1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/BinaryFormat/MsgPackDocument.h" 33 #include "llvm/Demangle/Demangle.h" 34 #include "llvm/Object/Archive.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Object/ELFObjectFile.h" 37 #include "llvm/Object/ELFTypes.h" 38 #include "llvm/Object/Error.h" 39 #include "llvm/Object/ObjectFile.h" 40 #include "llvm/Object/RelocationResolver.h" 41 #include "llvm/Object/StackMapParser.h" 42 #include "llvm/Support/AMDGPUMetadata.h" 43 #include "llvm/Support/ARMAttributeParser.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Endian.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/FormatVariadic.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/HexagonAttributeParser.h" 53 #include "llvm/Support/LEB128.h" 54 #include "llvm/Support/MSP430AttributeParser.h" 55 #include "llvm/Support/MSP430Attributes.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/MipsABIFlags.h" 58 #include "llvm/Support/RISCVAttributeParser.h" 59 #include "llvm/Support/RISCVAttributes.h" 60 #include "llvm/Support/ScopedPrinter.h" 61 #include "llvm/Support/SystemZ/zOSSupport.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include <algorithm> 64 #include <array> 65 #include <cinttypes> 66 #include <cstddef> 67 #include <cstdint> 68 #include <cstdlib> 69 #include <iterator> 70 #include <memory> 71 #include <optional> 72 #include <string> 73 #include <system_error> 74 #include <vector> 75 76 using namespace llvm; 77 using namespace llvm::object; 78 using namespace llvm::support; 79 using namespace ELF; 80 81 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 82 case ns::enum: \ 83 return #enum; 84 85 #define ENUM_ENT(enum, altName) \ 86 { #enum, altName, ELF::enum } 87 88 #define ENUM_ENT_1(enum) \ 89 { #enum, #enum, ELF::enum } 90 91 namespace { 92 93 template <class ELFT> struct RelSymbol { 94 RelSymbol(const typename ELFT::Sym *S, StringRef N) 95 : Sym(S), Name(N.str()) {} 96 const typename ELFT::Sym *Sym; 97 std::string Name; 98 }; 99 100 /// Represents a contiguous uniform range in the file. We cannot just create a 101 /// range directly because when creating one of these from the .dynamic table 102 /// the size, entity size and virtual address are different entries in arbitrary 103 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 104 struct DynRegionInfo { 105 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 106 : Obj(&Owner), Dumper(&D) {} 107 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 108 uint64_t S, uint64_t ES) 109 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 110 111 /// Address in current address space. 112 const uint8_t *Addr = nullptr; 113 /// Size in bytes of the region. 114 uint64_t Size = 0; 115 /// Size of each entity in the region. 116 uint64_t EntSize = 0; 117 118 /// Owner object. Used for error reporting. 119 const Binary *Obj; 120 /// Dumper used for error reporting. 121 const ObjDumper *Dumper; 122 /// Error prefix. Used for error reporting to provide more information. 123 std::string Context; 124 /// Region size name. Used for error reporting. 125 StringRef SizePrintName = "size"; 126 /// Entry size name. Used for error reporting. If this field is empty, errors 127 /// will not mention the entry size. 128 StringRef EntSizePrintName = "entry size"; 129 130 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 131 const Type *Start = reinterpret_cast<const Type *>(Addr); 132 if (!Start) 133 return {Start, Start}; 134 135 const uint64_t Offset = 136 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 137 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 138 139 if (Size > ObjSize - Offset) { 140 Dumper->reportUniqueWarning( 141 "unable to read data at 0x" + Twine::utohexstr(Offset) + 142 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 143 "): it goes past the end of the file of size 0x" + 144 Twine::utohexstr(ObjSize)); 145 return {Start, Start}; 146 } 147 148 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 149 return {Start, Start + (Size / EntSize)}; 150 151 std::string Msg; 152 if (!Context.empty()) 153 Msg += Context + " has "; 154 155 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 156 .str(); 157 if (!EntSizePrintName.empty()) 158 Msg += 159 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 160 .str(); 161 162 Dumper->reportUniqueWarning(Msg); 163 return {Start, Start}; 164 } 165 }; 166 167 struct GroupMember { 168 StringRef Name; 169 uint64_t Index; 170 }; 171 172 struct GroupSection { 173 StringRef Name; 174 std::string Signature; 175 uint64_t ShName; 176 uint64_t Index; 177 uint32_t Link; 178 uint32_t Info; 179 uint32_t Type; 180 std::vector<GroupMember> Members; 181 }; 182 183 namespace { 184 185 struct NoteType { 186 uint32_t ID; 187 StringRef Name; 188 }; 189 190 } // namespace 191 192 template <class ELFT> class Relocation { 193 public: 194 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 195 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 196 Offset(R.r_offset), Info(R.r_info) {} 197 198 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 199 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 200 Addend = R.r_addend; 201 } 202 203 uint32_t Type; 204 uint32_t Symbol; 205 typename ELFT::uint Offset; 206 typename ELFT::uint Info; 207 std::optional<int64_t> Addend; 208 }; 209 210 template <class ELFT> class MipsGOTParser; 211 212 template <typename ELFT> class ELFDumper : public ObjDumper { 213 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 214 215 public: 216 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 217 218 void printUnwindInfo() override; 219 void printNeededLibraries() override; 220 void printHashTable() override; 221 void printGnuHashTable() override; 222 void printLoadName() override; 223 void printVersionInfo() override; 224 void printArchSpecificInfo() override; 225 void printStackMap() const override; 226 void printMemtag() override; 227 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr); 228 229 // Hash histogram shows statistics of how efficient the hash was for the 230 // dynamic symbol table. The table shows the number of hash buckets for 231 // different lengths of chains as an absolute number and percentage of the 232 // total buckets, and the cumulative coverage of symbols for each set of 233 // buckets. 234 void printHashHistograms() override; 235 236 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 237 238 std::string describe(const Elf_Shdr &Sec) const; 239 240 unsigned getHashTableEntSize() const { 241 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 242 // sections. This violates the ELF specification. 243 if (Obj.getHeader().e_machine == ELF::EM_S390 || 244 Obj.getHeader().e_machine == ELF::EM_ALPHA) 245 return 8; 246 return 4; 247 } 248 249 std::vector<EnumEntry<unsigned>> 250 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const; 251 252 Elf_Dyn_Range dynamic_table() const { 253 // A valid .dynamic section contains an array of entries terminated 254 // with a DT_NULL entry. However, sometimes the section content may 255 // continue past the DT_NULL entry, so to dump the section correctly, 256 // we first find the end of the entries by iterating over them. 257 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 258 259 size_t Size = 0; 260 while (Size < Table.size()) 261 if (Table[Size++].getTag() == DT_NULL) 262 break; 263 264 return Table.slice(0, Size); 265 } 266 267 Elf_Sym_Range dynamic_symbols() const { 268 if (!DynSymRegion) 269 return Elf_Sym_Range(); 270 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 271 } 272 273 const Elf_Shdr *findSectionByName(StringRef Name) const; 274 275 StringRef getDynamicStringTable() const { return DynamicStringTable; } 276 277 protected: 278 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 279 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 280 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 281 282 void 283 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 284 function_ref<void(StringRef, uint64_t)> OnLibEntry); 285 286 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 287 const RelSymbol<ELFT> &RelSym) = 0; 288 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 289 const DynRegionInfo &Reg) {} 290 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 291 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 292 void printDynamicReloc(const Relocation<ELFT> &R); 293 void printDynamicRelocationsHelper(); 294 void printRelocationsHelper(const Elf_Shdr &Sec); 295 void forEachRelocationDo( 296 const Elf_Shdr &Sec, 297 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 298 const Elf_Shdr &, const Elf_Shdr *)> 299 RelRelaFn); 300 301 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 302 bool NonVisibilityBitsUsed, 303 bool ExtraSymInfo) const {}; 304 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 305 DataRegion<Elf_Word> ShndxTable, 306 std::optional<StringRef> StrTable, bool IsDynamic, 307 bool NonVisibilityBitsUsed, 308 bool ExtraSymInfo) const = 0; 309 310 virtual void printMipsABIFlags() = 0; 311 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 312 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 313 314 virtual void printMemtag( 315 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 316 const ArrayRef<uint8_t> AndroidNoteDesc, 317 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0; 318 319 virtual void printHashHistogram(const Elf_Hash &HashTable) const; 320 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const; 321 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain, 322 size_t TotalSyms, ArrayRef<size_t> Count, 323 bool IsGnu) const = 0; 324 325 Expected<ArrayRef<Elf_Versym>> 326 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 327 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 328 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 329 330 std::vector<GroupSection> getGroups(); 331 332 // Returns the function symbol index for the given address. Matches the 333 // symbol's section with FunctionSec when specified. 334 // Returns std::nullopt if no function symbol can be found for the address or 335 // in case it is not defined in the specified section. 336 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress( 337 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec); 338 bool printFunctionStackSize(uint64_t SymValue, 339 std::optional<const Elf_Shdr *> FunctionSec, 340 const Elf_Shdr &StackSizeSec, DataExtractor Data, 341 uint64_t *Offset); 342 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 343 unsigned Ndx, const Elf_Shdr *SymTab, 344 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 345 const RelocationResolver &Resolver, DataExtractor Data); 346 virtual void printStackSizeEntry(uint64_t Size, 347 ArrayRef<std::string> FuncNames) = 0; 348 349 void printRelocatableStackSizes(std::function<void()> PrintHeader); 350 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 351 352 const object::ELFObjectFile<ELFT> &ObjF; 353 const ELFFile<ELFT> &Obj; 354 StringRef FileName; 355 356 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 357 uint64_t EntSize) { 358 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 359 return createError("offset (0x" + Twine::utohexstr(Offset) + 360 ") + size (0x" + Twine::utohexstr(Size) + 361 ") is greater than the file size (0x" + 362 Twine::utohexstr(Obj.getBufSize()) + ")"); 363 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 364 } 365 366 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, 367 llvm::endianness); 368 void printMipsReginfo(); 369 void printMipsOptions(); 370 371 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 372 void loadDynamicTable(); 373 void parseDynamicTable(); 374 375 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 376 bool &IsDefault) const; 377 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const; 378 379 DynRegionInfo DynRelRegion; 380 DynRegionInfo DynRelaRegion; 381 DynRegionInfo DynCrelRegion; 382 DynRegionInfo DynRelrRegion; 383 DynRegionInfo DynPLTRelRegion; 384 std::optional<DynRegionInfo> DynSymRegion; 385 DynRegionInfo DynSymTabShndxRegion; 386 DynRegionInfo DynamicTable; 387 StringRef DynamicStringTable; 388 const Elf_Hash *HashTable = nullptr; 389 const Elf_GnuHash *GnuHashTable = nullptr; 390 const Elf_Shdr *DotSymtabSec = nullptr; 391 const Elf_Shdr *DotDynsymSec = nullptr; 392 const Elf_Shdr *DotAddrsigSec = nullptr; 393 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 394 std::optional<uint64_t> SONameOffset; 395 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; 396 397 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 398 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 399 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 400 401 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 402 DataRegion<Elf_Word> ShndxTable, 403 std::optional<StringRef> StrTable, 404 bool IsDynamic) const; 405 Expected<unsigned> 406 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 407 DataRegion<Elf_Word> ShndxTable) const; 408 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 409 unsigned SectionIndex) const; 410 std::string getStaticSymbolName(uint32_t Index) const; 411 StringRef getDynamicString(uint64_t Value) const; 412 413 std::pair<Elf_Sym_Range, std::optional<StringRef>> getSymtabAndStrtab() const; 414 void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const; 415 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 416 417 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 418 const Elf_Shdr *SymTab) const; 419 420 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 421 422 private: 423 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap; 424 }; 425 426 template <class ELFT> 427 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 428 return ::describe(Obj, Sec); 429 } 430 431 namespace { 432 433 template <class ELFT> struct SymtabLink { 434 typename ELFT::SymRange Symbols; 435 StringRef StringTable; 436 const typename ELFT::Shdr *SymTab; 437 }; 438 439 // Returns the linked symbol table, symbols and associated string table for a 440 // given section. 441 template <class ELFT> 442 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 443 const typename ELFT::Shdr &Sec, 444 unsigned ExpectedType) { 445 Expected<const typename ELFT::Shdr *> SymtabOrErr = 446 Obj.getSection(Sec.sh_link); 447 if (!SymtabOrErr) 448 return createError("invalid section linked to " + describe(Obj, Sec) + 449 ": " + toString(SymtabOrErr.takeError())); 450 451 if ((*SymtabOrErr)->sh_type != ExpectedType) 452 return createError( 453 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 454 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 455 ", but got " + 456 object::getELFSectionTypeName(Obj.getHeader().e_machine, 457 (*SymtabOrErr)->sh_type)); 458 459 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 460 if (!StrTabOrErr) 461 return createError( 462 "can't get a string table for the symbol table linked to " + 463 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 464 465 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 466 if (!SymsOrErr) 467 return createError("unable to read symbols from the " + describe(Obj, Sec) + 468 ": " + toString(SymsOrErr.takeError())); 469 470 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 471 } 472 473 } // namespace 474 475 template <class ELFT> 476 Expected<ArrayRef<typename ELFT::Versym>> 477 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 478 StringRef *StrTab, 479 const Elf_Shdr **SymTabSec) const { 480 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 481 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 482 sizeof(uint16_t) != 483 0) 484 return createError("the " + describe(Sec) + " is misaligned"); 485 486 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 487 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 488 if (!VersionsOrErr) 489 return createError("cannot read content of " + describe(Sec) + ": " + 490 toString(VersionsOrErr.takeError())); 491 492 Expected<SymtabLink<ELFT>> SymTabOrErr = 493 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 494 if (!SymTabOrErr) { 495 reportUniqueWarning(SymTabOrErr.takeError()); 496 return *VersionsOrErr; 497 } 498 499 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 500 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 501 Twine(VersionsOrErr->size()) + 502 ") does not match the number of symbols (" + 503 Twine(SymTabOrErr->Symbols.size()) + 504 ") in the symbol table with index " + 505 Twine(Sec.sh_link)); 506 507 if (SymTab) { 508 *SymTab = SymTabOrErr->Symbols; 509 *StrTab = SymTabOrErr->StringTable; 510 *SymTabSec = SymTabOrErr->SymTab; 511 } 512 return *VersionsOrErr; 513 } 514 515 template <class ELFT> 516 std::pair<typename ELFDumper<ELFT>::Elf_Sym_Range, std::optional<StringRef>> 517 ELFDumper<ELFT>::getSymtabAndStrtab() const { 518 assert(DotSymtabSec); 519 Elf_Sym_Range Syms(nullptr, nullptr); 520 std::optional<StringRef> StrTable; 521 if (Expected<StringRef> StrTableOrErr = 522 Obj.getStringTableForSymtab(*DotSymtabSec)) 523 StrTable = *StrTableOrErr; 524 else 525 reportUniqueWarning( 526 "unable to get the string table for the SHT_SYMTAB section: " + 527 toString(StrTableOrErr.takeError())); 528 529 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 530 Syms = *SymsOrErr; 531 else 532 reportUniqueWarning("unable to read symbols from the SHT_SYMTAB section: " + 533 toString(SymsOrErr.takeError())); 534 return {Syms, StrTable}; 535 } 536 537 template <class ELFT> 538 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic, 539 bool ExtraSymInfo) const { 540 std::optional<StringRef> StrTable; 541 size_t Entries = 0; 542 Elf_Sym_Range Syms(nullptr, nullptr); 543 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 544 545 if (IsDynamic) { 546 StrTable = DynamicStringTable; 547 Syms = dynamic_symbols(); 548 Entries = Syms.size(); 549 } else if (DotSymtabSec) { 550 std::tie(Syms, StrTable) = getSymtabAndStrtab(); 551 Entries = DotSymtabSec->getEntityCount(); 552 } 553 if (Syms.empty()) 554 return; 555 556 // The st_other field has 2 logical parts. The first two bits hold the symbol 557 // visibility (STV_*) and the remainder hold other platform-specific values. 558 bool NonVisibilityBitsUsed = 559 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 560 561 DataRegion<Elf_Word> ShndxTable = 562 IsDynamic ? DataRegion<Elf_Word>( 563 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 564 this->getElfObject().getELFFile().end()) 565 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 566 567 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo); 568 for (const Elf_Sym &Sym : Syms) 569 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 570 NonVisibilityBitsUsed, ExtraSymInfo); 571 } 572 573 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 574 formatted_raw_ostream &OS; 575 576 public: 577 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 578 579 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 580 : ELFDumper<ELFT>(ObjF, Writer), 581 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 582 assert(&this->W.getOStream() == &llvm::fouts()); 583 } 584 585 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 586 ArrayRef<std::string> InputFilenames, 587 const Archive *A) override; 588 void printFileHeaders() override; 589 void printGroupSections() override; 590 void printRelocations() override; 591 void printSectionHeaders() override; 592 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, 593 bool ExtraSymInfo) override; 594 void printHashSymbols() override; 595 void printSectionDetails() override; 596 void printDependentLibs() override; 597 void printDynamicTable() override; 598 void printDynamicRelocations() override; 599 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 600 bool NonVisibilityBitsUsed, 601 bool ExtraSymInfo) const override; 602 void printProgramHeaders(bool PrintProgramHeaders, 603 cl::boolOrDefault PrintSectionMapping) override; 604 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 605 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 606 void printVersionDependencySection(const Elf_Shdr *Sec) override; 607 void printCGProfile() override; 608 void printBBAddrMaps(bool PrettyPGOAnalysis) override; 609 void printAddrsig() override; 610 void printNotes() override; 611 void printELFLinkerOptions() override; 612 void printStackSizes() override; 613 void printMemtag( 614 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 615 const ArrayRef<uint8_t> AndroidNoteDesc, 616 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 617 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 618 size_t TotalSyms, ArrayRef<size_t> Count, 619 bool IsGnu) const override; 620 621 private: 622 void printHashTableSymbols(const Elf_Hash &HashTable); 623 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 624 625 struct Field { 626 std::string Str; 627 unsigned Column; 628 629 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 630 Field(unsigned Col) : Column(Col) {} 631 }; 632 633 template <typename T, typename TEnum> 634 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 635 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 636 TEnum EnumMask3 = {}) const { 637 std::string Str; 638 for (const EnumEntry<TEnum> &Flag : EnumValues) { 639 if (Flag.Value == 0) 640 continue; 641 642 TEnum EnumMask{}; 643 if (Flag.Value & EnumMask1) 644 EnumMask = EnumMask1; 645 else if (Flag.Value & EnumMask2) 646 EnumMask = EnumMask2; 647 else if (Flag.Value & EnumMask3) 648 EnumMask = EnumMask3; 649 bool IsEnum = (Flag.Value & EnumMask) != 0; 650 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 651 (IsEnum && (Value & EnumMask) == Flag.Value)) { 652 if (!Str.empty()) 653 Str += ", "; 654 Str += Flag.AltName; 655 } 656 } 657 return Str; 658 } 659 660 formatted_raw_ostream &printField(struct Field F) const { 661 if (F.Column != 0) 662 OS.PadToColumn(F.Column); 663 OS << F.Str; 664 OS.flush(); 665 return OS; 666 } 667 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 668 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 669 uint32_t Bucket); 670 void printRelr(const Elf_Shdr &Sec); 671 void printRelRelaReloc(const Relocation<ELFT> &R, 672 const RelSymbol<ELFT> &RelSym) override; 673 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 674 DataRegion<Elf_Word> ShndxTable, 675 std::optional<StringRef> StrTable, bool IsDynamic, 676 bool NonVisibilityBitsUsed, 677 bool ExtraSymInfo) const override; 678 void printDynamicRelocHeader(unsigned Type, StringRef Name, 679 const DynRegionInfo &Reg) override; 680 681 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 682 DataRegion<Elf_Word> ShndxTable, 683 bool ExtraSymInfo = false) const; 684 void printProgramHeaders() override; 685 void printSectionMapping() override; 686 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 687 const Twine &Label, unsigned EntriesNum); 688 689 void printStackSizeEntry(uint64_t Size, 690 ArrayRef<std::string> FuncNames) override; 691 692 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 693 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 694 void printMipsABIFlags() override; 695 }; 696 697 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 698 public: 699 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 700 701 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 702 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 703 704 void printFileHeaders() override; 705 void printGroupSections() override; 706 void printRelocations() override; 707 void printSectionHeaders() override; 708 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, 709 bool ExtraSymInfo) override; 710 void printDependentLibs() override; 711 void printDynamicTable() override; 712 void printDynamicRelocations() override; 713 void printProgramHeaders(bool PrintProgramHeaders, 714 cl::boolOrDefault PrintSectionMapping) override; 715 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 716 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 717 void printVersionDependencySection(const Elf_Shdr *Sec) override; 718 void printCGProfile() override; 719 void printBBAddrMaps(bool PrettyPGOAnalysis) override; 720 void printAddrsig() override; 721 void printNotes() override; 722 void printELFLinkerOptions() override; 723 void printStackSizes() override; 724 void printMemtag( 725 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 726 const ArrayRef<uint8_t> AndroidNoteDesc, 727 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 728 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 729 DataRegion<Elf_Word> ShndxTable) const; 730 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 731 size_t TotalSyms, ArrayRef<size_t> Count, 732 bool IsGnu) const override; 733 734 private: 735 void printRelRelaReloc(const Relocation<ELFT> &R, 736 const RelSymbol<ELFT> &RelSym) override; 737 738 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 739 DataRegion<Elf_Word> ShndxTable, 740 std::optional<StringRef> StrTable, bool IsDynamic, 741 bool /*NonVisibilityBitsUsed*/, 742 bool /*ExtraSymInfo*/) const override; 743 void printProgramHeaders() override; 744 void printSectionMapping() override {} 745 void printStackSizeEntry(uint64_t Size, 746 ArrayRef<std::string> FuncNames) override; 747 748 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 749 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 750 void printMipsABIFlags() override; 751 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const; 752 753 protected: 754 virtual std::string getGroupSectionHeaderName() const; 755 void printSymbolOtherField(const Elf_Sym &Symbol) const; 756 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R, 757 StringRef SymbolName, 758 StringRef RelocName); 759 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 760 StringRef SymbolName, 761 StringRef RelocName); 762 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 763 const unsigned SecNdx); 764 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const; 765 virtual void printEmptyGroupMessage() const; 766 767 ScopedPrinter &W; 768 }; 769 770 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except 771 // it uses a JSONScopedPrinter. 772 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> { 773 public: 774 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 775 776 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 777 : LLVMELFDumper<ELFT>(ObjF, Writer) {} 778 779 std::string getGroupSectionHeaderName() const override; 780 781 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 782 ArrayRef<std::string> InputFilenames, 783 const Archive *A) override; 784 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override; 785 786 void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 787 StringRef SymbolName, 788 StringRef RelocName) override; 789 790 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 791 const unsigned SecNdx) override; 792 793 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override; 794 795 void printEmptyGroupMessage() const override; 796 797 void printDynamicTable() override; 798 799 private: 800 void printAuxillaryDynamicTableEntryInfo(const Elf_Dyn &Entry); 801 802 std::unique_ptr<DictScope> FileScope; 803 }; 804 805 } // end anonymous namespace 806 807 namespace llvm { 808 809 template <class ELFT> 810 static std::unique_ptr<ObjDumper> 811 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 812 if (opts::Output == opts::GNU) 813 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 814 else if (opts::Output == opts::JSON) 815 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer); 816 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 817 } 818 819 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 820 ScopedPrinter &Writer) { 821 // Little-endian 32-bit 822 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 823 return createELFDumper(*ELFObj, Writer); 824 825 // Big-endian 32-bit 826 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 827 return createELFDumper(*ELFObj, Writer); 828 829 // Little-endian 64-bit 830 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 831 return createELFDumper(*ELFObj, Writer); 832 833 // Big-endian 64-bit 834 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 835 } 836 837 } // end namespace llvm 838 839 template <class ELFT> 840 Expected<SmallVector<std::optional<VersionEntry>, 0> *> 841 ELFDumper<ELFT>::getVersionMap() const { 842 // If the VersionMap has already been loaded or if there is no dynamic symtab 843 // or version table, there is nothing to do. 844 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 845 return &VersionMap; 846 847 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr = 848 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 849 if (MapOrErr) 850 VersionMap = *MapOrErr; 851 else 852 return MapOrErr.takeError(); 853 854 return &VersionMap; 855 } 856 857 template <typename ELFT> 858 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 859 bool &IsDefault) const { 860 // This is a dynamic symbol. Look in the GNU symbol version table. 861 if (!SymbolVersionSection) { 862 // No version table. 863 IsDefault = false; 864 return ""; 865 } 866 867 assert(DynSymRegion && "DynSymRegion has not been initialised"); 868 // Determine the position in the symbol table of this entry. 869 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 870 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 871 sizeof(Elf_Sym); 872 873 // Get the corresponding version index entry. 874 Expected<const Elf_Versym *> EntryOrErr = 875 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 876 if (!EntryOrErr) 877 return EntryOrErr.takeError(); 878 879 unsigned Version = (*EntryOrErr)->vs_index; 880 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 881 IsDefault = false; 882 return ""; 883 } 884 885 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 886 getVersionMap(); 887 if (!MapOrErr) 888 return MapOrErr.takeError(); 889 890 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 891 Sym.st_shndx == ELF::SHN_UNDEF); 892 } 893 894 template <typename ELFT> 895 Expected<RelSymbol<ELFT>> 896 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 897 const Elf_Shdr *SymTab) const { 898 if (R.Symbol == 0) 899 return RelSymbol<ELFT>(nullptr, ""); 900 901 Expected<const Elf_Sym *> SymOrErr = 902 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 903 if (!SymOrErr) 904 return createError("unable to read an entry with index " + Twine(R.Symbol) + 905 " from " + describe(*SymTab) + ": " + 906 toString(SymOrErr.takeError())); 907 const Elf_Sym *Sym = *SymOrErr; 908 if (!Sym) 909 return RelSymbol<ELFT>(nullptr, ""); 910 911 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 912 if (!StrTableOrErr) 913 return StrTableOrErr.takeError(); 914 915 const Elf_Sym *FirstSym = 916 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 917 std::string SymbolName = 918 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 919 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 920 return RelSymbol<ELFT>(Sym, SymbolName); 921 } 922 923 template <typename ELFT> 924 ArrayRef<typename ELFT::Word> 925 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 926 if (Symtab) { 927 auto It = ShndxTables.find(Symtab); 928 if (It != ShndxTables.end()) 929 return It->second; 930 } 931 return {}; 932 } 933 934 static std::string maybeDemangle(StringRef Name) { 935 return opts::Demangle ? demangle(Name) : Name.str(); 936 } 937 938 template <typename ELFT> 939 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 940 auto Warn = [&](Error E) -> std::string { 941 reportUniqueWarning("unable to read the name of symbol with index " + 942 Twine(Index) + ": " + toString(std::move(E))); 943 return "<?>"; 944 }; 945 946 Expected<const typename ELFT::Sym *> SymOrErr = 947 Obj.getSymbol(DotSymtabSec, Index); 948 if (!SymOrErr) 949 return Warn(SymOrErr.takeError()); 950 951 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 952 if (!StrTabOrErr) 953 return Warn(StrTabOrErr.takeError()); 954 955 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 956 if (!NameOrErr) 957 return Warn(NameOrErr.takeError()); 958 return maybeDemangle(*NameOrErr); 959 } 960 961 template <typename ELFT> 962 std::string ELFDumper<ELFT>::getFullSymbolName( 963 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 964 std::optional<StringRef> StrTable, bool IsDynamic) const { 965 if (!StrTable) 966 return "<?>"; 967 968 std::string SymbolName; 969 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 970 SymbolName = maybeDemangle(*NameOrErr); 971 } else { 972 reportUniqueWarning(NameOrErr.takeError()); 973 return "<?>"; 974 } 975 976 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 977 Expected<unsigned> SectionIndex = 978 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 979 if (!SectionIndex) { 980 reportUniqueWarning(SectionIndex.takeError()); 981 return "<?>"; 982 } 983 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 984 if (!NameOrErr) { 985 reportUniqueWarning(NameOrErr.takeError()); 986 return ("<section " + Twine(*SectionIndex) + ">").str(); 987 } 988 return std::string(*NameOrErr); 989 } 990 991 if (!IsDynamic) 992 return SymbolName; 993 994 bool IsDefault; 995 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 996 if (!VersionOrErr) { 997 reportUniqueWarning(VersionOrErr.takeError()); 998 return SymbolName + "@<corrupt>"; 999 } 1000 1001 if (!VersionOrErr->empty()) { 1002 SymbolName += (IsDefault ? "@@" : "@"); 1003 SymbolName += *VersionOrErr; 1004 } 1005 return SymbolName; 1006 } 1007 1008 template <typename ELFT> 1009 Expected<unsigned> 1010 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 1011 DataRegion<Elf_Word> ShndxTable) const { 1012 unsigned Ndx = Symbol.st_shndx; 1013 if (Ndx == SHN_XINDEX) 1014 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 1015 ShndxTable); 1016 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 1017 return Ndx; 1018 1019 auto CreateErr = [&](const Twine &Name, 1020 std::optional<unsigned> Offset = std::nullopt) { 1021 std::string Desc; 1022 if (Offset) 1023 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 1024 else 1025 Desc = Name.str(); 1026 return createError( 1027 "unable to get section index for symbol with st_shndx = 0x" + 1028 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 1029 }; 1030 1031 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 1032 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 1033 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 1034 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 1035 if (Ndx == ELF::SHN_UNDEF) 1036 return CreateErr("SHN_UNDEF"); 1037 if (Ndx == ELF::SHN_ABS) 1038 return CreateErr("SHN_ABS"); 1039 if (Ndx == ELF::SHN_COMMON) 1040 return CreateErr("SHN_COMMON"); 1041 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 1042 } 1043 1044 template <typename ELFT> 1045 Expected<StringRef> 1046 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 1047 unsigned SectionIndex) const { 1048 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 1049 if (!SecOrErr) 1050 return SecOrErr.takeError(); 1051 return Obj.getSectionName(**SecOrErr); 1052 } 1053 1054 template <class ELFO> 1055 static const typename ELFO::Elf_Shdr * 1056 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 1057 uint64_t Addr) { 1058 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 1059 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 1060 return &Shdr; 1061 return nullptr; 1062 } 1063 1064 const EnumEntry<unsigned> ElfClass[] = { 1065 {"None", "none", ELF::ELFCLASSNONE}, 1066 {"32-bit", "ELF32", ELF::ELFCLASS32}, 1067 {"64-bit", "ELF64", ELF::ELFCLASS64}, 1068 }; 1069 1070 const EnumEntry<unsigned> ElfDataEncoding[] = { 1071 {"None", "none", ELF::ELFDATANONE}, 1072 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 1073 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 1074 }; 1075 1076 const EnumEntry<unsigned> ElfObjectFileType[] = { 1077 {"None", "NONE (none)", ELF::ET_NONE}, 1078 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 1079 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 1080 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 1081 {"Core", "CORE (Core file)", ELF::ET_CORE}, 1082 }; 1083 1084 const EnumEntry<unsigned> ElfOSABI[] = { 1085 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 1086 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 1087 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 1088 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 1089 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 1090 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 1091 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 1092 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 1093 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 1094 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 1095 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 1096 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 1097 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 1098 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 1099 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 1100 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 1101 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 1102 {"CUDA", "NVIDIA - CUDA", ELF::ELFOSABI_CUDA}, 1103 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 1104 }; 1105 1106 const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 1107 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 1108 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 1109 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 1110 }; 1111 1112 const EnumEntry<unsigned> ARMElfOSABI[] = { 1113 {"ARM", "ARM", ELF::ELFOSABI_ARM}, 1114 {"ARM FDPIC", "ARM FDPIC", ELF::ELFOSABI_ARM_FDPIC}, 1115 }; 1116 1117 const EnumEntry<unsigned> C6000ElfOSABI[] = { 1118 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1119 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1120 }; 1121 1122 const EnumEntry<unsigned> ElfMachineType[] = { 1123 ENUM_ENT(EM_NONE, "None"), 1124 ENUM_ENT(EM_M32, "WE32100"), 1125 ENUM_ENT(EM_SPARC, "Sparc"), 1126 ENUM_ENT(EM_386, "Intel 80386"), 1127 ENUM_ENT(EM_68K, "MC68000"), 1128 ENUM_ENT(EM_88K, "MC88000"), 1129 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1130 ENUM_ENT(EM_860, "Intel 80860"), 1131 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1132 ENUM_ENT(EM_S370, "IBM System/370"), 1133 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1134 ENUM_ENT(EM_PARISC, "HPPA"), 1135 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1136 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1137 ENUM_ENT(EM_960, "Intel 80960"), 1138 ENUM_ENT(EM_PPC, "PowerPC"), 1139 ENUM_ENT(EM_PPC64, "PowerPC64"), 1140 ENUM_ENT(EM_S390, "IBM S/390"), 1141 ENUM_ENT(EM_SPU, "SPU"), 1142 ENUM_ENT(EM_V800, "NEC V800 series"), 1143 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1144 ENUM_ENT(EM_RH32, "TRW RH-32"), 1145 ENUM_ENT(EM_RCE, "Motorola RCE"), 1146 ENUM_ENT(EM_ARM, "ARM"), 1147 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1148 ENUM_ENT(EM_SH, "Hitachi SH"), 1149 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1150 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1151 ENUM_ENT(EM_ARC, "ARC"), 1152 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1153 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1154 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1155 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1156 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1157 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1158 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1159 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1160 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1161 ENUM_ENT(EM_PCP, "Siemens PCP"), 1162 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1163 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1164 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1165 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1166 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1167 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1168 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1169 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1170 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1171 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1172 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1173 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1174 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1175 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1176 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1177 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1178 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1179 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1180 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1181 ENUM_ENT(EM_VAX, "Digital VAX"), 1182 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1183 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1184 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1185 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1186 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1187 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1188 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1189 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1190 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1191 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1192 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1193 ENUM_ENT(EM_V850, "NEC v850"), 1194 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1195 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1196 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1197 ENUM_ENT(EM_PJ, "picoJava"), 1198 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1199 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1200 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1201 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1202 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1203 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1204 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1205 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1206 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1207 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1208 ENUM_ENT(EM_MAX, "MAX Processor"), 1209 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1210 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1211 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1212 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1213 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1214 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1215 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1216 ENUM_ENT(EM_UNICORE, "Unicore"), 1217 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1218 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1219 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1220 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1221 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1222 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1223 ENUM_ENT(EM_M16C, "Renesas M16C"), 1224 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1225 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1226 ENUM_ENT(EM_M32C, "Renesas M32C"), 1227 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1228 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1229 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1230 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1231 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1232 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1233 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1234 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1235 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1236 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1237 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1238 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1239 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1240 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1241 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1242 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1243 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1244 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1245 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1246 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1247 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1248 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1249 // an identical number to EM_ECOG1. 1250 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1251 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1252 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1253 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1254 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1255 ENUM_ENT(EM_RX, "Renesas RX"), 1256 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1257 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1258 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1259 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"), 1260 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1261 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1262 ENUM_ENT(EM_L10M, "EM_L10M"), 1263 ENUM_ENT(EM_K10M, "EM_K10M"), 1264 ENUM_ENT(EM_AARCH64, "AArch64"), 1265 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1266 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1267 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1268 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1269 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"), 1270 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1271 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1272 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1273 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1274 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1275 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1276 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1277 ENUM_ENT(EM_RL78, "Renesas RL78"), 1278 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1279 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1280 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1281 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1282 ENUM_ENT(EM_RISCV, "RISC-V"), 1283 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1284 ENUM_ENT(EM_BPF, "EM_BPF"), 1285 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1286 ENUM_ENT(EM_LOONGARCH, "LoongArch"), 1287 }; 1288 1289 const EnumEntry<unsigned> ElfSymbolBindings[] = { 1290 {"Local", "LOCAL", ELF::STB_LOCAL}, 1291 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1292 {"Weak", "WEAK", ELF::STB_WEAK}, 1293 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1294 1295 const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1296 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1297 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1298 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1299 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1300 1301 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1302 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1303 }; 1304 1305 static const char *getGroupType(uint32_t Flag) { 1306 if (Flag & ELF::GRP_COMDAT) 1307 return "COMDAT"; 1308 else 1309 return "(unknown)"; 1310 } 1311 1312 const EnumEntry<unsigned> ElfSectionFlags[] = { 1313 ENUM_ENT(SHF_WRITE, "W"), 1314 ENUM_ENT(SHF_ALLOC, "A"), 1315 ENUM_ENT(SHF_EXECINSTR, "X"), 1316 ENUM_ENT(SHF_MERGE, "M"), 1317 ENUM_ENT(SHF_STRINGS, "S"), 1318 ENUM_ENT(SHF_INFO_LINK, "I"), 1319 ENUM_ENT(SHF_LINK_ORDER, "L"), 1320 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1321 ENUM_ENT(SHF_GROUP, "G"), 1322 ENUM_ENT(SHF_TLS, "T"), 1323 ENUM_ENT(SHF_COMPRESSED, "C"), 1324 ENUM_ENT(SHF_EXCLUDE, "E"), 1325 }; 1326 1327 const EnumEntry<unsigned> ElfGNUSectionFlags[] = { 1328 ENUM_ENT(SHF_GNU_RETAIN, "R") 1329 }; 1330 1331 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = { 1332 ENUM_ENT(SHF_SUNW_NODISCARD, "R") 1333 }; 1334 1335 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1336 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1337 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1338 }; 1339 1340 const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1341 ENUM_ENT(SHF_ARM_PURECODE, "y") 1342 }; 1343 1344 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1345 ENUM_ENT(SHF_HEX_GPREL, "") 1346 }; 1347 1348 const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1349 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1350 ENUM_ENT(SHF_MIPS_NAMES, ""), 1351 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1352 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1353 ENUM_ENT(SHF_MIPS_GPREL, ""), 1354 ENUM_ENT(SHF_MIPS_MERGE, ""), 1355 ENUM_ENT(SHF_MIPS_ADDR, ""), 1356 ENUM_ENT(SHF_MIPS_STRING, "") 1357 }; 1358 1359 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1360 ENUM_ENT(SHF_X86_64_LARGE, "l") 1361 }; 1362 1363 static std::vector<EnumEntry<unsigned>> 1364 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) { 1365 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1366 std::end(ElfSectionFlags)); 1367 switch (EOSAbi) { 1368 case ELFOSABI_SOLARIS: 1369 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags), 1370 std::end(ElfSolarisSectionFlags)); 1371 break; 1372 default: 1373 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags), 1374 std::end(ElfGNUSectionFlags)); 1375 break; 1376 } 1377 switch (EMachine) { 1378 case EM_ARM: 1379 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1380 std::end(ElfARMSectionFlags)); 1381 break; 1382 case EM_HEXAGON: 1383 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1384 std::end(ElfHexagonSectionFlags)); 1385 break; 1386 case EM_MIPS: 1387 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1388 std::end(ElfMipsSectionFlags)); 1389 break; 1390 case EM_X86_64: 1391 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1392 std::end(ElfX86_64SectionFlags)); 1393 break; 1394 case EM_XCORE: 1395 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1396 std::end(ElfXCoreSectionFlags)); 1397 break; 1398 default: 1399 break; 1400 } 1401 return Ret; 1402 } 1403 1404 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine, 1405 uint64_t Flags) { 1406 // Here we are trying to build the flags string in the same way as GNU does. 1407 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1408 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1409 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1410 // "p". It only will print "E" when no other processor flag is set. 1411 std::string Str; 1412 bool HasUnknownFlag = false; 1413 bool HasOSFlag = false; 1414 bool HasProcFlag = false; 1415 std::vector<EnumEntry<unsigned>> FlagsList = 1416 getSectionFlagsForTarget(EOSAbi, EMachine); 1417 while (Flags) { 1418 // Take the least significant bit as a flag. 1419 uint64_t Flag = Flags & -Flags; 1420 Flags -= Flag; 1421 1422 // Find the flag in the known flags list. 1423 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1424 // Flags with empty names are not printed in GNU style output. 1425 return E.Value == Flag && !E.AltName.empty(); 1426 }); 1427 if (I != FlagsList.end()) { 1428 Str += I->AltName; 1429 continue; 1430 } 1431 1432 // If we did not find a matching regular flag, then we deal with an OS 1433 // specific flag, processor specific flag or an unknown flag. 1434 if (Flag & ELF::SHF_MASKOS) { 1435 HasOSFlag = true; 1436 Flags &= ~ELF::SHF_MASKOS; 1437 } else if (Flag & ELF::SHF_MASKPROC) { 1438 HasProcFlag = true; 1439 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1440 // bit if set so that it doesn't also get printed. 1441 Flags &= ~ELF::SHF_MASKPROC; 1442 } else { 1443 HasUnknownFlag = true; 1444 } 1445 } 1446 1447 // "o", "p" and "x" are printed last. 1448 if (HasOSFlag) 1449 Str += "o"; 1450 if (HasProcFlag) 1451 Str += "p"; 1452 if (HasUnknownFlag) 1453 Str += "x"; 1454 return Str; 1455 } 1456 1457 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1458 // Check potentially overlapped processor-specific program header type. 1459 switch (Arch) { 1460 case ELF::EM_ARM: 1461 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1462 break; 1463 case ELF::EM_MIPS: 1464 case ELF::EM_MIPS_RS3_LE: 1465 switch (Type) { 1466 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1468 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1469 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1470 } 1471 break; 1472 case ELF::EM_RISCV: 1473 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); } 1474 } 1475 1476 switch (Type) { 1477 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1478 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1479 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1480 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1481 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1482 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1483 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1484 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1485 1486 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1487 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1488 1489 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1490 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1491 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1492 1493 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE); 1494 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1495 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1496 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI); 1497 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_SYSCALLS); 1498 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1499 default: 1500 return ""; 1501 } 1502 } 1503 1504 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1505 StringRef Seg = segmentTypeToString(Arch, Type); 1506 if (Seg.empty()) 1507 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1508 1509 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1510 if (Seg.consume_front("PT_ARM_")) 1511 return Seg.str(); 1512 1513 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1514 if (Seg.consume_front("PT_MIPS_")) 1515 return Seg.str(); 1516 1517 // E.g. "PT_RISCV_ATTRIBUTES" 1518 if (Seg.consume_front("PT_RISCV_")) 1519 return Seg.str(); 1520 1521 // E.g. "PT_LOAD" -> "LOAD". 1522 assert(Seg.starts_with("PT_")); 1523 return Seg.drop_front(3).str(); 1524 } 1525 1526 const EnumEntry<unsigned> ElfSegmentFlags[] = { 1527 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1528 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1529 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1530 }; 1531 1532 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1533 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1534 ENUM_ENT(EF_MIPS_PIC, "pic"), 1535 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1536 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1537 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1538 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1539 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1540 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1541 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1542 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1543 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1544 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1545 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1546 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1547 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1548 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1549 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1550 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1551 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1552 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1553 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1554 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1555 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1556 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1557 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1558 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1559 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1560 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1561 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1562 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1563 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1564 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1565 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1566 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1567 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1568 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1569 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1570 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1571 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1572 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1573 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1574 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1575 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1576 }; 1577 1578 // clang-format off 1579 #define AMDGPU_MACH_ENUM_ENTS \ 1580 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), \ 1581 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), \ 1582 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), \ 1583 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), \ 1584 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), \ 1585 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), \ 1586 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), \ 1587 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), \ 1588 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), \ 1589 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), \ 1590 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), \ 1591 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), \ 1592 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), \ 1593 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), \ 1594 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), \ 1595 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), \ 1596 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), \ 1597 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), \ 1598 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), \ 1599 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), \ 1600 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), \ 1601 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), \ 1602 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), \ 1603 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), \ 1604 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), \ 1605 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), \ 1606 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), \ 1607 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), \ 1608 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), \ 1609 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), \ 1610 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), \ 1611 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), \ 1612 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), \ 1613 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), \ 1614 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), \ 1615 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), \ 1616 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), \ 1617 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), \ 1618 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), \ 1619 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), \ 1620 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), \ 1621 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), \ 1622 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), \ 1623 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), \ 1624 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), \ 1625 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), \ 1626 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), \ 1627 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), \ 1628 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), \ 1629 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), \ 1630 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), \ 1631 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), \ 1632 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), \ 1633 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), \ 1634 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), \ 1635 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), \ 1636 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), \ 1637 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), \ 1638 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), \ 1639 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1152, "gfx1152"), \ 1640 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), \ 1641 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), \ 1642 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX9_GENERIC, "gfx9-generic"), \ 1643 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_1_GENERIC, "gfx10-1-generic"), \ 1644 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX10_3_GENERIC, "gfx10-3-generic"), \ 1645 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX11_GENERIC, "gfx11-generic"), \ 1646 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX12_GENERIC, "gfx12-generic") 1647 // clang-format on 1648 1649 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = { 1650 AMDGPU_MACH_ENUM_ENTS, 1651 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack"), 1652 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc"), 1653 }; 1654 1655 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = { 1656 AMDGPU_MACH_ENUM_ENTS, 1657 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack"), 1658 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-"), 1659 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+"), 1660 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc"), 1661 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-"), 1662 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+"), 1663 }; 1664 1665 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = { 1666 ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"), 1667 ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"), 1668 ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"), 1669 ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"), 1670 ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"), 1671 ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"), 1672 ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"), 1673 ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"), 1674 ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"), 1675 ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"), 1676 }; 1677 1678 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1679 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1680 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1681 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1682 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1683 ENUM_ENT(EF_RISCV_RVE, "RVE"), 1684 ENUM_ENT(EF_RISCV_TSO, "TSO"), 1685 }; 1686 1687 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = { 1688 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), 1689 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), 1690 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), 1691 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), 1692 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), 1693 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), 1694 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), 1695 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), 1696 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), 1697 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), 1698 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), 1699 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), 1700 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), 1701 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), 1702 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), 1703 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), 1704 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), 1705 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), 1706 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"), 1707 }; 1708 1709 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = { 1710 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"), 1711 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"), 1712 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"), 1713 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"), 1714 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"), 1715 }; 1716 1717 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = { 1718 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE), 1719 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN), 1720 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT) 1721 }; 1722 1723 const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1724 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1725 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1726 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1727 }; 1728 1729 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1730 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1731 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1732 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1733 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1734 }; 1735 1736 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1737 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1738 }; 1739 1740 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1741 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1742 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1743 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1744 }; 1745 1746 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { 1747 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; 1748 1749 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1750 switch (Odk) { 1751 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1752 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1753 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1754 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1755 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1756 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1757 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1758 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1759 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1760 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1761 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1762 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1763 default: 1764 return "Unknown"; 1765 } 1766 } 1767 1768 template <typename ELFT> 1769 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1770 ELFDumper<ELFT>::findDynamic() { 1771 // Try to locate the PT_DYNAMIC header. 1772 const Elf_Phdr *DynamicPhdr = nullptr; 1773 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1774 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1775 if (Phdr.p_type != ELF::PT_DYNAMIC) 1776 continue; 1777 DynamicPhdr = &Phdr; 1778 break; 1779 } 1780 } else { 1781 reportUniqueWarning( 1782 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1783 toString(PhdrsOrErr.takeError())); 1784 } 1785 1786 // Try to locate the .dynamic section in the sections header table. 1787 const Elf_Shdr *DynamicSec = nullptr; 1788 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1789 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1790 continue; 1791 DynamicSec = &Sec; 1792 break; 1793 } 1794 1795 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1796 ObjF.getMemoryBufferRef().getBufferSize()) || 1797 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1798 DynamicPhdr->p_offset))) { 1799 reportUniqueWarning( 1800 "PT_DYNAMIC segment offset (0x" + 1801 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1802 Twine::utohexstr(DynamicPhdr->p_filesz) + 1803 ") exceeds the size of the file (0x" + 1804 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1805 // Don't use the broken dynamic header. 1806 DynamicPhdr = nullptr; 1807 } 1808 1809 if (DynamicPhdr && DynamicSec) { 1810 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1811 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1812 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1813 reportUniqueWarning(describe(*DynamicSec) + 1814 " is not contained within the " 1815 "PT_DYNAMIC segment"); 1816 1817 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1818 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1819 "PT_DYNAMIC segment"); 1820 } 1821 1822 return std::make_pair(DynamicPhdr, DynamicSec); 1823 } 1824 1825 template <typename ELFT> 1826 void ELFDumper<ELFT>::loadDynamicTable() { 1827 const Elf_Phdr *DynamicPhdr; 1828 const Elf_Shdr *DynamicSec; 1829 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1830 if (!DynamicPhdr && !DynamicSec) 1831 return; 1832 1833 DynRegionInfo FromPhdr(ObjF, *this); 1834 bool IsPhdrTableValid = false; 1835 if (DynamicPhdr) { 1836 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1837 // validated in findDynamic() and so createDRI() is not expected to fail. 1838 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1839 sizeof(Elf_Dyn))); 1840 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1841 FromPhdr.EntSizePrintName = ""; 1842 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1843 } 1844 1845 // Locate the dynamic table described in a section header. 1846 // Ignore sh_entsize and use the expected value for entry size explicitly. 1847 // This allows us to dump dynamic sections with a broken sh_entsize 1848 // field. 1849 DynRegionInfo FromSec(ObjF, *this); 1850 bool IsSecTableValid = false; 1851 if (DynamicSec) { 1852 Expected<DynRegionInfo> RegOrErr = 1853 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1854 if (RegOrErr) { 1855 FromSec = *RegOrErr; 1856 FromSec.Context = describe(*DynamicSec); 1857 FromSec.EntSizePrintName = ""; 1858 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1859 } else { 1860 reportUniqueWarning("unable to read the dynamic table from " + 1861 describe(*DynamicSec) + ": " + 1862 toString(RegOrErr.takeError())); 1863 } 1864 } 1865 1866 // When we only have information from one of the SHT_DYNAMIC section header or 1867 // PT_DYNAMIC program header, just use that. 1868 if (!DynamicPhdr || !DynamicSec) { 1869 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1870 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1871 parseDynamicTable(); 1872 } else { 1873 reportUniqueWarning("no valid dynamic table was found"); 1874 } 1875 return; 1876 } 1877 1878 // At this point we have tables found from the section header and from the 1879 // dynamic segment. Usually they match, but we have to do sanity checks to 1880 // verify that. 1881 1882 if (FromPhdr.Addr != FromSec.Addr) 1883 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1884 "program header disagree about " 1885 "the location of the dynamic table"); 1886 1887 if (!IsPhdrTableValid && !IsSecTableValid) { 1888 reportUniqueWarning("no valid dynamic table was found"); 1889 return; 1890 } 1891 1892 // Information in the PT_DYNAMIC program header has priority over the 1893 // information in a section header. 1894 if (IsPhdrTableValid) { 1895 if (!IsSecTableValid) 1896 reportUniqueWarning( 1897 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1898 DynamicTable = FromPhdr; 1899 } else { 1900 reportUniqueWarning( 1901 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1902 DynamicTable = FromSec; 1903 } 1904 1905 parseDynamicTable(); 1906 } 1907 1908 template <typename ELFT> 1909 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1910 ScopedPrinter &Writer) 1911 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1912 FileName(O.getFileName()), DynRelRegion(O, *this), 1913 DynRelaRegion(O, *this), DynCrelRegion(O, *this), DynRelrRegion(O, *this), 1914 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1915 DynamicTable(O, *this) { 1916 if (!O.IsContentValid()) 1917 return; 1918 1919 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1920 for (const Elf_Shdr &Sec : Sections) { 1921 switch (Sec.sh_type) { 1922 case ELF::SHT_SYMTAB: 1923 if (!DotSymtabSec) 1924 DotSymtabSec = &Sec; 1925 break; 1926 case ELF::SHT_DYNSYM: 1927 if (!DotDynsymSec) 1928 DotDynsymSec = &Sec; 1929 1930 if (!DynSymRegion) { 1931 Expected<DynRegionInfo> RegOrErr = 1932 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1933 if (RegOrErr) { 1934 DynSymRegion = *RegOrErr; 1935 DynSymRegion->Context = describe(Sec); 1936 1937 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1938 DynamicStringTable = *E; 1939 else 1940 reportUniqueWarning("unable to get the string table for the " + 1941 describe(Sec) + ": " + toString(E.takeError())); 1942 } else { 1943 reportUniqueWarning("unable to read dynamic symbols from " + 1944 describe(Sec) + ": " + 1945 toString(RegOrErr.takeError())); 1946 } 1947 } 1948 break; 1949 case ELF::SHT_SYMTAB_SHNDX: { 1950 uint32_t SymtabNdx = Sec.sh_link; 1951 if (SymtabNdx >= Sections.size()) { 1952 reportUniqueWarning( 1953 "unable to get the associated symbol table for " + describe(Sec) + 1954 ": sh_link (" + Twine(SymtabNdx) + 1955 ") is greater than or equal to the total number of sections (" + 1956 Twine(Sections.size()) + ")"); 1957 continue; 1958 } 1959 1960 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1961 Obj.getSHNDXTable(Sec)) { 1962 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1963 .second) 1964 reportUniqueWarning( 1965 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1966 describe(Sec)); 1967 } else { 1968 reportUniqueWarning(ShndxTableOrErr.takeError()); 1969 } 1970 break; 1971 } 1972 case ELF::SHT_GNU_versym: 1973 if (!SymbolVersionSection) 1974 SymbolVersionSection = &Sec; 1975 break; 1976 case ELF::SHT_GNU_verdef: 1977 if (!SymbolVersionDefSection) 1978 SymbolVersionDefSection = &Sec; 1979 break; 1980 case ELF::SHT_GNU_verneed: 1981 if (!SymbolVersionNeedSection) 1982 SymbolVersionNeedSection = &Sec; 1983 break; 1984 case ELF::SHT_LLVM_ADDRSIG: 1985 if (!DotAddrsigSec) 1986 DotAddrsigSec = &Sec; 1987 break; 1988 } 1989 } 1990 1991 loadDynamicTable(); 1992 } 1993 1994 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 1995 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 1996 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 1997 this->reportUniqueWarning(Msg); 1998 return Error::success(); 1999 }); 2000 if (!MappedAddrOrError) { 2001 this->reportUniqueWarning("unable to parse DT_" + 2002 Obj.getDynamicTagAsString(Tag) + ": " + 2003 llvm::toString(MappedAddrOrError.takeError())); 2004 return nullptr; 2005 } 2006 return MappedAddrOrError.get(); 2007 }; 2008 2009 const char *StringTableBegin = nullptr; 2010 uint64_t StringTableSize = 0; 2011 std::optional<DynRegionInfo> DynSymFromTable; 2012 for (const Elf_Dyn &Dyn : dynamic_table()) { 2013 if (Obj.getHeader().e_machine == EM_AARCH64) { 2014 switch (Dyn.d_tag) { 2015 case ELF::DT_AARCH64_AUTH_RELRSZ: 2016 DynRelrRegion.Size = Dyn.getVal(); 2017 DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value"; 2018 continue; 2019 case ELF::DT_AARCH64_AUTH_RELRENT: 2020 DynRelrRegion.EntSize = Dyn.getVal(); 2021 DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value"; 2022 continue; 2023 } 2024 } 2025 switch (Dyn.d_tag) { 2026 case ELF::DT_HASH: 2027 HashTable = reinterpret_cast<const Elf_Hash *>( 2028 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2029 break; 2030 case ELF::DT_GNU_HASH: 2031 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 2032 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2033 break; 2034 case ELF::DT_STRTAB: 2035 StringTableBegin = reinterpret_cast<const char *>( 2036 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2037 break; 2038 case ELF::DT_STRSZ: 2039 StringTableSize = Dyn.getVal(); 2040 break; 2041 case ELF::DT_SYMTAB: { 2042 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 2043 // no program headers), we ignore its value. 2044 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 2045 DynSymFromTable.emplace(ObjF, *this); 2046 DynSymFromTable->Addr = VA; 2047 DynSymFromTable->EntSize = sizeof(Elf_Sym); 2048 DynSymFromTable->EntSizePrintName = ""; 2049 } 2050 break; 2051 } 2052 case ELF::DT_SYMENT: { 2053 uint64_t Val = Dyn.getVal(); 2054 if (Val != sizeof(Elf_Sym)) 2055 this->reportUniqueWarning("DT_SYMENT value of 0x" + 2056 Twine::utohexstr(Val) + 2057 " is not the size of a symbol (0x" + 2058 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 2059 break; 2060 } 2061 case ELF::DT_RELA: 2062 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2063 break; 2064 case ELF::DT_RELASZ: 2065 DynRelaRegion.Size = Dyn.getVal(); 2066 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 2067 break; 2068 case ELF::DT_RELAENT: 2069 DynRelaRegion.EntSize = Dyn.getVal(); 2070 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 2071 break; 2072 case ELF::DT_CREL: 2073 DynCrelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2074 break; 2075 case ELF::DT_SONAME: 2076 SONameOffset = Dyn.getVal(); 2077 break; 2078 case ELF::DT_REL: 2079 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2080 break; 2081 case ELF::DT_RELSZ: 2082 DynRelRegion.Size = Dyn.getVal(); 2083 DynRelRegion.SizePrintName = "DT_RELSZ value"; 2084 break; 2085 case ELF::DT_RELENT: 2086 DynRelRegion.EntSize = Dyn.getVal(); 2087 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 2088 break; 2089 case ELF::DT_RELR: 2090 case ELF::DT_ANDROID_RELR: 2091 case ELF::DT_AARCH64_AUTH_RELR: 2092 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2093 break; 2094 case ELF::DT_RELRSZ: 2095 case ELF::DT_ANDROID_RELRSZ: 2096 case ELF::DT_AARCH64_AUTH_RELRSZ: 2097 DynRelrRegion.Size = Dyn.getVal(); 2098 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 2099 ? "DT_RELRSZ value" 2100 : "DT_ANDROID_RELRSZ value"; 2101 break; 2102 case ELF::DT_RELRENT: 2103 case ELF::DT_ANDROID_RELRENT: 2104 case ELF::DT_AARCH64_AUTH_RELRENT: 2105 DynRelrRegion.EntSize = Dyn.getVal(); 2106 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 2107 ? "DT_RELRENT value" 2108 : "DT_ANDROID_RELRENT value"; 2109 break; 2110 case ELF::DT_PLTREL: 2111 if (Dyn.getVal() == DT_REL) 2112 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 2113 else if (Dyn.getVal() == DT_RELA) 2114 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 2115 else if (Dyn.getVal() == DT_CREL) 2116 DynPLTRelRegion.EntSize = 1; 2117 else 2118 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 2119 Twine((uint64_t)Dyn.getVal())); 2120 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 2121 break; 2122 case ELF::DT_JMPREL: 2123 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2124 break; 2125 case ELF::DT_PLTRELSZ: 2126 DynPLTRelRegion.Size = Dyn.getVal(); 2127 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 2128 break; 2129 case ELF::DT_SYMTAB_SHNDX: 2130 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2131 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 2132 break; 2133 } 2134 } 2135 2136 if (StringTableBegin) { 2137 const uint64_t FileSize = Obj.getBufSize(); 2138 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 2139 if (StringTableSize > FileSize - Offset) 2140 reportUniqueWarning( 2141 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 2142 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 2143 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 2144 else 2145 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 2146 } 2147 2148 const bool IsHashTableSupported = getHashTableEntSize() == 4; 2149 if (DynSymRegion) { 2150 // Often we find the information about the dynamic symbol table 2151 // location in the SHT_DYNSYM section header. However, the value in 2152 // DT_SYMTAB has priority, because it is used by dynamic loaders to 2153 // locate .dynsym at runtime. The location we find in the section header 2154 // and the location we find here should match. 2155 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 2156 reportUniqueWarning( 2157 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 2158 "the location of the dynamic symbol table")); 2159 2160 // According to the ELF gABI: "The number of symbol table entries should 2161 // equal nchain". Check to see if the DT_HASH hash table nchain value 2162 // conflicts with the number of symbols in the dynamic symbol table 2163 // according to the section header. 2164 if (HashTable && IsHashTableSupported) { 2165 if (DynSymRegion->EntSize == 0) 2166 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 2167 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 2168 reportUniqueWarning( 2169 "hash table nchain (" + Twine(HashTable->nchain) + 2170 ") differs from symbol count derived from SHT_DYNSYM section " 2171 "header (" + 2172 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 2173 } 2174 } 2175 2176 // Delay the creation of the actual dynamic symbol table until now, so that 2177 // checks can always be made against the section header-based properties, 2178 // without worrying about tag order. 2179 if (DynSymFromTable) { 2180 if (!DynSymRegion) { 2181 DynSymRegion = DynSymFromTable; 2182 } else { 2183 DynSymRegion->Addr = DynSymFromTable->Addr; 2184 DynSymRegion->EntSize = DynSymFromTable->EntSize; 2185 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 2186 } 2187 } 2188 2189 // Derive the dynamic symbol table size from the DT_HASH hash table, if 2190 // present. 2191 if (HashTable && IsHashTableSupported && DynSymRegion) { 2192 const uint64_t FileSize = Obj.getBufSize(); 2193 const uint64_t DerivedSize = 2194 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 2195 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 2196 if (DerivedSize > FileSize - Offset) 2197 reportUniqueWarning( 2198 "the size (0x" + Twine::utohexstr(DerivedSize) + 2199 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 2200 ", derived from the hash table, goes past the end of the file (0x" + 2201 Twine::utohexstr(FileSize) + ") and will be ignored"); 2202 else 2203 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 2204 } 2205 } 2206 2207 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 2208 // Dump version symbol section. 2209 printVersionSymbolSection(SymbolVersionSection); 2210 2211 // Dump version definition section. 2212 printVersionDefinitionSection(SymbolVersionDefSection); 2213 2214 // Dump version dependency section. 2215 printVersionDependencySection(SymbolVersionNeedSection); 2216 } 2217 2218 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 2219 { #enum, prefix##_##enum } 2220 2221 const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 2222 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 2223 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 2224 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 2225 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 2226 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 2227 }; 2228 2229 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 2230 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 2231 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 2232 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 2233 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 2234 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 2235 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 2236 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 2237 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 2238 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 2239 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 2240 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 2241 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 2242 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 2243 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 2244 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 2245 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 2246 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 2247 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 2248 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 2249 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 2250 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 2251 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 2252 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 2253 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2254 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2255 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2256 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2257 }; 2258 2259 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2260 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2261 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2262 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2263 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2264 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2265 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2266 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2267 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2268 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2269 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2270 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2271 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2272 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2273 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2274 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2275 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2276 }; 2277 2278 #undef LLVM_READOBJ_DT_FLAG_ENT 2279 2280 template <typename T, typename TFlag> 2281 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2282 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2283 for (const EnumEntry<TFlag> &Flag : Flags) 2284 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2285 SetFlags.push_back(Flag); 2286 2287 for (const EnumEntry<TFlag> &Flag : SetFlags) 2288 OS << Flag.Name << " "; 2289 } 2290 2291 template <class ELFT> 2292 const typename ELFT::Shdr * 2293 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2294 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2295 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2296 if (*NameOrErr == Name) 2297 return &Shdr; 2298 } else { 2299 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2300 ": " + toString(NameOrErr.takeError())); 2301 } 2302 } 2303 return nullptr; 2304 } 2305 2306 template <class ELFT> 2307 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2308 uint64_t Value) const { 2309 auto FormatHexValue = [](uint64_t V) { 2310 std::string Str; 2311 raw_string_ostream OS(Str); 2312 const char *ConvChar = 2313 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2314 OS << format(ConvChar, V); 2315 return OS.str(); 2316 }; 2317 2318 auto FormatFlags = [](uint64_t V, 2319 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2320 std::string Str; 2321 raw_string_ostream OS(Str); 2322 printFlags(V, Array, OS); 2323 return OS.str(); 2324 }; 2325 2326 // Handle custom printing of architecture specific tags 2327 switch (Obj.getHeader().e_machine) { 2328 case EM_AARCH64: 2329 switch (Type) { 2330 case DT_AARCH64_BTI_PLT: 2331 case DT_AARCH64_PAC_PLT: 2332 case DT_AARCH64_VARIANT_PCS: 2333 case DT_AARCH64_MEMTAG_GLOBALSSZ: 2334 return std::to_string(Value); 2335 case DT_AARCH64_MEMTAG_MODE: 2336 switch (Value) { 2337 case 0: 2338 return "Synchronous (0)"; 2339 case 1: 2340 return "Asynchronous (1)"; 2341 default: 2342 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2343 } 2344 case DT_AARCH64_MEMTAG_HEAP: 2345 case DT_AARCH64_MEMTAG_STACK: 2346 switch (Value) { 2347 case 0: 2348 return "Disabled (0)"; 2349 case 1: 2350 return "Enabled (1)"; 2351 default: 2352 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2353 } 2354 case DT_AARCH64_MEMTAG_GLOBALS: 2355 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str(); 2356 default: 2357 break; 2358 } 2359 break; 2360 case EM_HEXAGON: 2361 switch (Type) { 2362 case DT_HEXAGON_VER: 2363 return std::to_string(Value); 2364 case DT_HEXAGON_SYMSZ: 2365 case DT_HEXAGON_PLT: 2366 return FormatHexValue(Value); 2367 default: 2368 break; 2369 } 2370 break; 2371 case EM_MIPS: 2372 switch (Type) { 2373 case DT_MIPS_RLD_VERSION: 2374 case DT_MIPS_LOCAL_GOTNO: 2375 case DT_MIPS_SYMTABNO: 2376 case DT_MIPS_UNREFEXTNO: 2377 return std::to_string(Value); 2378 case DT_MIPS_TIME_STAMP: 2379 case DT_MIPS_ICHECKSUM: 2380 case DT_MIPS_IVERSION: 2381 case DT_MIPS_BASE_ADDRESS: 2382 case DT_MIPS_MSYM: 2383 case DT_MIPS_CONFLICT: 2384 case DT_MIPS_LIBLIST: 2385 case DT_MIPS_CONFLICTNO: 2386 case DT_MIPS_LIBLISTNO: 2387 case DT_MIPS_GOTSYM: 2388 case DT_MIPS_HIPAGENO: 2389 case DT_MIPS_RLD_MAP: 2390 case DT_MIPS_DELTA_CLASS: 2391 case DT_MIPS_DELTA_CLASS_NO: 2392 case DT_MIPS_DELTA_INSTANCE: 2393 case DT_MIPS_DELTA_RELOC: 2394 case DT_MIPS_DELTA_RELOC_NO: 2395 case DT_MIPS_DELTA_SYM: 2396 case DT_MIPS_DELTA_SYM_NO: 2397 case DT_MIPS_DELTA_CLASSSYM: 2398 case DT_MIPS_DELTA_CLASSSYM_NO: 2399 case DT_MIPS_CXX_FLAGS: 2400 case DT_MIPS_PIXIE_INIT: 2401 case DT_MIPS_SYMBOL_LIB: 2402 case DT_MIPS_LOCALPAGE_GOTIDX: 2403 case DT_MIPS_LOCAL_GOTIDX: 2404 case DT_MIPS_HIDDEN_GOTIDX: 2405 case DT_MIPS_PROTECTED_GOTIDX: 2406 case DT_MIPS_OPTIONS: 2407 case DT_MIPS_INTERFACE: 2408 case DT_MIPS_DYNSTR_ALIGN: 2409 case DT_MIPS_INTERFACE_SIZE: 2410 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2411 case DT_MIPS_PERF_SUFFIX: 2412 case DT_MIPS_COMPACT_SIZE: 2413 case DT_MIPS_GP_VALUE: 2414 case DT_MIPS_AUX_DYNAMIC: 2415 case DT_MIPS_PLTGOT: 2416 case DT_MIPS_RWPLT: 2417 case DT_MIPS_RLD_MAP_REL: 2418 case DT_MIPS_XHASH: 2419 return FormatHexValue(Value); 2420 case DT_MIPS_FLAGS: 2421 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags)); 2422 default: 2423 break; 2424 } 2425 break; 2426 default: 2427 break; 2428 } 2429 2430 switch (Type) { 2431 case DT_PLTREL: 2432 if (Value == DT_REL) 2433 return "REL"; 2434 if (Value == DT_RELA) 2435 return "RELA"; 2436 if (Value == DT_CREL) 2437 return "CREL"; 2438 [[fallthrough]]; 2439 case DT_PLTGOT: 2440 case DT_HASH: 2441 case DT_STRTAB: 2442 case DT_SYMTAB: 2443 case DT_RELA: 2444 case DT_INIT: 2445 case DT_FINI: 2446 case DT_REL: 2447 case DT_JMPREL: 2448 case DT_INIT_ARRAY: 2449 case DT_FINI_ARRAY: 2450 case DT_PREINIT_ARRAY: 2451 case DT_DEBUG: 2452 case DT_CREL: 2453 case DT_VERDEF: 2454 case DT_VERNEED: 2455 case DT_VERSYM: 2456 case DT_GNU_HASH: 2457 case DT_NULL: 2458 return FormatHexValue(Value); 2459 case DT_RELACOUNT: 2460 case DT_RELCOUNT: 2461 case DT_VERDEFNUM: 2462 case DT_VERNEEDNUM: 2463 return std::to_string(Value); 2464 case DT_PLTRELSZ: 2465 case DT_RELASZ: 2466 case DT_RELAENT: 2467 case DT_STRSZ: 2468 case DT_SYMENT: 2469 case DT_RELSZ: 2470 case DT_RELENT: 2471 case DT_INIT_ARRAYSZ: 2472 case DT_FINI_ARRAYSZ: 2473 case DT_PREINIT_ARRAYSZ: 2474 case DT_RELRSZ: 2475 case DT_RELRENT: 2476 case DT_AARCH64_AUTH_RELRSZ: 2477 case DT_AARCH64_AUTH_RELRENT: 2478 case DT_ANDROID_RELSZ: 2479 case DT_ANDROID_RELASZ: 2480 return std::to_string(Value) + " (bytes)"; 2481 case DT_NEEDED: 2482 case DT_SONAME: 2483 case DT_AUXILIARY: 2484 case DT_USED: 2485 case DT_FILTER: 2486 case DT_RPATH: 2487 case DT_RUNPATH: { 2488 const std::map<uint64_t, const char *> TagNames = { 2489 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2490 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2491 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2492 {DT_RUNPATH, "Library runpath"}, 2493 }; 2494 2495 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2496 .str(); 2497 } 2498 case DT_FLAGS: 2499 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags)); 2500 case DT_FLAGS_1: 2501 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1)); 2502 default: 2503 return FormatHexValue(Value); 2504 } 2505 } 2506 2507 template <class ELFT> 2508 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2509 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2510 reportUniqueWarning("string table was not found"); 2511 return "<?>"; 2512 } 2513 2514 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2515 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2516 Msg); 2517 return "<?>"; 2518 }; 2519 2520 const uint64_t FileSize = Obj.getBufSize(); 2521 const uint64_t Offset = 2522 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2523 if (DynamicStringTable.size() > FileSize - Offset) 2524 return WarnAndReturn(" with size 0x" + 2525 Twine::utohexstr(DynamicStringTable.size()) + 2526 " goes past the end of the file (0x" + 2527 Twine::utohexstr(FileSize) + ")", 2528 Offset); 2529 2530 if (Value >= DynamicStringTable.size()) 2531 return WarnAndReturn( 2532 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2533 ": it goes past the end of the table (0x" + 2534 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2535 Offset); 2536 2537 if (DynamicStringTable.back() != '\0') 2538 return WarnAndReturn(": unable to read the string at 0x" + 2539 Twine::utohexstr(Offset + Value) + 2540 ": the string table is not null-terminated", 2541 Offset); 2542 2543 return DynamicStringTable.data() + Value; 2544 } 2545 2546 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2547 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2548 Ctx.printUnwindInformation(); 2549 } 2550 2551 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2552 namespace { 2553 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2554 if (Obj.getHeader().e_machine == EM_ARM) { 2555 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2556 DotSymtabSec); 2557 Ctx.PrintUnwindInformation(); 2558 } 2559 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2560 Ctx.printUnwindInformation(); 2561 } 2562 } // namespace 2563 2564 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2565 ListScope D(W, "NeededLibraries"); 2566 2567 std::vector<StringRef> Libs; 2568 for (const auto &Entry : dynamic_table()) 2569 if (Entry.d_tag == ELF::DT_NEEDED) 2570 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2571 2572 llvm::sort(Libs); 2573 2574 for (StringRef L : Libs) 2575 W.printString(L); 2576 } 2577 2578 template <class ELFT> 2579 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2580 const typename ELFT::Hash *H, 2581 bool *IsHeaderValid = nullptr) { 2582 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2583 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2584 if (Dumper.getHashTableEntSize() == 8) { 2585 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2586 return E.Value == Obj.getHeader().e_machine; 2587 }); 2588 if (IsHeaderValid) 2589 *IsHeaderValid = false; 2590 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2591 " is not supported: it contains non-standard 8 " 2592 "byte entries on " + 2593 It->AltName + " platform"); 2594 } 2595 2596 auto MakeError = [&](const Twine &Msg = "") { 2597 return createError("the hash table at offset 0x" + 2598 Twine::utohexstr(SecOffset) + 2599 " goes past the end of the file (0x" + 2600 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2601 }; 2602 2603 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2604 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2605 2606 if (IsHeaderValid) 2607 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2608 2609 if (Obj.getBufSize() - SecOffset < HeaderSize) 2610 return MakeError(); 2611 2612 if (Obj.getBufSize() - SecOffset - HeaderSize < 2613 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2614 return MakeError(", nbucket = " + Twine(H->nbucket) + 2615 ", nchain = " + Twine(H->nchain)); 2616 return Error::success(); 2617 } 2618 2619 template <class ELFT> 2620 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2621 const typename ELFT::GnuHash *GnuHashTable, 2622 bool *IsHeaderValid = nullptr) { 2623 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2624 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2625 "GnuHashTable must always point to a location inside the file"); 2626 2627 uint64_t TableOffset = TableData - Obj.base(); 2628 if (IsHeaderValid) 2629 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2630 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2631 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2632 Obj.getBufSize()) 2633 return createError("unable to dump the SHT_GNU_HASH " 2634 "section at 0x" + 2635 Twine::utohexstr(TableOffset) + 2636 ": it goes past the end of the file"); 2637 return Error::success(); 2638 } 2639 2640 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2641 DictScope D(W, "HashTable"); 2642 if (!HashTable) 2643 return; 2644 2645 bool IsHeaderValid; 2646 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2647 if (IsHeaderValid) { 2648 W.printNumber("Num Buckets", HashTable->nbucket); 2649 W.printNumber("Num Chains", HashTable->nchain); 2650 } 2651 2652 if (Err) { 2653 reportUniqueWarning(std::move(Err)); 2654 return; 2655 } 2656 2657 W.printList("Buckets", HashTable->buckets()); 2658 W.printList("Chains", HashTable->chains()); 2659 } 2660 2661 template <class ELFT> 2662 static Expected<ArrayRef<typename ELFT::Word>> 2663 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion, 2664 const typename ELFT::GnuHash *GnuHashTable) { 2665 if (!DynSymRegion) 2666 return createError("no dynamic symbol table found"); 2667 2668 ArrayRef<typename ELFT::Sym> DynSymTable = 2669 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2670 size_t NumSyms = DynSymTable.size(); 2671 if (!NumSyms) 2672 return createError("the dynamic symbol table is empty"); 2673 2674 if (GnuHashTable->symndx < NumSyms) 2675 return GnuHashTable->values(NumSyms); 2676 2677 // A normal empty GNU hash table section produced by linker might have 2678 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2679 // and have dummy null values in the Bloom filter and in the buckets 2680 // vector (or no values at all). It happens because the value of symndx is not 2681 // important for dynamic loaders when the GNU hash table is empty. They just 2682 // skip the whole object during symbol lookup. In such cases, the symndx value 2683 // is irrelevant and we should not report a warning. 2684 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2685 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2686 return createError( 2687 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2688 ") is greater than or equal to the number of dynamic symbols (" + 2689 Twine(NumSyms) + ")"); 2690 // There is no way to represent an array of (dynamic symbols count - symndx) 2691 // length. 2692 return ArrayRef<typename ELFT::Word>(); 2693 } 2694 2695 template <typename ELFT> 2696 void ELFDumper<ELFT>::printGnuHashTable() { 2697 DictScope D(W, "GnuHashTable"); 2698 if (!GnuHashTable) 2699 return; 2700 2701 bool IsHeaderValid; 2702 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2703 if (IsHeaderValid) { 2704 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2705 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2706 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2707 W.printNumber("Shift Count", GnuHashTable->shift2); 2708 } 2709 2710 if (Err) { 2711 reportUniqueWarning(std::move(Err)); 2712 return; 2713 } 2714 2715 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2716 W.printHexList("Bloom Filter", BloomFilter); 2717 2718 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2719 W.printList("Buckets", Buckets); 2720 2721 Expected<ArrayRef<Elf_Word>> Chains = 2722 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2723 if (!Chains) { 2724 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2725 "section: " + 2726 toString(Chains.takeError())); 2727 return; 2728 } 2729 2730 W.printHexList("Values", *Chains); 2731 } 2732 2733 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() { 2734 // Print histogram for the .hash section. 2735 if (this->HashTable) { 2736 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 2737 this->reportUniqueWarning(std::move(E)); 2738 else 2739 printHashHistogram(*this->HashTable); 2740 } 2741 2742 // Print histogram for the .gnu.hash section. 2743 if (this->GnuHashTable) { 2744 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 2745 this->reportUniqueWarning(std::move(E)); 2746 else 2747 printGnuHashHistogram(*this->GnuHashTable); 2748 } 2749 } 2750 2751 template <typename ELFT> 2752 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const { 2753 size_t NBucket = HashTable.nbucket; 2754 size_t NChain = HashTable.nchain; 2755 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 2756 ArrayRef<Elf_Word> Chains = HashTable.chains(); 2757 size_t TotalSyms = 0; 2758 // If hash table is correct, we have at least chains with 0 length. 2759 size_t MaxChain = 1; 2760 2761 if (NChain == 0 || NBucket == 0) 2762 return; 2763 2764 std::vector<size_t> ChainLen(NBucket, 0); 2765 // Go over all buckets and note chain lengths of each bucket (total 2766 // unique chain lengths). 2767 for (size_t B = 0; B < NBucket; ++B) { 2768 BitVector Visited(NChain); 2769 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 2770 if (C == ELF::STN_UNDEF) 2771 break; 2772 if (Visited[C]) { 2773 this->reportUniqueWarning( 2774 ".hash section is invalid: bucket " + Twine(C) + 2775 ": a cycle was detected in the linked chain"); 2776 break; 2777 } 2778 Visited[C] = true; 2779 if (MaxChain <= ++ChainLen[B]) 2780 ++MaxChain; 2781 } 2782 TotalSyms += ChainLen[B]; 2783 } 2784 2785 if (!TotalSyms) 2786 return; 2787 2788 std::vector<size_t> Count(MaxChain, 0); 2789 // Count how long is the chain for each bucket. 2790 for (size_t B = 0; B < NBucket; B++) 2791 ++Count[ChainLen[B]]; 2792 // Print Number of buckets with each chain lengths and their cumulative 2793 // coverage of the symbols. 2794 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false); 2795 } 2796 2797 template <class ELFT> 2798 void ELFDumper<ELFT>::printGnuHashHistogram( 2799 const Elf_GnuHash &GnuHashTable) const { 2800 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 2801 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 2802 if (!ChainsOrErr) { 2803 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 2804 toString(ChainsOrErr.takeError())); 2805 return; 2806 } 2807 2808 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 2809 size_t Symndx = GnuHashTable.symndx; 2810 size_t TotalSyms = 0; 2811 size_t MaxChain = 1; 2812 2813 size_t NBucket = GnuHashTable.nbuckets; 2814 if (Chains.empty() || NBucket == 0) 2815 return; 2816 2817 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 2818 std::vector<size_t> ChainLen(NBucket, 0); 2819 for (size_t B = 0; B < NBucket; ++B) { 2820 if (!Buckets[B]) 2821 continue; 2822 size_t Len = 1; 2823 for (size_t C = Buckets[B] - Symndx; 2824 C < Chains.size() && (Chains[C] & 1) == 0; ++C) 2825 if (MaxChain < ++Len) 2826 ++MaxChain; 2827 ChainLen[B] = Len; 2828 TotalSyms += Len; 2829 } 2830 ++MaxChain; 2831 2832 if (!TotalSyms) 2833 return; 2834 2835 std::vector<size_t> Count(MaxChain, 0); 2836 for (size_t B = 0; B < NBucket; ++B) 2837 ++Count[ChainLen[B]]; 2838 // Print Number of buckets with each chain lengths and their cumulative 2839 // coverage of the symbols. 2840 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true); 2841 } 2842 2843 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2844 StringRef SOName = "<Not found>"; 2845 if (SONameOffset) 2846 SOName = getDynamicString(*SONameOffset); 2847 W.printString("LoadName", SOName); 2848 } 2849 2850 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2851 switch (Obj.getHeader().e_machine) { 2852 case EM_HEXAGON: 2853 printAttributes(ELF::SHT_HEXAGON_ATTRIBUTES, 2854 std::make_unique<HexagonAttributeParser>(&W), 2855 llvm::endianness::little); 2856 break; 2857 case EM_ARM: 2858 printAttributes( 2859 ELF::SHT_ARM_ATTRIBUTES, std::make_unique<ARMAttributeParser>(&W), 2860 Obj.isLE() ? llvm::endianness::little : llvm::endianness::big); 2861 break; 2862 case EM_RISCV: 2863 if (Obj.isLE()) 2864 printAttributes(ELF::SHT_RISCV_ATTRIBUTES, 2865 std::make_unique<RISCVAttributeParser>(&W), 2866 llvm::endianness::little); 2867 else 2868 reportUniqueWarning("attribute printing not implemented for big-endian " 2869 "RISC-V objects"); 2870 break; 2871 case EM_MSP430: 2872 printAttributes(ELF::SHT_MSP430_ATTRIBUTES, 2873 std::make_unique<MSP430AttributeParser>(&W), 2874 llvm::endianness::little); 2875 break; 2876 case EM_MIPS: { 2877 printMipsABIFlags(); 2878 printMipsOptions(); 2879 printMipsReginfo(); 2880 MipsGOTParser<ELFT> Parser(*this); 2881 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2882 reportUniqueWarning(std::move(E)); 2883 else if (!Parser.isGotEmpty()) 2884 printMipsGOT(Parser); 2885 2886 if (Error E = Parser.findPLT(dynamic_table())) 2887 reportUniqueWarning(std::move(E)); 2888 else if (!Parser.isPltEmpty()) 2889 printMipsPLT(Parser); 2890 break; 2891 } 2892 default: 2893 break; 2894 } 2895 } 2896 2897 template <class ELFT> 2898 void ELFDumper<ELFT>::printAttributes( 2899 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, 2900 llvm::endianness Endianness) { 2901 assert((AttrShType != ELF::SHT_NULL) && AttrParser && 2902 "Incomplete ELF attribute implementation"); 2903 DictScope BA(W, "BuildAttributes"); 2904 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2905 if (Sec.sh_type != AttrShType) 2906 continue; 2907 2908 ArrayRef<uint8_t> Contents; 2909 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2910 Obj.getSectionContents(Sec)) { 2911 Contents = *ContentOrErr; 2912 if (Contents.empty()) { 2913 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2914 continue; 2915 } 2916 } else { 2917 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2918 ": " + toString(ContentOrErr.takeError())); 2919 continue; 2920 } 2921 2922 W.printHex("FormatVersion", Contents[0]); 2923 2924 if (Error E = AttrParser->parse(Contents, Endianness)) 2925 reportUniqueWarning("unable to dump attributes from the " + 2926 describe(Sec) + ": " + toString(std::move(E))); 2927 } 2928 } 2929 2930 namespace { 2931 2932 template <class ELFT> class MipsGOTParser { 2933 public: 2934 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2935 using Entry = typename ELFT::Addr; 2936 using Entries = ArrayRef<Entry>; 2937 2938 const bool IsStatic; 2939 const ELFFile<ELFT> &Obj; 2940 const ELFDumper<ELFT> &Dumper; 2941 2942 MipsGOTParser(const ELFDumper<ELFT> &D); 2943 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2944 Error findPLT(Elf_Dyn_Range DynTable); 2945 2946 bool isGotEmpty() const { return GotEntries.empty(); } 2947 bool isPltEmpty() const { return PltEntries.empty(); } 2948 2949 uint64_t getGp() const; 2950 2951 const Entry *getGotLazyResolver() const; 2952 const Entry *getGotModulePointer() const; 2953 const Entry *getPltLazyResolver() const; 2954 const Entry *getPltModulePointer() const; 2955 2956 Entries getLocalEntries() const; 2957 Entries getGlobalEntries() const; 2958 Entries getOtherEntries() const; 2959 Entries getPltEntries() const; 2960 2961 uint64_t getGotAddress(const Entry * E) const; 2962 int64_t getGotOffset(const Entry * E) const; 2963 const Elf_Sym *getGotSym(const Entry *E) const; 2964 2965 uint64_t getPltAddress(const Entry * E) const; 2966 const Elf_Sym *getPltSym(const Entry *E) const; 2967 2968 StringRef getPltStrTable() const { return PltStrTable; } 2969 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2970 2971 private: 2972 const Elf_Shdr *GotSec; 2973 size_t LocalNum; 2974 size_t GlobalNum; 2975 2976 const Elf_Shdr *PltSec; 2977 const Elf_Shdr *PltRelSec; 2978 const Elf_Shdr *PltSymTable; 2979 StringRef FileName; 2980 2981 Elf_Sym_Range GotDynSyms; 2982 StringRef PltStrTable; 2983 2984 Entries GotEntries; 2985 Entries PltEntries; 2986 }; 2987 2988 } // end anonymous namespace 2989 2990 template <class ELFT> 2991 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 2992 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 2993 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 2994 PltRelSec(nullptr), PltSymTable(nullptr), 2995 FileName(D.getElfObject().getFileName()) {} 2996 2997 template <class ELFT> 2998 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 2999 Elf_Sym_Range DynSyms) { 3000 // See "Global Offset Table" in Chapter 5 in the following document 3001 // for detailed GOT description. 3002 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 3003 3004 // Find static GOT secton. 3005 if (IsStatic) { 3006 GotSec = Dumper.findSectionByName(".got"); 3007 if (!GotSec) 3008 return Error::success(); 3009 3010 ArrayRef<uint8_t> Content = 3011 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3012 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3013 Content.size() / sizeof(Entry)); 3014 LocalNum = GotEntries.size(); 3015 return Error::success(); 3016 } 3017 3018 // Lookup dynamic table tags which define the GOT layout. 3019 std::optional<uint64_t> DtPltGot; 3020 std::optional<uint64_t> DtLocalGotNum; 3021 std::optional<uint64_t> DtGotSym; 3022 for (const auto &Entry : DynTable) { 3023 switch (Entry.getTag()) { 3024 case ELF::DT_PLTGOT: 3025 DtPltGot = Entry.getVal(); 3026 break; 3027 case ELF::DT_MIPS_LOCAL_GOTNO: 3028 DtLocalGotNum = Entry.getVal(); 3029 break; 3030 case ELF::DT_MIPS_GOTSYM: 3031 DtGotSym = Entry.getVal(); 3032 break; 3033 } 3034 } 3035 3036 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 3037 return Error::success(); 3038 3039 if (!DtPltGot) 3040 return createError("cannot find PLTGOT dynamic tag"); 3041 if (!DtLocalGotNum) 3042 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 3043 if (!DtGotSym) 3044 return createError("cannot find MIPS_GOTSYM dynamic tag"); 3045 3046 size_t DynSymTotal = DynSyms.size(); 3047 if (*DtGotSym > DynSymTotal) 3048 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 3049 ") exceeds the number of dynamic symbols (" + 3050 Twine(DynSymTotal) + ")"); 3051 3052 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 3053 if (!GotSec) 3054 return createError("there is no non-empty GOT section at 0x" + 3055 Twine::utohexstr(*DtPltGot)); 3056 3057 LocalNum = *DtLocalGotNum; 3058 GlobalNum = DynSymTotal - *DtGotSym; 3059 3060 ArrayRef<uint8_t> Content = 3061 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3062 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3063 Content.size() / sizeof(Entry)); 3064 GotDynSyms = DynSyms.drop_front(*DtGotSym); 3065 3066 return Error::success(); 3067 } 3068 3069 template <class ELFT> 3070 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 3071 // Lookup dynamic table tags which define the PLT layout. 3072 std::optional<uint64_t> DtMipsPltGot; 3073 std::optional<uint64_t> DtJmpRel; 3074 for (const auto &Entry : DynTable) { 3075 switch (Entry.getTag()) { 3076 case ELF::DT_MIPS_PLTGOT: 3077 DtMipsPltGot = Entry.getVal(); 3078 break; 3079 case ELF::DT_JMPREL: 3080 DtJmpRel = Entry.getVal(); 3081 break; 3082 } 3083 } 3084 3085 if (!DtMipsPltGot && !DtJmpRel) 3086 return Error::success(); 3087 3088 // Find PLT section. 3089 if (!DtMipsPltGot) 3090 return createError("cannot find MIPS_PLTGOT dynamic tag"); 3091 if (!DtJmpRel) 3092 return createError("cannot find JMPREL dynamic tag"); 3093 3094 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 3095 if (!PltSec) 3096 return createError("there is no non-empty PLTGOT section at 0x" + 3097 Twine::utohexstr(*DtMipsPltGot)); 3098 3099 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 3100 if (!PltRelSec) 3101 return createError("there is no non-empty RELPLT section at 0x" + 3102 Twine::utohexstr(*DtJmpRel)); 3103 3104 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 3105 Obj.getSectionContents(*PltSec)) 3106 PltEntries = 3107 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 3108 PltContentOrErr->size() / sizeof(Entry)); 3109 else 3110 return createError("unable to read PLTGOT section content: " + 3111 toString(PltContentOrErr.takeError())); 3112 3113 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 3114 Obj.getSection(PltRelSec->sh_link)) 3115 PltSymTable = *PltSymTableOrErr; 3116 else 3117 return createError("unable to get a symbol table linked to the " + 3118 describe(Obj, *PltRelSec) + ": " + 3119 toString(PltSymTableOrErr.takeError())); 3120 3121 if (Expected<StringRef> StrTabOrErr = 3122 Obj.getStringTableForSymtab(*PltSymTable)) 3123 PltStrTable = *StrTabOrErr; 3124 else 3125 return createError("unable to get a string table for the " + 3126 describe(Obj, *PltSymTable) + ": " + 3127 toString(StrTabOrErr.takeError())); 3128 3129 return Error::success(); 3130 } 3131 3132 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 3133 return GotSec->sh_addr + 0x7ff0; 3134 } 3135 3136 template <class ELFT> 3137 const typename MipsGOTParser<ELFT>::Entry * 3138 MipsGOTParser<ELFT>::getGotLazyResolver() const { 3139 return LocalNum > 0 ? &GotEntries[0] : nullptr; 3140 } 3141 3142 template <class ELFT> 3143 const typename MipsGOTParser<ELFT>::Entry * 3144 MipsGOTParser<ELFT>::getGotModulePointer() const { 3145 if (LocalNum < 2) 3146 return nullptr; 3147 const Entry &E = GotEntries[1]; 3148 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 3149 return nullptr; 3150 return &E; 3151 } 3152 3153 template <class ELFT> 3154 typename MipsGOTParser<ELFT>::Entries 3155 MipsGOTParser<ELFT>::getLocalEntries() const { 3156 size_t Skip = getGotModulePointer() ? 2 : 1; 3157 if (LocalNum - Skip <= 0) 3158 return Entries(); 3159 return GotEntries.slice(Skip, LocalNum - Skip); 3160 } 3161 3162 template <class ELFT> 3163 typename MipsGOTParser<ELFT>::Entries 3164 MipsGOTParser<ELFT>::getGlobalEntries() const { 3165 if (GlobalNum == 0) 3166 return Entries(); 3167 return GotEntries.slice(LocalNum, GlobalNum); 3168 } 3169 3170 template <class ELFT> 3171 typename MipsGOTParser<ELFT>::Entries 3172 MipsGOTParser<ELFT>::getOtherEntries() const { 3173 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 3174 if (OtherNum == 0) 3175 return Entries(); 3176 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 3177 } 3178 3179 template <class ELFT> 3180 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 3181 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3182 return GotSec->sh_addr + Offset; 3183 } 3184 3185 template <class ELFT> 3186 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 3187 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3188 return Offset - 0x7ff0; 3189 } 3190 3191 template <class ELFT> 3192 const typename MipsGOTParser<ELFT>::Elf_Sym * 3193 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 3194 int64_t Offset = std::distance(GotEntries.data(), E); 3195 return &GotDynSyms[Offset - LocalNum]; 3196 } 3197 3198 template <class ELFT> 3199 const typename MipsGOTParser<ELFT>::Entry * 3200 MipsGOTParser<ELFT>::getPltLazyResolver() const { 3201 return PltEntries.empty() ? nullptr : &PltEntries[0]; 3202 } 3203 3204 template <class ELFT> 3205 const typename MipsGOTParser<ELFT>::Entry * 3206 MipsGOTParser<ELFT>::getPltModulePointer() const { 3207 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 3208 } 3209 3210 template <class ELFT> 3211 typename MipsGOTParser<ELFT>::Entries 3212 MipsGOTParser<ELFT>::getPltEntries() const { 3213 if (PltEntries.size() <= 2) 3214 return Entries(); 3215 return PltEntries.slice(2, PltEntries.size() - 2); 3216 } 3217 3218 template <class ELFT> 3219 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 3220 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 3221 return PltSec->sh_addr + Offset; 3222 } 3223 3224 template <class ELFT> 3225 const typename MipsGOTParser<ELFT>::Elf_Sym * 3226 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 3227 int64_t Offset = std::distance(getPltEntries().data(), E); 3228 if (PltRelSec->sh_type == ELF::SHT_REL) { 3229 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 3230 return unwrapOrError(FileName, 3231 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3232 } else { 3233 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 3234 return unwrapOrError(FileName, 3235 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3236 } 3237 } 3238 3239 const EnumEntry<unsigned> ElfMipsISAExtType[] = { 3240 {"None", Mips::AFL_EXT_NONE}, 3241 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 3242 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 3243 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 3244 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 3245 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 3246 {"LSI R4010", Mips::AFL_EXT_4010}, 3247 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 3248 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 3249 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 3250 {"MIPS R4650", Mips::AFL_EXT_4650}, 3251 {"MIPS R5900", Mips::AFL_EXT_5900}, 3252 {"MIPS R10000", Mips::AFL_EXT_10000}, 3253 {"NEC VR4100", Mips::AFL_EXT_4100}, 3254 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 3255 {"NEC VR4120", Mips::AFL_EXT_4120}, 3256 {"NEC VR5400", Mips::AFL_EXT_5400}, 3257 {"NEC VR5500", Mips::AFL_EXT_5500}, 3258 {"RMI Xlr", Mips::AFL_EXT_XLR}, 3259 {"Toshiba R3900", Mips::AFL_EXT_3900} 3260 }; 3261 3262 const EnumEntry<unsigned> ElfMipsASEFlags[] = { 3263 {"DSP", Mips::AFL_ASE_DSP}, 3264 {"DSPR2", Mips::AFL_ASE_DSPR2}, 3265 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 3266 {"MCU", Mips::AFL_ASE_MCU}, 3267 {"MDMX", Mips::AFL_ASE_MDMX}, 3268 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 3269 {"MT", Mips::AFL_ASE_MT}, 3270 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 3271 {"VZ", Mips::AFL_ASE_VIRT}, 3272 {"MSA", Mips::AFL_ASE_MSA}, 3273 {"MIPS16", Mips::AFL_ASE_MIPS16}, 3274 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 3275 {"XPA", Mips::AFL_ASE_XPA}, 3276 {"CRC", Mips::AFL_ASE_CRC}, 3277 {"GINV", Mips::AFL_ASE_GINV}, 3278 }; 3279 3280 const EnumEntry<unsigned> ElfMipsFpABIType[] = { 3281 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 3282 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 3283 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 3284 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 3285 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 3286 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 3287 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 3288 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 3289 {"Hard float compat (32-bit CPU, 64-bit FPU)", 3290 Mips::Val_GNU_MIPS_ABI_FP_64A} 3291 }; 3292 3293 static const EnumEntry<unsigned> ElfMipsFlags1[] { 3294 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 3295 }; 3296 3297 static int getMipsRegisterSize(uint8_t Flag) { 3298 switch (Flag) { 3299 case Mips::AFL_REG_NONE: 3300 return 0; 3301 case Mips::AFL_REG_32: 3302 return 32; 3303 case Mips::AFL_REG_64: 3304 return 64; 3305 case Mips::AFL_REG_128: 3306 return 128; 3307 default: 3308 return -1; 3309 } 3310 } 3311 3312 template <class ELFT> 3313 static void printMipsReginfoData(ScopedPrinter &W, 3314 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 3315 W.printHex("GP", Reginfo.ri_gp_value); 3316 W.printHex("General Mask", Reginfo.ri_gprmask); 3317 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 3318 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 3319 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 3320 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 3321 } 3322 3323 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 3324 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 3325 if (!RegInfoSec) { 3326 W.startLine() << "There is no .reginfo section in the file.\n"; 3327 return; 3328 } 3329 3330 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3331 Obj.getSectionContents(*RegInfoSec); 3332 if (!ContentsOrErr) { 3333 this->reportUniqueWarning( 3334 "unable to read the content of the .reginfo section (" + 3335 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 3336 return; 3337 } 3338 3339 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 3340 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 3341 Twine::utohexstr(ContentsOrErr->size()) + ")"); 3342 return; 3343 } 3344 3345 DictScope GS(W, "MIPS RegInfo"); 3346 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 3347 ContentsOrErr->data())); 3348 } 3349 3350 template <class ELFT> 3351 static Expected<const Elf_Mips_Options<ELFT> *> 3352 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 3353 bool &IsSupported) { 3354 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 3355 return createError("the .MIPS.options section has an invalid size (0x" + 3356 Twine::utohexstr(SecData.size()) + ")"); 3357 3358 const Elf_Mips_Options<ELFT> *O = 3359 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 3360 const uint8_t Size = O->size; 3361 if (Size > SecData.size()) { 3362 const uint64_t Offset = SecData.data() - SecBegin; 3363 const uint64_t SecSize = Offset + SecData.size(); 3364 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 3365 " at offset 0x" + Twine::utohexstr(Offset) + 3366 " goes past the end of the .MIPS.options " 3367 "section of size 0x" + 3368 Twine::utohexstr(SecSize)); 3369 } 3370 3371 IsSupported = O->kind == ODK_REGINFO; 3372 const size_t ExpectedSize = 3373 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 3374 3375 if (IsSupported) 3376 if (Size < ExpectedSize) 3377 return createError( 3378 "a .MIPS.options entry of kind " + 3379 Twine(getElfMipsOptionsOdkType(O->kind)) + 3380 " has an invalid size (0x" + Twine::utohexstr(Size) + 3381 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 3382 3383 SecData = SecData.drop_front(Size); 3384 return O; 3385 } 3386 3387 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 3388 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 3389 if (!MipsOpts) { 3390 W.startLine() << "There is no .MIPS.options section in the file.\n"; 3391 return; 3392 } 3393 3394 DictScope GS(W, "MIPS Options"); 3395 3396 ArrayRef<uint8_t> Data = 3397 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 3398 const uint8_t *const SecBegin = Data.begin(); 3399 while (!Data.empty()) { 3400 bool IsSupported; 3401 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 3402 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3403 if (!OptsOrErr) { 3404 reportUniqueWarning(OptsOrErr.takeError()); 3405 break; 3406 } 3407 3408 unsigned Kind = (*OptsOrErr)->kind; 3409 const char *Type = getElfMipsOptionsOdkType(Kind); 3410 if (!IsSupported) { 3411 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3412 << ")\n"; 3413 continue; 3414 } 3415 3416 DictScope GS(W, Type); 3417 if (Kind == ODK_REGINFO) 3418 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3419 else 3420 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3421 } 3422 } 3423 3424 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3425 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3426 if (!StackMapSection) 3427 return; 3428 3429 auto Warn = [&](Error &&E) { 3430 this->reportUniqueWarning("unable to read the stack map from " + 3431 describe(*StackMapSection) + ": " + 3432 toString(std::move(E))); 3433 }; 3434 3435 Expected<ArrayRef<uint8_t>> ContentOrErr = 3436 Obj.getSectionContents(*StackMapSection); 3437 if (!ContentOrErr) { 3438 Warn(ContentOrErr.takeError()); 3439 return; 3440 } 3441 3442 if (Error E = 3443 StackMapParser<ELFT::Endianness>::validateHeader(*ContentOrErr)) { 3444 Warn(std::move(E)); 3445 return; 3446 } 3447 3448 prettyPrintStackMap(W, StackMapParser<ELFT::Endianness>(*ContentOrErr)); 3449 } 3450 3451 template <class ELFT> 3452 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3453 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3454 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3455 if (!Target) 3456 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3457 " in " + describe(Sec) + ": " + 3458 toString(Target.takeError())); 3459 else 3460 printRelRelaReloc(R, *Target); 3461 } 3462 3463 template <class ELFT> 3464 std::vector<EnumEntry<unsigned>> 3465 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header, 3466 const Elf_Sym &Symbol) const { 3467 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 3468 std::end(ElfSymOtherFlags)); 3469 if (Header.e_machine == EM_MIPS) { 3470 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16 3471 // flag overlap with other ST_MIPS_xxx flags. So consider both 3472 // cases separately. 3473 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 3474 SymOtherFlags.insert(SymOtherFlags.end(), 3475 std::begin(ElfMips16SymOtherFlags), 3476 std::end(ElfMips16SymOtherFlags)); 3477 else 3478 SymOtherFlags.insert(SymOtherFlags.end(), 3479 std::begin(ElfMipsSymOtherFlags), 3480 std::end(ElfMipsSymOtherFlags)); 3481 } else if (Header.e_machine == EM_AARCH64) { 3482 SymOtherFlags.insert(SymOtherFlags.end(), 3483 std::begin(ElfAArch64SymOtherFlags), 3484 std::end(ElfAArch64SymOtherFlags)); 3485 } else if (Header.e_machine == EM_RISCV) { 3486 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags), 3487 std::end(ElfRISCVSymOtherFlags)); 3488 } 3489 return SymOtherFlags; 3490 } 3491 3492 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3493 StringRef Str2) { 3494 OS.PadToColumn(2u); 3495 OS << Str1; 3496 OS.PadToColumn(37u); 3497 OS << Str2 << "\n"; 3498 OS.flush(); 3499 } 3500 3501 template <class ELFT> 3502 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3503 StringRef FileName) { 3504 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3505 if (ElfHeader.e_shnum != 0) 3506 return to_string(ElfHeader.e_shnum); 3507 3508 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3509 if (!ArrOrErr) { 3510 // In this case we can ignore an error, because we have already reported a 3511 // warning about the broken section header table earlier. 3512 consumeError(ArrOrErr.takeError()); 3513 return "<?>"; 3514 } 3515 3516 if (ArrOrErr->empty()) 3517 return "0"; 3518 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3519 } 3520 3521 template <class ELFT> 3522 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3523 StringRef FileName) { 3524 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3525 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3526 return to_string(ElfHeader.e_shstrndx); 3527 3528 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3529 if (!ArrOrErr) { 3530 // In this case we can ignore an error, because we have already reported a 3531 // warning about the broken section header table earlier. 3532 consumeError(ArrOrErr.takeError()); 3533 return "<?>"; 3534 } 3535 3536 if (ArrOrErr->empty()) 3537 return "65535 (corrupt: out of range)"; 3538 return to_string(ElfHeader.e_shstrndx) + " (" + 3539 to_string((*ArrOrErr)[0].sh_link) + ")"; 3540 } 3541 3542 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3543 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3544 return E.Value == Type; 3545 }); 3546 if (It != ArrayRef(ElfObjectFileType).end()) 3547 return It; 3548 return nullptr; 3549 } 3550 3551 template <class ELFT> 3552 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 3553 ArrayRef<std::string> InputFilenames, 3554 const Archive *A) { 3555 if (InputFilenames.size() > 1 || A) { 3556 this->W.startLine() << "\n"; 3557 this->W.printString("File", FileStr); 3558 } 3559 } 3560 3561 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3562 const Elf_Ehdr &e = this->Obj.getHeader(); 3563 OS << "ELF Header:\n"; 3564 OS << " Magic: "; 3565 std::string Str; 3566 for (int i = 0; i < ELF::EI_NIDENT; i++) 3567 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3568 OS << "\n"; 3569 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 3570 printFields(OS, "Class:", Str); 3571 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding)); 3572 printFields(OS, "Data:", Str); 3573 OS.PadToColumn(2u); 3574 OS << "Version:"; 3575 OS.PadToColumn(37u); 3576 OS << utohexstr(e.e_ident[ELF::EI_VERSION]); 3577 if (e.e_version == ELF::EV_CURRENT) 3578 OS << " (current)"; 3579 OS << "\n"; 3580 auto OSABI = ArrayRef(ElfOSABI); 3581 if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 3582 e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 3583 switch (e.e_machine) { 3584 case ELF::EM_ARM: 3585 OSABI = ArrayRef(ARMElfOSABI); 3586 break; 3587 case ELF::EM_AMDGPU: 3588 OSABI = ArrayRef(AMDGPUElfOSABI); 3589 break; 3590 default: 3591 break; 3592 } 3593 } 3594 Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI); 3595 printFields(OS, "OS/ABI:", Str); 3596 printFields(OS, 3597 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3598 3599 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3600 Str = E->AltName.str(); 3601 } else { 3602 if (e.e_type >= ET_LOPROC) 3603 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3604 else if (e.e_type >= ET_LOOS) 3605 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3606 else 3607 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true); 3608 } 3609 printFields(OS, "Type:", Str); 3610 3611 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType)); 3612 printFields(OS, "Machine:", Str); 3613 Str = "0x" + utohexstr(e.e_version); 3614 printFields(OS, "Version:", Str); 3615 Str = "0x" + utohexstr(e.e_entry); 3616 printFields(OS, "Entry point address:", Str); 3617 Str = to_string(e.e_phoff) + " (bytes into file)"; 3618 printFields(OS, "Start of program headers:", Str); 3619 Str = to_string(e.e_shoff) + " (bytes into file)"; 3620 printFields(OS, "Start of section headers:", Str); 3621 std::string ElfFlags; 3622 if (e.e_machine == EM_MIPS) 3623 ElfFlags = printFlags( 3624 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), 3625 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); 3626 else if (e.e_machine == EM_RISCV) 3627 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 3628 else if (e.e_machine == EM_AVR) 3629 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags), 3630 unsigned(ELF::EF_AVR_ARCH_MASK)); 3631 else if (e.e_machine == EM_LOONGARCH) 3632 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 3633 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 3634 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 3635 else if (e.e_machine == EM_XTENSA) 3636 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags), 3637 unsigned(ELF::EF_XTENSA_MACH)); 3638 else if (e.e_machine == EM_CUDA) 3639 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags), 3640 unsigned(ELF::EF_CUDA_SM)); 3641 else if (e.e_machine == EM_AMDGPU) { 3642 switch (e.e_ident[ELF::EI_ABIVERSION]) { 3643 default: 3644 break; 3645 case 0: 3646 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 3647 [[fallthrough]]; 3648 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 3649 ElfFlags = 3650 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 3651 unsigned(ELF::EF_AMDGPU_MACH)); 3652 break; 3653 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 3654 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 3655 ElfFlags = 3656 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 3657 unsigned(ELF::EF_AMDGPU_MACH), 3658 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 3659 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 3660 break; 3661 case ELF::ELFABIVERSION_AMDGPU_HSA_V6: { 3662 ElfFlags = 3663 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 3664 unsigned(ELF::EF_AMDGPU_MACH), 3665 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 3666 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 3667 if (auto GenericV = e.e_flags & ELF::EF_AMDGPU_GENERIC_VERSION) { 3668 ElfFlags += 3669 ", generic_v" + 3670 to_string(GenericV >> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET); 3671 } 3672 } break; 3673 } 3674 } 3675 Str = "0x" + utohexstr(e.e_flags); 3676 if (!ElfFlags.empty()) 3677 Str = Str + ", " + ElfFlags; 3678 printFields(OS, "Flags:", Str); 3679 Str = to_string(e.e_ehsize) + " (bytes)"; 3680 printFields(OS, "Size of this header:", Str); 3681 Str = to_string(e.e_phentsize) + " (bytes)"; 3682 printFields(OS, "Size of program headers:", Str); 3683 Str = to_string(e.e_phnum); 3684 printFields(OS, "Number of program headers:", Str); 3685 Str = to_string(e.e_shentsize) + " (bytes)"; 3686 printFields(OS, "Size of section headers:", Str); 3687 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3688 printFields(OS, "Number of section headers:", Str); 3689 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3690 printFields(OS, "Section header string table index:", Str); 3691 } 3692 3693 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3694 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3695 const Elf_Shdr &Symtab) -> StringRef { 3696 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3697 if (!StrTableOrErr) { 3698 reportUniqueWarning("unable to get the string table for " + 3699 describe(Symtab) + ": " + 3700 toString(StrTableOrErr.takeError())); 3701 return "<?>"; 3702 } 3703 3704 StringRef Strings = *StrTableOrErr; 3705 if (Sym.st_name >= Strings.size()) { 3706 reportUniqueWarning("unable to get the name of the symbol with index " + 3707 Twine(SymNdx) + ": st_name (0x" + 3708 Twine::utohexstr(Sym.st_name) + 3709 ") is past the end of the string table of size 0x" + 3710 Twine::utohexstr(Strings.size())); 3711 return "<?>"; 3712 } 3713 3714 return StrTableOrErr->data() + Sym.st_name; 3715 }; 3716 3717 std::vector<GroupSection> Ret; 3718 uint64_t I = 0; 3719 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3720 ++I; 3721 if (Sec.sh_type != ELF::SHT_GROUP) 3722 continue; 3723 3724 StringRef Signature = "<?>"; 3725 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3726 if (Expected<const Elf_Sym *> SymOrErr = 3727 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3728 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3729 else 3730 reportUniqueWarning("unable to get the signature symbol for " + 3731 describe(Sec) + ": " + 3732 toString(SymOrErr.takeError())); 3733 } else { 3734 reportUniqueWarning("unable to get the symbol table for " + 3735 describe(Sec) + ": " + 3736 toString(SymtabOrErr.takeError())); 3737 } 3738 3739 ArrayRef<Elf_Word> Data; 3740 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3741 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3742 if (ContentsOrErr->empty()) 3743 reportUniqueWarning("unable to read the section group flag from the " + 3744 describe(Sec) + ": the section is empty"); 3745 else 3746 Data = *ContentsOrErr; 3747 } else { 3748 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3749 ": " + toString(ContentsOrErr.takeError())); 3750 } 3751 3752 Ret.push_back({getPrintableSectionName(Sec), 3753 maybeDemangle(Signature), 3754 Sec.sh_name, 3755 I - 1, 3756 Sec.sh_link, 3757 Sec.sh_info, 3758 Data.empty() ? Elf_Word(0) : Data[0], 3759 {}}); 3760 3761 if (Data.empty()) 3762 continue; 3763 3764 std::vector<GroupMember> &GM = Ret.back().Members; 3765 for (uint32_t Ndx : Data.slice(1)) { 3766 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3767 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3768 } else { 3769 reportUniqueWarning("unable to get the section with index " + 3770 Twine(Ndx) + " when dumping the " + describe(Sec) + 3771 ": " + toString(SecOrErr.takeError())); 3772 GM.push_back({"<?>", Ndx}); 3773 } 3774 } 3775 } 3776 return Ret; 3777 } 3778 3779 static DenseMap<uint64_t, const GroupSection *> 3780 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3781 DenseMap<uint64_t, const GroupSection *> Ret; 3782 for (const GroupSection &G : Groups) 3783 for (const GroupMember &GM : G.Members) 3784 Ret.insert({GM.Index, &G}); 3785 return Ret; 3786 } 3787 3788 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3789 std::vector<GroupSection> V = this->getGroups(); 3790 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3791 for (const GroupSection &G : V) { 3792 OS << "\n" 3793 << getGroupType(G.Type) << " group section [" 3794 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3795 << "] contains " << G.Members.size() << " sections:\n" 3796 << " [Index] Name\n"; 3797 for (const GroupMember &GM : G.Members) { 3798 const GroupSection *MainGroup = Map[GM.Index]; 3799 if (MainGroup != &G) 3800 this->reportUniqueWarning( 3801 "section with index " + Twine(GM.Index) + 3802 ", included in the group section with index " + 3803 Twine(MainGroup->Index) + 3804 ", was also found in the group section with index " + 3805 Twine(G.Index)); 3806 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3807 } 3808 } 3809 3810 if (V.empty()) 3811 OS << "There are no section groups in this file.\n"; 3812 } 3813 3814 template <class ELFT> 3815 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3816 const RelSymbol<ELFT> &RelSym) { 3817 // First two fields are bit width dependent. The rest of them are fixed width. 3818 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3819 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3820 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3821 3822 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3823 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3824 3825 SmallString<32> RelocName; 3826 this->Obj.getRelocationTypeName(R.Type, RelocName); 3827 Fields[2].Str = RelocName.c_str(); 3828 3829 if (RelSym.Sym) 3830 Fields[3].Str = 3831 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3832 if (RelSym.Sym && RelSym.Name.empty()) 3833 Fields[4].Str = "<null>"; 3834 else 3835 Fields[4].Str = std::string(RelSym.Name); 3836 3837 for (const Field &F : Fields) 3838 printField(F); 3839 3840 std::string Addend; 3841 if (std::optional<int64_t> A = R.Addend) { 3842 int64_t RelAddend = *A; 3843 if (!Fields[4].Str.empty()) { 3844 if (RelAddend < 0) { 3845 Addend = " - "; 3846 RelAddend = -static_cast<uint64_t>(RelAddend); 3847 } else { 3848 Addend = " + "; 3849 } 3850 } 3851 Addend += utohexstr(RelAddend, /*LowerCase=*/true); 3852 } 3853 OS << Addend << "\n"; 3854 } 3855 3856 template <class ELFT> 3857 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType, 3858 const typename ELFT::Ehdr &EHeader, 3859 uint64_t CrelHdr = 0) { 3860 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3861 if (ELFT::Is64Bits) 3862 OS << " Offset Info Type Symbol's " 3863 "Value Symbol's Name"; 3864 else 3865 OS << " Offset Info Type Sym. Value Symbol's Name"; 3866 if (IsRela || (SType == ELF::SHT_CREL && (CrelHdr & CREL_HDR_ADDEND))) 3867 OS << " + Addend"; 3868 OS << "\n"; 3869 } 3870 3871 template <class ELFT> 3872 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3873 const DynRegionInfo &Reg) { 3874 uint64_t Offset = Reg.Addr - this->Obj.base(); 3875 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3876 << utohexstr(Offset, /*LowerCase=*/true); 3877 if (Type != ELF::SHT_CREL) 3878 OS << " contains " << Reg.Size << " bytes"; 3879 OS << ":\n"; 3880 printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader()); 3881 } 3882 3883 template <class ELFT> 3884 static bool isRelocationSec(const typename ELFT::Shdr &Sec, 3885 const typename ELFT::Ehdr &EHeader) { 3886 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3887 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_CREL || 3888 Sec.sh_type == ELF::SHT_ANDROID_REL || 3889 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3890 Sec.sh_type == ELF::SHT_ANDROID_RELR || 3891 (EHeader.e_machine == EM_AARCH64 && 3892 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR); 3893 } 3894 3895 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3896 auto PrintAsRelr = [&](const Elf_Shdr &Sec) { 3897 return Sec.sh_type == ELF::SHT_RELR || 3898 Sec.sh_type == ELF::SHT_ANDROID_RELR || 3899 (this->Obj.getHeader().e_machine == EM_AARCH64 && 3900 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR); 3901 }; 3902 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3903 // Android's packed relocation section needs to be unpacked first 3904 // to get the actual number of entries. 3905 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3906 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3907 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3908 this->Obj.android_relas(Sec); 3909 if (!RelasOrErr) 3910 return RelasOrErr.takeError(); 3911 return RelasOrErr->size(); 3912 } 3913 3914 if (Sec.sh_type == ELF::SHT_CREL) { 3915 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3916 this->Obj.getSectionContents(Sec); 3917 if (!ContentsOrErr) 3918 return ContentsOrErr.takeError(); 3919 auto NumOrErr = this->Obj.getCrelHeader(*ContentsOrErr); 3920 if (!NumOrErr) 3921 return NumOrErr.takeError(); 3922 return *NumOrErr / 8; 3923 } 3924 3925 if (PrintAsRelr(Sec)) { 3926 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3927 if (!RelrsOrErr) 3928 return RelrsOrErr.takeError(); 3929 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3930 } 3931 3932 return Sec.getEntityCount(); 3933 }; 3934 3935 bool HasRelocSections = false; 3936 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3937 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) 3938 continue; 3939 HasRelocSections = true; 3940 3941 std::string EntriesNum = "<?>"; 3942 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3943 EntriesNum = std::to_string(*NumOrErr); 3944 else 3945 this->reportUniqueWarning("unable to get the number of relocations in " + 3946 this->describe(Sec) + ": " + 3947 toString(NumOrErr.takeError())); 3948 3949 uintX_t Offset = Sec.sh_offset; 3950 StringRef Name = this->getPrintableSectionName(Sec); 3951 OS << "\nRelocation section '" << Name << "' at offset 0x" 3952 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum 3953 << " entries:\n"; 3954 3955 if (PrintAsRelr(Sec)) { 3956 printRelr(Sec); 3957 } else { 3958 uint64_t CrelHdr = 0; 3959 // For CREL, read the header and call printRelocationsHelper only if 3960 // GetEntriesNum(Sec) succeeded. 3961 if (Sec.sh_type == ELF::SHT_CREL && EntriesNum != "<?>") { 3962 CrelHdr = cantFail(this->Obj.getCrelHeader( 3963 cantFail(this->Obj.getSectionContents(Sec)))); 3964 } 3965 printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader(), 3966 CrelHdr); 3967 if (Sec.sh_type != ELF::SHT_CREL || EntriesNum != "<?>") 3968 this->printRelocationsHelper(Sec); 3969 } 3970 } 3971 if (!HasRelocSections) 3972 OS << "\nThere are no relocations in this file.\n"; 3973 } 3974 3975 template <class ELFT> void GNUELFDumper<ELFT>::printRelr(const Elf_Shdr &Sec) { 3976 Expected<Elf_Relr_Range> RangeOrErr = this->Obj.relrs(Sec); 3977 if (!RangeOrErr) { 3978 this->reportUniqueWarning("unable to read relocations from " + 3979 this->describe(Sec) + ": " + 3980 toString(RangeOrErr.takeError())); 3981 return; 3982 } 3983 if (ELFT::Is64Bits) 3984 OS << "Index: Entry Address Symbolic Address\n"; 3985 else 3986 OS << "Index: Entry Address Symbolic Address\n"; 3987 3988 // If .symtab is available, collect its defined symbols and sort them by 3989 // st_value. 3990 SmallVector<std::pair<uint64_t, std::string>, 0> Syms; 3991 if (this->DotSymtabSec) { 3992 Elf_Sym_Range Symtab; 3993 std::optional<StringRef> Strtab; 3994 std::tie(Symtab, Strtab) = this->getSymtabAndStrtab(); 3995 if (Symtab.size() && Strtab) { 3996 for (auto [I, Sym] : enumerate(Symtab)) { 3997 if (!Sym.st_shndx) 3998 continue; 3999 Syms.emplace_back(Sym.st_value, 4000 this->getFullSymbolName(Sym, I, ArrayRef<Elf_Word>(), 4001 *Strtab, false)); 4002 } 4003 } 4004 } 4005 llvm::stable_sort(Syms); 4006 4007 typename ELFT::uint Base = 0; 4008 size_t I = 0; 4009 auto Print = [&](uint64_t Where) { 4010 OS << format_hex_no_prefix(Where, ELFT::Is64Bits ? 16 : 8); 4011 for (; I < Syms.size() && Syms[I].first <= Where; ++I) 4012 ; 4013 // Try symbolizing the address. Find the nearest symbol before or at the 4014 // address and print the symbol and the address difference. 4015 if (I) { 4016 OS << " " << Syms[I - 1].second; 4017 if (Syms[I - 1].first < Where) 4018 OS << " + 0x" << Twine::utohexstr(Where - Syms[I - 1].first); 4019 } 4020 OS << '\n'; 4021 }; 4022 for (auto [Index, R] : enumerate(*RangeOrErr)) { 4023 typename ELFT::uint Entry = R; 4024 OS << formatv("{0:4}: ", Index) 4025 << format_hex_no_prefix(Entry, ELFT::Is64Bits ? 16 : 8) << ' '; 4026 if ((Entry & 1) == 0) { 4027 Print(Entry); 4028 Base = Entry + sizeof(typename ELFT::uint); 4029 } else { 4030 bool First = true; 4031 for (auto Where = Base; Entry >>= 1; 4032 Where += sizeof(typename ELFT::uint)) { 4033 if (Entry & 1) { 4034 if (First) 4035 First = false; 4036 else 4037 OS.indent(ELFT::Is64Bits ? 24 : 16); 4038 Print(Where); 4039 } 4040 } 4041 Base += (CHAR_BIT * sizeof(Entry) - 1) * sizeof(typename ELFT::uint); 4042 } 4043 } 4044 } 4045 4046 // Print the offset of a particular section from anyone of the ranges: 4047 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 4048 // If 'Type' does not fall within any of those ranges, then a string is 4049 // returned as '<unknown>' followed by the type value. 4050 static std::string getSectionTypeOffsetString(unsigned Type) { 4051 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 4052 return "LOOS+0x" + utohexstr(Type - SHT_LOOS); 4053 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 4054 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC); 4055 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 4056 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER); 4057 return "0x" + utohexstr(Type) + ": <unknown>"; 4058 } 4059 4060 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 4061 StringRef Name = getELFSectionTypeName(Machine, Type); 4062 4063 // Handle SHT_GNU_* type names. 4064 if (Name.consume_front("SHT_GNU_")) { 4065 if (Name == "HASH") 4066 return "GNU_HASH"; 4067 // E.g. SHT_GNU_verneed -> VERNEED. 4068 return Name.upper(); 4069 } 4070 4071 if (Name == "SHT_SYMTAB_SHNDX") 4072 return "SYMTAB SECTION INDICES"; 4073 4074 if (Name.consume_front("SHT_")) 4075 return Name.str(); 4076 return getSectionTypeOffsetString(Type); 4077 } 4078 4079 static void printSectionDescription(formatted_raw_ostream &OS, 4080 unsigned EMachine) { 4081 OS << "Key to Flags:\n"; 4082 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 4083 "(info),\n"; 4084 OS << " L (link order), O (extra OS processing required), G (group), T " 4085 "(TLS),\n"; 4086 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 4087 OS << " R (retain)"; 4088 4089 if (EMachine == EM_X86_64) 4090 OS << ", l (large)"; 4091 else if (EMachine == EM_ARM) 4092 OS << ", y (purecode)"; 4093 4094 OS << ", p (processor specific)\n"; 4095 } 4096 4097 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 4098 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4099 if (Sections.empty()) { 4100 OS << "\nThere are no sections in this file.\n"; 4101 Expected<StringRef> SecStrTableOrErr = 4102 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4103 if (!SecStrTableOrErr) 4104 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4105 return; 4106 } 4107 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 4108 OS << "There are " << to_string(Sections.size()) 4109 << " section headers, starting at offset " 4110 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4111 OS << "Section Headers:\n"; 4112 Field Fields[11] = { 4113 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 4114 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 4115 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 4116 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 4117 for (const Field &F : Fields) 4118 printField(F); 4119 OS << "\n"; 4120 4121 StringRef SecStrTable; 4122 if (Expected<StringRef> SecStrTableOrErr = 4123 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4124 SecStrTable = *SecStrTableOrErr; 4125 else 4126 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4127 4128 size_t SectionIndex = 0; 4129 for (const Elf_Shdr &Sec : Sections) { 4130 Fields[0].Str = to_string(SectionIndex); 4131 if (SecStrTable.empty()) 4132 Fields[1].Str = "<no-strings>"; 4133 else 4134 Fields[1].Str = std::string(unwrapOrError<StringRef>( 4135 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 4136 Fields[2].Str = 4137 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 4138 Fields[3].Str = 4139 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 4140 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 4141 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 4142 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 4143 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 4144 this->Obj.getHeader().e_machine, Sec.sh_flags); 4145 Fields[8].Str = to_string(Sec.sh_link); 4146 Fields[9].Str = to_string(Sec.sh_info); 4147 Fields[10].Str = to_string(Sec.sh_addralign); 4148 4149 OS.PadToColumn(Fields[0].Column); 4150 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 4151 for (int i = 1; i < 7; i++) 4152 printField(Fields[i]); 4153 OS.PadToColumn(Fields[7].Column); 4154 OS << right_justify(Fields[7].Str, 3); 4155 OS.PadToColumn(Fields[8].Column); 4156 OS << right_justify(Fields[8].Str, 2); 4157 OS.PadToColumn(Fields[9].Column); 4158 OS << right_justify(Fields[9].Str, 3); 4159 OS.PadToColumn(Fields[10].Column); 4160 OS << right_justify(Fields[10].Str, 2); 4161 OS << "\n"; 4162 ++SectionIndex; 4163 } 4164 printSectionDescription(OS, this->Obj.getHeader().e_machine); 4165 } 4166 4167 template <class ELFT> 4168 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 4169 size_t Entries, 4170 bool NonVisibilityBitsUsed, 4171 bool ExtraSymInfo) const { 4172 StringRef Name; 4173 if (Symtab) 4174 Name = this->getPrintableSectionName(*Symtab); 4175 if (!Name.empty()) 4176 OS << "\nSymbol table '" << Name << "'"; 4177 else 4178 OS << "\nSymbol table for image"; 4179 OS << " contains " << Entries << " entries:\n"; 4180 4181 if (ELFT::Is64Bits) { 4182 OS << " Num: Value Size Type Bind Vis"; 4183 if (ExtraSymInfo) 4184 OS << "+Other"; 4185 } else { 4186 OS << " Num: Value Size Type Bind Vis"; 4187 if (ExtraSymInfo) 4188 OS << "+Other"; 4189 } 4190 4191 OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0)); 4192 if (ExtraSymInfo) 4193 OS << "Ndx(SecName) Name [+ Version Info]\n"; 4194 else 4195 OS << "Ndx Name\n"; 4196 } 4197 4198 template <class ELFT> 4199 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx( 4200 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 4201 bool ExtraSymInfo) const { 4202 unsigned SectionIndex = Symbol.st_shndx; 4203 switch (SectionIndex) { 4204 case ELF::SHN_UNDEF: 4205 return "UND"; 4206 case ELF::SHN_ABS: 4207 return "ABS"; 4208 case ELF::SHN_COMMON: 4209 return "COM"; 4210 case ELF::SHN_XINDEX: { 4211 Expected<uint32_t> IndexOrErr = 4212 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 4213 if (!IndexOrErr) { 4214 assert(Symbol.st_shndx == SHN_XINDEX && 4215 "getExtendedSymbolTableIndex should only fail due to an invalid " 4216 "SHT_SYMTAB_SHNDX table/reference"); 4217 this->reportUniqueWarning(IndexOrErr.takeError()); 4218 return "RSV[0xffff]"; 4219 } 4220 SectionIndex = *IndexOrErr; 4221 break; 4222 } 4223 default: 4224 // Find if: 4225 // Processor specific 4226 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 4227 return std::string("PRC[0x") + 4228 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4229 // OS specific 4230 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 4231 return std::string("OS[0x") + 4232 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4233 // Architecture reserved: 4234 if (SectionIndex >= ELF::SHN_LORESERVE && 4235 SectionIndex <= ELF::SHN_HIRESERVE) 4236 return std::string("RSV[0x") + 4237 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4238 break; 4239 } 4240 4241 std::string Extra; 4242 if (ExtraSymInfo) { 4243 auto Sec = this->Obj.getSection(SectionIndex); 4244 if (!Sec) { 4245 this->reportUniqueWarning(Sec.takeError()); 4246 } else { 4247 auto SecName = this->Obj.getSectionName(**Sec); 4248 if (!SecName) 4249 this->reportUniqueWarning(SecName.takeError()); 4250 else 4251 Extra = Twine(" (" + *SecName + ")").str(); 4252 } 4253 } 4254 return to_string(format_decimal(SectionIndex, 3)) + Extra; 4255 } 4256 4257 template <class ELFT> 4258 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 4259 DataRegion<Elf_Word> ShndxTable, 4260 std::optional<StringRef> StrTable, 4261 bool IsDynamic, bool NonVisibilityBitsUsed, 4262 bool ExtraSymInfo) const { 4263 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4264 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 4265 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 4266 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 4267 Fields[1].Str = 4268 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 4269 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 4270 4271 unsigned char SymbolType = Symbol.getType(); 4272 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4273 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4274 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4275 else 4276 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4277 4278 Fields[4].Str = 4279 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 4280 Fields[5].Str = 4281 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4282 4283 if (Symbol.st_other & ~0x3) { 4284 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 4285 uint8_t Other = Symbol.st_other & ~0x3; 4286 if (Other & STO_AARCH64_VARIANT_PCS) { 4287 Other &= ~STO_AARCH64_VARIANT_PCS; 4288 Fields[5].Str += " [VARIANT_PCS"; 4289 if (Other != 0) 4290 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4291 Fields[5].Str.append("]"); 4292 } 4293 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { 4294 uint8_t Other = Symbol.st_other & ~0x3; 4295 if (Other & STO_RISCV_VARIANT_CC) { 4296 Other &= ~STO_RISCV_VARIANT_CC; 4297 Fields[5].Str += " [VARIANT_CC"; 4298 if (Other != 0) 4299 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4300 Fields[5].Str.append("]"); 4301 } 4302 } else { 4303 Fields[5].Str += 4304 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 4305 } 4306 } 4307 4308 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 4309 Fields[6].Str = 4310 getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo); 4311 4312 Fields[7].Column += ExtraSymInfo ? 10 : 0; 4313 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 4314 StrTable, IsDynamic); 4315 for (const Field &Entry : Fields) 4316 printField(Entry); 4317 OS << "\n"; 4318 } 4319 4320 template <class ELFT> 4321 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 4322 unsigned SymIndex, 4323 DataRegion<Elf_Word> ShndxTable, 4324 StringRef StrTable, 4325 uint32_t Bucket) { 4326 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4327 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 4328 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 4329 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 4330 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 4331 4332 Fields[2].Str = to_string( 4333 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 4334 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 4335 4336 unsigned char SymbolType = Symbol->getType(); 4337 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4338 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4339 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4340 else 4341 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4342 4343 Fields[5].Str = 4344 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings)); 4345 Fields[6].Str = 4346 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4347 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 4348 Fields[8].Str = 4349 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 4350 4351 for (const Field &Entry : Fields) 4352 printField(Entry); 4353 OS << "\n"; 4354 } 4355 4356 template <class ELFT> 4357 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 4358 bool PrintDynamicSymbols, 4359 bool ExtraSymInfo) { 4360 if (!PrintSymbols && !PrintDynamicSymbols) 4361 return; 4362 // GNU readelf prints both the .dynsym and .symtab with --symbols. 4363 this->printSymbolsHelper(true, ExtraSymInfo); 4364 if (PrintSymbols) 4365 this->printSymbolsHelper(false, ExtraSymInfo); 4366 } 4367 4368 template <class ELFT> 4369 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 4370 if (this->DynamicStringTable.empty()) 4371 return; 4372 4373 if (ELFT::Is64Bits) 4374 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4375 else 4376 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4377 OS << "\n"; 4378 4379 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4380 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4381 if (!FirstSym) { 4382 this->reportUniqueWarning( 4383 Twine("unable to print symbols for the .hash table: the " 4384 "dynamic symbol table ") + 4385 (this->DynSymRegion ? "is empty" : "was not found")); 4386 return; 4387 } 4388 4389 DataRegion<Elf_Word> ShndxTable( 4390 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4391 auto Buckets = SysVHash.buckets(); 4392 auto Chains = SysVHash.chains(); 4393 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 4394 if (Buckets[Buc] == ELF::STN_UNDEF) 4395 continue; 4396 BitVector Visited(SysVHash.nchain); 4397 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 4398 if (Ch == ELF::STN_UNDEF) 4399 break; 4400 4401 if (Visited[Ch]) { 4402 this->reportUniqueWarning(".hash section is invalid: bucket " + 4403 Twine(Ch) + 4404 ": a cycle was detected in the linked chain"); 4405 break; 4406 } 4407 4408 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 4409 Buc); 4410 Visited[Ch] = true; 4411 } 4412 } 4413 } 4414 4415 template <class ELFT> 4416 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 4417 if (this->DynamicStringTable.empty()) 4418 return; 4419 4420 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4421 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4422 if (!FirstSym) { 4423 this->reportUniqueWarning( 4424 Twine("unable to print symbols for the .gnu.hash table: the " 4425 "dynamic symbol table ") + 4426 (this->DynSymRegion ? "is empty" : "was not found")); 4427 return; 4428 } 4429 4430 auto GetSymbol = [&](uint64_t SymIndex, 4431 uint64_t SymsTotal) -> const Elf_Sym * { 4432 if (SymIndex >= SymsTotal) { 4433 this->reportUniqueWarning( 4434 "unable to print hashed symbol with index " + Twine(SymIndex) + 4435 ", which is greater than or equal to the number of dynamic symbols " 4436 "(" + 4437 Twine::utohexstr(SymsTotal) + ")"); 4438 return nullptr; 4439 } 4440 return FirstSym + SymIndex; 4441 }; 4442 4443 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 4444 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 4445 ArrayRef<Elf_Word> Values; 4446 if (!ValuesOrErr) 4447 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 4448 "section: " + 4449 toString(ValuesOrErr.takeError())); 4450 else 4451 Values = *ValuesOrErr; 4452 4453 DataRegion<Elf_Word> ShndxTable( 4454 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4455 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 4456 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 4457 if (Buckets[Buc] == ELF::STN_UNDEF) 4458 continue; 4459 uint32_t Index = Buckets[Buc]; 4460 // Print whole chain. 4461 while (true) { 4462 uint32_t SymIndex = Index++; 4463 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 4464 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 4465 Buc); 4466 else 4467 break; 4468 4469 if (SymIndex < GnuHash.symndx) { 4470 this->reportUniqueWarning( 4471 "unable to read the hash value for symbol with index " + 4472 Twine(SymIndex) + 4473 ", which is less than the index of the first hashed symbol (" + 4474 Twine(GnuHash.symndx) + ")"); 4475 break; 4476 } 4477 4478 // Chain ends at symbol with stopper bit. 4479 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 4480 break; 4481 } 4482 } 4483 } 4484 4485 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 4486 if (this->HashTable) { 4487 OS << "\n Symbol table of .hash for image:\n"; 4488 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4489 this->reportUniqueWarning(std::move(E)); 4490 else 4491 printHashTableSymbols(*this->HashTable); 4492 } 4493 4494 // Try printing the .gnu.hash table. 4495 if (this->GnuHashTable) { 4496 OS << "\n Symbol table of .gnu.hash for image:\n"; 4497 if (ELFT::Is64Bits) 4498 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4499 else 4500 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4501 OS << "\n"; 4502 4503 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4504 this->reportUniqueWarning(std::move(E)); 4505 else 4506 printGnuHashTableSymbols(*this->GnuHashTable); 4507 } 4508 } 4509 4510 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 4511 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4512 if (Sections.empty()) { 4513 OS << "\nThere are no sections in this file.\n"; 4514 Expected<StringRef> SecStrTableOrErr = 4515 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4516 if (!SecStrTableOrErr) 4517 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4518 return; 4519 } 4520 OS << "There are " << to_string(Sections.size()) 4521 << " section headers, starting at offset " 4522 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4523 4524 OS << "Section Headers:\n"; 4525 4526 auto PrintFields = [&](ArrayRef<Field> V) { 4527 for (const Field &F : V) 4528 printField(F); 4529 OS << "\n"; 4530 }; 4531 4532 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 4533 4534 constexpr bool Is64 = ELFT::Is64Bits; 4535 PrintFields({{"Type", 7}, 4536 {Is64 ? "Address" : "Addr", 23}, 4537 {"Off", Is64 ? 40 : 32}, 4538 {"Size", Is64 ? 47 : 39}, 4539 {"ES", Is64 ? 54 : 46}, 4540 {"Lk", Is64 ? 59 : 51}, 4541 {"Inf", Is64 ? 62 : 54}, 4542 {"Al", Is64 ? 66 : 57}}); 4543 PrintFields({{"Flags", 7}}); 4544 4545 StringRef SecStrTable; 4546 if (Expected<StringRef> SecStrTableOrErr = 4547 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4548 SecStrTable = *SecStrTableOrErr; 4549 else 4550 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4551 4552 size_t SectionIndex = 0; 4553 const unsigned AddrSize = Is64 ? 16 : 8; 4554 for (const Elf_Shdr &S : Sections) { 4555 StringRef Name = "<?>"; 4556 if (Expected<StringRef> NameOrErr = 4557 this->Obj.getSectionName(S, SecStrTable)) 4558 Name = *NameOrErr; 4559 else 4560 this->reportUniqueWarning(NameOrErr.takeError()); 4561 4562 OS.PadToColumn(2); 4563 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 4564 PrintFields({{Name, 7}}); 4565 PrintFields( 4566 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 4567 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 4568 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 4569 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 4570 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 4571 {to_string(S.sh_link), Is64 ? 59 : 51}, 4572 {to_string(S.sh_info), Is64 ? 63 : 55}, 4573 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 4574 4575 OS.PadToColumn(7); 4576 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 4577 4578 DenseMap<unsigned, StringRef> FlagToName = { 4579 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 4580 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 4581 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 4582 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 4583 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 4584 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 4585 4586 uint64_t Flags = S.sh_flags; 4587 uint64_t UnknownFlags = 0; 4588 ListSeparator LS; 4589 while (Flags) { 4590 // Take the least significant bit as a flag. 4591 uint64_t Flag = Flags & -Flags; 4592 Flags -= Flag; 4593 4594 auto It = FlagToName.find(Flag); 4595 if (It != FlagToName.end()) 4596 OS << LS << It->second; 4597 else 4598 UnknownFlags |= Flag; 4599 } 4600 4601 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 4602 uint64_t FlagsToPrint = UnknownFlags & Mask; 4603 if (!FlagsToPrint) 4604 return; 4605 4606 OS << LS << Name << " (" 4607 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 4608 UnknownFlags &= ~Mask; 4609 }; 4610 4611 PrintUnknownFlags(SHF_MASKOS, "OS"); 4612 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 4613 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 4614 4615 OS << "\n"; 4616 ++SectionIndex; 4617 4618 if (!(S.sh_flags & SHF_COMPRESSED)) 4619 continue; 4620 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S); 4621 if (!Data || Data->size() < sizeof(Elf_Chdr)) { 4622 consumeError(Data.takeError()); 4623 reportWarning(createError("SHF_COMPRESSED section '" + Name + 4624 "' does not have an Elf_Chdr header"), 4625 this->FileName); 4626 OS.indent(7); 4627 OS << "[<corrupt>]"; 4628 } else { 4629 OS.indent(7); 4630 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data()); 4631 if (Chdr->ch_type == ELFCOMPRESS_ZLIB) 4632 OS << "ZLIB"; 4633 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD) 4634 OS << "ZSTD"; 4635 else 4636 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type)); 4637 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8) 4638 << ", " << Chdr->ch_addralign; 4639 } 4640 OS << '\n'; 4641 } 4642 } 4643 4644 static inline std::string printPhdrFlags(unsigned Flag) { 4645 std::string Str; 4646 Str = (Flag & PF_R) ? "R" : " "; 4647 Str += (Flag & PF_W) ? "W" : " "; 4648 Str += (Flag & PF_X) ? "E" : " "; 4649 return Str; 4650 } 4651 4652 template <class ELFT> 4653 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 4654 const typename ELFT::Shdr &Sec) { 4655 if (Sec.sh_flags & ELF::SHF_TLS) { 4656 // .tbss must only be shown in the PT_TLS segment. 4657 if (Sec.sh_type == ELF::SHT_NOBITS) 4658 return Phdr.p_type == ELF::PT_TLS; 4659 4660 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 4661 // segments. 4662 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 4663 (Phdr.p_type == ELF::PT_GNU_RELRO); 4664 } 4665 4666 // PT_TLS must only have SHF_TLS sections. 4667 return Phdr.p_type != ELF::PT_TLS; 4668 } 4669 4670 template <class ELFT> 4671 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4672 const typename ELFT::Shdr &Sec) { 4673 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4674 return true; 4675 4676 // We get here when we have an empty section. Only non-empty sections can be 4677 // at the start or at the end of PT_DYNAMIC. 4678 // Is section within the phdr both based on offset and VMA? 4679 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4680 (Sec.sh_offset > Phdr.p_offset && 4681 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4682 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4683 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4684 return CheckOffset && CheckVA; 4685 } 4686 4687 template <class ELFT> 4688 void GNUELFDumper<ELFT>::printProgramHeaders( 4689 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4690 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE); 4691 // Exit early if no program header or section mapping details were requested. 4692 if (!PrintProgramHeaders && !ShouldPrintSectionMapping) 4693 return; 4694 4695 if (PrintProgramHeaders) { 4696 const Elf_Ehdr &Header = this->Obj.getHeader(); 4697 if (Header.e_phnum == 0) { 4698 OS << "\nThere are no program headers in this file.\n"; 4699 } else { 4700 printProgramHeaders(); 4701 } 4702 } 4703 4704 if (ShouldPrintSectionMapping) 4705 printSectionMapping(); 4706 } 4707 4708 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4709 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4710 const Elf_Ehdr &Header = this->Obj.getHeader(); 4711 Field Fields[8] = {2, 17, 26, 37 + Bias, 4712 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4713 OS << "\nElf file type is " 4714 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n" 4715 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4716 << "There are " << Header.e_phnum << " program headers," 4717 << " starting at offset " << Header.e_phoff << "\n\n" 4718 << "Program Headers:\n"; 4719 if (ELFT::Is64Bits) 4720 OS << " Type Offset VirtAddr PhysAddr " 4721 << " FileSiz MemSiz Flg Align\n"; 4722 else 4723 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4724 << "MemSiz Flg Align\n"; 4725 4726 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4727 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4728 4729 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4730 if (!PhdrsOrErr) { 4731 this->reportUniqueWarning("unable to dump program headers: " + 4732 toString(PhdrsOrErr.takeError())); 4733 return; 4734 } 4735 4736 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4737 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4738 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4739 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4740 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4741 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4742 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4743 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4744 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4745 for (const Field &F : Fields) 4746 printField(F); 4747 if (Phdr.p_type == ELF::PT_INTERP) { 4748 OS << "\n"; 4749 auto ReportBadInterp = [&](const Twine &Msg) { 4750 this->reportUniqueWarning( 4751 "unable to read program interpreter name at offset 0x" + 4752 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4753 }; 4754 4755 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4756 ReportBadInterp("it goes past the end of the file (0x" + 4757 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4758 continue; 4759 } 4760 4761 const char *Data = 4762 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4763 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4764 size_t Len = strnlen(Data, MaxSize); 4765 if (Len == MaxSize) { 4766 ReportBadInterp("it is not null-terminated"); 4767 continue; 4768 } 4769 4770 OS << " [Requesting program interpreter: "; 4771 OS << StringRef(Data, Len) << "]"; 4772 } 4773 OS << "\n"; 4774 } 4775 } 4776 4777 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4778 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4779 DenseSet<const Elf_Shdr *> BelongsToSegment; 4780 int Phnum = 0; 4781 4782 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4783 if (!PhdrsOrErr) { 4784 this->reportUniqueWarning( 4785 "can't read program headers to build section to segment mapping: " + 4786 toString(PhdrsOrErr.takeError())); 4787 return; 4788 } 4789 4790 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4791 std::string Sections; 4792 OS << format(" %2.2d ", Phnum++); 4793 // Check if each section is in a segment and then print mapping. 4794 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4795 if (Sec.sh_type == ELF::SHT_NULL) 4796 continue; 4797 4798 // readelf additionally makes sure it does not print zero sized sections 4799 // at end of segments and for PT_DYNAMIC both start and end of section 4800 // .tbss must only be shown in PT_TLS section. 4801 if (isSectionInSegment<ELFT>(Phdr, Sec) && 4802 checkTLSSections<ELFT>(Phdr, Sec) && 4803 checkPTDynamic<ELFT>(Phdr, Sec)) { 4804 Sections += 4805 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4806 " "; 4807 BelongsToSegment.insert(&Sec); 4808 } 4809 } 4810 OS << Sections << "\n"; 4811 OS.flush(); 4812 } 4813 4814 // Display sections that do not belong to a segment. 4815 std::string Sections; 4816 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4817 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4818 Sections += 4819 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4820 ' '; 4821 } 4822 if (!Sections.empty()) { 4823 OS << " None " << Sections << '\n'; 4824 OS.flush(); 4825 } 4826 } 4827 4828 namespace { 4829 4830 template <class ELFT> 4831 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4832 const Relocation<ELFT> &Reloc) { 4833 using Elf_Sym = typename ELFT::Sym; 4834 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4835 const Twine &Reason) -> RelSymbol<ELFT> { 4836 Dumper.reportUniqueWarning( 4837 "unable to get name of the dynamic symbol with index " + 4838 Twine(Reloc.Symbol) + ": " + Reason); 4839 return {Sym, "<corrupt>"}; 4840 }; 4841 4842 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4843 const Elf_Sym *FirstSym = Symbols.begin(); 4844 if (!FirstSym) 4845 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4846 4847 // We might have an object without a section header. In this case the size of 4848 // Symbols is zero, because there is no way to know the size of the dynamic 4849 // table. We should allow this case and not print a warning. 4850 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4851 return WarnAndReturn( 4852 nullptr, 4853 "index is greater than or equal to the number of dynamic symbols (" + 4854 Twine(Symbols.size()) + ")"); 4855 4856 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4857 const uint64_t FileSize = Obj.getBufSize(); 4858 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4859 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4860 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4861 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4862 " goes past the end of the file (0x" + 4863 Twine::utohexstr(FileSize) + ")"); 4864 4865 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4866 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4867 if (!ErrOrName) 4868 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4869 4870 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4871 } 4872 } // namespace 4873 4874 template <class ELFT> 4875 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4876 typename ELFT::DynRange Tags) { 4877 size_t Max = 0; 4878 for (const typename ELFT::Dyn &Dyn : Tags) 4879 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4880 return Max; 4881 } 4882 4883 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4884 Elf_Dyn_Range Table = this->dynamic_table(); 4885 if (Table.empty()) 4886 return; 4887 4888 OS << "Dynamic section at offset " 4889 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4890 this->Obj.base(), 4891 1) 4892 << " contains " << Table.size() << " entries:\n"; 4893 4894 // The type name is surrounded with round brackets, hence add 2. 4895 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4896 // The "Name/Value" column should be indented from the "Type" column by N 4897 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4898 // space (1) = 3. 4899 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4900 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4901 4902 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4903 for (auto Entry : Table) { 4904 uintX_t Tag = Entry.getTag(); 4905 std::string Type = 4906 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")"; 4907 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4908 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4909 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4910 } 4911 } 4912 4913 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4914 this->printDynamicRelocationsHelper(); 4915 } 4916 4917 template <class ELFT> 4918 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4919 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4920 } 4921 4922 template <class ELFT> 4923 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4924 this->forEachRelocationDo( 4925 Sec, [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4926 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }); 4927 } 4928 4929 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4930 const bool IsMips64EL = this->Obj.isMips64EL(); 4931 auto DumpCrelRegion = [&](DynRegionInfo &Region) { 4932 // While the size is unknown, a valid CREL has at least one byte. We can 4933 // check whether Addr is in bounds, and then decode CREL until the file 4934 // end. 4935 Region.Size = Region.EntSize = 1; 4936 if (!Region.template getAsArrayRef<uint8_t>().empty()) { 4937 const uint64_t Offset = 4938 Region.Addr - reinterpret_cast<const uint8_t *>( 4939 ObjF.getMemoryBufferRef().getBufferStart()); 4940 const uint64_t ObjSize = ObjF.getMemoryBufferRef().getBufferSize(); 4941 auto RelsOrRelas = 4942 Obj.decodeCrel(ArrayRef<uint8_t>(Region.Addr, ObjSize - Offset)); 4943 if (!RelsOrRelas) { 4944 reportUniqueWarning(toString(RelsOrRelas.takeError())); 4945 } else { 4946 for (const Elf_Rel &R : RelsOrRelas->first) 4947 printDynamicReloc(Relocation<ELFT>(R, false)); 4948 for (const Elf_Rela &R : RelsOrRelas->second) 4949 printDynamicReloc(Relocation<ELFT>(R, false)); 4950 } 4951 } 4952 }; 4953 4954 if (this->DynCrelRegion.Addr) { 4955 printDynamicRelocHeader(ELF::SHT_CREL, "CREL", this->DynCrelRegion); 4956 DumpCrelRegion(this->DynCrelRegion); 4957 } 4958 4959 if (this->DynRelaRegion.Size > 0) { 4960 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4961 for (const Elf_Rela &Rela : 4962 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4963 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4964 } 4965 4966 if (this->DynRelRegion.Size > 0) { 4967 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4968 for (const Elf_Rel &Rel : 4969 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4970 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4971 } 4972 4973 if (this->DynRelrRegion.Size > 0) { 4974 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4975 Elf_Relr_Range Relrs = 4976 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4977 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4978 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4979 } 4980 4981 if (this->DynPLTRelRegion.Size) { 4982 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4983 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4984 for (const Elf_Rela &Rela : 4985 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4986 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4987 } else if (this->DynPLTRelRegion.EntSize == 1) { 4988 DumpCrelRegion(this->DynPLTRelRegion); 4989 } else { 4990 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4991 for (const Elf_Rel &Rel : 4992 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4993 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4994 } 4995 } 4996 } 4997 4998 template <class ELFT> 4999 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 5000 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 5001 // Don't inline the SecName, because it might report a warning to stderr and 5002 // corrupt the output. 5003 StringRef SecName = this->getPrintableSectionName(Sec); 5004 OS << Label << " section '" << SecName << "' " 5005 << "contains " << EntriesNum << " entries:\n"; 5006 5007 StringRef LinkedSecName = "<corrupt>"; 5008 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 5009 this->Obj.getSection(Sec.sh_link)) 5010 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 5011 else 5012 this->reportUniqueWarning("invalid section linked to " + 5013 this->describe(Sec) + ": " + 5014 toString(LinkedSecOrErr.takeError())); 5015 5016 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 5017 << " Offset: " << format_hex(Sec.sh_offset, 8) 5018 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 5019 } 5020 5021 template <class ELFT> 5022 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 5023 if (!Sec) 5024 return; 5025 5026 printGNUVersionSectionProlog(*Sec, "Version symbols", 5027 Sec->sh_size / sizeof(Elf_Versym)); 5028 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 5029 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 5030 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 5031 if (!VerTableOrErr) { 5032 this->reportUniqueWarning(VerTableOrErr.takeError()); 5033 return; 5034 } 5035 5036 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr; 5037 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 5038 this->getVersionMap()) 5039 VersionMap = *MapOrErr; 5040 else 5041 this->reportUniqueWarning(MapOrErr.takeError()); 5042 5043 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 5044 std::vector<StringRef> Versions; 5045 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 5046 unsigned Ndx = VerTable[I].vs_index; 5047 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 5048 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 5049 continue; 5050 } 5051 5052 if (!VersionMap) { 5053 Versions.emplace_back("<corrupt>"); 5054 continue; 5055 } 5056 5057 bool IsDefault; 5058 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 5059 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt); 5060 if (!NameOrErr) { 5061 this->reportUniqueWarning("unable to get a version for entry " + 5062 Twine(I) + " of " + this->describe(*Sec) + 5063 ": " + toString(NameOrErr.takeError())); 5064 Versions.emplace_back("<corrupt>"); 5065 continue; 5066 } 5067 Versions.emplace_back(*NameOrErr); 5068 } 5069 5070 // readelf prints 4 entries per line. 5071 uint64_t Entries = VerTable.size(); 5072 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 5073 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 5074 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 5075 unsigned Ndx = VerTable[VersymRow + I].vs_index; 5076 OS << format("%4x%c", Ndx & VERSYM_VERSION, 5077 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 5078 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 5079 } 5080 OS << '\n'; 5081 } 5082 OS << '\n'; 5083 } 5084 5085 static std::string versionFlagToString(unsigned Flags) { 5086 if (Flags == 0) 5087 return "none"; 5088 5089 std::string Ret; 5090 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 5091 if (!(Flags & Flag)) 5092 return; 5093 if (!Ret.empty()) 5094 Ret += " | "; 5095 Ret += Name; 5096 Flags &= ~Flag; 5097 }; 5098 5099 AddFlag(VER_FLG_BASE, "BASE"); 5100 AddFlag(VER_FLG_WEAK, "WEAK"); 5101 AddFlag(VER_FLG_INFO, "INFO"); 5102 AddFlag(~0, "<unknown>"); 5103 return Ret; 5104 } 5105 5106 template <class ELFT> 5107 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 5108 if (!Sec) 5109 return; 5110 5111 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 5112 5113 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 5114 if (!V) { 5115 this->reportUniqueWarning(V.takeError()); 5116 return; 5117 } 5118 5119 for (const VerDef &Def : *V) { 5120 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 5121 Def.Offset, Def.Version, 5122 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 5123 Def.Name.data()); 5124 unsigned I = 0; 5125 for (const VerdAux &Aux : Def.AuxV) 5126 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 5127 Aux.Name.data()); 5128 } 5129 5130 OS << '\n'; 5131 } 5132 5133 template <class ELFT> 5134 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 5135 if (!Sec) 5136 return; 5137 5138 unsigned VerneedNum = Sec->sh_info; 5139 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 5140 5141 Expected<std::vector<VerNeed>> V = 5142 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 5143 if (!V) { 5144 this->reportUniqueWarning(V.takeError()); 5145 return; 5146 } 5147 5148 for (const VerNeed &VN : *V) { 5149 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 5150 VN.Version, VN.File.data(), VN.Cnt); 5151 for (const VernAux &Aux : VN.AuxV) 5152 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 5153 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 5154 Aux.Other); 5155 } 5156 OS << '\n'; 5157 } 5158 5159 template <class ELFT> 5160 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 5161 size_t MaxChain, 5162 size_t TotalSyms, 5163 ArrayRef<size_t> Count, 5164 bool IsGnu) const { 5165 size_t CumulativeNonZero = 0; 5166 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "") 5167 << " bucket list length (total of " << NBucket << " buckets)\n" 5168 << " Length Number % of total Coverage\n"; 5169 for (size_t I = 0; I < MaxChain; ++I) { 5170 CumulativeNonZero += Count[I] * I; 5171 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 5172 (Count[I] * 100.0) / NBucket, 5173 (CumulativeNonZero * 100.0) / TotalSyms); 5174 } 5175 } 5176 5177 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 5178 OS << "GNUStyle::printCGProfile not implemented\n"; 5179 } 5180 5181 template <class ELFT> 5182 void GNUELFDumper<ELFT>::printBBAddrMaps(bool /*PrettyPGOAnalysis*/) { 5183 OS << "GNUStyle::printBBAddrMaps not implemented\n"; 5184 } 5185 5186 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 5187 std::vector<uint64_t> Ret; 5188 const uint8_t *Cur = Data.begin(); 5189 const uint8_t *End = Data.end(); 5190 while (Cur != End) { 5191 unsigned Size; 5192 const char *Err = nullptr; 5193 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 5194 if (Err) 5195 return createError(Err); 5196 Cur += Size; 5197 } 5198 return Ret; 5199 } 5200 5201 template <class ELFT> 5202 static Expected<std::vector<uint64_t>> 5203 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 5204 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 5205 if (!ContentsOrErr) 5206 return ContentsOrErr.takeError(); 5207 5208 if (Expected<std::vector<uint64_t>> SymsOrErr = 5209 toULEB128Array(*ContentsOrErr)) 5210 return *SymsOrErr; 5211 else 5212 return createError("unable to decode " + describe(Obj, Sec) + ": " + 5213 toString(SymsOrErr.takeError())); 5214 } 5215 5216 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 5217 if (!this->DotAddrsigSec) 5218 return; 5219 5220 Expected<std::vector<uint64_t>> SymsOrErr = 5221 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 5222 if (!SymsOrErr) { 5223 this->reportUniqueWarning(SymsOrErr.takeError()); 5224 return; 5225 } 5226 5227 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 5228 OS << "\nAddress-significant symbols section '" << Name << "'" 5229 << " contains " << SymsOrErr->size() << " entries:\n"; 5230 OS << " Num: Name\n"; 5231 5232 Field Fields[2] = {0, 8}; 5233 size_t SymIndex = 0; 5234 for (uint64_t Sym : *SymsOrErr) { 5235 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 5236 Fields[1].Str = this->getStaticSymbolName(Sym); 5237 for (const Field &Entry : Fields) 5238 printField(Entry); 5239 OS << "\n"; 5240 } 5241 } 5242 5243 template <class ELFT> 5244 static bool printAArch64PAuthABICoreInfo(raw_ostream &OS, uint32_t DataSize, 5245 ArrayRef<uint8_t> Desc) { 5246 OS << " AArch64 PAuth ABI core info: "; 5247 // DataSize - size without padding, Desc.size() - size with padding 5248 if (DataSize != 16) { 5249 OS << format("<corrupted size: expected 16, got %d>", DataSize); 5250 return false; 5251 } 5252 5253 uint64_t Platform = 5254 support::endian::read64<ELFT::Endianness>(Desc.data() + 0); 5255 uint64_t Version = support::endian::read64<ELFT::Endianness>(Desc.data() + 8); 5256 5257 const char *PlatformDesc = [Platform]() { 5258 switch (Platform) { 5259 case AARCH64_PAUTH_PLATFORM_INVALID: 5260 return "invalid"; 5261 case AARCH64_PAUTH_PLATFORM_BAREMETAL: 5262 return "baremetal"; 5263 case AARCH64_PAUTH_PLATFORM_LLVM_LINUX: 5264 return "llvm_linux"; 5265 default: 5266 return "unknown"; 5267 } 5268 }(); 5269 5270 std::string VersionDesc = [Platform, Version]() -> std::string { 5271 if (Platform != AARCH64_PAUTH_PLATFORM_LLVM_LINUX) 5272 return ""; 5273 if (Version >= (1 << (AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST + 1))) 5274 return "unknown"; 5275 5276 std::array<StringRef, AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST + 1> 5277 Flags; 5278 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS] = "Intrinsics"; 5279 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS] = "Calls"; 5280 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS] = "Returns"; 5281 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS] = "AuthTraps"; 5282 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR] = 5283 "VTPtrAddressDiscrimination"; 5284 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR] = 5285 "VTPtrTypeDiscrimination"; 5286 Flags[AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI] = "InitFini"; 5287 5288 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI == 5289 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST, 5290 "Update when new enum items are defined"); 5291 5292 std::string Desc; 5293 for (uint32_t I = 0, End = Flags.size(); I < End; ++I) { 5294 if (!(Version & (1ULL << I))) 5295 Desc += '!'; 5296 Desc += 5297 Twine("PointerAuth" + Flags[I] + (I == End - 1 ? "" : ", ")).str(); 5298 } 5299 return Desc; 5300 }(); 5301 5302 OS << format("platform 0x%" PRIx64 " (%s), version 0x%" PRIx64, Platform, 5303 PlatformDesc, Version); 5304 if (!VersionDesc.empty()) 5305 OS << format(" (%s)", VersionDesc.c_str()); 5306 5307 return true; 5308 } 5309 5310 template <typename ELFT> 5311 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 5312 ArrayRef<uint8_t> Data) { 5313 std::string str; 5314 raw_string_ostream OS(str); 5315 uint32_t PrData; 5316 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 5317 if (PrData & Flag) { 5318 PrData &= ~Flag; 5319 OS << Name; 5320 if (PrData) 5321 OS << ", "; 5322 } 5323 }; 5324 5325 switch (Type) { 5326 default: 5327 OS << format("<application-specific type 0x%x>", Type); 5328 return OS.str(); 5329 case GNU_PROPERTY_STACK_SIZE: { 5330 OS << "stack size: "; 5331 if (DataSize == sizeof(typename ELFT::uint)) 5332 OS << formatv("{0:x}", 5333 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 5334 else 5335 OS << format("<corrupt length: 0x%x>", DataSize); 5336 return OS.str(); 5337 } 5338 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 5339 OS << "no copy on protected"; 5340 if (DataSize) 5341 OS << format(" <corrupt length: 0x%x>", DataSize); 5342 return OS.str(); 5343 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 5344 case GNU_PROPERTY_X86_FEATURE_1_AND: 5345 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 5346 : "x86 feature: "); 5347 if (DataSize != 4) { 5348 OS << format("<corrupt length: 0x%x>", DataSize); 5349 return OS.str(); 5350 } 5351 PrData = endian::read32<ELFT::Endianness>(Data.data()); 5352 if (PrData == 0) { 5353 OS << "<None>"; 5354 return OS.str(); 5355 } 5356 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 5357 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 5358 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 5359 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS"); 5360 } else { 5361 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 5362 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 5363 } 5364 if (PrData) 5365 OS << format("<unknown flags: 0x%x>", PrData); 5366 return OS.str(); 5367 case GNU_PROPERTY_AARCH64_FEATURE_PAUTH: 5368 printAArch64PAuthABICoreInfo<ELFT>(OS, DataSize, Data); 5369 return OS.str(); 5370 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 5371 case GNU_PROPERTY_X86_FEATURE_2_USED: 5372 OS << "x86 feature " 5373 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 5374 if (DataSize != 4) { 5375 OS << format("<corrupt length: 0x%x>", DataSize); 5376 return OS.str(); 5377 } 5378 PrData = endian::read32<ELFT::Endianness>(Data.data()); 5379 if (PrData == 0) { 5380 OS << "<None>"; 5381 return OS.str(); 5382 } 5383 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 5384 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 5385 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 5386 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 5387 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 5388 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 5389 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 5390 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 5391 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 5392 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 5393 if (PrData) 5394 OS << format("<unknown flags: 0x%x>", PrData); 5395 return OS.str(); 5396 case GNU_PROPERTY_X86_ISA_1_NEEDED: 5397 case GNU_PROPERTY_X86_ISA_1_USED: 5398 OS << "x86 ISA " 5399 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 5400 if (DataSize != 4) { 5401 OS << format("<corrupt length: 0x%x>", DataSize); 5402 return OS.str(); 5403 } 5404 PrData = endian::read32<ELFT::Endianness>(Data.data()); 5405 if (PrData == 0) { 5406 OS << "<None>"; 5407 return OS.str(); 5408 } 5409 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline"); 5410 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2"); 5411 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3"); 5412 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4"); 5413 if (PrData) 5414 OS << format("<unknown flags: 0x%x>", PrData); 5415 return OS.str(); 5416 } 5417 } 5418 5419 template <typename ELFT> 5420 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 5421 using Elf_Word = typename ELFT::Word; 5422 5423 SmallVector<std::string, 4> Properties; 5424 while (Arr.size() >= 8) { 5425 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 5426 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 5427 Arr = Arr.drop_front(8); 5428 5429 // Take padding size into account if present. 5430 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 5431 std::string str; 5432 raw_string_ostream OS(str); 5433 if (Arr.size() < PaddedSize) { 5434 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 5435 Properties.push_back(OS.str()); 5436 break; 5437 } 5438 Properties.push_back( 5439 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 5440 Arr = Arr.drop_front(PaddedSize); 5441 } 5442 5443 if (!Arr.empty()) 5444 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 5445 5446 return Properties; 5447 } 5448 5449 struct GNUAbiTag { 5450 std::string OSName; 5451 std::string ABI; 5452 bool IsValid; 5453 }; 5454 5455 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 5456 typedef typename ELFT::Word Elf_Word; 5457 5458 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 5459 reinterpret_cast<const Elf_Word *>(Desc.end())); 5460 5461 if (Words.size() < 4) 5462 return {"", "", /*IsValid=*/false}; 5463 5464 static const char *OSNames[] = { 5465 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 5466 }; 5467 StringRef OSName = "Unknown"; 5468 if (Words[0] < std::size(OSNames)) 5469 OSName = OSNames[Words[0]]; 5470 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 5471 std::string str; 5472 raw_string_ostream ABI(str); 5473 ABI << Major << "." << Minor << "." << Patch; 5474 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 5475 } 5476 5477 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 5478 std::string str; 5479 raw_string_ostream OS(str); 5480 for (uint8_t B : Desc) 5481 OS << format_hex_no_prefix(B, 2); 5482 return OS.str(); 5483 } 5484 5485 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { 5486 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5487 } 5488 5489 template <typename ELFT> 5490 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, 5491 ArrayRef<uint8_t> Desc) { 5492 // Return true if we were able to pretty-print the note, false otherwise. 5493 switch (NoteType) { 5494 default: 5495 return false; 5496 case ELF::NT_GNU_ABI_TAG: { 5497 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 5498 if (!AbiTag.IsValid) 5499 OS << " <corrupt GNU_ABI_TAG>"; 5500 else 5501 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 5502 break; 5503 } 5504 case ELF::NT_GNU_BUILD_ID: { 5505 OS << " Build ID: " << getGNUBuildId(Desc); 5506 break; 5507 } 5508 case ELF::NT_GNU_GOLD_VERSION: 5509 OS << " Version: " << getDescAsStringRef(Desc); 5510 break; 5511 case ELF::NT_GNU_PROPERTY_TYPE_0: 5512 OS << " Properties:"; 5513 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 5514 OS << " " << Property << "\n"; 5515 break; 5516 } 5517 OS << '\n'; 5518 return true; 5519 } 5520 5521 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>; 5522 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType, 5523 ArrayRef<uint8_t> Desc) { 5524 AndroidNoteProperties Props; 5525 switch (NoteType) { 5526 case ELF::NT_ANDROID_TYPE_MEMTAG: 5527 if (Desc.empty()) { 5528 Props.emplace_back("Invalid .note.android.memtag", ""); 5529 return Props; 5530 } 5531 5532 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) { 5533 case NT_MEMTAG_LEVEL_NONE: 5534 Props.emplace_back("Tagging Mode", "NONE"); 5535 break; 5536 case NT_MEMTAG_LEVEL_ASYNC: 5537 Props.emplace_back("Tagging Mode", "ASYNC"); 5538 break; 5539 case NT_MEMTAG_LEVEL_SYNC: 5540 Props.emplace_back("Tagging Mode", "SYNC"); 5541 break; 5542 default: 5543 Props.emplace_back( 5544 "Tagging Mode", 5545 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")") 5546 .str()); 5547 break; 5548 } 5549 Props.emplace_back("Heap", 5550 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled"); 5551 Props.emplace_back("Stack", 5552 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled"); 5553 break; 5554 default: 5555 return Props; 5556 } 5557 return Props; 5558 } 5559 5560 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType, 5561 ArrayRef<uint8_t> Desc) { 5562 // Return true if we were able to pretty-print the note, false otherwise. 5563 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 5564 if (Props.empty()) 5565 return false; 5566 for (const auto &KV : Props) 5567 OS << " " << KV.first << ": " << KV.second << '\n'; 5568 return true; 5569 } 5570 5571 template <class ELFT> 5572 void GNUELFDumper<ELFT>::printMemtag( 5573 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 5574 const ArrayRef<uint8_t> AndroidNoteDesc, 5575 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 5576 OS << "Memtag Dynamic Entries:\n"; 5577 if (DynamicEntries.empty()) 5578 OS << " < none found >\n"; 5579 for (const auto &DynamicEntryKV : DynamicEntries) 5580 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second 5581 << "\n"; 5582 5583 if (!AndroidNoteDesc.empty()) { 5584 OS << "Memtag Android Note:\n"; 5585 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc); 5586 } 5587 5588 if (Descriptors.empty()) 5589 return; 5590 5591 OS << "Memtag Global Descriptors:\n"; 5592 for (const auto &[Addr, BytesToTag] : Descriptors) { 5593 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x" 5594 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n"; 5595 } 5596 } 5597 5598 template <typename ELFT> 5599 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, 5600 ArrayRef<uint8_t> Desc) { 5601 switch (NoteType) { 5602 default: 5603 return false; 5604 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 5605 OS << " Version: " << getDescAsStringRef(Desc); 5606 break; 5607 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 5608 OS << " Producer: " << getDescAsStringRef(Desc); 5609 break; 5610 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 5611 OS << " Producer version: " << getDescAsStringRef(Desc); 5612 break; 5613 } 5614 OS << '\n'; 5615 return true; 5616 } 5617 5618 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { 5619 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE}, 5620 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE}, 5621 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE}, 5622 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED}, 5623 {"LA48", NT_FREEBSD_FCTL_LA48}, 5624 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE}, 5625 }; 5626 5627 struct FreeBSDNote { 5628 std::string Type; 5629 std::string Value; 5630 }; 5631 5632 template <typename ELFT> 5633 static std::optional<FreeBSDNote> 5634 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { 5635 if (IsCore) 5636 return std::nullopt; // No pretty-printing yet. 5637 switch (NoteType) { 5638 case ELF::NT_FREEBSD_ABI_TAG: 5639 if (Desc.size() != 4) 5640 return std::nullopt; 5641 return FreeBSDNote{"ABI tag", 5642 utostr(endian::read32<ELFT::Endianness>(Desc.data()))}; 5643 case ELF::NT_FREEBSD_ARCH_TAG: 5644 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()}; 5645 case ELF::NT_FREEBSD_FEATURE_CTL: { 5646 if (Desc.size() != 4) 5647 return std::nullopt; 5648 unsigned Value = endian::read32<ELFT::Endianness>(Desc.data()); 5649 std::string FlagsStr; 5650 raw_string_ostream OS(FlagsStr); 5651 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS); 5652 if (OS.str().empty()) 5653 OS << "0x" << utohexstr(Value); 5654 else 5655 OS << "(0x" << utohexstr(Value) << ")"; 5656 return FreeBSDNote{"Feature flags", OS.str()}; 5657 } 5658 default: 5659 return std::nullopt; 5660 } 5661 } 5662 5663 struct AMDNote { 5664 std::string Type; 5665 std::string Value; 5666 }; 5667 5668 template <typename ELFT> 5669 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5670 switch (NoteType) { 5671 default: 5672 return {"", ""}; 5673 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { 5674 struct CodeObjectVersion { 5675 support::aligned_ulittle32_t MajorVersion; 5676 support::aligned_ulittle32_t MinorVersion; 5677 }; 5678 if (Desc.size() != sizeof(CodeObjectVersion)) 5679 return {"AMD HSA Code Object Version", 5680 "Invalid AMD HSA Code Object Version"}; 5681 std::string VersionString; 5682 raw_string_ostream StrOS(VersionString); 5683 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); 5684 StrOS << "[Major: " << Version->MajorVersion 5685 << ", Minor: " << Version->MinorVersion << "]"; 5686 return {"AMD HSA Code Object Version", VersionString}; 5687 } 5688 case ELF::NT_AMD_HSA_HSAIL: { 5689 struct HSAILProperties { 5690 support::aligned_ulittle32_t HSAILMajorVersion; 5691 support::aligned_ulittle32_t HSAILMinorVersion; 5692 uint8_t Profile; 5693 uint8_t MachineModel; 5694 uint8_t DefaultFloatRound; 5695 }; 5696 if (Desc.size() != sizeof(HSAILProperties)) 5697 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"}; 5698 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); 5699 std::string HSAILPropetiesString; 5700 raw_string_ostream StrOS(HSAILPropetiesString); 5701 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion 5702 << ", HSAIL Minor: " << Properties->HSAILMinorVersion 5703 << ", Profile: " << uint32_t(Properties->Profile) 5704 << ", Machine Model: " << uint32_t(Properties->MachineModel) 5705 << ", Default Float Round: " 5706 << uint32_t(Properties->DefaultFloatRound) << "]"; 5707 return {"AMD HSA HSAIL Properties", HSAILPropetiesString}; 5708 } 5709 case ELF::NT_AMD_HSA_ISA_VERSION: { 5710 struct IsaVersion { 5711 support::aligned_ulittle16_t VendorNameSize; 5712 support::aligned_ulittle16_t ArchitectureNameSize; 5713 support::aligned_ulittle32_t Major; 5714 support::aligned_ulittle32_t Minor; 5715 support::aligned_ulittle32_t Stepping; 5716 }; 5717 if (Desc.size() < sizeof(IsaVersion)) 5718 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5719 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); 5720 if (Desc.size() < sizeof(IsaVersion) + 5721 Isa->VendorNameSize + Isa->ArchitectureNameSize || 5722 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) 5723 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5724 std::string IsaString; 5725 raw_string_ostream StrOS(IsaString); 5726 StrOS << "[Vendor: " 5727 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) 5728 << ", Architecture: " 5729 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, 5730 Isa->ArchitectureNameSize - 1) 5731 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor 5732 << ", Stepping: " << Isa->Stepping << "]"; 5733 return {"AMD HSA ISA Version", IsaString}; 5734 } 5735 case ELF::NT_AMD_HSA_METADATA: { 5736 if (Desc.size() == 0) 5737 return {"AMD HSA Metadata", ""}; 5738 return { 5739 "AMD HSA Metadata", 5740 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; 5741 } 5742 case ELF::NT_AMD_HSA_ISA_NAME: { 5743 if (Desc.size() == 0) 5744 return {"AMD HSA ISA Name", ""}; 5745 return { 5746 "AMD HSA ISA Name", 5747 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 5748 } 5749 case ELF::NT_AMD_PAL_METADATA: { 5750 struct PALMetadata { 5751 support::aligned_ulittle32_t Key; 5752 support::aligned_ulittle32_t Value; 5753 }; 5754 if (Desc.size() % sizeof(PALMetadata) != 0) 5755 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"}; 5756 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); 5757 std::string MetadataString; 5758 raw_string_ostream StrOS(MetadataString); 5759 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { 5760 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]"; 5761 } 5762 return {"AMD PAL Metadata", MetadataString}; 5763 } 5764 } 5765 } 5766 5767 struct AMDGPUNote { 5768 std::string Type; 5769 std::string Value; 5770 }; 5771 5772 template <typename ELFT> 5773 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5774 switch (NoteType) { 5775 default: 5776 return {"", ""}; 5777 case ELF::NT_AMDGPU_METADATA: { 5778 StringRef MsgPackString = 5779 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5780 msgpack::Document MsgPackDoc; 5781 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 5782 return {"", ""}; 5783 5784 std::string MetadataString; 5785 5786 // FIXME: Metadata Verifier only works with AMDHSA. 5787 // This is an ugly workaround to avoid the verifier for other MD 5788 // formats (e.g. amdpal) 5789 if (MsgPackString.contains("amdhsa.")) { 5790 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 5791 if (!Verifier.verify(MsgPackDoc.getRoot())) 5792 MetadataString = "Invalid AMDGPU Metadata\n"; 5793 } 5794 5795 raw_string_ostream StrOS(MetadataString); 5796 if (MsgPackDoc.getRoot().isScalar()) { 5797 // TODO: passing a scalar root to toYAML() asserts: 5798 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && 5799 // "plain scalar documents are not supported") 5800 // To avoid this crash we print the raw data instead. 5801 return {"", ""}; 5802 } 5803 MsgPackDoc.toYAML(StrOS); 5804 return {"AMDGPU Metadata", StrOS.str()}; 5805 } 5806 } 5807 } 5808 5809 struct CoreFileMapping { 5810 uint64_t Start, End, Offset; 5811 StringRef Filename; 5812 }; 5813 5814 struct CoreNote { 5815 uint64_t PageSize; 5816 std::vector<CoreFileMapping> Mappings; 5817 }; 5818 5819 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 5820 // Expected format of the NT_FILE note description: 5821 // 1. # of file mappings (call it N) 5822 // 2. Page size 5823 // 3. N (start, end, offset) triples 5824 // 4. N packed filenames (null delimited) 5825 // Each field is an Elf_Addr, except for filenames which are char* strings. 5826 5827 CoreNote Ret; 5828 const int Bytes = Desc.getAddressSize(); 5829 5830 if (!Desc.isValidOffsetForAddress(2)) 5831 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 5832 " is too short, expected at least 0x" + 5833 Twine::utohexstr(Bytes * 2)); 5834 if (Desc.getData().back() != 0) 5835 return createError("the note is not NUL terminated"); 5836 5837 uint64_t DescOffset = 0; 5838 uint64_t FileCount = Desc.getAddress(&DescOffset); 5839 Ret.PageSize = Desc.getAddress(&DescOffset); 5840 5841 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 5842 return createError("unable to read file mappings (found " + 5843 Twine(FileCount) + "): the note of size 0x" + 5844 Twine::utohexstr(Desc.size()) + " is too short"); 5845 5846 uint64_t FilenamesOffset = 0; 5847 DataExtractor Filenames( 5848 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5849 Desc.isLittleEndian(), Desc.getAddressSize()); 5850 5851 Ret.Mappings.resize(FileCount); 5852 size_t I = 0; 5853 for (CoreFileMapping &Mapping : Ret.Mappings) { 5854 ++I; 5855 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5856 return createError( 5857 "unable to read the file name for the mapping with index " + 5858 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5859 " is truncated"); 5860 Mapping.Start = Desc.getAddress(&DescOffset); 5861 Mapping.End = Desc.getAddress(&DescOffset); 5862 Mapping.Offset = Desc.getAddress(&DescOffset); 5863 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5864 } 5865 5866 return Ret; 5867 } 5868 5869 template <typename ELFT> 5870 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5871 // Length of "0x<address>" string. 5872 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5873 5874 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5875 OS << " " << right_justify("Start", FieldWidth) << " " 5876 << right_justify("End", FieldWidth) << " " 5877 << right_justify("Page Offset", FieldWidth) << '\n'; 5878 for (const CoreFileMapping &Mapping : Note.Mappings) { 5879 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5880 << format_hex(Mapping.End, FieldWidth) << " " 5881 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5882 << Mapping.Filename << '\n'; 5883 } 5884 } 5885 5886 const NoteType GenericNoteTypes[] = { 5887 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5888 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5889 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5890 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5891 }; 5892 5893 const NoteType GNUNoteTypes[] = { 5894 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5895 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5896 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5897 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5898 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5899 }; 5900 5901 const NoteType FreeBSDCoreNoteTypes[] = { 5902 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5903 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5904 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5905 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5906 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5907 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5908 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5909 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5910 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5911 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5912 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5913 }; 5914 5915 const NoteType FreeBSDNoteTypes[] = { 5916 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"}, 5917 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"}, 5918 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"}, 5919 {ELF::NT_FREEBSD_FEATURE_CTL, 5920 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"}, 5921 }; 5922 5923 const NoteType NetBSDCoreNoteTypes[] = { 5924 {ELF::NT_NETBSDCORE_PROCINFO, 5925 "NT_NETBSDCORE_PROCINFO (procinfo structure)"}, 5926 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"}, 5927 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"}, 5928 }; 5929 5930 const NoteType OpenBSDCoreNoteTypes[] = { 5931 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"}, 5932 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"}, 5933 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"}, 5934 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"}, 5935 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"}, 5936 }; 5937 5938 const NoteType AMDNoteTypes[] = { 5939 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, 5940 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"}, 5941 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"}, 5942 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"}, 5943 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"}, 5944 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"}, 5945 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"}, 5946 }; 5947 5948 const NoteType AMDGPUNoteTypes[] = { 5949 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5950 }; 5951 5952 const NoteType LLVMOMPOFFLOADNoteTypes[] = { 5953 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, 5954 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"}, 5955 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, 5956 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"}, 5957 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, 5958 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"}, 5959 }; 5960 5961 const NoteType AndroidNoteTypes[] = { 5962 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"}, 5963 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"}, 5964 {ELF::NT_ANDROID_TYPE_MEMTAG, 5965 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"}, 5966 }; 5967 5968 const NoteType CoreNoteTypes[] = { 5969 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5970 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5971 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5972 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5973 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5974 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5975 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5976 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5977 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5978 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5979 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5980 5981 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5982 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5983 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5984 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5985 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5986 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5987 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5988 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5989 {ELF::NT_PPC_TM_CFPR, 5990 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5991 {ELF::NT_PPC_TM_CVMX, 5992 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5993 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5994 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5995 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5996 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5997 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5998 5999 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 6000 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 6001 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 6002 6003 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 6004 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 6005 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 6006 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 6007 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 6008 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 6009 {ELF::NT_S390_LAST_BREAK, 6010 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 6011 {ELF::NT_S390_SYSTEM_CALL, 6012 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 6013 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 6014 {ELF::NT_S390_VXRS_LOW, 6015 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 6016 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 6017 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 6018 {ELF::NT_S390_GS_BC, 6019 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 6020 6021 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 6022 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 6023 {ELF::NT_ARM_HW_BREAK, 6024 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 6025 {ELF::NT_ARM_HW_WATCH, 6026 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 6027 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"}, 6028 {ELF::NT_ARM_PAC_MASK, 6029 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"}, 6030 {ELF::NT_ARM_TAGGED_ADDR_CTRL, 6031 "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"}, 6032 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"}, 6033 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"}, 6034 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"}, 6035 6036 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 6037 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 6038 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 6039 }; 6040 6041 template <class ELFT> 6042 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { 6043 uint32_t Type = Note.getType(); 6044 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 6045 for (const NoteType &N : V) 6046 if (N.ID == Type) 6047 return N.Name; 6048 return ""; 6049 }; 6050 6051 StringRef Name = Note.getName(); 6052 if (Name == "GNU") 6053 return FindNote(GNUNoteTypes); 6054 if (Name == "FreeBSD") { 6055 if (ELFType == ELF::ET_CORE) { 6056 // FreeBSD also places the generic core notes in the FreeBSD namespace. 6057 StringRef Result = FindNote(FreeBSDCoreNoteTypes); 6058 if (!Result.empty()) 6059 return Result; 6060 return FindNote(CoreNoteTypes); 6061 } else { 6062 return FindNote(FreeBSDNoteTypes); 6063 } 6064 } 6065 if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) { 6066 StringRef Result = FindNote(NetBSDCoreNoteTypes); 6067 if (!Result.empty()) 6068 return Result; 6069 return FindNote(CoreNoteTypes); 6070 } 6071 if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) { 6072 // OpenBSD also places the generic core notes in the OpenBSD namespace. 6073 StringRef Result = FindNote(OpenBSDCoreNoteTypes); 6074 if (!Result.empty()) 6075 return Result; 6076 return FindNote(CoreNoteTypes); 6077 } 6078 if (Name == "AMD") 6079 return FindNote(AMDNoteTypes); 6080 if (Name == "AMDGPU") 6081 return FindNote(AMDGPUNoteTypes); 6082 if (Name == "LLVMOMPOFFLOAD") 6083 return FindNote(LLVMOMPOFFLOADNoteTypes); 6084 if (Name == "Android") 6085 return FindNote(AndroidNoteTypes); 6086 6087 if (ELFType == ELF::ET_CORE) 6088 return FindNote(CoreNoteTypes); 6089 return FindNote(GenericNoteTypes); 6090 } 6091 6092 template <class ELFT> 6093 static void processNotesHelper( 6094 const ELFDumper<ELFT> &Dumper, 6095 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off, 6096 typename ELFT::Addr, size_t)> 6097 StartNotesFn, 6098 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, 6099 llvm::function_ref<void()> FinishNotesFn) { 6100 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 6101 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; 6102 6103 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 6104 if (!IsCoreFile && !Sections.empty()) { 6105 for (const typename ELFT::Shdr &S : Sections) { 6106 if (S.sh_type != SHT_NOTE) 6107 continue; 6108 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset, 6109 S.sh_size, S.sh_addralign); 6110 Error Err = Error::success(); 6111 size_t I = 0; 6112 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 6113 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 6114 Dumper.reportUniqueWarning( 6115 "unable to read note with index " + Twine(I) + " from the " + 6116 describe(Obj, S) + ": " + toString(std::move(E))); 6117 ++I; 6118 } 6119 if (Err) 6120 Dumper.reportUniqueWarning("unable to read notes from the " + 6121 describe(Obj, S) + ": " + 6122 toString(std::move(Err))); 6123 FinishNotesFn(); 6124 } 6125 return; 6126 } 6127 6128 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 6129 if (!PhdrsOrErr) { 6130 Dumper.reportUniqueWarning( 6131 "unable to read program headers to locate the PT_NOTE segment: " + 6132 toString(PhdrsOrErr.takeError())); 6133 return; 6134 } 6135 6136 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 6137 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 6138 if (P.p_type != PT_NOTE) 6139 continue; 6140 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align); 6141 Error Err = Error::success(); 6142 size_t Index = 0; 6143 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 6144 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 6145 Dumper.reportUniqueWarning("unable to read note with index " + 6146 Twine(Index) + 6147 " from the PT_NOTE segment with index " + 6148 Twine(I) + ": " + toString(std::move(E))); 6149 ++Index; 6150 } 6151 if (Err) 6152 Dumper.reportUniqueWarning( 6153 "unable to read notes from the PT_NOTE segment with index " + 6154 Twine(I) + ": " + toString(std::move(Err))); 6155 FinishNotesFn(); 6156 } 6157 } 6158 6159 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 6160 size_t Align = 0; 6161 bool IsFirstHeader = true; 6162 auto PrintHeader = [&](std::optional<StringRef> SecName, 6163 const typename ELFT::Off Offset, 6164 const typename ELFT::Addr Size, size_t Al) { 6165 Align = std::max<size_t>(Al, 4); 6166 // Print a newline between notes sections to match GNU readelf. 6167 if (!IsFirstHeader) { 6168 OS << '\n'; 6169 } else { 6170 IsFirstHeader = false; 6171 } 6172 6173 OS << "Displaying notes found "; 6174 6175 if (SecName) 6176 OS << "in: " << *SecName << "\n"; 6177 else 6178 OS << "at file offset " << format_hex(Offset, 10) << " with length " 6179 << format_hex(Size, 10) << ":\n"; 6180 6181 OS << " Owner Data size \tDescription\n"; 6182 }; 6183 6184 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6185 StringRef Name = Note.getName(); 6186 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 6187 Elf_Word Type = Note.getType(); 6188 6189 // Print the note owner/type. 6190 OS << " " << left_justify(Name, 20) << ' ' 6191 << format_hex(Descriptor.size(), 10) << '\t'; 6192 6193 StringRef NoteType = 6194 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 6195 if (!NoteType.empty()) 6196 OS << NoteType << '\n'; 6197 else 6198 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 6199 6200 // Print the description, or fallback to printing raw bytes for unknown 6201 // owners/if we fail to pretty-print the contents. 6202 if (Name == "GNU") { 6203 if (printGNUNote<ELFT>(OS, Type, Descriptor)) 6204 return Error::success(); 6205 } else if (Name == "FreeBSD") { 6206 if (std::optional<FreeBSDNote> N = 6207 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 6208 OS << " " << N->Type << ": " << N->Value << '\n'; 6209 return Error::success(); 6210 } 6211 } else if (Name == "AMD") { 6212 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 6213 if (!N.Type.empty()) { 6214 OS << " " << N.Type << ":\n " << N.Value << '\n'; 6215 return Error::success(); 6216 } 6217 } else if (Name == "AMDGPU") { 6218 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 6219 if (!N.Type.empty()) { 6220 OS << " " << N.Type << ":\n " << N.Value << '\n'; 6221 return Error::success(); 6222 } 6223 } else if (Name == "LLVMOMPOFFLOAD") { 6224 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) 6225 return Error::success(); 6226 } else if (Name == "CORE") { 6227 if (Type == ELF::NT_FILE) { 6228 DataExtractor DescExtractor( 6229 Descriptor, ELFT::Endianness == llvm::endianness::little, 6230 sizeof(Elf_Addr)); 6231 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) { 6232 printCoreNote<ELFT>(OS, *NoteOrErr); 6233 return Error::success(); 6234 } else { 6235 return NoteOrErr.takeError(); 6236 } 6237 } 6238 } else if (Name == "Android") { 6239 if (printAndroidNote(OS, Type, Descriptor)) 6240 return Error::success(); 6241 } 6242 if (!Descriptor.empty()) { 6243 OS << " description data:"; 6244 for (uint8_t B : Descriptor) 6245 OS << " " << format("%02x", B); 6246 OS << '\n'; 6247 } 6248 return Error::success(); 6249 }; 6250 6251 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader, 6252 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {}); 6253 } 6254 6255 template <class ELFT> 6256 ArrayRef<uint8_t> 6257 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) { 6258 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) { 6259 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC) 6260 continue; 6261 if (Sec.sh_addr != ExpectedAddr) { 6262 reportUniqueWarning( 6263 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" + 6264 Twine::utohexstr(Sec.sh_addr) + 6265 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" + 6266 Twine::utohexstr(ExpectedAddr)); 6267 return ArrayRef<uint8_t>(); 6268 } 6269 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec); 6270 if (auto E = Contents.takeError()) { 6271 reportUniqueWarning( 6272 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " + 6273 toString(std::move(E))); 6274 return ArrayRef<uint8_t>(); 6275 } 6276 return Contents.get(); 6277 } 6278 return ArrayRef<uint8_t>(); 6279 } 6280 6281 // Reserve the lower three bits of the first byte of the step distance when 6282 // encoding the memtag descriptors. Found to be the best overall size tradeoff 6283 // when compiling Android T with full MTE globals enabled. 6284 constexpr uint64_t MemtagStepVarintReservedBits = 3; 6285 constexpr uint64_t MemtagGranuleSize = 16; 6286 6287 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() { 6288 if (Obj.getHeader().e_machine != EM_AARCH64) return; 6289 std::vector<std::pair<std::string, std::string>> DynamicEntries; 6290 uint64_t MemtagGlobalsSz = 0; 6291 uint64_t MemtagGlobals = 0; 6292 for (const typename ELFT::Dyn &Entry : dynamic_table()) { 6293 uintX_t Tag = Entry.getTag(); 6294 switch (Tag) { 6295 case DT_AARCH64_MEMTAG_GLOBALSSZ: 6296 MemtagGlobalsSz = Entry.getVal(); 6297 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6298 getDynamicEntry(Tag, Entry.getVal())); 6299 break; 6300 case DT_AARCH64_MEMTAG_GLOBALS: 6301 MemtagGlobals = Entry.getVal(); 6302 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6303 getDynamicEntry(Tag, Entry.getVal())); 6304 break; 6305 case DT_AARCH64_MEMTAG_MODE: 6306 case DT_AARCH64_MEMTAG_HEAP: 6307 case DT_AARCH64_MEMTAG_STACK: 6308 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6309 getDynamicEntry(Tag, Entry.getVal())); 6310 break; 6311 } 6312 } 6313 6314 ArrayRef<uint8_t> AndroidNoteDesc; 6315 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6316 if (Note.getName() == "Android" && 6317 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG) 6318 AndroidNoteDesc = Note.getDesc(4); 6319 return Error::success(); 6320 }; 6321 6322 processNotesHelper( 6323 *this, 6324 /*StartNotesFn=*/ 6325 [](std::optional<StringRef>, const typename ELFT::Off, 6326 const typename ELFT::Addr, size_t) {}, 6327 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {}); 6328 6329 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals); 6330 if (Contents.size() != MemtagGlobalsSz) { 6331 reportUniqueWarning( 6332 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" + 6333 Twine::utohexstr(MemtagGlobalsSz) + 6334 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" + 6335 Twine::utohexstr(Contents.size()) + ")"); 6336 Contents = ArrayRef<uint8_t>(); 6337 } 6338 6339 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors; 6340 uint64_t Address = 0; 6341 // See the AArch64 MemtagABI document for a description of encoding scheme: 6342 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic 6343 for (size_t I = 0; I < Contents.size();) { 6344 const char *Error = nullptr; 6345 unsigned DecodedBytes = 0; 6346 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes, 6347 Contents.end(), &Error); 6348 I += DecodedBytes; 6349 if (Error) { 6350 reportUniqueWarning( 6351 "error decoding distance uleb, " + Twine(DecodedBytes) + 6352 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6353 GlobalDescriptors.clear(); 6354 break; 6355 } 6356 uint64_t Distance = Value >> MemtagStepVarintReservedBits; 6357 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1); 6358 if (GranulesToTag == 0) { 6359 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes, 6360 Contents.end(), &Error) + 6361 1; 6362 I += DecodedBytes; 6363 if (Error) { 6364 reportUniqueWarning( 6365 "error decoding size-only uleb, " + Twine(DecodedBytes) + 6366 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6367 GlobalDescriptors.clear(); 6368 break; 6369 } 6370 } 6371 Address += Distance * MemtagGranuleSize; 6372 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize); 6373 Address += GranulesToTag * MemtagGranuleSize; 6374 } 6375 6376 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors); 6377 } 6378 6379 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 6380 OS << "printELFLinkerOptions not implemented!\n"; 6381 } 6382 6383 template <class ELFT> 6384 void ELFDumper<ELFT>::printDependentLibsHelper( 6385 function_ref<void(const Elf_Shdr &)> OnSectionStart, 6386 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 6387 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 6388 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 6389 Twine(SecNdx) + " is broken: " + Msg); 6390 }; 6391 6392 unsigned I = -1; 6393 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 6394 ++I; 6395 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 6396 continue; 6397 6398 OnSectionStart(Shdr); 6399 6400 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 6401 if (!ContentsOrErr) { 6402 Warn(I, toString(ContentsOrErr.takeError())); 6403 continue; 6404 } 6405 6406 ArrayRef<uint8_t> Contents = *ContentsOrErr; 6407 if (!Contents.empty() && Contents.back() != 0) { 6408 Warn(I, "the content is not null-terminated"); 6409 continue; 6410 } 6411 6412 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 6413 StringRef Lib((const char *)I); 6414 OnLibEntry(Lib, I - Contents.begin()); 6415 I += Lib.size() + 1; 6416 } 6417 } 6418 } 6419 6420 template <class ELFT> 6421 void ELFDumper<ELFT>::forEachRelocationDo( 6422 const Elf_Shdr &Sec, 6423 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 6424 const Elf_Shdr &, const Elf_Shdr *)> 6425 RelRelaFn) { 6426 auto Warn = [&](Error &&E, 6427 const Twine &Prefix = "unable to read relocations from") { 6428 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 6429 toString(std::move(E))); 6430 }; 6431 6432 // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an 6433 // associated symbol table. For them we should not treat the value of the 6434 // sh_link field as an index of a symbol table. 6435 const Elf_Shdr *SymTab; 6436 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR && 6437 !(Obj.getHeader().e_machine == EM_AARCH64 && 6438 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) { 6439 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 6440 if (!SymTabOrErr) { 6441 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 6442 return; 6443 } 6444 SymTab = *SymTabOrErr; 6445 } 6446 6447 unsigned RelNdx = 0; 6448 const bool IsMips64EL = this->Obj.isMips64EL(); 6449 switch (Sec.sh_type) { 6450 case ELF::SHT_REL: 6451 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 6452 for (const Elf_Rel &R : *RangeOrErr) 6453 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6454 } else { 6455 Warn(RangeOrErr.takeError()); 6456 } 6457 break; 6458 case ELF::SHT_RELA: 6459 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 6460 for (const Elf_Rela &R : *RangeOrErr) 6461 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6462 } else { 6463 Warn(RangeOrErr.takeError()); 6464 } 6465 break; 6466 case ELF::SHT_AARCH64_AUTH_RELR: 6467 if (Obj.getHeader().e_machine != EM_AARCH64) 6468 break; 6469 [[fallthrough]]; 6470 case ELF::SHT_RELR: 6471 case ELF::SHT_ANDROID_RELR: { 6472 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 6473 if (!RangeOrErr) { 6474 Warn(RangeOrErr.takeError()); 6475 break; 6476 } 6477 6478 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 6479 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 6480 /*SymTab=*/nullptr); 6481 break; 6482 } 6483 case ELF::SHT_CREL: { 6484 if (auto RelsOrRelas = Obj.crels(Sec)) { 6485 for (const Elf_Rel &R : RelsOrRelas->first) 6486 RelRelaFn(Relocation<ELFT>(R, false), RelNdx++, Sec, SymTab); 6487 for (const Elf_Rela &R : RelsOrRelas->second) 6488 RelRelaFn(Relocation<ELFT>(R, false), RelNdx++, Sec, SymTab); 6489 } else { 6490 Warn(RelsOrRelas.takeError()); 6491 } 6492 break; 6493 } 6494 case ELF::SHT_ANDROID_REL: 6495 case ELF::SHT_ANDROID_RELA: 6496 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 6497 for (const Elf_Rela &R : *RelasOrErr) 6498 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6499 } else { 6500 Warn(RelasOrErr.takeError()); 6501 } 6502 break; 6503 } 6504 } 6505 6506 template <class ELFT> 6507 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 6508 StringRef Name = "<?>"; 6509 if (Expected<StringRef> SecNameOrErr = 6510 Obj.getSectionName(Sec, this->WarningHandler)) 6511 Name = *SecNameOrErr; 6512 else 6513 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 6514 ": " + toString(SecNameOrErr.takeError())); 6515 return Name; 6516 } 6517 6518 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 6519 bool SectionStarted = false; 6520 struct NameOffset { 6521 StringRef Name; 6522 uint64_t Offset; 6523 }; 6524 std::vector<NameOffset> SecEntries; 6525 NameOffset Current; 6526 auto PrintSection = [&]() { 6527 OS << "Dependent libraries section " << Current.Name << " at offset " 6528 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 6529 << " entries:\n"; 6530 for (NameOffset Entry : SecEntries) 6531 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 6532 << "\n"; 6533 OS << "\n"; 6534 SecEntries.clear(); 6535 }; 6536 6537 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 6538 if (SectionStarted) 6539 PrintSection(); 6540 SectionStarted = true; 6541 Current.Offset = Shdr.sh_offset; 6542 Current.Name = this->getPrintableSectionName(Shdr); 6543 }; 6544 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 6545 SecEntries.push_back(NameOffset{Lib, Offset}); 6546 }; 6547 6548 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 6549 if (SectionStarted) 6550 PrintSection(); 6551 } 6552 6553 template <class ELFT> 6554 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( 6555 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) { 6556 SmallVector<uint32_t> SymbolIndexes; 6557 if (!this->AddressToIndexMap) { 6558 // Populate the address to index map upon the first invocation of this 6559 // function. 6560 this->AddressToIndexMap.emplace(); 6561 if (this->DotSymtabSec) { 6562 if (Expected<Elf_Sym_Range> SymsOrError = 6563 Obj.symbols(this->DotSymtabSec)) { 6564 uint32_t Index = (uint32_t)-1; 6565 for (const Elf_Sym &Sym : *SymsOrError) { 6566 ++Index; 6567 6568 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 6569 continue; 6570 6571 Expected<uint64_t> SymAddrOrErr = 6572 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); 6573 if (!SymAddrOrErr) { 6574 std::string Name = this->getStaticSymbolName(Index); 6575 reportUniqueWarning("unable to get address of symbol '" + Name + 6576 "': " + toString(SymAddrOrErr.takeError())); 6577 return SymbolIndexes; 6578 } 6579 6580 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); 6581 } 6582 } else { 6583 reportUniqueWarning("unable to read the symbol table: " + 6584 toString(SymsOrError.takeError())); 6585 } 6586 } 6587 } 6588 6589 auto Symbols = this->AddressToIndexMap->find(SymValue); 6590 if (Symbols == this->AddressToIndexMap->end()) 6591 return SymbolIndexes; 6592 6593 for (uint32_t Index : Symbols->second) { 6594 // Check if the symbol is in the right section. FunctionSec == None 6595 // means "any section". 6596 if (FunctionSec) { 6597 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); 6598 if (Expected<const Elf_Shdr *> SecOrErr = 6599 Obj.getSection(Sym, this->DotSymtabSec, 6600 this->getShndxTable(this->DotSymtabSec))) { 6601 if (*FunctionSec != *SecOrErr) 6602 continue; 6603 } else { 6604 std::string Name = this->getStaticSymbolName(Index); 6605 // Note: it is impossible to trigger this error currently, it is 6606 // untested. 6607 reportUniqueWarning("unable to get section of symbol '" + Name + 6608 "': " + toString(SecOrErr.takeError())); 6609 return SymbolIndexes; 6610 } 6611 } 6612 6613 SymbolIndexes.push_back(Index); 6614 } 6615 6616 return SymbolIndexes; 6617 } 6618 6619 template <class ELFT> 6620 bool ELFDumper<ELFT>::printFunctionStackSize( 6621 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec, 6622 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 6623 SmallVector<uint32_t> FuncSymIndexes = 6624 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); 6625 if (FuncSymIndexes.empty()) 6626 reportUniqueWarning( 6627 "could not identify function symbol for stack size entry in " + 6628 describe(StackSizeSec)); 6629 6630 // Extract the size. The expectation is that Offset is pointing to the right 6631 // place, i.e. past the function address. 6632 Error Err = Error::success(); 6633 uint64_t StackSize = Data.getULEB128(Offset, &Err); 6634 if (Err) { 6635 reportUniqueWarning("could not extract a valid stack size from " + 6636 describe(StackSizeSec) + ": " + 6637 toString(std::move(Err))); 6638 return false; 6639 } 6640 6641 if (FuncSymIndexes.empty()) { 6642 printStackSizeEntry(StackSize, {"?"}); 6643 } else { 6644 SmallVector<std::string> FuncSymNames; 6645 for (uint32_t Index : FuncSymIndexes) 6646 FuncSymNames.push_back(this->getStaticSymbolName(Index)); 6647 printStackSizeEntry(StackSize, FuncSymNames); 6648 } 6649 6650 return true; 6651 } 6652 6653 template <class ELFT> 6654 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 6655 ArrayRef<std::string> FuncNames) { 6656 OS.PadToColumn(2); 6657 OS << format_decimal(Size, 11); 6658 OS.PadToColumn(18); 6659 6660 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n"; 6661 } 6662 6663 template <class ELFT> 6664 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 6665 const Elf_Shdr &RelocSec, unsigned Ndx, 6666 const Elf_Shdr *SymTab, 6667 const Elf_Shdr *FunctionSec, 6668 const Elf_Shdr &StackSizeSec, 6669 const RelocationResolver &Resolver, 6670 DataExtractor Data) { 6671 // This function ignores potentially erroneous input, unless it is directly 6672 // related to stack size reporting. 6673 const Elf_Sym *Sym = nullptr; 6674 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 6675 if (!TargetOrErr) 6676 reportUniqueWarning("unable to get the target of relocation with index " + 6677 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 6678 toString(TargetOrErr.takeError())); 6679 else 6680 Sym = TargetOrErr->Sym; 6681 6682 uint64_t RelocSymValue = 0; 6683 if (Sym) { 6684 Expected<const Elf_Shdr *> SectionOrErr = 6685 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 6686 if (!SectionOrErr) { 6687 reportUniqueWarning( 6688 "cannot identify the section for relocation symbol '" + 6689 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 6690 } else if (*SectionOrErr != FunctionSec) { 6691 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 6692 "' is not in the expected section"); 6693 // Pretend that the symbol is in the correct section and report its 6694 // stack size anyway. 6695 FunctionSec = *SectionOrErr; 6696 } 6697 6698 RelocSymValue = Sym->st_value; 6699 } 6700 6701 uint64_t Offset = R.Offset; 6702 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6703 reportUniqueWarning("found invalid relocation offset (0x" + 6704 Twine::utohexstr(Offset) + ") into " + 6705 describe(StackSizeSec) + 6706 " while trying to extract a stack size entry"); 6707 return; 6708 } 6709 6710 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue, 6711 Data.getAddress(&Offset), R.Addend.value_or(0)); 6712 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 6713 &Offset); 6714 } 6715 6716 template <class ELFT> 6717 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 6718 std::function<void()> PrintHeader) { 6719 // This function ignores potentially erroneous input, unless it is directly 6720 // related to stack size reporting. 6721 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 6722 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 6723 continue; 6724 PrintHeader(); 6725 ArrayRef<uint8_t> Contents = 6726 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 6727 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6728 uint64_t Offset = 0; 6729 while (Offset < Contents.size()) { 6730 // The function address is followed by a ULEB representing the stack 6731 // size. Check for an extra byte before we try to process the entry. 6732 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6733 reportUniqueWarning( 6734 describe(Sec) + 6735 " ended while trying to extract a stack size entry"); 6736 break; 6737 } 6738 uint64_t SymValue = Data.getAddress(&Offset); 6739 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec, 6740 Data, &Offset)) 6741 break; 6742 } 6743 } 6744 } 6745 6746 template <class ELFT> 6747 void ELFDumper<ELFT>::printRelocatableStackSizes( 6748 std::function<void()> PrintHeader) { 6749 // Build a map between stack size sections and their corresponding relocation 6750 // sections. 6751 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { 6752 StringRef SectionName; 6753 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 6754 SectionName = *NameOrErr; 6755 else 6756 consumeError(NameOrErr.takeError()); 6757 6758 return SectionName == ".stack_sizes"; 6759 }; 6760 6761 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> 6762 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch); 6763 if (!StackSizeRelocMapOrErr) { 6764 reportUniqueWarning("unable to get stack size map section(s): " + 6765 toString(StackSizeRelocMapOrErr.takeError())); 6766 return; 6767 } 6768 6769 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) { 6770 PrintHeader(); 6771 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 6772 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 6773 6774 // Warn about stack size sections without a relocation section. 6775 if (!RelocSec) { 6776 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 6777 ") does not have a corresponding " 6778 "relocation section"), 6779 FileName); 6780 continue; 6781 } 6782 6783 // A .stack_sizes section header's sh_link field is supposed to point 6784 // to the section that contains the functions whose stack sizes are 6785 // described in it. 6786 const Elf_Shdr *FunctionSec = unwrapOrError( 6787 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 6788 6789 SupportsRelocation IsSupportedFn; 6790 RelocationResolver Resolver; 6791 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 6792 ArrayRef<uint8_t> Contents = 6793 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 6794 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6795 6796 forEachRelocationDo( 6797 *RelocSec, [&](const Relocation<ELFT> &R, unsigned Ndx, 6798 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 6799 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 6800 reportUniqueWarning( 6801 describe(*RelocSec) + 6802 " contains an unsupported relocation with index " + Twine(Ndx) + 6803 ": " + Obj.getRelocationTypeName(R.Type)); 6804 return; 6805 } 6806 6807 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 6808 *StackSizesELFSec, Resolver, Data); 6809 }); 6810 } 6811 } 6812 6813 template <class ELFT> 6814 void GNUELFDumper<ELFT>::printStackSizes() { 6815 bool HeaderHasBeenPrinted = false; 6816 auto PrintHeader = [&]() { 6817 if (HeaderHasBeenPrinted) 6818 return; 6819 OS << "\nStack Sizes:\n"; 6820 OS.PadToColumn(9); 6821 OS << "Size"; 6822 OS.PadToColumn(18); 6823 OS << "Functions\n"; 6824 HeaderHasBeenPrinted = true; 6825 }; 6826 6827 // For non-relocatable objects, look directly for sections whose name starts 6828 // with .stack_sizes and process the contents. 6829 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6830 this->printRelocatableStackSizes(PrintHeader); 6831 else 6832 this->printNonRelocatableStackSizes(PrintHeader); 6833 } 6834 6835 template <class ELFT> 6836 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6837 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6838 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6839 OS.PadToColumn(2); 6840 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 6841 OS.PadToColumn(11 + Bias); 6842 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 6843 OS.PadToColumn(22 + Bias); 6844 OS << format_hex_no_prefix(*E, 8 + Bias); 6845 OS.PadToColumn(31 + 2 * Bias); 6846 OS << Purpose << "\n"; 6847 }; 6848 6849 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 6850 OS << " Canonical gp value: " 6851 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 6852 6853 OS << " Reserved entries:\n"; 6854 if (ELFT::Is64Bits) 6855 OS << " Address Access Initial Purpose\n"; 6856 else 6857 OS << " Address Access Initial Purpose\n"; 6858 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 6859 if (Parser.getGotModulePointer()) 6860 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 6861 6862 if (!Parser.getLocalEntries().empty()) { 6863 OS << "\n"; 6864 OS << " Local entries:\n"; 6865 if (ELFT::Is64Bits) 6866 OS << " Address Access Initial\n"; 6867 else 6868 OS << " Address Access Initial\n"; 6869 for (auto &E : Parser.getLocalEntries()) 6870 PrintEntry(&E, ""); 6871 } 6872 6873 if (Parser.IsStatic) 6874 return; 6875 6876 if (!Parser.getGlobalEntries().empty()) { 6877 OS << "\n"; 6878 OS << " Global entries:\n"; 6879 if (ELFT::Is64Bits) 6880 OS << " Address Access Initial Sym.Val." 6881 << " Type Ndx Name\n"; 6882 else 6883 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 6884 6885 DataRegion<Elf_Word> ShndxTable( 6886 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6887 for (auto &E : Parser.getGlobalEntries()) { 6888 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6889 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 6890 std::string SymName = this->getFullSymbolName( 6891 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6892 6893 OS.PadToColumn(2); 6894 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 6895 OS.PadToColumn(11 + Bias); 6896 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 6897 OS.PadToColumn(22 + Bias); 6898 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6899 OS.PadToColumn(31 + 2 * Bias); 6900 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6901 OS.PadToColumn(40 + 3 * Bias); 6902 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6903 OS.PadToColumn(48 + 3 * Bias); 6904 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6905 ShndxTable); 6906 OS.PadToColumn(52 + 3 * Bias); 6907 OS << SymName << "\n"; 6908 } 6909 } 6910 6911 if (!Parser.getOtherEntries().empty()) 6912 OS << "\n Number of TLS and multi-GOT entries " 6913 << Parser.getOtherEntries().size() << "\n"; 6914 } 6915 6916 template <class ELFT> 6917 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6918 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6919 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6920 OS.PadToColumn(2); 6921 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 6922 OS.PadToColumn(11 + Bias); 6923 OS << format_hex_no_prefix(*E, 8 + Bias); 6924 OS.PadToColumn(20 + 2 * Bias); 6925 OS << Purpose << "\n"; 6926 }; 6927 6928 OS << "PLT GOT:\n\n"; 6929 6930 OS << " Reserved entries:\n"; 6931 OS << " Address Initial Purpose\n"; 6932 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 6933 if (Parser.getPltModulePointer()) 6934 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 6935 6936 if (!Parser.getPltEntries().empty()) { 6937 OS << "\n"; 6938 OS << " Entries:\n"; 6939 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 6940 DataRegion<Elf_Word> ShndxTable( 6941 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6942 for (auto &E : Parser.getPltEntries()) { 6943 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6944 const Elf_Sym &FirstSym = *cantFail( 6945 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6946 std::string SymName = this->getFullSymbolName( 6947 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6948 6949 OS.PadToColumn(2); 6950 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 6951 OS.PadToColumn(11 + Bias); 6952 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6953 OS.PadToColumn(20 + 2 * Bias); 6954 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6955 OS.PadToColumn(29 + 3 * Bias); 6956 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6957 OS.PadToColumn(37 + 3 * Bias); 6958 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6959 ShndxTable); 6960 OS.PadToColumn(41 + 3 * Bias); 6961 OS << SymName << "\n"; 6962 } 6963 } 6964 } 6965 6966 template <class ELFT> 6967 Expected<const Elf_Mips_ABIFlags<ELFT> *> 6968 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 6969 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 6970 if (Sec == nullptr) 6971 return nullptr; 6972 6973 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 6974 Expected<ArrayRef<uint8_t>> DataOrErr = 6975 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 6976 if (!DataOrErr) 6977 return createError(ErrPrefix + toString(DataOrErr.takeError())); 6978 6979 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 6980 return createError(ErrPrefix + "it has a wrong size (" + 6981 Twine(DataOrErr->size()) + ")"); 6982 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 6983 } 6984 6985 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 6986 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 6987 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6988 getMipsAbiFlagsSection(*this)) 6989 Flags = *SecOrErr; 6990 else 6991 this->reportUniqueWarning(SecOrErr.takeError()); 6992 if (!Flags) 6993 return; 6994 6995 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 6996 OS << "ISA: MIPS" << int(Flags->isa_level); 6997 if (Flags->isa_rev > 1) 6998 OS << "r" << int(Flags->isa_rev); 6999 OS << "\n"; 7000 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 7001 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 7002 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 7003 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType)) 7004 << "\n"; 7005 OS << "ISA Extension: " 7006 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n"; 7007 if (Flags->ases == 0) 7008 OS << "ASEs: None\n"; 7009 else 7010 // FIXME: Print each flag on a separate line. 7011 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags)) 7012 << "\n"; 7013 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 7014 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 7015 OS << "\n"; 7016 } 7017 7018 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 7019 const Elf_Ehdr &E = this->Obj.getHeader(); 7020 { 7021 DictScope D(W, "ElfHeader"); 7022 { 7023 DictScope D(W, "Ident"); 7024 W.printBinary("Magic", 7025 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4)); 7026 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 7027 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 7028 ArrayRef(ElfDataEncoding)); 7029 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 7030 7031 auto OSABI = ArrayRef(ElfOSABI); 7032 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 7033 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 7034 switch (E.e_machine) { 7035 case ELF::EM_AMDGPU: 7036 OSABI = ArrayRef(AMDGPUElfOSABI); 7037 break; 7038 case ELF::EM_ARM: 7039 OSABI = ArrayRef(ARMElfOSABI); 7040 break; 7041 case ELF::EM_TI_C6000: 7042 OSABI = ArrayRef(C6000ElfOSABI); 7043 break; 7044 } 7045 } 7046 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 7047 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 7048 W.printBinary("Unused", 7049 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD)); 7050 } 7051 7052 std::string TypeStr; 7053 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 7054 TypeStr = Ent->Name.str(); 7055 } else { 7056 if (E.e_type >= ET_LOPROC) 7057 TypeStr = "Processor Specific"; 7058 else if (E.e_type >= ET_LOOS) 7059 TypeStr = "OS Specific"; 7060 else 7061 TypeStr = "Unknown"; 7062 } 7063 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")"); 7064 7065 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType)); 7066 W.printNumber("Version", E.e_version); 7067 W.printHex("Entry", E.e_entry); 7068 W.printHex("ProgramHeaderOffset", E.e_phoff); 7069 W.printHex("SectionHeaderOffset", E.e_shoff); 7070 if (E.e_machine == EM_MIPS) 7071 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags), 7072 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 7073 unsigned(ELF::EF_MIPS_MACH)); 7074 else if (E.e_machine == EM_AMDGPU) { 7075 switch (E.e_ident[ELF::EI_ABIVERSION]) { 7076 default: 7077 W.printHex("Flags", E.e_flags); 7078 break; 7079 case 0: 7080 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 7081 [[fallthrough]]; 7082 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 7083 W.printFlags("Flags", E.e_flags, 7084 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 7085 unsigned(ELF::EF_AMDGPU_MACH)); 7086 break; 7087 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 7088 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 7089 W.printFlags("Flags", E.e_flags, 7090 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 7091 unsigned(ELF::EF_AMDGPU_MACH), 7092 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 7093 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 7094 break; 7095 case ELF::ELFABIVERSION_AMDGPU_HSA_V6: { 7096 std::optional<FlagEntry> VerFlagEntry; 7097 // The string needs to remain alive from the moment we create a 7098 // FlagEntry until printFlags is done. 7099 std::string FlagStr; 7100 if (auto VersionFlag = E.e_flags & ELF::EF_AMDGPU_GENERIC_VERSION) { 7101 unsigned Version = 7102 VersionFlag >> ELF::EF_AMDGPU_GENERIC_VERSION_OFFSET; 7103 FlagStr = "EF_AMDGPU_GENERIC_VERSION_V" + std::to_string(Version); 7104 VerFlagEntry = FlagEntry(FlagStr, VersionFlag); 7105 } 7106 W.printFlags( 7107 "Flags", E.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 7108 unsigned(ELF::EF_AMDGPU_MACH), 7109 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 7110 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4), 7111 VerFlagEntry ? ArrayRef(*VerFlagEntry) : ArrayRef<FlagEntry>()); 7112 break; 7113 } 7114 } 7115 } else if (E.e_machine == EM_RISCV) 7116 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 7117 else if (E.e_machine == EM_AVR) 7118 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags), 7119 unsigned(ELF::EF_AVR_ARCH_MASK)); 7120 else if (E.e_machine == EM_LOONGARCH) 7121 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 7122 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 7123 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 7124 else if (E.e_machine == EM_XTENSA) 7125 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags), 7126 unsigned(ELF::EF_XTENSA_MACH)); 7127 else if (E.e_machine == EM_CUDA) 7128 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags), 7129 unsigned(ELF::EF_CUDA_SM)); 7130 else 7131 W.printFlags("Flags", E.e_flags); 7132 W.printNumber("HeaderSize", E.e_ehsize); 7133 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 7134 W.printNumber("ProgramHeaderCount", E.e_phnum); 7135 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 7136 W.printString("SectionHeaderCount", 7137 getSectionHeadersNumString(this->Obj, this->FileName)); 7138 W.printString("StringTableSectionIndex", 7139 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 7140 } 7141 } 7142 7143 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 7144 DictScope Lists(W, "Groups"); 7145 std::vector<GroupSection> V = this->getGroups(); 7146 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 7147 for (const GroupSection &G : V) { 7148 DictScope D(W, "Group"); 7149 W.printNumber("Name", G.Name, G.ShName); 7150 W.printNumber("Index", G.Index); 7151 W.printNumber("Link", G.Link); 7152 W.printNumber("Info", G.Info); 7153 W.printHex("Type", getGroupType(G.Type), G.Type); 7154 W.printString("Signature", G.Signature); 7155 7156 ListScope L(W, getGroupSectionHeaderName()); 7157 for (const GroupMember &GM : G.Members) { 7158 const GroupSection *MainGroup = Map[GM.Index]; 7159 if (MainGroup != &G) 7160 this->reportUniqueWarning( 7161 "section with index " + Twine(GM.Index) + 7162 ", included in the group section with index " + 7163 Twine(MainGroup->Index) + 7164 ", was also found in the group section with index " + 7165 Twine(G.Index)); 7166 printSectionGroupMembers(GM.Name, GM.Index); 7167 } 7168 } 7169 7170 if (V.empty()) 7171 printEmptyGroupMessage(); 7172 } 7173 7174 template <class ELFT> 7175 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const { 7176 return "Section(s) in group"; 7177 } 7178 7179 template <class ELFT> 7180 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 7181 uint64_t Idx) const { 7182 W.startLine() << Name << " (" << Idx << ")\n"; 7183 } 7184 7185 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 7186 ListScope D(W, "Relocations"); 7187 7188 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 7189 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) 7190 continue; 7191 7192 StringRef Name = this->getPrintableSectionName(Sec); 7193 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 7194 printRelocationSectionInfo(Sec, Name, SecNdx); 7195 } 7196 } 7197 7198 template <class ELFT> 7199 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R, 7200 StringRef SymbolName, 7201 StringRef RelocName) { 7202 DictScope Group(W, "Relocation"); 7203 W.printHex("Offset", R.Offset); 7204 W.printNumber("Type", RelocName, R.Type); 7205 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 7206 if (R.Addend) 7207 W.printHex("Addend", (uintX_t)*R.Addend); 7208 } 7209 7210 template <class ELFT> 7211 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 7212 StringRef SymbolName, 7213 StringRef RelocName) { 7214 raw_ostream &OS = W.startLine(); 7215 OS << W.hex(R.Offset) << " " << RelocName << " " 7216 << (!SymbolName.empty() ? SymbolName : "-"); 7217 if (R.Addend) 7218 OS << " " << W.hex((uintX_t)*R.Addend); 7219 OS << "\n"; 7220 } 7221 7222 template <class ELFT> 7223 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 7224 StringRef Name, 7225 const unsigned SecNdx) { 7226 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str()); 7227 this->printRelocationsHelper(Sec); 7228 } 7229 7230 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const { 7231 W.startLine() << "There are no group sections in the file.\n"; 7232 } 7233 7234 template <class ELFT> 7235 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 7236 const RelSymbol<ELFT> &RelSym) { 7237 StringRef SymbolName = RelSym.Name; 7238 if (RelSym.Sym && RelSym.Name.empty()) 7239 SymbolName = "<null>"; 7240 SmallString<32> RelocName; 7241 this->Obj.getRelocationTypeName(R.Type, RelocName); 7242 7243 if (opts::ExpandRelocs) { 7244 printExpandedRelRelaReloc(R, SymbolName, RelocName); 7245 } else { 7246 printDefaultRelRelaReloc(R, SymbolName, RelocName); 7247 } 7248 } 7249 7250 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 7251 ListScope SectionsD(W, "Sections"); 7252 7253 int SectionIndex = -1; 7254 std::vector<EnumEntry<unsigned>> FlagsList = 7255 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 7256 this->Obj.getHeader().e_machine); 7257 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 7258 DictScope SectionD(W, "Section"); 7259 W.printNumber("Index", ++SectionIndex); 7260 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 7261 W.printHex("Type", 7262 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 7263 Sec.sh_type), 7264 Sec.sh_type); 7265 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList)); 7266 W.printHex("Address", Sec.sh_addr); 7267 W.printHex("Offset", Sec.sh_offset); 7268 W.printNumber("Size", Sec.sh_size); 7269 W.printNumber("Link", Sec.sh_link); 7270 W.printNumber("Info", Sec.sh_info); 7271 W.printNumber("AddressAlignment", Sec.sh_addralign); 7272 W.printNumber("EntrySize", Sec.sh_entsize); 7273 7274 if (opts::SectionRelocations) { 7275 ListScope D(W, "Relocations"); 7276 this->printRelocationsHelper(Sec); 7277 } 7278 7279 if (opts::SectionSymbols) { 7280 ListScope D(W, "Symbols"); 7281 if (this->DotSymtabSec) { 7282 StringRef StrTable = unwrapOrError( 7283 this->FileName, 7284 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 7285 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 7286 7287 typename ELFT::SymRange Symbols = unwrapOrError( 7288 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 7289 for (const Elf_Sym &Sym : Symbols) { 7290 const Elf_Shdr *SymSec = unwrapOrError( 7291 this->FileName, 7292 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 7293 if (SymSec == &Sec) 7294 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 7295 /*NonVisibilityBitsUsed=*/false, 7296 /*ExtraSymInfo=*/false); 7297 } 7298 } 7299 } 7300 7301 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 7302 ArrayRef<uint8_t> Data = 7303 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 7304 W.printBinaryBlock( 7305 "SectionData", 7306 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 7307 } 7308 } 7309 } 7310 7311 template <class ELFT> 7312 void LLVMELFDumper<ELFT>::printSymbolSection( 7313 const Elf_Sym &Symbol, unsigned SymIndex, 7314 DataRegion<Elf_Word> ShndxTable) const { 7315 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> { 7316 if (Symbol.isUndefined()) 7317 return StringRef("Undefined"); 7318 if (Symbol.isProcessorSpecific()) 7319 return StringRef("Processor Specific"); 7320 if (Symbol.isOSSpecific()) 7321 return StringRef("Operating System Specific"); 7322 if (Symbol.isAbsolute()) 7323 return StringRef("Absolute"); 7324 if (Symbol.isCommon()) 7325 return StringRef("Common"); 7326 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 7327 return StringRef("Reserved"); 7328 return std::nullopt; 7329 }; 7330 7331 if (std::optional<StringRef> Type = GetSectionSpecialType()) { 7332 W.printHex("Section", *Type, Symbol.st_shndx); 7333 return; 7334 } 7335 7336 Expected<unsigned> SectionIndex = 7337 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 7338 if (!SectionIndex) { 7339 assert(Symbol.st_shndx == SHN_XINDEX && 7340 "getSymbolSectionIndex should only fail due to an invalid " 7341 "SHT_SYMTAB_SHNDX table/reference"); 7342 this->reportUniqueWarning(SectionIndex.takeError()); 7343 W.printHex("Section", "Reserved", SHN_XINDEX); 7344 return; 7345 } 7346 7347 Expected<StringRef> SectionName = 7348 this->getSymbolSectionName(Symbol, *SectionIndex); 7349 if (!SectionName) { 7350 // Don't report an invalid section name if the section headers are missing. 7351 // In such situations, all sections will be "invalid". 7352 if (!this->ObjF.sections().empty()) 7353 this->reportUniqueWarning(SectionName.takeError()); 7354 else 7355 consumeError(SectionName.takeError()); 7356 W.printHex("Section", "<?>", *SectionIndex); 7357 } else { 7358 W.printHex("Section", *SectionName, *SectionIndex); 7359 } 7360 } 7361 7362 template <class ELFT> 7363 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const { 7364 std::vector<EnumEntry<unsigned>> SymOtherFlags = 7365 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol); 7366 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u); 7367 } 7368 7369 template <class ELFT> 7370 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField( 7371 const Elf_Sym &Symbol) const { 7372 assert(Symbol.st_other == 0 && "non-zero Other Field"); 7373 // Usually st_other flag is zero. Do not pollute the output 7374 // by flags enumeration in that case. 7375 W.printNumber("Other", 0); 7376 } 7377 7378 template <class ELFT> 7379 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 7380 DataRegion<Elf_Word> ShndxTable, 7381 std::optional<StringRef> StrTable, 7382 bool IsDynamic, 7383 bool /*NonVisibilityBitsUsed*/, 7384 bool /*ExtraSymInfo*/) const { 7385 std::string FullSymbolName = this->getFullSymbolName( 7386 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 7387 unsigned char SymbolType = Symbol.getType(); 7388 7389 DictScope D(W, "Symbol"); 7390 W.printNumber("Name", FullSymbolName, Symbol.st_name); 7391 W.printHex("Value", Symbol.st_value); 7392 W.printNumber("Size", Symbol.st_size); 7393 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 7394 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 7395 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 7396 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes)); 7397 else 7398 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes)); 7399 if (Symbol.st_other == 0) 7400 printZeroSymbolOtherField(Symbol); 7401 else 7402 printSymbolOtherField(Symbol); 7403 printSymbolSection(Symbol, SymIndex, ShndxTable); 7404 } 7405 7406 template <class ELFT> 7407 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 7408 bool PrintDynamicSymbols, 7409 bool ExtraSymInfo) { 7410 if (PrintSymbols) { 7411 ListScope Group(W, "Symbols"); 7412 this->printSymbolsHelper(false, ExtraSymInfo); 7413 } 7414 if (PrintDynamicSymbols) { 7415 ListScope Group(W, "DynamicSymbols"); 7416 this->printSymbolsHelper(true, ExtraSymInfo); 7417 } 7418 } 7419 7420 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 7421 Elf_Dyn_Range Table = this->dynamic_table(); 7422 if (Table.empty()) 7423 return; 7424 7425 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 7426 7427 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 7428 // The "Name/Value" column should be indented from the "Type" column by N 7429 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 7430 // space (1) = -3. 7431 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 7432 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 7433 7434 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 7435 for (auto Entry : Table) { 7436 uintX_t Tag = Entry.getTag(); 7437 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 7438 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 7439 << " " 7440 << format(ValueFmt.c_str(), 7441 this->Obj.getDynamicTagAsString(Tag).c_str()) 7442 << Value << "\n"; 7443 } 7444 W.startLine() << "]\n"; 7445 } 7446 7447 template <class ELFT> 7448 void JSONELFDumper<ELFT>::printAuxillaryDynamicTableEntryInfo( 7449 const Elf_Dyn &Entry) { 7450 auto FormatFlags = [this, Value = Entry.getVal()](auto Flags) { 7451 ListScope L(this->W, "Flags"); 7452 for (const auto &Flag : Flags) { 7453 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 7454 this->W.printString(Flag.Name); 7455 } 7456 }; 7457 switch (Entry.getTag()) { 7458 case DT_SONAME: 7459 this->W.printString("Name", this->getDynamicString(Entry.getVal())); 7460 break; 7461 case DT_AUXILIARY: 7462 case DT_FILTER: 7463 case DT_NEEDED: 7464 this->W.printString("Library", this->getDynamicString(Entry.getVal())); 7465 break; 7466 case DT_USED: 7467 this->W.printString("Object", this->getDynamicString(Entry.getVal())); 7468 break; 7469 case DT_RPATH: 7470 case DT_RUNPATH: { 7471 StringRef Value = this->getDynamicString(Entry.getVal()); 7472 ListScope L(this->W, "Path"); 7473 while (!Value.empty()) { 7474 auto [Front, Back] = Value.split(':'); 7475 this->W.printString(Front); 7476 Value = Back; 7477 } 7478 break; 7479 } 7480 case DT_FLAGS: 7481 FormatFlags(ArrayRef(ElfDynamicDTFlags)); 7482 break; 7483 case DT_FLAGS_1: 7484 FormatFlags(ArrayRef(ElfDynamicDTFlags1)); 7485 break; 7486 default: 7487 return; 7488 } 7489 } 7490 7491 template <class ELFT> void JSONELFDumper<ELFT>::printDynamicTable() { 7492 Elf_Dyn_Range Table = this->dynamic_table(); 7493 ListScope L(this->W, "DynamicSection"); 7494 for (const auto &Entry : Table) { 7495 DictScope D(this->W); 7496 uintX_t Tag = Entry.getTag(); 7497 this->W.printHex("Tag", Tag); 7498 this->W.printString("Type", this->Obj.getDynamicTagAsString(Tag)); 7499 this->W.printHex("Value", Entry.getVal()); 7500 this->printAuxillaryDynamicTableEntryInfo(Entry); 7501 } 7502 } 7503 7504 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 7505 W.startLine() << "Dynamic Relocations {\n"; 7506 W.indent(); 7507 this->printDynamicRelocationsHelper(); 7508 W.unindent(); 7509 W.startLine() << "}\n"; 7510 } 7511 7512 template <class ELFT> 7513 void LLVMELFDumper<ELFT>::printProgramHeaders( 7514 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 7515 if (PrintProgramHeaders) 7516 printProgramHeaders(); 7517 if (PrintSectionMapping == cl::BOU_TRUE) 7518 printSectionMapping(); 7519 } 7520 7521 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 7522 ListScope L(W, "ProgramHeaders"); 7523 7524 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 7525 if (!PhdrsOrErr) { 7526 this->reportUniqueWarning("unable to dump program headers: " + 7527 toString(PhdrsOrErr.takeError())); 7528 return; 7529 } 7530 7531 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 7532 DictScope P(W, "ProgramHeader"); 7533 StringRef Type = 7534 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 7535 7536 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 7537 W.printHex("Offset", Phdr.p_offset); 7538 W.printHex("VirtualAddress", Phdr.p_vaddr); 7539 W.printHex("PhysicalAddress", Phdr.p_paddr); 7540 W.printNumber("FileSize", Phdr.p_filesz); 7541 W.printNumber("MemSize", Phdr.p_memsz); 7542 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags)); 7543 W.printNumber("Alignment", Phdr.p_align); 7544 } 7545 } 7546 7547 template <class ELFT> 7548 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 7549 ListScope SS(W, "VersionSymbols"); 7550 if (!Sec) 7551 return; 7552 7553 StringRef StrTable; 7554 ArrayRef<Elf_Sym> Syms; 7555 const Elf_Shdr *SymTabSec; 7556 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 7557 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 7558 if (!VerTableOrErr) { 7559 this->reportUniqueWarning(VerTableOrErr.takeError()); 7560 return; 7561 } 7562 7563 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 7564 return; 7565 7566 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 7567 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 7568 DictScope S(W, "Symbol"); 7569 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 7570 W.printString("Name", 7571 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 7572 /*IsDynamic=*/true)); 7573 } 7574 } 7575 7576 const EnumEntry<unsigned> SymVersionFlags[] = { 7577 {"Base", "BASE", VER_FLG_BASE}, 7578 {"Weak", "WEAK", VER_FLG_WEAK}, 7579 {"Info", "INFO", VER_FLG_INFO}}; 7580 7581 template <class ELFT> 7582 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 7583 ListScope SD(W, "VersionDefinitions"); 7584 if (!Sec) 7585 return; 7586 7587 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 7588 if (!V) { 7589 this->reportUniqueWarning(V.takeError()); 7590 return; 7591 } 7592 7593 for (const VerDef &D : *V) { 7594 DictScope Def(W, "Definition"); 7595 W.printNumber("Version", D.Version); 7596 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags)); 7597 W.printNumber("Index", D.Ndx); 7598 W.printNumber("Hash", D.Hash); 7599 W.printString("Name", D.Name.c_str()); 7600 W.printList( 7601 "Predecessors", D.AuxV, 7602 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 7603 } 7604 } 7605 7606 template <class ELFT> 7607 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 7608 ListScope SD(W, "VersionRequirements"); 7609 if (!Sec) 7610 return; 7611 7612 Expected<std::vector<VerNeed>> V = 7613 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 7614 if (!V) { 7615 this->reportUniqueWarning(V.takeError()); 7616 return; 7617 } 7618 7619 for (const VerNeed &VN : *V) { 7620 DictScope Entry(W, "Dependency"); 7621 W.printNumber("Version", VN.Version); 7622 W.printNumber("Count", VN.Cnt); 7623 W.printString("FileName", VN.File.c_str()); 7624 7625 ListScope L(W, "Entries"); 7626 for (const VernAux &Aux : VN.AuxV) { 7627 DictScope Entry(W, "Entry"); 7628 W.printNumber("Hash", Aux.Hash); 7629 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags)); 7630 W.printNumber("Index", Aux.Other); 7631 W.printString("Name", Aux.Name.c_str()); 7632 } 7633 } 7634 } 7635 7636 template <class ELFT> 7637 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 7638 size_t MaxChain, 7639 size_t TotalSyms, 7640 ArrayRef<size_t> Count, 7641 bool IsGnu) const { 7642 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram"; 7643 StringRef BucketName = IsGnu ? "Bucket" : "Chain"; 7644 StringRef ListName = IsGnu ? "Buckets" : "Chains"; 7645 DictScope Outer(W, HistName); 7646 W.printNumber("TotalBuckets", NBucket); 7647 ListScope Buckets(W, ListName); 7648 size_t CumulativeNonZero = 0; 7649 for (size_t I = 0; I < MaxChain; ++I) { 7650 CumulativeNonZero += Count[I] * I; 7651 DictScope Bucket(W, BucketName); 7652 W.printNumber("Length", I); 7653 W.printNumber("Count", Count[I]); 7654 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket); 7655 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms); 7656 } 7657 } 7658 7659 // Returns true if rel/rela section exists, and populates SymbolIndices. 7660 // Otherwise returns false. 7661 template <class ELFT> 7662 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, 7663 const ELFFile<ELFT> &Obj, 7664 const LLVMELFDumper<ELFT> *Dumper, 7665 SmallVector<uint32_t, 128> &SymbolIndices) { 7666 if (!CGRelSection) { 7667 Dumper->reportUniqueWarning( 7668 "relocation section for a call graph section doesn't exist"); 7669 return false; 7670 } 7671 7672 if (CGRelSection->sh_type == SHT_REL) { 7673 typename ELFT::RelRange CGProfileRel; 7674 Expected<typename ELFT::RelRange> CGProfileRelOrError = 7675 Obj.rels(*CGRelSection); 7676 if (!CGProfileRelOrError) { 7677 Dumper->reportUniqueWarning("unable to load relocations for " 7678 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7679 toString(CGProfileRelOrError.takeError())); 7680 return false; 7681 } 7682 7683 CGProfileRel = *CGProfileRelOrError; 7684 for (const typename ELFT::Rel &Rel : CGProfileRel) 7685 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL())); 7686 } else { 7687 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert 7688 // the format to SHT_RELA 7689 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) 7690 typename ELFT::RelaRange CGProfileRela; 7691 Expected<typename ELFT::RelaRange> CGProfileRelaOrError = 7692 Obj.relas(*CGRelSection); 7693 if (!CGProfileRelaOrError) { 7694 Dumper->reportUniqueWarning("unable to load relocations for " 7695 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7696 toString(CGProfileRelaOrError.takeError())); 7697 return false; 7698 } 7699 7700 CGProfileRela = *CGProfileRelaOrError; 7701 for (const typename ELFT::Rela &Rela : CGProfileRela) 7702 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL())); 7703 } 7704 7705 return true; 7706 } 7707 7708 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 7709 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7710 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 7711 }; 7712 7713 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr = 7714 this->Obj.getSectionAndRelocations(IsMatch); 7715 if (!SecToRelocMapOrErr) { 7716 this->reportUniqueWarning("unable to get CG Profile section(s): " + 7717 toString(SecToRelocMapOrErr.takeError())); 7718 return; 7719 } 7720 7721 for (const auto &CGMapEntry : *SecToRelocMapOrErr) { 7722 const Elf_Shdr *CGSection = CGMapEntry.first; 7723 const Elf_Shdr *CGRelSection = CGMapEntry.second; 7724 7725 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 7726 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); 7727 if (!CGProfileOrErr) { 7728 this->reportUniqueWarning( 7729 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7730 toString(CGProfileOrErr.takeError())); 7731 return; 7732 } 7733 7734 SmallVector<uint32_t, 128> SymbolIndices; 7735 bool UseReloc = 7736 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); 7737 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { 7738 this->reportUniqueWarning( 7739 "number of from/to pairs does not match number of frequencies"); 7740 UseReloc = false; 7741 } 7742 7743 ListScope L(W, "CGProfile"); 7744 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { 7745 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; 7746 DictScope D(W, "CGProfileEntry"); 7747 if (UseReloc) { 7748 uint32_t From = SymbolIndices[I * 2]; 7749 uint32_t To = SymbolIndices[I * 2 + 1]; 7750 W.printNumber("From", this->getStaticSymbolName(From), From); 7751 W.printNumber("To", this->getStaticSymbolName(To), To); 7752 } 7753 W.printNumber("Weight", CGPE.cgp_weight); 7754 } 7755 } 7756 } 7757 7758 template <class ELFT> 7759 void LLVMELFDumper<ELFT>::printBBAddrMaps(bool PrettyPGOAnalysis) { 7760 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; 7761 using Elf_Shdr = typename ELFT::Shdr; 7762 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7763 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP; 7764 }; 7765 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr = 7766 this->Obj.getSectionAndRelocations(IsMatch); 7767 if (!SecRelocMapOrErr) { 7768 this->reportUniqueWarning( 7769 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " + 7770 toString(SecRelocMapOrErr.takeError())); 7771 return; 7772 } 7773 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) { 7774 std::optional<const Elf_Shdr *> FunctionSec; 7775 if (IsRelocatable) 7776 FunctionSec = 7777 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link)); 7778 ListScope L(W, "BBAddrMap"); 7779 if (IsRelocatable && !RelocSec) { 7780 this->reportUniqueWarning("unable to get relocation section for " + 7781 this->describe(*Sec)); 7782 continue; 7783 } 7784 std::vector<PGOAnalysisMap> PGOAnalyses; 7785 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = 7786 this->Obj.decodeBBAddrMap(*Sec, RelocSec, &PGOAnalyses); 7787 if (!BBAddrMapOrErr) { 7788 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) + 7789 ": " + toString(BBAddrMapOrErr.takeError())); 7790 continue; 7791 } 7792 for (const auto &[AM, PAM] : zip_equal(*BBAddrMapOrErr, PGOAnalyses)) { 7793 DictScope D(W, "Function"); 7794 W.printHex("At", AM.getFunctionAddress()); 7795 SmallVector<uint32_t> FuncSymIndex = 7796 this->getSymbolIndexesForFunctionAddress(AM.getFunctionAddress(), 7797 FunctionSec); 7798 std::string FuncName = "<?>"; 7799 if (FuncSymIndex.empty()) 7800 this->reportUniqueWarning( 7801 "could not identify function symbol for address (0x" + 7802 Twine::utohexstr(AM.getFunctionAddress()) + ") in " + 7803 this->describe(*Sec)); 7804 else 7805 FuncName = this->getStaticSymbolName(FuncSymIndex.front()); 7806 W.printString("Name", FuncName); 7807 { 7808 ListScope BBRL(W, "BB Ranges"); 7809 for (const BBAddrMap::BBRangeEntry &BBR : AM.BBRanges) { 7810 DictScope BBRD(W); 7811 W.printHex("Base Address", BBR.BaseAddress); 7812 ListScope BBEL(W, "BB Entries"); 7813 for (const BBAddrMap::BBEntry &BBE : BBR.BBEntries) { 7814 DictScope BBED(W); 7815 W.printNumber("ID", BBE.ID); 7816 W.printHex("Offset", BBE.Offset); 7817 W.printHex("Size", BBE.Size); 7818 W.printBoolean("HasReturn", BBE.hasReturn()); 7819 W.printBoolean("HasTailCall", BBE.hasTailCall()); 7820 W.printBoolean("IsEHPad", BBE.isEHPad()); 7821 W.printBoolean("CanFallThrough", BBE.canFallThrough()); 7822 W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch()); 7823 } 7824 } 7825 } 7826 7827 if (PAM.FeatEnable.hasPGOAnalysis()) { 7828 DictScope PD(W, "PGO analyses"); 7829 7830 if (PAM.FeatEnable.FuncEntryCount) 7831 W.printNumber("FuncEntryCount", PAM.FuncEntryCount); 7832 7833 if (PAM.FeatEnable.hasPGOAnalysisBBData()) { 7834 ListScope L(W, "PGO BB entries"); 7835 for (const PGOAnalysisMap::PGOBBEntry &PBBE : PAM.BBEntries) { 7836 DictScope L(W); 7837 7838 if (PAM.FeatEnable.BBFreq) { 7839 if (PrettyPGOAnalysis) { 7840 std::string BlockFreqStr; 7841 raw_string_ostream SS(BlockFreqStr); 7842 printRelativeBlockFreq(SS, PAM.BBEntries.front().BlockFreq, 7843 PBBE.BlockFreq); 7844 W.printString("Frequency", BlockFreqStr); 7845 } else { 7846 W.printNumber("Frequency", PBBE.BlockFreq.getFrequency()); 7847 } 7848 } 7849 7850 if (PAM.FeatEnable.BrProb) { 7851 ListScope L(W, "Successors"); 7852 for (const auto &Succ : PBBE.Successors) { 7853 DictScope L(W); 7854 W.printNumber("ID", Succ.ID); 7855 if (PrettyPGOAnalysis) { 7856 W.printObject("Probability", Succ.Prob); 7857 } else { 7858 W.printHex("Probability", Succ.Prob.getNumerator()); 7859 } 7860 } 7861 } 7862 } 7863 } 7864 } 7865 } 7866 } 7867 } 7868 7869 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 7870 ListScope L(W, "Addrsig"); 7871 if (!this->DotAddrsigSec) 7872 return; 7873 7874 Expected<std::vector<uint64_t>> SymsOrErr = 7875 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 7876 if (!SymsOrErr) { 7877 this->reportUniqueWarning(SymsOrErr.takeError()); 7878 return; 7879 } 7880 7881 for (uint64_t Sym : *SymsOrErr) 7882 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 7883 } 7884 7885 template <typename ELFT> 7886 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7887 ScopedPrinter &W) { 7888 // Return true if we were able to pretty-print the note, false otherwise. 7889 switch (NoteType) { 7890 default: 7891 return false; 7892 case ELF::NT_GNU_ABI_TAG: { 7893 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 7894 if (!AbiTag.IsValid) { 7895 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 7896 return false; 7897 } else { 7898 W.printString("OS", AbiTag.OSName); 7899 W.printString("ABI", AbiTag.ABI); 7900 } 7901 break; 7902 } 7903 case ELF::NT_GNU_BUILD_ID: { 7904 W.printString("Build ID", getGNUBuildId(Desc)); 7905 break; 7906 } 7907 case ELF::NT_GNU_GOLD_VERSION: 7908 W.printString("Version", getDescAsStringRef(Desc)); 7909 break; 7910 case ELF::NT_GNU_PROPERTY_TYPE_0: 7911 ListScope D(W, "Property"); 7912 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 7913 W.printString(Property); 7914 break; 7915 } 7916 return true; 7917 } 7918 7919 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7920 ScopedPrinter &W) { 7921 // Return true if we were able to pretty-print the note, false otherwise. 7922 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 7923 if (Props.empty()) 7924 return false; 7925 for (const auto &KV : Props) 7926 W.printString(KV.first, KV.second); 7927 return true; 7928 } 7929 7930 template <class ELFT> 7931 void LLVMELFDumper<ELFT>::printMemtag( 7932 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 7933 const ArrayRef<uint8_t> AndroidNoteDesc, 7934 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 7935 { 7936 ListScope L(W, "Memtag Dynamic Entries:"); 7937 if (DynamicEntries.empty()) 7938 W.printString("< none found >"); 7939 for (const auto &DynamicEntryKV : DynamicEntries) 7940 W.printString(DynamicEntryKV.first, DynamicEntryKV.second); 7941 } 7942 7943 if (!AndroidNoteDesc.empty()) { 7944 ListScope L(W, "Memtag Android Note:"); 7945 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W); 7946 } 7947 7948 if (Descriptors.empty()) 7949 return; 7950 7951 { 7952 ListScope L(W, "Memtag Global Descriptors:"); 7953 for (const auto &[Addr, BytesToTag] : Descriptors) { 7954 W.printHex("0x" + utohexstr(Addr), BytesToTag); 7955 } 7956 } 7957 } 7958 7959 template <typename ELFT> 7960 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, 7961 ArrayRef<uint8_t> Desc, 7962 ScopedPrinter &W) { 7963 switch (NoteType) { 7964 default: 7965 return false; 7966 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 7967 W.printString("Version", getDescAsStringRef(Desc)); 7968 break; 7969 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 7970 W.printString("Producer", getDescAsStringRef(Desc)); 7971 break; 7972 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 7973 W.printString("Producer version", getDescAsStringRef(Desc)); 7974 break; 7975 } 7976 return true; 7977 } 7978 7979 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 7980 W.printNumber("Page Size", Note.PageSize); 7981 ListScope D(W, "Mappings"); 7982 for (const CoreFileMapping &Mapping : Note.Mappings) { 7983 DictScope D(W); 7984 W.printHex("Start", Mapping.Start); 7985 W.printHex("End", Mapping.End); 7986 W.printHex("Offset", Mapping.Offset); 7987 W.printString("Filename", Mapping.Filename); 7988 } 7989 } 7990 7991 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 7992 ListScope L(W, "NoteSections"); 7993 7994 std::unique_ptr<DictScope> NoteSectionScope; 7995 std::unique_ptr<ListScope> NotesScope; 7996 size_t Align = 0; 7997 auto StartNotes = [&](std::optional<StringRef> SecName, 7998 const typename ELFT::Off Offset, 7999 const typename ELFT::Addr Size, size_t Al) { 8000 Align = std::max<size_t>(Al, 4); 8001 NoteSectionScope = std::make_unique<DictScope>(W, "NoteSection"); 8002 W.printString("Name", SecName ? *SecName : "<?>"); 8003 W.printHex("Offset", Offset); 8004 W.printHex("Size", Size); 8005 NotesScope = std::make_unique<ListScope>(W, "Notes"); 8006 }; 8007 8008 auto EndNotes = [&] { 8009 NotesScope.reset(); 8010 NoteSectionScope.reset(); 8011 }; 8012 8013 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 8014 DictScope D2(W); 8015 StringRef Name = Note.getName(); 8016 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 8017 Elf_Word Type = Note.getType(); 8018 8019 // Print the note owner/type. 8020 W.printString("Owner", Name); 8021 W.printHex("Data size", Descriptor.size()); 8022 8023 StringRef NoteType = 8024 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 8025 if (!NoteType.empty()) 8026 W.printString("Type", NoteType); 8027 else 8028 W.printString("Type", 8029 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 8030 8031 // Print the description, or fallback to printing raw bytes for unknown 8032 // owners/if we fail to pretty-print the contents. 8033 if (Name == "GNU") { 8034 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 8035 return Error::success(); 8036 } else if (Name == "FreeBSD") { 8037 if (std::optional<FreeBSDNote> N = 8038 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 8039 W.printString(N->Type, N->Value); 8040 return Error::success(); 8041 } 8042 } else if (Name == "AMD") { 8043 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 8044 if (!N.Type.empty()) { 8045 W.printString(N.Type, N.Value); 8046 return Error::success(); 8047 } 8048 } else if (Name == "AMDGPU") { 8049 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 8050 if (!N.Type.empty()) { 8051 W.printString(N.Type, N.Value); 8052 return Error::success(); 8053 } 8054 } else if (Name == "LLVMOMPOFFLOAD") { 8055 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 8056 return Error::success(); 8057 } else if (Name == "CORE") { 8058 if (Type == ELF::NT_FILE) { 8059 DataExtractor DescExtractor( 8060 Descriptor, ELFT::Endianness == llvm::endianness::little, 8061 sizeof(Elf_Addr)); 8062 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) { 8063 printCoreNoteLLVMStyle(*N, W); 8064 return Error::success(); 8065 } else { 8066 return N.takeError(); 8067 } 8068 } 8069 } else if (Name == "Android") { 8070 if (printAndroidNoteLLVMStyle(Type, Descriptor, W)) 8071 return Error::success(); 8072 } 8073 if (!Descriptor.empty()) { 8074 W.printBinaryBlock("Description data", Descriptor); 8075 } 8076 return Error::success(); 8077 }; 8078 8079 processNotesHelper(*this, /*StartNotesFn=*/StartNotes, 8080 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes); 8081 } 8082 8083 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 8084 ListScope L(W, "LinkerOptions"); 8085 8086 unsigned I = -1; 8087 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 8088 ++I; 8089 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 8090 continue; 8091 8092 Expected<ArrayRef<uint8_t>> ContentsOrErr = 8093 this->Obj.getSectionContents(Shdr); 8094 if (!ContentsOrErr) { 8095 this->reportUniqueWarning("unable to read the content of the " 8096 "SHT_LLVM_LINKER_OPTIONS section: " + 8097 toString(ContentsOrErr.takeError())); 8098 continue; 8099 } 8100 if (ContentsOrErr->empty()) 8101 continue; 8102 8103 if (ContentsOrErr->back() != 0) { 8104 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 8105 Twine(I) + 8106 " is broken: the " 8107 "content is not null-terminated"); 8108 continue; 8109 } 8110 8111 SmallVector<StringRef, 16> Strings; 8112 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 8113 if (Strings.size() % 2 != 0) { 8114 this->reportUniqueWarning( 8115 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 8116 " is broken: an incomplete " 8117 "key-value pair was found. The last possible key was: \"" + 8118 Strings.back() + "\""); 8119 continue; 8120 } 8121 8122 for (size_t I = 0; I < Strings.size(); I += 2) 8123 W.printString(Strings[I], Strings[I + 1]); 8124 } 8125 } 8126 8127 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 8128 ListScope L(W, "DependentLibs"); 8129 this->printDependentLibsHelper( 8130 [](const Elf_Shdr &) {}, 8131 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 8132 } 8133 8134 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 8135 ListScope L(W, "StackSizes"); 8136 if (this->Obj.getHeader().e_type == ELF::ET_REL) 8137 this->printRelocatableStackSizes([]() {}); 8138 else 8139 this->printNonRelocatableStackSizes([]() {}); 8140 } 8141 8142 template <class ELFT> 8143 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 8144 ArrayRef<std::string> FuncNames) { 8145 DictScope D(W, "Entry"); 8146 W.printList("Functions", FuncNames); 8147 W.printHex("Size", Size); 8148 } 8149 8150 template <class ELFT> 8151 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 8152 auto PrintEntry = [&](const Elf_Addr *E) { 8153 W.printHex("Address", Parser.getGotAddress(E)); 8154 W.printNumber("Access", Parser.getGotOffset(E)); 8155 W.printHex("Initial", *E); 8156 }; 8157 8158 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 8159 8160 W.printHex("Canonical gp value", Parser.getGp()); 8161 { 8162 ListScope RS(W, "Reserved entries"); 8163 { 8164 DictScope D(W, "Entry"); 8165 PrintEntry(Parser.getGotLazyResolver()); 8166 W.printString("Purpose", StringRef("Lazy resolver")); 8167 } 8168 8169 if (Parser.getGotModulePointer()) { 8170 DictScope D(W, "Entry"); 8171 PrintEntry(Parser.getGotModulePointer()); 8172 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 8173 } 8174 } 8175 { 8176 ListScope LS(W, "Local entries"); 8177 for (auto &E : Parser.getLocalEntries()) { 8178 DictScope D(W, "Entry"); 8179 PrintEntry(&E); 8180 } 8181 } 8182 8183 if (Parser.IsStatic) 8184 return; 8185 8186 { 8187 ListScope GS(W, "Global entries"); 8188 for (auto &E : Parser.getGlobalEntries()) { 8189 DictScope D(W, "Entry"); 8190 8191 PrintEntry(&E); 8192 8193 const Elf_Sym &Sym = *Parser.getGotSym(&E); 8194 W.printHex("Value", Sym.st_value); 8195 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 8196 8197 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 8198 DataRegion<Elf_Word> ShndxTable( 8199 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 8200 printSymbolSection(Sym, SymIndex, ShndxTable); 8201 8202 std::string SymName = this->getFullSymbolName( 8203 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 8204 W.printNumber("Name", SymName, Sym.st_name); 8205 } 8206 } 8207 8208 W.printNumber("Number of TLS and multi-GOT entries", 8209 uint64_t(Parser.getOtherEntries().size())); 8210 } 8211 8212 template <class ELFT> 8213 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 8214 auto PrintEntry = [&](const Elf_Addr *E) { 8215 W.printHex("Address", Parser.getPltAddress(E)); 8216 W.printHex("Initial", *E); 8217 }; 8218 8219 DictScope GS(W, "PLT GOT"); 8220 8221 { 8222 ListScope RS(W, "Reserved entries"); 8223 { 8224 DictScope D(W, "Entry"); 8225 PrintEntry(Parser.getPltLazyResolver()); 8226 W.printString("Purpose", StringRef("PLT lazy resolver")); 8227 } 8228 8229 if (auto E = Parser.getPltModulePointer()) { 8230 DictScope D(W, "Entry"); 8231 PrintEntry(E); 8232 W.printString("Purpose", StringRef("Module pointer")); 8233 } 8234 } 8235 { 8236 ListScope LS(W, "Entries"); 8237 DataRegion<Elf_Word> ShndxTable( 8238 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 8239 for (auto &E : Parser.getPltEntries()) { 8240 DictScope D(W, "Entry"); 8241 PrintEntry(&E); 8242 8243 const Elf_Sym &Sym = *Parser.getPltSym(&E); 8244 W.printHex("Value", Sym.st_value); 8245 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 8246 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 8247 ShndxTable); 8248 8249 const Elf_Sym *FirstSym = cantFail( 8250 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 8251 std::string SymName = this->getFullSymbolName( 8252 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 8253 W.printNumber("Name", SymName, Sym.st_name); 8254 } 8255 } 8256 } 8257 8258 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 8259 const Elf_Mips_ABIFlags<ELFT> *Flags; 8260 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 8261 getMipsAbiFlagsSection(*this)) { 8262 Flags = *SecOrErr; 8263 if (!Flags) { 8264 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 8265 return; 8266 } 8267 } else { 8268 this->reportUniqueWarning(SecOrErr.takeError()); 8269 return; 8270 } 8271 8272 raw_ostream &OS = W.getOStream(); 8273 DictScope GS(W, "MIPS ABI Flags"); 8274 8275 W.printNumber("Version", Flags->version); 8276 W.startLine() << "ISA: "; 8277 if (Flags->isa_rev <= 1) 8278 OS << format("MIPS%u", Flags->isa_level); 8279 else 8280 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 8281 OS << "\n"; 8282 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType)); 8283 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags)); 8284 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType)); 8285 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 8286 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 8287 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 8288 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1)); 8289 W.printHex("Flags 2", Flags->flags2); 8290 } 8291 8292 template <class ELFT> 8293 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 8294 ArrayRef<std::string> InputFilenames, 8295 const Archive *A) { 8296 FileScope = std::make_unique<DictScope>(this->W); 8297 DictScope D(this->W, "FileSummary"); 8298 this->W.printString("File", FileStr); 8299 this->W.printString("Format", Obj.getFileFormatName()); 8300 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch())); 8301 this->W.printString( 8302 "AddressSize", 8303 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress()))); 8304 this->printLoadName(); 8305 } 8306 8307 template <class ELFT> 8308 void JSONELFDumper<ELFT>::printZeroSymbolOtherField( 8309 const Elf_Sym &Symbol) const { 8310 // We want the JSON format to be uniform, since it is machine readable, so 8311 // always print the `Other` field the same way. 8312 this->printSymbolOtherField(Symbol); 8313 } 8314 8315 template <class ELFT> 8316 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 8317 StringRef SymbolName, 8318 StringRef RelocName) { 8319 this->printExpandedRelRelaReloc(R, SymbolName, RelocName); 8320 } 8321 8322 template <class ELFT> 8323 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 8324 StringRef Name, 8325 const unsigned SecNdx) { 8326 DictScope Group(this->W); 8327 this->W.printNumber("SectionIndex", SecNdx); 8328 ListScope D(this->W, "Relocs"); 8329 this->printRelocationsHelper(Sec); 8330 } 8331 8332 template <class ELFT> 8333 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const { 8334 return "GroupSections"; 8335 } 8336 8337 template <class ELFT> 8338 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 8339 uint64_t Idx) const { 8340 DictScope Grp(this->W); 8341 this->W.printString("Name", Name); 8342 this->W.printNumber("Index", Idx); 8343 } 8344 8345 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const { 8346 // JSON output does not need to print anything for empty groups 8347 } 8348