64 #include <array>
65 #include <cinttypes>
66 #include <cstddef>
67 #include <cstdint>
68 #include <cstdlib>
69 #include <iterator>
70 #include <memory>
71 #include <optional>
72 #include <string>
73 #include <system_error>
74 #include <vector>
75 
76 using namespace llvm;
77 using namespace llvm::object;
78 using namespace llvm::support;
79 using namespace ELF;
80 
81 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
82   case ns::enum:                                                               \
83     return #enum;
84 
85 #define ENUM_ENT(enum, altName)                                                \
86   { #enum, altName, ELF::enum }
87 
88 #define ENUM_ENT_1(enum)                                                       \
89   { #enum, #enum, ELF::enum }
90 
91 namespace {
92 
93 template <class ELFT> struct RelSymbol {
94   RelSymbol(const typename ELFT::Sym *S, StringRef N)
95       : Sym(S), Name(N.str()) {}
96   const typename ELFT::Sym *Sym;
97   std::string Name;
98 };
99 
100 /// Represents a contiguous uniform range in the file. We cannot just create a
101 /// range directly because when creating one of these from the .dynamic table
102 /// the size, entity size and virtual address are different entries in arbitrary
103 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
104 struct DynRegionInfo {
105   DynRegionInfo(const Binary &Owner, const ObjDumper &D)
106       : Obj(&Owner), Dumper(&D) {}
107   DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
108                 uint64_t S, uint64_t ES)
109       : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
110 
111   /// Address in current address space.
112   const uint8_t *Addr = nullptr;
113   /// Size in bytes of the region.
114   uint64_t Size = 0;
115   /// Size of each entity in the region.
116   uint64_t EntSize = 0;
117 
118   /// Owner object. Used for error reporting.
119   const Binary *Obj;
120   /// Dumper used for error reporting.
121   const ObjDumper *Dumper;
122   /// Error prefix. Used for error reporting to provide more information.
123   std::string Context;
124   /// Region size name. Used for error reporting.
125   StringRef SizePrintName = "size";
126   /// Entry size name. Used for error reporting. If this field is empty, errors
127   /// will not mention the entry size.
128   StringRef EntSizePrintName = "entry size";
129 
130   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
131     const Type *Start = reinterpret_cast<const Type *>(Addr);
132     if (!Start)
133       return {Start, Start};
134 
135     const uint64_t Offset =
136         Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
137     const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
138 
139     if (Size > ObjSize - Offset) {
140       Dumper->reportUniqueWarning(
141           "unable to read data at 0x" + Twine::utohexstr(Offset) +
142           " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
143           "): it goes past the end of the file of size 0x" +
144           Twine::utohexstr(ObjSize));
145       return {Start, Start};
146     }
147 
148     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
149       return {Start, Start + (Size / EntSize)};
150 
151     std::string Msg;
152     if (!Context.empty())
153       Msg += Context + " has ";
154 
155     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
156                .str();
157     if (!EntSizePrintName.empty())
158       Msg +=
159           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
160               .str();
161 
162     Dumper->reportUniqueWarning(Msg);
163     return {Start, Start};
164   }
165 };
166 
167 struct GroupMember {
168   StringRef Name;
169   uint64_t Index;
170 };
171 
172 struct GroupSection {
173   StringRef Name;
174   std::string Signature;
175   uint64_t ShName;
176   uint64_t Index;
177   uint32_t Link;
178   uint32_t Info;
179   uint32_t Type;
180   std::vector<GroupMember> Members;
181 };
182 
183 namespace {
184 
185 struct NoteType {
186   uint32_t ID;
187   StringRef Name;
188 };
189 
190 } // namespace
191 
192 template <class ELFT> class Relocation {
193 public:
194   Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
195       : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
196         Offset(R.r_offset), Info(R.r_info) {}
197 
198   Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
199       : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
200     Addend = R.r_addend;
201   }
202 
203   uint32_t Type;
204   uint32_t Symbol;
205   typename ELFT::uint Offset;
206   typename ELFT::uint Info;
207   std::optional<int64_t> Addend;
208 };
209 
210 template <class ELFT> class MipsGOTParser;
211 
212 template <typename ELFT> class ELFDumper : public ObjDumper {
213   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
214 
215 public:
216   ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
217 
218   void printUnwindInfo() override;
219   void printNeededLibraries() override;
220   void printHashTable() override;
221   void printGnuHashTable() override;
222   void printLoadName() override;
223   void printVersionInfo() override;
224   void printArchSpecificInfo() override;
225   void printStackMap() const override;
226   void printMemtag() override;
227   ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr);
228 
229   // Hash histogram shows statistics of how efficient the hash was for the
230   // dynamic symbol table. The table shows the number of hash buckets for
231   // different lengths of chains as an absolute number and percentage of the
232   // total buckets, and the cumulative coverage of symbols for each set of
233   // buckets.
234   void printHashHistograms() override;
235 
236   const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
237 
238   std::string describe(const Elf_Shdr &Sec) const;
239 
240   unsigned getHashTableEntSize() const {
241     // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
242     // sections. This violates the ELF specification.
243     if (Obj.getHeader().e_machine == ELF::EM_S390 ||
244         Obj.getHeader().e_machine == ELF::EM_ALPHA)
245       return 8;
246     return 4;
247   }
248 
249   std::vector<EnumEntry<unsigned>>
250   getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const;
251 
252   Elf_Dyn_Range dynamic_table() const {
253     // A valid .dynamic section contains an array of entries terminated
254     // with a DT_NULL entry. However, sometimes the section content may
255     // continue past the DT_NULL entry, so to dump the section correctly,
256     // we first find the end of the entries by iterating over them.
257     Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
258 
259     size_t Size = 0;
260     while (Size < Table.size())
261       if (Table[Size++].getTag() == DT_NULL)
262         break;
263 
264     return Table.slice(0, Size);
265   }
266 
267   Elf_Sym_Range dynamic_symbols() const {
268     if (!DynSymRegion)
269       return Elf_Sym_Range();
270     return DynSymRegion->template getAsArrayRef<Elf_Sym>();
271   }
272 
273   const Elf_Shdr *findSectionByName(StringRef Name) const;
274 
275   StringRef getDynamicStringTable() const { return DynamicStringTable; }
276 
277 protected:
278   virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
279   virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
280   virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
281 
282   void
283   printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
284                            function_ref<void(StringRef, uint64_t)> OnLibEntry);
285 
286   virtual void printRelRelaReloc(const Relocation<ELFT> &R,
287                                  const RelSymbol<ELFT> &RelSym) = 0;
288   virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
289                                        const DynRegionInfo &Reg) {}
290   void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
291                   const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
292   void printDynamicReloc(const Relocation<ELFT> &R);
293   void printDynamicRelocationsHelper();
294   void printRelocationsHelper(const Elf_Shdr &Sec);
295   void forEachRelocationDo(
296       const Elf_Shdr &Sec,
297       llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
298                               const Elf_Shdr &, const Elf_Shdr *)>
299           RelRelaFn);
300 
301   virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
302                                   bool NonVisibilityBitsUsed,
303                                   bool ExtraSymInfo) const {};
304   virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
305                            DataRegion<Elf_Word> ShndxTable,
306                            std::optional<StringRef> StrTable, bool IsDynamic,
307                            bool NonVisibilityBitsUsed,
308                            bool ExtraSymInfo) const = 0;
309 
310   virtual void printMipsABIFlags() = 0;
311   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
312   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
313 
314   virtual void printMemtag(
315       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
316       const ArrayRef<uint8_t> AndroidNoteDesc,
317       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0;
318 
319   virtual void printHashHistogram(const Elf_Hash &HashTable) const;
320   virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const;
321   virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain,
322                                        size_t TotalSyms, ArrayRef<size_t> Count,
323                                        bool IsGnu) const = 0;
324 
325   Expected<ArrayRef<Elf_Versym>>
326   getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
327                   StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
328   StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
329 
330   std::vector<GroupSection> getGroups();
331 
332   // Returns the function symbol index for the given address. Matches the
333   // symbol's section with FunctionSec when specified.
334   // Returns std::nullopt if no function symbol can be found for the address or
335   // in case it is not defined in the specified section.
336   SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
337       uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
338   bool printFunctionStackSize(uint64_t SymValue,
339                               std::optional<const Elf_Shdr *> FunctionSec,
340                               const Elf_Shdr &StackSizeSec, DataExtractor Data,
341                               uint64_t *Offset);
342   void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
343                       unsigned Ndx, const Elf_Shdr *SymTab,
344                       const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
345                       const RelocationResolver &Resolver, DataExtractor Data);
346   virtual void printStackSizeEntry(uint64_t Size,
347                                    ArrayRef<std::string> FuncNames) = 0;
348 
349   void printRelocatableStackSizes(std::function<void()> PrintHeader);
350   void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
351 
352   const object::ELFObjectFile<ELFT> &ObjF;
353   const ELFFile<ELFT> &Obj;
354   StringRef FileName;
355 
356   Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
357                                     uint64_t EntSize) {
358     if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
359       return createError("offset (0x" + Twine::utohexstr(Offset) +
360                          ") + size (0x" + Twine::utohexstr(Size) +
361                          ") is greater than the file size (0x" +
362                          Twine::utohexstr(Obj.getBufSize()) + ")");
363     return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
364   }
365 
366   void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
367                        llvm::endianness);
368   void printMipsReginfo();
369   void printMipsOptions();
370 
371   std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
372   void loadDynamicTable();
373   void parseDynamicTable();
374 
375   Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
376                                        bool &IsDefault) const;
377   Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
378 
379   DynRegionInfo DynRelRegion;
380   DynRegionInfo DynRelaRegion;
381   DynRegionInfo DynCrelRegion;
382   DynRegionInfo DynRelrRegion;
383   DynRegionInfo DynPLTRelRegion;
384   std::optional<DynRegionInfo> DynSymRegion;
385   DynRegionInfo DynSymTabShndxRegion;
386   DynRegionInfo DynamicTable;
387   StringRef DynamicStringTable;
388   const Elf_Hash *HashTable = nullptr;
389   const Elf_GnuHash *GnuHashTable = nullptr;
390   const Elf_Shdr *DotSymtabSec = nullptr;
391   const Elf_Shdr *DotDynsymSec = nullptr;
392   const Elf_Shdr *DotAddrsigSec = nullptr;
393   DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
394   std::optional<uint64_t> SONameOffset;
395   std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
396 
397   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
398   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
399   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
400 
401   std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
402                                 DataRegion<Elf_Word> ShndxTable,
403                                 std::optional<StringRef> StrTable,
404                                 bool IsDynamic) const;
405   Expected<unsigned>
406   getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
407                         DataRegion<Elf_Word> ShndxTable) const;
408   Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
409                                            unsigned SectionIndex) const;
410   std::string getStaticSymbolName(uint32_t Index) const;
411   StringRef getDynamicString(uint64_t Value) const;
412 
413   std::pair<Elf_Sym_Range, std::optional<StringRef>> getSymtabAndStrtab() const;
414   void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const;
415   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
416 
417   Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
418                                                 const Elf_Shdr *SymTab) const;
419 
420   ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
421 
422 private:
423   mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
424 };
425 
426 template <class ELFT>
427 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
428   return ::describe(Obj, Sec);
429 }
430 
431 namespace {
432 
433 template <class ELFT> struct SymtabLink {
434   typename ELFT::SymRange Symbols;
435   StringRef StringTable;
436   const typename ELFT::Shdr *SymTab;
437 };
438 
439 // Returns the linked symbol table, symbols and associated string table for a
440 // given section.
441 template <class ELFT>
442 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
443                                            const typename ELFT::Shdr &Sec,
444                                            unsigned ExpectedType) {
445   Expected<const typename ELFT::Shdr *> SymtabOrErr =
446       Obj.getSection(Sec.sh_link);
447   if (!SymtabOrErr)
448     return createError("invalid section linked to " + describe(Obj, Sec) +
449                        ": " + toString(SymtabOrErr.takeError()));
450 
451   if ((*SymtabOrErr)->sh_type != ExpectedType)
452     return createError(
453         "invalid section linked to " + describe(Obj, Sec) + ": expected " +
454         object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
455         ", but got " +
456         object::getELFSectionTypeName(Obj.getHeader().e_machine,
457                                       (*SymtabOrErr)->sh_type));
458 
459   Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
460   if (!StrTabOrErr)
461     return createError(
462         "can't get a string table for the symbol table linked to " +
463         describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
464 
465   Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
466   if (!SymsOrErr)
467     return createError("unable to read symbols from the " + describe(Obj, Sec) +
468                        ": " + toString(SymsOrErr.takeError()));
469 
470   return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
471 }
472 
473 } // namespace
474 
475 template <class ELFT>
476 Expected<ArrayRef<typename ELFT::Versym>>
477 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
478                                  StringRef *StrTab,
479                                  const Elf_Shdr **SymTabSec) const {
480   assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
481   if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
482           sizeof(uint16_t) !=
483       0)
484     return createError("the " + describe(Sec) + " is misaligned");
485 
486   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
487       Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
488   if (!VersionsOrErr)
489     return createError("cannot read content of " + describe(Sec) + ": " +
490                        toString(VersionsOrErr.takeError()));
491 
492   Expected<SymtabLink<ELFT>> SymTabOrErr =
493       getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
494   if (!SymTabOrErr) {
495     reportUniqueWarning(SymTabOrErr.takeError());
496     return *VersionsOrErr;
497   }
498 
499   if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
500     reportUniqueWarning(describe(Sec) + ": the number of entries (" +
501                         Twine(VersionsOrErr->size()) +
502                         ") does not match the number of symbols (" +
503                         Twine(SymTabOrErr->Symbols.size()) +
504                         ") in the symbol table with index " +
505                         Twine(Sec.sh_link));
506 
507   if (SymTab) {
508     *SymTab = SymTabOrErr->Symbols;
509     *StrTab = SymTabOrErr->StringTable;
510     *SymTabSec = SymTabOrErr->SymTab;
511   }
512   return *VersionsOrErr;
513 }
514 
515 template <class ELFT>
516 std::pair<typename ELFDumper<ELFT>::Elf_Sym_Range, std::optional<StringRef>>
517 ELFDumper<ELFT>::getSymtabAndStrtab() const {
518   assert(DotSymtabSec);
519   Elf_Sym_Range Syms(nullptr, nullptr);
520   std::optional<StringRef> StrTable;
521   if (Expected<StringRef> StrTableOrErr =
522           Obj.getStringTableForSymtab(*DotSymtabSec))
523     StrTable = *StrTableOrErr;
524   else
525     reportUniqueWarning(
526         "unable to get the string table for the SHT_SYMTAB section: " +
527         toString(StrTableOrErr.takeError()));
528 
529   if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
530     Syms = *SymsOrErr;
531   else
532     reportUniqueWarning("unable to read symbols from the SHT_SYMTAB section: " +
533                         toString(SymsOrErr.takeError()));
534   return {Syms, StrTable};
535 }
536 
537 template <class ELFT>
538 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic,
539                                          bool ExtraSymInfo) const {
540   std::optional<StringRef> StrTable;
541   size_t Entries = 0;
542   Elf_Sym_Range Syms(nullptr, nullptr);
543   const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
544 
545   if (IsDynamic) {
546     StrTable = DynamicStringTable;
547     Syms = dynamic_symbols();
548     Entries = Syms.size();
549   } else if (DotSymtabSec) {
550     std::tie(Syms, StrTable) = getSymtabAndStrtab();
551     Entries = DotSymtabSec->getEntityCount();
552   }
553   if (Syms.empty())
554     return;
555 
556   // The st_other field has 2 logical parts. The first two bits hold the symbol
557   // visibility (STV_*) and the remainder hold other platform-specific values.
558   bool NonVisibilityBitsUsed =
559       llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
560 
561   DataRegion<Elf_Word> ShndxTable =
562       IsDynamic ? DataRegion<Elf_Word>(
563                       (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
564                       this->getElfObject().getELFFile().end())
565                 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
566 
567   printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo);
568   for (const Elf_Sym &Sym : Syms)
569     printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
570                 NonVisibilityBitsUsed, ExtraSymInfo);
571 }
572 
573 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
574   formatted_raw_ostream &OS;
575 
576 public:
577   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
578 
579   GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
580       : ELFDumper<ELFT>(ObjF, Writer),
581         OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
582     assert(&this->W.getOStream() == &llvm::fouts());
583   }
584 
585   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
586                         ArrayRef<std::string> InputFilenames,
587                         const Archive *A) override;
588   void printFileHeaders() override;
589   void printGroupSections() override;
590   void printRelocations() override;
591   void printSectionHeaders() override;
592   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
593                     bool ExtraSymInfo) override;
594   void printHashSymbols() override;
595   void printSectionDetails() override;
596   void printDependentLibs() override;
597   void printDynamicTable() override;
598   void printDynamicRelocations() override;
599   void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
600                           bool NonVisibilityBitsUsed,
601                           bool ExtraSymInfo) const override;
602   void printProgramHeaders(bool PrintProgramHeaders,
603                            cl::boolOrDefault PrintSectionMapping) override;
604   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
605   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
606   void printVersionDependencySection(const Elf_Shdr *Sec) override;
607   void printCGProfile() override;
608   void printBBAddrMaps(bool PrettyPGOAnalysis) override;
609   void printAddrsig() override;
610   void printNotes() override;
611   void printELFLinkerOptions() override;
612   void printStackSizes() override;
613   void printMemtag(
614       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
615       const ArrayRef<uint8_t> AndroidNoteDesc,
616       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
617   void printHashHistogramStats(size_t NBucket, size_t MaxChain,
618                                size_t TotalSyms, ArrayRef<size_t> Count,
619                                bool IsGnu) const override;
620 
621 private:
622   void printHashTableSymbols(const Elf_Hash &HashTable);
623   void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
624 
625   struct Field {
626     std::string Str;
627     unsigned Column;
628 
629     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
630     Field(unsigned Col) : Column(Col) {}
631   };
632 
633   template <typename T, typename TEnum>
634   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
635                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
636                          TEnum EnumMask3 = {}) const {
637     std::string Str;
638     for (const EnumEntry<TEnum> &Flag : EnumValues) {
639       if (Flag.Value == 0)
640         continue;
641 
642       TEnum EnumMask{};
643       if (Flag.Value & EnumMask1)
644         EnumMask = EnumMask1;
645       else if (Flag.Value & EnumMask2)
646         EnumMask = EnumMask2;
647       else if (Flag.Value & EnumMask3)
648         EnumMask = EnumMask3;
649       bool IsEnum = (Flag.Value & EnumMask) != 0;
650       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
651           (IsEnum && (Value & EnumMask) == Flag.Value)) {
652         if (!Str.empty())
653           Str += ", ";
654         Str += Flag.AltName;
655       }
656     }
657     return Str;
658   }
659 
660   formatted_raw_ostream &printField(struct Field F) const {
661     if (F.Column != 0)
662       OS.PadToColumn(F.Column);
663     OS << F.Str;
664     OS.flush();
665     return OS;
666   }
667   void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
668                          DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
669                          uint32_t Bucket);
670   void printRelr(const Elf_Shdr &Sec);
671   void printRelRelaReloc(const Relocation<ELFT> &R,
672                          const RelSymbol<ELFT> &RelSym) override;
673   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
674                    DataRegion<Elf_Word> ShndxTable,
675                    std::optional<StringRef> StrTable, bool IsDynamic,
676                    bool NonVisibilityBitsUsed,
677                    bool ExtraSymInfo) const override;
678   void printDynamicRelocHeader(unsigned Type, StringRef Name,
679                                const DynRegionInfo &Reg) override;
680 
681   std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
682                                   DataRegion<Elf_Word> ShndxTable,
683                                   bool ExtraSymInfo = false) const;
684   void printProgramHeaders() override;
685   void printSectionMapping() override;
686   void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
687                                     const Twine &Label, unsigned EntriesNum);
688 
689   void printStackSizeEntry(uint64_t Size,
690                            ArrayRef<std::string> FuncNames) override;
691 
692   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
693   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
694   void printMipsABIFlags() override;
695 };
696 
697 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
698 public:
699   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
700 
701   LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
702       : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
703 
704   void printFileHeaders() override;
705   void printGroupSections() override;
706   void printRelocations() override;
707   void printSectionHeaders() override;
708   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
709                     bool ExtraSymInfo) override;
710   void printDependentLibs() override;
711   void printDynamicTable() override;
712   void printDynamicRelocations() override;
713   void printProgramHeaders(bool PrintProgramHeaders,
714                            cl::boolOrDefault PrintSectionMapping) override;
715   void printVersionSymbolSection(const Elf_Shdr *Sec) override;
716   void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
717   void printVersionDependencySection(const Elf_Shdr *Sec) override;
718   void printCGProfile() override;
719   void printBBAddrMaps(bool PrettyPGOAnalysis) override;
720   void printAddrsig() override;
721   void printNotes() override;
722   void printELFLinkerOptions() override;
723   void printStackSizes() override;
724   void printMemtag(
725       const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
726       const ArrayRef<uint8_t> AndroidNoteDesc,
727       const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
728   void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
729                           DataRegion<Elf_Word> ShndxTable) const;
730   void printHashHistogramStats(size_t NBucket, size_t MaxChain,
731                                size_t TotalSyms, ArrayRef<size_t> Count,
732                                bool IsGnu) const override;
733 
734 private:
735   void printRelRelaReloc(const Relocation<ELFT> &R,
736                          const RelSymbol<ELFT> &RelSym) override;
737 
738   void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
739                    DataRegion<Elf_Word> ShndxTable,
740                    std::optional<StringRef> StrTable, bool IsDynamic,
741                    bool /*NonVisibilityBitsUsed*/,
742                    bool /*ExtraSymInfo*/) const override;
743   void printProgramHeaders() override;
744   void printSectionMapping() override {}
745   void printStackSizeEntry(uint64_t Size,
746                            ArrayRef<std::string> FuncNames) override;
747 
748   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
749   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
750   void printMipsABIFlags() override;
751   virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const;
752 
753 protected:
754   virtual std::string getGroupSectionHeaderName() const;
755   void printSymbolOtherField(const Elf_Sym &Symbol) const;
756   virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R,
757                                          StringRef SymbolName,
758                                          StringRef RelocName);
759   virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
760                                         StringRef SymbolName,
761                                         StringRef RelocName);
762   virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
763                                           const unsigned SecNdx);
764   virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const;
765   virtual void printEmptyGroupMessage() const;
766 
767   ScopedPrinter &W;
768 };
769 
770 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
771 // it uses a JSONScopedPrinter.
772 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
773 public:
774   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
775 
776   JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
777       : LLVMELFDumper<ELFT>(ObjF, Writer) {}
778 
779   std::string getGroupSectionHeaderName() const override;
780 
781   void printFileSummary(StringRef FileStr, ObjectFile &Obj,
782                         ArrayRef<std::string> InputFilenames,
783                         const Archive *A) override;
784   virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override;
785 
786   void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
787                                 StringRef SymbolName,
788                                 StringRef RelocName) override;
789 
790   void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
791                                   const unsigned SecNdx) override;
792 
793   void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override;
794 
795   void printEmptyGroupMessage() const override;
796 
797   void printDynamicTable() override;
798 
799 private:
800   void printAuxillaryDynamicTableEntryInfo(const Elf_Dyn &Entry);
801 
802   std::unique_ptr<DictScope> FileScope;
803 };
804 
805 } // end anonymous namespace
806 
807 namespace llvm {
808 
809 template <class ELFT>
810 static std::unique_ptr<ObjDumper>
811 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
812   if (opts::Output == opts::GNU)
813     return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
814   else if (opts::Output == opts::JSON)
815     return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
816   return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
817 }
818 
819 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
820                                            ScopedPrinter &Writer) {
821   // Little-endian 32-bit
822   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
823     return createELFDumper(*ELFObj, Writer);
824 
825   // Big-endian 32-bit
826   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
827     return createELFDumper(*ELFObj, Writer);
828 
829   // Little-endian 64-bit
830   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
831     return createELFDumper(*ELFObj, Writer);
832 
833   // Big-endian 64-bit
834   return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
835 }
836 
837 } // end namespace llvm
838 
839 template <class ELFT>
840 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
841 ELFDumper<ELFT>::getVersionMap() const {
842   // If the VersionMap has already been loaded or if there is no dynamic symtab
843   // or version table, there is nothing to do.
844   if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
845     return &VersionMap;
846 
847   Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
848       Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
849   if (MapOrErr)
850     VersionMap = *MapOrErr;
851   else
852     return MapOrErr.takeError();
853 
854   return &VersionMap;
855 }
856 
857 template <typename ELFT>
858 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
859                                                       bool &IsDefault) const {
860   // This is a dynamic symbol. Look in the GNU symbol version table.
861   if (!SymbolVersionSection) {
862     // No version table.
863     IsDefault = false;
864     return "";
865   }
866 
867   assert(DynSymRegion && "DynSymRegion has not been initialised");
868   // Determine the position in the symbol table of this entry.
869   size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
870                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
871                       sizeof(Elf_Sym);
872 
873   // Get the corresponding version index entry.
874   Expected<const Elf_Versym *> EntryOrErr =
875       Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
876   if (!EntryOrErr)
877     return EntryOrErr.takeError();
878 
879   unsigned Version = (*EntryOrErr)->vs_index;
880   if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
881     IsDefault = false;
882     return "";
883   }
884 
885   Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
886       getVersionMap();
887   if (!MapOrErr)
888     return MapOrErr.takeError();
889 
890   return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
891                                      Sym.st_shndx == ELF::SHN_UNDEF);
892 }
893 
894 template <typename ELFT>
895 Expected<RelSymbol<ELFT>>
896 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
897                                      const Elf_Shdr *SymTab) const {
898   if (R.Symbol == 0)
899     return RelSymbol<ELFT>(nullptr, "");
900 
901   Expected<const Elf_Sym *> SymOrErr =
902       Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
903   if (!SymOrErr)
904     return createError("unable to read an entry with index " + Twine(R.Symbol) +
905                        " from " + describe(*SymTab) + ": " +
906                        toString(SymOrErr.takeError()));
907   const Elf_Sym *Sym = *SymOrErr;
908   if (!Sym)
909     return RelSymbol<ELFT>(nullptr, "");
910 
911   Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
912   if (!StrTableOrErr)
913     return StrTableOrErr.takeError();
914 
915   const Elf_Sym *FirstSym =
916       cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
917   std::string SymbolName =
918       getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
919                         *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
920   return RelSymbol<ELFT>(Sym, SymbolName);
921 }
922 
923 template <typename ELFT>
924 ArrayRef<typename ELFT::Word>
925 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
926   if (Symtab) {
927     auto It = ShndxTables.find(Symtab);
928     if (It != ShndxTables.end())
929       return It->second;
930   }
931   return {};
932 }
933 
934 static std::string maybeDemangle(StringRef Name) {
935   return opts::Demangle ? demangle(Name) : Name.str();
936 }
937 
938 template <typename ELFT>
939 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
940   auto Warn = [&](Error E) -> std::string {
941     reportUniqueWarning("unable to read the name of symbol with index " +
942                         Twine(Index) + ": " + toString(std::move(E)));
943     return "<?>";
944   };
945 
946   Expected<const typename ELFT::Sym *> SymOrErr =
947       Obj.getSymbol(DotSymtabSec, Index);
948   if (!SymOrErr)
949     return Warn(SymOrErr.takeError());
950 
951   Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
952   if (!StrTabOrErr)
953     return Warn(StrTabOrErr.takeError());
954 
955   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
956   if (!NameOrErr)
957     return Warn(NameOrErr.takeError());
958   return maybeDemangle(*NameOrErr);
959 }
960 
961 template <typename ELFT>
962 std::string ELFDumper<ELFT>::getFullSymbolName(
963     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
964     std::optional<StringRef> StrTable, bool IsDynamic) const {
965   if (!StrTable)
966     return "<?>";
967 
968   std::string SymbolName;
969   if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
970     SymbolName = maybeDemangle(*NameOrErr);
971   } else {
972     reportUniqueWarning(NameOrErr.takeError());
973     return "<?>";
974   }
975 
976   if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
977     Expected<unsigned> SectionIndex =
978         getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
979     if (!SectionIndex) {
980       reportUniqueWarning(SectionIndex.takeError());
981       return "<?>";
982     }
983     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
984     if (!NameOrErr) {
985       reportUniqueWarning(NameOrErr.takeError());
986       return ("<section " + Twine(*SectionIndex) + ">").str();
987     }
988     return std::string(*NameOrErr);
989   }
990 
991   if (!IsDynamic)
992     return SymbolName;
993 
994   bool IsDefault;
995   Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
996   if (!VersionOrErr) {
997     reportUniqueWarning(VersionOrErr.takeError());
998     return SymbolName + "@<corrupt>";
999   }
1000 
1001   if (!VersionOrErr->empty()) {
1002     SymbolName += (IsDefault ? "@@" : "@");
1003     SymbolName += *VersionOrErr;
1004   }
1005   return SymbolName;
1006 }
1007 
1008 template <typename ELFT>
1009 Expected<unsigned>
1010 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
1011                                        DataRegion<Elf_Word> ShndxTable) const {
1012   unsigned Ndx = Symbol.st_shndx;
1013   if (Ndx == SHN_XINDEX)
1014     return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
1015                                                      ShndxTable);
1016   if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
1017     return Ndx;
1018 
1019   auto CreateErr = [&](const Twine &Name,
1020                        std::optional<unsigned> Offset = std::nullopt) {
1021     std::string Desc;
1022     if (Offset)
1023       Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1024     else
1025       Desc = Name.str();
1026     return createError(
1027         "unable to get section index for symbol with st_shndx = 0x" +
1028         Twine::utohexstr(Ndx) + " (" + Desc + ")");
1029   };
1030 
1031   if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1032     return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1033   if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1034     return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1035   if (Ndx == ELF::SHN_UNDEF)
1036     return CreateErr("SHN_UNDEF");
1037   if (Ndx == ELF::SHN_ABS)
1038     return CreateErr("SHN_ABS");
1039   if (Ndx == ELF::SHN_COMMON)
1040     return CreateErr("SHN_COMMON");
1041   return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1042 }
1043 
1044 template <typename ELFT>
1045 Expected<StringRef>
1046 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1047                                       unsigned SectionIndex) const {
1048   Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1049   if (!SecOrErr)
1050     return SecOrErr.takeError();
1051   return Obj.getSectionName(**SecOrErr);
1052 }
1053 
1054 template <class ELFO>
1055 static const typename ELFO::Elf_Shdr *
1056 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1057                              uint64_t Addr) {
1058   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1059     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1060       return &Shdr;
1061   return nullptr;
1062 }
1063 
1064 const EnumEntry<unsigned> ElfClass[] = {
1065   {"None",   "none",   ELF::ELFCLASSNONE},
1066   {"32-bit", "ELF32",  ELF::ELFCLASS32},
1067   {"64-bit", "ELF64",  ELF::ELFCLASS64},
1068 };
1069 
1070 const EnumEntry<unsigned> ElfDataEncoding[] = {
1071   {"None",         "none",                          ELF::ELFDATANONE},
1072   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1073   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
1074 };
1075 
1076 const EnumEntry<unsigned> ElfObjectFileType[] = {
1077   {"None",         "NONE (none)",              ELF::ET_NONE},
1078   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1079   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1080   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1081   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1082 };
1083 
1084 const EnumEntry<unsigned> ElfOSABI[] = {
1085   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1086   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1087   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1088   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1089   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1090   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1091   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1092   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1093   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1094   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1095   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1096   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1097   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1098   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1099   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1100   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1101   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1102   {"CUDA",         "NVIDIA - CUDA",        ELF::ELFOSABI_CUDA},
1103   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1104 };
1105 
1106 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1107   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1108   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1109   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1110 };
1111 
1112 const EnumEntry<unsigned> ARMElfOSABI[] = {
1113     {"ARM", "ARM", ELF::ELFOSABI_ARM},
1114     {"ARM FDPIC", "ARM FDPIC", ELF::ELFOSABI_ARM_FDPIC},
1115 };
1116 
1117 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1118   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1119   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1120 };
1121 
1122 const EnumEntry<unsigned> ElfMachineType[] = {
1123   ENUM_ENT(EM_NONE,          "None"),
1124   ENUM_ENT(EM_M32,           "WE32100"),
1125   ENUM_ENT(EM_SPARC,         "Sparc"),
1126   ENUM_ENT(EM_386,           "Intel 80386"),
1127   ENUM_ENT(EM_68K,           "MC68000"),
1128   ENUM_ENT(EM_88K,           "MC88000"),
1129   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1130   ENUM_ENT(EM_860,           "Intel 80860"),
1131   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1132   ENUM_ENT(EM_S370,          "IBM System/370"),
1133   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1134   ENUM_ENT(EM_PARISC,        "HPPA"),
1135   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1136   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1137   ENUM_ENT(EM_960,           "Intel 80960"),
1138   ENUM_ENT(EM_PPC,           "PowerPC"),
1139   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1140   ENUM_ENT(EM_S390,          "IBM S/390"),
1141   ENUM_ENT(EM_SPU,           "SPU"),
1142   ENUM_ENT(EM_V800,          "NEC V800 series"),
1143   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1144   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1145   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1146   ENUM_ENT(EM_ARM,           "ARM"),
1147   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1148   ENUM_ENT(EM_SH,            "Hitachi SH"),
1149   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1150   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1151   ENUM_ENT(EM_ARC,           "ARC"),
1152   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1153   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1154   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1155   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1156   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1157   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1158   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1159   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1160   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1161   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1162   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1163   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1164   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1165   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1166   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1167   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1168   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1169   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1170   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1171   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1172   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1173   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1174   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1175   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1176   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1177   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1178   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1179   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1180   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1181   ENUM_ENT(EM_VAX,           "Digital VAX"),
1182   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1183   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1184   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1185   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1186   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1187   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1188   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1189   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1190   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1191   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1192   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1193   ENUM_ENT(EM_V850,          "NEC v850"),
1194   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1195   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1196   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1197   ENUM_ENT(EM_PJ,            "picoJava"),
1198   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1199   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1200   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1201   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1202   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1203   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1204   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1205   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1206   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1207   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1208   ENUM_ENT(EM_MAX,           "MAX Processor"),
1209   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1210   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1211   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1212   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1213   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1214   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1215   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1216   ENUM_ENT(EM_UNICORE,       "Unicore"),
1217   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1218   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1219   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1220   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1221   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1222   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1223   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1224   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1225   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1226   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1227   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1228   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1229   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1230   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1231   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1232   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1233   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1234   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1235   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1236   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1237   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1238   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1239   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1240   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1241   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1242   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1243   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1244   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1245   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1246   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1247   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1248   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1249   //        an identical number to EM_ECOG1.
1250   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1251   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1252   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1253   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1254   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1255   ENUM_ENT(EM_RX,            "Renesas RX"),
1256   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1257   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1258   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1259   ENUM_ENT(EM_CR16,          "National Semiconductor CompactRISC 16-bit processor"),
1260   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1261   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1262   ENUM_ENT(EM_L10M,          "EM_L10M"),
1263   ENUM_ENT(EM_K10M,          "EM_K10M"),
1264   ENUM_ENT(EM_AARCH64,       "AArch64"),
1265   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1266   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1267   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1268   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1269   ENUM_ENT(EM_MICROBLAZE,    "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1270   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1271   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1272   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1273   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1274   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1275   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1276   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1277   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1278   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1279   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1280   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1281   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1282   ENUM_ENT(EM_RISCV,         "RISC-V"),
1283   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1284   ENUM_ENT(EM_BPF,           "EM_BPF"),
1285   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1286   ENUM_ENT(EM_LOONGARCH,     "LoongArch"),
1287 };
1288 
1289 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1290     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1291     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1292     {"Weak",   "WEAK",   ELF::STB_WEAK},
1293     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1294 
1295 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1296     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1297     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1298     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1299     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1300 
1301 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1302   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1303 };
1304 
1305 static const char *getGroupType(uint32_t Flag) {
1306   if (Flag & ELF::GRP_COMDAT)
1307     return "COMDAT";
1308   else
1309     return "(unknown)";
1310 }
1311 
1312 const EnumEntry<unsigned> ElfSectionFlags[] = {
1313   ENUM_ENT(SHF_WRITE,            "W"),
1314   ENUM_ENT(SHF_ALLOC,            "A"),
1315   ENUM_ENT(SHF_EXECINSTR,        "X"),
1316   ENUM_ENT(SHF_MERGE,            "M"),
1317   ENUM_ENT(SHF_STRINGS,          "S"),
1318   ENUM_ENT(SHF_INFO_LINK,        "I"),
1319   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1320   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1321   ENUM_ENT(SHF_GROUP,            "G"),
1322   ENUM_ENT(SHF_TLS,              "T"),
1323   ENUM_ENT(SHF_COMPRESSED,       "C"),
1324   ENUM_ENT(SHF_EXCLUDE,          "E"),
1325 };
1326 
1327 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1328   ENUM_ENT(SHF_GNU_RETAIN, "R")
1329 };
1330 
1331 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1332   ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1333 };
1334 
1335 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1336   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1337   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1338 };
1339 
1340 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1341   ENUM_ENT(SHF_ARM_PURECODE, "y")
1342 };
1343 
1344 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1345   ENUM_ENT(SHF_HEX_GPREL, "")
1346 };
1347 
1348 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1349   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1350   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1351   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1352   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1353   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1354   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1355   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1356   ENUM_ENT(SHF_MIPS_STRING,  "")
1357 };
1358 
1359 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1360   ENUM_ENT(SHF_X86_64_LARGE, "l")
1361 };
1362 
1363 static std::vector<EnumEntry<unsigned>>
1364 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1365   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1366                                        std::end(ElfSectionFlags));
1367   switch (EOSAbi) {
1368   case ELFOSABI_SOLARIS:
1369     Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1370                std::end(ElfSolarisSectionFlags));
1371     break;
1372   default:
1373     Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1374                std::end(ElfGNUSectionFlags));
1375     break;
1376   }
1377   switch (EMachine) {
1378   case EM_ARM:
1379     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1380                std::end(ElfARMSectionFlags));
1381     break;
1382   case EM_HEXAGON:
1383     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1384                std::end(ElfHexagonSectionFlags));
1385     break;
1386   case EM_MIPS:
1387     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1388                std::end(ElfMipsSectionFlags));
1389     break;
1390   case EM_X86_64:
1391     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1392                std::end(ElfX86_64SectionFlags));
1393     break;
1394   case EM_XCORE:
1395     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1396                std::end(ElfXCoreSectionFlags));
1397     break;
1398   default:
1399     break;
1400   }
1401   return Ret;
1402 }
1403 
1404 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1405                                uint64_t Flags) {
1406   // Here we are trying to build the flags string in the same way as GNU does.
1407   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1408   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1409   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1410   // "p". It only will print "E" when no other processor flag is set.
1411   std::string Str;
1412   bool HasUnknownFlag = false;
1413   bool HasOSFlag = false;
1414   bool HasProcFlag = false;
1415   std::vector<EnumEntry<unsigned>> FlagsList =
1416       getSectionFlagsForTarget(EOSAbi, EMachine);
1417   while (Flags) {
1418     // Take the least significant bit as a flag.
1419     uint64_t Flag = Flags & -Flags;
1420     Flags -= Flag;
1421 
1422     // Find the flag in the known flags list.
1423     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1424       // Flags with empty names are not printed in GNU style output.
1425       return E.Value == Flag && !E.AltName.empty();
1426     });
1427     if (I != FlagsList.end()) {
1428       Str += I->AltName;
1429       continue;
1430     }
1431 
1432     // If we did not find a matching regular flag, then we deal with an OS
1433     // specific flag, processor specific flag or an unknown flag.
1434     if (Flag & ELF::SHF_MASKOS) {
1435       HasOSFlag = true;
1436       Flags &= ~ELF::SHF_MASKOS;
1437     } else if (Flag & ELF::SHF_MASKPROC) {
1438       HasProcFlag = true;
1439       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1440       // bit if set so that it doesn't also get printed.
1441       Flags &= ~ELF::SHF_MASKPROC;
1442     } else {
1443       HasUnknownFlag = true;
1444     }
1445   }
1446 
1447   // "o", "p" and "x" are printed last.
1448   if (HasOSFlag)
1449     Str += "o";
1450   if (HasProcFlag)
1451     Str += "p";
1452   if (HasUnknownFlag)
1453     Str += "x";
1454   return Str;
1455 }
1456 
1457 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1458   // Check potentially overlapped processor-specific program header type.
1459   switch (Arch) {
1460   case ELF::EM_ARM:
1461     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1462     break;
1463   case ELF::EM_MIPS:
1464   case ELF::EM_MIPS_RS3_LE:
1465     switch (Type) {
1466       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1467       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1468       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1469       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1470     }
1471     break;
1472   case ELF::EM_RISCV:
1473     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1474   }
1475 
1476   switch (Type) {
1477     LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1478     LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1479     LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1480     LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1481     LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1482     LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1483     LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1484     LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1485 
1486     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1487     LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1488 
1489     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1490     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1491     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1492 
1493     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1494     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1495     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1496     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1497     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS);
1498     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1499   default:
1500     return "";
1501   }
1502 }
1503 
1504 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1505   StringRef Seg = segmentTypeToString(Arch, Type);
1506   if (Seg.empty())
1507     return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1508 
1509   // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1510   if (Seg.consume_front("PT_ARM_"))
1511     return Seg.str();
1512 
1513   // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1514   if (Seg.consume_front("PT_MIPS_"))
1515     return Seg.str();
1516 
1517   // E.g. "PT_RISCV_ATTRIBUTES"
1518   if (Seg.consume_front("PT_RISCV_"))
1519     return Seg.str();
1520 
1521   // E.g. "PT_LOAD" -> "LOAD".
1522   assert(Seg.starts_with("PT_"));
1523   return Seg.drop_front(3).str();
1524 }
1525 
1526 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1527   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1528   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1529   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1530 };
1531 
1532 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1533   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1534   ENUM_ENT(EF_MIPS_PIC, "pic"),
1535   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1536   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1537   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1538   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1539   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1540   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1541   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1542   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1543   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1544   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1545   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1546   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1547   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1548   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1549   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1550   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1551   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1552   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1553   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1554   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1555   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1556   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1557   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1558   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1559   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1560   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1561   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1562   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1563   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1564   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1565   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1566   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1567   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1568   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1569   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1570   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1571   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1572   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1573   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1574   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1575   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1576 };
1577 
1578 // clang-format off
1579 #define AMDGPU_MACH_ENUM_ENTS                                                  \
1580   ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"),                                       \
1581   ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"),                                  \
1582   ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"),                                  \
1583   ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"),                                \
1584   ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"),                                \
1585   ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"),                                \
1586   ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"),                                \
1587   ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"),                                \
1588   ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"),                                \
1589   ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"),                            \
1590   ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"),                            \
1591   ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"),                            \
1592   ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"),                                  \
1593   ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"),                                \
1594   ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"),                              \
1595   ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"),                              \
1596   ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"),                                \
1597   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"),                            \
1598   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"),                            \
1599   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"),                            \
1600   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"),                            \
1601   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"),                            \
1602   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"),                            \
1603   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"),                            \
1604   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"),                            \
1605   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"),                            \
1606   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"),                            \
1607   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"),                            \
1608   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"),                            \
1609   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"),                            \
1610   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"),                            \
1611   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"),                            \
1612   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"),                            \
1613   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"),                            \
1614   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"),                            \
1615   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"),                            \
1616   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"),                            \
1617   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"),                            \
1618   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"),                            \
1619   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"),                            \
1620   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"),                            \
1621   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"),                            \
1622   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"),                          \
1623   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"),                          \
1624   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"),                          \
1625   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"),                          \
1626   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"),                          \
1627   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"),                          \
1628   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"),                          \
1629   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"),                          \
1630   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"),                          \
1631   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"),                          \
1632   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"),                          \
1633   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"),                          \
1634   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"),                          \
1635   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"),                          \
1636   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"),                          \
1637   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"),                          \
1638   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"),                          \
1639   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1152, "gfx1152"),                          \
1640   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"),                          \
1641   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"),                          \
1642   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC, "gfx9-generic"),                \
1643   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC, "gfx10-1-generic"),          \
1644   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC, "gfx10-3-generic"),          \
1645   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC, "gfx11-generic"),              \
1646   ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC, "gfx12-generic")
1647 // clang-format on
1648 
1649 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1650     AMDGPU_MACH_ENUM_ENTS,
1651     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack"),
1652     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc"),
1653 };
1654 
1655 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1656     AMDGPU_MACH_ENUM_ENTS,
1657     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack"),
1658     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-"),
1659     ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+"),
1660     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc"),
1661     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-"),
1662     ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+"),
1663 };
1664 
1665 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = {
1666     ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"),
1667     ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"),
1668     ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"),
1669     ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"),
1670     ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"),
1671     ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"),
1672     ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"),
1673     ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"),
1674     ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"),
1675     ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"),
1676 };
1677 
1678 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1679   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1680   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1681   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1682   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1683   ENUM_ENT(EF_RISCV_RVE, "RVE"),
1684   ENUM_ENT(EF_RISCV_TSO, "TSO"),
1685 };
1686 
1687 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1688   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1689   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1690   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1691   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1692   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1693   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1694   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1695   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1696   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1697   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1698   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1699   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1700   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1701   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1702   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1703   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1704   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1705   LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1706   ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1707 };
1708 
1709 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1710   ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1711   ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1712   ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1713   ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1714   ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1715 };
1716 
1717 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1718   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1719   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1720   LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1721 };
1722 
1723 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1724   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1725   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1726   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1727 };
1728 
1729 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1730   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1731   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1732   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1733   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1734 };
1735 
1736 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1737   LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1738 };
1739 
1740 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1741   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1742   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1743   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1744 };
1745 
1746 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1747     LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1748 
1749 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1750   switch (Odk) {
1751   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1752   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1753   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1754   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1755   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1756   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1757   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1758   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1759   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1760   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1761   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1762   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1763   default:
1764     return "Unknown";
1765   }
1766 }
1767 
1768 template <typename ELFT>
1769 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1770 ELFDumper<ELFT>::findDynamic() {
1771   // Try to locate the PT_DYNAMIC header.
1772   const Elf_Phdr *DynamicPhdr = nullptr;
1773   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1774     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1775       if (Phdr.p_type != ELF::PT_DYNAMIC)
1776         continue;
1777       DynamicPhdr = &Phdr;
1778       break;
1779     }
1780   } else {
1781     reportUniqueWarning(
1782         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1783         toString(PhdrsOrErr.takeError()));
1784   }
1785 
1786   // Try to locate the .dynamic section in the sections header table.
1787   const Elf_Shdr *DynamicSec = nullptr;
1788   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1789     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1790       continue;
1791     DynamicSec = &Sec;
1792     break;
1793   }
1794 
1795   if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1796                        ObjF.getMemoryBufferRef().getBufferSize()) ||
1797                       (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1798                        DynamicPhdr->p_offset))) {
1799     reportUniqueWarning(
1800         "PT_DYNAMIC segment offset (0x" +
1801         Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1802         Twine::utohexstr(DynamicPhdr->p_filesz) +
1803         ") exceeds the size of the file (0x" +
1804         Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1805     // Don't use the broken dynamic header.
1806     DynamicPhdr = nullptr;
1807   }
1808 
1809   if (DynamicPhdr && DynamicSec) {
1810     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1811             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1812         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1813       reportUniqueWarning(describe(*DynamicSec) +
1814                           " is not contained within the "
1815                           "PT_DYNAMIC segment");
1816 
1817     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1818       reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1819                                                   "PT_DYNAMIC segment");
1820   }
1821 
1822   return std::make_pair(DynamicPhdr, DynamicSec);
1823 }
1824 
1825 template <typename ELFT>
1826 void ELFDumper<ELFT>::loadDynamicTable() {
1827   const Elf_Phdr *DynamicPhdr;
1828   const Elf_Shdr *DynamicSec;
1829   std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1830   if (!DynamicPhdr && !DynamicSec)
1831     return;
1832 
1833   DynRegionInfo FromPhdr(ObjF, *this);
1834   bool IsPhdrTableValid = false;
1835   if (DynamicPhdr) {
1836     // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1837     // validated in findDynamic() and so createDRI() is not expected to fail.
1838     FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1839                                   sizeof(Elf_Dyn)));
1840     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1841     FromPhdr.EntSizePrintName = "";
1842     IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1843   }
1844 
1845   // Locate the dynamic table described in a section header.
1846   // Ignore sh_entsize and use the expected value for entry size explicitly.
1847   // This allows us to dump dynamic sections with a broken sh_entsize
1848   // field.
1849   DynRegionInfo FromSec(ObjF, *this);
1850   bool IsSecTableValid = false;
1851   if (DynamicSec) {
1852     Expected<DynRegionInfo> RegOrErr =
1853         createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1854     if (RegOrErr) {
1855       FromSec = *RegOrErr;
1856       FromSec.Context = describe(*DynamicSec);
1857       FromSec.EntSizePrintName = "";
1858       IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1859     } else {
1860       reportUniqueWarning("unable to read the dynamic table from " +
1861                           describe(*DynamicSec) + ": " +
1862                           toString(RegOrErr.takeError()));
1863     }
1864   }
1865 
1866   // When we only have information from one of the SHT_DYNAMIC section header or
1867   // PT_DYNAMIC program header, just use that.
1868   if (!DynamicPhdr || !DynamicSec) {
1869     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1870       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1871       parseDynamicTable();
1872     } else {
1873       reportUniqueWarning("no valid dynamic table was found");
1874     }
1875     return;
1876   }
1877 
1878   // At this point we have tables found from the section header and from the
1879   // dynamic segment. Usually they match, but we have to do sanity checks to
1880   // verify that.
1881 
1882   if (FromPhdr.Addr != FromSec.Addr)
1883     reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1884                         "program header disagree about "
1885                         "the location of the dynamic table");
1886 
1887   if (!IsPhdrTableValid && !IsSecTableValid) {
1888     reportUniqueWarning("no valid dynamic table was found");
1889     return;
1890   }
1891 
1892   // Information in the PT_DYNAMIC program header has priority over the
1893   // information in a section header.
1894   if (IsPhdrTableValid) {
1895     if (!IsSecTableValid)
1896       reportUniqueWarning(
1897           "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1898     DynamicTable = FromPhdr;
1899   } else {
1900     reportUniqueWarning(
1901         "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1902     DynamicTable = FromSec;
1903   }
1904 
1905   parseDynamicTable();
1906 }
1907 
1908 template <typename ELFT>
1909 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1910                            ScopedPrinter &Writer)
1911     : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1912       FileName(O.getFileName()), DynRelRegion(O, *this),
1913       DynRelaRegion(O, *this), DynCrelRegion(O, *this), DynRelrRegion(O, *this),
1914       DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1915       DynamicTable(O, *this) {
1916   if (!O.IsContentValid())
1917     return;
1918 
1919   typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1920   for (const Elf_Shdr &Sec : Sections) {
1921     switch (Sec.sh_type) {
1922     case ELF::SHT_SYMTAB:
1923       if (!DotSymtabSec)
1924         DotSymtabSec = &Sec;
1925       break;
1926     case ELF::SHT_DYNSYM:
1927       if (!DotDynsymSec)
1928         DotDynsymSec = &Sec;
1929 
1930       if (!DynSymRegion) {
1931         Expected<DynRegionInfo> RegOrErr =
1932             createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1933         if (RegOrErr) {
1934           DynSymRegion = *RegOrErr;
1935           DynSymRegion->Context = describe(Sec);
1936 
1937           if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1938             DynamicStringTable = *E;
1939           else
1940             reportUniqueWarning("unable to get the string table for the " +
1941                                 describe(Sec) + ": " + toString(E.takeError()));
1942         } else {
1943           reportUniqueWarning("unable to read dynamic symbols from " +
1944                               describe(Sec) + ": " +
1945                               toString(RegOrErr.takeError()));
1946         }
1947       }
1948       break;
1949     case ELF::SHT_SYMTAB_SHNDX: {
1950       uint32_t SymtabNdx = Sec.sh_link;
1951       if (SymtabNdx >= Sections.size()) {
1952         reportUniqueWarning(
1953             "unable to get the associated symbol table for " + describe(Sec) +
1954             ": sh_link (" + Twine(SymtabNdx) +
1955             ") is greater than or equal to the total number of sections (" +
1956             Twine(Sections.size()) + ")");
1957         continue;
1958       }
1959 
1960       if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1961               Obj.getSHNDXTable(Sec)) {
1962         if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1963                  .second)
1964           reportUniqueWarning(
1965               "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1966               describe(Sec));
1967       } else {
1968         reportUniqueWarning(ShndxTableOrErr.takeError());
1969       }
1970       break;
1971     }
1972     case ELF::SHT_GNU_versym:
1973       if (!SymbolVersionSection)
1974         SymbolVersionSection = &Sec;
1975       break;
1976     case ELF::SHT_GNU_verdef:
1977       if (!SymbolVersionDefSection)
1978         SymbolVersionDefSection = &Sec;
1979       break;
1980     case ELF::SHT_GNU_verneed:
1981       if (!SymbolVersionNeedSection)
1982         SymbolVersionNeedSection = &Sec;
1983       break;
1984     case ELF::SHT_LLVM_ADDRSIG:
1985       if (!DotAddrsigSec)
1986         DotAddrsigSec = &Sec;
1987       break;
1988     }
1989   }
1990 
1991   loadDynamicTable();
1992 }
1993 
1994 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
1995   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
1996     auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
1997       this->reportUniqueWarning(Msg);
1998       return Error::success();
1999     });
2000     if (!MappedAddrOrError) {
2001       this->reportUniqueWarning("unable to parse DT_" +
2002                                 Obj.getDynamicTagAsString(Tag) + ": " +
2003                                 llvm::toString(MappedAddrOrError.takeError()));
2004       return nullptr;
2005     }
2006     return MappedAddrOrError.get();
2007   };
2008 
2009   const char *StringTableBegin = nullptr;
2010   uint64_t StringTableSize = 0;
2011   std::optional<DynRegionInfo> DynSymFromTable;
2012   for (const Elf_Dyn &Dyn : dynamic_table()) {
2013     if (Obj.getHeader().e_machine == EM_AARCH64) {
2014       switch (Dyn.d_tag) {
2015       case ELF::DT_AARCH64_AUTH_RELRSZ:
2016         DynRelrRegion.Size = Dyn.getVal();
2017         DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value";
2018         continue;
2019       case ELF::DT_AARCH64_AUTH_RELRENT:
2020         DynRelrRegion.EntSize = Dyn.getVal();
2021         DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value";
2022         continue;
2023       }
2024     }
2025     switch (Dyn.d_tag) {
2026     case ELF::DT_HASH:
2027       HashTable = reinterpret_cast<const Elf_Hash *>(
2028           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2029       break;
2030     case ELF::DT_GNU_HASH:
2031       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2032           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2033       break;
2034     case ELF::DT_STRTAB:
2035       StringTableBegin = reinterpret_cast<const char *>(
2036           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2037       break;
2038     case ELF::DT_STRSZ:
2039       StringTableSize = Dyn.getVal();
2040       break;
2041     case ELF::DT_SYMTAB: {
2042       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2043       // no program headers), we ignore its value.
2044       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2045         DynSymFromTable.emplace(ObjF, *this);
2046         DynSymFromTable->Addr = VA;
2047         DynSymFromTable->EntSize = sizeof(Elf_Sym);
2048         DynSymFromTable->EntSizePrintName = "";
2049       }
2050       break;
2051     }
2052     case ELF::DT_SYMENT: {
2053       uint64_t Val = Dyn.getVal();
2054       if (Val != sizeof(Elf_Sym))
2055         this->reportUniqueWarning("DT_SYMENT value of 0x" +
2056                                   Twine::utohexstr(Val) +
2057                                   " is not the size of a symbol (0x" +
2058                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2059       break;
2060     }
2061     case ELF::DT_RELA:
2062       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2063       break;
2064     case ELF::DT_RELASZ:
2065       DynRelaRegion.Size = Dyn.getVal();
2066       DynRelaRegion.SizePrintName = "DT_RELASZ value";
2067       break;
2068     case ELF::DT_RELAENT:
2069       DynRelaRegion.EntSize = Dyn.getVal();
2070       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2071       break;
2072     case ELF::DT_CREL:
2073       DynCrelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2074       break;
2075     case ELF::DT_SONAME:
2076       SONameOffset = Dyn.getVal();
2077       break;
2078     case ELF::DT_REL:
2079       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2080       break;
2081     case ELF::DT_RELSZ:
2082       DynRelRegion.Size = Dyn.getVal();
2083       DynRelRegion.SizePrintName = "DT_RELSZ value";
2084       break;
2085     case ELF::DT_RELENT:
2086       DynRelRegion.EntSize = Dyn.getVal();
2087       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2088       break;
2089     case ELF::DT_RELR:
2090     case ELF::DT_ANDROID_RELR:
2091     case ELF::DT_AARCH64_AUTH_RELR:
2092       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2093       break;
2094     case ELF::DT_RELRSZ:
2095     case ELF::DT_ANDROID_RELRSZ:
2096     case ELF::DT_AARCH64_AUTH_RELRSZ:
2097       DynRelrRegion.Size = Dyn.getVal();
2098       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2099                                         ? "DT_RELRSZ value"
2100                                         : "DT_ANDROID_RELRSZ value";
2101       break;
2102     case ELF::DT_RELRENT:
2103     case ELF::DT_ANDROID_RELRENT:
2104     case ELF::DT_AARCH64_AUTH_RELRENT:
2105       DynRelrRegion.EntSize = Dyn.getVal();
2106       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2107                                            ? "DT_RELRENT value"
2108                                            : "DT_ANDROID_RELRENT value";
2109       break;
2110     case ELF::DT_PLTREL:
2111       if (Dyn.getVal() == DT_REL)
2112         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2113       else if (Dyn.getVal() == DT_RELA)
2114         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2115       else if (Dyn.getVal() == DT_CREL)
2116         DynPLTRelRegion.EntSize = 1;
2117       else
2118         reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2119                             Twine((uint64_t)Dyn.getVal()));
2120       DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2121       break;
2122     case ELF::DT_JMPREL:
2123       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2124       break;
2125     case ELF::DT_PLTRELSZ:
2126       DynPLTRelRegion.Size = Dyn.getVal();
2127       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2128       break;
2129     case ELF::DT_SYMTAB_SHNDX:
2130       DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2131       DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2132       break;
2133     }
2134   }
2135 
2136   if (StringTableBegin) {
2137     const uint64_t FileSize = Obj.getBufSize();
2138     const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2139     if (StringTableSize > FileSize - Offset)
2140       reportUniqueWarning(
2141           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2142           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2143           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2144     else
2145       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2146   }
2147 
2148   const bool IsHashTableSupported = getHashTableEntSize() == 4;
2149   if (DynSymRegion) {
2150     // Often we find the information about the dynamic symbol table
2151     // location in the SHT_DYNSYM section header. However, the value in
2152     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2153     // locate .dynsym at runtime. The location we find in the section header
2154     // and the location we find here should match.
2155     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2156       reportUniqueWarning(
2157           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2158                       "the location of the dynamic symbol table"));
2159 
2160     // According to the ELF gABI: "The number of symbol table entries should
2161     // equal nchain". Check to see if the DT_HASH hash table nchain value
2162     // conflicts with the number of symbols in the dynamic symbol table
2163     // according to the section header.
2164     if (HashTable && IsHashTableSupported) {
2165       if (DynSymRegion->EntSize == 0)
2166         reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2167       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2168         reportUniqueWarning(
2169             "hash table nchain (" + Twine(HashTable->nchain) +
2170             ") differs from symbol count derived from SHT_DYNSYM section "
2171             "header (" +
2172             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2173     }
2174   }
2175 
2176   // Delay the creation of the actual dynamic symbol table until now, so that
2177   // checks can always be made against the section header-based properties,
2178   // without worrying about tag order.
2179   if (DynSymFromTable) {
2180     if (!DynSymRegion) {
2181       DynSymRegion = DynSymFromTable;
2182     } else {
2183       DynSymRegion->Addr = DynSymFromTable->Addr;
2184       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2185       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2186     }
2187   }
2188 
2189   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2190   // present.
2191   if (HashTable && IsHashTableSupported && DynSymRegion) {
2192     const uint64_t FileSize = Obj.getBufSize();
2193     const uint64_t DerivedSize =
2194         (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2195     const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2196     if (DerivedSize > FileSize - Offset)
2197       reportUniqueWarning(
2198           "the size (0x" + Twine::utohexstr(DerivedSize) +
2199           ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2200           ", derived from the hash table, goes past the end of the file (0x" +
2201           Twine::utohexstr(FileSize) + ") and will be ignored");
2202     else
2203       DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2204   }
2205 }
2206 
2207 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2208   // Dump version symbol section.
2209   printVersionSymbolSection(SymbolVersionSection);
2210 
2211   // Dump version definition section.
2212   printVersionDefinitionSection(SymbolVersionDefSection);
2213 
2214   // Dump version dependency section.
2215   printVersionDependencySection(SymbolVersionNeedSection);
2216 }
2217 
2218 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2219   { #enum, prefix##_##enum }
2220 
2221 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2222   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2223   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2224   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2225   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2226   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2227 };
2228 
2229 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2230   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2231   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2232   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2233   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2234   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2235   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2236   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2237   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2238   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2239   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2240   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2241   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2242   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2243   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2244   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2245   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2246   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2247   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2248   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2249   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2250   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2251   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2252   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2253   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2254   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2255   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2256   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2257 };
2258 
2259 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2260   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2261   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2262   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2263   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2264   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2265   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2266   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2267   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2268   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2269   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2270   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2271   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2272   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2273   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2274   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2275   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2276 };
2277 
2278 #undef LLVM_READOBJ_DT_FLAG_ENT
2279 
2280 template <typename T, typename TFlag>
2281 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2282   SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2283   for (const EnumEntry<TFlag> &Flag : Flags)
2284     if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2285       SetFlags.push_back(Flag);
2286 
2287   for (const EnumEntry<TFlag> &Flag : SetFlags)
2288     OS << Flag.Name << " ";
2289 }
2290 
2291 template <class ELFT>
2292 const typename ELFT::Shdr *
2293 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2294   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2295     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2296       if (*NameOrErr == Name)
2297         return &Shdr;
2298     } else {
2299       reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2300                           ": " + toString(NameOrErr.takeError()));
2301     }
2302   }
2303   return nullptr;
2304 }
2305 
2306 template <class ELFT>
2307 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2308                                              uint64_t Value) const {
2309   auto FormatHexValue = [](uint64_t V) {
2310     std::string Str;
2311     raw_string_ostream OS(Str);
2312     const char *ConvChar =
2313         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2314     OS << format(ConvChar, V);
2315     return OS.str();
2316   };
2317 
2318   auto FormatFlags = [](uint64_t V,
2319                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2320     std::string Str;
2321     raw_string_ostream OS(Str);
2322     printFlags(V, Array, OS);
2323     return OS.str();
2324   };
2325 
2326   // Handle custom printing of architecture specific tags
2327   switch (Obj.getHeader().e_machine) {
2328   case EM_AARCH64:
2329     switch (Type) {
2330     case DT_AARCH64_BTI_PLT:
2331     case DT_AARCH64_PAC_PLT:
2332     case DT_AARCH64_VARIANT_PCS:
2333     case DT_AARCH64_MEMTAG_GLOBALSSZ:
2334       return std::to_string(Value);
2335     case DT_AARCH64_MEMTAG_MODE:
2336       switch (Value) {
2337         case 0:
2338           return "Synchronous (0)";
2339         case 1:
2340           return "Asynchronous (1)";
2341         default:
2342           return (Twine("Unknown (") + Twine(Value) + ")").str();
2343       }
2344     case DT_AARCH64_MEMTAG_HEAP:
2345     case DT_AARCH64_MEMTAG_STACK:
2346       switch (Value) {
2347         case 0:
2348           return "Disabled (0)";
2349         case 1:
2350           return "Enabled (1)";
2351         default:
2352           return (Twine("Unknown (") + Twine(Value) + ")").str();
2353       }
2354     case DT_AARCH64_MEMTAG_GLOBALS:
2355       return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str();
2356     default:
2357       break;
2358     }
2359     break;
2360   case EM_HEXAGON:
2361     switch (Type) {
2362     case DT_HEXAGON_VER:
2363       return std::to_string(Value);
2364     case DT_HEXAGON_SYMSZ:
2365     case DT_HEXAGON_PLT:
2366       return FormatHexValue(Value);
2367     default:
2368       break;
2369     }
2370     break;
2371   case EM_MIPS:
2372     switch (Type) {
2373     case DT_MIPS_RLD_VERSION:
2374     case DT_MIPS_LOCAL_GOTNO:
2375     case DT_MIPS_SYMTABNO:
2376     case DT_MIPS_UNREFEXTNO:
2377       return std::to_string(Value);
2378     case DT_MIPS_TIME_STAMP:
2379     case DT_MIPS_ICHECKSUM:
2380     case DT_MIPS_IVERSION:
2381     case DT_MIPS_BASE_ADDRESS:
2382     case DT_MIPS_MSYM:
2383     case DT_MIPS_CONFLICT:
2384     case DT_MIPS_LIBLIST:
2385     case DT_MIPS_CONFLICTNO:
2386     case DT_MIPS_LIBLISTNO:
2387     case DT_MIPS_GOTSYM:
2388     case DT_MIPS_HIPAGENO:
2389     case DT_MIPS_RLD_MAP:
2390     case DT_MIPS_DELTA_CLASS:
2391     case DT_MIPS_DELTA_CLASS_NO:
2392     case DT_MIPS_DELTA_INSTANCE:
2393     case DT_MIPS_DELTA_RELOC:
2394     case DT_MIPS_DELTA_RELOC_NO:
2395     case DT_MIPS_DELTA_SYM:
2396     case DT_MIPS_DELTA_SYM_NO:
2397     case DT_MIPS_DELTA_CLASSSYM:
2398     case DT_MIPS_DELTA_CLASSSYM_NO:
2399     case DT_MIPS_CXX_FLAGS:
2400     case DT_MIPS_PIXIE_INIT:
2401     case DT_MIPS_SYMBOL_LIB:
2402     case DT_MIPS_LOCALPAGE_GOTIDX:
2403     case DT_MIPS_LOCAL_GOTIDX:
2404     case DT_MIPS_HIDDEN_GOTIDX:
2405     case DT_MIPS_PROTECTED_GOTIDX:
2406     case DT_MIPS_OPTIONS:
2407     case DT_MIPS_INTERFACE:
2408     case DT_MIPS_DYNSTR_ALIGN:
2409     case DT_MIPS_INTERFACE_SIZE:
2410     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2411     case DT_MIPS_PERF_SUFFIX:
2412     case DT_MIPS_COMPACT_SIZE:
2413     case DT_MIPS_GP_VALUE:
2414     case DT_MIPS_AUX_DYNAMIC:
2415     case DT_MIPS_PLTGOT:
2416     case DT_MIPS_RWPLT:
2417     case DT_MIPS_RLD_MAP_REL:
2418     case DT_MIPS_XHASH:
2419       return FormatHexValue(Value);
2420     case DT_MIPS_FLAGS:
2421       return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2422     default:
2423       break;
2424     }
2425     break;
2426   default:
2427     break;
2428   }
2429 
2430   switch (Type) {
2431   case DT_PLTREL:
2432     if (Value == DT_REL)
2433       return "REL";
2434     if (Value == DT_RELA)
2435       return "RELA";
2436     if (Value == DT_CREL)
2437       return "CREL";
2438     [[fallthrough]];
2439   case DT_PLTGOT:
2440   case DT_HASH:
2441   case DT_STRTAB:
2442   case DT_SYMTAB:
2443   case DT_RELA:
2444   case DT_INIT:
2445   case DT_FINI:
2446   case DT_REL:
2447   case DT_JMPREL:
2448   case DT_INIT_ARRAY:
2449   case DT_FINI_ARRAY:
2450   case DT_PREINIT_ARRAY:
2451   case DT_DEBUG:
2452   case DT_CREL:
2453   case DT_VERDEF:
2454   case DT_VERNEED:
2455   case DT_VERSYM:
2456   case DT_GNU_HASH:
2457   case DT_NULL:
2458     return FormatHexValue(Value);
2459   case DT_RELACOUNT:
2460   case DT_RELCOUNT:
2461   case DT_VERDEFNUM:
2462   case DT_VERNEEDNUM:
2463     return std::to_string(Value);
2464   case DT_PLTRELSZ:
2465   case DT_RELASZ:
2466   case DT_RELAENT:
2467   case DT_STRSZ:
2468   case DT_SYMENT:
2469   case DT_RELSZ:
2470   case DT_RELENT:
2471   case DT_INIT_ARRAYSZ:
2472   case DT_FINI_ARRAYSZ:
2473   case DT_PREINIT_ARRAYSZ:
2474   case DT_RELRSZ:
2475   case DT_RELRENT:
2476   case DT_AARCH64_AUTH_RELRSZ:
2477   case DT_AARCH64_AUTH_RELRENT:
2478   case DT_ANDROID_RELSZ:
2479   case DT_ANDROID_RELASZ:
2480     return std::to_string(Value) + " (bytes)";
2481   case DT_NEEDED:
2482   case DT_SONAME:
2483   case DT_AUXILIARY:
2484   case DT_USED:
2485   case DT_FILTER:
2486   case DT_RPATH:
2487   case DT_RUNPATH: {
2488     const std::map<uint64_t, const char *> TagNames = {
2489         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2490         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2491         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2492         {DT_RUNPATH, "Library runpath"},
2493     };
2494 
2495     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2496         .str();
2497   }
2498   case DT_FLAGS:
2499     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2500   case DT_FLAGS_1:
2501     return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2502   default:
2503     return FormatHexValue(Value);
2504   }
2505 }
2506 
2507 template <class ELFT>
2508 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2509   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2510     reportUniqueWarning("string table was not found");
2511     return "<?>";
2512   }
2513 
2514   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2515     reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2516                         Msg);
2517     return "<?>";
2518   };
2519 
2520   const uint64_t FileSize = Obj.getBufSize();
2521   const uint64_t Offset =
2522       (const uint8_t *)DynamicStringTable.data() - Obj.base();
2523   if (DynamicStringTable.size() > FileSize - Offset)
2524     return WarnAndReturn(" with size 0x" +
2525                              Twine::utohexstr(DynamicStringTable.size()) +
2526                              " goes past the end of the file (0x" +
2527                              Twine::utohexstr(FileSize) + ")",
2528                          Offset);
2529 
2530   if (Value >= DynamicStringTable.size())
2531     return WarnAndReturn(
2532         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2533             ": it goes past the end of the table (0x" +
2534             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2535         Offset);
2536 
2537   if (DynamicStringTable.back() != '\0')
2538     return WarnAndReturn(": unable to read the string at 0x" +
2539                              Twine::utohexstr(Offset + Value) +
2540                              ": the string table is not null-terminated",
2541                          Offset);
2542 
2543   return DynamicStringTable.data() + Value;
2544 }
2545 
2546 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2547   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2548   Ctx.printUnwindInformation();
2549 }
2550 
2551 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2552 namespace {
2553 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2554   if (Obj.getHeader().e_machine == EM_ARM) {
2555     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2556                                             DotSymtabSec);
2557     Ctx.PrintUnwindInformation();
2558   }
2559   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2560   Ctx.printUnwindInformation();
2561 }
2562 } // namespace
2563 
2564 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2565   ListScope D(W, "NeededLibraries");
2566 
2567   std::vector<StringRef> Libs;
2568   for (const auto &Entry : dynamic_table())
2569     if (Entry.d_tag == ELF::DT_NEEDED)
2570       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2571 
2572   llvm::sort(Libs);
2573 
2574   for (StringRef L : Libs)
2575     W.printString(L);
2576 }
2577 
2578 template <class ELFT>
2579 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2580                             const typename ELFT::Hash *H,
2581                             bool *IsHeaderValid = nullptr) {
2582   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2583   const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2584   if (Dumper.getHashTableEntSize() == 8) {
2585     auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2586       return E.Value == Obj.getHeader().e_machine;
2587     });
2588     if (IsHeaderValid)
2589       *IsHeaderValid = false;
2590     return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2591                        " is not supported: it contains non-standard 8 "
2592                        "byte entries on " +
2593                        It->AltName + " platform");
2594   }
2595 
2596   auto MakeError = [&](const Twine &Msg = "") {
2597     return createError("the hash table at offset 0x" +
2598                        Twine::utohexstr(SecOffset) +
2599                        " goes past the end of the file (0x" +
2600                        Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2601   };
2602 
2603   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2604   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2605 
2606   if (IsHeaderValid)
2607     *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2608 
2609   if (Obj.getBufSize() - SecOffset < HeaderSize)
2610     return MakeError();
2611 
2612   if (Obj.getBufSize() - SecOffset - HeaderSize <
2613       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2614     return MakeError(", nbucket = " + Twine(H->nbucket) +
2615                      ", nchain = " + Twine(H->nchain));
2616   return Error::success();
2617 }
2618 
2619 template <class ELFT>
2620 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2621                                const typename ELFT::GnuHash *GnuHashTable,
2622                                bool *IsHeaderValid = nullptr) {
2623   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2624   assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2625          "GnuHashTable must always point to a location inside the file");
2626 
2627   uint64_t TableOffset = TableData - Obj.base();
2628   if (IsHeaderValid)
2629     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2630   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2631           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2632       Obj.getBufSize())
2633     return createError("unable to dump the SHT_GNU_HASH "
2634                        "section at 0x" +
2635                        Twine::utohexstr(TableOffset) +
2636                        ": it goes past the end of the file");
2637   return Error::success();
2638 }
2639 
2640 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2641   DictScope D(W, "HashTable");
2642   if (!HashTable)
2643     return;
2644 
2645   bool IsHeaderValid;
2646   Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2647   if (IsHeaderValid) {
2648     W.printNumber("Num Buckets", HashTable->nbucket);
2649     W.printNumber("Num Chains", HashTable->nchain);
2650   }
2651 
2652   if (Err) {
2653     reportUniqueWarning(std::move(Err));
2654     return;
2655   }
2656 
2657   W.printList("Buckets", HashTable->buckets());
2658   W.printList("Chains", HashTable->chains());
2659 }
2660 
2661 template <class ELFT>
2662 static Expected<ArrayRef<typename ELFT::Word>>
2663 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2664                       const typename ELFT::GnuHash *GnuHashTable) {
2665   if (!DynSymRegion)
2666     return createError("no dynamic symbol table found");
2667 
2668   ArrayRef<typename ELFT::Sym> DynSymTable =
2669       DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2670   size_t NumSyms = DynSymTable.size();
2671   if (!NumSyms)
2672     return createError("the dynamic symbol table is empty");
2673 
2674   if (GnuHashTable->symndx < NumSyms)
2675     return GnuHashTable->values(NumSyms);
2676 
2677   // A normal empty GNU hash table section produced by linker might have
2678   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2679   // and have dummy null values in the Bloom filter and in the buckets
2680   // vector (or no values at all). It happens because the value of symndx is not
2681   // important for dynamic loaders when the GNU hash table is empty. They just
2682   // skip the whole object during symbol lookup. In such cases, the symndx value
2683   // is irrelevant and we should not report a warning.
2684   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2685   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2686     return createError(
2687         "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2688         ") is greater than or equal to the number of dynamic symbols (" +
2689         Twine(NumSyms) + ")");
2690   // There is no way to represent an array of (dynamic symbols count - symndx)
2691   // length.
2692   return ArrayRef<typename ELFT::Word>();
2693 }
2694 
2695 template <typename ELFT>
2696 void ELFDumper<ELFT>::printGnuHashTable() {
2697   DictScope D(W, "GnuHashTable");
2698   if (!GnuHashTable)
2699     return;
2700 
2701   bool IsHeaderValid;
2702   Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2703   if (IsHeaderValid) {
2704     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2705     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2706     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2707     W.printNumber("Shift Count", GnuHashTable->shift2);
2708   }
2709 
2710   if (Err) {
2711     reportUniqueWarning(std::move(Err));
2712     return;
2713   }
2714 
2715   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2716   W.printHexList("Bloom Filter", BloomFilter);
2717 
2718   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2719   W.printList("Buckets", Buckets);
2720 
2721   Expected<ArrayRef<Elf_Word>> Chains =
2722       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2723   if (!Chains) {
2724     reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2725                         "section: " +
2726                         toString(Chains.takeError()));
2727     return;
2728   }
2729 
2730   W.printHexList("Values", *Chains);
2731 }
2732 
2733 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2734   // Print histogram for the .hash section.
2735   if (this->HashTable) {
2736     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
2737       this->reportUniqueWarning(std::move(E));
2738     else
2739       printHashHistogram(*this->HashTable);
2740   }
2741 
2742   // Print histogram for the .gnu.hash section.
2743   if (this->GnuHashTable) {
2744     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
2745       this->reportUniqueWarning(std::move(E));
2746     else
2747       printGnuHashHistogram(*this->GnuHashTable);
2748   }
2749 }
2750 
2751 template <typename ELFT>
2752 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const {
2753   size_t NBucket = HashTable.nbucket;
2754   size_t NChain = HashTable.nchain;
2755   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
2756   ArrayRef<Elf_Word> Chains = HashTable.chains();
2757   size_t TotalSyms = 0;
2758   // If hash table is correct, we have at least chains with 0 length.
2759   size_t MaxChain = 1;
2760 
2761   if (NChain == 0 || NBucket == 0)
2762     return;
2763 
2764   std::vector<size_t> ChainLen(NBucket, 0);
2765   // Go over all buckets and note chain lengths of each bucket (total
2766   // unique chain lengths).
2767   for (size_t B = 0; B < NBucket; ++B) {
2768     BitVector Visited(NChain);
2769     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
2770       if (C == ELF::STN_UNDEF)
2771           break;
2772       if (Visited[C]) {
2773           this->reportUniqueWarning(
2774               ".hash section is invalid: bucket " + Twine(C) +
2775               ": a cycle was detected in the linked chain");
2776           break;
2777       }
2778       Visited[C] = true;
2779       if (MaxChain <= ++ChainLen[B])
2780           ++MaxChain;
2781     }
2782     TotalSyms += ChainLen[B];
2783   }
2784 
2785   if (!TotalSyms)
2786     return;
2787 
2788   std::vector<size_t> Count(MaxChain, 0);
2789   // Count how long is the chain for each bucket.
2790   for (size_t B = 0; B < NBucket; B++)
2791     ++Count[ChainLen[B]];
2792   // Print Number of buckets with each chain lengths and their cumulative
2793   // coverage of the symbols.
2794   printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false);
2795 }
2796 
2797 template <class ELFT>
2798 void ELFDumper<ELFT>::printGnuHashHistogram(
2799     const Elf_GnuHash &GnuHashTable) const {
2800   Expected<ArrayRef<Elf_Word>> ChainsOrErr =
2801       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
2802   if (!ChainsOrErr) {
2803     this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2804                               toString(ChainsOrErr.takeError()));
2805     return;
2806   }
2807 
2808   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
2809   size_t Symndx = GnuHashTable.symndx;
2810   size_t TotalSyms = 0;
2811   size_t MaxChain = 1;
2812 
2813   size_t NBucket = GnuHashTable.nbuckets;
2814   if (Chains.empty() || NBucket == 0)
2815     return;
2816 
2817   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
2818   std::vector<size_t> ChainLen(NBucket, 0);
2819   for (size_t B = 0; B < NBucket; ++B) {
2820     if (!Buckets[B])
2821       continue;
2822     size_t Len = 1;
2823     for (size_t C = Buckets[B] - Symndx;
2824          C < Chains.size() && (Chains[C] & 1) == 0; ++C)
2825       if (MaxChain < ++Len)
2826           ++MaxChain;
2827     ChainLen[B] = Len;
2828     TotalSyms += Len;
2829   }
2830   ++MaxChain;
2831 
2832   if (!TotalSyms)
2833     return;
2834 
2835   std::vector<size_t> Count(MaxChain, 0);
2836   for (size_t B = 0; B < NBucket; ++B)
2837     ++Count[ChainLen[B]];
2838   // Print Number of buckets with each chain lengths and their cumulative
2839   // coverage of the symbols.
2840   printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true);
2841 }
2842 
2843 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2844   StringRef SOName = "<Not found>";
2845   if (SONameOffset)
2846     SOName = getDynamicString(*SONameOffset);
2847   W.printString("LoadName", SOName);
2848 }
2849 
2850 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2851   switch (Obj.getHeader().e_machine) {
2852   case EM_HEXAGON:
2853     printAttributes(ELF::SHT_HEXAGON_ATTRIBUTES,
2854                     std::make_unique<HexagonAttributeParser>(&W),
2855                     llvm::endianness::little);
2856     break;
2857   case EM_ARM:
2858     printAttributes(
2859         ELF::SHT_ARM_ATTRIBUTES, std::make_unique<ARMAttributeParser>(&W),
2860         Obj.isLE() ? llvm::endianness::little : llvm::endianness::big);
2861     break;
2862   case EM_RISCV:
2863     if (Obj.isLE())
2864       printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2865                       std::make_unique<RISCVAttributeParser>(&W),
2866                       llvm::endianness::little);
2867     else
2868       reportUniqueWarning("attribute printing not implemented for big-endian "
2869                           "RISC-V objects");
2870     break;
2871   case EM_MSP430:
2872     printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2873                     std::make_unique<MSP430AttributeParser>(&W),
2874                     llvm::endianness::little);
2875     break;
2876   case EM_MIPS: {
2877     printMipsABIFlags();
2878     printMipsOptions();
2879     printMipsReginfo();
2880     MipsGOTParser<ELFT> Parser(*this);
2881     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2882       reportUniqueWarning(std::move(E));
2883     else if (!Parser.isGotEmpty())
2884       printMipsGOT(Parser);
2885 
2886     if (Error E = Parser.findPLT(dynamic_table()))
2887       reportUniqueWarning(std::move(E));
2888     else if (!Parser.isPltEmpty())
2889       printMipsPLT(Parser);
2890     break;
2891   }
2892   default:
2893     break;
2894   }
2895 }
2896 
2897 template <class ELFT>
2898 void ELFDumper<ELFT>::printAttributes(
2899     unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2900     llvm::endianness Endianness) {
2901   assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2902          "Incomplete ELF attribute implementation");
2903   DictScope BA(W, "BuildAttributes");
2904   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2905     if (Sec.sh_type != AttrShType)
2906       continue;
2907 
2908     ArrayRef<uint8_t> Contents;
2909     if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2910             Obj.getSectionContents(Sec)) {
2911       Contents = *ContentOrErr;
2912       if (Contents.empty()) {
2913         reportUniqueWarning("the " + describe(Sec) + " is empty");
2914         continue;
2915       }
2916     } else {
2917       reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2918                           ": " + toString(ContentOrErr.takeError()));
2919       continue;
2920     }
2921 
2922     W.printHex("FormatVersion", Contents[0]);
2923 
2924     if (Error E = AttrParser->parse(Contents, Endianness))
2925       reportUniqueWarning("unable to dump attributes from the " +
2926                           describe(Sec) + ": " + toString(std::move(E)));
2927   }
2928 }
2929 
2930 namespace {
2931 
2932 template <class ELFT> class MipsGOTParser {
2933 public:
2934   LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2935   using Entry = typename ELFT::Addr;
2936   using Entries = ArrayRef<Entry>;
2937 
2938   const bool IsStatic;
2939   const ELFFile<ELFT> &Obj;
2940   const ELFDumper<ELFT> &Dumper;
2941 
2942   MipsGOTParser(const ELFDumper<ELFT> &D);
2943   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2944   Error findPLT(Elf_Dyn_Range DynTable);
2945 
2946   bool isGotEmpty() const { return GotEntries.empty(); }
2947   bool isPltEmpty() const { return PltEntries.empty(); }
2948 
2949   uint64_t getGp() const;
2950 
2951   const Entry *getGotLazyResolver() const;
2952   const Entry *getGotModulePointer() const;
2953   const Entry *getPltLazyResolver() const;
2954   const Entry *getPltModulePointer() const;
2955 
2956   Entries getLocalEntries() const;
2957   Entries getGlobalEntries() const;
2958   Entries getOtherEntries() const;
2959   Entries getPltEntries() const;
2960 
2961   uint64_t getGotAddress(const Entry * E) const;
2962   int64_t getGotOffset(const Entry * E) const;
2963   const Elf_Sym *getGotSym(const Entry *E) const;
2964 
2965   uint64_t getPltAddress(const Entry * E) const;
2966   const Elf_Sym *getPltSym(const Entry *E) const;
2967 
2968   StringRef getPltStrTable() const { return PltStrTable; }
2969   const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2970 
2971 private:
2972   const Elf_Shdr *GotSec;
2973   size_t LocalNum;
2974   size_t GlobalNum;
2975 
2976   const Elf_Shdr *PltSec;
2977   const Elf_Shdr *PltRelSec;
2978   const Elf_Shdr *PltSymTable;
2979   StringRef FileName;
2980 
2981   Elf_Sym_Range GotDynSyms;
2982   StringRef PltStrTable;
2983 
2984   Entries GotEntries;
2985   Entries PltEntries;
2986 };
2987 
2988 } // end anonymous namespace
2989 
2990 template <class ELFT>
2991 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2992     : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2993       Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2994       PltRelSec(nullptr), PltSymTable(nullptr),
2995       FileName(D.getElfObject().getFileName()) {}
2996 
2997 template <class ELFT>
2998 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2999                                    Elf_Sym_Range DynSyms) {
3000   // See "Global Offset Table" in Chapter 5 in the following document
3001   // for detailed GOT description.
3002   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3003 
3004   // Find static GOT secton.
3005   if (IsStatic) {
3006     GotSec = Dumper.findSectionByName(".got");
3007     if (!GotSec)
3008       return Error::success();
3009 
3010     ArrayRef<uint8_t> Content =
3011         unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3012     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3013                          Content.size() / sizeof(Entry));
3014     LocalNum = GotEntries.size();
3015     return Error::success();
3016   }
3017 
3018   // Lookup dynamic table tags which define the GOT layout.
3019   std::optional<uint64_t> DtPltGot;
3020   std::optional<uint64_t> DtLocalGotNum;
3021   std::optional<uint64_t> DtGotSym;
3022   for (const auto &Entry : DynTable) {
3023     switch (Entry.getTag()) {
3024     case ELF::DT_PLTGOT:
3025       DtPltGot = Entry.getVal();
3026       break;
3027     case ELF::DT_MIPS_LOCAL_GOTNO:
3028       DtLocalGotNum = Entry.getVal();
3029       break;
3030     case ELF::DT_MIPS_GOTSYM:
3031       DtGotSym = Entry.getVal();
3032       break;
3033     }
3034   }
3035 
3036   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3037     return Error::success();
3038 
3039   if (!DtPltGot)
3040     return createError("cannot find PLTGOT dynamic tag");
3041   if (!DtLocalGotNum)
3042     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3043   if (!DtGotSym)
3044     return createError("cannot find MIPS_GOTSYM dynamic tag");
3045 
3046   size_t DynSymTotal = DynSyms.size();
3047   if (*DtGotSym > DynSymTotal)
3048     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3049                        ") exceeds the number of dynamic symbols (" +
3050                        Twine(DynSymTotal) + ")");
3051 
3052   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3053   if (!GotSec)
3054     return createError("there is no non-empty GOT section at 0x" +
3055                        Twine::utohexstr(*DtPltGot));
3056 
3057   LocalNum = *DtLocalGotNum;
3058   GlobalNum = DynSymTotal - *DtGotSym;
3059 
3060   ArrayRef<uint8_t> Content =
3061       unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3062   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3063                        Content.size() / sizeof(Entry));
3064   GotDynSyms = DynSyms.drop_front(*DtGotSym);
3065 
3066   return Error::success();
3067 }
3068 
3069 template <class ELFT>
3070 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3071   // Lookup dynamic table tags which define the PLT layout.
3072   std::optional<uint64_t> DtMipsPltGot;
3073   std::optional<uint64_t> DtJmpRel;
3074   for (const auto &Entry : DynTable) {
3075     switch (Entry.getTag()) {
3076     case ELF::DT_MIPS_PLTGOT:
3077       DtMipsPltGot = Entry.getVal();
3078       break;
3079     case ELF::DT_JMPREL:
3080       DtJmpRel = Entry.getVal();
3081       break;
3082     }
3083   }
3084 
3085   if (!DtMipsPltGot && !DtJmpRel)
3086     return Error::success();
3087 
3088   // Find PLT section.
3089   if (!DtMipsPltGot)
3090     return createError("cannot find MIPS_PLTGOT dynamic tag");
3091   if (!DtJmpRel)
3092     return createError("cannot find JMPREL dynamic tag");
3093 
3094   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3095   if (!PltSec)
3096     return createError("there is no non-empty PLTGOT section at 0x" +
3097                        Twine::utohexstr(*DtMipsPltGot));
3098 
3099   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3100   if (!PltRelSec)
3101     return createError("there is no non-empty RELPLT section at 0x" +
3102                        Twine::utohexstr(*DtJmpRel));
3103 
3104   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3105           Obj.getSectionContents(*PltSec))
3106     PltEntries =
3107         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3108                 PltContentOrErr->size() / sizeof(Entry));
3109   else
3110     return createError("unable to read PLTGOT section content: " +
3111                        toString(PltContentOrErr.takeError()));
3112 
3113   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3114           Obj.getSection(PltRelSec->sh_link))
3115     PltSymTable = *PltSymTableOrErr;
3116   else
3117     return createError("unable to get a symbol table linked to the " +
3118                        describe(Obj, *PltRelSec) + ": " +
3119                        toString(PltSymTableOrErr.takeError()));
3120 
3121   if (Expected<StringRef> StrTabOrErr =
3122           Obj.getStringTableForSymtab(*PltSymTable))
3123     PltStrTable = *StrTabOrErr;
3124   else
3125     return createError("unable to get a string table for the " +
3126                        describe(Obj, *PltSymTable) + ": " +
3127                        toString(StrTabOrErr.takeError()));
3128 
3129   return Error::success();
3130 }
3131 
3132 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3133   return GotSec->sh_addr + 0x7ff0;
3134 }
3135 
3136 template <class ELFT>
3137 const typename MipsGOTParser<ELFT>::Entry *
3138 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3139   return LocalNum > 0 ? &GotEntries[0] : nullptr;
3140 }
3141 
3142 template <class ELFT>
3143 const typename MipsGOTParser<ELFT>::Entry *
3144 MipsGOTParser<ELFT>::getGotModulePointer() const {
3145   if (LocalNum < 2)
3146     return nullptr;
3147   const Entry &E = GotEntries[1];
3148   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3149     return nullptr;
3150   return &E;
3151 }
3152 
3153 template <class ELFT>
3154 typename MipsGOTParser<ELFT>::Entries
3155 MipsGOTParser<ELFT>::getLocalEntries() const {
3156   size_t Skip = getGotModulePointer() ? 2 : 1;
3157   if (LocalNum - Skip <= 0)
3158     return Entries();
3159   return GotEntries.slice(Skip, LocalNum - Skip);
3160 }
3161 
3162 template <class ELFT>
3163 typename MipsGOTParser<ELFT>::Entries
3164 MipsGOTParser<ELFT>::getGlobalEntries() const {
3165   if (GlobalNum == 0)
3166     return Entries();
3167   return GotEntries.slice(LocalNum, GlobalNum);
3168 }
3169 
3170 template <class ELFT>
3171 typename MipsGOTParser<ELFT>::Entries
3172 MipsGOTParser<ELFT>::getOtherEntries() const {
3173   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3174   if (OtherNum == 0)
3175     return Entries();
3176   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3177 }
3178 
3179 template <class ELFT>
3180 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3181   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3182   return GotSec->sh_addr + Offset;
3183 }
3184 
3185 template <class ELFT>
3186 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3187   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3188   return Offset - 0x7ff0;
3189 }
3190 
3191 template <class ELFT>
3192 const typename MipsGOTParser<ELFT>::Elf_Sym *
3193 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3194   int64_t Offset = std::distance(GotEntries.data(), E);
3195   return &GotDynSyms[Offset - LocalNum];
3196 }
3197 
3198 template <class ELFT>
3199 const typename MipsGOTParser<ELFT>::Entry *
3200 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3201   return PltEntries.empty() ? nullptr : &PltEntries[0];
3202 }
3203 
3204 template <class ELFT>
3205 const typename MipsGOTParser<ELFT>::Entry *
3206 MipsGOTParser<ELFT>::getPltModulePointer() const {
3207   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3208 }
3209 
3210 template <class ELFT>
3211 typename MipsGOTParser<ELFT>::Entries
3212 MipsGOTParser<ELFT>::getPltEntries() const {
3213   if (PltEntries.size() <= 2)
3214     return Entries();
3215   return PltEntries.slice(2, PltEntries.size() - 2);
3216 }
3217 
3218 template <class ELFT>
3219 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3220   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3221   return PltSec->sh_addr + Offset;
3222 }
3223 
3224 template <class ELFT>
3225 const typename MipsGOTParser<ELFT>::Elf_Sym *
3226 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3227   int64_t Offset = std::distance(getPltEntries().data(), E);
3228   if (PltRelSec->sh_type == ELF::SHT_REL) {
3229     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3230     return unwrapOrError(FileName,
3231                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3232   } else {
3233     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3234     return unwrapOrError(FileName,
3235                          Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3236   }
3237 }
3238 
3239 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3240   {"None",                    Mips::AFL_EXT_NONE},
3241   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3242   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3243   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3244   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3245   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3246   {"LSI R4010",               Mips::AFL_EXT_4010},
3247   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3248   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3249   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3250   {"MIPS R4650",              Mips::AFL_EXT_4650},
3251   {"MIPS R5900",              Mips::AFL_EXT_5900},
3252   {"MIPS R10000",             Mips::AFL_EXT_10000},
3253   {"NEC VR4100",              Mips::AFL_EXT_4100},
3254   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3255   {"NEC VR4120",              Mips::AFL_EXT_4120},
3256   {"NEC VR5400",              Mips::AFL_EXT_5400},
3257   {"NEC VR5500",              Mips::AFL_EXT_5500},
3258   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3259   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3260 };
3261 
3262 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3263   {"DSP",                Mips::AFL_ASE_DSP},
3264   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3265   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3266   {"MCU",                Mips::AFL_ASE_MCU},
3267   {"MDMX",               Mips::AFL_ASE_MDMX},
3268   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3269   {"MT",                 Mips::AFL_ASE_MT},
3270   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3271   {"VZ",                 Mips::AFL_ASE_VIRT},
3272   {"MSA",                Mips::AFL_ASE_MSA},
3273   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3274   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3275   {"XPA",                Mips::AFL_ASE_XPA},
3276   {"CRC",                Mips::AFL_ASE_CRC},
3277   {"GINV",               Mips::AFL_ASE_GINV},
3278 };
3279 
3280 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3281   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3282   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3283   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3284   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3285   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3286    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3287   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3288   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3289   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3290    Mips::Val_GNU_MIPS_ABI_FP_64A}
3291 };
3292 
3293 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3294   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3295 };
3296 
3297 static int getMipsRegisterSize(uint8_t Flag) {
3298   switch (Flag) {
3299   case Mips::AFL_REG_NONE:
3300     return 0;
3301   case Mips::AFL_REG_32:
3302     return 32;
3303   case Mips::AFL_REG_64:
3304     return 64;
3305   case Mips::AFL_REG_128:
3306     return 128;
3307   default:
3308     return -1;
3309   }
3310 }
3311 
3312 template <class ELFT>
3313 static void printMipsReginfoData(ScopedPrinter &W,
3314                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3315   W.printHex("GP", Reginfo.ri_gp_value);
3316   W.printHex("General Mask", Reginfo.ri_gprmask);
3317   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3318   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3319   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3320   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3321 }
3322 
3323 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3324   const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3325   if (!RegInfoSec) {
3326     W.startLine() << "There is no .reginfo section in the file.\n";
3327     return;
3328   }
3329 
3330   Expected<ArrayRef<uint8_t>> ContentsOrErr =
3331       Obj.getSectionContents(*RegInfoSec);
3332   if (!ContentsOrErr) {
3333     this->reportUniqueWarning(
3334         "unable to read the content of the .reginfo section (" +
3335         describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3336     return;
3337   }
3338 
3339   if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3340     this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3341                               Twine::utohexstr(ContentsOrErr->size()) + ")");
3342     return;
3343   }
3344 
3345   DictScope GS(W, "MIPS RegInfo");
3346   printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3347                               ContentsOrErr->data()));
3348 }
3349 
3350 template <class ELFT>
3351 static Expected<const Elf_Mips_Options<ELFT> *>
3352 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3353                 bool &IsSupported) {
3354   if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3355     return createError("the .MIPS.options section has an invalid size (0x" +
3356                        Twine::utohexstr(SecData.size()) + ")");
3357 
3358   const Elf_Mips_Options<ELFT> *O =
3359       reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3360   const uint8_t Size = O->size;
3361   if (Size > SecData.size()) {
3362     const uint64_t Offset = SecData.data() - SecBegin;
3363     const uint64_t SecSize = Offset + SecData.size();
3364     return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3365                        " at offset 0x" + Twine::utohexstr(Offset) +
3366                        " goes past the end of the .MIPS.options "
3367                        "section of size 0x" +
3368                        Twine::utohexstr(SecSize));
3369   }
3370 
3371   IsSupported = O->kind == ODK_REGINFO;
3372   const size_t ExpectedSize =
3373       sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3374 
3375   if (IsSupported)
3376     if (Size < ExpectedSize)
3377       return createError(
3378           "a .MIPS.options entry of kind " +
3379           Twine(getElfMipsOptionsOdkType(O->kind)) +
3380           " has an invalid size (0x" + Twine::utohexstr(Size) +
3381           "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3382 
3383   SecData = SecData.drop_front(Size);
3384   return O;
3385 }
3386 
3387 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3388   const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3389   if (!MipsOpts) {
3390     W.startLine() << "There is no .MIPS.options section in the file.\n";
3391     return;
3392   }
3393 
3394   DictScope GS(W, "MIPS Options");
3395 
3396   ArrayRef<uint8_t> Data =
3397       unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3398   const uint8_t *const SecBegin = Data.begin();
3399   while (!Data.empty()) {
3400     bool IsSupported;
3401     Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3402         readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3403     if (!OptsOrErr) {
3404       reportUniqueWarning(OptsOrErr.takeError());
3405       break;
3406     }
3407 
3408     unsigned Kind = (*OptsOrErr)->kind;
3409     const char *Type = getElfMipsOptionsOdkType(Kind);
3410     if (!IsSupported) {
3411       W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3412                     << ")\n";
3413       continue;
3414     }
3415 
3416     DictScope GS(W, Type);
3417     if (Kind == ODK_REGINFO)
3418       printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3419     else
3420       llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3421   }
3422 }
3423 
3424 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3425   const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3426   if (!StackMapSection)
3427     return;
3428 
3429   auto Warn = [&](Error &&E) {
3430     this->reportUniqueWarning("unable to read the stack map from " +
3431                               describe(*StackMapSection) + ": " +
3432                               toString(std::move(E)));
3433   };
3434 
3435   Expected<ArrayRef<uint8_t>> ContentOrErr =
3436       Obj.getSectionContents(*StackMapSection);
3437   if (!ContentOrErr) {
3438     Warn(ContentOrErr.takeError());
3439     return;
3440   }
3441 
3442   if (Error E =
3443           StackMapParser<ELFT::Endianness>::validateHeader(*ContentOrErr)) {
3444     Warn(std::move(E));
3445     return;
3446   }
3447 
3448   prettyPrintStackMap(W, StackMapParser<ELFT::Endianness>(*ContentOrErr));
3449 }
3450 
3451 template <class ELFT>
3452 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3453                                  const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3454   Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3455   if (!Target)
3456     reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3457                         " in " + describe(Sec) + ": " +
3458                         toString(Target.takeError()));
3459   else
3460     printRelRelaReloc(R, *Target);
3461 }
3462 
3463 template <class ELFT>
3464 std::vector<EnumEntry<unsigned>>
3465 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header,
3466                                          const Elf_Sym &Symbol) const {
3467   std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3468                                                  std::end(ElfSymOtherFlags));
3469   if (Header.e_machine == EM_MIPS) {
3470     // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3471     // flag overlap with other ST_MIPS_xxx flags. So consider both
3472     // cases separately.
3473     if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3474       SymOtherFlags.insert(SymOtherFlags.end(),
3475                            std::begin(ElfMips16SymOtherFlags),
3476                            std::end(ElfMips16SymOtherFlags));
3477     else
3478       SymOtherFlags.insert(SymOtherFlags.end(),
3479                            std::begin(ElfMipsSymOtherFlags),
3480                            std::end(ElfMipsSymOtherFlags));
3481   } else if (Header.e_machine == EM_AARCH64) {
3482     SymOtherFlags.insert(SymOtherFlags.end(),
3483                          std::begin(ElfAArch64SymOtherFlags),
3484                          std::end(ElfAArch64SymOtherFlags));
3485   } else if (Header.e_machine == EM_RISCV) {
3486     SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags),
3487                          std::end(ElfRISCVSymOtherFlags));
3488   }
3489   return SymOtherFlags;
3490 }
3491 
3492 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3493                                StringRef Str2) {
3494   OS.PadToColumn(2u);
3495   OS << Str1;
3496   OS.PadToColumn(37u);
3497   OS << Str2 << "\n";
3498   OS.flush();
3499 }
3500 
3501 template <class ELFT>
3502 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3503                                               StringRef FileName) {
3504   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3505   if (ElfHeader.e_shnum != 0)
3506     return to_string(ElfHeader.e_shnum);
3507 
3508   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3509   if (!ArrOrErr) {
3510     // In this case we can ignore an error, because we have already reported a
3511     // warning about the broken section header table earlier.
3512     consumeError(ArrOrErr.takeError());
3513     return "<?>";
3514   }
3515 
3516   if (ArrOrErr->empty())
3517     return "0";
3518   return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3519 }
3520 
3521 template <class ELFT>
3522 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3523                                                     StringRef FileName) {
3524   const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3525   if (ElfHeader.e_shstrndx != SHN_XINDEX)
3526     return to_string(ElfHeader.e_shstrndx);
3527 
3528   Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3529   if (!ArrOrErr) {
3530     // In this case we can ignore an error, because we have already reported a
3531     // warning about the broken section header table earlier.
3532     consumeError(ArrOrErr.takeError());
3533     return "<?>";
3534   }
3535 
3536   if (ArrOrErr->empty())
3537     return "65535 (corrupt: out of range)";
3538   return to_string(ElfHeader.e_shstrndx) + " (" +
3539          to_string((*ArrOrErr)[0].sh_link) + ")";
3540 }
3541 
3542 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3543   auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3544     return E.Value == Type;
3545   });
3546   if (It != ArrayRef(ElfObjectFileType).end())
3547     return It;
3548   return nullptr;
3549 }
3550 
3551 template <class ELFT>
3552 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3553                                           ArrayRef<std::string> InputFilenames,
3554                                           const Archive *A) {
3555   if (InputFilenames.size() > 1 || A) {
3556     this->W.startLine() << "\n";
3557     this->W.printString("File", FileStr);
3558   }
3559 }
3560 
3561 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3562   const Elf_Ehdr &e = this->Obj.getHeader();
3563   OS << "ELF Header:\n";
3564   OS << "  Magic:  ";
3565   std::string Str;
3566   for (int i = 0; i < ELF::EI_NIDENT; i++)
3567     OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3568   OS << "\n";
3569   Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3570   printFields(OS, "Class:", Str);
3571   Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3572   printFields(OS, "Data:", Str);
3573   OS.PadToColumn(2u);
3574   OS << "Version:";
3575   OS.PadToColumn(37u);
3576   OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3577   if (e.e_version == ELF::EV_CURRENT)
3578     OS << " (current)";
3579   OS << "\n";
3580   auto OSABI = ArrayRef(ElfOSABI);
3581   if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
3582       e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
3583     switch (e.e_machine) {
3584     case ELF::EM_ARM:
3585       OSABI = ArrayRef(ARMElfOSABI);
3586       break;
3587     case ELF::EM_AMDGPU:
3588       OSABI = ArrayRef(AMDGPUElfOSABI);
3589       break;
3590     default:
3591       break;
3592     }
3593   }
3594   Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI);
3595   printFields(OS, "OS/ABI:", Str);
3596   printFields(OS,
3597               "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3598 
3599   if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3600     Str = E->AltName.str();
3601   } else {
3602     if (e.e_type >= ET_LOPROC)
3603       Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3604     else if (e.e_type >= ET_LOOS)
3605       Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3606     else
3607       Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3608   }
3609   printFields(OS, "Type:", Str);
3610 
3611   Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3612   printFields(OS, "Machine:", Str);
3613   Str = "0x" + utohexstr(e.e_version);
3614   printFields(OS, "Version:", Str);
3615   Str = "0x" + utohexstr(e.e_entry);
3616   printFields(OS, "Entry point address:", Str);
3617   Str = to_string(e.e_phoff) + " (bytes into file)";
3618   printFields(OS, "Start of program headers:", Str);
3619   Str = to_string(e.e_shoff) + " (bytes into file)";
3620   printFields(OS, "Start of section headers:", Str);
3621   std::string ElfFlags;
3622   if (e.e_machine == EM_MIPS)
3623     ElfFlags = printFlags(
3624         e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3625         unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3626   else if (e.e_machine == EM_RISCV)
3627     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3628   else if (e.e_machine == EM_AVR)
3629     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3630                           unsigned(ELF::EF_AVR_ARCH_MASK));
3631   else if (e.e_machine == EM_LOONGARCH)
3632     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3633                           unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3634                           unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3635   else if (e.e_machine == EM_XTENSA)
3636     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3637                           unsigned(ELF::EF_XTENSA_MACH));
3638   else if (e.e_machine == EM_CUDA)
3639     ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
3640                           unsigned(ELF::EF_CUDA_SM));
3641   else if (e.e_machine == EM_AMDGPU) {
3642     switch (e.e_ident[ELF::EI_ABIVERSION]) {
3643     default:
3644       break;
3645     case 0:
3646       // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
3647       [[fallthrough]];
3648     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
3649       ElfFlags =
3650           printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
3651                      unsigned(ELF::EF_AMDGPU_MACH));
3652       break;
3653     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
3654     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
3655       ElfFlags =
3656           printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
3657                      unsigned(ELF::EF_AMDGPU_MACH),
3658                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
3659                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
3660       break;
3661     case ELF::ELFABIVERSION_AMDGPU_HSA_V6: {
3662       ElfFlags =
3663           printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
3664                      unsigned(ELF::EF_AMDGPU_MACH),
3665                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
3666                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
3667       if (auto GenericV = e.e_flags & ELF::EF_AMDGPU_GENERIC_VERSION) {
3668         ElfFlags +=
3669             ", generic_v" +
3670             to_string(GenericV >> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET);
3671       }
3672     } break;
3673     }
3674   }
3675   Str = "0x" + utohexstr(e.e_flags);
3676   if (!ElfFlags.empty())
3677     Str = Str + ", " + ElfFlags;
3678   printFields(OS, "Flags:", Str);
3679   Str = to_string(e.e_ehsize) + " (bytes)";
3680   printFields(OS, "Size of this header:", Str);
3681   Str = to_string(e.e_phentsize) + " (bytes)";
3682   printFields(OS, "Size of program headers:", Str);
3683   Str = to_string(e.e_phnum);
3684   printFields(OS, "Number of program headers:", Str);
3685   Str = to_string(e.e_shentsize) + " (bytes)";
3686   printFields(OS, "Size of section headers:", Str);
3687   Str = getSectionHeadersNumString(this->Obj, this->FileName);
3688   printFields(OS, "Number of section headers:", Str);
3689   Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3690   printFields(OS, "Section header string table index:", Str);
3691 }
3692 
3693 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3694   auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3695                           const Elf_Shdr &Symtab) -> StringRef {
3696     Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3697     if (!StrTableOrErr) {
3698       reportUniqueWarning("unable to get the string table for " +
3699                           describe(Symtab) + ": " +
3700                           toString(StrTableOrErr.takeError()));
3701       return "<?>";
3702     }
3703 
3704     StringRef Strings = *StrTableOrErr;
3705     if (Sym.st_name >= Strings.size()) {
3706       reportUniqueWarning("unable to get the name of the symbol with index " +
3707                           Twine(SymNdx) + ": st_name (0x" +
3708                           Twine::utohexstr(Sym.st_name) +
3709                           ") is past the end of the string table of size 0x" +
3710                           Twine::utohexstr(Strings.size()));
3711       return "<?>";
3712     }
3713 
3714     return StrTableOrErr->data() + Sym.st_name;
3715   };
3716 
3717   std::vector<GroupSection> Ret;
3718   uint64_t I = 0;
3719   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3720     ++I;
3721     if (Sec.sh_type != ELF::SHT_GROUP)
3722       continue;
3723 
3724     StringRef Signature = "<?>";
3725     if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3726       if (Expected<const Elf_Sym *> SymOrErr =
3727               Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3728         Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3729       else
3730         reportUniqueWarning("unable to get the signature symbol for " +
3731                             describe(Sec) + ": " +
3732                             toString(SymOrErr.takeError()));
3733     } else {
3734       reportUniqueWarning("unable to get the symbol table for " +
3735                           describe(Sec) + ": " +
3736                           toString(SymtabOrErr.takeError()));
3737     }
3738 
3739     ArrayRef<Elf_Word> Data;
3740     if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3741             Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3742       if (ContentsOrErr->empty())
3743         reportUniqueWarning("unable to read the section group flag from the " +
3744                             describe(Sec) + ": the section is empty");
3745       else
3746         Data = *ContentsOrErr;
3747     } else {
3748       reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3749                           ": " + toString(ContentsOrErr.takeError()));
3750     }
3751 
3752     Ret.push_back({getPrintableSectionName(Sec),
3753                    maybeDemangle(Signature),
3754                    Sec.sh_name,
3755                    I - 1,
3756                    Sec.sh_link,
3757                    Sec.sh_info,
3758                    Data.empty() ? Elf_Word(0) : Data[0],
3759                    {}});
3760 
3761     if (Data.empty())
3762       continue;
3763 
3764     std::vector<GroupMember> &GM = Ret.back().Members;
3765     for (uint32_t Ndx : Data.slice(1)) {
3766       if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3767         GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3768       } else {
3769         reportUniqueWarning("unable to get the section with index " +
3770                             Twine(Ndx) + " when dumping the " + describe(Sec) +
3771                             ": " + toString(SecOrErr.takeError()));
3772         GM.push_back({"<?>", Ndx});
3773       }
3774     }
3775   }
3776   return Ret;
3777 }
3778 
3779 static DenseMap<uint64_t, const GroupSection *>
3780 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3781   DenseMap<uint64_t, const GroupSection *> Ret;
3782   for (const GroupSection &G : Groups)
3783     for (const GroupMember &GM : G.Members)
3784       Ret.insert({GM.Index, &G});
3785   return Ret;
3786 }
3787 
3788 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3789   std::vector<GroupSection> V = this->getGroups();
3790   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3791   for (const GroupSection &G : V) {
3792     OS << "\n"
3793        << getGroupType(G.Type) << " group section ["
3794        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3795        << "] contains " << G.Members.size() << " sections:\n"
3796        << "   [Index]    Name\n";
3797     for (const GroupMember &GM : G.Members) {
3798       const GroupSection *MainGroup = Map[GM.Index];
3799       if (MainGroup != &G)
3800         this->reportUniqueWarning(
3801             "section with index " + Twine(GM.Index) +
3802             ", included in the group section with index " +
3803             Twine(MainGroup->Index) +
3804             ", was also found in the group section with index " +
3805             Twine(G.Index));
3806       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3807     }
3808   }
3809 
3810   if (V.empty())
3811     OS << "There are no section groups in this file.\n";
3812 }
3813 
3814 template <class ELFT>
3815 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3816                                            const RelSymbol<ELFT> &RelSym) {
3817   // First two fields are bit width dependent. The rest of them are fixed width.
3818   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3819   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3820   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3821 
3822   Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3823   Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3824 
3825   SmallString<32> RelocName;
3826   this->Obj.getRelocationTypeName(R.Type, RelocName);
3827   Fields[2].Str = RelocName.c_str();
3828 
3829   if (RelSym.Sym)
3830     Fields[3].Str =
3831         to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3832   if (RelSym.Sym && RelSym.Name.empty())
3833     Fields[4].Str = "<null>";
3834   else
3835     Fields[4].Str = std::string(RelSym.Name);
3836 
3837   for (const Field &F : Fields)
3838     printField(F);
3839 
3840   std::string Addend;
3841   if (std::optional<int64_t> A = R.Addend) {
3842     int64_t RelAddend = *A;
3843     if (!Fields[4].Str.empty()) {
3844       if (RelAddend < 0) {
3845         Addend = " - ";
3846         RelAddend = -static_cast<uint64_t>(RelAddend);
3847       } else {
3848         Addend = " + ";
3849       }
3850     }
3851     Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3852   }
3853   OS << Addend << "\n";
3854 }
3855 
3856 template <class ELFT>
3857 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType,
3858                                    const typename ELFT::Ehdr &EHeader,
3859                                    uint64_t CrelHdr = 0) {
3860   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3861   if (ELFT::Is64Bits)
3862     OS << "    Offset             Info             Type               Symbol's "
3863           "Value  Symbol's Name";
3864   else
3865     OS << " Offset     Info    Type                Sym. Value  Symbol's Name";
3866   if (IsRela || (SType == ELF::SHT_CREL && (CrelHdr & CREL_HDR_ADDEND)))
3867     OS << " + Addend";
3868   OS << "\n";
3869 }
3870 
3871 template <class ELFT>
3872 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3873                                                  const DynRegionInfo &Reg) {
3874   uint64_t Offset = Reg.Addr - this->Obj.base();
3875   OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3876      << utohexstr(Offset, /*LowerCase=*/true);
3877   if (Type != ELF::SHT_CREL)
3878     OS << " contains " << Reg.Size << " bytes";
3879   OS << ":\n";
3880   printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader());
3881 }
3882 
3883 template <class ELFT>
3884 static bool isRelocationSec(const typename ELFT::Shdr &Sec,
3885                             const typename ELFT::Ehdr &EHeader) {
3886   return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3887          Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_CREL ||
3888          Sec.sh_type == ELF::SHT_ANDROID_REL ||
3889          Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3890          Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3891          (EHeader.e_machine == EM_AARCH64 &&
3892           Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR);
3893 }
3894 
3895 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3896   auto PrintAsRelr = [&](const Elf_Shdr &Sec) {
3897     return Sec.sh_type == ELF::SHT_RELR ||
3898            Sec.sh_type == ELF::SHT_ANDROID_RELR ||
3899            (this->Obj.getHeader().e_machine == EM_AARCH64 &&
3900             Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR);
3901   };
3902   auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3903     // Android's packed relocation section needs to be unpacked first
3904     // to get the actual number of entries.
3905     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3906         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3907       Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3908           this->Obj.android_relas(Sec);
3909       if (!RelasOrErr)
3910         return RelasOrErr.takeError();
3911       return RelasOrErr->size();
3912     }
3913 
3914     if (Sec.sh_type == ELF::SHT_CREL) {
3915       Expected<ArrayRef<uint8_t>> ContentsOrErr =
3916           this->Obj.getSectionContents(Sec);
3917       if (!ContentsOrErr)
3918         return ContentsOrErr.takeError();
3919       auto NumOrErr = this->Obj.getCrelHeader(*ContentsOrErr);
3920       if (!NumOrErr)
3921         return NumOrErr.takeError();
3922       return *NumOrErr / 8;
3923     }
3924 
3925     if (PrintAsRelr(Sec)) {
3926       Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3927       if (!RelrsOrErr)
3928         return RelrsOrErr.takeError();
3929       return this->Obj.decode_relrs(*RelrsOrErr).size();
3930     }
3931 
3932     return Sec.getEntityCount();
3933   };
3934 
3935   bool HasRelocSections = false;
3936   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3937     if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
3938       continue;
3939     HasRelocSections = true;
3940 
3941     std::string EntriesNum = "<?>";
3942     if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3943       EntriesNum = std::to_string(*NumOrErr);
3944     else
3945       this->reportUniqueWarning("unable to get the number of relocations in " +
3946                                 this->describe(Sec) + ": " +
3947                                 toString(NumOrErr.takeError()));
3948 
3949     uintX_t Offset = Sec.sh_offset;
3950     StringRef Name = this->getPrintableSectionName(Sec);
3951     OS << "\nRelocation section '" << Name << "' at offset 0x"
3952        << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3953        << " entries:\n";
3954 
3955     if (PrintAsRelr(Sec)) {
3956       printRelr(Sec);
3957     } else {
3958       uint64_t CrelHdr = 0;
3959       // For CREL, read the header and call printRelocationsHelper only if
3960       // GetEntriesNum(Sec) succeeded.
3961       if (Sec.sh_type == ELF::SHT_CREL && EntriesNum != "<?>") {
3962         CrelHdr = cantFail(this->Obj.getCrelHeader(
3963             cantFail(this->Obj.getSectionContents(Sec))));
3964       }
3965       printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader(),
3966                                    CrelHdr);
3967       if (Sec.sh_type != ELF::SHT_CREL || EntriesNum != "<?>")
3968         this->printRelocationsHelper(Sec);
3969     }
3970   }
3971   if (!HasRelocSections)
3972     OS << "\nThere are no relocations in this file.\n";
3973 }
3974 
3975 template <class ELFT> void GNUELFDumper<ELFT>::printRelr(const Elf_Shdr &Sec) {
3976   Expected<Elf_Relr_Range> RangeOrErr = this->Obj.relrs(Sec);
3977   if (!RangeOrErr) {
3978     this->reportUniqueWarning("unable to read relocations from " +
3979                               this->describe(Sec) + ": " +
3980                               toString(RangeOrErr.takeError()));
3981     return;
3982   }
3983   if (ELFT::Is64Bits)
3984     OS << "Index: Entry            Address           Symbolic Address\n";
3985   else
3986     OS << "Index: Entry    Address   Symbolic Address\n";
3987 
3988   // If .symtab is available, collect its defined symbols and sort them by
3989   // st_value.
3990   SmallVector<std::pair<uint64_t, std::string>, 0> Syms;
3991   if (this->DotSymtabSec) {
3992     Elf_Sym_Range Symtab;
3993     std::optional<StringRef> Strtab;
3994     std::tie(Symtab, Strtab) = this->getSymtabAndStrtab();
3995     if (Symtab.size() && Strtab) {
3996       for (auto [I, Sym] : enumerate(Symtab)) {
3997         if (!Sym.st_shndx)
3998           continue;
3999         Syms.emplace_back(Sym.st_value,
4000                           this->getFullSymbolName(Sym, I, ArrayRef<Elf_Word>(),
4001                                                   *Strtab, false));
4002       }
4003     }
4004   }
4005   llvm::stable_sort(Syms);
4006 
4007   typename ELFT::uint Base = 0;
4008   size_t I = 0;
4009   auto Print = [&](uint64_t Where) {
4010     OS << format_hex_no_prefix(Where, ELFT::Is64Bits ? 16 : 8);
4011     for (; I < Syms.size() && Syms[I].first <= Where; ++I)
4012       ;
4013     // Try symbolizing the address. Find the nearest symbol before or at the
4014     // address and print the symbol and the address difference.
4015     if (I) {
4016       OS << "  " << Syms[I - 1].second;
4017       if (Syms[I - 1].first < Where)
4018         OS << " + 0x" << Twine::utohexstr(Where - Syms[I - 1].first);
4019     }
4020     OS << '\n';
4021   };
4022   for (auto [Index, R] : enumerate(*RangeOrErr)) {
4023     typename ELFT::uint Entry = R;
4024     OS << formatv("{0:4}:  ", Index)
4025        << format_hex_no_prefix(Entry, ELFT::Is64Bits ? 16 : 8) << ' ';
4026     if ((Entry & 1) == 0) {
4027       Print(Entry);
4028       Base = Entry + sizeof(typename ELFT::uint);
4029     } else {
4030       bool First = true;
4031       for (auto Where = Base; Entry >>= 1;
4032            Where += sizeof(typename ELFT::uint)) {
4033         if (Entry & 1) {
4034           if (First)
4035             First = false;
4036           else
4037             OS.indent(ELFT::Is64Bits ? 24 : 16);
4038           Print(Where);
4039         }
4040       }
4041       Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(typename ELFT::uint);
4042     }
4043   }
4044 }
4045 
4046 // Print the offset of a particular section from anyone of the ranges:
4047 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
4048 // If 'Type' does not fall within any of those ranges, then a string is
4049 // returned as '<unknown>' followed by the type value.
4050 static std::string getSectionTypeOffsetString(unsigned Type) {
4051   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
4052     return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
4053   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
4054     return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
4055   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
4056     return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
4057   return "0x" + utohexstr(Type) + ": <unknown>";
4058 }
4059 
4060 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
4061   StringRef Name = getELFSectionTypeName(Machine, Type);
4062 
4063   // Handle SHT_GNU_* type names.
4064   if (Name.consume_front("SHT_GNU_")) {
4065     if (Name == "HASH")
4066       return "GNU_HASH";
4067     // E.g. SHT_GNU_verneed -> VERNEED.
4068     return Name.upper();
4069   }
4070 
4071   if (Name == "SHT_SYMTAB_SHNDX")
4072     return "SYMTAB SECTION INDICES";
4073 
4074   if (Name.consume_front("SHT_"))
4075     return Name.str();
4076   return getSectionTypeOffsetString(Type);
4077 }
4078 
4079 static void printSectionDescription(formatted_raw_ostream &OS,
4080                                     unsigned EMachine) {
4081   OS << "Key to Flags:\n";
4082   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
4083         "(info),\n";
4084   OS << "  L (link order), O (extra OS processing required), G (group), T "
4085         "(TLS),\n";
4086   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
4087   OS << "  R (retain)";
4088 
4089   if (EMachine == EM_X86_64)
4090     OS << ", l (large)";
4091   else if (EMachine == EM_ARM)
4092     OS << ", y (purecode)";
4093 
4094   OS << ", p (processor specific)\n";
4095 }
4096 
4097 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
4098   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4099   if (Sections.empty()) {
4100     OS << "\nThere are no sections in this file.\n";
4101     Expected<StringRef> SecStrTableOrErr =
4102         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4103     if (!SecStrTableOrErr)
4104       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4105     return;
4106   }
4107   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
4108   OS << "There are " << to_string(Sections.size())
4109      << " section headers, starting at offset "
4110      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4111   OS << "Section Headers:\n";
4112   Field Fields[11] = {
4113       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
4114       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
4115       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
4116       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
4117   for (const Field &F : Fields)
4118     printField(F);
4119   OS << "\n";
4120 
4121   StringRef SecStrTable;
4122   if (Expected<StringRef> SecStrTableOrErr =
4123           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4124     SecStrTable = *SecStrTableOrErr;
4125   else
4126     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4127 
4128   size_t SectionIndex = 0;
4129   for (const Elf_Shdr &Sec : Sections) {
4130     Fields[0].Str = to_string(SectionIndex);
4131     if (SecStrTable.empty())
4132       Fields[1].Str = "<no-strings>";
4133     else
4134       Fields[1].Str = std::string(unwrapOrError<StringRef>(
4135           this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
4136     Fields[2].Str =
4137         getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
4138     Fields[3].Str =
4139         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
4140     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
4141     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
4142     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
4143     Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
4144                                 this->Obj.getHeader().e_machine, Sec.sh_flags);
4145     Fields[8].Str = to_string(Sec.sh_link);
4146     Fields[9].Str = to_string(Sec.sh_info);
4147     Fields[10].Str = to_string(Sec.sh_addralign);
4148 
4149     OS.PadToColumn(Fields[0].Column);
4150     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
4151     for (int i = 1; i < 7; i++)
4152       printField(Fields[i]);
4153     OS.PadToColumn(Fields[7].Column);
4154     OS << right_justify(Fields[7].Str, 3);
4155     OS.PadToColumn(Fields[8].Column);
4156     OS << right_justify(Fields[8].Str, 2);
4157     OS.PadToColumn(Fields[9].Column);
4158     OS << right_justify(Fields[9].Str, 3);
4159     OS.PadToColumn(Fields[10].Column);
4160     OS << right_justify(Fields[10].Str, 2);
4161     OS << "\n";
4162     ++SectionIndex;
4163   }
4164   printSectionDescription(OS, this->Obj.getHeader().e_machine);
4165 }
4166 
4167 template <class ELFT>
4168 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
4169                                             size_t Entries,
4170                                             bool NonVisibilityBitsUsed,
4171                                             bool ExtraSymInfo) const {
4172   StringRef Name;
4173   if (Symtab)
4174     Name = this->getPrintableSectionName(*Symtab);
4175   if (!Name.empty())
4176     OS << "\nSymbol table '" << Name << "'";
4177   else
4178     OS << "\nSymbol table for image";
4179   OS << " contains " << Entries << " entries:\n";
4180 
4181   if (ELFT::Is64Bits) {
4182     OS << "   Num:    Value          Size Type    Bind   Vis";
4183     if (ExtraSymInfo)
4184       OS << "+Other";
4185   } else {
4186     OS << "   Num:    Value  Size Type    Bind   Vis";
4187     if (ExtraSymInfo)
4188       OS << "+Other";
4189   }
4190 
4191   OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0));
4192   if (ExtraSymInfo)
4193     OS << "Ndx(SecName) Name [+ Version Info]\n";
4194   else
4195     OS << "Ndx Name\n";
4196 }
4197 
4198 template <class ELFT>
4199 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx(
4200     const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
4201     bool ExtraSymInfo) const {
4202   unsigned SectionIndex = Symbol.st_shndx;
4203   switch (SectionIndex) {
4204   case ELF::SHN_UNDEF:
4205     return "UND";
4206   case ELF::SHN_ABS:
4207     return "ABS";
4208   case ELF::SHN_COMMON:
4209     return "COM";
4210   case ELF::SHN_XINDEX: {
4211     Expected<uint32_t> IndexOrErr =
4212         object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
4213     if (!IndexOrErr) {
4214       assert(Symbol.st_shndx == SHN_XINDEX &&
4215              "getExtendedSymbolTableIndex should only fail due to an invalid "
4216              "SHT_SYMTAB_SHNDX table/reference");
4217       this->reportUniqueWarning(IndexOrErr.takeError());
4218       return "RSV[0xffff]";
4219     }
4220     SectionIndex = *IndexOrErr;
4221     break;
4222   }
4223   default:
4224     // Find if:
4225     // Processor specific
4226     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4227       return std::string("PRC[0x") +
4228              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4229     // OS specific
4230     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4231       return std::string("OS[0x") +
4232              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4233     // Architecture reserved:
4234     if (SectionIndex >= ELF::SHN_LORESERVE &&
4235         SectionIndex <= ELF::SHN_HIRESERVE)
4236       return std::string("RSV[0x") +
4237              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4238     break;
4239   }
4240 
4241   std::string Extra;
4242   if (ExtraSymInfo) {
4243     auto Sec = this->Obj.getSection(SectionIndex);
4244     if (!Sec) {
4245       this->reportUniqueWarning(Sec.takeError());
4246     } else {
4247       auto SecName = this->Obj.getSectionName(**Sec);
4248       if (!SecName)
4249         this->reportUniqueWarning(SecName.takeError());
4250       else
4251         Extra = Twine(" (" + *SecName + ")").str();
4252     }
4253   }
4254   return to_string(format_decimal(SectionIndex, 3)) + Extra;
4255 }
4256 
4257 template <class ELFT>
4258 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4259                                      DataRegion<Elf_Word> ShndxTable,
4260                                      std::optional<StringRef> StrTable,
4261                                      bool IsDynamic, bool NonVisibilityBitsUsed,
4262                                      bool ExtraSymInfo) const {
4263   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4264   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
4265                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4266   Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4267   Fields[1].Str =
4268       to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4269   Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4270 
4271   unsigned char SymbolType = Symbol.getType();
4272   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4273       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4274     Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4275   else
4276     Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4277 
4278   Fields[4].Str =
4279       enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
4280   Fields[5].Str =
4281       enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
4282 
4283   if (Symbol.st_other & ~0x3) {
4284     if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4285       uint8_t Other = Symbol.st_other & ~0x3;
4286       if (Other & STO_AARCH64_VARIANT_PCS) {
4287         Other &= ~STO_AARCH64_VARIANT_PCS;
4288         Fields[5].Str += " [VARIANT_PCS";
4289         if (Other != 0)
4290           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4291         Fields[5].Str.append("]");
4292       }
4293     } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
4294       uint8_t Other = Symbol.st_other & ~0x3;
4295       if (Other & STO_RISCV_VARIANT_CC) {
4296         Other &= ~STO_RISCV_VARIANT_CC;
4297         Fields[5].Str += " [VARIANT_CC";
4298         if (Other != 0)
4299           Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4300         Fields[5].Str.append("]");
4301       }
4302     } else {
4303       Fields[5].Str +=
4304           " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4305     }
4306   }
4307 
4308   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4309   Fields[6].Str =
4310       getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo);
4311 
4312   Fields[7].Column += ExtraSymInfo ? 10 : 0;
4313   Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
4314                                           StrTable, IsDynamic);
4315   for (const Field &Entry : Fields)
4316     printField(Entry);
4317   OS << "\n";
4318 }
4319 
4320 template <class ELFT>
4321 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
4322                                            unsigned SymIndex,
4323                                            DataRegion<Elf_Word> ShndxTable,
4324                                            StringRef StrTable,
4325                                            uint32_t Bucket) {
4326   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4327   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
4328                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4329   Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4330   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4331 
4332   Fields[2].Str = to_string(
4333       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4334   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4335 
4336   unsigned char SymbolType = Symbol->getType();
4337   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4338       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4339     Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4340   else
4341     Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4342 
4343   Fields[5].Str =
4344       enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
4345   Fields[6].Str =
4346       enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
4347   Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
4348   Fields[8].Str =
4349       this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
4350 
4351   for (const Field &Entry : Fields)
4352     printField(Entry);
4353   OS << "\n";
4354 }
4355 
4356 template <class ELFT>
4357 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
4358                                       bool PrintDynamicSymbols,
4359                                       bool ExtraSymInfo) {
4360   if (!PrintSymbols && !PrintDynamicSymbols)
4361     return;
4362   // GNU readelf prints both the .dynsym and .symtab with --symbols.
4363   this->printSymbolsHelper(true, ExtraSymInfo);
4364   if (PrintSymbols)
4365     this->printSymbolsHelper(false, ExtraSymInfo);
4366 }
4367 
4368 template <class ELFT>
4369 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4370   if (this->DynamicStringTable.empty())
4371     return;
4372 
4373   if (ELFT::Is64Bits)
4374     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4375   else
4376     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4377   OS << "\n";
4378 
4379   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4380   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4381   if (!FirstSym) {
4382     this->reportUniqueWarning(
4383         Twine("unable to print symbols for the .hash table: the "
4384               "dynamic symbol table ") +
4385         (this->DynSymRegion ? "is empty" : "was not found"));
4386     return;
4387   }
4388 
4389   DataRegion<Elf_Word> ShndxTable(
4390       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4391   auto Buckets = SysVHash.buckets();
4392   auto Chains = SysVHash.chains();
4393   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4394     if (Buckets[Buc] == ELF::STN_UNDEF)
4395       continue;
4396     BitVector Visited(SysVHash.nchain);
4397     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4398       if (Ch == ELF::STN_UNDEF)
4399         break;
4400 
4401       if (Visited[Ch]) {
4402         this->reportUniqueWarning(".hash section is invalid: bucket " +
4403                                   Twine(Ch) +
4404                                   ": a cycle was detected in the linked chain");
4405         break;
4406       }
4407 
4408       printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
4409                         Buc);
4410       Visited[Ch] = true;
4411     }
4412   }
4413 }
4414 
4415 template <class ELFT>
4416 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4417   if (this->DynamicStringTable.empty())
4418     return;
4419 
4420   Elf_Sym_Range DynSyms = this->dynamic_symbols();
4421   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4422   if (!FirstSym) {
4423     this->reportUniqueWarning(
4424         Twine("unable to print symbols for the .gnu.hash table: the "
4425               "dynamic symbol table ") +
4426         (this->DynSymRegion ? "is empty" : "was not found"));
4427     return;
4428   }
4429 
4430   auto GetSymbol = [&](uint64_t SymIndex,
4431                        uint64_t SymsTotal) -> const Elf_Sym * {
4432     if (SymIndex >= SymsTotal) {
4433       this->reportUniqueWarning(
4434           "unable to print hashed symbol with index " + Twine(SymIndex) +
4435           ", which is greater than or equal to the number of dynamic symbols "
4436           "(" +
4437           Twine::utohexstr(SymsTotal) + ")");
4438       return nullptr;
4439     }
4440     return FirstSym + SymIndex;
4441   };
4442 
4443   Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4444       getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4445   ArrayRef<Elf_Word> Values;
4446   if (!ValuesOrErr)
4447     this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4448                               "section: " +
4449                               toString(ValuesOrErr.takeError()));
4450   else
4451     Values = *ValuesOrErr;
4452 
4453   DataRegion<Elf_Word> ShndxTable(
4454       (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4455   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4456   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4457     if (Buckets[Buc] == ELF::STN_UNDEF)
4458       continue;
4459     uint32_t Index = Buckets[Buc];
4460     // Print whole chain.
4461     while (true) {
4462       uint32_t SymIndex = Index++;
4463       if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4464         printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4465                           Buc);
4466       else
4467         break;
4468 
4469       if (SymIndex < GnuHash.symndx) {
4470         this->reportUniqueWarning(
4471             "unable to read the hash value for symbol with index " +
4472             Twine(SymIndex) +
4473             ", which is less than the index of the first hashed symbol (" +
4474             Twine(GnuHash.symndx) + ")");
4475         break;
4476       }
4477 
4478        // Chain ends at symbol with stopper bit.
4479       if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4480         break;
4481     }
4482   }
4483 }
4484 
4485 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4486   if (this->HashTable) {
4487     OS << "\n Symbol table of .hash for image:\n";
4488     if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4489       this->reportUniqueWarning(std::move(E));
4490     else
4491       printHashTableSymbols(*this->HashTable);
4492   }
4493 
4494   // Try printing the .gnu.hash table.
4495   if (this->GnuHashTable) {
4496     OS << "\n Symbol table of .gnu.hash for image:\n";
4497     if (ELFT::Is64Bits)
4498       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4499     else
4500       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4501     OS << "\n";
4502 
4503     if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4504       this->reportUniqueWarning(std::move(E));
4505     else
4506       printGnuHashTableSymbols(*this->GnuHashTable);
4507   }
4508 }
4509 
4510 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4511   ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4512   if (Sections.empty()) {
4513     OS << "\nThere are no sections in this file.\n";
4514     Expected<StringRef> SecStrTableOrErr =
4515         this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4516     if (!SecStrTableOrErr)
4517       this->reportUniqueWarning(SecStrTableOrErr.takeError());
4518     return;
4519   }
4520   OS << "There are " << to_string(Sections.size())
4521      << " section headers, starting at offset "
4522      << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4523 
4524   OS << "Section Headers:\n";
4525 
4526   auto PrintFields = [&](ArrayRef<Field> V) {
4527     for (const Field &F : V)
4528       printField(F);
4529     OS << "\n";
4530   };
4531 
4532   PrintFields({{"[Nr]", 2}, {"Name", 7}});
4533 
4534   constexpr bool Is64 = ELFT::Is64Bits;
4535   PrintFields({{"Type", 7},
4536                {Is64 ? "Address" : "Addr", 23},
4537                {"Off", Is64 ? 40 : 32},
4538                {"Size", Is64 ? 47 : 39},
4539                {"ES", Is64 ? 54 : 46},
4540                {"Lk", Is64 ? 59 : 51},
4541                {"Inf", Is64 ? 62 : 54},
4542                {"Al", Is64 ? 66 : 57}});
4543   PrintFields({{"Flags", 7}});
4544 
4545   StringRef SecStrTable;
4546   if (Expected<StringRef> SecStrTableOrErr =
4547           this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4548     SecStrTable = *SecStrTableOrErr;
4549   else
4550     this->reportUniqueWarning(SecStrTableOrErr.takeError());
4551 
4552   size_t SectionIndex = 0;
4553   const unsigned AddrSize = Is64 ? 16 : 8;
4554   for (const Elf_Shdr &S : Sections) {
4555     StringRef Name = "<?>";
4556     if (Expected<StringRef> NameOrErr =
4557             this->Obj.getSectionName(S, SecStrTable))
4558       Name = *NameOrErr;
4559     else
4560       this->reportUniqueWarning(NameOrErr.takeError());
4561 
4562     OS.PadToColumn(2);
4563     OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4564     PrintFields({{Name, 7}});
4565     PrintFields(
4566         {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4567          {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4568          {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4569          {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4570          {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4571          {to_string(S.sh_link), Is64 ? 59 : 51},
4572          {to_string(S.sh_info), Is64 ? 63 : 55},
4573          {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4574 
4575     OS.PadToColumn(7);
4576     OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4577 
4578     DenseMap<unsigned, StringRef> FlagToName = {
4579         {SHF_WRITE, "WRITE"},           {SHF_ALLOC, "ALLOC"},
4580         {SHF_EXECINSTR, "EXEC"},        {SHF_MERGE, "MERGE"},
4581         {SHF_STRINGS, "STRINGS"},       {SHF_INFO_LINK, "INFO LINK"},
4582         {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4583         {SHF_GROUP, "GROUP"},           {SHF_TLS, "TLS"},
4584         {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4585 
4586     uint64_t Flags = S.sh_flags;
4587     uint64_t UnknownFlags = 0;
4588     ListSeparator LS;
4589     while (Flags) {
4590       // Take the least significant bit as a flag.
4591       uint64_t Flag = Flags & -Flags;
4592       Flags -= Flag;
4593 
4594       auto It = FlagToName.find(Flag);
4595       if (It != FlagToName.end())
4596         OS << LS << It->second;
4597       else
4598         UnknownFlags |= Flag;
4599     }
4600 
4601     auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4602       uint64_t FlagsToPrint = UnknownFlags & Mask;
4603       if (!FlagsToPrint)
4604         return;
4605 
4606       OS << LS << Name << " ("
4607          << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4608       UnknownFlags &= ~Mask;
4609     };
4610 
4611     PrintUnknownFlags(SHF_MASKOS, "OS");
4612     PrintUnknownFlags(SHF_MASKPROC, "PROC");
4613     PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4614 
4615     OS << "\n";
4616     ++SectionIndex;
4617 
4618     if (!(S.sh_flags & SHF_COMPRESSED))
4619       continue;
4620     Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4621     if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4622       consumeError(Data.takeError());
4623       reportWarning(createError("SHF_COMPRESSED section '" + Name +
4624                                 "' does not have an Elf_Chdr header"),
4625                     this->FileName);
4626       OS.indent(7);
4627       OS << "[<corrupt>]";
4628     } else {
4629       OS.indent(7);
4630       auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4631       if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4632         OS << "ZLIB";
4633       else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4634         OS << "ZSTD";
4635       else
4636         OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4637       OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4638          << ", " << Chdr->ch_addralign;
4639     }
4640     OS << '\n';
4641   }
4642 }
4643 
4644 static inline std::string printPhdrFlags(unsigned Flag) {
4645   std::string Str;
4646   Str = (Flag & PF_R) ? "R" : " ";
4647   Str += (Flag & PF_W) ? "W" : " ";
4648   Str += (Flag & PF_X) ? "E" : " ";
4649   return Str;
4650 }
4651 
4652 template <class ELFT>
4653 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4654                              const typename ELFT::Shdr &Sec) {
4655   if (Sec.sh_flags & ELF::SHF_TLS) {
4656     // .tbss must only be shown in the PT_TLS segment.
4657     if (Sec.sh_type == ELF::SHT_NOBITS)
4658       return Phdr.p_type == ELF::PT_TLS;
4659 
4660     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4661     // segments.
4662     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4663            (Phdr.p_type == ELF::PT_GNU_RELRO);
4664   }
4665 
4666   // PT_TLS must only have SHF_TLS sections.
4667   return Phdr.p_type != ELF::PT_TLS;
4668 }
4669 
4670 template <class ELFT>
4671 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4672                            const typename ELFT::Shdr &Sec) {
4673   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4674     return true;
4675 
4676   // We get here when we have an empty section. Only non-empty sections can be
4677   // at the start or at the end of PT_DYNAMIC.
4678   // Is section within the phdr both based on offset and VMA?
4679   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4680                      (Sec.sh_offset > Phdr.p_offset &&
4681                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4682   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4683                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4684   return CheckOffset && CheckVA;
4685 }
4686 
4687 template <class ELFT>
4688 void GNUELFDumper<ELFT>::printProgramHeaders(
4689     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4690   const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4691   // Exit early if no program header or section mapping details were requested.
4692   if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4693     return;
4694 
4695   if (PrintProgramHeaders) {
4696     const Elf_Ehdr &Header = this->Obj.getHeader();
4697     if (Header.e_phnum == 0) {
4698       OS << "\nThere are no program headers in this file.\n";
4699     } else {
4700       printProgramHeaders();
4701     }
4702   }
4703 
4704   if (ShouldPrintSectionMapping)
4705     printSectionMapping();
4706 }
4707 
4708 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4709   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4710   const Elf_Ehdr &Header = this->Obj.getHeader();
4711   Field Fields[8] = {2,         17,        26,        37 + Bias,
4712                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4713   OS << "\nElf file type is "
4714      << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4715      << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4716      << "There are " << Header.e_phnum << " program headers,"
4717      << " starting at offset " << Header.e_phoff << "\n\n"
4718      << "Program Headers:\n";
4719   if (ELFT::Is64Bits)
4720     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4721        << "  FileSiz  MemSiz   Flg Align\n";
4722   else
4723     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4724        << "MemSiz  Flg Align\n";
4725 
4726   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4727   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4728 
4729   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4730   if (!PhdrsOrErr) {
4731     this->reportUniqueWarning("unable to dump program headers: " +
4732                               toString(PhdrsOrErr.takeError()));
4733     return;
4734   }
4735 
4736   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4737     Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4738     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4739     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4740     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4741     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4742     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4743     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4744     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4745     for (const Field &F : Fields)
4746       printField(F);
4747     if (Phdr.p_type == ELF::PT_INTERP) {
4748       OS << "\n";
4749       auto ReportBadInterp = [&](const Twine &Msg) {
4750         this->reportUniqueWarning(
4751             "unable to read program interpreter name at offset 0x" +
4752             Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4753       };
4754 
4755       if (Phdr.p_offset >= this->Obj.getBufSize()) {
4756         ReportBadInterp("it goes past the end of the file (0x" +
4757                         Twine::utohexstr(this->Obj.getBufSize()) + ")");
4758         continue;
4759       }
4760 
4761       const char *Data =
4762           reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4763       size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4764       size_t Len = strnlen(Data, MaxSize);
4765       if (Len == MaxSize) {
4766         ReportBadInterp("it is not null-terminated");
4767         continue;
4768       }
4769 
4770       OS << "      [Requesting program interpreter: ";
4771       OS << StringRef(Data, Len) << "]";
4772     }
4773     OS << "\n";
4774   }
4775 }
4776 
4777 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4778   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4779   DenseSet<const Elf_Shdr *> BelongsToSegment;
4780   int Phnum = 0;
4781 
4782   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4783   if (!PhdrsOrErr) {
4784     this->reportUniqueWarning(
4785         "can't read program headers to build section to segment mapping: " +
4786         toString(PhdrsOrErr.takeError()));
4787     return;
4788   }
4789 
4790   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4791     std::string Sections;
4792     OS << format("   %2.2d     ", Phnum++);
4793     // Check if each section is in a segment and then print mapping.
4794     for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4795       if (Sec.sh_type == ELF::SHT_NULL)
4796         continue;
4797 
4798       // readelf additionally makes sure it does not print zero sized sections
4799       // at end of segments and for PT_DYNAMIC both start and end of section
4800       // .tbss must only be shown in PT_TLS section.
4801       if (isSectionInSegment<ELFT>(Phdr, Sec) &&
4802           checkTLSSections<ELFT>(Phdr, Sec) &&
4803           checkPTDynamic<ELFT>(Phdr, Sec)) {
4804         Sections +=
4805             unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4806             " ";
4807         BelongsToSegment.insert(&Sec);
4808       }
4809     }
4810     OS << Sections << "\n";
4811     OS.flush();
4812   }
4813 
4814   // Display sections that do not belong to a segment.
4815   std::string Sections;
4816   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4817     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4818       Sections +=
4819           unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4820           ' ';
4821   }
4822   if (!Sections.empty()) {
4823     OS << "   None  " << Sections << '\n';
4824     OS.flush();
4825   }
4826 }
4827 
4828 namespace {
4829 
4830 template <class ELFT>
4831 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4832                                   const Relocation<ELFT> &Reloc) {
4833   using Elf_Sym = typename ELFT::Sym;
4834   auto WarnAndReturn = [&](const Elf_Sym *Sym,
4835                            const Twine &Reason) -> RelSymbol<ELFT> {
4836     Dumper.reportUniqueWarning(
4837         "unable to get name of the dynamic symbol with index " +
4838         Twine(Reloc.Symbol) + ": " + Reason);
4839     return {Sym, "<corrupt>"};
4840   };
4841 
4842   ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4843   const Elf_Sym *FirstSym = Symbols.begin();
4844   if (!FirstSym)
4845     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4846 
4847   // We might have an object without a section header. In this case the size of
4848   // Symbols is zero, because there is no way to know the size of the dynamic
4849   // table. We should allow this case and not print a warning.
4850   if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4851     return WarnAndReturn(
4852         nullptr,
4853         "index is greater than or equal to the number of dynamic symbols (" +
4854             Twine(Symbols.size()) + ")");
4855 
4856   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4857   const uint64_t FileSize = Obj.getBufSize();
4858   const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4859                              (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4860   if (SymOffset + sizeof(Elf_Sym) > FileSize)
4861     return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4862                                       " goes past the end of the file (0x" +
4863                                       Twine::utohexstr(FileSize) + ")");
4864 
4865   const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4866   Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4867   if (!ErrOrName)
4868     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4869 
4870   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4871 }
4872 } // namespace
4873 
4874 template <class ELFT>
4875 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4876                                    typename ELFT::DynRange Tags) {
4877   size_t Max = 0;
4878   for (const typename ELFT::Dyn &Dyn : Tags)
4879     Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4880   return Max;
4881 }
4882 
4883 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4884   Elf_Dyn_Range Table = this->dynamic_table();
4885   if (Table.empty())
4886     return;
4887 
4888   OS << "Dynamic section at offset "
4889      << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4890                        this->Obj.base(),
4891                    1)
4892      << " contains " << Table.size() << " entries:\n";
4893 
4894   // The type name is surrounded with round brackets, hence add 2.
4895   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4896   // The "Name/Value" column should be indented from the "Type" column by N
4897   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4898   // space (1) = 3.
4899   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4900      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4901 
4902   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4903   for (auto Entry : Table) {
4904     uintX_t Tag = Entry.getTag();
4905     std::string Type =
4906         std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4907     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4908     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4909        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4910   }
4911 }
4912 
4913 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4914   this->printDynamicRelocationsHelper();
4915 }
4916 
4917 template <class ELFT>
4918 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4919   printRelRelaReloc(R, getSymbolForReloc(*this, R));
4920 }
4921 
4922 template <class ELFT>
4923 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4924   this->forEachRelocationDo(
4925       Sec, [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4926                const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); });
4927 }
4928 
4929 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4930   const bool IsMips64EL = this->Obj.isMips64EL();
4931   auto DumpCrelRegion = [&](DynRegionInfo &Region) {
4932     // While the size is unknown, a valid CREL has at least one byte. We can
4933     // check whether Addr is in bounds, and then decode CREL until the file
4934     // end.
4935     Region.Size = Region.EntSize = 1;
4936     if (!Region.template getAsArrayRef<uint8_t>().empty()) {
4937       const uint64_t Offset =
4938           Region.Addr - reinterpret_cast<const uint8_t *>(
4939                             ObjF.getMemoryBufferRef().getBufferStart());
4940       const uint64_t ObjSize = ObjF.getMemoryBufferRef().getBufferSize();
4941       auto RelsOrRelas =
4942           Obj.decodeCrel(ArrayRef<uint8_t>(Region.Addr, ObjSize - Offset));
4943       if (!RelsOrRelas) {
4944         reportUniqueWarning(toString(RelsOrRelas.takeError()));
4945       } else {
4946         for (const Elf_Rel &R : RelsOrRelas->first)
4947           printDynamicReloc(Relocation<ELFT>(R, false));
4948         for (const Elf_Rela &R : RelsOrRelas->second)
4949           printDynamicReloc(Relocation<ELFT>(R, false));
4950       }
4951     }
4952   };
4953 
4954   if (this->DynCrelRegion.Addr) {
4955     printDynamicRelocHeader(ELF::SHT_CREL, "CREL", this->DynCrelRegion);
4956     DumpCrelRegion(this->DynCrelRegion);
4957   }
4958 
4959   if (this->DynRelaRegion.Size > 0) {
4960     printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4961     for (const Elf_Rela &Rela :
4962          this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4963       printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4964   }
4965 
4966   if (this->DynRelRegion.Size > 0) {
4967     printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4968     for (const Elf_Rel &Rel :
4969          this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4970       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4971   }
4972 
4973   if (this->DynRelrRegion.Size > 0) {
4974     printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4975     Elf_Relr_Range Relrs =
4976         this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4977     for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4978       printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4979   }
4980 
4981   if (this->DynPLTRelRegion.Size) {
4982     if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4983       printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4984       for (const Elf_Rela &Rela :
4985            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4986         printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4987     } else if (this->DynPLTRelRegion.EntSize == 1) {
4988       DumpCrelRegion(this->DynPLTRelRegion);
4989     } else {
4990       printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4991       for (const Elf_Rel &Rel :
4992            this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4993         printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4994     }
4995   }
4996 }
4997 
4998 template <class ELFT>
4999 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
5000     const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
5001   // Don't inline the SecName, because it might report a warning to stderr and
5002   // corrupt the output.
5003   StringRef SecName = this->getPrintableSectionName(Sec);
5004   OS << Label << " section '" << SecName << "' "
5005      << "contains " << EntriesNum << " entries:\n";
5006 
5007   StringRef LinkedSecName = "<corrupt>";
5008   if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
5009           this->Obj.getSection(Sec.sh_link))
5010     LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
5011   else
5012     this->reportUniqueWarning("invalid section linked to " +
5013                               this->describe(Sec) + ": " +
5014                               toString(LinkedSecOrErr.takeError()));
5015 
5016   OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
5017      << "  Offset: " << format_hex(Sec.sh_offset, 8)
5018      << "  Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
5019 }
5020 
5021 template <class ELFT>
5022 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
5023   if (!Sec)
5024     return;
5025 
5026   printGNUVersionSectionProlog(*Sec, "Version symbols",
5027                                Sec->sh_size / sizeof(Elf_Versym));
5028   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
5029       this->getVersionTable(*Sec, /*SymTab=*/nullptr,
5030                             /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
5031   if (!VerTableOrErr) {
5032     this->reportUniqueWarning(VerTableOrErr.takeError());
5033     return;
5034   }
5035 
5036   SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
5037   if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
5038           this->getVersionMap())
5039     VersionMap = *MapOrErr;
5040   else
5041     this->reportUniqueWarning(MapOrErr.takeError());
5042 
5043   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
5044   std::vector<StringRef> Versions;
5045   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
5046     unsigned Ndx = VerTable[I].vs_index;
5047     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
5048       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
5049       continue;
5050     }
5051 
5052     if (!VersionMap) {
5053       Versions.emplace_back("<corrupt>");
5054       continue;
5055     }
5056 
5057     bool IsDefault;
5058     Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
5059         Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
5060     if (!NameOrErr) {
5061       this->reportUniqueWarning("unable to get a version for entry " +
5062                                 Twine(I) + " of " + this->describe(*Sec) +
5063                                 ": " + toString(NameOrErr.takeError()));
5064       Versions.emplace_back("<corrupt>");
5065       continue;
5066     }
5067     Versions.emplace_back(*NameOrErr);
5068   }
5069 
5070   // readelf prints 4 entries per line.
5071   uint64_t Entries = VerTable.size();
5072   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
5073     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
5074     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
5075       unsigned Ndx = VerTable[VersymRow + I].vs_index;
5076       OS << format("%4x%c", Ndx & VERSYM_VERSION,
5077                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
5078       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
5079     }
5080     OS << '\n';
5081   }
5082   OS << '\n';
5083 }
5084 
5085 static std::string versionFlagToString(unsigned Flags) {
5086   if (Flags == 0)
5087     return "none";
5088 
5089   std::string Ret;
5090   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
5091     if (!(Flags & Flag))
5092       return;
5093     if (!Ret.empty())
5094       Ret += " | ";
5095     Ret += Name;
5096     Flags &= ~Flag;
5097   };
5098 
5099   AddFlag(VER_FLG_BASE, "BASE");
5100   AddFlag(VER_FLG_WEAK, "WEAK");
5101   AddFlag(VER_FLG_INFO, "INFO");
5102   AddFlag(~0, "<unknown>");
5103   return Ret;
5104 }
5105 
5106 template <class ELFT>
5107 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
5108   if (!Sec)
5109     return;
5110 
5111   printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
5112 
5113   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
5114   if (!V) {
5115     this->reportUniqueWarning(V.takeError());
5116     return;
5117   }
5118 
5119   for (const VerDef &Def : *V) {
5120     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
5121                  Def.Offset, Def.Version,
5122                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
5123                  Def.Name.data());
5124     unsigned I = 0;
5125     for (const VerdAux &Aux : Def.AuxV)
5126       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
5127                    Aux.Name.data());
5128   }
5129 
5130   OS << '\n';
5131 }
5132 
5133 template <class ELFT>
5134 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
5135   if (!Sec)
5136     return;
5137 
5138   unsigned VerneedNum = Sec->sh_info;
5139   printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
5140 
5141   Expected<std::vector<VerNeed>> V =
5142       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
5143   if (!V) {
5144     this->reportUniqueWarning(V.takeError());
5145     return;
5146   }
5147 
5148   for (const VerNeed &VN : *V) {
5149     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
5150                  VN.Version, VN.File.data(), VN.Cnt);
5151     for (const VernAux &Aux : VN.AuxV)
5152       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
5153                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
5154                    Aux.Other);
5155   }
5156   OS << '\n';
5157 }
5158 
5159 template <class ELFT>
5160 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
5161                                                  size_t MaxChain,
5162                                                  size_t TotalSyms,
5163                                                  ArrayRef<size_t> Count,
5164                                                  bool IsGnu) const {
5165   size_t CumulativeNonZero = 0;
5166   OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "")
5167      << " bucket list length (total of " << NBucket << " buckets)\n"
5168      << " Length  Number     % of total  Coverage\n";
5169   for (size_t I = 0; I < MaxChain; ++I) {
5170     CumulativeNonZero += Count[I] * I;
5171     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
5172                  (Count[I] * 100.0) / NBucket,
5173                  (CumulativeNonZero * 100.0) / TotalSyms);
5174   }
5175 }
5176 
5177 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
5178   OS << "GNUStyle::printCGProfile not implemented\n";
5179 }
5180 
5181 template <class ELFT>
5182 void GNUELFDumper<ELFT>::printBBAddrMaps(bool /*PrettyPGOAnalysis*/) {
5183   OS << "GNUStyle::printBBAddrMaps not implemented\n";
5184 }
5185 
5186 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5187   std::vector<uint64_t> Ret;
5188   const uint8_t *Cur = Data.begin();
5189   const uint8_t *End = Data.end();
5190   while (Cur != End) {
5191     unsigned Size;
5192     const char *Err = nullptr;
5193     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5194     if (Err)
5195       return createError(Err);
5196     Cur += Size;
5197   }
5198   return Ret;
5199 }
5200 
5201 template <class ELFT>
5202 static Expected<std::vector<uint64_t>>
5203 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5204   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5205   if (!ContentsOrErr)
5206     return ContentsOrErr.takeError();
5207 
5208   if (Expected<std::vector<uint64_t>> SymsOrErr =
5209           toULEB128Array(*ContentsOrErr))
5210     return *SymsOrErr;
5211   else
5212     return createError("unable to decode " + describe(Obj, Sec) + ": " +
5213                        toString(SymsOrErr.takeError()));
5214 }
5215 
5216 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
5217   if (!this->DotAddrsigSec)
5218     return;
5219 
5220   Expected<std::vector<uint64_t>> SymsOrErr =
5221       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
5222   if (!SymsOrErr) {
5223     this->reportUniqueWarning(SymsOrErr.takeError());
5224     return;
5225   }
5226 
5227   StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
5228   OS << "\nAddress-significant symbols section '" << Name << "'"
5229      << " contains " << SymsOrErr->size() << " entries:\n";
5230   OS << "   Num: Name\n";
5231 
5232   Field Fields[2] = {0, 8};
5233   size_t SymIndex = 0;
5234   for (uint64_t Sym : *SymsOrErr) {
5235     Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5236     Fields[1].Str = this->getStaticSymbolName(Sym);
5237     for (const Field &Entry : Fields)
5238       printField(Entry);
5239     OS << "\n";
5240   }
5241 }
5242 
5243 template <class ELFT>
5244 static bool printAArch64PAuthABICoreInfo(raw_ostream &OS, uint32_t DataSize,
5245                                          ArrayRef<uint8_t> Desc) {
5246   OS << "    AArch64 PAuth ABI core info: ";
5247   // DataSize - size without padding, Desc.size() - size with padding
5248   if (DataSize != 16) {
5249     OS << format("<corrupted size: expected 16, got %d>", DataSize);
5250     return false;
5251   }
5252 
5253   uint64_t Platform =
5254       support::endian::read64<ELFT::Endianness>(Desc.data() + 0);
5255   uint64_t Version = support::endian::read64<ELFT::Endianness>(Desc.data() + 8);
5256 
5257   const char *PlatformDesc = [Platform]() {
5258     switch (Platform) {
5259     case AARCH64_PAUTH_PLATFORM_INVALID:
5260       return "invalid";
5261     case AARCH64_PAUTH_PLATFORM_BAREMETAL:
5262       return "baremetal";
5263     case AARCH64_PAUTH_PLATFORM_LLVM_LINUX:
5264       return "llvm_linux";
5265     default:
5266       return "unknown";
5267     }
5268   }();
5269 
5270   std::string VersionDesc = [Platform, Version]() -> std::string {
5271     if (Platform != AARCH64_PAUTH_PLATFORM_LLVM_LINUX)
5272       return "";
5273     if (Version >= (1 << (AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST + 1)))
5274       return "unknown";
5275 
5276     std::array<StringRef, AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST + 1>
5277         Flags;
5278     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS] = "Intrinsics";
5279     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS] = "Calls";
5280     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS] = "Returns";
5281     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS] = "AuthTraps";
5282     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR] =
5283         "VTPtrAddressDiscrimination";
5284     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR] =
5285         "VTPtrTypeDiscrimination";
5286     Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI] = "InitFini";
5287 
5288     static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI ==
5289                       AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
5290                   "Update when new enum items are defined");
5291 
5292     std::string Desc;
5293     for (uint32_t I = 0, End = Flags.size(); I < End; ++I) {
5294       if (!(Version & (1ULL << I)))
5295         Desc += '!';
5296       Desc +=
5297           Twine("PointerAuth" + Flags[I] + (I == End - 1 ? "" : ", ")).str();
5298     }
5299     return Desc;
5300   }();
5301 
5302   OS << format("platform 0x%" PRIx64 " (%s), version 0x%" PRIx64, Platform,
5303                PlatformDesc, Version);
5304   if (!VersionDesc.empty())
5305     OS << format(" (%s)", VersionDesc.c_str());
5306 
5307   return true;
5308 }
5309 
5310 template <typename ELFT>
5311 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5312                                   ArrayRef<uint8_t> Data) {
5313   std::string str;
5314   raw_string_ostream OS(str);
5315   uint32_t PrData;
5316   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5317     if (PrData & Flag) {
5318       PrData &= ~Flag;
5319       OS << Name;
5320       if (PrData)
5321         OS << ", ";
5322     }
5323   };
5324 
5325   switch (Type) {
5326   default:
5327     OS << format("<application-specific type 0x%x>", Type);
5328     return OS.str();
5329   case GNU_PROPERTY_STACK_SIZE: {
5330     OS << "stack size: ";
5331     if (DataSize == sizeof(typename ELFT::uint))
5332       OS << formatv("{0:x}",
5333                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5334     else
5335       OS << format("<corrupt length: 0x%x>", DataSize);
5336     return OS.str();
5337   }
5338   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5339     OS << "no copy on protected";
5340     if (DataSize)
5341       OS << format(" <corrupt length: 0x%x>", DataSize);
5342     return OS.str();
5343   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5344   case GNU_PROPERTY_X86_FEATURE_1_AND:
5345     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5346                                                         : "x86 feature: ");
5347     if (DataSize != 4) {
5348       OS << format("<corrupt length: 0x%x>", DataSize);
5349       return OS.str();
5350     }
5351     PrData = endian::read32<ELFT::Endianness>(Data.data());
5352     if (PrData == 0) {
5353       OS << "<None>";
5354       return OS.str();
5355     }
5356     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5357       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5358       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5359       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS");
5360     } else {
5361       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5362       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5363     }
5364     if (PrData)
5365       OS << format("<unknown flags: 0x%x>", PrData);
5366     return OS.str();
5367   case GNU_PROPERTY_AARCH64_FEATURE_PAUTH:
5368     printAArch64PAuthABICoreInfo<ELFT>(OS, DataSize, Data);
5369     return OS.str();
5370   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5371   case GNU_PROPERTY_X86_FEATURE_2_USED:
5372     OS << "x86 feature "
5373        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5374     if (DataSize != 4) {
5375       OS << format("<corrupt length: 0x%x>", DataSize);
5376       return OS.str();
5377     }
5378     PrData = endian::read32<ELFT::Endianness>(Data.data());
5379     if (PrData == 0) {
5380       OS << "<None>";
5381       return OS.str();
5382     }
5383     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5384     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5385     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5386     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5387     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5388     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5389     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5390     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5391     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5392     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5393     if (PrData)
5394       OS << format("<unknown flags: 0x%x>", PrData);
5395     return OS.str();
5396   case GNU_PROPERTY_X86_ISA_1_NEEDED:
5397   case GNU_PROPERTY_X86_ISA_1_USED:
5398     OS << "x86 ISA "
5399        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5400     if (DataSize != 4) {
5401       OS << format("<corrupt length: 0x%x>", DataSize);
5402       return OS.str();
5403     }
5404     PrData = endian::read32<ELFT::Endianness>(Data.data());
5405     if (PrData == 0) {
5406       OS << "<None>";
5407       return OS.str();
5408     }
5409     DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5410     DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5411     DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5412     DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5413     if (PrData)
5414       OS << format("<unknown flags: 0x%x>", PrData);
5415     return OS.str();
5416   }
5417 }
5418 
5419 template <typename ELFT>
5420 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5421   using Elf_Word = typename ELFT::Word;
5422 
5423   SmallVector<std::string, 4> Properties;
5424   while (Arr.size() >= 8) {
5425     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5426     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5427     Arr = Arr.drop_front(8);
5428 
5429     // Take padding size into account if present.
5430     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5431     std::string str;
5432     raw_string_ostream OS(str);
5433     if (Arr.size() < PaddedSize) {
5434       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5435       Properties.push_back(OS.str());
5436       break;
5437     }
5438     Properties.push_back(
5439         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5440     Arr = Arr.drop_front(PaddedSize);
5441   }
5442 
5443   if (!Arr.empty())
5444     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5445 
5446   return Properties;
5447 }
5448 
5449 struct GNUAbiTag {
5450   std::string OSName;
5451   std::string ABI;
5452   bool IsValid;
5453 };
5454 
5455 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5456   typedef typename ELFT::Word Elf_Word;
5457 
5458   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5459                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5460 
5461   if (Words.size() < 4)
5462     return {"", "", /*IsValid=*/false};
5463 
5464   static const char *OSNames[] = {
5465       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5466   };
5467   StringRef OSName = "Unknown";
5468   if (Words[0] < std::size(OSNames))
5469     OSName = OSNames[Words[0]];
5470   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5471   std::string str;
5472   raw_string_ostream ABI(str);
5473   ABI << Major << "." << Minor << "." << Patch;
5474   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5475 }
5476 
5477 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5478   std::string str;
5479   raw_string_ostream OS(str);
5480   for (uint8_t B : Desc)
5481     OS << format_hex_no_prefix(B, 2);
5482   return OS.str();
5483 }
5484 
5485 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5486   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5487 }
5488 
5489 template <typename ELFT>
5490 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5491                          ArrayRef<uint8_t> Desc) {
5492   // Return true if we were able to pretty-print the note, false otherwise.
5493   switch (NoteType) {
5494   default:
5495     return false;
5496   case ELF::NT_GNU_ABI_TAG: {
5497     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5498     if (!AbiTag.IsValid)
5499       OS << "    <corrupt GNU_ABI_TAG>";
5500     else
5501       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5502     break;
5503   }
5504   case ELF::NT_GNU_BUILD_ID: {
5505     OS << "    Build ID: " << getGNUBuildId(Desc);
5506     break;
5507   }
5508   case ELF::NT_GNU_GOLD_VERSION:
5509     OS << "    Version: " << getDescAsStringRef(Desc);
5510     break;
5511   case ELF::NT_GNU_PROPERTY_TYPE_0:
5512     OS << "    Properties:";
5513     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5514       OS << "    " << Property << "\n";
5515     break;
5516   }
5517   OS << '\n';
5518   return true;
5519 }
5520 
5521 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5522 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5523                                                       ArrayRef<uint8_t> Desc) {
5524   AndroidNoteProperties Props;
5525   switch (NoteType) {
5526   case ELF::NT_ANDROID_TYPE_MEMTAG:
5527     if (Desc.empty()) {
5528       Props.emplace_back("Invalid .note.android.memtag", "");
5529       return Props;
5530     }
5531 
5532     switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5533     case NT_MEMTAG_LEVEL_NONE:
5534       Props.emplace_back("Tagging Mode", "NONE");
5535       break;
5536     case NT_MEMTAG_LEVEL_ASYNC:
5537       Props.emplace_back("Tagging Mode", "ASYNC");
5538       break;
5539     case NT_MEMTAG_LEVEL_SYNC:
5540       Props.emplace_back("Tagging Mode", "SYNC");
5541       break;
5542     default:
5543       Props.emplace_back(
5544           "Tagging Mode",
5545           ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5546               .str());
5547       break;
5548     }
5549     Props.emplace_back("Heap",
5550                        (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5551     Props.emplace_back("Stack",
5552                        (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5553     break;
5554   default:
5555     return Props;
5556   }
5557   return Props;
5558 }
5559 
5560 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5561                              ArrayRef<uint8_t> Desc) {
5562   // Return true if we were able to pretty-print the note, false otherwise.
5563   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5564   if (Props.empty())
5565     return false;
5566   for (const auto &KV : Props)
5567     OS << "    " << KV.first << ": " << KV.second << '\n';
5568   return true;
5569 }
5570 
5571 template <class ELFT>
5572 void GNUELFDumper<ELFT>::printMemtag(
5573     const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
5574     const ArrayRef<uint8_t> AndroidNoteDesc,
5575     const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
5576   OS << "Memtag Dynamic Entries:\n";
5577   if (DynamicEntries.empty())
5578     OS << "    < none found >\n";
5579   for (const auto &DynamicEntryKV : DynamicEntries)
5580     OS << "    " << DynamicEntryKV.first << ": " << DynamicEntryKV.second
5581        << "\n";
5582 
5583   if (!AndroidNoteDesc.empty()) {
5584     OS << "Memtag Android Note:\n";
5585     printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc);
5586   }
5587 
5588   if (Descriptors.empty())
5589     return;
5590 
5591   OS << "Memtag Global Descriptors:\n";
5592   for (const auto &[Addr, BytesToTag] : Descriptors) {
5593     OS << "    0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x"
5594        << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n";
5595   }
5596 }
5597 
5598 template <typename ELFT>
5599 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5600                                     ArrayRef<uint8_t> Desc) {
5601   switch (NoteType) {
5602   default:
5603     return false;
5604   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5605     OS << "    Version: " << getDescAsStringRef(Desc);
5606     break;
5607   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5608     OS << "    Producer: " << getDescAsStringRef(Desc);
5609     break;
5610   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5611     OS << "    Producer version: " << getDescAsStringRef(Desc);
5612     break;
5613   }
5614   OS << '\n';
5615   return true;
5616 }
5617 
5618 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5619     {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5620     {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5621     {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5622     {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5623     {"LA48", NT_FREEBSD_FCTL_LA48},
5624     {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5625 };
5626 
5627 struct FreeBSDNote {
5628   std::string Type;
5629   std::string Value;
5630 };
5631 
5632 template <typename ELFT>
5633 static std::optional<FreeBSDNote>
5634 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5635   if (IsCore)
5636     return std::nullopt; // No pretty-printing yet.
5637   switch (NoteType) {
5638   case ELF::NT_FREEBSD_ABI_TAG:
5639     if (Desc.size() != 4)
5640       return std::nullopt;
5641     return FreeBSDNote{"ABI tag",
5642                        utostr(endian::read32<ELFT::Endianness>(Desc.data()))};
5643   case ELF::NT_FREEBSD_ARCH_TAG:
5644     return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5645   case ELF::NT_FREEBSD_FEATURE_CTL: {
5646     if (Desc.size() != 4)
5647       return std::nullopt;
5648     unsigned Value = endian::read32<ELFT::Endianness>(Desc.data());
5649     std::string FlagsStr;
5650     raw_string_ostream OS(FlagsStr);
5651     printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5652     if (OS.str().empty())
5653       OS << "0x" << utohexstr(Value);
5654     else
5655       OS << "(0x" << utohexstr(Value) << ")";
5656     return FreeBSDNote{"Feature flags", OS.str()};
5657   }
5658   default:
5659     return std::nullopt;
5660   }
5661 }
5662 
5663 struct AMDNote {
5664   std::string Type;
5665   std::string Value;
5666 };
5667 
5668 template <typename ELFT>
5669 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5670   switch (NoteType) {
5671   default:
5672     return {"", ""};
5673   case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5674     struct CodeObjectVersion {
5675       support::aligned_ulittle32_t MajorVersion;
5676       support::aligned_ulittle32_t MinorVersion;
5677     };
5678     if (Desc.size() != sizeof(CodeObjectVersion))
5679       return {"AMD HSA Code Object Version",
5680               "Invalid AMD HSA Code Object Version"};
5681     std::string VersionString;
5682     raw_string_ostream StrOS(VersionString);
5683     auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5684     StrOS << "[Major: " << Version->MajorVersion
5685           << ", Minor: " << Version->MinorVersion << "]";
5686     return {"AMD HSA Code Object Version", VersionString};
5687   }
5688   case ELF::NT_AMD_HSA_HSAIL: {
5689     struct HSAILProperties {
5690       support::aligned_ulittle32_t HSAILMajorVersion;
5691       support::aligned_ulittle32_t HSAILMinorVersion;
5692       uint8_t Profile;
5693       uint8_t MachineModel;
5694       uint8_t DefaultFloatRound;
5695     };
5696     if (Desc.size() != sizeof(HSAILProperties))
5697       return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5698     auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5699     std::string HSAILPropetiesString;
5700     raw_string_ostream StrOS(HSAILPropetiesString);
5701     StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5702           << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5703           << ", Profile: " << uint32_t(Properties->Profile)
5704           << ", Machine Model: " << uint32_t(Properties->MachineModel)
5705           << ", Default Float Round: "
5706           << uint32_t(Properties->DefaultFloatRound) << "]";
5707     return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5708   }
5709   case ELF::NT_AMD_HSA_ISA_VERSION: {
5710     struct IsaVersion {
5711       support::aligned_ulittle16_t VendorNameSize;
5712       support::aligned_ulittle16_t ArchitectureNameSize;
5713       support::aligned_ulittle32_t Major;
5714       support::aligned_ulittle32_t Minor;
5715       support::aligned_ulittle32_t Stepping;
5716     };
5717     if (Desc.size() < sizeof(IsaVersion))
5718       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5719     auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5720     if (Desc.size() < sizeof(IsaVersion) +
5721                           Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5722         Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5723       return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5724     std::string IsaString;
5725     raw_string_ostream StrOS(IsaString);
5726     StrOS << "[Vendor: "
5727           << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5728           << ", Architecture: "
5729           << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5730                        Isa->ArchitectureNameSize - 1)
5731           << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5732           << ", Stepping: " << Isa->Stepping << "]";
5733     return {"AMD HSA ISA Version", IsaString};
5734   }
5735   case ELF::NT_AMD_HSA_METADATA: {
5736     if (Desc.size() == 0)
5737       return {"AMD HSA Metadata", ""};
5738     return {
5739         "AMD HSA Metadata",
5740         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5741   }
5742   case ELF::NT_AMD_HSA_ISA_NAME: {
5743     if (Desc.size() == 0)
5744       return {"AMD HSA ISA Name", ""};
5745     return {
5746         "AMD HSA ISA Name",
5747         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5748   }
5749   case ELF::NT_AMD_PAL_METADATA: {
5750     struct PALMetadata {
5751       support::aligned_ulittle32_t Key;
5752       support::aligned_ulittle32_t Value;
5753     };
5754     if (Desc.size() % sizeof(PALMetadata) != 0)
5755       return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5756     auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5757     std::string MetadataString;
5758     raw_string_ostream StrOS(MetadataString);
5759     for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5760       StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5761     }
5762     return {"AMD PAL Metadata", MetadataString};
5763   }
5764   }
5765 }
5766 
5767 struct AMDGPUNote {
5768   std::string Type;
5769   std::string Value;
5770 };
5771 
5772 template <typename ELFT>
5773 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5774   switch (NoteType) {
5775   default:
5776     return {"", ""};
5777   case ELF::NT_AMDGPU_METADATA: {
5778     StringRef MsgPackString =
5779         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5780     msgpack::Document MsgPackDoc;
5781     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5782       return {"", ""};
5783 
5784     std::string MetadataString;
5785 
5786     // FIXME: Metadata Verifier only works with AMDHSA.
5787     //  This is an ugly workaround to avoid the verifier for other MD
5788     //  formats (e.g. amdpal)
5789     if (MsgPackString.contains("amdhsa.")) {
5790       AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5791       if (!Verifier.verify(MsgPackDoc.getRoot()))
5792         MetadataString = "Invalid AMDGPU Metadata\n";
5793     }
5794 
5795     raw_string_ostream StrOS(MetadataString);
5796     if (MsgPackDoc.getRoot().isScalar()) {
5797       // TODO: passing a scalar root to toYAML() asserts:
5798       // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5799       //    "plain scalar documents are not supported")
5800       // To avoid this crash we print the raw data instead.
5801       return {"", ""};
5802     }
5803     MsgPackDoc.toYAML(StrOS);
5804     return {"AMDGPU Metadata", StrOS.str()};
5805   }
5806   }
5807 }
5808 
5809 struct CoreFileMapping {
5810   uint64_t Start, End, Offset;
5811   StringRef Filename;
5812 };
5813 
5814 struct CoreNote {
5815   uint64_t PageSize;
5816   std::vector<CoreFileMapping> Mappings;
5817 };
5818 
5819 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5820   // Expected format of the NT_FILE note description:
5821   // 1. # of file mappings (call it N)
5822   // 2. Page size
5823   // 3. N (start, end, offset) triples
5824   // 4. N packed filenames (null delimited)
5825   // Each field is an Elf_Addr, except for filenames which are char* strings.
5826 
5827   CoreNote Ret;
5828   const int Bytes = Desc.getAddressSize();
5829 
5830   if (!Desc.isValidOffsetForAddress(2))
5831     return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5832                        " is too short, expected at least 0x" +
5833                        Twine::utohexstr(Bytes * 2));
5834   if (Desc.getData().back() != 0)
5835     return createError("the note is not NUL terminated");
5836 
5837   uint64_t DescOffset = 0;
5838   uint64_t FileCount = Desc.getAddress(&DescOffset);
5839   Ret.PageSize = Desc.getAddress(&DescOffset);
5840 
5841   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5842     return createError("unable to read file mappings (found " +
5843                        Twine(FileCount) + "): the note of size 0x" +
5844                        Twine::utohexstr(Desc.size()) + " is too short");
5845 
5846   uint64_t FilenamesOffset = 0;
5847   DataExtractor Filenames(
5848       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5849       Desc.isLittleEndian(), Desc.getAddressSize());
5850 
5851   Ret.Mappings.resize(FileCount);
5852   size_t I = 0;
5853   for (CoreFileMapping &Mapping : Ret.Mappings) {
5854     ++I;
5855     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5856       return createError(
5857           "unable to read the file name for the mapping with index " +
5858           Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5859           " is truncated");
5860     Mapping.Start = Desc.getAddress(&DescOffset);
5861     Mapping.End = Desc.getAddress(&DescOffset);
5862     Mapping.Offset = Desc.getAddress(&DescOffset);
5863     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5864   }
5865 
5866   return Ret;
5867 }
5868 
5869 template <typename ELFT>
5870 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5871   // Length of "0x<address>" string.
5872   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5873 
5874   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5875   OS << "    " << right_justify("Start", FieldWidth) << "  "
5876      << right_justify("End", FieldWidth) << "  "
5877      << right_justify("Page Offset", FieldWidth) << '\n';
5878   for (const CoreFileMapping &Mapping : Note.Mappings) {
5879     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5880        << format_hex(Mapping.End, FieldWidth) << "  "
5881        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5882        << Mapping.Filename << '\n';
5883   }
5884 }
5885 
5886 const NoteType GenericNoteTypes[] = {
5887     {ELF::NT_VERSION, "NT_VERSION (version)"},
5888     {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5889     {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5890     {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5891 };
5892 
5893 const NoteType GNUNoteTypes[] = {
5894     {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5895     {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5896     {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5897     {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5898     {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5899 };
5900 
5901 const NoteType FreeBSDCoreNoteTypes[] = {
5902     {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5903     {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5904     {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5905     {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5906     {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5907     {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5908     {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5909     {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5910     {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5911      "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5912     {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5913 };
5914 
5915 const NoteType FreeBSDNoteTypes[] = {
5916     {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5917     {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5918     {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5919     {ELF::NT_FREEBSD_FEATURE_CTL,
5920      "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5921 };
5922 
5923 const NoteType NetBSDCoreNoteTypes[] = {
5924     {ELF::NT_NETBSDCORE_PROCINFO,
5925      "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5926     {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5927     {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5928 };
5929 
5930 const NoteType OpenBSDCoreNoteTypes[] = {
5931     {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5932     {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5933     {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5934     {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5935     {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5936 };
5937 
5938 const NoteType AMDNoteTypes[] = {
5939     {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5940      "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5941     {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5942     {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5943     {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5944     {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5945     {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5946 };
5947 
5948 const NoteType AMDGPUNoteTypes[] = {
5949     {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5950 };
5951 
5952 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5953     {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5954      "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5955     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5956      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5957     {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5958      "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5959 };
5960 
5961 const NoteType AndroidNoteTypes[] = {
5962     {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5963     {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5964     {ELF::NT_ANDROID_TYPE_MEMTAG,
5965      "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5966 };
5967 
5968 const NoteType CoreNoteTypes[] = {
5969     {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5970     {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5971     {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5972     {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5973     {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5974     {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5975     {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5976     {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5977     {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5978     {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5979     {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5980 
5981     {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5982     {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5983     {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5984     {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5985     {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5986     {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5987     {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5988     {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5989     {ELF::NT_PPC_TM_CFPR,
5990      "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5991     {ELF::NT_PPC_TM_CVMX,
5992      "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5993     {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5994     {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5995     {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5996     {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5997     {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5998 
5999     {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
6000     {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
6001     {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
6002 
6003     {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
6004     {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
6005     {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
6006     {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
6007     {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
6008     {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
6009     {ELF::NT_S390_LAST_BREAK,
6010      "NT_S390_LAST_BREAK (s390 last breaking event address)"},
6011     {ELF::NT_S390_SYSTEM_CALL,
6012      "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
6013     {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
6014     {ELF::NT_S390_VXRS_LOW,
6015      "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
6016     {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
6017     {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
6018     {ELF::NT_S390_GS_BC,
6019      "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
6020 
6021     {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
6022     {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
6023     {ELF::NT_ARM_HW_BREAK,
6024      "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
6025     {ELF::NT_ARM_HW_WATCH,
6026      "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
6027     {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"},
6028     {ELF::NT_ARM_PAC_MASK,
6029      "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
6030     {ELF::NT_ARM_TAGGED_ADDR_CTRL,
6031      "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"},
6032     {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
6033     {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"},
6034     {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"},
6035 
6036     {ELF::NT_FILE, "NT_FILE (mapped files)"},
6037     {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
6038     {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
6039 };
6040 
6041 template <class ELFT>
6042 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
6043   uint32_t Type = Note.getType();
6044   auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
6045     for (const NoteType &N : V)
6046       if (N.ID == Type)
6047         return N.Name;
6048     return "";
6049   };
6050 
6051   StringRef Name = Note.getName();
6052   if (Name == "GNU")
6053     return FindNote(GNUNoteTypes);
6054   if (Name == "FreeBSD") {
6055     if (ELFType == ELF::ET_CORE) {
6056       // FreeBSD also places the generic core notes in the FreeBSD namespace.
6057       StringRef Result = FindNote(FreeBSDCoreNoteTypes);
6058       if (!Result.empty())
6059         return Result;
6060       return FindNote(CoreNoteTypes);
6061     } else {
6062       return FindNote(FreeBSDNoteTypes);
6063     }
6064   }
6065   if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) {
6066     StringRef Result = FindNote(NetBSDCoreNoteTypes);
6067     if (!Result.empty())
6068       return Result;
6069     return FindNote(CoreNoteTypes);
6070   }
6071   if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) {
6072     // OpenBSD also places the generic core notes in the OpenBSD namespace.
6073     StringRef Result = FindNote(OpenBSDCoreNoteTypes);
6074     if (!Result.empty())
6075       return Result;
6076     return FindNote(CoreNoteTypes);
6077   }
6078   if (Name == "AMD")
6079     return FindNote(AMDNoteTypes);
6080   if (Name == "AMDGPU")
6081     return FindNote(AMDGPUNoteTypes);
6082   if (Name == "LLVMOMPOFFLOAD")
6083     return FindNote(LLVMOMPOFFLOADNoteTypes);
6084   if (Name == "Android")
6085     return FindNote(AndroidNoteTypes);
6086 
6087   if (ELFType == ELF::ET_CORE)
6088     return FindNote(CoreNoteTypes);
6089   return FindNote(GenericNoteTypes);
6090 }
6091 
6092 template <class ELFT>
6093 static void processNotesHelper(
6094     const ELFDumper<ELFT> &Dumper,
6095     llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
6096                             typename ELFT::Addr, size_t)>
6097         StartNotesFn,
6098     llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
6099     llvm::function_ref<void()> FinishNotesFn) {
6100   const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
6101   bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
6102 
6103   ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
6104   if (!IsCoreFile && !Sections.empty()) {
6105     for (const typename ELFT::Shdr &S : Sections) {
6106       if (S.sh_type != SHT_NOTE)
6107         continue;
6108       StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
6109                    S.sh_size, S.sh_addralign);
6110       Error Err = Error::success();
6111       size_t I = 0;
6112       for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
6113         if (Error E = ProcessNoteFn(Note, IsCoreFile))
6114           Dumper.reportUniqueWarning(
6115               "unable to read note with index " + Twine(I) + " from the " +
6116               describe(Obj, S) + ": " + toString(std::move(E)));
6117         ++I;
6118       }
6119       if (Err)
6120         Dumper.reportUniqueWarning("unable to read notes from the " +
6121                                    describe(Obj, S) + ": " +
6122                                    toString(std::move(Err)));
6123       FinishNotesFn();
6124     }
6125     return;
6126   }
6127 
6128   Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
6129   if (!PhdrsOrErr) {
6130     Dumper.reportUniqueWarning(
6131         "unable to read program headers to locate the PT_NOTE segment: " +
6132         toString(PhdrsOrErr.takeError()));
6133     return;
6134   }
6135 
6136   for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
6137     const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
6138     if (P.p_type != PT_NOTE)
6139       continue;
6140     StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align);
6141     Error Err = Error::success();
6142     size_t Index = 0;
6143     for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
6144       if (Error E = ProcessNoteFn(Note, IsCoreFile))
6145         Dumper.reportUniqueWarning("unable to read note with index " +
6146                                    Twine(Index) +
6147                                    " from the PT_NOTE segment with index " +
6148                                    Twine(I) + ": " + toString(std::move(E)));
6149       ++Index;
6150     }
6151     if (Err)
6152       Dumper.reportUniqueWarning(
6153           "unable to read notes from the PT_NOTE segment with index " +
6154           Twine(I) + ": " + toString(std::move(Err)));
6155     FinishNotesFn();
6156   }
6157 }
6158 
6159 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
6160   size_t Align = 0;
6161   bool IsFirstHeader = true;
6162   auto PrintHeader = [&](std::optional<StringRef> SecName,
6163                          const typename ELFT::Off Offset,
6164                          const typename ELFT::Addr Size, size_t Al) {
6165     Align = std::max<size_t>(Al, 4);
6166     // Print a newline between notes sections to match GNU readelf.
6167     if (!IsFirstHeader) {
6168       OS << '\n';
6169     } else {
6170       IsFirstHeader = false;
6171     }
6172 
6173     OS << "Displaying notes found ";
6174 
6175     if (SecName)
6176       OS << "in: " << *SecName << "\n";
6177     else
6178       OS << "at file offset " << format_hex(Offset, 10) << " with length "
6179          << format_hex(Size, 10) << ":\n";
6180 
6181     OS << "  Owner                Data size \tDescription\n";
6182   };
6183 
6184   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6185     StringRef Name = Note.getName();
6186     ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
6187     Elf_Word Type = Note.getType();
6188 
6189     // Print the note owner/type.
6190     OS << "  " << left_justify(Name, 20) << ' '
6191        << format_hex(Descriptor.size(), 10) << '\t';
6192 
6193     StringRef NoteType =
6194         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6195     if (!NoteType.empty())
6196       OS << NoteType << '\n';
6197     else
6198       OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
6199 
6200     // Print the description, or fallback to printing raw bytes for unknown
6201     // owners/if we fail to pretty-print the contents.
6202     if (Name == "GNU") {
6203       if (printGNUNote<ELFT>(OS, Type, Descriptor))
6204         return Error::success();
6205     } else if (Name == "FreeBSD") {
6206       if (std::optional<FreeBSDNote> N =
6207               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
6208         OS << "    " << N->Type << ": " << N->Value << '\n';
6209         return Error::success();
6210       }
6211     } else if (Name == "AMD") {
6212       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6213       if (!N.Type.empty()) {
6214         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
6215         return Error::success();
6216       }
6217     } else if (Name == "AMDGPU") {
6218       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6219       if (!N.Type.empty()) {
6220         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
6221         return Error::success();
6222       }
6223     } else if (Name == "LLVMOMPOFFLOAD") {
6224       if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
6225         return Error::success();
6226     } else if (Name == "CORE") {
6227       if (Type == ELF::NT_FILE) {
6228         DataExtractor DescExtractor(
6229             Descriptor, ELFT::Endianness == llvm::endianness::little,
6230             sizeof(Elf_Addr));
6231         if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
6232           printCoreNote<ELFT>(OS, *NoteOrErr);
6233           return Error::success();
6234         } else {
6235           return NoteOrErr.takeError();
6236         }
6237       }
6238     } else if (Name == "Android") {
6239       if (printAndroidNote(OS, Type, Descriptor))
6240         return Error::success();
6241     }
6242     if (!Descriptor.empty()) {
6243       OS << "   description data:";
6244       for (uint8_t B : Descriptor)
6245         OS << " " << format("%02x", B);
6246       OS << '\n';
6247     }
6248     return Error::success();
6249   };
6250 
6251   processNotesHelper(*this, /*StartNotesFn=*/PrintHeader,
6252                      /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {});
6253 }
6254 
6255 template <class ELFT>
6256 ArrayRef<uint8_t>
6257 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) {
6258   for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) {
6259     if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC)
6260       continue;
6261     if (Sec.sh_addr != ExpectedAddr) {
6262       reportUniqueWarning(
6263           "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
6264           Twine::utohexstr(Sec.sh_addr) +
6265           ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6266           Twine::utohexstr(ExpectedAddr));
6267       return ArrayRef<uint8_t>();
6268     }
6269     Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec);
6270     if (auto E = Contents.takeError()) {
6271       reportUniqueWarning(
6272           "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6273           toString(std::move(E)));
6274       return ArrayRef<uint8_t>();
6275     }
6276     return Contents.get();
6277   }
6278   return ArrayRef<uint8_t>();
6279 }
6280 
6281 // Reserve the lower three bits of the first byte of the step distance when
6282 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6283 // when compiling Android T with full MTE globals enabled.
6284 constexpr uint64_t MemtagStepVarintReservedBits = 3;
6285 constexpr uint64_t MemtagGranuleSize = 16;
6286 
6287 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() {
6288   if (Obj.getHeader().e_machine != EM_AARCH64) return;
6289   std::vector<std::pair<std::string, std::string>> DynamicEntries;
6290   uint64_t MemtagGlobalsSz = 0;
6291   uint64_t MemtagGlobals = 0;
6292   for (const typename ELFT::Dyn &Entry : dynamic_table()) {
6293     uintX_t Tag = Entry.getTag();
6294     switch (Tag) {
6295     case DT_AARCH64_MEMTAG_GLOBALSSZ:
6296       MemtagGlobalsSz = Entry.getVal();
6297       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6298                                   getDynamicEntry(Tag, Entry.getVal()));
6299       break;
6300     case DT_AARCH64_MEMTAG_GLOBALS:
6301       MemtagGlobals = Entry.getVal();
6302       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6303                                   getDynamicEntry(Tag, Entry.getVal()));
6304       break;
6305     case DT_AARCH64_MEMTAG_MODE:
6306     case DT_AARCH64_MEMTAG_HEAP:
6307     case DT_AARCH64_MEMTAG_STACK:
6308       DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6309                                   getDynamicEntry(Tag, Entry.getVal()));
6310       break;
6311     }
6312   }
6313 
6314   ArrayRef<uint8_t> AndroidNoteDesc;
6315   auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6316     if (Note.getName() == "Android" &&
6317         Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG)
6318       AndroidNoteDesc = Note.getDesc(4);
6319     return Error::success();
6320   };
6321 
6322   processNotesHelper(
6323       *this,
6324       /*StartNotesFn=*/
6325       [](std::optional<StringRef>, const typename ELFT::Off,
6326          const typename ELFT::Addr, size_t) {},
6327       /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {});
6328 
6329   ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals);
6330   if (Contents.size() != MemtagGlobalsSz) {
6331     reportUniqueWarning(
6332         "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6333         Twine::utohexstr(MemtagGlobalsSz) +
6334         ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6335         Twine::utohexstr(Contents.size()) + ")");
6336     Contents = ArrayRef<uint8_t>();
6337   }
6338 
6339   std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors;
6340   uint64_t Address = 0;
6341   // See the AArch64 MemtagABI document for a description of encoding scheme:
6342   // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6343   for (size_t I = 0; I < Contents.size();) {
6344     const char *Error = nullptr;
6345     unsigned DecodedBytes = 0;
6346     uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes,
6347                                    Contents.end(), &Error);
6348     I += DecodedBytes;
6349     if (Error) {
6350       reportUniqueWarning(
6351           "error decoding distance uleb, " + Twine(DecodedBytes) +
6352           " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6353       GlobalDescriptors.clear();
6354       break;
6355     }
6356     uint64_t Distance = Value >> MemtagStepVarintReservedBits;
6357     uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1);
6358     if (GranulesToTag == 0) {
6359       GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes,
6360                                     Contents.end(), &Error) +
6361                       1;
6362       I += DecodedBytes;
6363       if (Error) {
6364         reportUniqueWarning(
6365             "error decoding size-only uleb, " + Twine(DecodedBytes) +
6366             " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6367         GlobalDescriptors.clear();
6368         break;
6369       }
6370     }
6371     Address += Distance * MemtagGranuleSize;
6372     GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize);
6373     Address += GranulesToTag * MemtagGranuleSize;
6374   }
6375 
6376   printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors);
6377 }
6378 
6379 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
6380   OS << "printELFLinkerOptions not implemented!\n";
6381 }
6382 
6383 template <class ELFT>
6384 void ELFDumper<ELFT>::printDependentLibsHelper(
6385     function_ref<void(const Elf_Shdr &)> OnSectionStart,
6386     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
6387   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6388     this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6389                               Twine(SecNdx) + " is broken: " + Msg);
6390   };
6391 
6392   unsigned I = -1;
6393   for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
6394     ++I;
6395     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6396       continue;
6397 
6398     OnSectionStart(Shdr);
6399 
6400     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
6401     if (!ContentsOrErr) {
6402       Warn(I, toString(ContentsOrErr.takeError()));
6403       continue;
6404     }
6405 
6406     ArrayRef<uint8_t> Contents = *ContentsOrErr;
6407     if (!Contents.empty() && Contents.back() != 0) {
6408       Warn(I, "the content is not null-terminated");
6409       continue;
6410     }
6411 
6412     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6413       StringRef Lib((const char *)I);
6414       OnLibEntry(Lib, I - Contents.begin());
6415       I += Lib.size() + 1;
6416     }
6417   }
6418 }
6419 
6420 template <class ELFT>
6421 void ELFDumper<ELFT>::forEachRelocationDo(
6422     const Elf_Shdr &Sec,
6423     llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
6424                             const Elf_Shdr &, const Elf_Shdr *)>
6425         RelRelaFn) {
6426   auto Warn = [&](Error &&E,
6427                   const Twine &Prefix = "unable to read relocations from") {
6428     this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
6429                               toString(std::move(E)));
6430   };
6431 
6432   // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an
6433   // associated symbol table. For them we should not treat the value of the
6434   // sh_link field as an index of a symbol table.
6435   const Elf_Shdr *SymTab;
6436   if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR &&
6437       !(Obj.getHeader().e_machine == EM_AARCH64 &&
6438         Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) {
6439     Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
6440     if (!SymTabOrErr) {
6441       Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
6442       return;
6443     }
6444     SymTab = *SymTabOrErr;
6445   }
6446 
6447   unsigned RelNdx = 0;
6448   const bool IsMips64EL = this->Obj.isMips64EL();
6449   switch (Sec.sh_type) {
6450   case ELF::SHT_REL:
6451     if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
6452       for (const Elf_Rel &R : *RangeOrErr)
6453         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6454     } else {
6455       Warn(RangeOrErr.takeError());
6456     }
6457     break;
6458   case ELF::SHT_RELA:
6459     if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
6460       for (const Elf_Rela &R : *RangeOrErr)
6461         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6462     } else {
6463       Warn(RangeOrErr.takeError());
6464     }
6465     break;
6466   case ELF::SHT_AARCH64_AUTH_RELR:
6467     if (Obj.getHeader().e_machine != EM_AARCH64)
6468       break;
6469     [[fallthrough]];
6470   case ELF::SHT_RELR:
6471   case ELF::SHT_ANDROID_RELR: {
6472     Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
6473     if (!RangeOrErr) {
6474       Warn(RangeOrErr.takeError());
6475       break;
6476     }
6477 
6478     for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
6479       RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
6480                 /*SymTab=*/nullptr);
6481     break;
6482   }
6483   case ELF::SHT_CREL: {
6484     if (auto RelsOrRelas = Obj.crels(Sec)) {
6485       for (const Elf_Rel &R : RelsOrRelas->first)
6486         RelRelaFn(Relocation<ELFT>(R, false), RelNdx++, Sec, SymTab);
6487       for (const Elf_Rela &R : RelsOrRelas->second)
6488         RelRelaFn(Relocation<ELFT>(R, false), RelNdx++, Sec, SymTab);
6489     } else {
6490       Warn(RelsOrRelas.takeError());
6491     }
6492     break;
6493   }
6494   case ELF::SHT_ANDROID_REL:
6495   case ELF::SHT_ANDROID_RELA:
6496     if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
6497       for (const Elf_Rela &R : *RelasOrErr)
6498         RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6499     } else {
6500       Warn(RelasOrErr.takeError());
6501     }
6502     break;
6503   }
6504 }
6505 
6506 template <class ELFT>
6507 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
6508   StringRef Name = "<?>";
6509   if (Expected<StringRef> SecNameOrErr =
6510           Obj.getSectionName(Sec, this->WarningHandler))
6511     Name = *SecNameOrErr;
6512   else
6513     this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
6514                               ": " + toString(SecNameOrErr.takeError()));
6515   return Name;
6516 }
6517 
6518 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
6519   bool SectionStarted = false;
6520   struct NameOffset {
6521     StringRef Name;
6522     uint64_t Offset;
6523   };
6524   std::vector<NameOffset> SecEntries;
6525   NameOffset Current;
6526   auto PrintSection = [&]() {
6527     OS << "Dependent libraries section " << Current.Name << " at offset "
6528        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
6529        << " entries:\n";
6530     for (NameOffset Entry : SecEntries)
6531       OS << "  [" << format("%6" PRIx64, Entry.Offset) << "]  " << Entry.Name
6532          << "\n";
6533     OS << "\n";
6534     SecEntries.clear();
6535   };
6536 
6537   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
6538     if (SectionStarted)
6539       PrintSection();
6540     SectionStarted = true;
6541     Current.Offset = Shdr.sh_offset;
6542     Current.Name = this->getPrintableSectionName(Shdr);
6543   };
6544   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6545     SecEntries.push_back(NameOffset{Lib, Offset});
6546   };
6547 
6548   this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6549   if (SectionStarted)
6550     PrintSection();
6551 }
6552 
6553 template <class ELFT>
6554 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6555     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6556   SmallVector<uint32_t> SymbolIndexes;
6557   if (!this->AddressToIndexMap) {
6558     // Populate the address to index map upon the first invocation of this
6559     // function.
6560     this->AddressToIndexMap.emplace();
6561     if (this->DotSymtabSec) {
6562       if (Expected<Elf_Sym_Range> SymsOrError =
6563               Obj.symbols(this->DotSymtabSec)) {
6564         uint32_t Index = (uint32_t)-1;
6565         for (const Elf_Sym &Sym : *SymsOrError) {
6566           ++Index;
6567 
6568           if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6569             continue;
6570 
6571           Expected<uint64_t> SymAddrOrErr =
6572               ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6573           if (!SymAddrOrErr) {
6574             std::string Name = this->getStaticSymbolName(Index);
6575             reportUniqueWarning("unable to get address of symbol '" + Name +
6576                                 "': " + toString(SymAddrOrErr.takeError()));
6577             return SymbolIndexes;
6578           }
6579 
6580           (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6581         }
6582       } else {
6583         reportUniqueWarning("unable to read the symbol table: " +
6584                             toString(SymsOrError.takeError()));
6585       }
6586     }
6587   }
6588 
6589   auto Symbols = this->AddressToIndexMap->find(SymValue);
6590   if (Symbols == this->AddressToIndexMap->end())
6591     return SymbolIndexes;
6592 
6593   for (uint32_t Index : Symbols->second) {
6594     // Check if the symbol is in the right section. FunctionSec == None
6595     // means "any section".
6596     if (FunctionSec) {
6597       const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6598       if (Expected<const Elf_Shdr *> SecOrErr =
6599               Obj.getSection(Sym, this->DotSymtabSec,
6600                              this->getShndxTable(this->DotSymtabSec))) {
6601         if (*FunctionSec != *SecOrErr)
6602           continue;
6603       } else {
6604         std::string Name = this->getStaticSymbolName(Index);
6605         // Note: it is impossible to trigger this error currently, it is
6606         // untested.
6607         reportUniqueWarning("unable to get section of symbol '" + Name +
6608                             "': " + toString(SecOrErr.takeError()));
6609         return SymbolIndexes;
6610       }
6611     }
6612 
6613     SymbolIndexes.push_back(Index);
6614   }
6615 
6616   return SymbolIndexes;
6617 }
6618 
6619 template <class ELFT>
6620 bool ELFDumper<ELFT>::printFunctionStackSize(
6621     uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6622     const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6623   SmallVector<uint32_t> FuncSymIndexes =
6624       this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6625   if (FuncSymIndexes.empty())
6626     reportUniqueWarning(
6627         "could not identify function symbol for stack size entry in " +
6628         describe(StackSizeSec));
6629 
6630   // Extract the size. The expectation is that Offset is pointing to the right
6631   // place, i.e. past the function address.
6632   Error Err = Error::success();
6633   uint64_t StackSize = Data.getULEB128(Offset, &Err);
6634   if (Err) {
6635     reportUniqueWarning("could not extract a valid stack size from " +
6636                         describe(StackSizeSec) + ": " +
6637                         toString(std::move(Err)));
6638     return false;
6639   }
6640 
6641   if (FuncSymIndexes.empty()) {
6642     printStackSizeEntry(StackSize, {"?"});
6643   } else {
6644     SmallVector<std::string> FuncSymNames;
6645     for (uint32_t Index : FuncSymIndexes)
6646       FuncSymNames.push_back(this->getStaticSymbolName(Index));
6647     printStackSizeEntry(StackSize, FuncSymNames);
6648   }
6649 
6650   return true;
6651 }
6652 
6653 template <class ELFT>
6654 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6655                                              ArrayRef<std::string> FuncNames) {
6656   OS.PadToColumn(2);
6657   OS << format_decimal(Size, 11);
6658   OS.PadToColumn(18);
6659 
6660   OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6661 }
6662 
6663 template <class ELFT>
6664 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6665                                      const Elf_Shdr &RelocSec, unsigned Ndx,
6666                                      const Elf_Shdr *SymTab,
6667                                      const Elf_Shdr *FunctionSec,
6668                                      const Elf_Shdr &StackSizeSec,
6669                                      const RelocationResolver &Resolver,
6670                                      DataExtractor Data) {
6671   // This function ignores potentially erroneous input, unless it is directly
6672   // related to stack size reporting.
6673   const Elf_Sym *Sym = nullptr;
6674   Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6675   if (!TargetOrErr)
6676     reportUniqueWarning("unable to get the target of relocation with index " +
6677                         Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6678                         toString(TargetOrErr.takeError()));
6679   else
6680     Sym = TargetOrErr->Sym;
6681 
6682   uint64_t RelocSymValue = 0;
6683   if (Sym) {
6684     Expected<const Elf_Shdr *> SectionOrErr =
6685         this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6686     if (!SectionOrErr) {
6687       reportUniqueWarning(
6688           "cannot identify the section for relocation symbol '" +
6689           (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6690     } else if (*SectionOrErr != FunctionSec) {
6691       reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6692                           "' is not in the expected section");
6693       // Pretend that the symbol is in the correct section and report its
6694       // stack size anyway.
6695       FunctionSec = *SectionOrErr;
6696     }
6697 
6698     RelocSymValue = Sym->st_value;
6699   }
6700 
6701   uint64_t Offset = R.Offset;
6702   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6703     reportUniqueWarning("found invalid relocation offset (0x" +
6704                         Twine::utohexstr(Offset) + ") into " +
6705                         describe(StackSizeSec) +
6706                         " while trying to extract a stack size entry");
6707     return;
6708   }
6709 
6710   uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6711                                Data.getAddress(&Offset), R.Addend.value_or(0));
6712   this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6713                                &Offset);
6714 }
6715 
6716 template <class ELFT>
6717 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6718     std::function<void()> PrintHeader) {
6719   // This function ignores potentially erroneous input, unless it is directly
6720   // related to stack size reporting.
6721   for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6722     if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6723       continue;
6724     PrintHeader();
6725     ArrayRef<uint8_t> Contents =
6726         unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6727     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6728     uint64_t Offset = 0;
6729     while (Offset < Contents.size()) {
6730       // The function address is followed by a ULEB representing the stack
6731       // size. Check for an extra byte before we try to process the entry.
6732       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6733         reportUniqueWarning(
6734             describe(Sec) +
6735             " ended while trying to extract a stack size entry");
6736         break;
6737       }
6738       uint64_t SymValue = Data.getAddress(&Offset);
6739       if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6740                                   Data, &Offset))
6741         break;
6742     }
6743   }
6744 }
6745 
6746 template <class ELFT>
6747 void ELFDumper<ELFT>::printRelocatableStackSizes(
6748     std::function<void()> PrintHeader) {
6749   // Build a map between stack size sections and their corresponding relocation
6750   // sections.
6751   auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6752     StringRef SectionName;
6753     if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6754       SectionName = *NameOrErr;
6755     else
6756       consumeError(NameOrErr.takeError());
6757 
6758     return SectionName == ".stack_sizes";
6759   };
6760 
6761   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>>
6762       StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch);
6763   if (!StackSizeRelocMapOrErr) {
6764     reportUniqueWarning("unable to get stack size map section(s): " +
6765                         toString(StackSizeRelocMapOrErr.takeError()));
6766     return;
6767   }
6768 
6769   for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) {
6770     PrintHeader();
6771     const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6772     const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6773 
6774     // Warn about stack size sections without a relocation section.
6775     if (!RelocSec) {
6776       reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6777                                 ") does not have a corresponding "
6778                                 "relocation section"),
6779                     FileName);
6780       continue;
6781     }
6782 
6783     // A .stack_sizes section header's sh_link field is supposed to point
6784     // to the section that contains the functions whose stack sizes are
6785     // described in it.
6786     const Elf_Shdr *FunctionSec = unwrapOrError(
6787         this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6788 
6789     SupportsRelocation IsSupportedFn;
6790     RelocationResolver Resolver;
6791     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6792     ArrayRef<uint8_t> Contents =
6793         unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6794     DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6795 
6796     forEachRelocationDo(
6797         *RelocSec, [&](const Relocation<ELFT> &R, unsigned Ndx,
6798                        const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
6799           if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6800             reportUniqueWarning(
6801                 describe(*RelocSec) +
6802                 " contains an unsupported relocation with index " + Twine(Ndx) +
6803                 ": " + Obj.getRelocationTypeName(R.Type));
6804             return;
6805           }
6806 
6807           this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6808                                *StackSizesELFSec, Resolver, Data);
6809         });
6810   }
6811 }
6812 
6813 template <class ELFT>
6814 void GNUELFDumper<ELFT>::printStackSizes() {
6815   bool HeaderHasBeenPrinted = false;
6816   auto PrintHeader = [&]() {
6817     if (HeaderHasBeenPrinted)
6818       return;
6819     OS << "\nStack Sizes:\n";
6820     OS.PadToColumn(9);
6821     OS << "Size";
6822     OS.PadToColumn(18);
6823     OS << "Functions\n";
6824     HeaderHasBeenPrinted = true;
6825   };
6826 
6827   // For non-relocatable objects, look directly for sections whose name starts
6828   // with .stack_sizes and process the contents.
6829   if (this->Obj.getHeader().e_type == ELF::ET_REL)
6830     this->printRelocatableStackSizes(PrintHeader);
6831   else
6832     this->printNonRelocatableStackSizes(PrintHeader);
6833 }
6834 
6835 template <class ELFT>
6836 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6837   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6838   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6839     OS.PadToColumn(2);
6840     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6841     OS.PadToColumn(11 + Bias);
6842     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6843     OS.PadToColumn(22 + Bias);
6844     OS << format_hex_no_prefix(*E, 8 + Bias);
6845     OS.PadToColumn(31 + 2 * Bias);
6846     OS << Purpose << "\n";
6847   };
6848 
6849   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6850   OS << " Canonical gp value: "
6851      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6852 
6853   OS << " Reserved entries:\n";
6854   if (ELFT::Is64Bits)
6855     OS << "           Address     Access          Initial Purpose\n";
6856   else
6857     OS << "   Address     Access  Initial Purpose\n";
6858   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6859   if (Parser.getGotModulePointer())
6860     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6861 
6862   if (!Parser.getLocalEntries().empty()) {
6863     OS << "\n";
6864     OS << " Local entries:\n";
6865     if (ELFT::Is64Bits)
6866       OS << "           Address     Access          Initial\n";
6867     else
6868       OS << "   Address     Access  Initial\n";
6869     for (auto &E : Parser.getLocalEntries())
6870       PrintEntry(&E, "");
6871   }
6872 
6873   if (Parser.IsStatic)
6874     return;
6875 
6876   if (!Parser.getGlobalEntries().empty()) {
6877     OS << "\n";
6878     OS << " Global entries:\n";
6879     if (ELFT::Is64Bits)
6880       OS << "           Address     Access          Initial         Sym.Val."
6881          << " Type    Ndx Name\n";
6882     else
6883       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
6884 
6885     DataRegion<Elf_Word> ShndxTable(
6886         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6887     for (auto &E : Parser.getGlobalEntries()) {
6888       const Elf_Sym &Sym = *Parser.getGotSym(&E);
6889       const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6890       std::string SymName = this->getFullSymbolName(
6891           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6892 
6893       OS.PadToColumn(2);
6894       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6895       OS.PadToColumn(11 + Bias);
6896       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6897       OS.PadToColumn(22 + Bias);
6898       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6899       OS.PadToColumn(31 + 2 * Bias);
6900       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6901       OS.PadToColumn(40 + 3 * Bias);
6902       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6903       OS.PadToColumn(48 + 3 * Bias);
6904       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6905                                 ShndxTable);
6906       OS.PadToColumn(52 + 3 * Bias);
6907       OS << SymName << "\n";
6908     }
6909   }
6910 
6911   if (!Parser.getOtherEntries().empty())
6912     OS << "\n Number of TLS and multi-GOT entries "
6913        << Parser.getOtherEntries().size() << "\n";
6914 }
6915 
6916 template <class ELFT>
6917 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6918   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6919   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6920     OS.PadToColumn(2);
6921     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6922     OS.PadToColumn(11 + Bias);
6923     OS << format_hex_no_prefix(*E, 8 + Bias);
6924     OS.PadToColumn(20 + 2 * Bias);
6925     OS << Purpose << "\n";
6926   };
6927 
6928   OS << "PLT GOT:\n\n";
6929 
6930   OS << " Reserved entries:\n";
6931   OS << "   Address  Initial Purpose\n";
6932   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6933   if (Parser.getPltModulePointer())
6934     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6935 
6936   if (!Parser.getPltEntries().empty()) {
6937     OS << "\n";
6938     OS << " Entries:\n";
6939     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6940     DataRegion<Elf_Word> ShndxTable(
6941         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6942     for (auto &E : Parser.getPltEntries()) {
6943       const Elf_Sym &Sym = *Parser.getPltSym(&E);
6944       const Elf_Sym &FirstSym = *cantFail(
6945           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6946       std::string SymName = this->getFullSymbolName(
6947           Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6948 
6949       OS.PadToColumn(2);
6950       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6951       OS.PadToColumn(11 + Bias);
6952       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6953       OS.PadToColumn(20 + 2 * Bias);
6954       OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6955       OS.PadToColumn(29 + 3 * Bias);
6956       OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6957       OS.PadToColumn(37 + 3 * Bias);
6958       OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6959                                 ShndxTable);
6960       OS.PadToColumn(41 + 3 * Bias);
6961       OS << SymName << "\n";
6962     }
6963   }
6964 }
6965 
6966 template <class ELFT>
6967 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6968 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6969   const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6970   if (Sec == nullptr)
6971     return nullptr;
6972 
6973   constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6974   Expected<ArrayRef<uint8_t>> DataOrErr =
6975       Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6976   if (!DataOrErr)
6977     return createError(ErrPrefix + toString(DataOrErr.takeError()));
6978 
6979   if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6980     return createError(ErrPrefix + "it has a wrong size (" +
6981         Twine(DataOrErr->size()) + ")");
6982   return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6983 }
6984 
6985 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6986   const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6987   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6988           getMipsAbiFlagsSection(*this))
6989     Flags = *SecOrErr;
6990   else
6991     this->reportUniqueWarning(SecOrErr.takeError());
6992   if (!Flags)
6993     return;
6994 
6995   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6996   OS << "ISA: MIPS" << int(Flags->isa_level);
6997   if (Flags->isa_rev > 1)
6998     OS << "r" << int(Flags->isa_rev);
6999   OS << "\n";
7000   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
7001   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
7002   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
7003   OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
7004      << "\n";
7005   OS << "ISA Extension: "
7006      << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
7007   if (Flags->ases == 0)
7008     OS << "ASEs: None\n";
7009   else
7010     // FIXME: Print each flag on a separate line.
7011     OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
7012        << "\n";
7013   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
7014   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
7015   OS << "\n";
7016 }
7017 
7018 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
7019   const Elf_Ehdr &E = this->Obj.getHeader();
7020   {
7021     DictScope D(W, "ElfHeader");
7022     {
7023       DictScope D(W, "Ident");
7024       W.printBinary("Magic",
7025                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
7026       W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
7027       W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
7028                   ArrayRef(ElfDataEncoding));
7029       W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
7030 
7031       auto OSABI = ArrayRef(ElfOSABI);
7032       if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
7033           E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
7034         switch (E.e_machine) {
7035         case ELF::EM_AMDGPU:
7036           OSABI = ArrayRef(AMDGPUElfOSABI);
7037           break;
7038         case ELF::EM_ARM:
7039           OSABI = ArrayRef(ARMElfOSABI);
7040           break;
7041         case ELF::EM_TI_C6000:
7042           OSABI = ArrayRef(C6000ElfOSABI);
7043           break;
7044         }
7045       }
7046       W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
7047       W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
7048       W.printBinary("Unused",
7049                     ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
7050     }
7051 
7052     std::string TypeStr;
7053     if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
7054       TypeStr = Ent->Name.str();
7055     } else {
7056       if (E.e_type >= ET_LOPROC)
7057         TypeStr = "Processor Specific";
7058       else if (E.e_type >= ET_LOOS)
7059         TypeStr = "OS Specific";
7060       else
7061         TypeStr = "Unknown";
7062     }
7063     W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
7064 
7065     W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
7066     W.printNumber("Version", E.e_version);
7067     W.printHex("Entry", E.e_entry);
7068     W.printHex("ProgramHeaderOffset", E.e_phoff);
7069     W.printHex("SectionHeaderOffset", E.e_shoff);
7070     if (E.e_machine == EM_MIPS)
7071       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
7072                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
7073                    unsigned(ELF::EF_MIPS_MACH));
7074     else if (E.e_machine == EM_AMDGPU) {
7075       switch (E.e_ident[ELF::EI_ABIVERSION]) {
7076       default:
7077         W.printHex("Flags", E.e_flags);
7078         break;
7079       case 0:
7080         // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
7081         [[fallthrough]];
7082       case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
7083         W.printFlags("Flags", E.e_flags,
7084                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
7085                      unsigned(ELF::EF_AMDGPU_MACH));
7086         break;
7087       case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
7088       case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
7089         W.printFlags("Flags", E.e_flags,
7090                      ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
7091                      unsigned(ELF::EF_AMDGPU_MACH),
7092                      unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
7093                      unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
7094         break;
7095       case ELF::ELFABIVERSION_AMDGPU_HSA_V6: {
7096         std::optional<FlagEntry> VerFlagEntry;
7097         // The string needs to remain alive from the moment we create a
7098         // FlagEntry until printFlags is done.
7099         std::string FlagStr;
7100         if (auto VersionFlag = E.e_flags & ELF::EF_AMDGPU_GENERIC_VERSION) {
7101           unsigned Version =
7102               VersionFlag >> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET;
7103           FlagStr = "EF_AMDGPU_GENERIC_VERSION_V" + std::to_string(Version);
7104           VerFlagEntry = FlagEntry(FlagStr, VersionFlag);
7105         }
7106         W.printFlags(
7107             "Flags", E.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
7108             unsigned(ELF::EF_AMDGPU_MACH),
7109             unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
7110             unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4),
7111             VerFlagEntry ? ArrayRef(*VerFlagEntry) : ArrayRef<FlagEntry>());
7112         break;
7113       }
7114       }
7115     } else if (E.e_machine == EM_RISCV)
7116       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
7117     else if (E.e_machine == EM_AVR)
7118       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
7119                    unsigned(ELF::EF_AVR_ARCH_MASK));
7120     else if (E.e_machine == EM_LOONGARCH)
7121       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
7122                    unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
7123                    unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
7124     else if (E.e_machine == EM_XTENSA)
7125       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
7126                    unsigned(ELF::EF_XTENSA_MACH));
7127     else if (E.e_machine == EM_CUDA)
7128       W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags),
7129                    unsigned(ELF::EF_CUDA_SM));
7130     else
7131       W.printFlags("Flags", E.e_flags);
7132     W.printNumber("HeaderSize", E.e_ehsize);
7133     W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
7134     W.printNumber("ProgramHeaderCount", E.e_phnum);
7135     W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
7136     W.printString("SectionHeaderCount",
7137                   getSectionHeadersNumString(this->Obj, this->FileName));
7138     W.printString("StringTableSectionIndex",
7139                   getSectionHeaderTableIndexString(this->Obj, this->FileName));
7140   }
7141 }
7142 
7143 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
7144   DictScope Lists(W, "Groups");
7145   std::vector<GroupSection> V = this->getGroups();
7146   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
7147   for (const GroupSection &G : V) {
7148     DictScope D(W, "Group");
7149     W.printNumber("Name", G.Name, G.ShName);
7150     W.printNumber("Index", G.Index);
7151     W.printNumber("Link", G.Link);
7152     W.printNumber("Info", G.Info);
7153     W.printHex("Type", getGroupType(G.Type), G.Type);
7154     W.printString("Signature", G.Signature);
7155 
7156     ListScope L(W, getGroupSectionHeaderName());
7157     for (const GroupMember &GM : G.Members) {
7158       const GroupSection *MainGroup = Map[GM.Index];
7159       if (MainGroup != &G)
7160         this->reportUniqueWarning(
7161             "section with index " + Twine(GM.Index) +
7162             ", included in the group section with index " +
7163             Twine(MainGroup->Index) +
7164             ", was also found in the group section with index " +
7165             Twine(G.Index));
7166       printSectionGroupMembers(GM.Name, GM.Index);
7167     }
7168   }
7169 
7170   if (V.empty())
7171     printEmptyGroupMessage();
7172 }
7173 
7174 template <class ELFT>
7175 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const {
7176   return "Section(s) in group";
7177 }
7178 
7179 template <class ELFT>
7180 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
7181                                                    uint64_t Idx) const {
7182   W.startLine() << Name << " (" << Idx << ")\n";
7183 }
7184 
7185 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
7186   ListScope D(W, "Relocations");
7187 
7188   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7189     if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader()))
7190       continue;
7191 
7192     StringRef Name = this->getPrintableSectionName(Sec);
7193     unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
7194     printRelocationSectionInfo(Sec, Name, SecNdx);
7195   }
7196 }
7197 
7198 template <class ELFT>
7199 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R,
7200                                                     StringRef SymbolName,
7201                                                     StringRef RelocName) {
7202   DictScope Group(W, "Relocation");
7203   W.printHex("Offset", R.Offset);
7204   W.printNumber("Type", RelocName, R.Type);
7205   W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
7206   if (R.Addend)
7207     W.printHex("Addend", (uintX_t)*R.Addend);
7208 }
7209 
7210 template <class ELFT>
7211 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
7212                                                    StringRef SymbolName,
7213                                                    StringRef RelocName) {
7214   raw_ostream &OS = W.startLine();
7215   OS << W.hex(R.Offset) << " " << RelocName << " "
7216      << (!SymbolName.empty() ? SymbolName : "-");
7217   if (R.Addend)
7218     OS << " " << W.hex((uintX_t)*R.Addend);
7219   OS << "\n";
7220 }
7221 
7222 template <class ELFT>
7223 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
7224                                                      StringRef Name,
7225                                                      const unsigned SecNdx) {
7226   DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str());
7227   this->printRelocationsHelper(Sec);
7228 }
7229 
7230 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const {
7231   W.startLine() << "There are no group sections in the file.\n";
7232 }
7233 
7234 template <class ELFT>
7235 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
7236                                             const RelSymbol<ELFT> &RelSym) {
7237   StringRef SymbolName = RelSym.Name;
7238   if (RelSym.Sym && RelSym.Name.empty())
7239     SymbolName = "<null>";
7240   SmallString<32> RelocName;
7241   this->Obj.getRelocationTypeName(R.Type, RelocName);
7242 
7243   if (opts::ExpandRelocs) {
7244     printExpandedRelRelaReloc(R, SymbolName, RelocName);
7245   } else {
7246     printDefaultRelRelaReloc(R, SymbolName, RelocName);
7247   }
7248 }
7249 
7250 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
7251   ListScope SectionsD(W, "Sections");
7252 
7253   int SectionIndex = -1;
7254   std::vector<EnumEntry<unsigned>> FlagsList =
7255       getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
7256                                this->Obj.getHeader().e_machine);
7257   for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7258     DictScope SectionD(W, "Section");
7259     W.printNumber("Index", ++SectionIndex);
7260     W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
7261     W.printHex("Type",
7262                object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
7263                                              Sec.sh_type),
7264                Sec.sh_type);
7265     W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
7266     W.printHex("Address", Sec.sh_addr);
7267     W.printHex("Offset", Sec.sh_offset);
7268     W.printNumber("Size", Sec.sh_size);
7269     W.printNumber("Link", Sec.sh_link);
7270     W.printNumber("Info", Sec.sh_info);
7271     W.printNumber("AddressAlignment", Sec.sh_addralign);
7272     W.printNumber("EntrySize", Sec.sh_entsize);
7273 
7274     if (opts::SectionRelocations) {
7275       ListScope D(W, "Relocations");
7276       this->printRelocationsHelper(Sec);
7277     }
7278 
7279     if (opts::SectionSymbols) {
7280       ListScope D(W, "Symbols");
7281       if (this->DotSymtabSec) {
7282         StringRef StrTable = unwrapOrError(
7283             this->FileName,
7284             this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
7285         ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
7286 
7287         typename ELFT::SymRange Symbols = unwrapOrError(
7288             this->FileName, this->Obj.symbols(this->DotSymtabSec));
7289         for (const Elf_Sym &Sym : Symbols) {
7290           const Elf_Shdr *SymSec = unwrapOrError(
7291               this->FileName,
7292               this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
7293           if (SymSec == &Sec)
7294             printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
7295                         /*NonVisibilityBitsUsed=*/false,
7296                         /*ExtraSymInfo=*/false);
7297         }
7298       }
7299     }
7300 
7301     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
7302       ArrayRef<uint8_t> Data =
7303           unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
7304       W.printBinaryBlock(
7305           "SectionData",
7306           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
7307     }
7308   }
7309 }
7310 
7311 template <class ELFT>
7312 void LLVMELFDumper<ELFT>::printSymbolSection(
7313     const Elf_Sym &Symbol, unsigned SymIndex,
7314     DataRegion<Elf_Word> ShndxTable) const {
7315   auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
7316     if (Symbol.isUndefined())
7317       return StringRef("Undefined");
7318     if (Symbol.isProcessorSpecific())
7319       return StringRef("Processor Specific");
7320     if (Symbol.isOSSpecific())
7321       return StringRef("Operating System Specific");
7322     if (Symbol.isAbsolute())
7323       return StringRef("Absolute");
7324     if (Symbol.isCommon())
7325       return StringRef("Common");
7326     if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
7327       return StringRef("Reserved");
7328     return std::nullopt;
7329   };
7330 
7331   if (std::optional<StringRef> Type = GetSectionSpecialType()) {
7332     W.printHex("Section", *Type, Symbol.st_shndx);
7333     return;
7334   }
7335 
7336   Expected<unsigned> SectionIndex =
7337       this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
7338   if (!SectionIndex) {
7339     assert(Symbol.st_shndx == SHN_XINDEX &&
7340            "getSymbolSectionIndex should only fail due to an invalid "
7341            "SHT_SYMTAB_SHNDX table/reference");
7342     this->reportUniqueWarning(SectionIndex.takeError());
7343     W.printHex("Section", "Reserved", SHN_XINDEX);
7344     return;
7345   }
7346 
7347   Expected<StringRef> SectionName =
7348       this->getSymbolSectionName(Symbol, *SectionIndex);
7349   if (!SectionName) {
7350     // Don't report an invalid section name if the section headers are missing.
7351     // In such situations, all sections will be "invalid".
7352     if (!this->ObjF.sections().empty())
7353       this->reportUniqueWarning(SectionName.takeError());
7354     else
7355       consumeError(SectionName.takeError());
7356     W.printHex("Section", "<?>", *SectionIndex);
7357   } else {
7358     W.printHex("Section", *SectionName, *SectionIndex);
7359   }
7360 }
7361 
7362 template <class ELFT>
7363 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const {
7364   std::vector<EnumEntry<unsigned>> SymOtherFlags =
7365       this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol);
7366   W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
7367 }
7368 
7369 template <class ELFT>
7370 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField(
7371     const Elf_Sym &Symbol) const {
7372   assert(Symbol.st_other == 0 && "non-zero Other Field");
7373   // Usually st_other flag is zero. Do not pollute the output
7374   // by flags enumeration in that case.
7375   W.printNumber("Other", 0);
7376 }
7377 
7378 template <class ELFT>
7379 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
7380                                       DataRegion<Elf_Word> ShndxTable,
7381                                       std::optional<StringRef> StrTable,
7382                                       bool IsDynamic,
7383                                       bool /*NonVisibilityBitsUsed*/,
7384                                       bool /*ExtraSymInfo*/) const {
7385   std::string FullSymbolName = this->getFullSymbolName(
7386       Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
7387   unsigned char SymbolType = Symbol.getType();
7388 
7389   DictScope D(W, "Symbol");
7390   W.printNumber("Name", FullSymbolName, Symbol.st_name);
7391   W.printHex("Value", Symbol.st_value);
7392   W.printNumber("Size", Symbol.st_size);
7393   W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
7394   if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
7395       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
7396     W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
7397   else
7398     W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
7399   if (Symbol.st_other == 0)
7400     printZeroSymbolOtherField(Symbol);
7401   else
7402     printSymbolOtherField(Symbol);
7403   printSymbolSection(Symbol, SymIndex, ShndxTable);
7404 }
7405 
7406 template <class ELFT>
7407 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
7408                                        bool PrintDynamicSymbols,
7409                                        bool ExtraSymInfo) {
7410   if (PrintSymbols) {
7411     ListScope Group(W, "Symbols");
7412     this->printSymbolsHelper(false, ExtraSymInfo);
7413   }
7414   if (PrintDynamicSymbols) {
7415     ListScope Group(W, "DynamicSymbols");
7416     this->printSymbolsHelper(true, ExtraSymInfo);
7417   }
7418 }
7419 
7420 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
7421   Elf_Dyn_Range Table = this->dynamic_table();
7422   if (Table.empty())
7423     return;
7424 
7425   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
7426 
7427   size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
7428   // The "Name/Value" column should be indented from the "Type" column by N
7429   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7430   // space (1) = -3.
7431   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
7432                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
7433 
7434   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
7435   for (auto Entry : Table) {
7436     uintX_t Tag = Entry.getTag();
7437     std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
7438     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
7439                   << " "
7440                   << format(ValueFmt.c_str(),
7441                             this->Obj.getDynamicTagAsString(Tag).c_str())
7442                   << Value << "\n";
7443   }
7444   W.startLine() << "]\n";
7445 }
7446 
7447 template <class ELFT>
7448 void JSONELFDumper<ELFT>::printAuxillaryDynamicTableEntryInfo(
7449     const Elf_Dyn &Entry) {
7450   auto FormatFlags = [this, Value = Entry.getVal()](auto Flags) {
7451     ListScope L(this->W, "Flags");
7452     for (const auto &Flag : Flags) {
7453       if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
7454         this->W.printString(Flag.Name);
7455     }
7456   };
7457   switch (Entry.getTag()) {
7458   case DT_SONAME:
7459     this->W.printString("Name", this->getDynamicString(Entry.getVal()));
7460     break;
7461   case DT_AUXILIARY:
7462   case DT_FILTER:
7463   case DT_NEEDED:
7464     this->W.printString("Library", this->getDynamicString(Entry.getVal()));
7465     break;
7466   case DT_USED:
7467     this->W.printString("Object", this->getDynamicString(Entry.getVal()));
7468     break;
7469   case DT_RPATH:
7470   case DT_RUNPATH: {
7471     StringRef Value = this->getDynamicString(Entry.getVal());
7472     ListScope L(this->W, "Path");
7473     while (!Value.empty()) {
7474       auto [Front, Back] = Value.split(':');
7475       this->W.printString(Front);
7476       Value = Back;
7477     }
7478     break;
7479   }
7480   case DT_FLAGS:
7481     FormatFlags(ArrayRef(ElfDynamicDTFlags));
7482     break;
7483   case DT_FLAGS_1:
7484     FormatFlags(ArrayRef(ElfDynamicDTFlags1));
7485     break;
7486   default:
7487     return;
7488   }
7489 }
7490 
7491 template <class ELFT> void JSONELFDumper<ELFT>::printDynamicTable() {
7492   Elf_Dyn_Range Table = this->dynamic_table();
7493   ListScope L(this->W, "DynamicSection");
7494   for (const auto &Entry : Table) {
7495     DictScope D(this->W);
7496     uintX_t Tag = Entry.getTag();
7497     this->W.printHex("Tag", Tag);
7498     this->W.printString("Type", this->Obj.getDynamicTagAsString(Tag));
7499     this->W.printHex("Value", Entry.getVal());
7500     this->printAuxillaryDynamicTableEntryInfo(Entry);
7501   }
7502 }
7503 
7504 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
7505   W.startLine() << "Dynamic Relocations {\n";
7506   W.indent();
7507   this->printDynamicRelocationsHelper();
7508   W.unindent();
7509   W.startLine() << "}\n";
7510 }
7511 
7512 template <class ELFT>
7513 void LLVMELFDumper<ELFT>::printProgramHeaders(
7514     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
7515   if (PrintProgramHeaders)
7516     printProgramHeaders();
7517   if (PrintSectionMapping == cl::BOU_TRUE)
7518     printSectionMapping();
7519 }
7520 
7521 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
7522   ListScope L(W, "ProgramHeaders");
7523 
7524   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
7525   if (!PhdrsOrErr) {
7526     this->reportUniqueWarning("unable to dump program headers: " +
7527                               toString(PhdrsOrErr.takeError()));
7528     return;
7529   }
7530 
7531   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
7532     DictScope P(W, "ProgramHeader");
7533     StringRef Type =
7534         segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
7535 
7536     W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
7537     W.printHex("Offset", Phdr.p_offset);
7538     W.printHex("VirtualAddress", Phdr.p_vaddr);
7539     W.printHex("PhysicalAddress", Phdr.p_paddr);
7540     W.printNumber("FileSize", Phdr.p_filesz);
7541     W.printNumber("MemSize", Phdr.p_memsz);
7542     W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
7543     W.printNumber("Alignment", Phdr.p_align);
7544   }
7545 }
7546 
7547 template <class ELFT>
7548 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
7549   ListScope SS(W, "VersionSymbols");
7550   if (!Sec)
7551     return;
7552 
7553   StringRef StrTable;
7554   ArrayRef<Elf_Sym> Syms;
7555   const Elf_Shdr *SymTabSec;
7556   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
7557       this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
7558   if (!VerTableOrErr) {
7559     this->reportUniqueWarning(VerTableOrErr.takeError());
7560     return;
7561   }
7562 
7563   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
7564     return;
7565 
7566   ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
7567   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
7568     DictScope S(W, "Symbol");
7569     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
7570     W.printString("Name",
7571                   this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
7572                                           /*IsDynamic=*/true));
7573   }
7574 }
7575 
7576 const EnumEntry<unsigned> SymVersionFlags[] = {
7577     {"Base", "BASE", VER_FLG_BASE},
7578     {"Weak", "WEAK", VER_FLG_WEAK},
7579     {"Info", "INFO", VER_FLG_INFO}};
7580 
7581 template <class ELFT>
7582 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
7583   ListScope SD(W, "VersionDefinitions");
7584   if (!Sec)
7585     return;
7586 
7587   Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
7588   if (!V) {
7589     this->reportUniqueWarning(V.takeError());
7590     return;
7591   }
7592 
7593   for (const VerDef &D : *V) {
7594     DictScope Def(W, "Definition");
7595     W.printNumber("Version", D.Version);
7596     W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
7597     W.printNumber("Index", D.Ndx);
7598     W.printNumber("Hash", D.Hash);
7599     W.printString("Name", D.Name.c_str());
7600     W.printList(
7601         "Predecessors", D.AuxV,
7602         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
7603   }
7604 }
7605 
7606 template <class ELFT>
7607 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
7608   ListScope SD(W, "VersionRequirements");
7609   if (!Sec)
7610     return;
7611 
7612   Expected<std::vector<VerNeed>> V =
7613       this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
7614   if (!V) {
7615     this->reportUniqueWarning(V.takeError());
7616     return;
7617   }
7618 
7619   for (const VerNeed &VN : *V) {
7620     DictScope Entry(W, "Dependency");
7621     W.printNumber("Version", VN.Version);
7622     W.printNumber("Count", VN.Cnt);
7623     W.printString("FileName", VN.File.c_str());
7624 
7625     ListScope L(W, "Entries");
7626     for (const VernAux &Aux : VN.AuxV) {
7627       DictScope Entry(W, "Entry");
7628       W.printNumber("Hash", Aux.Hash);
7629       W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7630       W.printNumber("Index", Aux.Other);
7631       W.printString("Name", Aux.Name.c_str());
7632     }
7633   }
7634 }
7635 
7636 template <class ELFT>
7637 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
7638                                                   size_t MaxChain,
7639                                                   size_t TotalSyms,
7640                                                   ArrayRef<size_t> Count,
7641                                                   bool IsGnu) const {
7642   StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram";
7643   StringRef BucketName = IsGnu ? "Bucket" : "Chain";
7644   StringRef ListName = IsGnu ? "Buckets" : "Chains";
7645   DictScope Outer(W, HistName);
7646   W.printNumber("TotalBuckets", NBucket);
7647   ListScope Buckets(W, ListName);
7648   size_t CumulativeNonZero = 0;
7649   for (size_t I = 0; I < MaxChain; ++I) {
7650     CumulativeNonZero += Count[I] * I;
7651     DictScope Bucket(W, BucketName);
7652     W.printNumber("Length", I);
7653     W.printNumber("Count", Count[I]);
7654     W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket);
7655     W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms);
7656   }
7657 }
7658 
7659 // Returns true if rel/rela section exists, and populates SymbolIndices.
7660 // Otherwise returns false.
7661 template <class ELFT>
7662 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7663                              const ELFFile<ELFT> &Obj,
7664                              const LLVMELFDumper<ELFT> *Dumper,
7665                              SmallVector<uint32_t, 128> &SymbolIndices) {
7666   if (!CGRelSection) {
7667     Dumper->reportUniqueWarning(
7668         "relocation section for a call graph section doesn't exist");
7669     return false;
7670   }
7671 
7672   if (CGRelSection->sh_type == SHT_REL) {
7673     typename ELFT::RelRange CGProfileRel;
7674     Expected<typename ELFT::RelRange> CGProfileRelOrError =
7675         Obj.rels(*CGRelSection);
7676     if (!CGProfileRelOrError) {
7677       Dumper->reportUniqueWarning("unable to load relocations for "
7678                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7679                                   toString(CGProfileRelOrError.takeError()));
7680       return false;
7681     }
7682 
7683     CGProfileRel = *CGProfileRelOrError;
7684     for (const typename ELFT::Rel &Rel : CGProfileRel)
7685       SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7686   } else {
7687     // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7688     // the format to SHT_RELA
7689     // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7690     typename ELFT::RelaRange CGProfileRela;
7691     Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7692         Obj.relas(*CGRelSection);
7693     if (!CGProfileRelaOrError) {
7694       Dumper->reportUniqueWarning("unable to load relocations for "
7695                                   "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7696                                   toString(CGProfileRelaOrError.takeError()));
7697       return false;
7698     }
7699 
7700     CGProfileRela = *CGProfileRelaOrError;
7701     for (const typename ELFT::Rela &Rela : CGProfileRela)
7702       SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7703   }
7704 
7705   return true;
7706 }
7707 
7708 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7709   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7710     return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7711   };
7712 
7713   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr =
7714       this->Obj.getSectionAndRelocations(IsMatch);
7715   if (!SecToRelocMapOrErr) {
7716     this->reportUniqueWarning("unable to get CG Profile section(s): " +
7717                               toString(SecToRelocMapOrErr.takeError()));
7718     return;
7719   }
7720 
7721   for (const auto &CGMapEntry : *SecToRelocMapOrErr) {
7722     const Elf_Shdr *CGSection = CGMapEntry.first;
7723     const Elf_Shdr *CGRelSection = CGMapEntry.second;
7724 
7725     Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7726         this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7727     if (!CGProfileOrErr) {
7728       this->reportUniqueWarning(
7729           "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7730           toString(CGProfileOrErr.takeError()));
7731       return;
7732     }
7733 
7734     SmallVector<uint32_t, 128> SymbolIndices;
7735     bool UseReloc =
7736         getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7737     if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7738       this->reportUniqueWarning(
7739           "number of from/to pairs does not match number of frequencies");
7740       UseReloc = false;
7741     }
7742 
7743     ListScope L(W, "CGProfile");
7744     for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7745       const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7746       DictScope D(W, "CGProfileEntry");
7747       if (UseReloc) {
7748         uint32_t From = SymbolIndices[I * 2];
7749         uint32_t To = SymbolIndices[I * 2 + 1];
7750         W.printNumber("From", this->getStaticSymbolName(From), From);
7751         W.printNumber("To", this->getStaticSymbolName(To), To);
7752       }
7753       W.printNumber("Weight", CGPE.cgp_weight);
7754     }
7755   }
7756 }
7757 
7758 template <class ELFT>
7759 void LLVMELFDumper<ELFT>::printBBAddrMaps(bool PrettyPGOAnalysis) {
7760   bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7761   using Elf_Shdr = typename ELFT::Shdr;
7762   auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7763     return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP;
7764   };
7765   Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr =
7766       this->Obj.getSectionAndRelocations(IsMatch);
7767   if (!SecRelocMapOrErr) {
7768     this->reportUniqueWarning(
7769         "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7770         toString(SecRelocMapOrErr.takeError()));
7771     return;
7772   }
7773   for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) {
7774     std::optional<const Elf_Shdr *> FunctionSec;
7775     if (IsRelocatable)
7776       FunctionSec =
7777           unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link));
7778     ListScope L(W, "BBAddrMap");
7779     if (IsRelocatable && !RelocSec) {
7780       this->reportUniqueWarning("unable to get relocation section for " +
7781                                 this->describe(*Sec));
7782       continue;
7783     }
7784     std::vector<PGOAnalysisMap> PGOAnalyses;
7785     Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7786         this->Obj.decodeBBAddrMap(*Sec, RelocSec, &PGOAnalyses);
7787     if (!BBAddrMapOrErr) {
7788       this->reportUniqueWarning("unable to dump " + this->describe(*Sec) +
7789                                 ": " + toString(BBAddrMapOrErr.takeError()));
7790       continue;
7791     }
7792     for (const auto &[AM, PAM] : zip_equal(*BBAddrMapOrErr, PGOAnalyses)) {
7793       DictScope D(W, "Function");
7794       W.printHex("At", AM.getFunctionAddress());
7795       SmallVector<uint32_t> FuncSymIndex =
7796           this->getSymbolIndexesForFunctionAddress(AM.getFunctionAddress(),
7797                                                    FunctionSec);
7798       std::string FuncName = "<?>";
7799       if (FuncSymIndex.empty())
7800         this->reportUniqueWarning(
7801             "could not identify function symbol for address (0x" +
7802             Twine::utohexstr(AM.getFunctionAddress()) + ") in " +
7803             this->describe(*Sec));
7804       else
7805         FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7806       W.printString("Name", FuncName);
7807       {
7808         ListScope BBRL(W, "BB Ranges");
7809         for (const BBAddrMap::BBRangeEntry &BBR : AM.BBRanges) {
7810           DictScope BBRD(W);
7811           W.printHex("Base Address", BBR.BaseAddress);
7812           ListScope BBEL(W, "BB Entries");
7813           for (const BBAddrMap::BBEntry &BBE : BBR.BBEntries) {
7814             DictScope BBED(W);
7815             W.printNumber("ID", BBE.ID);
7816             W.printHex("Offset", BBE.Offset);
7817             W.printHex("Size", BBE.Size);
7818             W.printBoolean("HasReturn", BBE.hasReturn());
7819             W.printBoolean("HasTailCall", BBE.hasTailCall());
7820             W.printBoolean("IsEHPad", BBE.isEHPad());
7821             W.printBoolean("CanFallThrough", BBE.canFallThrough());
7822             W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch());
7823           }
7824         }
7825       }
7826 
7827       if (PAM.FeatEnable.hasPGOAnalysis()) {
7828         DictScope PD(W, "PGO analyses");
7829 
7830         if (PAM.FeatEnable.FuncEntryCount)
7831           W.printNumber("FuncEntryCount", PAM.FuncEntryCount);
7832 
7833         if (PAM.FeatEnable.hasPGOAnalysisBBData()) {
7834           ListScope L(W, "PGO BB entries");
7835           for (const PGOAnalysisMap::PGOBBEntry &PBBE : PAM.BBEntries) {
7836             DictScope L(W);
7837 
7838             if (PAM.FeatEnable.BBFreq) {
7839               if (PrettyPGOAnalysis) {
7840                 std::string BlockFreqStr;
7841                 raw_string_ostream SS(BlockFreqStr);
7842                 printRelativeBlockFreq(SS, PAM.BBEntries.front().BlockFreq,
7843                                        PBBE.BlockFreq);
7844                 W.printString("Frequency", BlockFreqStr);
7845               } else {
7846                 W.printNumber("Frequency", PBBE.BlockFreq.getFrequency());
7847               }
7848             }
7849 
7850             if (PAM.FeatEnable.BrProb) {
7851               ListScope L(W, "Successors");
7852               for (const auto &Succ : PBBE.Successors) {
7853                 DictScope L(W);
7854                 W.printNumber("ID", Succ.ID);
7855                 if (PrettyPGOAnalysis) {
7856                   W.printObject("Probability", Succ.Prob);
7857                 } else {
7858                   W.printHex("Probability", Succ.Prob.getNumerator());
7859                 }
7860               }
7861             }
7862           }
7863         }
7864       }
7865     }
7866   }
7867 }
7868 
7869 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7870   ListScope L(W, "Addrsig");
7871   if (!this->DotAddrsigSec)
7872     return;
7873 
7874   Expected<std::vector<uint64_t>> SymsOrErr =
7875       decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7876   if (!SymsOrErr) {
7877     this->reportUniqueWarning(SymsOrErr.takeError());
7878     return;
7879   }
7880 
7881   for (uint64_t Sym : *SymsOrErr)
7882     W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7883 }
7884 
7885 template <typename ELFT>
7886 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7887                                   ScopedPrinter &W) {
7888   // Return true if we were able to pretty-print the note, false otherwise.
7889   switch (NoteType) {
7890   default:
7891     return false;
7892   case ELF::NT_GNU_ABI_TAG: {
7893     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7894     if (!AbiTag.IsValid) {
7895       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7896       return false;
7897     } else {
7898       W.printString("OS", AbiTag.OSName);
7899       W.printString("ABI", AbiTag.ABI);
7900     }
7901     break;
7902   }
7903   case ELF::NT_GNU_BUILD_ID: {
7904     W.printString("Build ID", getGNUBuildId(Desc));
7905     break;
7906   }
7907   case ELF::NT_GNU_GOLD_VERSION:
7908     W.printString("Version", getDescAsStringRef(Desc));
7909     break;
7910   case ELF::NT_GNU_PROPERTY_TYPE_0:
7911     ListScope D(W, "Property");
7912     for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7913       W.printString(Property);
7914     break;
7915   }
7916   return true;
7917 }
7918 
7919 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7920                                       ScopedPrinter &W) {
7921   // Return true if we were able to pretty-print the note, false otherwise.
7922   AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7923   if (Props.empty())
7924     return false;
7925   for (const auto &KV : Props)
7926     W.printString(KV.first, KV.second);
7927   return true;
7928 }
7929 
7930 template <class ELFT>
7931 void LLVMELFDumper<ELFT>::printMemtag(
7932     const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
7933     const ArrayRef<uint8_t> AndroidNoteDesc,
7934     const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
7935   {
7936     ListScope L(W, "Memtag Dynamic Entries:");
7937     if (DynamicEntries.empty())
7938       W.printString("< none found >");
7939     for (const auto &DynamicEntryKV : DynamicEntries)
7940       W.printString(DynamicEntryKV.first, DynamicEntryKV.second);
7941   }
7942 
7943   if (!AndroidNoteDesc.empty()) {
7944     ListScope L(W, "Memtag Android Note:");
7945     printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W);
7946   }
7947 
7948   if (Descriptors.empty())
7949     return;
7950 
7951   {
7952     ListScope L(W, "Memtag Global Descriptors:");
7953     for (const auto &[Addr, BytesToTag] : Descriptors) {
7954       W.printHex("0x" + utohexstr(Addr), BytesToTag);
7955     }
7956   }
7957 }
7958 
7959 template <typename ELFT>
7960 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7961                                              ArrayRef<uint8_t> Desc,
7962                                              ScopedPrinter &W) {
7963   switch (NoteType) {
7964   default:
7965     return false;
7966   case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7967     W.printString("Version", getDescAsStringRef(Desc));
7968     break;
7969   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7970     W.printString("Producer", getDescAsStringRef(Desc));
7971     break;
7972   case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7973     W.printString("Producer version", getDescAsStringRef(Desc));
7974     break;
7975   }
7976   return true;
7977 }
7978 
7979 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7980   W.printNumber("Page Size", Note.PageSize);
7981   ListScope D(W, "Mappings");
7982   for (const CoreFileMapping &Mapping : Note.Mappings) {
7983     DictScope D(W);
7984     W.printHex("Start", Mapping.Start);
7985     W.printHex("End", Mapping.End);
7986     W.printHex("Offset", Mapping.Offset);
7987     W.printString("Filename", Mapping.Filename);
7988   }
7989 }
7990 
7991 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7992   ListScope L(W, "NoteSections");
7993 
7994   std::unique_ptr<DictScope> NoteSectionScope;
7995   std::unique_ptr<ListScope> NotesScope;
7996   size_t Align = 0;
7997   auto StartNotes = [&](std::optional<StringRef> SecName,
7998                         const typename ELFT::Off Offset,
7999                         const typename ELFT::Addr Size, size_t Al) {
8000     Align = std::max<size_t>(Al, 4);
8001     NoteSectionScope = std::make_unique<DictScope>(W, "NoteSection");
8002     W.printString("Name", SecName ? *SecName : "<?>");
8003     W.printHex("Offset", Offset);
8004     W.printHex("Size", Size);
8005     NotesScope = std::make_unique<ListScope>(W, "Notes");
8006   };
8007 
8008   auto EndNotes = [&] {
8009     NotesScope.reset();
8010     NoteSectionScope.reset();
8011   };
8012 
8013   auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
8014     DictScope D2(W);
8015     StringRef Name = Note.getName();
8016     ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
8017     Elf_Word Type = Note.getType();
8018 
8019     // Print the note owner/type.
8020     W.printString("Owner", Name);
8021     W.printHex("Data size", Descriptor.size());
8022 
8023     StringRef NoteType =
8024         getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
8025     if (!NoteType.empty())
8026       W.printString("Type", NoteType);
8027     else
8028       W.printString("Type",
8029                     "Unknown (" + to_string(format_hex(Type, 10)) + ")");
8030 
8031     // Print the description, or fallback to printing raw bytes for unknown
8032     // owners/if we fail to pretty-print the contents.
8033     if (Name == "GNU") {
8034       if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
8035         return Error::success();
8036     } else if (Name == "FreeBSD") {
8037       if (std::optional<FreeBSDNote> N =
8038               getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
8039         W.printString(N->Type, N->Value);
8040         return Error::success();
8041       }
8042     } else if (Name == "AMD") {
8043       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
8044       if (!N.Type.empty()) {
8045         W.printString(N.Type, N.Value);
8046         return Error::success();
8047       }
8048     } else if (Name == "AMDGPU") {
8049       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
8050       if (!N.Type.empty()) {
8051         W.printString(N.Type, N.Value);
8052         return Error::success();
8053       }
8054     } else if (Name == "LLVMOMPOFFLOAD") {
8055       if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
8056         return Error::success();
8057     } else if (Name == "CORE") {
8058       if (Type == ELF::NT_FILE) {
8059         DataExtractor DescExtractor(
8060             Descriptor, ELFT::Endianness == llvm::endianness::little,
8061             sizeof(Elf_Addr));
8062         if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
8063           printCoreNoteLLVMStyle(*N, W);
8064           return Error::success();
8065         } else {
8066           return N.takeError();
8067         }
8068       }
8069     } else if (Name == "Android") {
8070       if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
8071         return Error::success();
8072     }
8073     if (!Descriptor.empty()) {
8074       W.printBinaryBlock("Description data", Descriptor);
8075     }
8076     return Error::success();
8077   };
8078 
8079   processNotesHelper(*this, /*StartNotesFn=*/StartNotes,
8080                      /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes);
8081 }
8082 
8083 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
8084   ListScope L(W, "LinkerOptions");
8085 
8086   unsigned I = -1;
8087   for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
8088     ++I;
8089     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
8090       continue;
8091 
8092     Expected<ArrayRef<uint8_t>> ContentsOrErr =
8093         this->Obj.getSectionContents(Shdr);
8094     if (!ContentsOrErr) {
8095       this->reportUniqueWarning("unable to read the content of the "
8096                                 "SHT_LLVM_LINKER_OPTIONS section: " +
8097                                 toString(ContentsOrErr.takeError()));
8098       continue;
8099     }
8100     if (ContentsOrErr->empty())
8101       continue;
8102 
8103     if (ContentsOrErr->back() != 0) {
8104       this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
8105                                 Twine(I) +
8106                                 " is broken: the "
8107                                 "content is not null-terminated");
8108       continue;
8109     }
8110 
8111     SmallVector<StringRef, 16> Strings;
8112     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
8113     if (Strings.size() % 2 != 0) {
8114       this->reportUniqueWarning(
8115           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
8116           " is broken: an incomplete "
8117           "key-value pair was found. The last possible key was: \"" +
8118           Strings.back() + "\"");
8119       continue;
8120     }
8121 
8122     for (size_t I = 0; I < Strings.size(); I += 2)
8123       W.printString(Strings[I], Strings[I + 1]);
8124   }
8125 }
8126 
8127 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
8128   ListScope L(W, "DependentLibs");
8129   this->printDependentLibsHelper(
8130       [](const Elf_Shdr &) {},
8131       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
8132 }
8133 
8134 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
8135   ListScope L(W, "StackSizes");
8136   if (this->Obj.getHeader().e_type == ELF::ET_REL)
8137     this->printRelocatableStackSizes([]() {});
8138   else
8139     this->printNonRelocatableStackSizes([]() {});
8140 }
8141 
8142 template <class ELFT>
8143 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
8144                                               ArrayRef<std::string> FuncNames) {
8145   DictScope D(W, "Entry");
8146   W.printList("Functions", FuncNames);
8147   W.printHex("Size", Size);
8148 }
8149 
8150 template <class ELFT>
8151 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
8152   auto PrintEntry = [&](const Elf_Addr *E) {
8153     W.printHex("Address", Parser.getGotAddress(E));
8154     W.printNumber("Access", Parser.getGotOffset(E));
8155     W.printHex("Initial", *E);
8156   };
8157 
8158   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
8159 
8160   W.printHex("Canonical gp value", Parser.getGp());
8161   {
8162     ListScope RS(W, "Reserved entries");
8163     {
8164       DictScope D(W, "Entry");
8165       PrintEntry(Parser.getGotLazyResolver());
8166       W.printString("Purpose", StringRef("Lazy resolver"));
8167     }
8168 
8169     if (Parser.getGotModulePointer()) {
8170       DictScope D(W, "Entry");
8171       PrintEntry(Parser.getGotModulePointer());
8172       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
8173     }
8174   }
8175   {
8176     ListScope LS(W, "Local entries");
8177     for (auto &E : Parser.getLocalEntries()) {
8178       DictScope D(W, "Entry");
8179       PrintEntry(&E);
8180     }
8181   }
8182 
8183   if (Parser.IsStatic)
8184     return;
8185 
8186   {
8187     ListScope GS(W, "Global entries");
8188     for (auto &E : Parser.getGlobalEntries()) {
8189       DictScope D(W, "Entry");
8190 
8191       PrintEntry(&E);
8192 
8193       const Elf_Sym &Sym = *Parser.getGotSym(&E);
8194       W.printHex("Value", Sym.st_value);
8195       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
8196 
8197       const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
8198       DataRegion<Elf_Word> ShndxTable(
8199           (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
8200       printSymbolSection(Sym, SymIndex, ShndxTable);
8201 
8202       std::string SymName = this->getFullSymbolName(
8203           Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
8204       W.printNumber("Name", SymName, Sym.st_name);
8205     }
8206   }
8207 
8208   W.printNumber("Number of TLS and multi-GOT entries",
8209                 uint64_t(Parser.getOtherEntries().size()));
8210 }
8211 
8212 template <class ELFT>
8213 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
8214   auto PrintEntry = [&](const Elf_Addr *E) {
8215     W.printHex("Address", Parser.getPltAddress(E));
8216     W.printHex("Initial", *E);
8217   };
8218 
8219   DictScope GS(W, "PLT GOT");
8220 
8221   {
8222     ListScope RS(W, "Reserved entries");
8223     {
8224       DictScope D(W, "Entry");
8225       PrintEntry(Parser.getPltLazyResolver());
8226       W.printString("Purpose", StringRef("PLT lazy resolver"));
8227     }
8228 
8229     if (auto E = Parser.getPltModulePointer()) {
8230       DictScope D(W, "Entry");
8231       PrintEntry(E);
8232       W.printString("Purpose", StringRef("Module pointer"));
8233     }
8234   }
8235   {
8236     ListScope LS(W, "Entries");
8237     DataRegion<Elf_Word> ShndxTable(
8238         (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
8239     for (auto &E : Parser.getPltEntries()) {
8240       DictScope D(W, "Entry");
8241       PrintEntry(&E);
8242 
8243       const Elf_Sym &Sym = *Parser.getPltSym(&E);
8244       W.printHex("Value", Sym.st_value);
8245       W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
8246       printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
8247                          ShndxTable);
8248 
8249       const Elf_Sym *FirstSym = cantFail(
8250           this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
8251       std::string SymName = this->getFullSymbolName(
8252           Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
8253       W.printNumber("Name", SymName, Sym.st_name);
8254     }
8255   }
8256 }
8257 
8258 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
8259   const Elf_Mips_ABIFlags<ELFT> *Flags;
8260   if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
8261           getMipsAbiFlagsSection(*this)) {
8262     Flags = *SecOrErr;
8263     if (!Flags) {
8264       W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
8265       return;
8266     }
8267   } else {
8268     this->reportUniqueWarning(SecOrErr.takeError());
8269     return;
8270   }
8271 
8272   raw_ostream &OS = W.getOStream();
8273   DictScope GS(W, "MIPS ABI Flags");
8274 
8275   W.printNumber("Version", Flags->version);
8276   W.startLine() << "ISA: ";
8277   if (Flags->isa_rev <= 1)
8278     OS << format("MIPS%u", Flags->isa_level);
8279   else
8280     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
8281   OS << "\n";
8282   W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
8283   W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
8284   W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
8285   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
8286   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
8287   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
8288   W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
8289   W.printHex("Flags 2", Flags->flags2);
8290 }
8291 
8292 template <class ELFT>
8293 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
8294                                            ArrayRef<std::string> InputFilenames,
8295                                            const Archive *A) {
8296   FileScope = std::make_unique<DictScope>(this->W);
8297   DictScope D(this->W, "FileSummary");
8298   this->W.printString("File", FileStr);
8299   this->W.printString("Format", Obj.getFileFormatName());
8300   this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
8301   this->W.printString(
8302       "AddressSize",
8303       std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
8304   this->printLoadName();
8305 }
8306 
8307 template <class ELFT>
8308 void JSONELFDumper<ELFT>::printZeroSymbolOtherField(
8309     const Elf_Sym &Symbol) const {
8310   // We want the JSON format to be uniform, since it is machine readable, so
8311   // always print the `Other` field the same way.
8312   this->printSymbolOtherField(Symbol);
8313 }
8314 
8315 template <class ELFT>
8316 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
8317                                                    StringRef SymbolName,
8318                                                    StringRef RelocName) {
8319   this->printExpandedRelRelaReloc(R, SymbolName, RelocName);
8320 }
8321 
8322 template <class ELFT>
8323 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
8324                                                      StringRef Name,
8325                                                      const unsigned SecNdx) {
8326   DictScope Group(this->W);
8327   this->W.printNumber("SectionIndex", SecNdx);
8328   ListScope D(this->W, "Relocs");
8329   this->printRelocationsHelper(Sec);
8330 }
8331 
8332 template <class ELFT>
8333 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const {
8334   return "GroupSections";
8335 }
8336 
8337 template <class ELFT>
8338 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
8339                                                    uint64_t Idx) const {
8340   DictScope Grp(this->W);
8341   this->W.printString("Name", Name);
8342   this->W.printNumber("Index", Idx);
8343 }
8344 
8345 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const {
8346   // JSON output does not need to print anything for empty groups
8347 }
8348