1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "Error.h" 17 #include "ObjDumper.h" 18 #include "StackMapPrinter.h" 19 #include "llvm-readobj.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/Optional.h" 25 #include "llvm/ADT/PointerIntPair.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 33 #include "llvm/BinaryFormat/ELF.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Object/ELFObjectFile.h" 37 #include "llvm/Object/ELFTypes.h" 38 #include "llvm/Object/Error.h" 39 #include "llvm/Object/ObjectFile.h" 40 #include "llvm/Object/RelocationResolver.h" 41 #include "llvm/Object/StackMapParser.h" 42 #include "llvm/Support/AMDGPUMetadata.h" 43 #include "llvm/Support/ARMAttributeParser.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Endian.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/FormatVariadic.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/MipsABIFlags.h" 55 #include "llvm/Support/ScopedPrinter.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cinttypes> 59 #include <cstddef> 60 #include <cstdint> 61 #include <cstdlib> 62 #include <iterator> 63 #include <memory> 64 #include <string> 65 #include <system_error> 66 #include <unordered_set> 67 #include <vector> 68 69 using namespace llvm; 70 using namespace llvm::object; 71 using namespace ELF; 72 73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 74 case ns::enum: \ 75 return #enum; 76 77 #define ENUM_ENT(enum, altName) \ 78 { #enum, altName, ELF::enum } 79 80 #define ENUM_ENT_1(enum) \ 81 { #enum, #enum, ELF::enum } 82 83 #define LLVM_READOBJ_PHDR_ENUM(ns, enum) \ 84 case ns::enum: \ 85 return std::string(#enum).substr(3); 86 87 #define TYPEDEF_ELF_TYPES(ELFT) \ 88 using ELFO = ELFFile<ELFT>; \ 89 using Elf_Addr = typename ELFT::Addr; \ 90 using Elf_Shdr = typename ELFT::Shdr; \ 91 using Elf_Sym = typename ELFT::Sym; \ 92 using Elf_Dyn = typename ELFT::Dyn; \ 93 using Elf_Dyn_Range = typename ELFT::DynRange; \ 94 using Elf_Rel = typename ELFT::Rel; \ 95 using Elf_Rela = typename ELFT::Rela; \ 96 using Elf_Relr = typename ELFT::Relr; \ 97 using Elf_Rel_Range = typename ELFT::RelRange; \ 98 using Elf_Rela_Range = typename ELFT::RelaRange; \ 99 using Elf_Relr_Range = typename ELFT::RelrRange; \ 100 using Elf_Phdr = typename ELFT::Phdr; \ 101 using Elf_Half = typename ELFT::Half; \ 102 using Elf_Ehdr = typename ELFT::Ehdr; \ 103 using Elf_Word = typename ELFT::Word; \ 104 using Elf_Hash = typename ELFT::Hash; \ 105 using Elf_GnuHash = typename ELFT::GnuHash; \ 106 using Elf_Note = typename ELFT::Note; \ 107 using Elf_Sym_Range = typename ELFT::SymRange; \ 108 using Elf_Versym = typename ELFT::Versym; \ 109 using Elf_Verneed = typename ELFT::Verneed; \ 110 using Elf_Vernaux = typename ELFT::Vernaux; \ 111 using Elf_Verdef = typename ELFT::Verdef; \ 112 using Elf_Verdaux = typename ELFT::Verdaux; \ 113 using Elf_CGProfile = typename ELFT::CGProfile; \ 114 using uintX_t = typename ELFT::uint; 115 116 namespace { 117 118 template <class ELFT> class DumpStyle; 119 120 /// Represents a contiguous uniform range in the file. We cannot just create a 121 /// range directly because when creating one of these from the .dynamic table 122 /// the size, entity size and virtual address are different entries in arbitrary 123 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 124 struct DynRegionInfo { 125 DynRegionInfo(StringRef ObjName) : FileName(ObjName) {} 126 DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName) 127 : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {} 128 129 /// Address in current address space. 130 const void *Addr = nullptr; 131 /// Size in bytes of the region. 132 uint64_t Size = 0; 133 /// Size of each entity in the region. 134 uint64_t EntSize = 0; 135 136 /// Name of the file. Used for error reporting. 137 StringRef FileName; 138 139 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 140 const Type *Start = reinterpret_cast<const Type *>(Addr); 141 if (!Start) 142 return {Start, Start}; 143 if (EntSize != sizeof(Type) || Size % EntSize) { 144 // TODO: Add a section index to this warning. 145 reportWarning(createError("invalid section size (" + Twine(Size) + 146 ") or entity size (" + Twine(EntSize) + ")"), 147 FileName); 148 return {Start, Start}; 149 } 150 return {Start, Start + (Size / EntSize)}; 151 } 152 }; 153 154 template <typename ELFT> class ELFDumper : public ObjDumper { 155 public: 156 ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer); 157 158 void printFileHeaders() override; 159 void printSectionHeaders() override; 160 void printRelocations() override; 161 void printDynamicRelocations() override; 162 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 163 void printHashSymbols() override; 164 void printUnwindInfo() override; 165 166 void printDynamicTable() override; 167 void printNeededLibraries() override; 168 void printProgramHeaders(bool PrintProgramHeaders, 169 cl::boolOrDefault PrintSectionMapping) override; 170 void printHashTable() override; 171 void printGnuHashTable() override; 172 void printLoadName() override; 173 void printVersionInfo() override; 174 void printGroupSections() override; 175 176 void printArchSpecificInfo() override; 177 178 void printStackMap() const override; 179 180 void printHashHistogram() override; 181 182 void printCGProfile() override; 183 void printAddrsig() override; 184 185 void printNotes() override; 186 187 void printELFLinkerOptions() override; 188 void printStackSizes() override; 189 190 const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; }; 191 192 private: 193 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle; 194 195 TYPEDEF_ELF_TYPES(ELFT) 196 197 DynRegionInfo checkDRI(DynRegionInfo DRI) { 198 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 199 if (DRI.Addr < Obj->base() || 200 reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size > 201 Obj->base() + Obj->getBufSize()) 202 reportError(errorCodeToError(llvm::object::object_error::parse_failed), 203 ObjF->getFileName()); 204 return DRI; 205 } 206 207 DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) { 208 return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz, 209 EntSize, ObjF->getFileName()}); 210 } 211 212 DynRegionInfo createDRIFrom(const Elf_Shdr *S) { 213 return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size, 214 S->sh_entsize, ObjF->getFileName()}); 215 } 216 217 void printAttributes(); 218 void printMipsReginfo(); 219 void printMipsOptions(); 220 221 std::pair<const Elf_Phdr *, const Elf_Shdr *> 222 findDynamic(const ELFFile<ELFT> *Obj); 223 void loadDynamicTable(const ELFFile<ELFT> *Obj); 224 void parseDynamicTable(); 225 226 StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb, 227 bool &IsDefault) const; 228 void LoadVersionMap() const; 229 void LoadVersionNeeds(const Elf_Shdr *ec) const; 230 void LoadVersionDefs(const Elf_Shdr *sec) const; 231 232 const object::ELFObjectFile<ELFT> *ObjF; 233 DynRegionInfo DynRelRegion; 234 DynRegionInfo DynRelaRegion; 235 DynRegionInfo DynRelrRegion; 236 DynRegionInfo DynPLTRelRegion; 237 DynRegionInfo DynSymRegion; 238 DynRegionInfo DynamicTable; 239 StringRef DynamicStringTable; 240 std::string SOName = "<Not found>"; 241 const Elf_Hash *HashTable = nullptr; 242 const Elf_GnuHash *GnuHashTable = nullptr; 243 const Elf_Shdr *DotSymtabSec = nullptr; 244 const Elf_Shdr *DotCGProfileSec = nullptr; 245 const Elf_Shdr *DotAddrsigSec = nullptr; 246 StringRef DynSymtabName; 247 ArrayRef<Elf_Word> ShndxTable; 248 249 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 250 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 251 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 252 253 // Records for each version index the corresponding Verdef or Vernaux entry. 254 // This is filled the first time LoadVersionMap() is called. 255 class VersionMapEntry : public PointerIntPair<const void *, 1> { 256 public: 257 // If the integer is 0, this is an Elf_Verdef*. 258 // If the integer is 1, this is an Elf_Vernaux*. 259 VersionMapEntry() : PointerIntPair<const void *, 1>(nullptr, 0) {} 260 VersionMapEntry(const Elf_Verdef *verdef) 261 : PointerIntPair<const void *, 1>(verdef, 0) {} 262 VersionMapEntry(const Elf_Vernaux *vernaux) 263 : PointerIntPair<const void *, 1>(vernaux, 1) {} 264 265 bool isNull() const { return getPointer() == nullptr; } 266 bool isVerdef() const { return !isNull() && getInt() == 0; } 267 bool isVernaux() const { return !isNull() && getInt() == 1; } 268 const Elf_Verdef *getVerdef() const { 269 return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr; 270 } 271 const Elf_Vernaux *getVernaux() const { 272 return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr; 273 } 274 }; 275 mutable SmallVector<VersionMapEntry, 16> VersionMap; 276 277 public: 278 Elf_Dyn_Range dynamic_table() const { 279 // A valid .dynamic section contains an array of entries terminated 280 // with a DT_NULL entry. However, sometimes the section content may 281 // continue past the DT_NULL entry, so to dump the section correctly, 282 // we first find the end of the entries by iterating over them. 283 Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>(); 284 285 size_t Size = 0; 286 while (Size < Table.size()) 287 if (Table[Size++].getTag() == DT_NULL) 288 break; 289 290 return Table.slice(0, Size); 291 } 292 293 Elf_Sym_Range dynamic_symbols() const { 294 return DynSymRegion.getAsArrayRef<Elf_Sym>(); 295 } 296 297 Elf_Rel_Range dyn_rels() const; 298 Elf_Rela_Range dyn_relas() const; 299 Elf_Relr_Range dyn_relrs() const; 300 std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable, 301 bool IsDynamic) const; 302 void getSectionNameIndex(const Elf_Sym *Symbol, const Elf_Sym *FirstSym, 303 StringRef &SectionName, 304 unsigned &SectionIndex) const; 305 Expected<std::string> getStaticSymbolName(uint32_t Index) const; 306 std::string getDynamicString(uint64_t Value) const; 307 StringRef getSymbolVersionByIndex(StringRef StrTab, 308 uint32_t VersionSymbolIndex, 309 bool &IsDefault) const; 310 311 void printSymbolsHelper(bool IsDynamic) const; 312 void printDynamicEntry(raw_ostream &OS, uint64_t Type, uint64_t Value) const; 313 314 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; } 315 const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; } 316 const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; } 317 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; } 318 StringRef getDynamicStringTable() const { return DynamicStringTable; } 319 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; } 320 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; } 321 const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; } 322 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; } 323 const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; } 324 const Elf_Hash *getHashTable() const { return HashTable; } 325 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; } 326 }; 327 328 template <class ELFT> 329 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const { 330 StringRef StrTable, SymtabName; 331 size_t Entries = 0; 332 Elf_Sym_Range Syms(nullptr, nullptr); 333 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 334 if (IsDynamic) { 335 StrTable = DynamicStringTable; 336 Syms = dynamic_symbols(); 337 SymtabName = DynSymtabName; 338 if (DynSymRegion.Addr) 339 Entries = DynSymRegion.Size / DynSymRegion.EntSize; 340 } else { 341 if (!DotSymtabSec) 342 return; 343 StrTable = unwrapOrError(ObjF->getFileName(), 344 Obj->getStringTableForSymtab(*DotSymtabSec)); 345 Syms = unwrapOrError(ObjF->getFileName(), Obj->symbols(DotSymtabSec)); 346 SymtabName = 347 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DotSymtabSec)); 348 Entries = DotSymtabSec->getEntityCount(); 349 } 350 if (Syms.begin() == Syms.end()) 351 return; 352 353 // The st_other field has 2 logical parts. The first two bits hold the symbol 354 // visibility (STV_*) and the remainder hold other platform-specific values. 355 bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) { 356 return S.st_other & ~0x3; 357 }) != Syms.end(); 358 359 ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries, 360 NonVisibilityBitsUsed); 361 for (const auto &Sym : Syms) 362 ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic, 363 NonVisibilityBitsUsed); 364 } 365 366 template <class ELFT> class MipsGOTParser; 367 368 template <typename ELFT> class DumpStyle { 369 public: 370 using Elf_Shdr = typename ELFT::Shdr; 371 using Elf_Sym = typename ELFT::Sym; 372 using Elf_Addr = typename ELFT::Addr; 373 374 DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) { 375 FileName = this->Dumper->getElfObject()->getFileName(); 376 377 // Dumper reports all non-critical errors as warnings. 378 // It does not print the same warning more than once. 379 WarningHandler = [this](const Twine &Msg) { 380 if (Warnings.insert(Msg.str()).second) 381 reportWarning(createError(Msg), FileName); 382 return Error::success(); 383 }; 384 } 385 386 virtual ~DumpStyle() = default; 387 388 virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0; 389 virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0; 390 virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0; 391 virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0; 392 virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols, 393 bool PrintDynamicSymbols) = 0; 394 virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {} 395 virtual void printDynamic(const ELFFile<ELFT> *Obj) {} 396 virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0; 397 virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name, 398 size_t Offset, bool NonVisibilityBitsUsed) {} 399 virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol, 400 const Elf_Sym *FirstSym, StringRef StrTable, 401 bool IsDynamic, bool NonVisibilityBitsUsed) = 0; 402 virtual void printProgramHeaders(const ELFFile<ELFT> *Obj, 403 bool PrintProgramHeaders, 404 cl::boolOrDefault PrintSectionMapping) = 0; 405 virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj, 406 const Elf_Shdr *Sec) = 0; 407 virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj, 408 const Elf_Shdr *Sec) = 0; 409 virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj, 410 const Elf_Shdr *Sec) = 0; 411 virtual void printHashHistogram(const ELFFile<ELFT> *Obj) = 0; 412 virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0; 413 virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0; 414 virtual void printNotes(const ELFFile<ELFT> *Obj) = 0; 415 virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0; 416 virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0; 417 void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj, 418 std::function<void()> PrintHeader); 419 void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj, 420 std::function<void()> PrintHeader); 421 void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, 422 SectionRef FunctionSec, 423 const StringRef SectionName, DataExtractor Data, 424 uint64_t *Offset); 425 void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel, 426 SectionRef FunctionSec, 427 const StringRef &StackSizeSectionName, 428 const RelocationResolver &Resolver, DataExtractor Data); 429 virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0; 430 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 431 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 432 virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0; 433 const ELFDumper<ELFT> *dumper() const { return Dumper; } 434 435 protected: 436 std::function<Error(const Twine &Msg)> WarningHandler; 437 StringRef FileName; 438 439 private: 440 std::unordered_set<std::string> Warnings; 441 const ELFDumper<ELFT> *Dumper; 442 }; 443 444 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> { 445 formatted_raw_ostream &OS; 446 447 public: 448 TYPEDEF_ELF_TYPES(ELFT) 449 450 GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper) 451 : DumpStyle<ELFT>(Dumper), 452 OS(static_cast<formatted_raw_ostream&>(W.getOStream())) { 453 assert (&W.getOStream() == &llvm::fouts()); 454 } 455 456 void printFileHeaders(const ELFO *Obj) override; 457 void printGroupSections(const ELFFile<ELFT> *Obj) override; 458 void printRelocations(const ELFO *Obj) override; 459 void printSectionHeaders(const ELFO *Obj) override; 460 void printSymbols(const ELFO *Obj, bool PrintSymbols, 461 bool PrintDynamicSymbols) override; 462 void printHashSymbols(const ELFO *Obj) override; 463 void printDynamic(const ELFFile<ELFT> *Obj) override; 464 void printDynamicRelocations(const ELFO *Obj) override; 465 void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset, 466 bool NonVisibilityBitsUsed) override; 467 void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders, 468 cl::boolOrDefault PrintSectionMapping) override; 469 void printVersionSymbolSection(const ELFFile<ELFT> *Obj, 470 const Elf_Shdr *Sec) override; 471 void printVersionDefinitionSection(const ELFFile<ELFT> *Obj, 472 const Elf_Shdr *Sec) override; 473 void printVersionDependencySection(const ELFFile<ELFT> *Obj, 474 const Elf_Shdr *Sec) override; 475 void printHashHistogram(const ELFFile<ELFT> *Obj) override; 476 void printCGProfile(const ELFFile<ELFT> *Obj) override; 477 void printAddrsig(const ELFFile<ELFT> *Obj) override; 478 void printNotes(const ELFFile<ELFT> *Obj) override; 479 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override; 480 void printStackSizes(const ELFObjectFile<ELFT> *Obj) override; 481 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; 482 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 483 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 484 void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override; 485 486 private: 487 struct Field { 488 std::string Str; 489 unsigned Column; 490 491 Field(StringRef S, unsigned Col) : Str(S), Column(Col) {} 492 Field(unsigned Col) : Column(Col) {} 493 }; 494 495 template <typename T, typename TEnum> 496 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) { 497 for (const auto &EnumItem : EnumValues) 498 if (EnumItem.Value == Value) 499 return EnumItem.AltName; 500 return to_hexString(Value, false); 501 } 502 503 template <typename T, typename TEnum> 504 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 505 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 506 TEnum EnumMask3 = {}) { 507 std::string Str; 508 for (const auto &Flag : EnumValues) { 509 if (Flag.Value == 0) 510 continue; 511 512 TEnum EnumMask{}; 513 if (Flag.Value & EnumMask1) 514 EnumMask = EnumMask1; 515 else if (Flag.Value & EnumMask2) 516 EnumMask = EnumMask2; 517 else if (Flag.Value & EnumMask3) 518 EnumMask = EnumMask3; 519 bool IsEnum = (Flag.Value & EnumMask) != 0; 520 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 521 (IsEnum && (Value & EnumMask) == Flag.Value)) { 522 if (!Str.empty()) 523 Str += ", "; 524 Str += Flag.AltName; 525 } 526 } 527 return Str; 528 } 529 530 formatted_raw_ostream &printField(struct Field F) { 531 if (F.Column != 0) 532 OS.PadToColumn(F.Column); 533 OS << F.Str; 534 OS.flush(); 535 return OS; 536 } 537 void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym, 538 StringRef StrTable, uint32_t Bucket); 539 void printRelocHeader(unsigned SType); 540 void printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab, 541 const Elf_Rela &R, bool IsRela); 542 void printRelocation(const ELFO *Obj, const Elf_Sym *Sym, 543 StringRef SymbolName, const Elf_Rela &R, bool IsRela); 544 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, 545 StringRef StrTable, bool IsDynamic, 546 bool NonVisibilityBitsUsed) override; 547 std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol, 548 const Elf_Sym *FirstSym); 549 void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela); 550 bool checkTLSSections(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); 551 bool checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); 552 bool checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); 553 bool checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec); 554 void printProgramHeaders(const ELFO *Obj); 555 void printSectionMapping(const ELFO *Obj); 556 }; 557 558 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> { 559 public: 560 TYPEDEF_ELF_TYPES(ELFT) 561 562 LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper) 563 : DumpStyle<ELFT>(Dumper), W(W) {} 564 565 void printFileHeaders(const ELFO *Obj) override; 566 void printGroupSections(const ELFFile<ELFT> *Obj) override; 567 void printRelocations(const ELFO *Obj) override; 568 void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj); 569 void printSectionHeaders(const ELFO *Obj) override; 570 void printSymbols(const ELFO *Obj, bool PrintSymbols, 571 bool PrintDynamicSymbols) override; 572 void printDynamic(const ELFFile<ELFT> *Obj) override; 573 void printDynamicRelocations(const ELFO *Obj) override; 574 void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders, 575 cl::boolOrDefault PrintSectionMapping) override; 576 void printVersionSymbolSection(const ELFFile<ELFT> *Obj, 577 const Elf_Shdr *Sec) override; 578 void printVersionDefinitionSection(const ELFFile<ELFT> *Obj, 579 const Elf_Shdr *Sec) override; 580 void printVersionDependencySection(const ELFFile<ELFT> *Obj, 581 const Elf_Shdr *Sec) override; 582 void printHashHistogram(const ELFFile<ELFT> *Obj) override; 583 void printCGProfile(const ELFFile<ELFT> *Obj) override; 584 void printAddrsig(const ELFFile<ELFT> *Obj) override; 585 void printNotes(const ELFFile<ELFT> *Obj) override; 586 void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override; 587 void printStackSizes(const ELFObjectFile<ELFT> *Obj) override; 588 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; 589 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 590 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 591 void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override; 592 593 private: 594 void printRelocation(const ELFO *Obj, Elf_Rela Rel, const Elf_Shdr *SymTab); 595 void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel); 596 void printSymbols(const ELFO *Obj); 597 void printDynamicSymbols(const ELFO *Obj); 598 void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First, 599 StringRef StrTable, bool IsDynamic, 600 bool /*NonVisibilityBitsUsed*/) override; 601 void printProgramHeaders(const ELFO *Obj); 602 void printSectionMapping(const ELFO *Obj) {} 603 604 ScopedPrinter &W; 605 }; 606 607 } // end anonymous namespace 608 609 namespace llvm { 610 611 template <class ELFT> 612 static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj, 613 ScopedPrinter &Writer, 614 std::unique_ptr<ObjDumper> &Result) { 615 Result.reset(new ELFDumper<ELFT>(Obj, Writer)); 616 return readobj_error::success; 617 } 618 619 std::error_code createELFDumper(const object::ObjectFile *Obj, 620 ScopedPrinter &Writer, 621 std::unique_ptr<ObjDumper> &Result) { 622 // Little-endian 32-bit 623 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) 624 return createELFDumper(ELFObj, Writer, Result); 625 626 // Big-endian 32-bit 627 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) 628 return createELFDumper(ELFObj, Writer, Result); 629 630 // Little-endian 64-bit 631 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) 632 return createELFDumper(ELFObj, Writer, Result); 633 634 // Big-endian 64-bit 635 if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj)) 636 return createELFDumper(ELFObj, Writer, Result); 637 638 return readobj_error::unsupported_obj_file_format; 639 } 640 641 } // end namespace llvm 642 643 // Iterate through the versions needed section, and place each Elf_Vernaux 644 // in the VersionMap according to its index. 645 template <class ELFT> 646 void ELFDumper<ELFT>::LoadVersionNeeds(const Elf_Shdr *Sec) const { 647 unsigned VerneedSize = Sec->sh_size; // Size of section in bytes 648 unsigned VerneedEntries = Sec->sh_info; // Number of Verneed entries 649 const uint8_t *VerneedStart = reinterpret_cast<const uint8_t *>( 650 ObjF->getELFFile()->base() + Sec->sh_offset); 651 const uint8_t *VerneedEnd = VerneedStart + VerneedSize; 652 // The first Verneed entry is at the start of the section. 653 const uint8_t *VerneedBuf = VerneedStart; 654 for (unsigned VerneedIndex = 0; VerneedIndex < VerneedEntries; 655 ++VerneedIndex) { 656 if (VerneedBuf + sizeof(Elf_Verneed) > VerneedEnd) 657 report_fatal_error("Section ended unexpectedly while scanning " 658 "version needed records."); 659 const Elf_Verneed *Verneed = 660 reinterpret_cast<const Elf_Verneed *>(VerneedBuf); 661 if (Verneed->vn_version != ELF::VER_NEED_CURRENT) 662 report_fatal_error("Unexpected verneed version"); 663 // Iterate through the Vernaux entries 664 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; 665 for (unsigned VernauxIndex = 0; VernauxIndex < Verneed->vn_cnt; 666 ++VernauxIndex) { 667 if (VernauxBuf + sizeof(Elf_Vernaux) > VerneedEnd) 668 report_fatal_error("Section ended unexpected while scanning auxiliary " 669 "version needed records."); 670 const Elf_Vernaux *Vernaux = 671 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf); 672 size_t Index = Vernaux->vna_other & ELF::VERSYM_VERSION; 673 if (Index >= VersionMap.size()) 674 VersionMap.resize(Index + 1); 675 VersionMap[Index] = VersionMapEntry(Vernaux); 676 VernauxBuf += Vernaux->vna_next; 677 } 678 VerneedBuf += Verneed->vn_next; 679 } 680 } 681 682 // Iterate through the version definitions, and place each Elf_Verdef 683 // in the VersionMap according to its index. 684 template <class ELFT> 685 void ELFDumper<ELFT>::LoadVersionDefs(const Elf_Shdr *Sec) const { 686 unsigned VerdefSize = Sec->sh_size; // Size of section in bytes 687 unsigned VerdefEntries = Sec->sh_info; // Number of Verdef entries 688 const uint8_t *VerdefStart = reinterpret_cast<const uint8_t *>( 689 ObjF->getELFFile()->base() + Sec->sh_offset); 690 const uint8_t *VerdefEnd = VerdefStart + VerdefSize; 691 // The first Verdef entry is at the start of the section. 692 const uint8_t *VerdefBuf = VerdefStart; 693 for (unsigned VerdefIndex = 0; VerdefIndex < VerdefEntries; ++VerdefIndex) { 694 if (VerdefBuf + sizeof(Elf_Verdef) > VerdefEnd) 695 report_fatal_error("Section ended unexpectedly while scanning " 696 "version definitions."); 697 const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf); 698 if (Verdef->vd_version != ELF::VER_DEF_CURRENT) 699 report_fatal_error("Unexpected verdef version"); 700 size_t Index = Verdef->vd_ndx & ELF::VERSYM_VERSION; 701 if (Index >= VersionMap.size()) 702 VersionMap.resize(Index + 1); 703 VersionMap[Index] = VersionMapEntry(Verdef); 704 VerdefBuf += Verdef->vd_next; 705 } 706 } 707 708 template <class ELFT> void ELFDumper<ELFT>::LoadVersionMap() const { 709 // If there is no dynamic symtab or version table, there is nothing to do. 710 if (!DynSymRegion.Addr || !SymbolVersionSection) 711 return; 712 713 // Has the VersionMap already been loaded? 714 if (!VersionMap.empty()) 715 return; 716 717 // The first two version indexes are reserved. 718 // Index 0 is LOCAL, index 1 is GLOBAL. 719 VersionMap.push_back(VersionMapEntry()); 720 VersionMap.push_back(VersionMapEntry()); 721 722 if (SymbolVersionDefSection) 723 LoadVersionDefs(SymbolVersionDefSection); 724 725 if (SymbolVersionNeedSection) 726 LoadVersionNeeds(SymbolVersionNeedSection); 727 } 728 729 template <typename ELFT> 730 StringRef ELFDumper<ELFT>::getSymbolVersion(StringRef StrTab, 731 const Elf_Sym *Sym, 732 bool &IsDefault) const { 733 // This is a dynamic symbol. Look in the GNU symbol version table. 734 if (!SymbolVersionSection) { 735 // No version table. 736 IsDefault = false; 737 return ""; 738 } 739 740 // Determine the position in the symbol table of this entry. 741 size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) - 742 reinterpret_cast<uintptr_t>(DynSymRegion.Addr)) / 743 sizeof(Elf_Sym); 744 745 // Get the corresponding version index entry. 746 const Elf_Versym *Versym = unwrapOrError( 747 ObjF->getFileName(), ObjF->getELFFile()->template getEntry<Elf_Versym>( 748 SymbolVersionSection, EntryIndex)); 749 return this->getSymbolVersionByIndex(StrTab, Versym->vs_index, IsDefault); 750 } 751 752 static std::string maybeDemangle(StringRef Name) { 753 return opts::Demangle ? demangle(Name) : Name.str(); 754 } 755 756 template <typename ELFT> 757 Expected<std::string> 758 ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 759 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 760 Expected<const typename ELFT::Sym *> SymOrErr = 761 Obj->getSymbol(DotSymtabSec, Index); 762 if (!SymOrErr) 763 return SymOrErr.takeError(); 764 765 Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec); 766 if (!StrTabOrErr) 767 return StrTabOrErr.takeError(); 768 769 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 770 if (!NameOrErr) 771 return NameOrErr.takeError(); 772 return maybeDemangle(*NameOrErr); 773 } 774 775 template <typename ELFT> 776 StringRef ELFDumper<ELFT>::getSymbolVersionByIndex(StringRef StrTab, 777 uint32_t SymbolVersionIndex, 778 bool &IsDefault) const { 779 size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION; 780 781 // Special markers for unversioned symbols. 782 if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) { 783 IsDefault = false; 784 return ""; 785 } 786 787 // Lookup this symbol in the version table. 788 LoadVersionMap(); 789 if (VersionIndex >= VersionMap.size() || VersionMap[VersionIndex].isNull()) 790 reportError(createError("Invalid version entry"), ObjF->getFileName()); 791 const VersionMapEntry &Entry = VersionMap[VersionIndex]; 792 793 // Get the version name string. 794 size_t NameOffset; 795 if (Entry.isVerdef()) { 796 // The first Verdaux entry holds the name. 797 NameOffset = Entry.getVerdef()->getAux()->vda_name; 798 IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN); 799 } else { 800 NameOffset = Entry.getVernaux()->vna_name; 801 IsDefault = false; 802 } 803 if (NameOffset >= StrTab.size()) 804 reportError(createError("Invalid string offset"), ObjF->getFileName()); 805 return StrTab.data() + NameOffset; 806 } 807 808 template <typename ELFT> 809 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol, 810 StringRef StrTable, 811 bool IsDynamic) const { 812 std::string SymbolName = maybeDemangle( 813 unwrapOrError(ObjF->getFileName(), Symbol->getName(StrTable))); 814 815 if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) { 816 unsigned SectionIndex; 817 StringRef SectionName; 818 Elf_Sym_Range Syms = unwrapOrError( 819 ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec)); 820 getSectionNameIndex(Symbol, Syms.begin(), SectionName, SectionIndex); 821 return SectionName; 822 } 823 824 if (!IsDynamic) 825 return SymbolName; 826 827 bool IsDefault; 828 StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault); 829 if (!Version.empty()) { 830 SymbolName += (IsDefault ? "@@" : "@"); 831 SymbolName += Version; 832 } 833 return SymbolName; 834 } 835 836 template <typename ELFT> 837 void ELFDumper<ELFT>::getSectionNameIndex(const Elf_Sym *Symbol, 838 const Elf_Sym *FirstSym, 839 StringRef &SectionName, 840 unsigned &SectionIndex) const { 841 SectionIndex = Symbol->st_shndx; 842 if (Symbol->isUndefined()) 843 SectionName = "Undefined"; 844 else if (Symbol->isProcessorSpecific()) 845 SectionName = "Processor Specific"; 846 else if (Symbol->isOSSpecific()) 847 SectionName = "Operating System Specific"; 848 else if (Symbol->isAbsolute()) 849 SectionName = "Absolute"; 850 else if (Symbol->isCommon()) 851 SectionName = "Common"; 852 else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX) 853 SectionName = "Reserved"; 854 else { 855 if (SectionIndex == SHN_XINDEX) 856 SectionIndex = unwrapOrError(ObjF->getFileName(), 857 object::getExtendedSymbolTableIndex<ELFT>( 858 Symbol, FirstSym, ShndxTable)); 859 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 860 const typename ELFT::Shdr *Sec = 861 unwrapOrError(ObjF->getFileName(), Obj->getSection(SectionIndex)); 862 SectionName = unwrapOrError(ObjF->getFileName(), Obj->getSectionName(Sec)); 863 } 864 } 865 866 template <class ELFO> 867 static const typename ELFO::Elf_Shdr * 868 findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName, 869 uint64_t Addr) { 870 for (const auto &Shdr : unwrapOrError(FileName, Obj->sections())) 871 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 872 return &Shdr; 873 return nullptr; 874 } 875 876 template <class ELFO> 877 static const typename ELFO::Elf_Shdr * 878 findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) { 879 for (const auto &Shdr : unwrapOrError(FileName, Obj.sections())) 880 if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr))) 881 return &Shdr; 882 return nullptr; 883 } 884 885 static const EnumEntry<unsigned> ElfClass[] = { 886 {"None", "none", ELF::ELFCLASSNONE}, 887 {"32-bit", "ELF32", ELF::ELFCLASS32}, 888 {"64-bit", "ELF64", ELF::ELFCLASS64}, 889 }; 890 891 static const EnumEntry<unsigned> ElfDataEncoding[] = { 892 {"None", "none", ELF::ELFDATANONE}, 893 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 894 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 895 }; 896 897 static const EnumEntry<unsigned> ElfObjectFileType[] = { 898 {"None", "NONE (none)", ELF::ET_NONE}, 899 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 900 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 901 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 902 {"Core", "CORE (Core file)", ELF::ET_CORE}, 903 }; 904 905 static const EnumEntry<unsigned> ElfOSABI[] = { 906 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 907 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 908 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 909 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 910 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 911 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 912 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 913 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 914 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 915 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 916 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 917 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 918 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 919 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 920 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 921 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 922 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 923 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 924 }; 925 926 static const EnumEntry<unsigned> SymVersionFlags[] = { 927 {"Base", "BASE", VER_FLG_BASE}, 928 {"Weak", "WEAK", VER_FLG_WEAK}, 929 {"Info", "INFO", VER_FLG_INFO}}; 930 931 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 932 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 933 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 934 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 935 }; 936 937 static const EnumEntry<unsigned> ARMElfOSABI[] = { 938 {"ARM", "ARM", ELF::ELFOSABI_ARM} 939 }; 940 941 static const EnumEntry<unsigned> C6000ElfOSABI[] = { 942 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 943 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 944 }; 945 946 static const EnumEntry<unsigned> ElfMachineType[] = { 947 ENUM_ENT(EM_NONE, "None"), 948 ENUM_ENT(EM_M32, "WE32100"), 949 ENUM_ENT(EM_SPARC, "Sparc"), 950 ENUM_ENT(EM_386, "Intel 80386"), 951 ENUM_ENT(EM_68K, "MC68000"), 952 ENUM_ENT(EM_88K, "MC88000"), 953 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 954 ENUM_ENT(EM_860, "Intel 80860"), 955 ENUM_ENT(EM_MIPS, "MIPS R3000"), 956 ENUM_ENT(EM_S370, "IBM System/370"), 957 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 958 ENUM_ENT(EM_PARISC, "HPPA"), 959 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 960 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 961 ENUM_ENT(EM_960, "Intel 80960"), 962 ENUM_ENT(EM_PPC, "PowerPC"), 963 ENUM_ENT(EM_PPC64, "PowerPC64"), 964 ENUM_ENT(EM_S390, "IBM S/390"), 965 ENUM_ENT(EM_SPU, "SPU"), 966 ENUM_ENT(EM_V800, "NEC V800 series"), 967 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 968 ENUM_ENT(EM_RH32, "TRW RH-32"), 969 ENUM_ENT(EM_RCE, "Motorola RCE"), 970 ENUM_ENT(EM_ARM, "ARM"), 971 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 972 ENUM_ENT(EM_SH, "Hitachi SH"), 973 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 974 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 975 ENUM_ENT(EM_ARC, "ARC"), 976 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 977 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 978 ENUM_ENT(EM_H8S, "Hitachi H8S"), 979 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 980 ENUM_ENT(EM_IA_64, "Intel IA-64"), 981 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 982 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 983 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 984 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 985 ENUM_ENT(EM_PCP, "Siemens PCP"), 986 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 987 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 988 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 989 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 990 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 991 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 992 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 993 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 994 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 995 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 996 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 997 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 998 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 999 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1000 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1001 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1002 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1003 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1004 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1005 ENUM_ENT(EM_VAX, "Digital VAX"), 1006 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1007 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1008 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1009 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1010 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1011 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1012 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1013 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1014 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1015 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1016 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1017 ENUM_ENT(EM_V850, "NEC v850"), 1018 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1019 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1020 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1021 ENUM_ENT(EM_PJ, "picoJava"), 1022 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1023 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1024 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1025 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1026 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1027 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1028 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1029 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1030 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1031 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1032 ENUM_ENT(EM_MAX, "MAX Processor"), 1033 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1034 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1035 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1036 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1037 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1038 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1039 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1040 ENUM_ENT(EM_UNICORE, "Unicore"), 1041 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1042 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1043 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1044 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1045 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1046 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1047 ENUM_ENT(EM_M16C, "Renesas M16C"), 1048 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1049 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1050 ENUM_ENT(EM_M32C, "Renesas M32C"), 1051 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1052 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1053 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1054 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1055 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1056 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1057 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1058 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1059 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1060 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1061 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1062 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1063 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1064 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1065 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1066 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1067 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1068 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1069 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1070 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1071 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1072 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1073 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1074 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1075 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1076 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1077 ENUM_ENT(EM_RX, "Renesas RX"), 1078 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1079 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1080 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1081 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"), 1082 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1083 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1084 ENUM_ENT(EM_L10M, "EM_L10M"), 1085 ENUM_ENT(EM_K10M, "EM_K10M"), 1086 ENUM_ENT(EM_AARCH64, "AArch64"), 1087 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1088 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1089 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1090 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1091 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1092 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1093 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1094 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1095 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1096 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1097 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1098 ENUM_ENT(EM_RL78, "Renesas RL78"), 1099 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1100 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1101 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1102 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1103 ENUM_ENT(EM_RISCV, "RISC-V"), 1104 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1105 ENUM_ENT(EM_BPF, "EM_BPF"), 1106 }; 1107 1108 static const EnumEntry<unsigned> ElfSymbolBindings[] = { 1109 {"Local", "LOCAL", ELF::STB_LOCAL}, 1110 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1111 {"Weak", "WEAK", ELF::STB_WEAK}, 1112 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1113 1114 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1115 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1116 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1117 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1118 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1119 1120 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1121 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1122 }; 1123 1124 static const char *getGroupType(uint32_t Flag) { 1125 if (Flag & ELF::GRP_COMDAT) 1126 return "COMDAT"; 1127 else 1128 return "(unknown)"; 1129 } 1130 1131 static const EnumEntry<unsigned> ElfSectionFlags[] = { 1132 ENUM_ENT(SHF_WRITE, "W"), 1133 ENUM_ENT(SHF_ALLOC, "A"), 1134 ENUM_ENT(SHF_EXCLUDE, "E"), 1135 ENUM_ENT(SHF_EXECINSTR, "X"), 1136 ENUM_ENT(SHF_MERGE, "M"), 1137 ENUM_ENT(SHF_STRINGS, "S"), 1138 ENUM_ENT(SHF_INFO_LINK, "I"), 1139 ENUM_ENT(SHF_LINK_ORDER, "L"), 1140 ENUM_ENT(SHF_OS_NONCONFORMING, "o"), 1141 ENUM_ENT(SHF_GROUP, "G"), 1142 ENUM_ENT(SHF_TLS, "T"), 1143 ENUM_ENT(SHF_MASKOS, "o"), 1144 ENUM_ENT(SHF_MASKPROC, "p"), 1145 ENUM_ENT_1(SHF_COMPRESSED), 1146 }; 1147 1148 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1149 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION), 1150 LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION) 1151 }; 1152 1153 static const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1154 LLVM_READOBJ_ENUM_ENT(ELF, SHF_ARM_PURECODE) 1155 }; 1156 1157 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1158 LLVM_READOBJ_ENUM_ENT(ELF, SHF_HEX_GPREL) 1159 }; 1160 1161 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1162 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NODUPES), 1163 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NAMES ), 1164 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_LOCAL ), 1165 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP), 1166 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_GPREL ), 1167 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_MERGE ), 1168 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_ADDR ), 1169 LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_STRING ) 1170 }; 1171 1172 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1173 LLVM_READOBJ_ENUM_ENT(ELF, SHF_X86_64_LARGE) 1174 }; 1175 1176 static std::string getGNUFlags(uint64_t Flags) { 1177 std::string Str; 1178 for (auto Entry : ElfSectionFlags) { 1179 uint64_t Flag = Entry.Value & Flags; 1180 Flags &= ~Entry.Value; 1181 switch (Flag) { 1182 case ELF::SHF_WRITE: 1183 case ELF::SHF_ALLOC: 1184 case ELF::SHF_EXECINSTR: 1185 case ELF::SHF_MERGE: 1186 case ELF::SHF_STRINGS: 1187 case ELF::SHF_INFO_LINK: 1188 case ELF::SHF_LINK_ORDER: 1189 case ELF::SHF_OS_NONCONFORMING: 1190 case ELF::SHF_GROUP: 1191 case ELF::SHF_TLS: 1192 case ELF::SHF_EXCLUDE: 1193 Str += Entry.AltName; 1194 break; 1195 default: 1196 if (Flag & ELF::SHF_MASKOS) 1197 Str += "o"; 1198 else if (Flag & ELF::SHF_MASKPROC) 1199 Str += "p"; 1200 else if (Flag) 1201 Str += "x"; 1202 } 1203 } 1204 return Str; 1205 } 1206 1207 static const char *getElfSegmentType(unsigned Arch, unsigned Type) { 1208 // Check potentially overlapped processor-specific 1209 // program header type. 1210 switch (Arch) { 1211 case ELF::EM_ARM: 1212 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1213 break; 1214 case ELF::EM_MIPS: 1215 case ELF::EM_MIPS_RS3_LE: 1216 switch (Type) { 1217 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1218 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1219 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1220 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1221 } 1222 break; 1223 } 1224 1225 switch (Type) { 1226 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL ); 1227 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD ); 1228 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1229 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP ); 1230 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE ); 1231 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB ); 1232 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR ); 1233 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS ); 1234 1235 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1236 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1237 1238 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1239 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1240 1241 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1242 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1243 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1244 1245 default: 1246 return ""; 1247 } 1248 } 1249 1250 static std::string getElfPtType(unsigned Arch, unsigned Type) { 1251 switch (Type) { 1252 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL) 1253 LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD) 1254 LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC) 1255 LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP) 1256 LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE) 1257 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB) 1258 LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR) 1259 LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS) 1260 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME) 1261 LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND) 1262 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK) 1263 LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO) 1264 default: 1265 // All machine specific PT_* types 1266 switch (Arch) { 1267 case ELF::EM_ARM: 1268 if (Type == ELF::PT_ARM_EXIDX) 1269 return "EXIDX"; 1270 break; 1271 case ELF::EM_MIPS: 1272 case ELF::EM_MIPS_RS3_LE: 1273 switch (Type) { 1274 case PT_MIPS_REGINFO: 1275 return "REGINFO"; 1276 case PT_MIPS_RTPROC: 1277 return "RTPROC"; 1278 case PT_MIPS_OPTIONS: 1279 return "OPTIONS"; 1280 case PT_MIPS_ABIFLAGS: 1281 return "ABIFLAGS"; 1282 } 1283 break; 1284 } 1285 } 1286 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1287 } 1288 1289 static const EnumEntry<unsigned> ElfSegmentFlags[] = { 1290 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1291 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1292 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1293 }; 1294 1295 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1296 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1297 ENUM_ENT(EF_MIPS_PIC, "pic"), 1298 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1299 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1300 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1301 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1302 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1303 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1304 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1305 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1306 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1307 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1308 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1309 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1310 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1311 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1312 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1313 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1314 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1315 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1316 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1317 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1318 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1319 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1320 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1321 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1322 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1323 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1324 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1325 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1326 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1327 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1328 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1329 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1330 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1331 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1332 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1333 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1334 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1335 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1336 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1337 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1338 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1339 }; 1340 1341 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = { 1342 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1343 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1344 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1345 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1346 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1347 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1348 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1349 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1350 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1351 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1352 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1353 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1354 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1355 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1356 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1357 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1358 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1359 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1360 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1361 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1362 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1363 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1364 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1365 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1366 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1367 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1368 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1369 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1370 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1371 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1372 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1373 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1374 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1375 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1376 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1377 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1378 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1379 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK), 1380 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC) 1381 }; 1382 1383 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1384 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1385 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1386 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1387 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1388 ENUM_ENT(EF_RISCV_RVE, "RVE") 1389 }; 1390 1391 static const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1392 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1393 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1394 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1395 }; 1396 1397 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1398 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1399 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1400 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1401 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1402 }; 1403 1404 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1405 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1406 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1407 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1408 }; 1409 1410 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1411 switch (Odk) { 1412 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1413 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1414 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1415 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1416 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1417 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1418 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1419 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1420 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1421 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1422 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1423 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1424 default: 1425 return "Unknown"; 1426 } 1427 } 1428 1429 template <typename ELFT> 1430 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1431 ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) { 1432 // Try to locate the PT_DYNAMIC header. 1433 const Elf_Phdr *DynamicPhdr = nullptr; 1434 for (const Elf_Phdr &Phdr : 1435 unwrapOrError(ObjF->getFileName(), Obj->program_headers())) { 1436 if (Phdr.p_type != ELF::PT_DYNAMIC) 1437 continue; 1438 DynamicPhdr = &Phdr; 1439 break; 1440 } 1441 1442 // Try to locate the .dynamic section in the sections header table. 1443 const Elf_Shdr *DynamicSec = nullptr; 1444 for (const Elf_Shdr &Sec : 1445 unwrapOrError(ObjF->getFileName(), Obj->sections())) { 1446 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1447 continue; 1448 DynamicSec = &Sec; 1449 break; 1450 } 1451 1452 if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1453 ObjF->getMemoryBufferRef().getBufferSize()) { 1454 reportWarning( 1455 createError( 1456 "PT_DYNAMIC segment offset + size exceeds the size of the file"), 1457 ObjF->getFileName()); 1458 // Don't use the broken dynamic header. 1459 DynamicPhdr = nullptr; 1460 } 1461 1462 if (DynamicPhdr && DynamicSec) { 1463 StringRef Name = 1464 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec)); 1465 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1466 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1467 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1468 reportWarning(createError("The SHT_DYNAMIC section '" + Name + 1469 "' is not contained within the " 1470 "PT_DYNAMIC segment"), 1471 ObjF->getFileName()); 1472 1473 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1474 reportWarning(createError("The SHT_DYNAMIC section '" + Name + 1475 "' is not at the start of " 1476 "PT_DYNAMIC segment"), 1477 ObjF->getFileName()); 1478 } 1479 1480 return std::make_pair(DynamicPhdr, DynamicSec); 1481 } 1482 1483 template <typename ELFT> 1484 void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) { 1485 const Elf_Phdr *DynamicPhdr; 1486 const Elf_Shdr *DynamicSec; 1487 std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj); 1488 if (!DynamicPhdr && !DynamicSec) 1489 return; 1490 1491 DynRegionInfo FromPhdr(ObjF->getFileName()); 1492 bool IsPhdrTableValid = false; 1493 if (DynamicPhdr) { 1494 FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn)); 1495 IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty(); 1496 } 1497 1498 // Locate the dynamic table described in a section header. 1499 // Ignore sh_entsize and use the expected value for entry size explicitly. 1500 // This allows us to dump dynamic sections with a broken sh_entsize 1501 // field. 1502 DynRegionInfo FromSec(ObjF->getFileName()); 1503 bool IsSecTableValid = false; 1504 if (DynamicSec) { 1505 FromSec = 1506 checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset, 1507 DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()}); 1508 IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty(); 1509 } 1510 1511 // When we only have information from one of the SHT_DYNAMIC section header or 1512 // PT_DYNAMIC program header, just use that. 1513 if (!DynamicPhdr || !DynamicSec) { 1514 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1515 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1516 parseDynamicTable(); 1517 } else { 1518 reportWarning(createError("no valid dynamic table was found"), 1519 ObjF->getFileName()); 1520 } 1521 return; 1522 } 1523 1524 // At this point we have tables found from the section header and from the 1525 // dynamic segment. Usually they match, but we have to do sanity checks to 1526 // verify that. 1527 1528 if (FromPhdr.Addr != FromSec.Addr) 1529 reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC " 1530 "program header disagree about " 1531 "the location of the dynamic table"), 1532 ObjF->getFileName()); 1533 1534 if (!IsPhdrTableValid && !IsSecTableValid) { 1535 reportWarning(createError("no valid dynamic table was found"), 1536 ObjF->getFileName()); 1537 return; 1538 } 1539 1540 // Information in the PT_DYNAMIC program header has priority over the information 1541 // in a section header. 1542 if (IsPhdrTableValid) { 1543 if (!IsSecTableValid) 1544 reportWarning( 1545 createError( 1546 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"), 1547 ObjF->getFileName()); 1548 DynamicTable = FromPhdr; 1549 } else { 1550 reportWarning( 1551 createError( 1552 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"), 1553 ObjF->getFileName()); 1554 DynamicTable = FromSec; 1555 } 1556 1557 parseDynamicTable(); 1558 } 1559 1560 template <typename ELFT> 1561 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, 1562 ScopedPrinter &Writer) 1563 : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()), 1564 DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()), 1565 DynPLTRelRegion(ObjF->getFileName()), DynSymRegion(ObjF->getFileName()), 1566 DynamicTable(ObjF->getFileName()) { 1567 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 1568 for (const Elf_Shdr &Sec : 1569 unwrapOrError(ObjF->getFileName(), Obj->sections())) { 1570 switch (Sec.sh_type) { 1571 case ELF::SHT_SYMTAB: 1572 if (!DotSymtabSec) 1573 DotSymtabSec = &Sec; 1574 break; 1575 case ELF::SHT_DYNSYM: 1576 if (!DynSymRegion.Size) { 1577 DynSymRegion = createDRIFrom(&Sec); 1578 // This is only used (if Elf_Shdr present)for naming section in GNU 1579 // style 1580 DynSymtabName = 1581 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec)); 1582 1583 if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec)) 1584 DynamicStringTable = *E; 1585 else 1586 reportWarning(E.takeError(), ObjF->getFileName()); 1587 } 1588 break; 1589 case ELF::SHT_SYMTAB_SHNDX: 1590 ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec)); 1591 break; 1592 case ELF::SHT_GNU_versym: 1593 if (!SymbolVersionSection) 1594 SymbolVersionSection = &Sec; 1595 break; 1596 case ELF::SHT_GNU_verdef: 1597 if (!SymbolVersionDefSection) 1598 SymbolVersionDefSection = &Sec; 1599 break; 1600 case ELF::SHT_GNU_verneed: 1601 if (!SymbolVersionNeedSection) 1602 SymbolVersionNeedSection = &Sec; 1603 break; 1604 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1605 if (!DotCGProfileSec) 1606 DotCGProfileSec = &Sec; 1607 break; 1608 case ELF::SHT_LLVM_ADDRSIG: 1609 if (!DotAddrsigSec) 1610 DotAddrsigSec = &Sec; 1611 break; 1612 } 1613 } 1614 1615 loadDynamicTable(Obj); 1616 1617 if (opts::Output == opts::GNU) 1618 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this)); 1619 else 1620 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this)); 1621 } 1622 1623 static const char *getTypeString(unsigned Arch, uint64_t Type) { 1624 #define DYNAMIC_TAG(n, v) 1625 switch (Arch) { 1626 1627 case EM_AARCH64: 1628 switch (Type) { 1629 #define AARCH64_DYNAMIC_TAG(name, value) \ 1630 case DT_##name: \ 1631 return #name; 1632 #include "llvm/BinaryFormat/DynamicTags.def" 1633 #undef AARCH64_DYNAMIC_TAG 1634 } 1635 break; 1636 1637 case EM_HEXAGON: 1638 switch (Type) { 1639 #define HEXAGON_DYNAMIC_TAG(name, value) \ 1640 case DT_##name: \ 1641 return #name; 1642 #include "llvm/BinaryFormat/DynamicTags.def" 1643 #undef HEXAGON_DYNAMIC_TAG 1644 } 1645 break; 1646 1647 case EM_MIPS: 1648 switch (Type) { 1649 #define MIPS_DYNAMIC_TAG(name, value) \ 1650 case DT_##name: \ 1651 return #name; 1652 #include "llvm/BinaryFormat/DynamicTags.def" 1653 #undef MIPS_DYNAMIC_TAG 1654 } 1655 break; 1656 1657 case EM_PPC64: 1658 switch (Type) { 1659 #define PPC64_DYNAMIC_TAG(name, value) \ 1660 case DT_##name: \ 1661 return #name; 1662 #include "llvm/BinaryFormat/DynamicTags.def" 1663 #undef PPC64_DYNAMIC_TAG 1664 } 1665 break; 1666 } 1667 #undef DYNAMIC_TAG 1668 switch (Type) { 1669 // Now handle all dynamic tags except the architecture specific ones 1670 #define AARCH64_DYNAMIC_TAG(name, value) 1671 #define MIPS_DYNAMIC_TAG(name, value) 1672 #define HEXAGON_DYNAMIC_TAG(name, value) 1673 #define PPC64_DYNAMIC_TAG(name, value) 1674 // Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc. 1675 #define DYNAMIC_TAG_MARKER(name, value) 1676 #define DYNAMIC_TAG(name, value) \ 1677 case DT_##name: \ 1678 return #name; 1679 #include "llvm/BinaryFormat/DynamicTags.def" 1680 #undef DYNAMIC_TAG 1681 #undef AARCH64_DYNAMIC_TAG 1682 #undef MIPS_DYNAMIC_TAG 1683 #undef HEXAGON_DYNAMIC_TAG 1684 #undef PPC64_DYNAMIC_TAG 1685 #undef DYNAMIC_TAG_MARKER 1686 default: 1687 return "unknown"; 1688 } 1689 } 1690 1691 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 1692 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 1693 auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr); 1694 if (!MappedAddrOrError) { 1695 Error Err = 1696 createError("Unable to parse DT_" + 1697 Twine(getTypeString( 1698 ObjF->getELFFile()->getHeader()->e_machine, Tag)) + 1699 ": " + llvm::toString(MappedAddrOrError.takeError())); 1700 1701 reportWarning(std::move(Err), ObjF->getFileName()); 1702 return nullptr; 1703 } 1704 return MappedAddrOrError.get(); 1705 }; 1706 1707 uint64_t SONameOffset = 0; 1708 const char *StringTableBegin = nullptr; 1709 uint64_t StringTableSize = 0; 1710 for (const Elf_Dyn &Dyn : dynamic_table()) { 1711 switch (Dyn.d_tag) { 1712 case ELF::DT_HASH: 1713 HashTable = reinterpret_cast<const Elf_Hash *>( 1714 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1715 break; 1716 case ELF::DT_GNU_HASH: 1717 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 1718 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1719 break; 1720 case ELF::DT_STRTAB: 1721 StringTableBegin = reinterpret_cast<const char *>( 1722 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1723 break; 1724 case ELF::DT_STRSZ: 1725 StringTableSize = Dyn.getVal(); 1726 break; 1727 case ELF::DT_SYMTAB: { 1728 // Often we find the information about the dynamic symbol table 1729 // location in the SHT_DYNSYM section header. However, the value in 1730 // DT_SYMTAB has priority, because it is used by dynamic loaders to 1731 // locate .dynsym at runtime. The location we find in the section header 1732 // and the location we find here should match. If we can't map the 1733 // DT_SYMTAB value to an address (e.g. when there are no program headers), we 1734 // ignore its value. 1735 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 1736 // EntSize is non-zero if the dynamic symbol table has been found via a 1737 // section header. 1738 if (DynSymRegion.EntSize && VA != DynSymRegion.Addr) 1739 reportWarning( 1740 createError( 1741 "SHT_DYNSYM section header and DT_SYMTAB disagree about " 1742 "the location of the dynamic symbol table"), 1743 ObjF->getFileName()); 1744 1745 DynSymRegion.Addr = VA; 1746 DynSymRegion.EntSize = sizeof(Elf_Sym); 1747 } 1748 break; 1749 } 1750 case ELF::DT_RELA: 1751 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1752 break; 1753 case ELF::DT_RELASZ: 1754 DynRelaRegion.Size = Dyn.getVal(); 1755 break; 1756 case ELF::DT_RELAENT: 1757 DynRelaRegion.EntSize = Dyn.getVal(); 1758 break; 1759 case ELF::DT_SONAME: 1760 SONameOffset = Dyn.getVal(); 1761 break; 1762 case ELF::DT_REL: 1763 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1764 break; 1765 case ELF::DT_RELSZ: 1766 DynRelRegion.Size = Dyn.getVal(); 1767 break; 1768 case ELF::DT_RELENT: 1769 DynRelRegion.EntSize = Dyn.getVal(); 1770 break; 1771 case ELF::DT_RELR: 1772 case ELF::DT_ANDROID_RELR: 1773 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1774 break; 1775 case ELF::DT_RELRSZ: 1776 case ELF::DT_ANDROID_RELRSZ: 1777 DynRelrRegion.Size = Dyn.getVal(); 1778 break; 1779 case ELF::DT_RELRENT: 1780 case ELF::DT_ANDROID_RELRENT: 1781 DynRelrRegion.EntSize = Dyn.getVal(); 1782 break; 1783 case ELF::DT_PLTREL: 1784 if (Dyn.getVal() == DT_REL) 1785 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 1786 else if (Dyn.getVal() == DT_RELA) 1787 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 1788 else 1789 reportError(createError(Twine("unknown DT_PLTREL value of ") + 1790 Twine((uint64_t)Dyn.getVal())), 1791 ObjF->getFileName()); 1792 break; 1793 case ELF::DT_JMPREL: 1794 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1795 break; 1796 case ELF::DT_PLTRELSZ: 1797 DynPLTRelRegion.Size = Dyn.getVal(); 1798 break; 1799 } 1800 } 1801 if (StringTableBegin) 1802 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 1803 SOName = getDynamicString(SONameOffset); 1804 } 1805 1806 template <typename ELFT> 1807 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const { 1808 return DynRelRegion.getAsArrayRef<Elf_Rel>(); 1809 } 1810 1811 template <typename ELFT> 1812 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const { 1813 return DynRelaRegion.getAsArrayRef<Elf_Rela>(); 1814 } 1815 1816 template <typename ELFT> 1817 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const { 1818 return DynRelrRegion.getAsArrayRef<Elf_Relr>(); 1819 } 1820 1821 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() { 1822 ELFDumperStyle->printFileHeaders(ObjF->getELFFile()); 1823 } 1824 1825 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() { 1826 ELFDumperStyle->printSectionHeaders(ObjF->getELFFile()); 1827 } 1828 1829 template <class ELFT> void ELFDumper<ELFT>::printRelocations() { 1830 ELFDumperStyle->printRelocations(ObjF->getELFFile()); 1831 } 1832 1833 template <class ELFT> 1834 void ELFDumper<ELFT>::printProgramHeaders( 1835 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 1836 ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders, 1837 PrintSectionMapping); 1838 } 1839 1840 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 1841 // Dump version symbol section. 1842 ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(), 1843 SymbolVersionSection); 1844 1845 // Dump version definition section. 1846 ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(), 1847 SymbolVersionDefSection); 1848 1849 // Dump version dependency section. 1850 ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(), 1851 SymbolVersionNeedSection); 1852 } 1853 1854 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() { 1855 ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile()); 1856 } 1857 1858 template <class ELFT> 1859 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols, 1860 bool PrintDynamicSymbols) { 1861 ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols, 1862 PrintDynamicSymbols); 1863 } 1864 1865 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() { 1866 ELFDumperStyle->printHashSymbols(ObjF->getELFFile()); 1867 } 1868 1869 template <class ELFT> void ELFDumper<ELFT>::printHashHistogram() { 1870 ELFDumperStyle->printHashHistogram(ObjF->getELFFile()); 1871 } 1872 1873 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() { 1874 ELFDumperStyle->printCGProfile(ObjF->getELFFile()); 1875 } 1876 1877 template <class ELFT> void ELFDumper<ELFT>::printNotes() { 1878 ELFDumperStyle->printNotes(ObjF->getELFFile()); 1879 } 1880 1881 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() { 1882 ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile()); 1883 } 1884 1885 template <class ELFT> void ELFDumper<ELFT>::printStackSizes() { 1886 ELFDumperStyle->printStackSizes(ObjF); 1887 } 1888 1889 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 1890 { #enum, prefix##_##enum } 1891 1892 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 1893 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 1894 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 1895 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 1896 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 1897 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 1898 }; 1899 1900 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 1901 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 1902 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 1903 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 1904 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 1905 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 1906 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 1907 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 1908 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 1909 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 1910 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 1911 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 1912 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 1913 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 1914 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 1915 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 1916 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 1917 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 1918 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 1919 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 1920 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 1921 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 1922 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 1923 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 1924 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 1925 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 1926 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON) 1927 }; 1928 1929 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 1930 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 1931 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 1932 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 1933 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 1934 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 1935 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 1936 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 1937 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 1938 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 1939 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 1940 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 1941 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 1942 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 1943 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 1944 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 1945 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 1946 }; 1947 1948 #undef LLVM_READOBJ_DT_FLAG_ENT 1949 1950 template <typename T, typename TFlag> 1951 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 1952 using FlagEntry = EnumEntry<TFlag>; 1953 using FlagVector = SmallVector<FlagEntry, 10>; 1954 FlagVector SetFlags; 1955 1956 for (const auto &Flag : Flags) { 1957 if (Flag.Value == 0) 1958 continue; 1959 1960 if ((Value & Flag.Value) == Flag.Value) 1961 SetFlags.push_back(Flag); 1962 } 1963 1964 for (const auto &Flag : SetFlags) { 1965 OS << Flag.Name << " "; 1966 } 1967 } 1968 1969 template <class ELFT> 1970 void ELFDumper<ELFT>::printDynamicEntry(raw_ostream &OS, uint64_t Type, 1971 uint64_t Value) const { 1972 const char *ConvChar = 1973 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 1974 1975 // Handle custom printing of architecture specific tags 1976 switch (ObjF->getELFFile()->getHeader()->e_machine) { 1977 case EM_AARCH64: 1978 switch (Type) { 1979 case DT_AARCH64_BTI_PLT: 1980 case DT_AARCH64_PAC_PLT: 1981 OS << Value; 1982 return; 1983 default: 1984 break; 1985 } 1986 break; 1987 case EM_HEXAGON: 1988 switch (Type) { 1989 case DT_HEXAGON_VER: 1990 OS << Value; 1991 return; 1992 case DT_HEXAGON_SYMSZ: 1993 case DT_HEXAGON_PLT: 1994 OS << format(ConvChar, Value); 1995 return; 1996 default: 1997 break; 1998 } 1999 break; 2000 case EM_MIPS: 2001 switch (Type) { 2002 case DT_MIPS_RLD_VERSION: 2003 case DT_MIPS_LOCAL_GOTNO: 2004 case DT_MIPS_SYMTABNO: 2005 case DT_MIPS_UNREFEXTNO: 2006 OS << Value; 2007 return; 2008 case DT_MIPS_TIME_STAMP: 2009 case DT_MIPS_ICHECKSUM: 2010 case DT_MIPS_IVERSION: 2011 case DT_MIPS_BASE_ADDRESS: 2012 case DT_MIPS_MSYM: 2013 case DT_MIPS_CONFLICT: 2014 case DT_MIPS_LIBLIST: 2015 case DT_MIPS_CONFLICTNO: 2016 case DT_MIPS_LIBLISTNO: 2017 case DT_MIPS_GOTSYM: 2018 case DT_MIPS_HIPAGENO: 2019 case DT_MIPS_RLD_MAP: 2020 case DT_MIPS_DELTA_CLASS: 2021 case DT_MIPS_DELTA_CLASS_NO: 2022 case DT_MIPS_DELTA_INSTANCE: 2023 case DT_MIPS_DELTA_RELOC: 2024 case DT_MIPS_DELTA_RELOC_NO: 2025 case DT_MIPS_DELTA_SYM: 2026 case DT_MIPS_DELTA_SYM_NO: 2027 case DT_MIPS_DELTA_CLASSSYM: 2028 case DT_MIPS_DELTA_CLASSSYM_NO: 2029 case DT_MIPS_CXX_FLAGS: 2030 case DT_MIPS_PIXIE_INIT: 2031 case DT_MIPS_SYMBOL_LIB: 2032 case DT_MIPS_LOCALPAGE_GOTIDX: 2033 case DT_MIPS_LOCAL_GOTIDX: 2034 case DT_MIPS_HIDDEN_GOTIDX: 2035 case DT_MIPS_PROTECTED_GOTIDX: 2036 case DT_MIPS_OPTIONS: 2037 case DT_MIPS_INTERFACE: 2038 case DT_MIPS_DYNSTR_ALIGN: 2039 case DT_MIPS_INTERFACE_SIZE: 2040 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2041 case DT_MIPS_PERF_SUFFIX: 2042 case DT_MIPS_COMPACT_SIZE: 2043 case DT_MIPS_GP_VALUE: 2044 case DT_MIPS_AUX_DYNAMIC: 2045 case DT_MIPS_PLTGOT: 2046 case DT_MIPS_RWPLT: 2047 case DT_MIPS_RLD_MAP_REL: 2048 OS << format(ConvChar, Value); 2049 return; 2050 case DT_MIPS_FLAGS: 2051 printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS); 2052 return; 2053 default: 2054 break; 2055 } 2056 break; 2057 default: 2058 break; 2059 } 2060 2061 switch (Type) { 2062 case DT_PLTREL: 2063 if (Value == DT_REL) { 2064 OS << "REL"; 2065 break; 2066 } else if (Value == DT_RELA) { 2067 OS << "RELA"; 2068 break; 2069 } 2070 LLVM_FALLTHROUGH; 2071 case DT_PLTGOT: 2072 case DT_HASH: 2073 case DT_STRTAB: 2074 case DT_SYMTAB: 2075 case DT_RELA: 2076 case DT_INIT: 2077 case DT_FINI: 2078 case DT_REL: 2079 case DT_JMPREL: 2080 case DT_INIT_ARRAY: 2081 case DT_FINI_ARRAY: 2082 case DT_PREINIT_ARRAY: 2083 case DT_DEBUG: 2084 case DT_VERDEF: 2085 case DT_VERNEED: 2086 case DT_VERSYM: 2087 case DT_GNU_HASH: 2088 case DT_NULL: 2089 OS << format(ConvChar, Value); 2090 break; 2091 case DT_RELACOUNT: 2092 case DT_RELCOUNT: 2093 case DT_VERDEFNUM: 2094 case DT_VERNEEDNUM: 2095 OS << Value; 2096 break; 2097 case DT_PLTRELSZ: 2098 case DT_RELASZ: 2099 case DT_RELAENT: 2100 case DT_STRSZ: 2101 case DT_SYMENT: 2102 case DT_RELSZ: 2103 case DT_RELENT: 2104 case DT_INIT_ARRAYSZ: 2105 case DT_FINI_ARRAYSZ: 2106 case DT_PREINIT_ARRAYSZ: 2107 case DT_ANDROID_RELSZ: 2108 case DT_ANDROID_RELASZ: 2109 OS << Value << " (bytes)"; 2110 break; 2111 case DT_NEEDED: 2112 case DT_SONAME: 2113 case DT_AUXILIARY: 2114 case DT_USED: 2115 case DT_FILTER: 2116 case DT_RPATH: 2117 case DT_RUNPATH: { 2118 const std::map<uint64_t, const char*> TagNames = { 2119 {DT_NEEDED, "Shared library"}, 2120 {DT_SONAME, "Library soname"}, 2121 {DT_AUXILIARY, "Auxiliary library"}, 2122 {DT_USED, "Not needed object"}, 2123 {DT_FILTER, "Filter library"}, 2124 {DT_RPATH, "Library rpath"}, 2125 {DT_RUNPATH, "Library runpath"}, 2126 }; 2127 OS << TagNames.at(Type) << ": [" << getDynamicString(Value) << "]"; 2128 break; 2129 } 2130 case DT_FLAGS: 2131 printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS); 2132 break; 2133 case DT_FLAGS_1: 2134 printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS); 2135 break; 2136 default: 2137 OS << format(ConvChar, Value); 2138 break; 2139 } 2140 } 2141 2142 template <class ELFT> 2143 std::string ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2144 if (DynamicStringTable.empty()) 2145 return "<String table is empty or was not found>"; 2146 if (Value < DynamicStringTable.size()) 2147 return DynamicStringTable.data() + Value; 2148 return Twine("<Invalid offset 0x" + utohexstr(Value) + ">").str(); 2149 } 2150 2151 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2152 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2153 Ctx.printUnwindInformation(); 2154 } 2155 2156 namespace { 2157 2158 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2159 const ELFFile<ELF32LE> *Obj = ObjF->getELFFile(); 2160 const unsigned Machine = Obj->getHeader()->e_machine; 2161 if (Machine == EM_ARM) { 2162 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(), 2163 DotSymtabSec); 2164 Ctx.PrintUnwindInformation(); 2165 } 2166 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2167 Ctx.printUnwindInformation(); 2168 } 2169 2170 } // end anonymous namespace 2171 2172 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() { 2173 ELFDumperStyle->printDynamic(ObjF->getELFFile()); 2174 } 2175 2176 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2177 ListScope D(W, "NeededLibraries"); 2178 2179 std::vector<std::string> Libs; 2180 for (const auto &Entry : dynamic_table()) 2181 if (Entry.d_tag == ELF::DT_NEEDED) 2182 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2183 2184 llvm::stable_sort(Libs); 2185 2186 for (const auto &L : Libs) 2187 W.startLine() << L << "\n"; 2188 } 2189 2190 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2191 DictScope D(W, "HashTable"); 2192 if (!HashTable) 2193 return; 2194 W.printNumber("Num Buckets", HashTable->nbucket); 2195 W.printNumber("Num Chains", HashTable->nchain); 2196 W.printList("Buckets", HashTable->buckets()); 2197 W.printList("Chains", HashTable->chains()); 2198 } 2199 2200 template <typename ELFT> void ELFDumper<ELFT>::printGnuHashTable() { 2201 DictScope D(W, "GnuHashTable"); 2202 if (!GnuHashTable) 2203 return; 2204 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2205 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2206 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2207 W.printNumber("Shift Count", GnuHashTable->shift2); 2208 W.printHexList("Bloom Filter", GnuHashTable->filter()); 2209 W.printList("Buckets", GnuHashTable->buckets()); 2210 Elf_Sym_Range Syms = dynamic_symbols(); 2211 unsigned NumSyms = std::distance(Syms.begin(), Syms.end()); 2212 if (!NumSyms) 2213 reportError(createError("No dynamic symbol section"), ObjF->getFileName()); 2214 W.printHexList("Values", GnuHashTable->values(NumSyms)); 2215 } 2216 2217 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2218 W.printString("LoadName", SOName); 2219 } 2220 2221 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2222 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 2223 switch (Obj->getHeader()->e_machine) { 2224 case EM_ARM: 2225 printAttributes(); 2226 break; 2227 case EM_MIPS: { 2228 ELFDumperStyle->printMipsABIFlags(ObjF); 2229 printMipsOptions(); 2230 printMipsReginfo(); 2231 2232 MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(), 2233 dynamic_symbols()); 2234 if (Parser.hasGot()) 2235 ELFDumperStyle->printMipsGOT(Parser); 2236 if (Parser.hasPlt()) 2237 ELFDumperStyle->printMipsPLT(Parser); 2238 break; 2239 } 2240 default: 2241 break; 2242 } 2243 } 2244 2245 template <class ELFT> void ELFDumper<ELFT>::printAttributes() { 2246 W.startLine() << "Attributes not implemented.\n"; 2247 } 2248 2249 namespace { 2250 2251 template <> void ELFDumper<ELF32LE>::printAttributes() { 2252 const ELFFile<ELF32LE> *Obj = ObjF->getELFFile(); 2253 if (Obj->getHeader()->e_machine != EM_ARM) { 2254 W.startLine() << "Attributes not implemented.\n"; 2255 return; 2256 } 2257 2258 DictScope BA(W, "BuildAttributes"); 2259 for (const ELFO::Elf_Shdr &Sec : 2260 unwrapOrError(ObjF->getFileName(), Obj->sections())) { 2261 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES) 2262 continue; 2263 2264 ArrayRef<uint8_t> Contents = 2265 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec)); 2266 if (Contents[0] != ARMBuildAttrs::Format_Version) { 2267 errs() << "unrecognised FormatVersion: 0x" 2268 << Twine::utohexstr(Contents[0]) << '\n'; 2269 continue; 2270 } 2271 2272 W.printHex("FormatVersion", Contents[0]); 2273 if (Contents.size() == 1) 2274 continue; 2275 2276 ARMAttributeParser(&W).Parse(Contents, true); 2277 } 2278 } 2279 2280 template <class ELFT> class MipsGOTParser { 2281 public: 2282 TYPEDEF_ELF_TYPES(ELFT) 2283 using Entry = typename ELFO::Elf_Addr; 2284 using Entries = ArrayRef<Entry>; 2285 2286 const bool IsStatic; 2287 const ELFO * const Obj; 2288 2289 MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable, 2290 Elf_Sym_Range DynSyms); 2291 2292 bool hasGot() const { return !GotEntries.empty(); } 2293 bool hasPlt() const { return !PltEntries.empty(); } 2294 2295 uint64_t getGp() const; 2296 2297 const Entry *getGotLazyResolver() const; 2298 const Entry *getGotModulePointer() const; 2299 const Entry *getPltLazyResolver() const; 2300 const Entry *getPltModulePointer() const; 2301 2302 Entries getLocalEntries() const; 2303 Entries getGlobalEntries() const; 2304 Entries getOtherEntries() const; 2305 Entries getPltEntries() const; 2306 2307 uint64_t getGotAddress(const Entry * E) const; 2308 int64_t getGotOffset(const Entry * E) const; 2309 const Elf_Sym *getGotSym(const Entry *E) const; 2310 2311 uint64_t getPltAddress(const Entry * E) const; 2312 const Elf_Sym *getPltSym(const Entry *E) const; 2313 2314 StringRef getPltStrTable() const { return PltStrTable; } 2315 2316 private: 2317 const Elf_Shdr *GotSec; 2318 size_t LocalNum; 2319 size_t GlobalNum; 2320 2321 const Elf_Shdr *PltSec; 2322 const Elf_Shdr *PltRelSec; 2323 const Elf_Shdr *PltSymTable; 2324 StringRef FileName; 2325 2326 Elf_Sym_Range GotDynSyms; 2327 StringRef PltStrTable; 2328 2329 Entries GotEntries; 2330 Entries PltEntries; 2331 }; 2332 2333 } // end anonymous namespace 2334 2335 template <class ELFT> 2336 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName, 2337 Elf_Dyn_Range DynTable, 2338 Elf_Sym_Range DynSyms) 2339 : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0), 2340 GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr), 2341 FileName(FileName) { 2342 // See "Global Offset Table" in Chapter 5 in the following document 2343 // for detailed GOT description. 2344 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2345 2346 // Find static GOT secton. 2347 if (IsStatic) { 2348 GotSec = findSectionByName(*Obj, FileName, ".got"); 2349 if (!GotSec) 2350 return; 2351 2352 ArrayRef<uint8_t> Content = 2353 unwrapOrError(FileName, Obj->getSectionContents(GotSec)); 2354 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2355 Content.size() / sizeof(Entry)); 2356 LocalNum = GotEntries.size(); 2357 return; 2358 } 2359 2360 // Lookup dynamic table tags which define GOT/PLT layouts. 2361 Optional<uint64_t> DtPltGot; 2362 Optional<uint64_t> DtLocalGotNum; 2363 Optional<uint64_t> DtGotSym; 2364 Optional<uint64_t> DtMipsPltGot; 2365 Optional<uint64_t> DtJmpRel; 2366 for (const auto &Entry : DynTable) { 2367 switch (Entry.getTag()) { 2368 case ELF::DT_PLTGOT: 2369 DtPltGot = Entry.getVal(); 2370 break; 2371 case ELF::DT_MIPS_LOCAL_GOTNO: 2372 DtLocalGotNum = Entry.getVal(); 2373 break; 2374 case ELF::DT_MIPS_GOTSYM: 2375 DtGotSym = Entry.getVal(); 2376 break; 2377 case ELF::DT_MIPS_PLTGOT: 2378 DtMipsPltGot = Entry.getVal(); 2379 break; 2380 case ELF::DT_JMPREL: 2381 DtJmpRel = Entry.getVal(); 2382 break; 2383 } 2384 } 2385 2386 // Find dynamic GOT section. 2387 if (DtPltGot || DtLocalGotNum || DtGotSym) { 2388 if (!DtPltGot) 2389 report_fatal_error("Cannot find PLTGOT dynamic table tag."); 2390 if (!DtLocalGotNum) 2391 report_fatal_error("Cannot find MIPS_LOCAL_GOTNO dynamic table tag."); 2392 if (!DtGotSym) 2393 report_fatal_error("Cannot find MIPS_GOTSYM dynamic table tag."); 2394 2395 size_t DynSymTotal = DynSyms.size(); 2396 if (*DtGotSym > DynSymTotal) 2397 reportError( 2398 createError("MIPS_GOTSYM exceeds a number of dynamic symbols"), 2399 FileName); 2400 2401 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 2402 if (!GotSec) 2403 reportError(createError("There is no not empty GOT section at 0x" + 2404 Twine::utohexstr(*DtPltGot)), 2405 FileName); 2406 2407 LocalNum = *DtLocalGotNum; 2408 GlobalNum = DynSymTotal - *DtGotSym; 2409 2410 ArrayRef<uint8_t> Content = 2411 unwrapOrError(FileName, Obj->getSectionContents(GotSec)); 2412 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2413 Content.size() / sizeof(Entry)); 2414 GotDynSyms = DynSyms.drop_front(*DtGotSym); 2415 } 2416 2417 // Find PLT section. 2418 if (DtMipsPltGot || DtJmpRel) { 2419 if (!DtMipsPltGot) 2420 report_fatal_error("Cannot find MIPS_PLTGOT dynamic table tag."); 2421 if (!DtJmpRel) 2422 report_fatal_error("Cannot find JMPREL dynamic table tag."); 2423 2424 PltSec = findNotEmptySectionByAddress(Obj, FileName, * DtMipsPltGot); 2425 if (!PltSec) 2426 report_fatal_error("There is no not empty PLTGOT section at 0x " + 2427 Twine::utohexstr(*DtMipsPltGot)); 2428 2429 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, * DtJmpRel); 2430 if (!PltRelSec) 2431 report_fatal_error("There is no not empty RELPLT section at 0x" + 2432 Twine::utohexstr(*DtJmpRel)); 2433 2434 ArrayRef<uint8_t> PltContent = 2435 unwrapOrError(FileName, Obj->getSectionContents(PltSec)); 2436 PltEntries = Entries(reinterpret_cast<const Entry *>(PltContent.data()), 2437 PltContent.size() / sizeof(Entry)); 2438 2439 PltSymTable = unwrapOrError(FileName, Obj->getSection(PltRelSec->sh_link)); 2440 PltStrTable = 2441 unwrapOrError(FileName, Obj->getStringTableForSymtab(*PltSymTable)); 2442 } 2443 } 2444 2445 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 2446 return GotSec->sh_addr + 0x7ff0; 2447 } 2448 2449 template <class ELFT> 2450 const typename MipsGOTParser<ELFT>::Entry * 2451 MipsGOTParser<ELFT>::getGotLazyResolver() const { 2452 return LocalNum > 0 ? &GotEntries[0] : nullptr; 2453 } 2454 2455 template <class ELFT> 2456 const typename MipsGOTParser<ELFT>::Entry * 2457 MipsGOTParser<ELFT>::getGotModulePointer() const { 2458 if (LocalNum < 2) 2459 return nullptr; 2460 const Entry &E = GotEntries[1]; 2461 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 2462 return nullptr; 2463 return &E; 2464 } 2465 2466 template <class ELFT> 2467 typename MipsGOTParser<ELFT>::Entries 2468 MipsGOTParser<ELFT>::getLocalEntries() const { 2469 size_t Skip = getGotModulePointer() ? 2 : 1; 2470 if (LocalNum - Skip <= 0) 2471 return Entries(); 2472 return GotEntries.slice(Skip, LocalNum - Skip); 2473 } 2474 2475 template <class ELFT> 2476 typename MipsGOTParser<ELFT>::Entries 2477 MipsGOTParser<ELFT>::getGlobalEntries() const { 2478 if (GlobalNum == 0) 2479 return Entries(); 2480 return GotEntries.slice(LocalNum, GlobalNum); 2481 } 2482 2483 template <class ELFT> 2484 typename MipsGOTParser<ELFT>::Entries 2485 MipsGOTParser<ELFT>::getOtherEntries() const { 2486 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 2487 if (OtherNum == 0) 2488 return Entries(); 2489 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 2490 } 2491 2492 template <class ELFT> 2493 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 2494 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2495 return GotSec->sh_addr + Offset; 2496 } 2497 2498 template <class ELFT> 2499 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 2500 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2501 return Offset - 0x7ff0; 2502 } 2503 2504 template <class ELFT> 2505 const typename MipsGOTParser<ELFT>::Elf_Sym * 2506 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 2507 int64_t Offset = std::distance(GotEntries.data(), E); 2508 return &GotDynSyms[Offset - LocalNum]; 2509 } 2510 2511 template <class ELFT> 2512 const typename MipsGOTParser<ELFT>::Entry * 2513 MipsGOTParser<ELFT>::getPltLazyResolver() const { 2514 return PltEntries.empty() ? nullptr : &PltEntries[0]; 2515 } 2516 2517 template <class ELFT> 2518 const typename MipsGOTParser<ELFT>::Entry * 2519 MipsGOTParser<ELFT>::getPltModulePointer() const { 2520 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 2521 } 2522 2523 template <class ELFT> 2524 typename MipsGOTParser<ELFT>::Entries 2525 MipsGOTParser<ELFT>::getPltEntries() const { 2526 if (PltEntries.size() <= 2) 2527 return Entries(); 2528 return PltEntries.slice(2, PltEntries.size() - 2); 2529 } 2530 2531 template <class ELFT> 2532 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 2533 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 2534 return PltSec->sh_addr + Offset; 2535 } 2536 2537 template <class ELFT> 2538 const typename MipsGOTParser<ELFT>::Elf_Sym * 2539 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 2540 int64_t Offset = std::distance(getPltEntries().data(), E); 2541 if (PltRelSec->sh_type == ELF::SHT_REL) { 2542 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec)); 2543 return unwrapOrError(FileName, 2544 Obj->getRelocationSymbol(&Rels[Offset], PltSymTable)); 2545 } else { 2546 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec)); 2547 return unwrapOrError(FileName, 2548 Obj->getRelocationSymbol(&Rels[Offset], PltSymTable)); 2549 } 2550 } 2551 2552 static const EnumEntry<unsigned> ElfMipsISAExtType[] = { 2553 {"None", Mips::AFL_EXT_NONE}, 2554 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 2555 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 2556 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 2557 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 2558 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 2559 {"LSI R4010", Mips::AFL_EXT_4010}, 2560 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 2561 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 2562 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 2563 {"MIPS R4650", Mips::AFL_EXT_4650}, 2564 {"MIPS R5900", Mips::AFL_EXT_5900}, 2565 {"MIPS R10000", Mips::AFL_EXT_10000}, 2566 {"NEC VR4100", Mips::AFL_EXT_4100}, 2567 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 2568 {"NEC VR4120", Mips::AFL_EXT_4120}, 2569 {"NEC VR5400", Mips::AFL_EXT_5400}, 2570 {"NEC VR5500", Mips::AFL_EXT_5500}, 2571 {"RMI Xlr", Mips::AFL_EXT_XLR}, 2572 {"Toshiba R3900", Mips::AFL_EXT_3900} 2573 }; 2574 2575 static const EnumEntry<unsigned> ElfMipsASEFlags[] = { 2576 {"DSP", Mips::AFL_ASE_DSP}, 2577 {"DSPR2", Mips::AFL_ASE_DSPR2}, 2578 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 2579 {"MCU", Mips::AFL_ASE_MCU}, 2580 {"MDMX", Mips::AFL_ASE_MDMX}, 2581 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 2582 {"MT", Mips::AFL_ASE_MT}, 2583 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 2584 {"VZ", Mips::AFL_ASE_VIRT}, 2585 {"MSA", Mips::AFL_ASE_MSA}, 2586 {"MIPS16", Mips::AFL_ASE_MIPS16}, 2587 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 2588 {"XPA", Mips::AFL_ASE_XPA}, 2589 {"CRC", Mips::AFL_ASE_CRC}, 2590 {"GINV", Mips::AFL_ASE_GINV}, 2591 }; 2592 2593 static const EnumEntry<unsigned> ElfMipsFpABIType[] = { 2594 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 2595 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 2596 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 2597 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 2598 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 2599 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 2600 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 2601 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 2602 {"Hard float compat (32-bit CPU, 64-bit FPU)", 2603 Mips::Val_GNU_MIPS_ABI_FP_64A} 2604 }; 2605 2606 static const EnumEntry<unsigned> ElfMipsFlags1[] { 2607 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 2608 }; 2609 2610 static int getMipsRegisterSize(uint8_t Flag) { 2611 switch (Flag) { 2612 case Mips::AFL_REG_NONE: 2613 return 0; 2614 case Mips::AFL_REG_32: 2615 return 32; 2616 case Mips::AFL_REG_64: 2617 return 64; 2618 case Mips::AFL_REG_128: 2619 return 128; 2620 default: 2621 return -1; 2622 } 2623 } 2624 2625 template <class ELFT> 2626 static void printMipsReginfoData(ScopedPrinter &W, 2627 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 2628 W.printHex("GP", Reginfo.ri_gp_value); 2629 W.printHex("General Mask", Reginfo.ri_gprmask); 2630 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 2631 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 2632 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 2633 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 2634 } 2635 2636 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 2637 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 2638 const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo"); 2639 if (!Shdr) { 2640 W.startLine() << "There is no .reginfo section in the file.\n"; 2641 return; 2642 } 2643 ArrayRef<uint8_t> Sec = 2644 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); 2645 if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) { 2646 W.startLine() << "The .reginfo section has a wrong size.\n"; 2647 return; 2648 } 2649 2650 DictScope GS(W, "MIPS RegInfo"); 2651 auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data()); 2652 printMipsReginfoData(W, *Reginfo); 2653 } 2654 2655 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 2656 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 2657 const Elf_Shdr *Shdr = 2658 findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options"); 2659 if (!Shdr) { 2660 W.startLine() << "There is no .MIPS.options section in the file.\n"; 2661 return; 2662 } 2663 2664 DictScope GS(W, "MIPS Options"); 2665 2666 ArrayRef<uint8_t> Sec = 2667 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); 2668 while (!Sec.empty()) { 2669 if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) { 2670 W.startLine() << "The .MIPS.options section has a wrong size.\n"; 2671 return; 2672 } 2673 auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data()); 2674 DictScope GS(W, getElfMipsOptionsOdkType(O->kind)); 2675 switch (O->kind) { 2676 case ODK_REGINFO: 2677 printMipsReginfoData(W, O->getRegInfo()); 2678 break; 2679 default: 2680 W.startLine() << "Unsupported MIPS options tag.\n"; 2681 break; 2682 } 2683 Sec = Sec.slice(O->size); 2684 } 2685 } 2686 2687 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 2688 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 2689 const Elf_Shdr *StackMapSection = nullptr; 2690 for (const auto &Sec : unwrapOrError(ObjF->getFileName(), Obj->sections())) { 2691 StringRef Name = 2692 unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec)); 2693 if (Name == ".llvm_stackmaps") { 2694 StackMapSection = &Sec; 2695 break; 2696 } 2697 } 2698 2699 if (!StackMapSection) 2700 return; 2701 2702 ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError( 2703 ObjF->getFileName(), Obj->getSectionContents(StackMapSection)); 2704 2705 prettyPrintStackMap( 2706 W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray)); 2707 } 2708 2709 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() { 2710 ELFDumperStyle->printGroupSections(ObjF->getELFFile()); 2711 } 2712 2713 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() { 2714 ELFDumperStyle->printAddrsig(ObjF->getELFFile()); 2715 } 2716 2717 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 2718 StringRef Str2) { 2719 OS.PadToColumn(2u); 2720 OS << Str1; 2721 OS.PadToColumn(37u); 2722 OS << Str2 << "\n"; 2723 OS.flush(); 2724 } 2725 2726 template <class ELFT> 2727 static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj, 2728 StringRef FileName) { 2729 const typename ELFT::Ehdr *ElfHeader = Obj->getHeader(); 2730 if (ElfHeader->e_shnum != 0) 2731 return to_string(ElfHeader->e_shnum); 2732 2733 ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections()); 2734 if (Arr.empty()) 2735 return "0"; 2736 return "0 (" + to_string(Arr[0].sh_size) + ")"; 2737 } 2738 2739 template <class ELFT> 2740 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj, 2741 StringRef FileName) { 2742 const typename ELFT::Ehdr *ElfHeader = Obj->getHeader(); 2743 if (ElfHeader->e_shstrndx != SHN_XINDEX) 2744 return to_string(ElfHeader->e_shstrndx); 2745 2746 ArrayRef<typename ELFT::Shdr> Arr = unwrapOrError(FileName, Obj->sections()); 2747 if (Arr.empty()) 2748 return "65535 (corrupt: out of range)"; 2749 return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) + 2750 ")"; 2751 } 2752 2753 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) { 2754 const Elf_Ehdr *e = Obj->getHeader(); 2755 OS << "ELF Header:\n"; 2756 OS << " Magic: "; 2757 std::string Str; 2758 for (int i = 0; i < ELF::EI_NIDENT; i++) 2759 OS << format(" %02x", static_cast<int>(e->e_ident[i])); 2760 OS << "\n"; 2761 Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 2762 printFields(OS, "Class:", Str); 2763 Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); 2764 printFields(OS, "Data:", Str); 2765 OS.PadToColumn(2u); 2766 OS << "Version:"; 2767 OS.PadToColumn(37u); 2768 OS << to_hexString(e->e_ident[ELF::EI_VERSION]); 2769 if (e->e_version == ELF::EV_CURRENT) 2770 OS << " (current)"; 2771 OS << "\n"; 2772 Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); 2773 printFields(OS, "OS/ABI:", Str); 2774 Str = "0x" + to_hexString(e->e_ident[ELF::EI_ABIVERSION]); 2775 printFields(OS, "ABI Version:", Str); 2776 Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType)); 2777 printFields(OS, "Type:", Str); 2778 Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType)); 2779 printFields(OS, "Machine:", Str); 2780 Str = "0x" + to_hexString(e->e_version); 2781 printFields(OS, "Version:", Str); 2782 Str = "0x" + to_hexString(e->e_entry); 2783 printFields(OS, "Entry point address:", Str); 2784 Str = to_string(e->e_phoff) + " (bytes into file)"; 2785 printFields(OS, "Start of program headers:", Str); 2786 Str = to_string(e->e_shoff) + " (bytes into file)"; 2787 printFields(OS, "Start of section headers:", Str); 2788 std::string ElfFlags; 2789 if (e->e_machine == EM_MIPS) 2790 ElfFlags = 2791 printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags), 2792 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 2793 unsigned(ELF::EF_MIPS_MACH)); 2794 else if (e->e_machine == EM_RISCV) 2795 ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 2796 Str = "0x" + to_hexString(e->e_flags); 2797 if (!ElfFlags.empty()) 2798 Str = Str + ", " + ElfFlags; 2799 printFields(OS, "Flags:", Str); 2800 Str = to_string(e->e_ehsize) + " (bytes)"; 2801 printFields(OS, "Size of this header:", Str); 2802 Str = to_string(e->e_phentsize) + " (bytes)"; 2803 printFields(OS, "Size of program headers:", Str); 2804 Str = to_string(e->e_phnum); 2805 printFields(OS, "Number of program headers:", Str); 2806 Str = to_string(e->e_shentsize) + " (bytes)"; 2807 printFields(OS, "Size of section headers:", Str); 2808 Str = getSectionHeadersNumString(Obj, this->FileName); 2809 printFields(OS, "Number of section headers:", Str); 2810 Str = getSectionHeaderTableIndexString(Obj, this->FileName); 2811 printFields(OS, "Section header string table index:", Str); 2812 } 2813 2814 namespace { 2815 struct GroupMember { 2816 StringRef Name; 2817 uint64_t Index; 2818 }; 2819 2820 struct GroupSection { 2821 StringRef Name; 2822 std::string Signature; 2823 uint64_t ShName; 2824 uint64_t Index; 2825 uint32_t Link; 2826 uint32_t Info; 2827 uint32_t Type; 2828 std::vector<GroupMember> Members; 2829 }; 2830 2831 template <class ELFT> 2832 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj, 2833 StringRef FileName) { 2834 using Elf_Shdr = typename ELFT::Shdr; 2835 using Elf_Sym = typename ELFT::Sym; 2836 using Elf_Word = typename ELFT::Word; 2837 2838 std::vector<GroupSection> Ret; 2839 uint64_t I = 0; 2840 for (const Elf_Shdr &Sec : unwrapOrError(FileName, Obj->sections())) { 2841 ++I; 2842 if (Sec.sh_type != ELF::SHT_GROUP) 2843 continue; 2844 2845 const Elf_Shdr *Symtab = 2846 unwrapOrError(FileName, Obj->getSection(Sec.sh_link)); 2847 StringRef StrTable = 2848 unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab)); 2849 const Elf_Sym *Sym = unwrapOrError( 2850 FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info)); 2851 auto Data = unwrapOrError( 2852 FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec)); 2853 2854 StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec)); 2855 StringRef Signature = StrTable.data() + Sym->st_name; 2856 Ret.push_back({Name, 2857 maybeDemangle(Signature), 2858 Sec.sh_name, 2859 I - 1, 2860 Sec.sh_link, 2861 Sec.sh_info, 2862 Data[0], 2863 {}}); 2864 2865 std::vector<GroupMember> &GM = Ret.back().Members; 2866 for (uint32_t Ndx : Data.slice(1)) { 2867 auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx)); 2868 const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec)); 2869 GM.push_back({Name, Ndx}); 2870 } 2871 } 2872 return Ret; 2873 } 2874 2875 DenseMap<uint64_t, const GroupSection *> 2876 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 2877 DenseMap<uint64_t, const GroupSection *> Ret; 2878 for (const GroupSection &G : Groups) 2879 for (const GroupMember &GM : G.Members) 2880 Ret.insert({GM.Index, &G}); 2881 return Ret; 2882 } 2883 2884 } // namespace 2885 2886 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) { 2887 std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName); 2888 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 2889 for (const GroupSection &G : V) { 2890 OS << "\n" 2891 << getGroupType(G.Type) << " group section [" 2892 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 2893 << "] contains " << G.Members.size() << " sections:\n" 2894 << " [Index] Name\n"; 2895 for (const GroupMember &GM : G.Members) { 2896 const GroupSection *MainGroup = Map[GM.Index]; 2897 if (MainGroup != &G) { 2898 OS.flush(); 2899 errs() << "Error: section [" << format_decimal(GM.Index, 5) 2900 << "] in group section [" << format_decimal(G.Index, 5) 2901 << "] already in group section [" 2902 << format_decimal(MainGroup->Index, 5) << "]"; 2903 errs().flush(); 2904 continue; 2905 } 2906 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 2907 } 2908 } 2909 2910 if (V.empty()) 2911 OS << "There are no section groups in this file.\n"; 2912 } 2913 2914 template <class ELFT> 2915 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Shdr *SymTab, 2916 const Elf_Rela &R, bool IsRela) { 2917 const Elf_Sym *Sym = 2918 unwrapOrError(this->FileName, Obj->getRelocationSymbol(&R, SymTab)); 2919 std::string TargetName; 2920 if (Sym && Sym->getType() == ELF::STT_SECTION) { 2921 const Elf_Shdr *Sec = unwrapOrError( 2922 this->FileName, 2923 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable())); 2924 TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec)); 2925 } else if (Sym) { 2926 StringRef StrTable = 2927 unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab)); 2928 TargetName = this->dumper()->getFullSymbolName( 2929 Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */); 2930 } 2931 printRelocation(Obj, Sym, TargetName, R, IsRela); 2932 } 2933 2934 template <class ELFT> 2935 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym, 2936 StringRef SymbolName, const Elf_Rela &R, 2937 bool IsRela) { 2938 // First two fields are bit width dependent. The rest of them are fixed width. 2939 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 2940 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 2941 unsigned Width = ELFT::Is64Bits ? 16 : 8; 2942 2943 Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width)); 2944 Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width)); 2945 2946 SmallString<32> RelocName; 2947 Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName); 2948 Fields[2].Str = RelocName.c_str(); 2949 2950 if (Sym && (!SymbolName.empty() || Sym->getValue() != 0)) 2951 Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width)); 2952 2953 Fields[4].Str = SymbolName; 2954 for (const Field &F : Fields) 2955 printField(F); 2956 2957 std::string Addend; 2958 if (IsRela) { 2959 int64_t RelAddend = R.r_addend; 2960 if (!SymbolName.empty()) { 2961 if (R.r_addend < 0) { 2962 Addend = " - "; 2963 RelAddend = std::abs(RelAddend); 2964 } else 2965 Addend = " + "; 2966 } 2967 2968 Addend += to_hexString(RelAddend, false); 2969 } 2970 OS << Addend << "\n"; 2971 } 2972 2973 template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) { 2974 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 2975 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; 2976 if (ELFT::Is64Bits) 2977 OS << " "; 2978 else 2979 OS << " "; 2980 if (IsRelr && opts::RawRelr) 2981 OS << "Data "; 2982 else 2983 OS << "Offset"; 2984 if (ELFT::Is64Bits) 2985 OS << " Info Type" 2986 << " Symbol's Value Symbol's Name"; 2987 else 2988 OS << " Info Type Sym. Value Symbol's Name"; 2989 if (IsRela) 2990 OS << " + Addend"; 2991 OS << "\n"; 2992 } 2993 2994 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) { 2995 bool HasRelocSections = false; 2996 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { 2997 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA && 2998 Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL && 2999 Sec.sh_type != ELF::SHT_ANDROID_RELA && 3000 Sec.sh_type != ELF::SHT_ANDROID_RELR) 3001 continue; 3002 HasRelocSections = true; 3003 StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec)); 3004 unsigned Entries = Sec.getEntityCount(); 3005 std::vector<Elf_Rela> AndroidRelas; 3006 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3007 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3008 // Android's packed relocation section needs to be unpacked first 3009 // to get the actual number of entries. 3010 AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec)); 3011 Entries = AndroidRelas.size(); 3012 } 3013 std::vector<Elf_Rela> RelrRelas; 3014 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || 3015 Sec.sh_type == ELF::SHT_ANDROID_RELR)) { 3016 // .relr.dyn relative relocation section needs to be unpacked first 3017 // to get the actual number of entries. 3018 Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec)); 3019 RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); 3020 Entries = RelrRelas.size(); 3021 } 3022 uintX_t Offset = Sec.sh_offset; 3023 OS << "\nRelocation section '" << Name << "' at offset 0x" 3024 << to_hexString(Offset, false) << " contains " << Entries 3025 << " entries:\n"; 3026 printRelocHeader(Sec.sh_type); 3027 const Elf_Shdr *SymTab = 3028 unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link)); 3029 switch (Sec.sh_type) { 3030 case ELF::SHT_REL: 3031 for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) { 3032 Elf_Rela Rela; 3033 Rela.r_offset = R.r_offset; 3034 Rela.r_info = R.r_info; 3035 Rela.r_addend = 0; 3036 printRelocation(Obj, SymTab, Rela, false); 3037 } 3038 break; 3039 case ELF::SHT_RELA: 3040 for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec))) 3041 printRelocation(Obj, SymTab, R, true); 3042 break; 3043 case ELF::SHT_RELR: 3044 case ELF::SHT_ANDROID_RELR: 3045 if (opts::RawRelr) 3046 for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec))) 3047 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) 3048 << "\n"; 3049 else 3050 for (const auto &R : RelrRelas) 3051 printRelocation(Obj, SymTab, R, false); 3052 break; 3053 case ELF::SHT_ANDROID_REL: 3054 case ELF::SHT_ANDROID_RELA: 3055 for (const auto &R : AndroidRelas) 3056 printRelocation(Obj, SymTab, R, Sec.sh_type == ELF::SHT_ANDROID_RELA); 3057 break; 3058 } 3059 } 3060 if (!HasRelocSections) 3061 OS << "\nThere are no relocations in this file.\n"; 3062 } 3063 3064 // Print the offset of a particular section from anyone of the ranges: 3065 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3066 // If 'Type' does not fall within any of those ranges, then a string is 3067 // returned as '<unknown>' followed by the type value. 3068 static std::string getSectionTypeOffsetString(unsigned Type) { 3069 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3070 return "LOOS+0x" + to_hexString(Type - SHT_LOOS); 3071 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3072 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC); 3073 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3074 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER); 3075 return "0x" + to_hexString(Type) + ": <unknown>"; 3076 } 3077 3078 static std::string getSectionTypeString(unsigned Arch, unsigned Type) { 3079 using namespace ELF; 3080 3081 switch (Arch) { 3082 case EM_ARM: 3083 switch (Type) { 3084 case SHT_ARM_EXIDX: 3085 return "ARM_EXIDX"; 3086 case SHT_ARM_PREEMPTMAP: 3087 return "ARM_PREEMPTMAP"; 3088 case SHT_ARM_ATTRIBUTES: 3089 return "ARM_ATTRIBUTES"; 3090 case SHT_ARM_DEBUGOVERLAY: 3091 return "ARM_DEBUGOVERLAY"; 3092 case SHT_ARM_OVERLAYSECTION: 3093 return "ARM_OVERLAYSECTION"; 3094 } 3095 break; 3096 case EM_X86_64: 3097 switch (Type) { 3098 case SHT_X86_64_UNWIND: 3099 return "X86_64_UNWIND"; 3100 } 3101 break; 3102 case EM_MIPS: 3103 case EM_MIPS_RS3_LE: 3104 switch (Type) { 3105 case SHT_MIPS_REGINFO: 3106 return "MIPS_REGINFO"; 3107 case SHT_MIPS_OPTIONS: 3108 return "MIPS_OPTIONS"; 3109 case SHT_MIPS_DWARF: 3110 return "MIPS_DWARF"; 3111 case SHT_MIPS_ABIFLAGS: 3112 return "MIPS_ABIFLAGS"; 3113 } 3114 break; 3115 } 3116 switch (Type) { 3117 case SHT_NULL: 3118 return "NULL"; 3119 case SHT_PROGBITS: 3120 return "PROGBITS"; 3121 case SHT_SYMTAB: 3122 return "SYMTAB"; 3123 case SHT_STRTAB: 3124 return "STRTAB"; 3125 case SHT_RELA: 3126 return "RELA"; 3127 case SHT_HASH: 3128 return "HASH"; 3129 case SHT_DYNAMIC: 3130 return "DYNAMIC"; 3131 case SHT_NOTE: 3132 return "NOTE"; 3133 case SHT_NOBITS: 3134 return "NOBITS"; 3135 case SHT_REL: 3136 return "REL"; 3137 case SHT_SHLIB: 3138 return "SHLIB"; 3139 case SHT_DYNSYM: 3140 return "DYNSYM"; 3141 case SHT_INIT_ARRAY: 3142 return "INIT_ARRAY"; 3143 case SHT_FINI_ARRAY: 3144 return "FINI_ARRAY"; 3145 case SHT_PREINIT_ARRAY: 3146 return "PREINIT_ARRAY"; 3147 case SHT_GROUP: 3148 return "GROUP"; 3149 case SHT_SYMTAB_SHNDX: 3150 return "SYMTAB SECTION INDICES"; 3151 case SHT_ANDROID_REL: 3152 return "ANDROID_REL"; 3153 case SHT_ANDROID_RELA: 3154 return "ANDROID_RELA"; 3155 case SHT_RELR: 3156 case SHT_ANDROID_RELR: 3157 return "RELR"; 3158 case SHT_LLVM_ODRTAB: 3159 return "LLVM_ODRTAB"; 3160 case SHT_LLVM_LINKER_OPTIONS: 3161 return "LLVM_LINKER_OPTIONS"; 3162 case SHT_LLVM_CALL_GRAPH_PROFILE: 3163 return "LLVM_CALL_GRAPH_PROFILE"; 3164 case SHT_LLVM_ADDRSIG: 3165 return "LLVM_ADDRSIG"; 3166 case SHT_LLVM_DEPENDENT_LIBRARIES: 3167 return "LLVM_DEPENDENT_LIBRARIES"; 3168 case SHT_LLVM_SYMPART: 3169 return "LLVM_SYMPART"; 3170 case SHT_LLVM_PART_EHDR: 3171 return "LLVM_PART_EHDR"; 3172 case SHT_LLVM_PART_PHDR: 3173 return "LLVM_PART_PHDR"; 3174 // FIXME: Parse processor specific GNU attributes 3175 case SHT_GNU_ATTRIBUTES: 3176 return "ATTRIBUTES"; 3177 case SHT_GNU_HASH: 3178 return "GNU_HASH"; 3179 case SHT_GNU_verdef: 3180 return "VERDEF"; 3181 case SHT_GNU_verneed: 3182 return "VERNEED"; 3183 case SHT_GNU_versym: 3184 return "VERSYM"; 3185 default: 3186 return getSectionTypeOffsetString(Type); 3187 } 3188 return ""; 3189 } 3190 3191 template <class ELFT> 3192 void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) { 3193 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 3194 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); 3195 OS << "There are " << to_string(Sections.size()) 3196 << " section headers, starting at offset " 3197 << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n"; 3198 OS << "Section Headers:\n"; 3199 Field Fields[11] = { 3200 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 3201 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 3202 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 3203 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 3204 for (auto &F : Fields) 3205 printField(F); 3206 OS << "\n"; 3207 3208 const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject(); 3209 size_t SectionIndex = 0; 3210 for (const Elf_Shdr &Sec : Sections) { 3211 Fields[0].Str = to_string(SectionIndex); 3212 Fields[1].Str = unwrapOrError<StringRef>( 3213 ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler)); 3214 Fields[2].Str = 3215 getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type); 3216 Fields[3].Str = 3217 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 3218 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 3219 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 3220 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 3221 Fields[7].Str = getGNUFlags(Sec.sh_flags); 3222 Fields[8].Str = to_string(Sec.sh_link); 3223 Fields[9].Str = to_string(Sec.sh_info); 3224 Fields[10].Str = to_string(Sec.sh_addralign); 3225 3226 OS.PadToColumn(Fields[0].Column); 3227 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 3228 for (int i = 1; i < 7; i++) 3229 printField(Fields[i]); 3230 OS.PadToColumn(Fields[7].Column); 3231 OS << right_justify(Fields[7].Str, 3); 3232 OS.PadToColumn(Fields[8].Column); 3233 OS << right_justify(Fields[8].Str, 2); 3234 OS.PadToColumn(Fields[9].Column); 3235 OS << right_justify(Fields[9].Str, 3); 3236 OS.PadToColumn(Fields[10].Column); 3237 OS << right_justify(Fields[10].Str, 2); 3238 OS << "\n"; 3239 ++SectionIndex; 3240 } 3241 OS << "Key to Flags:\n" 3242 << " W (write), A (alloc), X (execute), M (merge), S (strings), l " 3243 "(large)\n" 3244 << " I (info), L (link order), G (group), T (TLS), E (exclude),\ 3245 x (unknown)\n" 3246 << " O (extra OS processing required) o (OS specific),\ 3247 p (processor specific)\n"; 3248 } 3249 3250 template <class ELFT> 3251 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name, 3252 size_t Entries, 3253 bool NonVisibilityBitsUsed) { 3254 if (!Name.empty()) 3255 OS << "\nSymbol table '" << Name << "' contains " << Entries 3256 << " entries:\n"; 3257 else 3258 OS << "\n Symbol table for image:\n"; 3259 3260 if (ELFT::Is64Bits) 3261 OS << " Num: Value Size Type Bind Vis"; 3262 else 3263 OS << " Num: Value Size Type Bind Vis"; 3264 3265 if (NonVisibilityBitsUsed) 3266 OS << " "; 3267 OS << " Ndx Name\n"; 3268 } 3269 3270 template <class ELFT> 3271 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj, 3272 const Elf_Sym *Symbol, 3273 const Elf_Sym *FirstSym) { 3274 unsigned SectionIndex = Symbol->st_shndx; 3275 switch (SectionIndex) { 3276 case ELF::SHN_UNDEF: 3277 return "UND"; 3278 case ELF::SHN_ABS: 3279 return "ABS"; 3280 case ELF::SHN_COMMON: 3281 return "COM"; 3282 case ELF::SHN_XINDEX: 3283 return to_string(format_decimal( 3284 unwrapOrError(this->FileName, 3285 object::getExtendedSymbolTableIndex<ELFT>( 3286 Symbol, FirstSym, this->dumper()->getShndxTable())), 3287 3)); 3288 default: 3289 // Find if: 3290 // Processor specific 3291 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 3292 return std::string("PRC[0x") + 3293 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3294 // OS specific 3295 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 3296 return std::string("OS[0x") + 3297 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3298 // Architecture reserved: 3299 if (SectionIndex >= ELF::SHN_LORESERVE && 3300 SectionIndex <= ELF::SHN_HIRESERVE) 3301 return std::string("RSV[0x") + 3302 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3303 // A normal section with an index 3304 return to_string(format_decimal(SectionIndex, 3)); 3305 } 3306 } 3307 3308 template <class ELFT> 3309 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, 3310 const Elf_Sym *FirstSym, StringRef StrTable, 3311 bool IsDynamic, bool NonVisibilityBitsUsed) { 3312 static int Idx = 0; 3313 static bool Dynamic = true; 3314 3315 // If this function was called with a different value from IsDynamic 3316 // from last call, happens when we move from dynamic to static symbol 3317 // table, "Num" field should be reset. 3318 if (!Dynamic != !IsDynamic) { 3319 Idx = 0; 3320 Dynamic = false; 3321 } 3322 3323 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3324 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 3325 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 3326 Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":"; 3327 Fields[1].Str = to_string( 3328 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 3329 Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5)); 3330 3331 unsigned char SymbolType = Symbol->getType(); 3332 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && 3333 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3334 Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3335 else 3336 Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); 3337 3338 Fields[4].Str = 3339 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); 3340 Fields[5].Str = 3341 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3342 if (Symbol->st_other & ~0x3) 3343 Fields[5].Str += 3344 " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]"; 3345 3346 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 3347 Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym); 3348 3349 Fields[7].Str = 3350 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic); 3351 for (auto &Entry : Fields) 3352 printField(Entry); 3353 OS << "\n"; 3354 } 3355 3356 template <class ELFT> 3357 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, 3358 uint32_t Sym, StringRef StrTable, 3359 uint32_t Bucket) { 3360 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3361 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 3362 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 3363 Fields[0].Str = to_string(format_decimal(Sym, 5)); 3364 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 3365 3366 const auto Symbol = FirstSym + Sym; 3367 Fields[2].Str = to_string( 3368 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 3369 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 3370 3371 unsigned char SymbolType = Symbol->getType(); 3372 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && 3373 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3374 Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3375 else 3376 Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); 3377 3378 Fields[5].Str = 3379 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); 3380 Fields[6].Str = 3381 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3382 Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym); 3383 Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true); 3384 3385 for (auto &Entry : Fields) 3386 printField(Entry); 3387 OS << "\n"; 3388 } 3389 3390 template <class ELFT> 3391 void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols, 3392 bool PrintDynamicSymbols) { 3393 if (!PrintSymbols && !PrintDynamicSymbols) 3394 return; 3395 // GNU readelf prints both the .dynsym and .symtab with --symbols. 3396 this->dumper()->printSymbolsHelper(true); 3397 if (PrintSymbols) 3398 this->dumper()->printSymbolsHelper(false); 3399 } 3400 3401 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) { 3402 if (this->dumper()->getDynamicStringTable().empty()) 3403 return; 3404 auto StringTable = this->dumper()->getDynamicStringTable(); 3405 auto DynSyms = this->dumper()->dynamic_symbols(); 3406 3407 // Try printing .hash 3408 if (auto SysVHash = this->dumper()->getHashTable()) { 3409 OS << "\n Symbol table of .hash for image:\n"; 3410 if (ELFT::Is64Bits) 3411 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3412 else 3413 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3414 OS << "\n"; 3415 3416 auto Buckets = SysVHash->buckets(); 3417 auto Chains = SysVHash->chains(); 3418 for (uint32_t Buc = 0; Buc < SysVHash->nbucket; Buc++) { 3419 if (Buckets[Buc] == ELF::STN_UNDEF) 3420 continue; 3421 std::vector<bool> Visited(SysVHash->nchain); 3422 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash->nchain; Ch = Chains[Ch]) { 3423 if (Ch == ELF::STN_UNDEF) 3424 break; 3425 3426 if (Visited[Ch]) { 3427 reportWarning( 3428 createError(".hash section is invalid: bucket " + Twine(Ch) + 3429 ": a cycle was detected in the linked chain"), 3430 this->FileName); 3431 break; 3432 } 3433 3434 printHashedSymbol(Obj, &DynSyms[0], Ch, StringTable, Buc); 3435 Visited[Ch] = true; 3436 } 3437 } 3438 } 3439 3440 // Try printing .gnu.hash 3441 if (auto GnuHash = this->dumper()->getGnuHashTable()) { 3442 OS << "\n Symbol table of .gnu.hash for image:\n"; 3443 if (ELFT::Is64Bits) 3444 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3445 else 3446 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3447 OS << "\n"; 3448 auto Buckets = GnuHash->buckets(); 3449 for (uint32_t Buc = 0; Buc < GnuHash->nbuckets; Buc++) { 3450 if (Buckets[Buc] == ELF::STN_UNDEF) 3451 continue; 3452 uint32_t Index = Buckets[Buc]; 3453 uint32_t GnuHashable = Index - GnuHash->symndx; 3454 // Print whole chain 3455 while (true) { 3456 printHashedSymbol(Obj, &DynSyms[0], Index++, StringTable, Buc); 3457 // Chain ends at symbol with stopper bit 3458 if ((GnuHash->values(DynSyms.size())[GnuHashable++] & 1) == 1) 3459 break; 3460 } 3461 } 3462 } 3463 } 3464 3465 static inline std::string printPhdrFlags(unsigned Flag) { 3466 std::string Str; 3467 Str = (Flag & PF_R) ? "R" : " "; 3468 Str += (Flag & PF_W) ? "W" : " "; 3469 Str += (Flag & PF_X) ? "E" : " "; 3470 return Str; 3471 } 3472 3473 // SHF_TLS sections are only in PT_TLS, PT_LOAD or PT_GNU_RELRO 3474 // PT_TLS must only have SHF_TLS sections 3475 template <class ELFT> 3476 bool GNUStyle<ELFT>::checkTLSSections(const Elf_Phdr &Phdr, 3477 const Elf_Shdr &Sec) { 3478 return (((Sec.sh_flags & ELF::SHF_TLS) && 3479 ((Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 3480 (Phdr.p_type == ELF::PT_GNU_RELRO))) || 3481 (!(Sec.sh_flags & ELF::SHF_TLS) && Phdr.p_type != ELF::PT_TLS)); 3482 } 3483 3484 // Non-SHT_NOBITS must have its offset inside the segment 3485 // Only non-zero section can be at end of segment 3486 template <class ELFT> 3487 bool GNUStyle<ELFT>::checkoffsets(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { 3488 if (Sec.sh_type == ELF::SHT_NOBITS) 3489 return true; 3490 bool IsSpecial = 3491 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); 3492 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties 3493 auto SectionSize = 3494 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size; 3495 if (Sec.sh_offset >= Phdr.p_offset) 3496 return ((Sec.sh_offset + SectionSize <= Phdr.p_filesz + Phdr.p_offset) 3497 /*only non-zero sized sections at end*/ 3498 && (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz)); 3499 return false; 3500 } 3501 3502 // SHF_ALLOC must have VMA inside segment 3503 // Only non-zero section can be at end of segment 3504 template <class ELFT> 3505 bool GNUStyle<ELFT>::checkVMA(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { 3506 if (!(Sec.sh_flags & ELF::SHF_ALLOC)) 3507 return true; 3508 bool IsSpecial = 3509 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); 3510 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties 3511 auto SectionSize = 3512 (IsSpecial && Phdr.p_type != ELF::PT_TLS) ? 0 : Sec.sh_size; 3513 if (Sec.sh_addr >= Phdr.p_vaddr) 3514 return ((Sec.sh_addr + SectionSize <= Phdr.p_vaddr + Phdr.p_memsz) && 3515 (Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz)); 3516 return false; 3517 } 3518 3519 // No section with zero size must be at start or end of PT_DYNAMIC 3520 template <class ELFT> 3521 bool GNUStyle<ELFT>::checkPTDynamic(const Elf_Phdr &Phdr, const Elf_Shdr &Sec) { 3522 if (Phdr.p_type != ELF::PT_DYNAMIC || Sec.sh_size != 0 || Phdr.p_memsz == 0) 3523 return true; 3524 // Is section within the phdr both based on offset and VMA ? 3525 return ((Sec.sh_type == ELF::SHT_NOBITS) || 3526 (Sec.sh_offset > Phdr.p_offset && 3527 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz)) && 3528 (!(Sec.sh_flags & ELF::SHF_ALLOC) || 3529 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz)); 3530 } 3531 3532 template <class ELFT> 3533 void GNUStyle<ELFT>::printProgramHeaders( 3534 const ELFO *Obj, bool PrintProgramHeaders, 3535 cl::boolOrDefault PrintSectionMapping) { 3536 if (PrintProgramHeaders) 3537 printProgramHeaders(Obj); 3538 3539 // Display the section mapping along with the program headers, unless 3540 // -section-mapping is explicitly set to false. 3541 if (PrintSectionMapping != cl::BOU_FALSE) 3542 printSectionMapping(Obj); 3543 } 3544 3545 template <class ELFT> 3546 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) { 3547 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3548 const Elf_Ehdr *Header = Obj->getHeader(); 3549 Field Fields[8] = {2, 17, 26, 37 + Bias, 3550 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 3551 OS << "\nElf file type is " 3552 << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n" 3553 << "Entry point " << format_hex(Header->e_entry, 3) << "\n" 3554 << "There are " << Header->e_phnum << " program headers," 3555 << " starting at offset " << Header->e_phoff << "\n\n" 3556 << "Program Headers:\n"; 3557 if (ELFT::Is64Bits) 3558 OS << " Type Offset VirtAddr PhysAddr " 3559 << " FileSiz MemSiz Flg Align\n"; 3560 else 3561 OS << " Type Offset VirtAddr PhysAddr FileSiz " 3562 << "MemSiz Flg Align\n"; 3563 3564 unsigned Width = ELFT::Is64Bits ? 18 : 10; 3565 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 3566 for (const auto &Phdr : 3567 unwrapOrError(this->FileName, Obj->program_headers())) { 3568 Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type); 3569 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 3570 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 3571 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 3572 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 3573 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 3574 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 3575 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 3576 for (auto Field : Fields) 3577 printField(Field); 3578 if (Phdr.p_type == ELF::PT_INTERP) { 3579 OS << "\n [Requesting program interpreter: "; 3580 OS << reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset << "]"; 3581 } 3582 OS << "\n"; 3583 } 3584 } 3585 3586 template <class ELFT> 3587 void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) { 3588 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 3589 DenseSet<const Elf_Shdr *> BelongsToSegment; 3590 int Phnum = 0; 3591 for (const Elf_Phdr &Phdr : 3592 unwrapOrError(this->FileName, Obj->program_headers())) { 3593 std::string Sections; 3594 OS << format(" %2.2d ", Phnum++); 3595 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { 3596 // Check if each section is in a segment and then print mapping. 3597 // readelf additionally makes sure it does not print zero sized sections 3598 // at end of segments and for PT_DYNAMIC both start and end of section 3599 // .tbss must only be shown in PT_TLS section. 3600 bool TbssInNonTLS = (Sec.sh_type == ELF::SHT_NOBITS) && 3601 ((Sec.sh_flags & ELF::SHF_TLS) != 0) && 3602 Phdr.p_type != ELF::PT_TLS; 3603 if (!TbssInNonTLS && checkTLSSections(Phdr, Sec) && 3604 checkoffsets(Phdr, Sec) && checkVMA(Phdr, Sec) && 3605 checkPTDynamic(Phdr, Sec) && (Sec.sh_type != ELF::SHT_NULL)) { 3606 Sections += 3607 unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + 3608 " "; 3609 BelongsToSegment.insert(&Sec); 3610 } 3611 } 3612 OS << Sections << "\n"; 3613 OS.flush(); 3614 } 3615 3616 // Display sections that do not belong to a segment. 3617 std::string Sections; 3618 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { 3619 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 3620 Sections += 3621 unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' '; 3622 } 3623 if (!Sections.empty()) { 3624 OS << " None " << Sections << '\n'; 3625 OS.flush(); 3626 } 3627 } 3628 3629 namespace { 3630 template <class ELFT> struct RelSymbol { 3631 const typename ELFT::Sym *Sym; 3632 std::string Name; 3633 }; 3634 3635 template <class ELFT> 3636 RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName, 3637 const ELFDumper<ELFT> *Dumper, 3638 const typename ELFT::Rela &Reloc) { 3639 uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL()); 3640 const typename ELFT::Sym *Sym = Dumper->dynamic_symbols().begin() + SymIndex; 3641 Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable()); 3642 3643 std::string Name; 3644 if (ErrOrName) { 3645 Name = maybeDemangle(*ErrOrName); 3646 } else { 3647 reportWarning( 3648 createError("unable to get name of the dynamic symbol with index " + 3649 Twine(SymIndex) + ": " + toString(ErrOrName.takeError())), 3650 FileName); 3651 Name = "<corrupt>"; 3652 } 3653 3654 return {Sym, std::move(Name)}; 3655 } 3656 } // namespace 3657 3658 template <class ELFT> 3659 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R, 3660 bool IsRela) { 3661 RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R); 3662 printRelocation(Obj, S.Sym, S.Name, R, IsRela); 3663 } 3664 3665 template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) { 3666 Elf_Dyn_Range Table = this->dumper()->dynamic_table(); 3667 if (Table.empty()) 3668 return; 3669 3670 const DynRegionInfo &DynamicTableRegion = 3671 this->dumper()->getDynamicTableRegion(); 3672 3673 OS << "Dynamic section at offset " 3674 << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) - 3675 Obj->base(), 3676 1) 3677 << " contains " << Table.size() << " entries:\n"; 3678 3679 bool Is64 = ELFT::Is64Bits; 3680 if (Is64) 3681 OS << " Tag Type Name/Value\n"; 3682 else 3683 OS << " Tag Type Name/Value\n"; 3684 for (auto Entry : Table) { 3685 uintX_t Tag = Entry.getTag(); 3686 std::string TypeString = std::string("(") + 3687 getTypeString(Obj->getHeader()->e_machine, Tag) + 3688 ")"; 3689 OS << " " << format_hex(Tag, Is64 ? 18 : 10) 3690 << format(" %-20s ", TypeString.c_str()); 3691 this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal()); 3692 OS << "\n"; 3693 } 3694 } 3695 3696 template <class ELFT> 3697 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) { 3698 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion(); 3699 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion(); 3700 const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion(); 3701 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion(); 3702 if (DynRelaRegion.Size > 0) { 3703 OS << "\n'RELA' relocation section at offset " 3704 << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) - 3705 Obj->base(), 3706 1) 3707 << " contains " << DynRelaRegion.Size << " bytes:\n"; 3708 printRelocHeader(ELF::SHT_RELA); 3709 for (const Elf_Rela &Rela : this->dumper()->dyn_relas()) 3710 printDynamicRelocation(Obj, Rela, true); 3711 } 3712 if (DynRelRegion.Size > 0) { 3713 OS << "\n'REL' relocation section at offset " 3714 << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) - 3715 Obj->base(), 3716 1) 3717 << " contains " << DynRelRegion.Size << " bytes:\n"; 3718 printRelocHeader(ELF::SHT_REL); 3719 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) { 3720 Elf_Rela Rela; 3721 Rela.r_offset = Rel.r_offset; 3722 Rela.r_info = Rel.r_info; 3723 Rela.r_addend = 0; 3724 printDynamicRelocation(Obj, Rela, false); 3725 } 3726 } 3727 if (DynRelrRegion.Size > 0) { 3728 OS << "\n'RELR' relocation section at offset " 3729 << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) - 3730 Obj->base(), 3731 1) 3732 << " contains " << DynRelrRegion.Size << " bytes:\n"; 3733 printRelocHeader(ELF::SHT_REL); 3734 Elf_Relr_Range Relrs = this->dumper()->dyn_relrs(); 3735 std::vector<Elf_Rela> RelrRelas = 3736 unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); 3737 for (const Elf_Rela &Rela : RelrRelas) { 3738 printDynamicRelocation(Obj, Rela, false); 3739 } 3740 } 3741 if (DynPLTRelRegion.Size) { 3742 OS << "\n'PLT' relocation section at offset " 3743 << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) - 3744 Obj->base(), 3745 1) 3746 << " contains " << DynPLTRelRegion.Size << " bytes:\n"; 3747 } 3748 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 3749 printRelocHeader(ELF::SHT_RELA); 3750 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>()) 3751 printDynamicRelocation(Obj, Rela, true); 3752 } else { 3753 printRelocHeader(ELF::SHT_REL); 3754 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) { 3755 Elf_Rela Rela; 3756 Rela.r_offset = Rel.r_offset; 3757 Rela.r_info = Rel.r_info; 3758 Rela.r_addend = 0; 3759 printDynamicRelocation(Obj, Rela, false); 3760 } 3761 } 3762 } 3763 3764 template <class ELFT> 3765 static void printGNUVersionSectionProlog(formatted_raw_ostream &OS, 3766 const Twine &Name, unsigned EntriesNum, 3767 const ELFFile<ELFT> *Obj, 3768 const typename ELFT::Shdr *Sec, 3769 StringRef FileName) { 3770 StringRef SecName = unwrapOrError(FileName, Obj->getSectionName(Sec)); 3771 OS << Name << " section '" << SecName << "' " 3772 << "contains " << EntriesNum << " entries:\n"; 3773 3774 const typename ELFT::Shdr *SymTab = 3775 unwrapOrError(FileName, Obj->getSection(Sec->sh_link)); 3776 StringRef SymTabName = unwrapOrError(FileName, Obj->getSectionName(SymTab)); 3777 OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16) 3778 << " Offset: " << format_hex(Sec->sh_offset, 8) 3779 << " Link: " << Sec->sh_link << " (" << SymTabName << ")\n"; 3780 } 3781 3782 template <class ELFT> 3783 void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj, 3784 const Elf_Shdr *Sec) { 3785 if (!Sec) 3786 return; 3787 3788 unsigned Entries = Sec->sh_size / sizeof(Elf_Versym); 3789 printGNUVersionSectionProlog(OS, "Version symbols", Entries, Obj, Sec, 3790 this->FileName); 3791 3792 const uint8_t *VersymBuf = 3793 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); 3794 const ELFDumper<ELFT> *Dumper = this->dumper(); 3795 StringRef StrTable = Dumper->getDynamicStringTable(); 3796 3797 // readelf prints 4 entries per line. 3798 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 3799 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 3800 3801 for (uint64_t VersymIndex = 0; 3802 (VersymIndex < 4) && (VersymIndex + VersymRow) < Entries; 3803 ++VersymIndex) { 3804 const Elf_Versym *Versym = 3805 reinterpret_cast<const Elf_Versym *>(VersymBuf); 3806 switch (Versym->vs_index) { 3807 case 0: 3808 OS << " 0 (*local*) "; 3809 break; 3810 case 1: 3811 OS << " 1 (*global*) "; 3812 break; 3813 default: 3814 OS << format("%4x%c", Versym->vs_index & VERSYM_VERSION, 3815 Versym->vs_index & VERSYM_HIDDEN ? 'h' : ' '); 3816 3817 bool IsDefault = true; 3818 std::string VersionName = Dumper->getSymbolVersionByIndex( 3819 StrTable, Versym->vs_index, IsDefault); 3820 3821 if (!VersionName.empty()) 3822 VersionName = "(" + VersionName + ")"; 3823 else 3824 VersionName = "(*invalid*)"; 3825 OS << left_justify(VersionName, 13); 3826 } 3827 VersymBuf += sizeof(Elf_Versym); 3828 } 3829 OS << '\n'; 3830 } 3831 OS << '\n'; 3832 } 3833 3834 static std::string versionFlagToString(unsigned Flags) { 3835 if (Flags == 0) 3836 return "none"; 3837 3838 std::string Ret; 3839 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 3840 if (!(Flags & Flag)) 3841 return; 3842 if (!Ret.empty()) 3843 Ret += " | "; 3844 Ret += Name; 3845 Flags &= ~Flag; 3846 }; 3847 3848 AddFlag(VER_FLG_BASE, "BASE"); 3849 AddFlag(VER_FLG_WEAK, "WEAK"); 3850 AddFlag(VER_FLG_INFO, "INFO"); 3851 AddFlag(~0, "<unknown>"); 3852 return Ret; 3853 } 3854 3855 template <class ELFT> 3856 void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj, 3857 const Elf_Shdr *Sec) { 3858 if (!Sec) 3859 return; 3860 3861 unsigned VerDefsNum = Sec->sh_info; 3862 printGNUVersionSectionProlog(OS, "Version definition", VerDefsNum, Obj, Sec, 3863 this->FileName); 3864 3865 const Elf_Shdr *StrTabSec = 3866 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); 3867 StringRef StringTable( 3868 reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset), 3869 (size_t)StrTabSec->sh_size); 3870 3871 const uint8_t *VerdefBuf = 3872 unwrapOrError(this->FileName, Obj->getSectionContents(Sec)).data(); 3873 const uint8_t *Begin = VerdefBuf; 3874 3875 while (VerDefsNum--) { 3876 const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf); 3877 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u", 3878 VerdefBuf - Begin, (unsigned)Verdef->vd_version, 3879 versionFlagToString(Verdef->vd_flags).c_str(), 3880 (unsigned)Verdef->vd_ndx, (unsigned)Verdef->vd_cnt); 3881 3882 const uint8_t *VerdauxBuf = VerdefBuf + Verdef->vd_aux; 3883 const Elf_Verdaux *Verdaux = 3884 reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf); 3885 OS << format(" Name: %s\n", 3886 StringTable.drop_front(Verdaux->vda_name).data()); 3887 3888 for (unsigned I = 1; I < Verdef->vd_cnt; ++I) { 3889 VerdauxBuf += Verdaux->vda_next; 3890 Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf); 3891 OS << format(" 0x%04x: Parent %u: %s\n", VerdauxBuf - Begin, I, 3892 StringTable.drop_front(Verdaux->vda_name).data()); 3893 } 3894 3895 VerdefBuf += Verdef->vd_next; 3896 } 3897 OS << '\n'; 3898 } 3899 3900 template <class ELFT> 3901 void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj, 3902 const Elf_Shdr *Sec) { 3903 if (!Sec) 3904 return; 3905 3906 unsigned VerneedNum = Sec->sh_info; 3907 printGNUVersionSectionProlog(OS, "Version needs", VerneedNum, Obj, Sec, 3908 this->FileName); 3909 3910 ArrayRef<uint8_t> SecData = 3911 unwrapOrError(this->FileName, Obj->getSectionContents(Sec)); 3912 3913 const Elf_Shdr *StrTabSec = 3914 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); 3915 StringRef StringTable = { 3916 reinterpret_cast<const char *>(Obj->base() + StrTabSec->sh_offset), 3917 (size_t)StrTabSec->sh_size}; 3918 3919 const uint8_t *VerneedBuf = SecData.data(); 3920 for (unsigned I = 0; I < VerneedNum; ++I) { 3921 const Elf_Verneed *Verneed = 3922 reinterpret_cast<const Elf_Verneed *>(VerneedBuf); 3923 3924 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", 3925 reinterpret_cast<const uint8_t *>(Verneed) - SecData.begin(), 3926 (unsigned)Verneed->vn_version, 3927 StringTable.drop_front(Verneed->vn_file).data(), 3928 (unsigned)Verneed->vn_cnt); 3929 3930 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; 3931 for (unsigned J = 0; J < Verneed->vn_cnt; ++J) { 3932 const Elf_Vernaux *Vernaux = 3933 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf); 3934 3935 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", 3936 reinterpret_cast<const uint8_t *>(Vernaux) - SecData.begin(), 3937 StringTable.drop_front(Vernaux->vna_name).data(), 3938 versionFlagToString(Vernaux->vna_flags).c_str(), 3939 (unsigned)Vernaux->vna_other); 3940 VernauxBuf += Vernaux->vna_next; 3941 } 3942 VerneedBuf += Verneed->vn_next; 3943 } 3944 OS << '\n'; 3945 } 3946 3947 // Hash histogram shows statistics of how efficient the hash was for the 3948 // dynamic symbol table. The table shows number of hash buckets for different 3949 // lengths of chains as absolute number and percentage of the total buckets. 3950 // Additionally cumulative coverage of symbols for each set of buckets. 3951 template <class ELFT> 3952 void GNUStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) { 3953 // Print histogram for .hash section 3954 if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) { 3955 size_t NBucket = HashTable->nbucket; 3956 size_t NChain = HashTable->nchain; 3957 ArrayRef<Elf_Word> Buckets = HashTable->buckets(); 3958 ArrayRef<Elf_Word> Chains = HashTable->chains(); 3959 size_t TotalSyms = 0; 3960 // If hash table is correct, we have at least chains with 0 length 3961 size_t MaxChain = 1; 3962 size_t CumulativeNonZero = 0; 3963 3964 if (NChain == 0 || NBucket == 0) 3965 return; 3966 3967 std::vector<size_t> ChainLen(NBucket, 0); 3968 // Go over all buckets and and note chain lengths of each bucket (total 3969 // unique chain lengths). 3970 for (size_t B = 0; B < NBucket; B++) { 3971 std::vector<bool> Visited(NChain); 3972 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 3973 if (C == ELF::STN_UNDEF) 3974 break; 3975 if (Visited[C]) { 3976 reportWarning( 3977 createError(".hash section is invalid: bucket " + Twine(C) + 3978 ": a cycle was detected in the linked chain"), 3979 this->FileName); 3980 break; 3981 } 3982 Visited[C] = true; 3983 if (MaxChain <= ++ChainLen[B]) 3984 MaxChain++; 3985 } 3986 TotalSyms += ChainLen[B]; 3987 } 3988 3989 if (!TotalSyms) 3990 return; 3991 3992 std::vector<size_t> Count(MaxChain, 0) ; 3993 // Count how long is the chain for each bucket 3994 for (size_t B = 0; B < NBucket; B++) 3995 ++Count[ChainLen[B]]; 3996 // Print Number of buckets with each chain lengths and their cumulative 3997 // coverage of the symbols 3998 OS << "Histogram for bucket list length (total of " << NBucket 3999 << " buckets)\n" 4000 << " Length Number % of total Coverage\n"; 4001 for (size_t I = 0; I < MaxChain; I++) { 4002 CumulativeNonZero += Count[I] * I; 4003 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4004 (Count[I] * 100.0) / NBucket, 4005 (CumulativeNonZero * 100.0) / TotalSyms); 4006 } 4007 } 4008 4009 // Print histogram for .gnu.hash section 4010 if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) { 4011 size_t NBucket = GnuHashTable->nbuckets; 4012 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 4013 unsigned NumSyms = this->dumper()->dynamic_symbols().size(); 4014 if (!NumSyms) 4015 return; 4016 ArrayRef<Elf_Word> Chains = GnuHashTable->values(NumSyms); 4017 size_t Symndx = GnuHashTable->symndx; 4018 size_t TotalSyms = 0; 4019 size_t MaxChain = 1; 4020 size_t CumulativeNonZero = 0; 4021 4022 if (Chains.empty() || NBucket == 0) 4023 return; 4024 4025 std::vector<size_t> ChainLen(NBucket, 0); 4026 4027 for (size_t B = 0; B < NBucket; B++) { 4028 if (!Buckets[B]) 4029 continue; 4030 size_t Len = 1; 4031 for (size_t C = Buckets[B] - Symndx; 4032 C < Chains.size() && (Chains[C] & 1) == 0; C++) 4033 if (MaxChain < ++Len) 4034 MaxChain++; 4035 ChainLen[B] = Len; 4036 TotalSyms += Len; 4037 } 4038 MaxChain++; 4039 4040 if (!TotalSyms) 4041 return; 4042 4043 std::vector<size_t> Count(MaxChain, 0) ; 4044 for (size_t B = 0; B < NBucket; B++) 4045 ++Count[ChainLen[B]]; 4046 // Print Number of buckets with each chain lengths and their cumulative 4047 // coverage of the symbols 4048 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket 4049 << " buckets)\n" 4050 << " Length Number % of total Coverage\n"; 4051 for (size_t I = 0; I <MaxChain; I++) { 4052 CumulativeNonZero += Count[I] * I; 4053 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4054 (Count[I] * 100.0) / NBucket, 4055 (CumulativeNonZero * 100.0) / TotalSyms); 4056 } 4057 } 4058 } 4059 4060 template <class ELFT> 4061 void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) { 4062 OS << "GNUStyle::printCGProfile not implemented\n"; 4063 } 4064 4065 template <class ELFT> 4066 void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) { 4067 reportError(createError("--addrsig: not implemented"), this->FileName); 4068 } 4069 4070 static StringRef getGenericNoteTypeName(const uint32_t NT) { 4071 static const struct { 4072 uint32_t ID; 4073 const char *Name; 4074 } Notes[] = { 4075 {ELF::NT_VERSION, "NT_VERSION (version)"}, 4076 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 4077 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 4078 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 4079 }; 4080 4081 for (const auto &Note : Notes) 4082 if (Note.ID == NT) 4083 return Note.Name; 4084 4085 return ""; 4086 } 4087 4088 static StringRef getCoreNoteTypeName(const uint32_t NT) { 4089 static const struct { 4090 uint32_t ID; 4091 const char *Name; 4092 } Notes[] = { 4093 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 4094 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 4095 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 4096 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 4097 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 4098 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 4099 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 4100 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 4101 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 4102 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 4103 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 4104 4105 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 4106 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 4107 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 4108 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 4109 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 4110 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 4111 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 4112 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 4113 {ELF::NT_PPC_TM_CFPR, 4114 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 4115 {ELF::NT_PPC_TM_CVMX, 4116 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 4117 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 4118 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 4119 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 4120 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 4121 {ELF::NT_PPC_TM_CDSCR, 4122 "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 4123 4124 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 4125 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 4126 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 4127 4128 {ELF::NT_S390_HIGH_GPRS, 4129 "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 4130 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 4131 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 4132 {ELF::NT_S390_TODPREG, 4133 "NT_S390_TODPREG (s390 TOD programmable register)"}, 4134 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 4135 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 4136 {ELF::NT_S390_LAST_BREAK, 4137 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 4138 {ELF::NT_S390_SYSTEM_CALL, 4139 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 4140 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 4141 {ELF::NT_S390_VXRS_LOW, 4142 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 4143 {ELF::NT_S390_VXRS_HIGH, 4144 "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 4145 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 4146 {ELF::NT_S390_GS_BC, 4147 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 4148 4149 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 4150 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 4151 {ELF::NT_ARM_HW_BREAK, 4152 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 4153 {ELF::NT_ARM_HW_WATCH, 4154 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 4155 4156 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 4157 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 4158 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 4159 }; 4160 4161 for (const auto &Note : Notes) 4162 if (Note.ID == NT) 4163 return Note.Name; 4164 4165 return ""; 4166 } 4167 4168 static std::string getGNUNoteTypeName(const uint32_t NT) { 4169 static const struct { 4170 uint32_t ID; 4171 const char *Name; 4172 } Notes[] = { 4173 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 4174 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 4175 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 4176 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 4177 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 4178 }; 4179 4180 for (const auto &Note : Notes) 4181 if (Note.ID == NT) 4182 return std::string(Note.Name); 4183 4184 std::string string; 4185 raw_string_ostream OS(string); 4186 OS << format("Unknown note type (0x%08x)", NT); 4187 return OS.str(); 4188 } 4189 4190 static std::string getFreeBSDNoteTypeName(const uint32_t NT) { 4191 static const struct { 4192 uint32_t ID; 4193 const char *Name; 4194 } Notes[] = { 4195 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 4196 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 4197 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 4198 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 4199 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 4200 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 4201 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 4202 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 4203 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 4204 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 4205 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 4206 }; 4207 4208 for (const auto &Note : Notes) 4209 if (Note.ID == NT) 4210 return std::string(Note.Name); 4211 4212 std::string string; 4213 raw_string_ostream OS(string); 4214 OS << format("Unknown note type (0x%08x)", NT); 4215 return OS.str(); 4216 } 4217 4218 static std::string getAMDNoteTypeName(const uint32_t NT) { 4219 static const struct { 4220 uint32_t ID; 4221 const char *Name; 4222 } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA, 4223 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"}, 4224 {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"}, 4225 {ELF::NT_AMD_AMDGPU_PAL_METADATA, 4226 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}}; 4227 4228 for (const auto &Note : Notes) 4229 if (Note.ID == NT) 4230 return std::string(Note.Name); 4231 4232 std::string string; 4233 raw_string_ostream OS(string); 4234 OS << format("Unknown note type (0x%08x)", NT); 4235 return OS.str(); 4236 } 4237 4238 static std::string getAMDGPUNoteTypeName(const uint32_t NT) { 4239 if (NT == ELF::NT_AMDGPU_METADATA) 4240 return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)"); 4241 4242 std::string string; 4243 raw_string_ostream OS(string); 4244 OS << format("Unknown note type (0x%08x)", NT); 4245 return OS.str(); 4246 } 4247 4248 template <typename ELFT> 4249 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 4250 ArrayRef<uint8_t> Data) { 4251 std::string str; 4252 raw_string_ostream OS(str); 4253 uint32_t PrData; 4254 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 4255 if (PrData & Flag) { 4256 PrData &= ~Flag; 4257 OS << Name; 4258 if (PrData) 4259 OS << ", "; 4260 } 4261 }; 4262 4263 switch (Type) { 4264 default: 4265 OS << format("<application-specific type 0x%x>", Type); 4266 return OS.str(); 4267 case GNU_PROPERTY_STACK_SIZE: { 4268 OS << "stack size: "; 4269 if (DataSize == sizeof(typename ELFT::uint)) 4270 OS << formatv("{0:x}", 4271 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 4272 else 4273 OS << format("<corrupt length: 0x%x>", DataSize); 4274 return OS.str(); 4275 } 4276 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 4277 OS << "no copy on protected"; 4278 if (DataSize) 4279 OS << format(" <corrupt length: 0x%x>", DataSize); 4280 return OS.str(); 4281 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 4282 case GNU_PROPERTY_X86_FEATURE_1_AND: 4283 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 4284 : "x86 feature: "); 4285 if (DataSize != 4) { 4286 OS << format("<corrupt length: 0x%x>", DataSize); 4287 return OS.str(); 4288 } 4289 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4290 if (PrData == 0) { 4291 OS << "<None>"; 4292 return OS.str(); 4293 } 4294 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 4295 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 4296 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 4297 } else { 4298 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 4299 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 4300 } 4301 if (PrData) 4302 OS << format("<unknown flags: 0x%x>", PrData); 4303 return OS.str(); 4304 case GNU_PROPERTY_X86_ISA_1_NEEDED: 4305 case GNU_PROPERTY_X86_ISA_1_USED: 4306 OS << "x86 ISA " 4307 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 4308 if (DataSize != 4) { 4309 OS << format("<corrupt length: 0x%x>", DataSize); 4310 return OS.str(); 4311 } 4312 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4313 if (PrData == 0) { 4314 OS << "<None>"; 4315 return OS.str(); 4316 } 4317 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV"); 4318 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE"); 4319 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2"); 4320 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3"); 4321 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3"); 4322 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1"); 4323 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2"); 4324 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX"); 4325 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2"); 4326 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA"); 4327 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F"); 4328 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD"); 4329 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER"); 4330 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF"); 4331 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL"); 4332 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ"); 4333 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW"); 4334 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS"); 4335 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW"); 4336 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG"); 4337 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA"); 4338 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI"); 4339 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2"); 4340 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI"); 4341 if (PrData) 4342 OS << format("<unknown flags: 0x%x>", PrData); 4343 return OS.str(); 4344 break; 4345 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 4346 case GNU_PROPERTY_X86_FEATURE_2_USED: 4347 OS << "x86 feature " 4348 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 4349 if (DataSize != 4) { 4350 OS << format("<corrupt length: 0x%x>", DataSize); 4351 return OS.str(); 4352 } 4353 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4354 if (PrData == 0) { 4355 OS << "<None>"; 4356 return OS.str(); 4357 } 4358 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 4359 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 4360 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 4361 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 4362 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 4363 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 4364 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 4365 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 4366 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 4367 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 4368 if (PrData) 4369 OS << format("<unknown flags: 0x%x>", PrData); 4370 return OS.str(); 4371 } 4372 } 4373 4374 template <typename ELFT> 4375 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 4376 using Elf_Word = typename ELFT::Word; 4377 4378 SmallVector<std::string, 4> Properties; 4379 while (Arr.size() >= 8) { 4380 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 4381 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 4382 Arr = Arr.drop_front(8); 4383 4384 // Take padding size into account if present. 4385 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 4386 std::string str; 4387 raw_string_ostream OS(str); 4388 if (Arr.size() < PaddedSize) { 4389 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 4390 Properties.push_back(OS.str()); 4391 break; 4392 } 4393 Properties.push_back( 4394 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 4395 Arr = Arr.drop_front(PaddedSize); 4396 } 4397 4398 if (!Arr.empty()) 4399 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 4400 4401 return Properties; 4402 } 4403 4404 struct GNUAbiTag { 4405 std::string OSName; 4406 std::string ABI; 4407 bool IsValid; 4408 }; 4409 4410 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 4411 typedef typename ELFT::Word Elf_Word; 4412 4413 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 4414 reinterpret_cast<const Elf_Word *>(Desc.end())); 4415 4416 if (Words.size() < 4) 4417 return {"", "", /*IsValid=*/false}; 4418 4419 static const char *OSNames[] = { 4420 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 4421 }; 4422 StringRef OSName = "Unknown"; 4423 if (Words[0] < array_lengthof(OSNames)) 4424 OSName = OSNames[Words[0]]; 4425 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 4426 std::string str; 4427 raw_string_ostream ABI(str); 4428 ABI << Major << "." << Minor << "." << Patch; 4429 return {OSName, ABI.str(), /*IsValid=*/true}; 4430 } 4431 4432 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 4433 std::string str; 4434 raw_string_ostream OS(str); 4435 for (const auto &B : Desc) 4436 OS << format_hex_no_prefix(B, 2); 4437 return OS.str(); 4438 } 4439 4440 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) { 4441 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 4442 } 4443 4444 template <typename ELFT> 4445 static void printGNUNote(raw_ostream &OS, uint32_t NoteType, 4446 ArrayRef<uint8_t> Desc) { 4447 switch (NoteType) { 4448 default: 4449 return; 4450 case ELF::NT_GNU_ABI_TAG: { 4451 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 4452 if (!AbiTag.IsValid) 4453 OS << " <corrupt GNU_ABI_TAG>"; 4454 else 4455 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 4456 break; 4457 } 4458 case ELF::NT_GNU_BUILD_ID: { 4459 OS << " Build ID: " << getGNUBuildId(Desc); 4460 break; 4461 } 4462 case ELF::NT_GNU_GOLD_VERSION: 4463 OS << " Version: " << getGNUGoldVersion(Desc); 4464 break; 4465 case ELF::NT_GNU_PROPERTY_TYPE_0: 4466 OS << " Properties:"; 4467 for (const auto &Property : getGNUPropertyList<ELFT>(Desc)) 4468 OS << " " << Property << "\n"; 4469 break; 4470 } 4471 OS << '\n'; 4472 } 4473 4474 struct AMDNote { 4475 std::string Type; 4476 std::string Value; 4477 }; 4478 4479 template <typename ELFT> 4480 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 4481 switch (NoteType) { 4482 default: 4483 return {"", ""}; 4484 case ELF::NT_AMD_AMDGPU_HSA_METADATA: 4485 return { 4486 "HSA Metadata", 4487 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 4488 case ELF::NT_AMD_AMDGPU_ISA: 4489 return { 4490 "ISA Version", 4491 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 4492 } 4493 } 4494 4495 struct AMDGPUNote { 4496 std::string Type; 4497 std::string Value; 4498 }; 4499 4500 template <typename ELFT> 4501 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 4502 switch (NoteType) { 4503 default: 4504 return {"", ""}; 4505 case ELF::NT_AMDGPU_METADATA: { 4506 auto MsgPackString = 4507 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 4508 msgpack::Document MsgPackDoc; 4509 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 4510 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; 4511 4512 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 4513 if (!Verifier.verify(MsgPackDoc.getRoot())) 4514 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; 4515 4516 std::string HSAMetadataString; 4517 raw_string_ostream StrOS(HSAMetadataString); 4518 MsgPackDoc.toYAML(StrOS); 4519 4520 return {"AMDGPU Metadata", StrOS.str()}; 4521 } 4522 } 4523 } 4524 4525 struct CoreFileMapping { 4526 uint64_t Start, End, Offset; 4527 StringRef Filename; 4528 }; 4529 4530 struct CoreNote { 4531 uint64_t PageSize; 4532 std::vector<CoreFileMapping> Mappings; 4533 }; 4534 4535 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 4536 // Expected format of the NT_FILE note description: 4537 // 1. # of file mappings (call it N) 4538 // 2. Page size 4539 // 3. N (start, end, offset) triples 4540 // 4. N packed filenames (null delimited) 4541 // Each field is an Elf_Addr, except for filenames which are char* strings. 4542 4543 CoreNote Ret; 4544 const int Bytes = Desc.getAddressSize(); 4545 4546 if (!Desc.isValidOffsetForAddress(2)) 4547 return createStringError(object_error::parse_failed, 4548 "malformed note: header too short"); 4549 if (Desc.getData().back() != 0) 4550 return createStringError(object_error::parse_failed, 4551 "malformed note: not NUL terminated"); 4552 4553 uint64_t DescOffset = 0; 4554 uint64_t FileCount = Desc.getAddress(&DescOffset); 4555 Ret.PageSize = Desc.getAddress(&DescOffset); 4556 4557 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 4558 return createStringError(object_error::parse_failed, 4559 "malformed note: too short for number of files"); 4560 4561 uint64_t FilenamesOffset = 0; 4562 DataExtractor Filenames( 4563 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 4564 Desc.isLittleEndian(), Desc.getAddressSize()); 4565 4566 Ret.Mappings.resize(FileCount); 4567 for (CoreFileMapping &Mapping : Ret.Mappings) { 4568 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 4569 return createStringError(object_error::parse_failed, 4570 "malformed note: too few filenames"); 4571 Mapping.Start = Desc.getAddress(&DescOffset); 4572 Mapping.End = Desc.getAddress(&DescOffset); 4573 Mapping.Offset = Desc.getAddress(&DescOffset); 4574 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 4575 } 4576 4577 return Ret; 4578 } 4579 4580 template <typename ELFT> 4581 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 4582 // Length of "0x<address>" string. 4583 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 4584 4585 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 4586 OS << " " << right_justify("Start", FieldWidth) << " " 4587 << right_justify("End", FieldWidth) << " " 4588 << right_justify("Page Offset", FieldWidth) << '\n'; 4589 for (const CoreFileMapping &Mapping : Note.Mappings) { 4590 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 4591 << format_hex(Mapping.End, FieldWidth) << " " 4592 << format_hex(Mapping.Offset, FieldWidth) << "\n " 4593 << Mapping.Filename << '\n'; 4594 } 4595 } 4596 4597 template <class ELFT> 4598 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) { 4599 auto PrintHeader = [&](const typename ELFT::Off Offset, 4600 const typename ELFT::Addr Size) { 4601 OS << "Displaying notes found at file offset " << format_hex(Offset, 10) 4602 << " with length " << format_hex(Size, 10) << ":\n" 4603 << " Owner Data size \tDescription\n"; 4604 }; 4605 4606 auto ProcessNote = [&](const Elf_Note &Note) { 4607 StringRef Name = Note.getName(); 4608 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 4609 Elf_Word Type = Note.getType(); 4610 4611 // Print the note owner/type. 4612 OS << " " << left_justify(Name, 20) << ' ' 4613 << format_hex(Descriptor.size(), 10) << '\t'; 4614 if (Name == "GNU") { 4615 OS << getGNUNoteTypeName(Type) << '\n'; 4616 } else if (Name == "FreeBSD") { 4617 OS << getFreeBSDNoteTypeName(Type) << '\n'; 4618 } else if (Name == "AMD") { 4619 OS << getAMDNoteTypeName(Type) << '\n'; 4620 } else if (Name == "AMDGPU") { 4621 OS << getAMDGPUNoteTypeName(Type) << '\n'; 4622 } else { 4623 StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE 4624 ? getCoreNoteTypeName(Type) 4625 : getGenericNoteTypeName(Type); 4626 if (!NoteType.empty()) 4627 OS << NoteType << '\n'; 4628 else 4629 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 4630 } 4631 4632 // Print the description, or fallback to printing raw bytes for unknown 4633 // owners. 4634 if (Name == "GNU") { 4635 printGNUNote<ELFT>(OS, Type, Descriptor); 4636 } else if (Name == "AMD") { 4637 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 4638 if (!N.Type.empty()) 4639 OS << " " << N.Type << ":\n " << N.Value << '\n'; 4640 } else if (Name == "AMDGPU") { 4641 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 4642 if (!N.Type.empty()) 4643 OS << " " << N.Type << ":\n " << N.Value << '\n'; 4644 } else if (Name == "CORE") { 4645 if (Type == ELF::NT_FILE) { 4646 DataExtractor DescExtractor(Descriptor, 4647 ELFT::TargetEndianness == support::little, 4648 sizeof(Elf_Addr)); 4649 Expected<CoreNote> Note = readCoreNote(DescExtractor); 4650 if (Note) 4651 printCoreNote<ELFT>(OS, *Note); 4652 else 4653 reportWarning(Note.takeError(), this->FileName); 4654 } 4655 } else if (!Descriptor.empty()) { 4656 OS << " description data:"; 4657 for (uint8_t B : Descriptor) 4658 OS << " " << format("%02x", B); 4659 OS << '\n'; 4660 } 4661 }; 4662 4663 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); 4664 if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) { 4665 for (const auto &S : Sections) { 4666 if (S.sh_type != SHT_NOTE) 4667 continue; 4668 PrintHeader(S.sh_offset, S.sh_size); 4669 Error Err = Error::success(); 4670 for (const auto &Note : Obj->notes(S, Err)) 4671 ProcessNote(Note); 4672 if (Err) 4673 reportError(std::move(Err), this->FileName); 4674 } 4675 } else { 4676 for (const auto &P : 4677 unwrapOrError(this->FileName, Obj->program_headers())) { 4678 if (P.p_type != PT_NOTE) 4679 continue; 4680 PrintHeader(P.p_offset, P.p_filesz); 4681 Error Err = Error::success(); 4682 for (const auto &Note : Obj->notes(P, Err)) 4683 ProcessNote(Note); 4684 if (Err) 4685 reportError(std::move(Err), this->FileName); 4686 } 4687 } 4688 } 4689 4690 template <class ELFT> 4691 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) { 4692 OS << "printELFLinkerOptions not implemented!\n"; 4693 } 4694 4695 // Used for printing section names in places where possible errors can be 4696 // ignored. 4697 static StringRef getSectionName(const SectionRef &Sec) { 4698 Expected<StringRef> NameOrErr = Sec.getName(); 4699 if (NameOrErr) 4700 return *NameOrErr; 4701 consumeError(NameOrErr.takeError()); 4702 return "<?>"; 4703 } 4704 4705 // Used for printing symbol names in places where possible errors can be 4706 // ignored. 4707 static std::string getSymbolName(const ELFSymbolRef &Sym) { 4708 Expected<StringRef> NameOrErr = Sym.getName(); 4709 if (NameOrErr) 4710 return maybeDemangle(*NameOrErr); 4711 consumeError(NameOrErr.takeError()); 4712 return "<?>"; 4713 } 4714 4715 template <class ELFT> 4716 void DumpStyle<ELFT>::printFunctionStackSize( 4717 const ELFObjectFile<ELFT> *Obj, uint64_t SymValue, SectionRef FunctionSec, 4718 const StringRef SectionName, DataExtractor Data, uint64_t *Offset) { 4719 // This function ignores potentially erroneous input, unless it is directly 4720 // related to stack size reporting. 4721 SymbolRef FuncSym; 4722 for (const ELFSymbolRef &Symbol : Obj->symbols()) { 4723 Expected<uint64_t> SymAddrOrErr = Symbol.getAddress(); 4724 if (!SymAddrOrErr) { 4725 consumeError(SymAddrOrErr.takeError()); 4726 continue; 4727 } 4728 if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) { 4729 // Check if the symbol is in the right section. 4730 if (FunctionSec.containsSymbol(Symbol)) { 4731 FuncSym = Symbol; 4732 break; 4733 } 4734 } 4735 } 4736 4737 std::string FuncName = "?"; 4738 // A valid SymbolRef has a non-null object file pointer. 4739 if (FuncSym.BasicSymbolRef::getObject()) 4740 FuncName = getSymbolName(FuncSym); 4741 else 4742 reportWarning( 4743 createError("could not identify function symbol for stack size entry"), 4744 Obj->getFileName()); 4745 4746 // Extract the size. The expectation is that Offset is pointing to the right 4747 // place, i.e. past the function address. 4748 uint64_t PrevOffset = *Offset; 4749 uint64_t StackSize = Data.getULEB128(Offset); 4750 // getULEB128() does not advance Offset if it is not able to extract a valid 4751 // integer. 4752 if (*Offset == PrevOffset) 4753 reportError( 4754 createStringError(object_error::parse_failed, 4755 "could not extract a valid stack size in section %s", 4756 SectionName.data()), 4757 Obj->getFileName()); 4758 4759 printStackSizeEntry(StackSize, FuncName); 4760 } 4761 4762 template <class ELFT> 4763 void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) { 4764 OS.PadToColumn(2); 4765 OS << format_decimal(Size, 11); 4766 OS.PadToColumn(18); 4767 OS << FuncName << "\n"; 4768 } 4769 4770 template <class ELFT> 4771 void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj, 4772 RelocationRef Reloc, 4773 SectionRef FunctionSec, 4774 const StringRef &StackSizeSectionName, 4775 const RelocationResolver &Resolver, 4776 DataExtractor Data) { 4777 // This function ignores potentially erroneous input, unless it is directly 4778 // related to stack size reporting. 4779 object::symbol_iterator RelocSym = Reloc.getSymbol(); 4780 uint64_t RelocSymValue = 0; 4781 StringRef FileStr = Obj->getFileName(); 4782 if (RelocSym != Obj->symbol_end()) { 4783 // Ensure that the relocation symbol is in the function section, i.e. the 4784 // section where the functions whose stack sizes we are reporting are 4785 // located. 4786 auto SectionOrErr = RelocSym->getSection(); 4787 if (!SectionOrErr) { 4788 reportWarning( 4789 createError("cannot identify the section for relocation symbol '" + 4790 getSymbolName(*RelocSym) + "'"), 4791 FileStr); 4792 consumeError(SectionOrErr.takeError()); 4793 } else if (*SectionOrErr != FunctionSec) { 4794 reportWarning(createError("relocation symbol '" + 4795 getSymbolName(*RelocSym) + 4796 "' is not in the expected section"), 4797 FileStr); 4798 // Pretend that the symbol is in the correct section and report its 4799 // stack size anyway. 4800 FunctionSec = **SectionOrErr; 4801 } 4802 4803 Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue(); 4804 if (RelocSymValueOrErr) 4805 RelocSymValue = *RelocSymValueOrErr; 4806 else 4807 consumeError(RelocSymValueOrErr.takeError()); 4808 } 4809 4810 uint64_t Offset = Reloc.getOffset(); 4811 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) 4812 reportError( 4813 createStringError(object_error::parse_failed, 4814 "found invalid relocation offset into section %s " 4815 "while trying to extract a stack size entry", 4816 StackSizeSectionName.data()), 4817 FileStr); 4818 4819 uint64_t Addend = Data.getAddress(&Offset); 4820 uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend); 4821 this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName, 4822 Data, &Offset); 4823 } 4824 4825 template <class ELFT> 4826 void DumpStyle<ELFT>::printNonRelocatableStackSizes( 4827 const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) { 4828 // This function ignores potentially erroneous input, unless it is directly 4829 // related to stack size reporting. 4830 const ELFFile<ELFT> *EF = Obj->getELFFile(); 4831 StringRef FileStr = Obj->getFileName(); 4832 for (const SectionRef &Sec : Obj->sections()) { 4833 StringRef SectionName = getSectionName(Sec); 4834 if (SectionName != ".stack_sizes") 4835 continue; 4836 PrintHeader(); 4837 const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl()); 4838 ArrayRef<uint8_t> Contents = 4839 unwrapOrError(this->FileName, EF->getSectionContents(ElfSec)); 4840 DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr)); 4841 // A .stack_sizes section header's sh_link field is supposed to point 4842 // to the section that contains the functions whose stack sizes are 4843 // described in it. 4844 const Elf_Shdr *FunctionELFSec = 4845 unwrapOrError(this->FileName, EF->getSection(ElfSec->sh_link)); 4846 uint64_t Offset = 0; 4847 while (Offset < Contents.size()) { 4848 // The function address is followed by a ULEB representing the stack 4849 // size. Check for an extra byte before we try to process the entry. 4850 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 4851 reportError( 4852 createStringError( 4853 object_error::parse_failed, 4854 "section %s ended while trying to extract a stack size entry", 4855 SectionName.data()), 4856 FileStr); 4857 } 4858 uint64_t SymValue = Data.getAddress(&Offset); 4859 printFunctionStackSize(Obj, SymValue, Obj->toSectionRef(FunctionELFSec), 4860 SectionName, Data, &Offset); 4861 } 4862 } 4863 } 4864 4865 template <class ELFT> 4866 void DumpStyle<ELFT>::printRelocatableStackSizes( 4867 const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) { 4868 const ELFFile<ELFT> *EF = Obj->getELFFile(); 4869 4870 // Build a map between stack size sections and their corresponding relocation 4871 // sections. 4872 llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap; 4873 const SectionRef NullSection{}; 4874 4875 for (const SectionRef &Sec : Obj->sections()) { 4876 StringRef SectionName; 4877 if (Expected<StringRef> NameOrErr = Sec.getName()) 4878 SectionName = *NameOrErr; 4879 else 4880 consumeError(NameOrErr.takeError()); 4881 4882 // A stack size section that we haven't encountered yet is mapped to the 4883 // null section until we find its corresponding relocation section. 4884 if (SectionName == ".stack_sizes") 4885 if (StackSizeRelocMap.count(Sec) == 0) { 4886 StackSizeRelocMap[Sec] = NullSection; 4887 continue; 4888 } 4889 4890 // Check relocation sections if they are relocating contents of a 4891 // stack sizes section. 4892 const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl()); 4893 uint32_t SectionType = ElfSec->sh_type; 4894 if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL) 4895 continue; 4896 4897 Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection(); 4898 if (!RelSecOrErr) 4899 reportError(createStringError(object_error::parse_failed, 4900 "%s: failed to get a relocated section: %s", 4901 SectionName.data(), 4902 toString(RelSecOrErr.takeError()).c_str()), 4903 Obj->getFileName()); 4904 4905 const Elf_Shdr *ContentsSec = 4906 Obj->getSection((*RelSecOrErr)->getRawDataRefImpl()); 4907 Expected<StringRef> ContentsSectionNameOrErr = 4908 EF->getSectionName(ContentsSec); 4909 if (!ContentsSectionNameOrErr) { 4910 consumeError(ContentsSectionNameOrErr.takeError()); 4911 continue; 4912 } 4913 if (*ContentsSectionNameOrErr != ".stack_sizes") 4914 continue; 4915 // Insert a mapping from the stack sizes section to its relocation section. 4916 StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec; 4917 } 4918 4919 for (const auto &StackSizeMapEntry : StackSizeRelocMap) { 4920 PrintHeader(); 4921 const SectionRef &StackSizesSec = StackSizeMapEntry.first; 4922 const SectionRef &RelocSec = StackSizeMapEntry.second; 4923 4924 // Warn about stack size sections without a relocation section. 4925 StringRef StackSizeSectionName = getSectionName(StackSizesSec); 4926 if (RelocSec == NullSection) { 4927 reportWarning(createError("section " + StackSizeSectionName + 4928 " does not have a corresponding " 4929 "relocation section"), 4930 Obj->getFileName()); 4931 continue; 4932 } 4933 4934 // A .stack_sizes section header's sh_link field is supposed to point 4935 // to the section that contains the functions whose stack sizes are 4936 // described in it. 4937 const Elf_Shdr *StackSizesELFSec = 4938 Obj->getSection(StackSizesSec.getRawDataRefImpl()); 4939 const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError( 4940 this->FileName, EF->getSection(StackSizesELFSec->sh_link))); 4941 4942 bool (*IsSupportedFn)(uint64_t); 4943 RelocationResolver Resolver; 4944 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj); 4945 auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents()); 4946 DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr)); 4947 for (const RelocationRef &Reloc : RelocSec.relocations()) { 4948 if (!IsSupportedFn || !IsSupportedFn(Reloc.getType())) 4949 reportError(createStringError( 4950 object_error::parse_failed, 4951 "unsupported relocation type in section %s: %s", 4952 getSectionName(RelocSec).data(), 4953 EF->getRelocationTypeName(Reloc.getType()).data()), 4954 Obj->getFileName()); 4955 this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName, 4956 Resolver, Data); 4957 } 4958 } 4959 } 4960 4961 template <class ELFT> 4962 void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) { 4963 bool HeaderHasBeenPrinted = false; 4964 auto PrintHeader = [&]() { 4965 if (HeaderHasBeenPrinted) 4966 return; 4967 OS << "\nStack Sizes:\n"; 4968 OS.PadToColumn(9); 4969 OS << "Size"; 4970 OS.PadToColumn(18); 4971 OS << "Function\n"; 4972 HeaderHasBeenPrinted = true; 4973 }; 4974 4975 // For non-relocatable objects, look directly for sections whose name starts 4976 // with .stack_sizes and process the contents. 4977 if (Obj->isRelocatableObject()) 4978 this->printRelocatableStackSizes(Obj, PrintHeader); 4979 else 4980 this->printNonRelocatableStackSizes(Obj, PrintHeader); 4981 } 4982 4983 template <class ELFT> 4984 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 4985 size_t Bias = ELFT::Is64Bits ? 8 : 0; 4986 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 4987 OS.PadToColumn(2); 4988 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 4989 OS.PadToColumn(11 + Bias); 4990 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 4991 OS.PadToColumn(22 + Bias); 4992 OS << format_hex_no_prefix(*E, 8 + Bias); 4993 OS.PadToColumn(31 + 2 * Bias); 4994 OS << Purpose << "\n"; 4995 }; 4996 4997 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 4998 OS << " Canonical gp value: " 4999 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 5000 5001 OS << " Reserved entries:\n"; 5002 if (ELFT::Is64Bits) 5003 OS << " Address Access Initial Purpose\n"; 5004 else 5005 OS << " Address Access Initial Purpose\n"; 5006 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 5007 if (Parser.getGotModulePointer()) 5008 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 5009 5010 if (!Parser.getLocalEntries().empty()) { 5011 OS << "\n"; 5012 OS << " Local entries:\n"; 5013 if (ELFT::Is64Bits) 5014 OS << " Address Access Initial\n"; 5015 else 5016 OS << " Address Access Initial\n"; 5017 for (auto &E : Parser.getLocalEntries()) 5018 PrintEntry(&E, ""); 5019 } 5020 5021 if (Parser.IsStatic) 5022 return; 5023 5024 if (!Parser.getGlobalEntries().empty()) { 5025 OS << "\n"; 5026 OS << " Global entries:\n"; 5027 if (ELFT::Is64Bits) 5028 OS << " Address Access Initial Sym.Val." 5029 << " Type Ndx Name\n"; 5030 else 5031 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 5032 for (auto &E : Parser.getGlobalEntries()) { 5033 const Elf_Sym *Sym = Parser.getGotSym(&E); 5034 std::string SymName = this->dumper()->getFullSymbolName( 5035 Sym, this->dumper()->getDynamicStringTable(), false); 5036 5037 OS.PadToColumn(2); 5038 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 5039 OS.PadToColumn(11 + Bias); 5040 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 5041 OS.PadToColumn(22 + Bias); 5042 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 5043 OS.PadToColumn(31 + 2 * Bias); 5044 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias)); 5045 OS.PadToColumn(40 + 3 * Bias); 5046 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes)); 5047 OS.PadToColumn(48 + 3 * Bias); 5048 OS << getSymbolSectionNdx(Parser.Obj, Sym, 5049 this->dumper()->dynamic_symbols().begin()); 5050 OS.PadToColumn(52 + 3 * Bias); 5051 OS << SymName << "\n"; 5052 } 5053 } 5054 5055 if (!Parser.getOtherEntries().empty()) 5056 OS << "\n Number of TLS and multi-GOT entries " 5057 << Parser.getOtherEntries().size() << "\n"; 5058 } 5059 5060 template <class ELFT> 5061 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 5062 size_t Bias = ELFT::Is64Bits ? 8 : 0; 5063 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 5064 OS.PadToColumn(2); 5065 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 5066 OS.PadToColumn(11 + Bias); 5067 OS << format_hex_no_prefix(*E, 8 + Bias); 5068 OS.PadToColumn(20 + 2 * Bias); 5069 OS << Purpose << "\n"; 5070 }; 5071 5072 OS << "PLT GOT:\n\n"; 5073 5074 OS << " Reserved entries:\n"; 5075 OS << " Address Initial Purpose\n"; 5076 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 5077 if (Parser.getPltModulePointer()) 5078 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 5079 5080 if (!Parser.getPltEntries().empty()) { 5081 OS << "\n"; 5082 OS << " Entries:\n"; 5083 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 5084 for (auto &E : Parser.getPltEntries()) { 5085 const Elf_Sym *Sym = Parser.getPltSym(&E); 5086 std::string SymName = this->dumper()->getFullSymbolName( 5087 Sym, this->dumper()->getDynamicStringTable(), false); 5088 5089 OS.PadToColumn(2); 5090 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 5091 OS.PadToColumn(11 + Bias); 5092 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 5093 OS.PadToColumn(20 + 2 * Bias); 5094 OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias)); 5095 OS.PadToColumn(29 + 3 * Bias); 5096 OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes)); 5097 OS.PadToColumn(37 + 3 * Bias); 5098 OS << getSymbolSectionNdx(Parser.Obj, Sym, 5099 this->dumper()->dynamic_symbols().begin()); 5100 OS.PadToColumn(41 + 3 * Bias); 5101 OS << SymName << "\n"; 5102 } 5103 } 5104 } 5105 5106 template <class ELFT> 5107 void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) { 5108 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 5109 const Elf_Shdr *Shdr = 5110 findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags"); 5111 if (!Shdr) 5112 return; 5113 5114 ArrayRef<uint8_t> Sec = 5115 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); 5116 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 5117 reportError(createError(".MIPS.abiflags section has a wrong size"), 5118 ObjF->getFileName()); 5119 5120 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data()); 5121 5122 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 5123 OS << "ISA: MIPS" << int(Flags->isa_level); 5124 if (Flags->isa_rev > 1) 5125 OS << "r" << int(Flags->isa_rev); 5126 OS << "\n"; 5127 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 5128 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 5129 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 5130 OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) 5131 << "\n"; 5132 OS << "ISA Extension: " 5133 << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n"; 5134 if (Flags->ases == 0) 5135 OS << "ASEs: None\n"; 5136 else 5137 // FIXME: Print each flag on a separate line. 5138 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags)) 5139 << "\n"; 5140 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 5141 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 5142 OS << "\n"; 5143 } 5144 5145 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) { 5146 const Elf_Ehdr *E = Obj->getHeader(); 5147 { 5148 DictScope D(W, "ElfHeader"); 5149 { 5150 DictScope D(W, "Ident"); 5151 W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4)); 5152 W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 5153 W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA], 5154 makeArrayRef(ElfDataEncoding)); 5155 W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]); 5156 5157 auto OSABI = makeArrayRef(ElfOSABI); 5158 if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 5159 E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 5160 switch (E->e_machine) { 5161 case ELF::EM_AMDGPU: 5162 OSABI = makeArrayRef(AMDGPUElfOSABI); 5163 break; 5164 case ELF::EM_ARM: 5165 OSABI = makeArrayRef(ARMElfOSABI); 5166 break; 5167 case ELF::EM_TI_C6000: 5168 OSABI = makeArrayRef(C6000ElfOSABI); 5169 break; 5170 } 5171 } 5172 W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI); 5173 W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]); 5174 W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD)); 5175 } 5176 5177 W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType)); 5178 W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType)); 5179 W.printNumber("Version", E->e_version); 5180 W.printHex("Entry", E->e_entry); 5181 W.printHex("ProgramHeaderOffset", E->e_phoff); 5182 W.printHex("SectionHeaderOffset", E->e_shoff); 5183 if (E->e_machine == EM_MIPS) 5184 W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags), 5185 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 5186 unsigned(ELF::EF_MIPS_MACH)); 5187 else if (E->e_machine == EM_AMDGPU) 5188 W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags), 5189 unsigned(ELF::EF_AMDGPU_MACH)); 5190 else if (E->e_machine == EM_RISCV) 5191 W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 5192 else 5193 W.printFlags("Flags", E->e_flags); 5194 W.printNumber("HeaderSize", E->e_ehsize); 5195 W.printNumber("ProgramHeaderEntrySize", E->e_phentsize); 5196 W.printNumber("ProgramHeaderCount", E->e_phnum); 5197 W.printNumber("SectionHeaderEntrySize", E->e_shentsize); 5198 W.printString("SectionHeaderCount", 5199 getSectionHeadersNumString(Obj, this->FileName)); 5200 W.printString("StringTableSectionIndex", 5201 getSectionHeaderTableIndexString(Obj, this->FileName)); 5202 } 5203 } 5204 5205 template <class ELFT> 5206 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) { 5207 DictScope Lists(W, "Groups"); 5208 std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName); 5209 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 5210 for (const GroupSection &G : V) { 5211 DictScope D(W, "Group"); 5212 W.printNumber("Name", G.Name, G.ShName); 5213 W.printNumber("Index", G.Index); 5214 W.printNumber("Link", G.Link); 5215 W.printNumber("Info", G.Info); 5216 W.printHex("Type", getGroupType(G.Type), G.Type); 5217 W.startLine() << "Signature: " << G.Signature << "\n"; 5218 5219 ListScope L(W, "Section(s) in group"); 5220 for (const GroupMember &GM : G.Members) { 5221 const GroupSection *MainGroup = Map[GM.Index]; 5222 if (MainGroup != &G) { 5223 W.flush(); 5224 errs() << "Error: " << GM.Name << " (" << GM.Index 5225 << ") in a group " + G.Name + " (" << G.Index 5226 << ") is already in a group " + MainGroup->Name + " (" 5227 << MainGroup->Index << ")\n"; 5228 errs().flush(); 5229 continue; 5230 } 5231 W.startLine() << GM.Name << " (" << GM.Index << ")\n"; 5232 } 5233 } 5234 5235 if (V.empty()) 5236 W.startLine() << "There are no group sections in the file.\n"; 5237 } 5238 5239 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) { 5240 ListScope D(W, "Relocations"); 5241 5242 int SectionNumber = -1; 5243 for (const Elf_Shdr &Sec : unwrapOrError(this->FileName, Obj->sections())) { 5244 ++SectionNumber; 5245 5246 if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA && 5247 Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL && 5248 Sec.sh_type != ELF::SHT_ANDROID_RELA && 5249 Sec.sh_type != ELF::SHT_ANDROID_RELR) 5250 continue; 5251 5252 StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec)); 5253 5254 W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n"; 5255 W.indent(); 5256 5257 printRelocations(&Sec, Obj); 5258 5259 W.unindent(); 5260 W.startLine() << "}\n"; 5261 } 5262 } 5263 5264 template <class ELFT> 5265 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) { 5266 const Elf_Shdr *SymTab = 5267 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); 5268 5269 switch (Sec->sh_type) { 5270 case ELF::SHT_REL: 5271 for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) { 5272 Elf_Rela Rela; 5273 Rela.r_offset = R.r_offset; 5274 Rela.r_info = R.r_info; 5275 Rela.r_addend = 0; 5276 printRelocation(Obj, Rela, SymTab); 5277 } 5278 break; 5279 case ELF::SHT_RELA: 5280 for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec))) 5281 printRelocation(Obj, R, SymTab); 5282 break; 5283 case ELF::SHT_RELR: 5284 case ELF::SHT_ANDROID_RELR: { 5285 Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec)); 5286 if (opts::RawRelr) { 5287 for (const Elf_Relr &R : Relrs) 5288 W.startLine() << W.hex(R) << "\n"; 5289 } else { 5290 std::vector<Elf_Rela> RelrRelas = 5291 unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); 5292 for (const Elf_Rela &R : RelrRelas) 5293 printRelocation(Obj, R, SymTab); 5294 } 5295 break; 5296 } 5297 case ELF::SHT_ANDROID_REL: 5298 case ELF::SHT_ANDROID_RELA: 5299 for (const Elf_Rela &R : 5300 unwrapOrError(this->FileName, Obj->android_relas(Sec))) 5301 printRelocation(Obj, R, SymTab); 5302 break; 5303 } 5304 } 5305 5306 template <class ELFT> 5307 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, Elf_Rela Rel, 5308 const Elf_Shdr *SymTab) { 5309 SmallString<32> RelocName; 5310 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); 5311 std::string TargetName; 5312 const Elf_Sym *Sym = 5313 unwrapOrError(this->FileName, Obj->getRelocationSymbol(&Rel, SymTab)); 5314 if (Sym && Sym->getType() == ELF::STT_SECTION) { 5315 const Elf_Shdr *Sec = unwrapOrError( 5316 this->FileName, 5317 Obj->getSection(Sym, SymTab, this->dumper()->getShndxTable())); 5318 TargetName = unwrapOrError(this->FileName, Obj->getSectionName(Sec)); 5319 } else if (Sym) { 5320 StringRef StrTable = 5321 unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*SymTab)); 5322 TargetName = this->dumper()->getFullSymbolName( 5323 Sym, StrTable, SymTab->sh_type == SHT_DYNSYM /* IsDynamic */); 5324 } 5325 5326 if (opts::ExpandRelocs) { 5327 DictScope Group(W, "Relocation"); 5328 W.printHex("Offset", Rel.r_offset); 5329 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); 5330 W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-", 5331 Rel.getSymbol(Obj->isMips64EL())); 5332 W.printHex("Addend", Rel.r_addend); 5333 } else { 5334 raw_ostream &OS = W.startLine(); 5335 OS << W.hex(Rel.r_offset) << " " << RelocName << " " 5336 << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend) 5337 << "\n"; 5338 } 5339 } 5340 5341 template <class ELFT> 5342 void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) { 5343 ListScope SectionsD(W, "Sections"); 5344 5345 int SectionIndex = -1; 5346 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); 5347 const ELFObjectFile<ELFT> *ElfObj = this->dumper()->getElfObject(); 5348 for (const Elf_Shdr &Sec : Sections) { 5349 StringRef Name = unwrapOrError( 5350 ElfObj->getFileName(), Obj->getSectionName(&Sec, this->WarningHandler)); 5351 DictScope SectionD(W, "Section"); 5352 W.printNumber("Index", ++SectionIndex); 5353 W.printNumber("Name", Name, Sec.sh_name); 5354 W.printHex( 5355 "Type", 5356 object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type), 5357 Sec.sh_type); 5358 std::vector<EnumEntry<unsigned>> SectionFlags(std::begin(ElfSectionFlags), 5359 std::end(ElfSectionFlags)); 5360 switch (Obj->getHeader()->e_machine) { 5361 case EM_ARM: 5362 SectionFlags.insert(SectionFlags.end(), std::begin(ElfARMSectionFlags), 5363 std::end(ElfARMSectionFlags)); 5364 break; 5365 case EM_HEXAGON: 5366 SectionFlags.insert(SectionFlags.end(), 5367 std::begin(ElfHexagonSectionFlags), 5368 std::end(ElfHexagonSectionFlags)); 5369 break; 5370 case EM_MIPS: 5371 SectionFlags.insert(SectionFlags.end(), std::begin(ElfMipsSectionFlags), 5372 std::end(ElfMipsSectionFlags)); 5373 break; 5374 case EM_X86_64: 5375 SectionFlags.insert(SectionFlags.end(), std::begin(ElfX86_64SectionFlags), 5376 std::end(ElfX86_64SectionFlags)); 5377 break; 5378 case EM_XCORE: 5379 SectionFlags.insert(SectionFlags.end(), std::begin(ElfXCoreSectionFlags), 5380 std::end(ElfXCoreSectionFlags)); 5381 break; 5382 default: 5383 // Nothing to do. 5384 break; 5385 } 5386 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(SectionFlags)); 5387 W.printHex("Address", Sec.sh_addr); 5388 W.printHex("Offset", Sec.sh_offset); 5389 W.printNumber("Size", Sec.sh_size); 5390 W.printNumber("Link", Sec.sh_link); 5391 W.printNumber("Info", Sec.sh_info); 5392 W.printNumber("AddressAlignment", Sec.sh_addralign); 5393 W.printNumber("EntrySize", Sec.sh_entsize); 5394 5395 if (opts::SectionRelocations) { 5396 ListScope D(W, "Relocations"); 5397 printRelocations(&Sec, Obj); 5398 } 5399 5400 if (opts::SectionSymbols) { 5401 ListScope D(W, "Symbols"); 5402 const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec(); 5403 StringRef StrTable = 5404 unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab)); 5405 5406 for (const Elf_Sym &Sym : 5407 unwrapOrError(this->FileName, Obj->symbols(Symtab))) { 5408 const Elf_Shdr *SymSec = unwrapOrError( 5409 this->FileName, 5410 Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable())); 5411 if (SymSec == &Sec) 5412 printSymbol( 5413 Obj, &Sym, 5414 unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(), 5415 StrTable, false, false); 5416 } 5417 } 5418 5419 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 5420 ArrayRef<uint8_t> Data = 5421 unwrapOrError(this->FileName, Obj->getSectionContents(&Sec)); 5422 W.printBinaryBlock( 5423 "SectionData", 5424 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 5425 } 5426 } 5427 } 5428 5429 template <class ELFT> 5430 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, 5431 const Elf_Sym *First, StringRef StrTable, 5432 bool IsDynamic, 5433 bool /*NonVisibilityBitsUsed*/) { 5434 unsigned SectionIndex = 0; 5435 StringRef SectionName; 5436 this->dumper()->getSectionNameIndex(Symbol, First, SectionName, SectionIndex); 5437 std::string FullSymbolName = 5438 this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic); 5439 unsigned char SymbolType = Symbol->getType(); 5440 5441 DictScope D(W, "Symbol"); 5442 W.printNumber("Name", FullSymbolName, Symbol->st_name); 5443 W.printHex("Value", Symbol->st_value); 5444 W.printNumber("Size", Symbol->st_size); 5445 W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); 5446 if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && 5447 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 5448 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 5449 else 5450 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); 5451 if (Symbol->st_other == 0) 5452 // Usually st_other flag is zero. Do not pollute the output 5453 // by flags enumeration in that case. 5454 W.printNumber("Other", 0); 5455 else { 5456 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 5457 std::end(ElfSymOtherFlags)); 5458 if (Obj->getHeader()->e_machine == EM_MIPS) { 5459 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 5460 // flag overlapped with other ST_MIPS_xxx flags. So consider both 5461 // cases separately. 5462 if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 5463 SymOtherFlags.insert(SymOtherFlags.end(), 5464 std::begin(ElfMips16SymOtherFlags), 5465 std::end(ElfMips16SymOtherFlags)); 5466 else 5467 SymOtherFlags.insert(SymOtherFlags.end(), 5468 std::begin(ElfMipsSymOtherFlags), 5469 std::end(ElfMipsSymOtherFlags)); 5470 } 5471 W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u); 5472 } 5473 W.printHex("Section", SectionName, SectionIndex); 5474 } 5475 5476 template <class ELFT> 5477 void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols, 5478 bool PrintDynamicSymbols) { 5479 if (PrintSymbols) 5480 printSymbols(Obj); 5481 if (PrintDynamicSymbols) 5482 printDynamicSymbols(Obj); 5483 } 5484 5485 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) { 5486 ListScope Group(W, "Symbols"); 5487 this->dumper()->printSymbolsHelper(false); 5488 } 5489 5490 template <class ELFT> 5491 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) { 5492 ListScope Group(W, "DynamicSymbols"); 5493 this->dumper()->printSymbolsHelper(true); 5494 } 5495 5496 template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) { 5497 Elf_Dyn_Range Table = this->dumper()->dynamic_table(); 5498 if (Table.empty()) 5499 return; 5500 5501 raw_ostream &OS = W.getOStream(); 5502 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 5503 5504 bool Is64 = ELFT::Is64Bits; 5505 if (Is64) 5506 W.startLine() << " Tag Type Name/Value\n"; 5507 else 5508 W.startLine() << " Tag Type Name/Value\n"; 5509 for (auto Entry : Table) { 5510 uintX_t Tag = Entry.getTag(); 5511 W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " " 5512 << format("%-21s", 5513 getTypeString(Obj->getHeader()->e_machine, Tag)); 5514 this->dumper()->printDynamicEntry(OS, Tag, Entry.getVal()); 5515 OS << "\n"; 5516 } 5517 5518 W.startLine() << "]\n"; 5519 } 5520 5521 template <class ELFT> 5522 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) { 5523 const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion(); 5524 const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion(); 5525 const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion(); 5526 const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion(); 5527 if (DynRelRegion.Size && DynRelaRegion.Size) 5528 report_fatal_error("There are both REL and RELA dynamic relocations"); 5529 W.startLine() << "Dynamic Relocations {\n"; 5530 W.indent(); 5531 if (DynRelaRegion.Size > 0) 5532 for (const Elf_Rela &Rela : this->dumper()->dyn_relas()) 5533 printDynamicRelocation(Obj, Rela); 5534 else 5535 for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) { 5536 Elf_Rela Rela; 5537 Rela.r_offset = Rel.r_offset; 5538 Rela.r_info = Rel.r_info; 5539 Rela.r_addend = 0; 5540 printDynamicRelocation(Obj, Rela); 5541 } 5542 if (DynRelrRegion.Size > 0) { 5543 Elf_Relr_Range Relrs = this->dumper()->dyn_relrs(); 5544 std::vector<Elf_Rela> RelrRelas = 5545 unwrapOrError(this->FileName, Obj->decode_relrs(Relrs)); 5546 for (const Elf_Rela &Rela : RelrRelas) 5547 printDynamicRelocation(Obj, Rela); 5548 } 5549 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) 5550 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>()) 5551 printDynamicRelocation(Obj, Rela); 5552 else 5553 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) { 5554 Elf_Rela Rela; 5555 Rela.r_offset = Rel.r_offset; 5556 Rela.r_info = Rel.r_info; 5557 Rela.r_addend = 0; 5558 printDynamicRelocation(Obj, Rela); 5559 } 5560 W.unindent(); 5561 W.startLine() << "}\n"; 5562 } 5563 5564 template <class ELFT> 5565 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) { 5566 SmallString<32> RelocName; 5567 Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); 5568 std::string SymbolName = 5569 getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name; 5570 5571 if (opts::ExpandRelocs) { 5572 DictScope Group(W, "Relocation"); 5573 W.printHex("Offset", Rel.r_offset); 5574 W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); 5575 W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-"); 5576 W.printHex("Addend", Rel.r_addend); 5577 } else { 5578 raw_ostream &OS = W.startLine(); 5579 OS << W.hex(Rel.r_offset) << " " << RelocName << " " 5580 << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend) 5581 << "\n"; 5582 } 5583 } 5584 5585 template <class ELFT> 5586 void LLVMStyle<ELFT>::printProgramHeaders( 5587 const ELFO *Obj, bool PrintProgramHeaders, 5588 cl::boolOrDefault PrintSectionMapping) { 5589 if (PrintProgramHeaders) 5590 printProgramHeaders(Obj); 5591 if (PrintSectionMapping == cl::BOU_TRUE) 5592 printSectionMapping(Obj); 5593 } 5594 5595 template <class ELFT> 5596 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) { 5597 ListScope L(W, "ProgramHeaders"); 5598 5599 for (const Elf_Phdr &Phdr : 5600 unwrapOrError(this->FileName, Obj->program_headers())) { 5601 DictScope P(W, "ProgramHeader"); 5602 W.printHex("Type", 5603 getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type), 5604 Phdr.p_type); 5605 W.printHex("Offset", Phdr.p_offset); 5606 W.printHex("VirtualAddress", Phdr.p_vaddr); 5607 W.printHex("PhysicalAddress", Phdr.p_paddr); 5608 W.printNumber("FileSize", Phdr.p_filesz); 5609 W.printNumber("MemSize", Phdr.p_memsz); 5610 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); 5611 W.printNumber("Alignment", Phdr.p_align); 5612 } 5613 } 5614 5615 template <class ELFT> 5616 void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj, 5617 const Elf_Shdr *Sec) { 5618 ListScope SS(W, "VersionSymbols"); 5619 if (!Sec) 5620 return; 5621 5622 const uint8_t *VersymBuf = 5623 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); 5624 const ELFDumper<ELFT> *Dumper = this->dumper(); 5625 StringRef StrTable = Dumper->getDynamicStringTable(); 5626 5627 // Same number of entries in the dynamic symbol table (DT_SYMTAB). 5628 for (const Elf_Sym &Sym : Dumper->dynamic_symbols()) { 5629 DictScope S(W, "Symbol"); 5630 const Elf_Versym *Versym = reinterpret_cast<const Elf_Versym *>(VersymBuf); 5631 std::string FullSymbolName = 5632 Dumper->getFullSymbolName(&Sym, StrTable, true /* IsDynamic */); 5633 W.printNumber("Version", Versym->vs_index & VERSYM_VERSION); 5634 W.printString("Name", FullSymbolName); 5635 VersymBuf += sizeof(Elf_Versym); 5636 } 5637 } 5638 5639 template <class ELFT> 5640 void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj, 5641 const Elf_Shdr *Sec) { 5642 ListScope SD(W, "VersionDefinitions"); 5643 if (!Sec) 5644 return; 5645 5646 const uint8_t *SecStartAddress = 5647 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); 5648 const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size; 5649 const uint8_t *VerdefBuf = SecStartAddress; 5650 const Elf_Shdr *StrTab = 5651 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); 5652 5653 unsigned VerDefsNum = Sec->sh_info; 5654 while (VerDefsNum--) { 5655 if (VerdefBuf + sizeof(Elf_Verdef) > SecEndAddress) 5656 // FIXME: report_fatal_error is not a good way to report error. We should 5657 // emit a parsing error here and below. 5658 report_fatal_error("invalid offset in the section"); 5659 5660 const Elf_Verdef *Verdef = reinterpret_cast<const Elf_Verdef *>(VerdefBuf); 5661 DictScope Def(W, "Definition"); 5662 W.printNumber("Version", Verdef->vd_version); 5663 W.printEnum("Flags", Verdef->vd_flags, makeArrayRef(SymVersionFlags)); 5664 W.printNumber("Index", Verdef->vd_ndx); 5665 W.printNumber("Hash", Verdef->vd_hash); 5666 W.printString("Name", StringRef(reinterpret_cast<const char *>( 5667 Obj->base() + StrTab->sh_offset + 5668 Verdef->getAux()->vda_name))); 5669 if (!Verdef->vd_cnt) 5670 report_fatal_error("at least one definition string must exist"); 5671 if (Verdef->vd_cnt > 2) 5672 report_fatal_error("more than one predecessor is not expected"); 5673 5674 if (Verdef->vd_cnt == 2) { 5675 const uint8_t *VerdauxBuf = 5676 VerdefBuf + Verdef->vd_aux + Verdef->getAux()->vda_next; 5677 const Elf_Verdaux *Verdaux = 5678 reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf); 5679 W.printString("Predecessor", 5680 StringRef(reinterpret_cast<const char *>( 5681 Obj->base() + StrTab->sh_offset + Verdaux->vda_name))); 5682 } 5683 VerdefBuf += Verdef->vd_next; 5684 } 5685 } 5686 5687 template <class ELFT> 5688 void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj, 5689 const Elf_Shdr *Sec) { 5690 ListScope SD(W, "VersionRequirements"); 5691 if (!Sec) 5692 return; 5693 5694 const uint8_t *SecData = 5695 reinterpret_cast<const uint8_t *>(Obj->base() + Sec->sh_offset); 5696 const Elf_Shdr *StrTab = 5697 unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link)); 5698 5699 const uint8_t *VerneedBuf = SecData; 5700 unsigned VerneedNum = Sec->sh_info; 5701 for (unsigned I = 0; I < VerneedNum; ++I) { 5702 const Elf_Verneed *Verneed = 5703 reinterpret_cast<const Elf_Verneed *>(VerneedBuf); 5704 DictScope Entry(W, "Dependency"); 5705 W.printNumber("Version", Verneed->vn_version); 5706 W.printNumber("Count", Verneed->vn_cnt); 5707 W.printString("FileName", 5708 StringRef(reinterpret_cast<const char *>( 5709 Obj->base() + StrTab->sh_offset + Verneed->vn_file))); 5710 5711 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux; 5712 ListScope L(W, "Entries"); 5713 for (unsigned J = 0; J < Verneed->vn_cnt; ++J) { 5714 const Elf_Vernaux *Vernaux = 5715 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf); 5716 DictScope Entry(W, "Entry"); 5717 W.printNumber("Hash", Vernaux->vna_hash); 5718 W.printEnum("Flags", Vernaux->vna_flags, makeArrayRef(SymVersionFlags)); 5719 W.printNumber("Index", Vernaux->vna_other); 5720 W.printString("Name", 5721 StringRef(reinterpret_cast<const char *>( 5722 Obj->base() + StrTab->sh_offset + Vernaux->vna_name))); 5723 VernauxBuf += Vernaux->vna_next; 5724 } 5725 VerneedBuf += Verneed->vn_next; 5726 } 5727 } 5728 5729 template <class ELFT> 5730 void LLVMStyle<ELFT>::printHashHistogram(const ELFFile<ELFT> *Obj) { 5731 W.startLine() << "Hash Histogram not implemented!\n"; 5732 } 5733 5734 template <class ELFT> 5735 void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) { 5736 ListScope L(W, "CGProfile"); 5737 if (!this->dumper()->getDotCGProfileSec()) 5738 return; 5739 auto CGProfile = unwrapOrError( 5740 this->FileName, Obj->template getSectionContentsAsArray<Elf_CGProfile>( 5741 this->dumper()->getDotCGProfileSec())); 5742 for (const Elf_CGProfile &CGPE : CGProfile) { 5743 DictScope D(W, "CGProfileEntry"); 5744 W.printNumber( 5745 "From", 5746 unwrapOrError(this->FileName, 5747 this->dumper()->getStaticSymbolName(CGPE.cgp_from)), 5748 CGPE.cgp_from); 5749 W.printNumber( 5750 "To", 5751 unwrapOrError(this->FileName, 5752 this->dumper()->getStaticSymbolName(CGPE.cgp_to)), 5753 CGPE.cgp_to); 5754 W.printNumber("Weight", CGPE.cgp_weight); 5755 } 5756 } 5757 5758 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 5759 std::vector<uint64_t> Ret; 5760 const uint8_t *Cur = Data.begin(); 5761 const uint8_t *End = Data.end(); 5762 while (Cur != End) { 5763 unsigned Size; 5764 const char *Err; 5765 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 5766 if (Err) 5767 return createError(Err); 5768 Cur += Size; 5769 } 5770 return Ret; 5771 } 5772 5773 template <class ELFT> 5774 void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) { 5775 ListScope L(W, "Addrsig"); 5776 if (!this->dumper()->getDotAddrsigSec()) 5777 return; 5778 ArrayRef<uint8_t> Contents = unwrapOrError( 5779 this->FileName, 5780 Obj->getSectionContents(this->dumper()->getDotAddrsigSec())); 5781 Expected<std::vector<uint64_t>> V = toULEB128Array(Contents); 5782 if (!V) { 5783 reportWarning(V.takeError(), this->FileName); 5784 return; 5785 } 5786 5787 for (uint64_t Sym : *V) { 5788 Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym); 5789 if (NameOrErr) { 5790 W.printNumber("Sym", *NameOrErr, Sym); 5791 continue; 5792 } 5793 reportWarning(NameOrErr.takeError(), this->FileName); 5794 W.printNumber("Sym", "<?>", Sym); 5795 } 5796 } 5797 5798 template <typename ELFT> 5799 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 5800 ScopedPrinter &W) { 5801 switch (NoteType) { 5802 default: 5803 return; 5804 case ELF::NT_GNU_ABI_TAG: { 5805 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 5806 if (!AbiTag.IsValid) { 5807 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 5808 } else { 5809 W.printString("OS", AbiTag.OSName); 5810 W.printString("ABI", AbiTag.ABI); 5811 } 5812 break; 5813 } 5814 case ELF::NT_GNU_BUILD_ID: { 5815 W.printString("Build ID", getGNUBuildId(Desc)); 5816 break; 5817 } 5818 case ELF::NT_GNU_GOLD_VERSION: 5819 W.printString("Version", getGNUGoldVersion(Desc)); 5820 break; 5821 case ELF::NT_GNU_PROPERTY_TYPE_0: 5822 ListScope D(W, "Property"); 5823 for (const auto &Property : getGNUPropertyList<ELFT>(Desc)) 5824 W.printString(Property); 5825 break; 5826 } 5827 } 5828 5829 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 5830 W.printNumber("Page Size", Note.PageSize); 5831 for (const CoreFileMapping &Mapping : Note.Mappings) { 5832 ListScope D(W, "Mapping"); 5833 W.printHex("Start", Mapping.Start); 5834 W.printHex("End", Mapping.End); 5835 W.printHex("Offset", Mapping.Offset); 5836 W.printString("Filename", Mapping.Filename); 5837 } 5838 } 5839 5840 template <class ELFT> 5841 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) { 5842 ListScope L(W, "Notes"); 5843 5844 auto PrintHeader = [&](const typename ELFT::Off Offset, 5845 const typename ELFT::Addr Size) { 5846 W.printHex("Offset", Offset); 5847 W.printHex("Size", Size); 5848 }; 5849 5850 auto ProcessNote = [&](const Elf_Note &Note) { 5851 DictScope D2(W, "Note"); 5852 StringRef Name = Note.getName(); 5853 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 5854 Elf_Word Type = Note.getType(); 5855 5856 // Print the note owner/type. 5857 W.printString("Owner", Name); 5858 W.printHex("Data size", Descriptor.size()); 5859 if (Name == "GNU") { 5860 W.printString("Type", getGNUNoteTypeName(Type)); 5861 } else if (Name == "FreeBSD") { 5862 W.printString("Type", getFreeBSDNoteTypeName(Type)); 5863 } else if (Name == "AMD") { 5864 W.printString("Type", getAMDNoteTypeName(Type)); 5865 } else if (Name == "AMDGPU") { 5866 W.printString("Type", getAMDGPUNoteTypeName(Type)); 5867 } else { 5868 StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE 5869 ? getCoreNoteTypeName(Type) 5870 : getGenericNoteTypeName(Type); 5871 if (!NoteType.empty()) 5872 W.printString("Type", NoteType); 5873 else 5874 W.printString("Type", 5875 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 5876 } 5877 5878 // Print the description, or fallback to printing raw bytes for unknown 5879 // owners. 5880 if (Name == "GNU") { 5881 printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W); 5882 } else if (Name == "AMD") { 5883 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 5884 if (!N.Type.empty()) 5885 W.printString(N.Type, N.Value); 5886 } else if (Name == "AMDGPU") { 5887 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 5888 if (!N.Type.empty()) 5889 W.printString(N.Type, N.Value); 5890 } else if (Name == "CORE") { 5891 if (Type == ELF::NT_FILE) { 5892 DataExtractor DescExtractor(Descriptor, 5893 ELFT::TargetEndianness == support::little, 5894 sizeof(Elf_Addr)); 5895 Expected<CoreNote> Note = readCoreNote(DescExtractor); 5896 if (Note) 5897 printCoreNoteLLVMStyle(*Note, W); 5898 else 5899 reportWarning(Note.takeError(), this->FileName); 5900 } 5901 } else if (!Descriptor.empty()) { 5902 W.printBinaryBlock("Description data", Descriptor); 5903 } 5904 }; 5905 5906 ArrayRef<Elf_Shdr> Sections = unwrapOrError(this->FileName, Obj->sections()); 5907 if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) { 5908 for (const auto &S : Sections) { 5909 if (S.sh_type != SHT_NOTE) 5910 continue; 5911 DictScope D(W, "NoteSection"); 5912 PrintHeader(S.sh_offset, S.sh_size); 5913 Error Err = Error::success(); 5914 for (const auto &Note : Obj->notes(S, Err)) 5915 ProcessNote(Note); 5916 if (Err) 5917 reportError(std::move(Err), this->FileName); 5918 } 5919 } else { 5920 for (const auto &P : 5921 unwrapOrError(this->FileName, Obj->program_headers())) { 5922 if (P.p_type != PT_NOTE) 5923 continue; 5924 DictScope D(W, "NoteSection"); 5925 PrintHeader(P.p_offset, P.p_filesz); 5926 Error Err = Error::success(); 5927 for (const auto &Note : Obj->notes(P, Err)) 5928 ProcessNote(Note); 5929 if (Err) 5930 reportError(std::move(Err), this->FileName); 5931 } 5932 } 5933 } 5934 5935 template <class ELFT> 5936 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) { 5937 ListScope L(W, "LinkerOptions"); 5938 5939 for (const Elf_Shdr &Shdr : unwrapOrError(this->FileName, Obj->sections())) { 5940 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 5941 continue; 5942 5943 ArrayRef<uint8_t> Contents = 5944 unwrapOrError(this->FileName, Obj->getSectionContents(&Shdr)); 5945 for (const uint8_t *P = Contents.begin(), *E = Contents.end(); P < E; ) { 5946 StringRef Key = StringRef(reinterpret_cast<const char *>(P)); 5947 StringRef Value = 5948 StringRef(reinterpret_cast<const char *>(P) + Key.size() + 1); 5949 5950 W.printString(Key, Value); 5951 5952 P = P + Key.size() + Value.size() + 2; 5953 } 5954 } 5955 } 5956 5957 template <class ELFT> 5958 void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) { 5959 ListScope L(W, "StackSizes"); 5960 if (Obj->isRelocatableObject()) 5961 this->printRelocatableStackSizes(Obj, []() {}); 5962 else 5963 this->printNonRelocatableStackSizes(Obj, []() {}); 5964 } 5965 5966 template <class ELFT> 5967 void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) { 5968 DictScope D(W, "Entry"); 5969 W.printString("Function", FuncName); 5970 W.printHex("Size", Size); 5971 } 5972 5973 template <class ELFT> 5974 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 5975 auto PrintEntry = [&](const Elf_Addr *E) { 5976 W.printHex("Address", Parser.getGotAddress(E)); 5977 W.printNumber("Access", Parser.getGotOffset(E)); 5978 W.printHex("Initial", *E); 5979 }; 5980 5981 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 5982 5983 W.printHex("Canonical gp value", Parser.getGp()); 5984 { 5985 ListScope RS(W, "Reserved entries"); 5986 { 5987 DictScope D(W, "Entry"); 5988 PrintEntry(Parser.getGotLazyResolver()); 5989 W.printString("Purpose", StringRef("Lazy resolver")); 5990 } 5991 5992 if (Parser.getGotModulePointer()) { 5993 DictScope D(W, "Entry"); 5994 PrintEntry(Parser.getGotModulePointer()); 5995 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 5996 } 5997 } 5998 { 5999 ListScope LS(W, "Local entries"); 6000 for (auto &E : Parser.getLocalEntries()) { 6001 DictScope D(W, "Entry"); 6002 PrintEntry(&E); 6003 } 6004 } 6005 6006 if (Parser.IsStatic) 6007 return; 6008 6009 { 6010 ListScope GS(W, "Global entries"); 6011 for (auto &E : Parser.getGlobalEntries()) { 6012 DictScope D(W, "Entry"); 6013 6014 PrintEntry(&E); 6015 6016 const Elf_Sym *Sym = Parser.getGotSym(&E); 6017 W.printHex("Value", Sym->st_value); 6018 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); 6019 6020 unsigned SectionIndex = 0; 6021 StringRef SectionName; 6022 this->dumper()->getSectionNameIndex( 6023 Sym, this->dumper()->dynamic_symbols().begin(), SectionName, 6024 SectionIndex); 6025 W.printHex("Section", SectionName, SectionIndex); 6026 6027 std::string SymName = this->dumper()->getFullSymbolName( 6028 Sym, this->dumper()->getDynamicStringTable(), true); 6029 W.printNumber("Name", SymName, Sym->st_name); 6030 } 6031 } 6032 6033 W.printNumber("Number of TLS and multi-GOT entries", 6034 uint64_t(Parser.getOtherEntries().size())); 6035 } 6036 6037 template <class ELFT> 6038 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6039 auto PrintEntry = [&](const Elf_Addr *E) { 6040 W.printHex("Address", Parser.getPltAddress(E)); 6041 W.printHex("Initial", *E); 6042 }; 6043 6044 DictScope GS(W, "PLT GOT"); 6045 6046 { 6047 ListScope RS(W, "Reserved entries"); 6048 { 6049 DictScope D(W, "Entry"); 6050 PrintEntry(Parser.getPltLazyResolver()); 6051 W.printString("Purpose", StringRef("PLT lazy resolver")); 6052 } 6053 6054 if (auto E = Parser.getPltModulePointer()) { 6055 DictScope D(W, "Entry"); 6056 PrintEntry(E); 6057 W.printString("Purpose", StringRef("Module pointer")); 6058 } 6059 } 6060 { 6061 ListScope LS(W, "Entries"); 6062 for (auto &E : Parser.getPltEntries()) { 6063 DictScope D(W, "Entry"); 6064 PrintEntry(&E); 6065 6066 const Elf_Sym *Sym = Parser.getPltSym(&E); 6067 W.printHex("Value", Sym->st_value); 6068 W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); 6069 6070 unsigned SectionIndex = 0; 6071 StringRef SectionName; 6072 this->dumper()->getSectionNameIndex( 6073 Sym, this->dumper()->dynamic_symbols().begin(), SectionName, 6074 SectionIndex); 6075 W.printHex("Section", SectionName, SectionIndex); 6076 6077 std::string SymName = 6078 this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true); 6079 W.printNumber("Name", SymName, Sym->st_name); 6080 } 6081 } 6082 } 6083 6084 template <class ELFT> 6085 void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) { 6086 const ELFFile<ELFT> *Obj = ObjF->getELFFile(); 6087 const Elf_Shdr *Shdr = 6088 findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags"); 6089 if (!Shdr) { 6090 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 6091 return; 6092 } 6093 ArrayRef<uint8_t> Sec = 6094 unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr)); 6095 if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) { 6096 W.startLine() << "The .MIPS.abiflags section has a wrong size.\n"; 6097 return; 6098 } 6099 6100 auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data()); 6101 6102 raw_ostream &OS = W.getOStream(); 6103 DictScope GS(W, "MIPS ABI Flags"); 6104 6105 W.printNumber("Version", Flags->version); 6106 W.startLine() << "ISA: "; 6107 if (Flags->isa_rev <= 1) 6108 OS << format("MIPS%u", Flags->isa_level); 6109 else 6110 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 6111 OS << "\n"; 6112 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); 6113 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); 6114 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); 6115 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 6116 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 6117 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 6118 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); 6119 W.printHex("Flags 2", Flags->flags2); 6120 } 6121