1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/PointerIntPair.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 32 #include "llvm/BinaryFormat/ELF.h" 33 #include "llvm/BinaryFormat/MsgPackDocument.h" 34 #include "llvm/Demangle/Demangle.h" 35 #include "llvm/Object/Archive.h" 36 #include "llvm/Object/ELF.h" 37 #include "llvm/Object/ELFObjectFile.h" 38 #include "llvm/Object/ELFTypes.h" 39 #include "llvm/Object/Error.h" 40 #include "llvm/Object/ObjectFile.h" 41 #include "llvm/Object/RelocationResolver.h" 42 #include "llvm/Object/StackMapParser.h" 43 #include "llvm/Support/AMDGPUMetadata.h" 44 #include "llvm/Support/ARMAttributeParser.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/Endian.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/Format.h" 51 #include "llvm/Support/FormatVariadic.h" 52 #include "llvm/Support/FormattedStream.h" 53 #include "llvm/Support/LEB128.h" 54 #include "llvm/Support/MSP430AttributeParser.h" 55 #include "llvm/Support/MSP430Attributes.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/MipsABIFlags.h" 58 #include "llvm/Support/RISCVAttributeParser.h" 59 #include "llvm/Support/RISCVAttributes.h" 60 #include "llvm/Support/ScopedPrinter.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cinttypes> 64 #include <cstddef> 65 #include <cstdint> 66 #include <cstdlib> 67 #include <iterator> 68 #include <memory> 69 #include <optional> 70 #include <string> 71 #include <system_error> 72 #include <vector> 73 74 using namespace llvm; 75 using namespace llvm::object; 76 using namespace ELF; 77 78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 79 case ns::enum: \ 80 return #enum; 81 82 #define ENUM_ENT(enum, altName) \ 83 { #enum, altName, ELF::enum } 84 85 #define ENUM_ENT_1(enum) \ 86 { #enum, #enum, ELF::enum } 87 88 namespace { 89 90 template <class ELFT> struct RelSymbol { 91 RelSymbol(const typename ELFT::Sym *S, StringRef N) 92 : Sym(S), Name(N.str()) {} 93 const typename ELFT::Sym *Sym; 94 std::string Name; 95 }; 96 97 /// Represents a contiguous uniform range in the file. We cannot just create a 98 /// range directly because when creating one of these from the .dynamic table 99 /// the size, entity size and virtual address are different entries in arbitrary 100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 101 struct DynRegionInfo { 102 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 103 : Obj(&Owner), Dumper(&D) {} 104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 105 uint64_t S, uint64_t ES) 106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 107 108 /// Address in current address space. 109 const uint8_t *Addr = nullptr; 110 /// Size in bytes of the region. 111 uint64_t Size = 0; 112 /// Size of each entity in the region. 113 uint64_t EntSize = 0; 114 115 /// Owner object. Used for error reporting. 116 const Binary *Obj; 117 /// Dumper used for error reporting. 118 const ObjDumper *Dumper; 119 /// Error prefix. Used for error reporting to provide more information. 120 std::string Context; 121 /// Region size name. Used for error reporting. 122 StringRef SizePrintName = "size"; 123 /// Entry size name. Used for error reporting. If this field is empty, errors 124 /// will not mention the entry size. 125 StringRef EntSizePrintName = "entry size"; 126 127 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 128 const Type *Start = reinterpret_cast<const Type *>(Addr); 129 if (!Start) 130 return {Start, Start}; 131 132 const uint64_t Offset = 133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 135 136 if (Size > ObjSize - Offset) { 137 Dumper->reportUniqueWarning( 138 "unable to read data at 0x" + Twine::utohexstr(Offset) + 139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 140 "): it goes past the end of the file of size 0x" + 141 Twine::utohexstr(ObjSize)); 142 return {Start, Start}; 143 } 144 145 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 146 return {Start, Start + (Size / EntSize)}; 147 148 std::string Msg; 149 if (!Context.empty()) 150 Msg += Context + " has "; 151 152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 153 .str(); 154 if (!EntSizePrintName.empty()) 155 Msg += 156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 157 .str(); 158 159 Dumper->reportUniqueWarning(Msg); 160 return {Start, Start}; 161 } 162 }; 163 164 struct GroupMember { 165 StringRef Name; 166 uint64_t Index; 167 }; 168 169 struct GroupSection { 170 StringRef Name; 171 std::string Signature; 172 uint64_t ShName; 173 uint64_t Index; 174 uint32_t Link; 175 uint32_t Info; 176 uint32_t Type; 177 std::vector<GroupMember> Members; 178 }; 179 180 namespace { 181 182 struct NoteType { 183 uint32_t ID; 184 StringRef Name; 185 }; 186 187 } // namespace 188 189 template <class ELFT> class Relocation { 190 public: 191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 193 Offset(R.r_offset), Info(R.r_info) {} 194 195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 197 Addend = R.r_addend; 198 } 199 200 uint32_t Type; 201 uint32_t Symbol; 202 typename ELFT::uint Offset; 203 typename ELFT::uint Info; 204 std::optional<int64_t> Addend; 205 }; 206 207 template <class ELFT> class MipsGOTParser; 208 209 template <typename ELFT> class ELFDumper : public ObjDumper { 210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 211 212 public: 213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 214 215 void printUnwindInfo() override; 216 void printNeededLibraries() override; 217 void printHashTable() override; 218 void printGnuHashTable() override; 219 void printLoadName() override; 220 void printVersionInfo() override; 221 void printArchSpecificInfo() override; 222 void printStackMap() const override; 223 void printMemtag() override; 224 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr); 225 226 // Hash histogram shows statistics of how efficient the hash was for the 227 // dynamic symbol table. The table shows the number of hash buckets for 228 // different lengths of chains as an absolute number and percentage of the 229 // total buckets, and the cumulative coverage of symbols for each set of 230 // buckets. 231 void printHashHistograms() override; 232 233 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 234 235 std::string describe(const Elf_Shdr &Sec) const; 236 237 unsigned getHashTableEntSize() const { 238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 239 // sections. This violates the ELF specification. 240 if (Obj.getHeader().e_machine == ELF::EM_S390 || 241 Obj.getHeader().e_machine == ELF::EM_ALPHA) 242 return 8; 243 return 4; 244 } 245 246 std::vector<EnumEntry<unsigned>> 247 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const; 248 249 Elf_Dyn_Range dynamic_table() const { 250 // A valid .dynamic section contains an array of entries terminated 251 // with a DT_NULL entry. However, sometimes the section content may 252 // continue past the DT_NULL entry, so to dump the section correctly, 253 // we first find the end of the entries by iterating over them. 254 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 255 256 size_t Size = 0; 257 while (Size < Table.size()) 258 if (Table[Size++].getTag() == DT_NULL) 259 break; 260 261 return Table.slice(0, Size); 262 } 263 264 Elf_Sym_Range dynamic_symbols() const { 265 if (!DynSymRegion) 266 return Elf_Sym_Range(); 267 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 268 } 269 270 const Elf_Shdr *findSectionByName(StringRef Name) const; 271 272 StringRef getDynamicStringTable() const { return DynamicStringTable; } 273 274 protected: 275 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 276 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 277 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 278 279 void 280 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 281 function_ref<void(StringRef, uint64_t)> OnLibEntry); 282 283 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 284 const RelSymbol<ELFT> &RelSym) = 0; 285 virtual void printRelrReloc(const Elf_Relr &R) = 0; 286 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 287 const DynRegionInfo &Reg) {} 288 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 289 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 290 void printDynamicReloc(const Relocation<ELFT> &R); 291 void printDynamicRelocationsHelper(); 292 void printRelocationsHelper(const Elf_Shdr &Sec); 293 void forEachRelocationDo( 294 const Elf_Shdr &Sec, bool RawRelr, 295 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 296 const Elf_Shdr &, const Elf_Shdr *)> 297 RelRelaFn, 298 llvm::function_ref<void(const Elf_Relr &)> RelrFn); 299 300 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 301 bool NonVisibilityBitsUsed) const {}; 302 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 303 DataRegion<Elf_Word> ShndxTable, 304 std::optional<StringRef> StrTable, bool IsDynamic, 305 bool NonVisibilityBitsUsed) const = 0; 306 307 virtual void printMipsABIFlags() = 0; 308 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 309 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 310 311 virtual void printMemtag( 312 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 313 const ArrayRef<uint8_t> AndroidNoteDesc, 314 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0; 315 316 virtual void printHashHistogram(const Elf_Hash &HashTable) const; 317 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const; 318 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain, 319 size_t TotalSyms, ArrayRef<size_t> Count, 320 bool IsGnu) const = 0; 321 322 Expected<ArrayRef<Elf_Versym>> 323 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 324 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 325 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 326 327 std::vector<GroupSection> getGroups(); 328 329 // Returns the function symbol index for the given address. Matches the 330 // symbol's section with FunctionSec when specified. 331 // Returns std::nullopt if no function symbol can be found for the address or 332 // in case it is not defined in the specified section. 333 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress( 334 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec); 335 bool printFunctionStackSize(uint64_t SymValue, 336 std::optional<const Elf_Shdr *> FunctionSec, 337 const Elf_Shdr &StackSizeSec, DataExtractor Data, 338 uint64_t *Offset); 339 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 340 unsigned Ndx, const Elf_Shdr *SymTab, 341 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 342 const RelocationResolver &Resolver, DataExtractor Data); 343 virtual void printStackSizeEntry(uint64_t Size, 344 ArrayRef<std::string> FuncNames) = 0; 345 346 void printRelocatableStackSizes(std::function<void()> PrintHeader); 347 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 348 349 const object::ELFObjectFile<ELFT> &ObjF; 350 const ELFFile<ELFT> &Obj; 351 StringRef FileName; 352 353 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 354 uint64_t EntSize) { 355 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 356 return createError("offset (0x" + Twine::utohexstr(Offset) + 357 ") + size (0x" + Twine::utohexstr(Size) + 358 ") is greater than the file size (0x" + 359 Twine::utohexstr(Obj.getBufSize()) + ")"); 360 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 361 } 362 363 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, 364 support::endianness); 365 void printMipsReginfo(); 366 void printMipsOptions(); 367 368 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 369 void loadDynamicTable(); 370 void parseDynamicTable(); 371 372 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 373 bool &IsDefault) const; 374 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const; 375 376 DynRegionInfo DynRelRegion; 377 DynRegionInfo DynRelaRegion; 378 DynRegionInfo DynRelrRegion; 379 DynRegionInfo DynPLTRelRegion; 380 std::optional<DynRegionInfo> DynSymRegion; 381 DynRegionInfo DynSymTabShndxRegion; 382 DynRegionInfo DynamicTable; 383 StringRef DynamicStringTable; 384 const Elf_Hash *HashTable = nullptr; 385 const Elf_GnuHash *GnuHashTable = nullptr; 386 const Elf_Shdr *DotSymtabSec = nullptr; 387 const Elf_Shdr *DotDynsymSec = nullptr; 388 const Elf_Shdr *DotAddrsigSec = nullptr; 389 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 390 std::optional<uint64_t> SONameOffset; 391 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; 392 393 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 394 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 395 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 396 397 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 398 DataRegion<Elf_Word> ShndxTable, 399 std::optional<StringRef> StrTable, 400 bool IsDynamic) const; 401 Expected<unsigned> 402 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 403 DataRegion<Elf_Word> ShndxTable) const; 404 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 405 unsigned SectionIndex) const; 406 std::string getStaticSymbolName(uint32_t Index) const; 407 StringRef getDynamicString(uint64_t Value) const; 408 409 void printSymbolsHelper(bool IsDynamic) const; 410 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 411 412 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 413 const Elf_Shdr *SymTab) const; 414 415 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 416 417 private: 418 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap; 419 }; 420 421 template <class ELFT> 422 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 423 return ::describe(Obj, Sec); 424 } 425 426 namespace { 427 428 template <class ELFT> struct SymtabLink { 429 typename ELFT::SymRange Symbols; 430 StringRef StringTable; 431 const typename ELFT::Shdr *SymTab; 432 }; 433 434 // Returns the linked symbol table, symbols and associated string table for a 435 // given section. 436 template <class ELFT> 437 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 438 const typename ELFT::Shdr &Sec, 439 unsigned ExpectedType) { 440 Expected<const typename ELFT::Shdr *> SymtabOrErr = 441 Obj.getSection(Sec.sh_link); 442 if (!SymtabOrErr) 443 return createError("invalid section linked to " + describe(Obj, Sec) + 444 ": " + toString(SymtabOrErr.takeError())); 445 446 if ((*SymtabOrErr)->sh_type != ExpectedType) 447 return createError( 448 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 449 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 450 ", but got " + 451 object::getELFSectionTypeName(Obj.getHeader().e_machine, 452 (*SymtabOrErr)->sh_type)); 453 454 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 455 if (!StrTabOrErr) 456 return createError( 457 "can't get a string table for the symbol table linked to " + 458 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 459 460 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 461 if (!SymsOrErr) 462 return createError("unable to read symbols from the " + describe(Obj, Sec) + 463 ": " + toString(SymsOrErr.takeError())); 464 465 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 466 } 467 468 } // namespace 469 470 template <class ELFT> 471 Expected<ArrayRef<typename ELFT::Versym>> 472 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 473 StringRef *StrTab, 474 const Elf_Shdr **SymTabSec) const { 475 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 476 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 477 sizeof(uint16_t) != 478 0) 479 return createError("the " + describe(Sec) + " is misaligned"); 480 481 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 482 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 483 if (!VersionsOrErr) 484 return createError("cannot read content of " + describe(Sec) + ": " + 485 toString(VersionsOrErr.takeError())); 486 487 Expected<SymtabLink<ELFT>> SymTabOrErr = 488 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 489 if (!SymTabOrErr) { 490 reportUniqueWarning(SymTabOrErr.takeError()); 491 return *VersionsOrErr; 492 } 493 494 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 495 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 496 Twine(VersionsOrErr->size()) + 497 ") does not match the number of symbols (" + 498 Twine(SymTabOrErr->Symbols.size()) + 499 ") in the symbol table with index " + 500 Twine(Sec.sh_link)); 501 502 if (SymTab) { 503 *SymTab = SymTabOrErr->Symbols; 504 *StrTab = SymTabOrErr->StringTable; 505 *SymTabSec = SymTabOrErr->SymTab; 506 } 507 return *VersionsOrErr; 508 } 509 510 template <class ELFT> 511 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const { 512 std::optional<StringRef> StrTable; 513 size_t Entries = 0; 514 Elf_Sym_Range Syms(nullptr, nullptr); 515 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 516 517 if (IsDynamic) { 518 StrTable = DynamicStringTable; 519 Syms = dynamic_symbols(); 520 Entries = Syms.size(); 521 } else if (DotSymtabSec) { 522 if (Expected<StringRef> StrTableOrErr = 523 Obj.getStringTableForSymtab(*DotSymtabSec)) 524 StrTable = *StrTableOrErr; 525 else 526 reportUniqueWarning( 527 "unable to get the string table for the SHT_SYMTAB section: " + 528 toString(StrTableOrErr.takeError())); 529 530 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 531 Syms = *SymsOrErr; 532 else 533 reportUniqueWarning( 534 "unable to read symbols from the SHT_SYMTAB section: " + 535 toString(SymsOrErr.takeError())); 536 Entries = DotSymtabSec->getEntityCount(); 537 } 538 if (Syms.empty()) 539 return; 540 541 // The st_other field has 2 logical parts. The first two bits hold the symbol 542 // visibility (STV_*) and the remainder hold other platform-specific values. 543 bool NonVisibilityBitsUsed = 544 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 545 546 DataRegion<Elf_Word> ShndxTable = 547 IsDynamic ? DataRegion<Elf_Word>( 548 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 549 this->getElfObject().getELFFile().end()) 550 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 551 552 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed); 553 for (const Elf_Sym &Sym : Syms) 554 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 555 NonVisibilityBitsUsed); 556 } 557 558 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 559 formatted_raw_ostream &OS; 560 561 public: 562 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 563 564 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 565 : ELFDumper<ELFT>(ObjF, Writer), 566 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 567 assert(&this->W.getOStream() == &llvm::fouts()); 568 } 569 570 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 571 ArrayRef<std::string> InputFilenames, 572 const Archive *A) override; 573 void printFileHeaders() override; 574 void printGroupSections() override; 575 void printRelocations() override; 576 void printSectionHeaders() override; 577 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 578 void printHashSymbols() override; 579 void printSectionDetails() override; 580 void printDependentLibs() override; 581 void printDynamicTable() override; 582 void printDynamicRelocations() override; 583 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 584 bool NonVisibilityBitsUsed) const override; 585 void printProgramHeaders(bool PrintProgramHeaders, 586 cl::boolOrDefault PrintSectionMapping) override; 587 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 588 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 589 void printVersionDependencySection(const Elf_Shdr *Sec) override; 590 void printCGProfile() override; 591 void printBBAddrMaps() override; 592 void printAddrsig() override; 593 void printNotes() override; 594 void printELFLinkerOptions() override; 595 void printStackSizes() override; 596 void printMemtag( 597 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 598 const ArrayRef<uint8_t> AndroidNoteDesc, 599 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 600 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 601 size_t TotalSyms, ArrayRef<size_t> Count, 602 bool IsGnu) const override; 603 604 private: 605 void printHashTableSymbols(const Elf_Hash &HashTable); 606 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 607 608 struct Field { 609 std::string Str; 610 unsigned Column; 611 612 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 613 Field(unsigned Col) : Column(Col) {} 614 }; 615 616 template <typename T, typename TEnum> 617 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 618 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 619 TEnum EnumMask3 = {}) const { 620 std::string Str; 621 for (const EnumEntry<TEnum> &Flag : EnumValues) { 622 if (Flag.Value == 0) 623 continue; 624 625 TEnum EnumMask{}; 626 if (Flag.Value & EnumMask1) 627 EnumMask = EnumMask1; 628 else if (Flag.Value & EnumMask2) 629 EnumMask = EnumMask2; 630 else if (Flag.Value & EnumMask3) 631 EnumMask = EnumMask3; 632 bool IsEnum = (Flag.Value & EnumMask) != 0; 633 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 634 (IsEnum && (Value & EnumMask) == Flag.Value)) { 635 if (!Str.empty()) 636 Str += ", "; 637 Str += Flag.AltName; 638 } 639 } 640 return Str; 641 } 642 643 formatted_raw_ostream &printField(struct Field F) const { 644 if (F.Column != 0) 645 OS.PadToColumn(F.Column); 646 OS << F.Str; 647 OS.flush(); 648 return OS; 649 } 650 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 651 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 652 uint32_t Bucket); 653 void printRelrReloc(const Elf_Relr &R) override; 654 void printRelRelaReloc(const Relocation<ELFT> &R, 655 const RelSymbol<ELFT> &RelSym) override; 656 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 657 DataRegion<Elf_Word> ShndxTable, 658 std::optional<StringRef> StrTable, bool IsDynamic, 659 bool NonVisibilityBitsUsed) const override; 660 void printDynamicRelocHeader(unsigned Type, StringRef Name, 661 const DynRegionInfo &Reg) override; 662 663 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 664 DataRegion<Elf_Word> ShndxTable) const; 665 void printProgramHeaders() override; 666 void printSectionMapping() override; 667 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 668 const Twine &Label, unsigned EntriesNum); 669 670 void printStackSizeEntry(uint64_t Size, 671 ArrayRef<std::string> FuncNames) override; 672 673 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 674 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 675 void printMipsABIFlags() override; 676 }; 677 678 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 679 public: 680 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 681 682 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 683 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 684 685 void printFileHeaders() override; 686 void printGroupSections() override; 687 void printRelocations() override; 688 void printSectionHeaders() override; 689 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 690 void printDependentLibs() override; 691 void printDynamicTable() override; 692 void printDynamicRelocations() override; 693 void printProgramHeaders(bool PrintProgramHeaders, 694 cl::boolOrDefault PrintSectionMapping) override; 695 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 696 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 697 void printVersionDependencySection(const Elf_Shdr *Sec) override; 698 void printCGProfile() override; 699 void printBBAddrMaps() override; 700 void printAddrsig() override; 701 void printNotes() override; 702 void printELFLinkerOptions() override; 703 void printStackSizes() override; 704 void printMemtag( 705 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 706 const ArrayRef<uint8_t> AndroidNoteDesc, 707 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 708 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 709 DataRegion<Elf_Word> ShndxTable) const; 710 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 711 size_t TotalSyms, ArrayRef<size_t> Count, 712 bool IsGnu) const override; 713 714 private: 715 void printRelrReloc(const Elf_Relr &R) override; 716 void printRelRelaReloc(const Relocation<ELFT> &R, 717 const RelSymbol<ELFT> &RelSym) override; 718 719 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 720 DataRegion<Elf_Word> ShndxTable, 721 std::optional<StringRef> StrTable, bool IsDynamic, 722 bool /*NonVisibilityBitsUsed*/) const override; 723 void printProgramHeaders() override; 724 void printSectionMapping() override {} 725 void printStackSizeEntry(uint64_t Size, 726 ArrayRef<std::string> FuncNames) override; 727 728 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 729 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 730 void printMipsABIFlags() override; 731 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const; 732 733 protected: 734 virtual std::string getGroupSectionHeaderName() const; 735 void printSymbolOtherField(const Elf_Sym &Symbol) const; 736 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R, 737 StringRef SymbolName, 738 StringRef RelocName); 739 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 740 StringRef SymbolName, 741 StringRef RelocName); 742 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 743 const unsigned SecNdx); 744 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const; 745 virtual void printEmptyGroupMessage() const; 746 747 ScopedPrinter &W; 748 }; 749 750 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except 751 // it uses a JSONScopedPrinter. 752 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> { 753 public: 754 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 755 756 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 757 : LLVMELFDumper<ELFT>(ObjF, Writer) {} 758 759 std::string getGroupSectionHeaderName() const override; 760 761 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 762 ArrayRef<std::string> InputFilenames, 763 const Archive *A) override; 764 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override; 765 766 void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 767 StringRef SymbolName, 768 StringRef RelocName) override; 769 770 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 771 const unsigned SecNdx) override; 772 773 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override; 774 775 void printEmptyGroupMessage() const override; 776 777 private: 778 std::unique_ptr<DictScope> FileScope; 779 }; 780 781 } // end anonymous namespace 782 783 namespace llvm { 784 785 template <class ELFT> 786 static std::unique_ptr<ObjDumper> 787 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 788 if (opts::Output == opts::GNU) 789 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 790 else if (opts::Output == opts::JSON) 791 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer); 792 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 793 } 794 795 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 796 ScopedPrinter &Writer) { 797 // Little-endian 32-bit 798 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 799 return createELFDumper(*ELFObj, Writer); 800 801 // Big-endian 32-bit 802 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 803 return createELFDumper(*ELFObj, Writer); 804 805 // Little-endian 64-bit 806 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 807 return createELFDumper(*ELFObj, Writer); 808 809 // Big-endian 64-bit 810 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 811 } 812 813 } // end namespace llvm 814 815 template <class ELFT> 816 Expected<SmallVector<std::optional<VersionEntry>, 0> *> 817 ELFDumper<ELFT>::getVersionMap() const { 818 // If the VersionMap has already been loaded or if there is no dynamic symtab 819 // or version table, there is nothing to do. 820 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 821 return &VersionMap; 822 823 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr = 824 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 825 if (MapOrErr) 826 VersionMap = *MapOrErr; 827 else 828 return MapOrErr.takeError(); 829 830 return &VersionMap; 831 } 832 833 template <typename ELFT> 834 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 835 bool &IsDefault) const { 836 // This is a dynamic symbol. Look in the GNU symbol version table. 837 if (!SymbolVersionSection) { 838 // No version table. 839 IsDefault = false; 840 return ""; 841 } 842 843 assert(DynSymRegion && "DynSymRegion has not been initialised"); 844 // Determine the position in the symbol table of this entry. 845 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 846 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 847 sizeof(Elf_Sym); 848 849 // Get the corresponding version index entry. 850 Expected<const Elf_Versym *> EntryOrErr = 851 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 852 if (!EntryOrErr) 853 return EntryOrErr.takeError(); 854 855 unsigned Version = (*EntryOrErr)->vs_index; 856 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 857 IsDefault = false; 858 return ""; 859 } 860 861 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 862 getVersionMap(); 863 if (!MapOrErr) 864 return MapOrErr.takeError(); 865 866 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 867 Sym.st_shndx == ELF::SHN_UNDEF); 868 } 869 870 template <typename ELFT> 871 Expected<RelSymbol<ELFT>> 872 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 873 const Elf_Shdr *SymTab) const { 874 if (R.Symbol == 0) 875 return RelSymbol<ELFT>(nullptr, ""); 876 877 Expected<const Elf_Sym *> SymOrErr = 878 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 879 if (!SymOrErr) 880 return createError("unable to read an entry with index " + Twine(R.Symbol) + 881 " from " + describe(*SymTab) + ": " + 882 toString(SymOrErr.takeError())); 883 const Elf_Sym *Sym = *SymOrErr; 884 if (!Sym) 885 return RelSymbol<ELFT>(nullptr, ""); 886 887 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 888 if (!StrTableOrErr) 889 return StrTableOrErr.takeError(); 890 891 const Elf_Sym *FirstSym = 892 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 893 std::string SymbolName = 894 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 895 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 896 return RelSymbol<ELFT>(Sym, SymbolName); 897 } 898 899 template <typename ELFT> 900 ArrayRef<typename ELFT::Word> 901 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 902 if (Symtab) { 903 auto It = ShndxTables.find(Symtab); 904 if (It != ShndxTables.end()) 905 return It->second; 906 } 907 return {}; 908 } 909 910 static std::string maybeDemangle(StringRef Name) { 911 return opts::Demangle ? demangle(Name) : Name.str(); 912 } 913 914 template <typename ELFT> 915 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 916 auto Warn = [&](Error E) -> std::string { 917 reportUniqueWarning("unable to read the name of symbol with index " + 918 Twine(Index) + ": " + toString(std::move(E))); 919 return "<?>"; 920 }; 921 922 Expected<const typename ELFT::Sym *> SymOrErr = 923 Obj.getSymbol(DotSymtabSec, Index); 924 if (!SymOrErr) 925 return Warn(SymOrErr.takeError()); 926 927 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 928 if (!StrTabOrErr) 929 return Warn(StrTabOrErr.takeError()); 930 931 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 932 if (!NameOrErr) 933 return Warn(NameOrErr.takeError()); 934 return maybeDemangle(*NameOrErr); 935 } 936 937 template <typename ELFT> 938 std::string ELFDumper<ELFT>::getFullSymbolName( 939 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 940 std::optional<StringRef> StrTable, bool IsDynamic) const { 941 if (!StrTable) 942 return "<?>"; 943 944 std::string SymbolName; 945 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 946 SymbolName = maybeDemangle(*NameOrErr); 947 } else { 948 reportUniqueWarning(NameOrErr.takeError()); 949 return "<?>"; 950 } 951 952 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 953 Expected<unsigned> SectionIndex = 954 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 955 if (!SectionIndex) { 956 reportUniqueWarning(SectionIndex.takeError()); 957 return "<?>"; 958 } 959 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 960 if (!NameOrErr) { 961 reportUniqueWarning(NameOrErr.takeError()); 962 return ("<section " + Twine(*SectionIndex) + ">").str(); 963 } 964 return std::string(*NameOrErr); 965 } 966 967 if (!IsDynamic) 968 return SymbolName; 969 970 bool IsDefault; 971 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 972 if (!VersionOrErr) { 973 reportUniqueWarning(VersionOrErr.takeError()); 974 return SymbolName + "@<corrupt>"; 975 } 976 977 if (!VersionOrErr->empty()) { 978 SymbolName += (IsDefault ? "@@" : "@"); 979 SymbolName += *VersionOrErr; 980 } 981 return SymbolName; 982 } 983 984 template <typename ELFT> 985 Expected<unsigned> 986 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 987 DataRegion<Elf_Word> ShndxTable) const { 988 unsigned Ndx = Symbol.st_shndx; 989 if (Ndx == SHN_XINDEX) 990 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 991 ShndxTable); 992 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 993 return Ndx; 994 995 auto CreateErr = [&](const Twine &Name, 996 std::optional<unsigned> Offset = std::nullopt) { 997 std::string Desc; 998 if (Offset) 999 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 1000 else 1001 Desc = Name.str(); 1002 return createError( 1003 "unable to get section index for symbol with st_shndx = 0x" + 1004 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 1005 }; 1006 1007 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 1008 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 1009 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 1010 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 1011 if (Ndx == ELF::SHN_UNDEF) 1012 return CreateErr("SHN_UNDEF"); 1013 if (Ndx == ELF::SHN_ABS) 1014 return CreateErr("SHN_ABS"); 1015 if (Ndx == ELF::SHN_COMMON) 1016 return CreateErr("SHN_COMMON"); 1017 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 1018 } 1019 1020 template <typename ELFT> 1021 Expected<StringRef> 1022 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 1023 unsigned SectionIndex) const { 1024 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 1025 if (!SecOrErr) 1026 return SecOrErr.takeError(); 1027 return Obj.getSectionName(**SecOrErr); 1028 } 1029 1030 template <class ELFO> 1031 static const typename ELFO::Elf_Shdr * 1032 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 1033 uint64_t Addr) { 1034 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 1035 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 1036 return &Shdr; 1037 return nullptr; 1038 } 1039 1040 const EnumEntry<unsigned> ElfClass[] = { 1041 {"None", "none", ELF::ELFCLASSNONE}, 1042 {"32-bit", "ELF32", ELF::ELFCLASS32}, 1043 {"64-bit", "ELF64", ELF::ELFCLASS64}, 1044 }; 1045 1046 const EnumEntry<unsigned> ElfDataEncoding[] = { 1047 {"None", "none", ELF::ELFDATANONE}, 1048 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 1049 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 1050 }; 1051 1052 const EnumEntry<unsigned> ElfObjectFileType[] = { 1053 {"None", "NONE (none)", ELF::ET_NONE}, 1054 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 1055 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 1056 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 1057 {"Core", "CORE (Core file)", ELF::ET_CORE}, 1058 }; 1059 1060 const EnumEntry<unsigned> ElfOSABI[] = { 1061 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 1062 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 1063 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 1064 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 1065 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 1066 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 1067 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 1068 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 1069 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 1070 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 1071 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 1072 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 1073 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 1074 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 1075 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 1076 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 1077 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 1078 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 1079 }; 1080 1081 const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 1082 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 1083 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 1084 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 1085 }; 1086 1087 const EnumEntry<unsigned> ARMElfOSABI[] = { 1088 {"ARM", "ARM", ELF::ELFOSABI_ARM} 1089 }; 1090 1091 const EnumEntry<unsigned> C6000ElfOSABI[] = { 1092 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1093 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1094 }; 1095 1096 const EnumEntry<unsigned> ElfMachineType[] = { 1097 ENUM_ENT(EM_NONE, "None"), 1098 ENUM_ENT(EM_M32, "WE32100"), 1099 ENUM_ENT(EM_SPARC, "Sparc"), 1100 ENUM_ENT(EM_386, "Intel 80386"), 1101 ENUM_ENT(EM_68K, "MC68000"), 1102 ENUM_ENT(EM_88K, "MC88000"), 1103 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1104 ENUM_ENT(EM_860, "Intel 80860"), 1105 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1106 ENUM_ENT(EM_S370, "IBM System/370"), 1107 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1108 ENUM_ENT(EM_PARISC, "HPPA"), 1109 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1110 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1111 ENUM_ENT(EM_960, "Intel 80960"), 1112 ENUM_ENT(EM_PPC, "PowerPC"), 1113 ENUM_ENT(EM_PPC64, "PowerPC64"), 1114 ENUM_ENT(EM_S390, "IBM S/390"), 1115 ENUM_ENT(EM_SPU, "SPU"), 1116 ENUM_ENT(EM_V800, "NEC V800 series"), 1117 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1118 ENUM_ENT(EM_RH32, "TRW RH-32"), 1119 ENUM_ENT(EM_RCE, "Motorola RCE"), 1120 ENUM_ENT(EM_ARM, "ARM"), 1121 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1122 ENUM_ENT(EM_SH, "Hitachi SH"), 1123 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1124 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1125 ENUM_ENT(EM_ARC, "ARC"), 1126 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1127 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1128 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1129 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1130 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1131 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1132 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1133 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1134 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1135 ENUM_ENT(EM_PCP, "Siemens PCP"), 1136 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1137 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1138 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1139 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1140 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1141 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1142 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1143 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1144 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1145 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1146 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1147 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1148 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1149 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1150 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1151 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1152 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1153 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1154 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1155 ENUM_ENT(EM_VAX, "Digital VAX"), 1156 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1157 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1158 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1159 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1160 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1161 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1162 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1163 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1164 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1165 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1166 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1167 ENUM_ENT(EM_V850, "NEC v850"), 1168 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1169 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1170 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1171 ENUM_ENT(EM_PJ, "picoJava"), 1172 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1173 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1174 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1175 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1176 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1177 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1178 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1179 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1180 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1181 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1182 ENUM_ENT(EM_MAX, "MAX Processor"), 1183 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1184 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1185 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1186 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1187 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1188 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1189 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1190 ENUM_ENT(EM_UNICORE, "Unicore"), 1191 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1192 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1193 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1194 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1195 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1196 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1197 ENUM_ENT(EM_M16C, "Renesas M16C"), 1198 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1199 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1200 ENUM_ENT(EM_M32C, "Renesas M32C"), 1201 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1202 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1203 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1204 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1205 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1206 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1207 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1208 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1209 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1210 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1211 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1212 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1213 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1214 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1215 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1216 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1217 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1218 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1219 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1220 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1221 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1222 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1223 // an identical number to EM_ECOG1. 1224 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1225 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1226 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1227 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1228 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1229 ENUM_ENT(EM_RX, "Renesas RX"), 1230 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1231 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1232 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1233 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"), 1234 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1235 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1236 ENUM_ENT(EM_L10M, "EM_L10M"), 1237 ENUM_ENT(EM_K10M, "EM_K10M"), 1238 ENUM_ENT(EM_AARCH64, "AArch64"), 1239 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1240 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1241 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1242 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1243 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"), 1244 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1245 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1246 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1247 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1248 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1249 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1250 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1251 ENUM_ENT(EM_RL78, "Renesas RL78"), 1252 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1253 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1254 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1255 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1256 ENUM_ENT(EM_RISCV, "RISC-V"), 1257 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1258 ENUM_ENT(EM_BPF, "EM_BPF"), 1259 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1260 ENUM_ENT(EM_LOONGARCH, "LoongArch"), 1261 }; 1262 1263 const EnumEntry<unsigned> ElfSymbolBindings[] = { 1264 {"Local", "LOCAL", ELF::STB_LOCAL}, 1265 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1266 {"Weak", "WEAK", ELF::STB_WEAK}, 1267 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1268 1269 const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1270 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1271 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1272 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1273 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1274 1275 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1276 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1277 }; 1278 1279 static const char *getGroupType(uint32_t Flag) { 1280 if (Flag & ELF::GRP_COMDAT) 1281 return "COMDAT"; 1282 else 1283 return "(unknown)"; 1284 } 1285 1286 const EnumEntry<unsigned> ElfSectionFlags[] = { 1287 ENUM_ENT(SHF_WRITE, "W"), 1288 ENUM_ENT(SHF_ALLOC, "A"), 1289 ENUM_ENT(SHF_EXECINSTR, "X"), 1290 ENUM_ENT(SHF_MERGE, "M"), 1291 ENUM_ENT(SHF_STRINGS, "S"), 1292 ENUM_ENT(SHF_INFO_LINK, "I"), 1293 ENUM_ENT(SHF_LINK_ORDER, "L"), 1294 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1295 ENUM_ENT(SHF_GROUP, "G"), 1296 ENUM_ENT(SHF_TLS, "T"), 1297 ENUM_ENT(SHF_COMPRESSED, "C"), 1298 ENUM_ENT(SHF_EXCLUDE, "E"), 1299 }; 1300 1301 const EnumEntry<unsigned> ElfGNUSectionFlags[] = { 1302 ENUM_ENT(SHF_GNU_RETAIN, "R") 1303 }; 1304 1305 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = { 1306 ENUM_ENT(SHF_SUNW_NODISCARD, "R") 1307 }; 1308 1309 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1310 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1311 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1312 }; 1313 1314 const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1315 ENUM_ENT(SHF_ARM_PURECODE, "y") 1316 }; 1317 1318 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1319 ENUM_ENT(SHF_HEX_GPREL, "") 1320 }; 1321 1322 const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1323 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1324 ENUM_ENT(SHF_MIPS_NAMES, ""), 1325 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1326 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1327 ENUM_ENT(SHF_MIPS_GPREL, ""), 1328 ENUM_ENT(SHF_MIPS_MERGE, ""), 1329 ENUM_ENT(SHF_MIPS_ADDR, ""), 1330 ENUM_ENT(SHF_MIPS_STRING, "") 1331 }; 1332 1333 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1334 ENUM_ENT(SHF_X86_64_LARGE, "l") 1335 }; 1336 1337 static std::vector<EnumEntry<unsigned>> 1338 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) { 1339 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1340 std::end(ElfSectionFlags)); 1341 switch (EOSAbi) { 1342 case ELFOSABI_SOLARIS: 1343 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags), 1344 std::end(ElfSolarisSectionFlags)); 1345 break; 1346 default: 1347 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags), 1348 std::end(ElfGNUSectionFlags)); 1349 break; 1350 } 1351 switch (EMachine) { 1352 case EM_ARM: 1353 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1354 std::end(ElfARMSectionFlags)); 1355 break; 1356 case EM_HEXAGON: 1357 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1358 std::end(ElfHexagonSectionFlags)); 1359 break; 1360 case EM_MIPS: 1361 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1362 std::end(ElfMipsSectionFlags)); 1363 break; 1364 case EM_X86_64: 1365 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1366 std::end(ElfX86_64SectionFlags)); 1367 break; 1368 case EM_XCORE: 1369 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1370 std::end(ElfXCoreSectionFlags)); 1371 break; 1372 default: 1373 break; 1374 } 1375 return Ret; 1376 } 1377 1378 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine, 1379 uint64_t Flags) { 1380 // Here we are trying to build the flags string in the same way as GNU does. 1381 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1382 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1383 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1384 // "p". It only will print "E" when no other processor flag is set. 1385 std::string Str; 1386 bool HasUnknownFlag = false; 1387 bool HasOSFlag = false; 1388 bool HasProcFlag = false; 1389 std::vector<EnumEntry<unsigned>> FlagsList = 1390 getSectionFlagsForTarget(EOSAbi, EMachine); 1391 while (Flags) { 1392 // Take the least significant bit as a flag. 1393 uint64_t Flag = Flags & -Flags; 1394 Flags -= Flag; 1395 1396 // Find the flag in the known flags list. 1397 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1398 // Flags with empty names are not printed in GNU style output. 1399 return E.Value == Flag && !E.AltName.empty(); 1400 }); 1401 if (I != FlagsList.end()) { 1402 Str += I->AltName; 1403 continue; 1404 } 1405 1406 // If we did not find a matching regular flag, then we deal with an OS 1407 // specific flag, processor specific flag or an unknown flag. 1408 if (Flag & ELF::SHF_MASKOS) { 1409 HasOSFlag = true; 1410 Flags &= ~ELF::SHF_MASKOS; 1411 } else if (Flag & ELF::SHF_MASKPROC) { 1412 HasProcFlag = true; 1413 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1414 // bit if set so that it doesn't also get printed. 1415 Flags &= ~ELF::SHF_MASKPROC; 1416 } else { 1417 HasUnknownFlag = true; 1418 } 1419 } 1420 1421 // "o", "p" and "x" are printed last. 1422 if (HasOSFlag) 1423 Str += "o"; 1424 if (HasProcFlag) 1425 Str += "p"; 1426 if (HasUnknownFlag) 1427 Str += "x"; 1428 return Str; 1429 } 1430 1431 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1432 // Check potentially overlapped processor-specific program header type. 1433 switch (Arch) { 1434 case ELF::EM_ARM: 1435 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1436 break; 1437 case ELF::EM_MIPS: 1438 case ELF::EM_MIPS_RS3_LE: 1439 switch (Type) { 1440 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1441 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1442 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1443 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1444 } 1445 break; 1446 case ELF::EM_RISCV: 1447 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); } 1448 } 1449 1450 switch (Type) { 1451 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1452 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1453 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1454 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1455 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1456 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1457 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1458 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1459 1460 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1461 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1462 1463 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1464 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1465 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1466 1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE); 1468 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1469 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1470 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1471 default: 1472 return ""; 1473 } 1474 } 1475 1476 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1477 StringRef Seg = segmentTypeToString(Arch, Type); 1478 if (Seg.empty()) 1479 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1480 1481 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1482 if (Seg.consume_front("PT_ARM_")) 1483 return Seg.str(); 1484 1485 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1486 if (Seg.consume_front("PT_MIPS_")) 1487 return Seg.str(); 1488 1489 // E.g. "PT_RISCV_ATTRIBUTES" 1490 if (Seg.consume_front("PT_RISCV_")) 1491 return Seg.str(); 1492 1493 // E.g. "PT_LOAD" -> "LOAD". 1494 assert(Seg.startswith("PT_")); 1495 return Seg.drop_front(3).str(); 1496 } 1497 1498 const EnumEntry<unsigned> ElfSegmentFlags[] = { 1499 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1500 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1501 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1502 }; 1503 1504 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1505 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1506 ENUM_ENT(EF_MIPS_PIC, "pic"), 1507 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1508 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1509 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1510 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1511 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1512 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1513 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1514 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1515 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1516 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1517 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1518 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1519 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1520 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1521 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1522 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1523 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1524 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1525 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1526 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1527 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1528 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1529 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1530 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1531 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1532 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1533 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1534 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1535 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1536 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1537 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1538 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1539 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1540 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1541 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1542 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1543 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1544 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1545 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1546 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1547 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1548 }; 1549 1550 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = { 1551 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1552 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1553 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1554 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1555 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1556 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1557 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1558 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1559 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1560 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A), 1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940), 1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX941), 1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX942), 1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013), 1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034), 1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035), 1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036), 1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100), 1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101), 1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102), 1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103), 1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1150), 1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1151), 1610 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3), 1611 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3) 1612 }; 1613 1614 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = { 1615 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1617 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1618 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1619 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1620 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1621 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1622 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1623 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1624 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1625 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1626 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1627 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1628 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1629 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1630 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1631 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1632 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1634 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1635 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1636 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1637 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1638 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1639 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1640 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1641 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1642 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1643 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1644 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1645 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1646 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1647 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1648 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1649 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1650 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1651 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1652 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A), 1653 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1654 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940), 1655 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX941), 1656 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX942), 1657 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1658 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1659 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1660 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013), 1661 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1662 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1663 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1664 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1665 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034), 1666 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035), 1667 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036), 1668 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100), 1669 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101), 1670 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102), 1671 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103), 1672 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1150), 1673 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1151), 1674 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4), 1675 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4), 1676 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4), 1677 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4), 1678 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4), 1679 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4) 1680 }; 1681 1682 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1683 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1684 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1685 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1686 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1687 ENUM_ENT(EF_RISCV_RVE, "RVE"), 1688 ENUM_ENT(EF_RISCV_TSO, "TSO"), 1689 }; 1690 1691 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = { 1692 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), 1693 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), 1694 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), 1695 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), 1696 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), 1697 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), 1698 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), 1699 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), 1700 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), 1701 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), 1702 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), 1703 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), 1704 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), 1705 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), 1706 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), 1707 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), 1708 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), 1709 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), 1710 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"), 1711 }; 1712 1713 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = { 1714 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"), 1715 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"), 1716 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"), 1717 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"), 1718 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"), 1719 }; 1720 1721 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = { 1722 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE), 1723 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN), 1724 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT) 1725 }; 1726 1727 const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1728 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1729 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1730 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1731 }; 1732 1733 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1734 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1735 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1736 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1737 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1738 }; 1739 1740 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1741 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1742 }; 1743 1744 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1745 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1746 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1747 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1748 }; 1749 1750 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { 1751 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; 1752 1753 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1754 switch (Odk) { 1755 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1756 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1757 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1758 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1759 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1760 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1761 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1762 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1763 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1764 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1765 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1766 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1767 default: 1768 return "Unknown"; 1769 } 1770 } 1771 1772 template <typename ELFT> 1773 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1774 ELFDumper<ELFT>::findDynamic() { 1775 // Try to locate the PT_DYNAMIC header. 1776 const Elf_Phdr *DynamicPhdr = nullptr; 1777 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1778 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1779 if (Phdr.p_type != ELF::PT_DYNAMIC) 1780 continue; 1781 DynamicPhdr = &Phdr; 1782 break; 1783 } 1784 } else { 1785 reportUniqueWarning( 1786 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1787 toString(PhdrsOrErr.takeError())); 1788 } 1789 1790 // Try to locate the .dynamic section in the sections header table. 1791 const Elf_Shdr *DynamicSec = nullptr; 1792 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1793 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1794 continue; 1795 DynamicSec = &Sec; 1796 break; 1797 } 1798 1799 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1800 ObjF.getMemoryBufferRef().getBufferSize()) || 1801 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1802 DynamicPhdr->p_offset))) { 1803 reportUniqueWarning( 1804 "PT_DYNAMIC segment offset (0x" + 1805 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1806 Twine::utohexstr(DynamicPhdr->p_filesz) + 1807 ") exceeds the size of the file (0x" + 1808 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1809 // Don't use the broken dynamic header. 1810 DynamicPhdr = nullptr; 1811 } 1812 1813 if (DynamicPhdr && DynamicSec) { 1814 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1815 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1816 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1817 reportUniqueWarning(describe(*DynamicSec) + 1818 " is not contained within the " 1819 "PT_DYNAMIC segment"); 1820 1821 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1822 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1823 "PT_DYNAMIC segment"); 1824 } 1825 1826 return std::make_pair(DynamicPhdr, DynamicSec); 1827 } 1828 1829 template <typename ELFT> 1830 void ELFDumper<ELFT>::loadDynamicTable() { 1831 const Elf_Phdr *DynamicPhdr; 1832 const Elf_Shdr *DynamicSec; 1833 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1834 if (!DynamicPhdr && !DynamicSec) 1835 return; 1836 1837 DynRegionInfo FromPhdr(ObjF, *this); 1838 bool IsPhdrTableValid = false; 1839 if (DynamicPhdr) { 1840 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1841 // validated in findDynamic() and so createDRI() is not expected to fail. 1842 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1843 sizeof(Elf_Dyn))); 1844 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1845 FromPhdr.EntSizePrintName = ""; 1846 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1847 } 1848 1849 // Locate the dynamic table described in a section header. 1850 // Ignore sh_entsize and use the expected value for entry size explicitly. 1851 // This allows us to dump dynamic sections with a broken sh_entsize 1852 // field. 1853 DynRegionInfo FromSec(ObjF, *this); 1854 bool IsSecTableValid = false; 1855 if (DynamicSec) { 1856 Expected<DynRegionInfo> RegOrErr = 1857 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1858 if (RegOrErr) { 1859 FromSec = *RegOrErr; 1860 FromSec.Context = describe(*DynamicSec); 1861 FromSec.EntSizePrintName = ""; 1862 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1863 } else { 1864 reportUniqueWarning("unable to read the dynamic table from " + 1865 describe(*DynamicSec) + ": " + 1866 toString(RegOrErr.takeError())); 1867 } 1868 } 1869 1870 // When we only have information from one of the SHT_DYNAMIC section header or 1871 // PT_DYNAMIC program header, just use that. 1872 if (!DynamicPhdr || !DynamicSec) { 1873 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1874 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1875 parseDynamicTable(); 1876 } else { 1877 reportUniqueWarning("no valid dynamic table was found"); 1878 } 1879 return; 1880 } 1881 1882 // At this point we have tables found from the section header and from the 1883 // dynamic segment. Usually they match, but we have to do sanity checks to 1884 // verify that. 1885 1886 if (FromPhdr.Addr != FromSec.Addr) 1887 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1888 "program header disagree about " 1889 "the location of the dynamic table"); 1890 1891 if (!IsPhdrTableValid && !IsSecTableValid) { 1892 reportUniqueWarning("no valid dynamic table was found"); 1893 return; 1894 } 1895 1896 // Information in the PT_DYNAMIC program header has priority over the 1897 // information in a section header. 1898 if (IsPhdrTableValid) { 1899 if (!IsSecTableValid) 1900 reportUniqueWarning( 1901 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1902 DynamicTable = FromPhdr; 1903 } else { 1904 reportUniqueWarning( 1905 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1906 DynamicTable = FromSec; 1907 } 1908 1909 parseDynamicTable(); 1910 } 1911 1912 template <typename ELFT> 1913 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1914 ScopedPrinter &Writer) 1915 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1916 FileName(O.getFileName()), DynRelRegion(O, *this), 1917 DynRelaRegion(O, *this), DynRelrRegion(O, *this), 1918 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1919 DynamicTable(O, *this) { 1920 if (!O.IsContentValid()) 1921 return; 1922 1923 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1924 for (const Elf_Shdr &Sec : Sections) { 1925 switch (Sec.sh_type) { 1926 case ELF::SHT_SYMTAB: 1927 if (!DotSymtabSec) 1928 DotSymtabSec = &Sec; 1929 break; 1930 case ELF::SHT_DYNSYM: 1931 if (!DotDynsymSec) 1932 DotDynsymSec = &Sec; 1933 1934 if (!DynSymRegion) { 1935 Expected<DynRegionInfo> RegOrErr = 1936 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1937 if (RegOrErr) { 1938 DynSymRegion = *RegOrErr; 1939 DynSymRegion->Context = describe(Sec); 1940 1941 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1942 DynamicStringTable = *E; 1943 else 1944 reportUniqueWarning("unable to get the string table for the " + 1945 describe(Sec) + ": " + toString(E.takeError())); 1946 } else { 1947 reportUniqueWarning("unable to read dynamic symbols from " + 1948 describe(Sec) + ": " + 1949 toString(RegOrErr.takeError())); 1950 } 1951 } 1952 break; 1953 case ELF::SHT_SYMTAB_SHNDX: { 1954 uint32_t SymtabNdx = Sec.sh_link; 1955 if (SymtabNdx >= Sections.size()) { 1956 reportUniqueWarning( 1957 "unable to get the associated symbol table for " + describe(Sec) + 1958 ": sh_link (" + Twine(SymtabNdx) + 1959 ") is greater than or equal to the total number of sections (" + 1960 Twine(Sections.size()) + ")"); 1961 continue; 1962 } 1963 1964 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1965 Obj.getSHNDXTable(Sec)) { 1966 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1967 .second) 1968 reportUniqueWarning( 1969 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1970 describe(Sec)); 1971 } else { 1972 reportUniqueWarning(ShndxTableOrErr.takeError()); 1973 } 1974 break; 1975 } 1976 case ELF::SHT_GNU_versym: 1977 if (!SymbolVersionSection) 1978 SymbolVersionSection = &Sec; 1979 break; 1980 case ELF::SHT_GNU_verdef: 1981 if (!SymbolVersionDefSection) 1982 SymbolVersionDefSection = &Sec; 1983 break; 1984 case ELF::SHT_GNU_verneed: 1985 if (!SymbolVersionNeedSection) 1986 SymbolVersionNeedSection = &Sec; 1987 break; 1988 case ELF::SHT_LLVM_ADDRSIG: 1989 if (!DotAddrsigSec) 1990 DotAddrsigSec = &Sec; 1991 break; 1992 } 1993 } 1994 1995 loadDynamicTable(); 1996 } 1997 1998 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 1999 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 2000 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 2001 this->reportUniqueWarning(Msg); 2002 return Error::success(); 2003 }); 2004 if (!MappedAddrOrError) { 2005 this->reportUniqueWarning("unable to parse DT_" + 2006 Obj.getDynamicTagAsString(Tag) + ": " + 2007 llvm::toString(MappedAddrOrError.takeError())); 2008 return nullptr; 2009 } 2010 return MappedAddrOrError.get(); 2011 }; 2012 2013 const char *StringTableBegin = nullptr; 2014 uint64_t StringTableSize = 0; 2015 std::optional<DynRegionInfo> DynSymFromTable; 2016 for (const Elf_Dyn &Dyn : dynamic_table()) { 2017 switch (Dyn.d_tag) { 2018 case ELF::DT_HASH: 2019 HashTable = reinterpret_cast<const Elf_Hash *>( 2020 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2021 break; 2022 case ELF::DT_GNU_HASH: 2023 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 2024 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2025 break; 2026 case ELF::DT_STRTAB: 2027 StringTableBegin = reinterpret_cast<const char *>( 2028 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2029 break; 2030 case ELF::DT_STRSZ: 2031 StringTableSize = Dyn.getVal(); 2032 break; 2033 case ELF::DT_SYMTAB: { 2034 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 2035 // no program headers), we ignore its value. 2036 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 2037 DynSymFromTable.emplace(ObjF, *this); 2038 DynSymFromTable->Addr = VA; 2039 DynSymFromTable->EntSize = sizeof(Elf_Sym); 2040 DynSymFromTable->EntSizePrintName = ""; 2041 } 2042 break; 2043 } 2044 case ELF::DT_SYMENT: { 2045 uint64_t Val = Dyn.getVal(); 2046 if (Val != sizeof(Elf_Sym)) 2047 this->reportUniqueWarning("DT_SYMENT value of 0x" + 2048 Twine::utohexstr(Val) + 2049 " is not the size of a symbol (0x" + 2050 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 2051 break; 2052 } 2053 case ELF::DT_RELA: 2054 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2055 break; 2056 case ELF::DT_RELASZ: 2057 DynRelaRegion.Size = Dyn.getVal(); 2058 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 2059 break; 2060 case ELF::DT_RELAENT: 2061 DynRelaRegion.EntSize = Dyn.getVal(); 2062 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 2063 break; 2064 case ELF::DT_SONAME: 2065 SONameOffset = Dyn.getVal(); 2066 break; 2067 case ELF::DT_REL: 2068 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2069 break; 2070 case ELF::DT_RELSZ: 2071 DynRelRegion.Size = Dyn.getVal(); 2072 DynRelRegion.SizePrintName = "DT_RELSZ value"; 2073 break; 2074 case ELF::DT_RELENT: 2075 DynRelRegion.EntSize = Dyn.getVal(); 2076 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 2077 break; 2078 case ELF::DT_RELR: 2079 case ELF::DT_ANDROID_RELR: 2080 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2081 break; 2082 case ELF::DT_RELRSZ: 2083 case ELF::DT_ANDROID_RELRSZ: 2084 DynRelrRegion.Size = Dyn.getVal(); 2085 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 2086 ? "DT_RELRSZ value" 2087 : "DT_ANDROID_RELRSZ value"; 2088 break; 2089 case ELF::DT_RELRENT: 2090 case ELF::DT_ANDROID_RELRENT: 2091 DynRelrRegion.EntSize = Dyn.getVal(); 2092 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 2093 ? "DT_RELRENT value" 2094 : "DT_ANDROID_RELRENT value"; 2095 break; 2096 case ELF::DT_PLTREL: 2097 if (Dyn.getVal() == DT_REL) 2098 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 2099 else if (Dyn.getVal() == DT_RELA) 2100 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 2101 else 2102 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 2103 Twine((uint64_t)Dyn.getVal())); 2104 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 2105 break; 2106 case ELF::DT_JMPREL: 2107 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2108 break; 2109 case ELF::DT_PLTRELSZ: 2110 DynPLTRelRegion.Size = Dyn.getVal(); 2111 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 2112 break; 2113 case ELF::DT_SYMTAB_SHNDX: 2114 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2115 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 2116 break; 2117 } 2118 } 2119 2120 if (StringTableBegin) { 2121 const uint64_t FileSize = Obj.getBufSize(); 2122 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 2123 if (StringTableSize > FileSize - Offset) 2124 reportUniqueWarning( 2125 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 2126 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 2127 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 2128 else 2129 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 2130 } 2131 2132 const bool IsHashTableSupported = getHashTableEntSize() == 4; 2133 if (DynSymRegion) { 2134 // Often we find the information about the dynamic symbol table 2135 // location in the SHT_DYNSYM section header. However, the value in 2136 // DT_SYMTAB has priority, because it is used by dynamic loaders to 2137 // locate .dynsym at runtime. The location we find in the section header 2138 // and the location we find here should match. 2139 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 2140 reportUniqueWarning( 2141 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 2142 "the location of the dynamic symbol table")); 2143 2144 // According to the ELF gABI: "The number of symbol table entries should 2145 // equal nchain". Check to see if the DT_HASH hash table nchain value 2146 // conflicts with the number of symbols in the dynamic symbol table 2147 // according to the section header. 2148 if (HashTable && IsHashTableSupported) { 2149 if (DynSymRegion->EntSize == 0) 2150 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 2151 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 2152 reportUniqueWarning( 2153 "hash table nchain (" + Twine(HashTable->nchain) + 2154 ") differs from symbol count derived from SHT_DYNSYM section " 2155 "header (" + 2156 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 2157 } 2158 } 2159 2160 // Delay the creation of the actual dynamic symbol table until now, so that 2161 // checks can always be made against the section header-based properties, 2162 // without worrying about tag order. 2163 if (DynSymFromTable) { 2164 if (!DynSymRegion) { 2165 DynSymRegion = DynSymFromTable; 2166 } else { 2167 DynSymRegion->Addr = DynSymFromTable->Addr; 2168 DynSymRegion->EntSize = DynSymFromTable->EntSize; 2169 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 2170 } 2171 } 2172 2173 // Derive the dynamic symbol table size from the DT_HASH hash table, if 2174 // present. 2175 if (HashTable && IsHashTableSupported && DynSymRegion) { 2176 const uint64_t FileSize = Obj.getBufSize(); 2177 const uint64_t DerivedSize = 2178 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 2179 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 2180 if (DerivedSize > FileSize - Offset) 2181 reportUniqueWarning( 2182 "the size (0x" + Twine::utohexstr(DerivedSize) + 2183 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 2184 ", derived from the hash table, goes past the end of the file (0x" + 2185 Twine::utohexstr(FileSize) + ") and will be ignored"); 2186 else 2187 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 2188 } 2189 } 2190 2191 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 2192 // Dump version symbol section. 2193 printVersionSymbolSection(SymbolVersionSection); 2194 2195 // Dump version definition section. 2196 printVersionDefinitionSection(SymbolVersionDefSection); 2197 2198 // Dump version dependency section. 2199 printVersionDependencySection(SymbolVersionNeedSection); 2200 } 2201 2202 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 2203 { #enum, prefix##_##enum } 2204 2205 const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 2206 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 2207 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 2208 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 2209 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 2210 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 2211 }; 2212 2213 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 2214 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 2215 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 2216 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 2217 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 2218 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 2219 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 2220 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 2221 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 2222 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 2223 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 2224 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 2225 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 2226 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 2227 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 2228 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 2229 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 2230 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 2231 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 2232 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 2233 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 2234 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 2235 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 2236 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 2237 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2238 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2239 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2240 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2241 }; 2242 2243 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2244 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2245 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2246 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2247 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2248 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2249 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2250 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2251 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2252 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2253 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2254 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2255 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2256 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2257 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2258 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2259 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2260 }; 2261 2262 #undef LLVM_READOBJ_DT_FLAG_ENT 2263 2264 template <typename T, typename TFlag> 2265 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2266 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2267 for (const EnumEntry<TFlag> &Flag : Flags) 2268 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2269 SetFlags.push_back(Flag); 2270 2271 for (const EnumEntry<TFlag> &Flag : SetFlags) 2272 OS << Flag.Name << " "; 2273 } 2274 2275 template <class ELFT> 2276 const typename ELFT::Shdr * 2277 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2278 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2279 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2280 if (*NameOrErr == Name) 2281 return &Shdr; 2282 } else { 2283 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2284 ": " + toString(NameOrErr.takeError())); 2285 } 2286 } 2287 return nullptr; 2288 } 2289 2290 template <class ELFT> 2291 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2292 uint64_t Value) const { 2293 auto FormatHexValue = [](uint64_t V) { 2294 std::string Str; 2295 raw_string_ostream OS(Str); 2296 const char *ConvChar = 2297 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2298 OS << format(ConvChar, V); 2299 return OS.str(); 2300 }; 2301 2302 auto FormatFlags = [](uint64_t V, 2303 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2304 std::string Str; 2305 raw_string_ostream OS(Str); 2306 printFlags(V, Array, OS); 2307 return OS.str(); 2308 }; 2309 2310 // Handle custom printing of architecture specific tags 2311 switch (Obj.getHeader().e_machine) { 2312 case EM_AARCH64: 2313 switch (Type) { 2314 case DT_AARCH64_BTI_PLT: 2315 case DT_AARCH64_PAC_PLT: 2316 case DT_AARCH64_VARIANT_PCS: 2317 case DT_AARCH64_MEMTAG_GLOBALSSZ: 2318 return std::to_string(Value); 2319 case DT_AARCH64_MEMTAG_MODE: 2320 switch (Value) { 2321 case 0: 2322 return "Synchronous (0)"; 2323 case 1: 2324 return "Asynchronous (1)"; 2325 default: 2326 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2327 } 2328 case DT_AARCH64_MEMTAG_HEAP: 2329 case DT_AARCH64_MEMTAG_STACK: 2330 switch (Value) { 2331 case 0: 2332 return "Disabled (0)"; 2333 case 1: 2334 return "Enabled (1)"; 2335 default: 2336 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2337 } 2338 case DT_AARCH64_MEMTAG_GLOBALS: 2339 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str(); 2340 default: 2341 break; 2342 } 2343 break; 2344 case EM_HEXAGON: 2345 switch (Type) { 2346 case DT_HEXAGON_VER: 2347 return std::to_string(Value); 2348 case DT_HEXAGON_SYMSZ: 2349 case DT_HEXAGON_PLT: 2350 return FormatHexValue(Value); 2351 default: 2352 break; 2353 } 2354 break; 2355 case EM_MIPS: 2356 switch (Type) { 2357 case DT_MIPS_RLD_VERSION: 2358 case DT_MIPS_LOCAL_GOTNO: 2359 case DT_MIPS_SYMTABNO: 2360 case DT_MIPS_UNREFEXTNO: 2361 return std::to_string(Value); 2362 case DT_MIPS_TIME_STAMP: 2363 case DT_MIPS_ICHECKSUM: 2364 case DT_MIPS_IVERSION: 2365 case DT_MIPS_BASE_ADDRESS: 2366 case DT_MIPS_MSYM: 2367 case DT_MIPS_CONFLICT: 2368 case DT_MIPS_LIBLIST: 2369 case DT_MIPS_CONFLICTNO: 2370 case DT_MIPS_LIBLISTNO: 2371 case DT_MIPS_GOTSYM: 2372 case DT_MIPS_HIPAGENO: 2373 case DT_MIPS_RLD_MAP: 2374 case DT_MIPS_DELTA_CLASS: 2375 case DT_MIPS_DELTA_CLASS_NO: 2376 case DT_MIPS_DELTA_INSTANCE: 2377 case DT_MIPS_DELTA_RELOC: 2378 case DT_MIPS_DELTA_RELOC_NO: 2379 case DT_MIPS_DELTA_SYM: 2380 case DT_MIPS_DELTA_SYM_NO: 2381 case DT_MIPS_DELTA_CLASSSYM: 2382 case DT_MIPS_DELTA_CLASSSYM_NO: 2383 case DT_MIPS_CXX_FLAGS: 2384 case DT_MIPS_PIXIE_INIT: 2385 case DT_MIPS_SYMBOL_LIB: 2386 case DT_MIPS_LOCALPAGE_GOTIDX: 2387 case DT_MIPS_LOCAL_GOTIDX: 2388 case DT_MIPS_HIDDEN_GOTIDX: 2389 case DT_MIPS_PROTECTED_GOTIDX: 2390 case DT_MIPS_OPTIONS: 2391 case DT_MIPS_INTERFACE: 2392 case DT_MIPS_DYNSTR_ALIGN: 2393 case DT_MIPS_INTERFACE_SIZE: 2394 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2395 case DT_MIPS_PERF_SUFFIX: 2396 case DT_MIPS_COMPACT_SIZE: 2397 case DT_MIPS_GP_VALUE: 2398 case DT_MIPS_AUX_DYNAMIC: 2399 case DT_MIPS_PLTGOT: 2400 case DT_MIPS_RWPLT: 2401 case DT_MIPS_RLD_MAP_REL: 2402 case DT_MIPS_XHASH: 2403 return FormatHexValue(Value); 2404 case DT_MIPS_FLAGS: 2405 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags)); 2406 default: 2407 break; 2408 } 2409 break; 2410 default: 2411 break; 2412 } 2413 2414 switch (Type) { 2415 case DT_PLTREL: 2416 if (Value == DT_REL) 2417 return "REL"; 2418 if (Value == DT_RELA) 2419 return "RELA"; 2420 [[fallthrough]]; 2421 case DT_PLTGOT: 2422 case DT_HASH: 2423 case DT_STRTAB: 2424 case DT_SYMTAB: 2425 case DT_RELA: 2426 case DT_INIT: 2427 case DT_FINI: 2428 case DT_REL: 2429 case DT_JMPREL: 2430 case DT_INIT_ARRAY: 2431 case DT_FINI_ARRAY: 2432 case DT_PREINIT_ARRAY: 2433 case DT_DEBUG: 2434 case DT_VERDEF: 2435 case DT_VERNEED: 2436 case DT_VERSYM: 2437 case DT_GNU_HASH: 2438 case DT_NULL: 2439 return FormatHexValue(Value); 2440 case DT_RELACOUNT: 2441 case DT_RELCOUNT: 2442 case DT_VERDEFNUM: 2443 case DT_VERNEEDNUM: 2444 return std::to_string(Value); 2445 case DT_PLTRELSZ: 2446 case DT_RELASZ: 2447 case DT_RELAENT: 2448 case DT_STRSZ: 2449 case DT_SYMENT: 2450 case DT_RELSZ: 2451 case DT_RELENT: 2452 case DT_INIT_ARRAYSZ: 2453 case DT_FINI_ARRAYSZ: 2454 case DT_PREINIT_ARRAYSZ: 2455 case DT_RELRSZ: 2456 case DT_RELRENT: 2457 case DT_ANDROID_RELSZ: 2458 case DT_ANDROID_RELASZ: 2459 return std::to_string(Value) + " (bytes)"; 2460 case DT_NEEDED: 2461 case DT_SONAME: 2462 case DT_AUXILIARY: 2463 case DT_USED: 2464 case DT_FILTER: 2465 case DT_RPATH: 2466 case DT_RUNPATH: { 2467 const std::map<uint64_t, const char *> TagNames = { 2468 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2469 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2470 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2471 {DT_RUNPATH, "Library runpath"}, 2472 }; 2473 2474 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2475 .str(); 2476 } 2477 case DT_FLAGS: 2478 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags)); 2479 case DT_FLAGS_1: 2480 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1)); 2481 default: 2482 return FormatHexValue(Value); 2483 } 2484 } 2485 2486 template <class ELFT> 2487 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2488 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2489 reportUniqueWarning("string table was not found"); 2490 return "<?>"; 2491 } 2492 2493 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2494 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2495 Msg); 2496 return "<?>"; 2497 }; 2498 2499 const uint64_t FileSize = Obj.getBufSize(); 2500 const uint64_t Offset = 2501 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2502 if (DynamicStringTable.size() > FileSize - Offset) 2503 return WarnAndReturn(" with size 0x" + 2504 Twine::utohexstr(DynamicStringTable.size()) + 2505 " goes past the end of the file (0x" + 2506 Twine::utohexstr(FileSize) + ")", 2507 Offset); 2508 2509 if (Value >= DynamicStringTable.size()) 2510 return WarnAndReturn( 2511 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2512 ": it goes past the end of the table (0x" + 2513 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2514 Offset); 2515 2516 if (DynamicStringTable.back() != '\0') 2517 return WarnAndReturn(": unable to read the string at 0x" + 2518 Twine::utohexstr(Offset + Value) + 2519 ": the string table is not null-terminated", 2520 Offset); 2521 2522 return DynamicStringTable.data() + Value; 2523 } 2524 2525 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2526 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2527 Ctx.printUnwindInformation(); 2528 } 2529 2530 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2531 namespace { 2532 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2533 if (Obj.getHeader().e_machine == EM_ARM) { 2534 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2535 DotSymtabSec); 2536 Ctx.PrintUnwindInformation(); 2537 } 2538 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2539 Ctx.printUnwindInformation(); 2540 } 2541 } // namespace 2542 2543 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2544 ListScope D(W, "NeededLibraries"); 2545 2546 std::vector<StringRef> Libs; 2547 for (const auto &Entry : dynamic_table()) 2548 if (Entry.d_tag == ELF::DT_NEEDED) 2549 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2550 2551 llvm::sort(Libs); 2552 2553 for (StringRef L : Libs) 2554 W.startLine() << L << "\n"; 2555 } 2556 2557 template <class ELFT> 2558 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2559 const typename ELFT::Hash *H, 2560 bool *IsHeaderValid = nullptr) { 2561 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2562 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2563 if (Dumper.getHashTableEntSize() == 8) { 2564 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2565 return E.Value == Obj.getHeader().e_machine; 2566 }); 2567 if (IsHeaderValid) 2568 *IsHeaderValid = false; 2569 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2570 " is not supported: it contains non-standard 8 " 2571 "byte entries on " + 2572 It->AltName + " platform"); 2573 } 2574 2575 auto MakeError = [&](const Twine &Msg = "") { 2576 return createError("the hash table at offset 0x" + 2577 Twine::utohexstr(SecOffset) + 2578 " goes past the end of the file (0x" + 2579 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2580 }; 2581 2582 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2583 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2584 2585 if (IsHeaderValid) 2586 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2587 2588 if (Obj.getBufSize() - SecOffset < HeaderSize) 2589 return MakeError(); 2590 2591 if (Obj.getBufSize() - SecOffset - HeaderSize < 2592 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2593 return MakeError(", nbucket = " + Twine(H->nbucket) + 2594 ", nchain = " + Twine(H->nchain)); 2595 return Error::success(); 2596 } 2597 2598 template <class ELFT> 2599 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2600 const typename ELFT::GnuHash *GnuHashTable, 2601 bool *IsHeaderValid = nullptr) { 2602 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2603 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2604 "GnuHashTable must always point to a location inside the file"); 2605 2606 uint64_t TableOffset = TableData - Obj.base(); 2607 if (IsHeaderValid) 2608 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2609 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2610 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2611 Obj.getBufSize()) 2612 return createError("unable to dump the SHT_GNU_HASH " 2613 "section at 0x" + 2614 Twine::utohexstr(TableOffset) + 2615 ": it goes past the end of the file"); 2616 return Error::success(); 2617 } 2618 2619 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2620 DictScope D(W, "HashTable"); 2621 if (!HashTable) 2622 return; 2623 2624 bool IsHeaderValid; 2625 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2626 if (IsHeaderValid) { 2627 W.printNumber("Num Buckets", HashTable->nbucket); 2628 W.printNumber("Num Chains", HashTable->nchain); 2629 } 2630 2631 if (Err) { 2632 reportUniqueWarning(std::move(Err)); 2633 return; 2634 } 2635 2636 W.printList("Buckets", HashTable->buckets()); 2637 W.printList("Chains", HashTable->chains()); 2638 } 2639 2640 template <class ELFT> 2641 static Expected<ArrayRef<typename ELFT::Word>> 2642 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion, 2643 const typename ELFT::GnuHash *GnuHashTable) { 2644 if (!DynSymRegion) 2645 return createError("no dynamic symbol table found"); 2646 2647 ArrayRef<typename ELFT::Sym> DynSymTable = 2648 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2649 size_t NumSyms = DynSymTable.size(); 2650 if (!NumSyms) 2651 return createError("the dynamic symbol table is empty"); 2652 2653 if (GnuHashTable->symndx < NumSyms) 2654 return GnuHashTable->values(NumSyms); 2655 2656 // A normal empty GNU hash table section produced by linker might have 2657 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2658 // and have dummy null values in the Bloom filter and in the buckets 2659 // vector (or no values at all). It happens because the value of symndx is not 2660 // important for dynamic loaders when the GNU hash table is empty. They just 2661 // skip the whole object during symbol lookup. In such cases, the symndx value 2662 // is irrelevant and we should not report a warning. 2663 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2664 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2665 return createError( 2666 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2667 ") is greater than or equal to the number of dynamic symbols (" + 2668 Twine(NumSyms) + ")"); 2669 // There is no way to represent an array of (dynamic symbols count - symndx) 2670 // length. 2671 return ArrayRef<typename ELFT::Word>(); 2672 } 2673 2674 template <typename ELFT> 2675 void ELFDumper<ELFT>::printGnuHashTable() { 2676 DictScope D(W, "GnuHashTable"); 2677 if (!GnuHashTable) 2678 return; 2679 2680 bool IsHeaderValid; 2681 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2682 if (IsHeaderValid) { 2683 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2684 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2685 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2686 W.printNumber("Shift Count", GnuHashTable->shift2); 2687 } 2688 2689 if (Err) { 2690 reportUniqueWarning(std::move(Err)); 2691 return; 2692 } 2693 2694 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2695 W.printHexList("Bloom Filter", BloomFilter); 2696 2697 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2698 W.printList("Buckets", Buckets); 2699 2700 Expected<ArrayRef<Elf_Word>> Chains = 2701 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2702 if (!Chains) { 2703 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2704 "section: " + 2705 toString(Chains.takeError())); 2706 return; 2707 } 2708 2709 W.printHexList("Values", *Chains); 2710 } 2711 2712 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() { 2713 // Print histogram for the .hash section. 2714 if (this->HashTable) { 2715 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 2716 this->reportUniqueWarning(std::move(E)); 2717 else 2718 printHashHistogram(*this->HashTable); 2719 } 2720 2721 // Print histogram for the .gnu.hash section. 2722 if (this->GnuHashTable) { 2723 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 2724 this->reportUniqueWarning(std::move(E)); 2725 else 2726 printGnuHashHistogram(*this->GnuHashTable); 2727 } 2728 } 2729 2730 template <typename ELFT> 2731 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const { 2732 size_t NBucket = HashTable.nbucket; 2733 size_t NChain = HashTable.nchain; 2734 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 2735 ArrayRef<Elf_Word> Chains = HashTable.chains(); 2736 size_t TotalSyms = 0; 2737 // If hash table is correct, we have at least chains with 0 length. 2738 size_t MaxChain = 1; 2739 2740 if (NChain == 0 || NBucket == 0) 2741 return; 2742 2743 std::vector<size_t> ChainLen(NBucket, 0); 2744 // Go over all buckets and and note chain lengths of each bucket (total 2745 // unique chain lengths). 2746 for (size_t B = 0; B < NBucket; ++B) { 2747 BitVector Visited(NChain); 2748 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 2749 if (C == ELF::STN_UNDEF) 2750 break; 2751 if (Visited[C]) { 2752 this->reportUniqueWarning( 2753 ".hash section is invalid: bucket " + Twine(C) + 2754 ": a cycle was detected in the linked chain"); 2755 break; 2756 } 2757 Visited[C] = true; 2758 if (MaxChain <= ++ChainLen[B]) 2759 ++MaxChain; 2760 } 2761 TotalSyms += ChainLen[B]; 2762 } 2763 2764 if (!TotalSyms) 2765 return; 2766 2767 std::vector<size_t> Count(MaxChain, 0); 2768 // Count how long is the chain for each bucket. 2769 for (size_t B = 0; B < NBucket; B++) 2770 ++Count[ChainLen[B]]; 2771 // Print Number of buckets with each chain lengths and their cumulative 2772 // coverage of the symbols. 2773 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false); 2774 } 2775 2776 template <class ELFT> 2777 void ELFDumper<ELFT>::printGnuHashHistogram( 2778 const Elf_GnuHash &GnuHashTable) const { 2779 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 2780 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 2781 if (!ChainsOrErr) { 2782 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 2783 toString(ChainsOrErr.takeError())); 2784 return; 2785 } 2786 2787 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 2788 size_t Symndx = GnuHashTable.symndx; 2789 size_t TotalSyms = 0; 2790 size_t MaxChain = 1; 2791 2792 size_t NBucket = GnuHashTable.nbuckets; 2793 if (Chains.empty() || NBucket == 0) 2794 return; 2795 2796 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 2797 std::vector<size_t> ChainLen(NBucket, 0); 2798 for (size_t B = 0; B < NBucket; ++B) { 2799 if (!Buckets[B]) 2800 continue; 2801 size_t Len = 1; 2802 for (size_t C = Buckets[B] - Symndx; 2803 C < Chains.size() && (Chains[C] & 1) == 0; ++C) 2804 if (MaxChain < ++Len) 2805 ++MaxChain; 2806 ChainLen[B] = Len; 2807 TotalSyms += Len; 2808 } 2809 ++MaxChain; 2810 2811 if (!TotalSyms) 2812 return; 2813 2814 std::vector<size_t> Count(MaxChain, 0); 2815 for (size_t B = 0; B < NBucket; ++B) 2816 ++Count[ChainLen[B]]; 2817 // Print Number of buckets with each chain lengths and their cumulative 2818 // coverage of the symbols. 2819 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true); 2820 } 2821 2822 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2823 StringRef SOName = "<Not found>"; 2824 if (SONameOffset) 2825 SOName = getDynamicString(*SONameOffset); 2826 W.printString("LoadName", SOName); 2827 } 2828 2829 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2830 switch (Obj.getHeader().e_machine) { 2831 case EM_ARM: 2832 if (Obj.isLE()) 2833 printAttributes(ELF::SHT_ARM_ATTRIBUTES, 2834 std::make_unique<ARMAttributeParser>(&W), 2835 support::little); 2836 else 2837 reportUniqueWarning("attribute printing not implemented for big-endian " 2838 "ARM objects"); 2839 break; 2840 case EM_RISCV: 2841 if (Obj.isLE()) 2842 printAttributes(ELF::SHT_RISCV_ATTRIBUTES, 2843 std::make_unique<RISCVAttributeParser>(&W), 2844 support::little); 2845 else 2846 reportUniqueWarning("attribute printing not implemented for big-endian " 2847 "RISC-V objects"); 2848 break; 2849 case EM_MSP430: 2850 printAttributes(ELF::SHT_MSP430_ATTRIBUTES, 2851 std::make_unique<MSP430AttributeParser>(&W), 2852 support::little); 2853 break; 2854 case EM_MIPS: { 2855 printMipsABIFlags(); 2856 printMipsOptions(); 2857 printMipsReginfo(); 2858 MipsGOTParser<ELFT> Parser(*this); 2859 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2860 reportUniqueWarning(std::move(E)); 2861 else if (!Parser.isGotEmpty()) 2862 printMipsGOT(Parser); 2863 2864 if (Error E = Parser.findPLT(dynamic_table())) 2865 reportUniqueWarning(std::move(E)); 2866 else if (!Parser.isPltEmpty()) 2867 printMipsPLT(Parser); 2868 break; 2869 } 2870 default: 2871 break; 2872 } 2873 } 2874 2875 template <class ELFT> 2876 void ELFDumper<ELFT>::printAttributes( 2877 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, 2878 support::endianness Endianness) { 2879 assert((AttrShType != ELF::SHT_NULL) && AttrParser && 2880 "Incomplete ELF attribute implementation"); 2881 DictScope BA(W, "BuildAttributes"); 2882 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2883 if (Sec.sh_type != AttrShType) 2884 continue; 2885 2886 ArrayRef<uint8_t> Contents; 2887 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2888 Obj.getSectionContents(Sec)) { 2889 Contents = *ContentOrErr; 2890 if (Contents.empty()) { 2891 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2892 continue; 2893 } 2894 } else { 2895 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2896 ": " + toString(ContentOrErr.takeError())); 2897 continue; 2898 } 2899 2900 W.printHex("FormatVersion", Contents[0]); 2901 2902 if (Error E = AttrParser->parse(Contents, Endianness)) 2903 reportUniqueWarning("unable to dump attributes from the " + 2904 describe(Sec) + ": " + toString(std::move(E))); 2905 } 2906 } 2907 2908 namespace { 2909 2910 template <class ELFT> class MipsGOTParser { 2911 public: 2912 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2913 using Entry = typename ELFT::Addr; 2914 using Entries = ArrayRef<Entry>; 2915 2916 const bool IsStatic; 2917 const ELFFile<ELFT> &Obj; 2918 const ELFDumper<ELFT> &Dumper; 2919 2920 MipsGOTParser(const ELFDumper<ELFT> &D); 2921 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2922 Error findPLT(Elf_Dyn_Range DynTable); 2923 2924 bool isGotEmpty() const { return GotEntries.empty(); } 2925 bool isPltEmpty() const { return PltEntries.empty(); } 2926 2927 uint64_t getGp() const; 2928 2929 const Entry *getGotLazyResolver() const; 2930 const Entry *getGotModulePointer() const; 2931 const Entry *getPltLazyResolver() const; 2932 const Entry *getPltModulePointer() const; 2933 2934 Entries getLocalEntries() const; 2935 Entries getGlobalEntries() const; 2936 Entries getOtherEntries() const; 2937 Entries getPltEntries() const; 2938 2939 uint64_t getGotAddress(const Entry * E) const; 2940 int64_t getGotOffset(const Entry * E) const; 2941 const Elf_Sym *getGotSym(const Entry *E) const; 2942 2943 uint64_t getPltAddress(const Entry * E) const; 2944 const Elf_Sym *getPltSym(const Entry *E) const; 2945 2946 StringRef getPltStrTable() const { return PltStrTable; } 2947 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2948 2949 private: 2950 const Elf_Shdr *GotSec; 2951 size_t LocalNum; 2952 size_t GlobalNum; 2953 2954 const Elf_Shdr *PltSec; 2955 const Elf_Shdr *PltRelSec; 2956 const Elf_Shdr *PltSymTable; 2957 StringRef FileName; 2958 2959 Elf_Sym_Range GotDynSyms; 2960 StringRef PltStrTable; 2961 2962 Entries GotEntries; 2963 Entries PltEntries; 2964 }; 2965 2966 } // end anonymous namespace 2967 2968 template <class ELFT> 2969 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 2970 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 2971 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 2972 PltRelSec(nullptr), PltSymTable(nullptr), 2973 FileName(D.getElfObject().getFileName()) {} 2974 2975 template <class ELFT> 2976 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 2977 Elf_Sym_Range DynSyms) { 2978 // See "Global Offset Table" in Chapter 5 in the following document 2979 // for detailed GOT description. 2980 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2981 2982 // Find static GOT secton. 2983 if (IsStatic) { 2984 GotSec = Dumper.findSectionByName(".got"); 2985 if (!GotSec) 2986 return Error::success(); 2987 2988 ArrayRef<uint8_t> Content = 2989 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2990 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2991 Content.size() / sizeof(Entry)); 2992 LocalNum = GotEntries.size(); 2993 return Error::success(); 2994 } 2995 2996 // Lookup dynamic table tags which define the GOT layout. 2997 std::optional<uint64_t> DtPltGot; 2998 std::optional<uint64_t> DtLocalGotNum; 2999 std::optional<uint64_t> DtGotSym; 3000 for (const auto &Entry : DynTable) { 3001 switch (Entry.getTag()) { 3002 case ELF::DT_PLTGOT: 3003 DtPltGot = Entry.getVal(); 3004 break; 3005 case ELF::DT_MIPS_LOCAL_GOTNO: 3006 DtLocalGotNum = Entry.getVal(); 3007 break; 3008 case ELF::DT_MIPS_GOTSYM: 3009 DtGotSym = Entry.getVal(); 3010 break; 3011 } 3012 } 3013 3014 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 3015 return Error::success(); 3016 3017 if (!DtPltGot) 3018 return createError("cannot find PLTGOT dynamic tag"); 3019 if (!DtLocalGotNum) 3020 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 3021 if (!DtGotSym) 3022 return createError("cannot find MIPS_GOTSYM dynamic tag"); 3023 3024 size_t DynSymTotal = DynSyms.size(); 3025 if (*DtGotSym > DynSymTotal) 3026 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 3027 ") exceeds the number of dynamic symbols (" + 3028 Twine(DynSymTotal) + ")"); 3029 3030 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 3031 if (!GotSec) 3032 return createError("there is no non-empty GOT section at 0x" + 3033 Twine::utohexstr(*DtPltGot)); 3034 3035 LocalNum = *DtLocalGotNum; 3036 GlobalNum = DynSymTotal - *DtGotSym; 3037 3038 ArrayRef<uint8_t> Content = 3039 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3040 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3041 Content.size() / sizeof(Entry)); 3042 GotDynSyms = DynSyms.drop_front(*DtGotSym); 3043 3044 return Error::success(); 3045 } 3046 3047 template <class ELFT> 3048 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 3049 // Lookup dynamic table tags which define the PLT layout. 3050 std::optional<uint64_t> DtMipsPltGot; 3051 std::optional<uint64_t> DtJmpRel; 3052 for (const auto &Entry : DynTable) { 3053 switch (Entry.getTag()) { 3054 case ELF::DT_MIPS_PLTGOT: 3055 DtMipsPltGot = Entry.getVal(); 3056 break; 3057 case ELF::DT_JMPREL: 3058 DtJmpRel = Entry.getVal(); 3059 break; 3060 } 3061 } 3062 3063 if (!DtMipsPltGot && !DtJmpRel) 3064 return Error::success(); 3065 3066 // Find PLT section. 3067 if (!DtMipsPltGot) 3068 return createError("cannot find MIPS_PLTGOT dynamic tag"); 3069 if (!DtJmpRel) 3070 return createError("cannot find JMPREL dynamic tag"); 3071 3072 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 3073 if (!PltSec) 3074 return createError("there is no non-empty PLTGOT section at 0x" + 3075 Twine::utohexstr(*DtMipsPltGot)); 3076 3077 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 3078 if (!PltRelSec) 3079 return createError("there is no non-empty RELPLT section at 0x" + 3080 Twine::utohexstr(*DtJmpRel)); 3081 3082 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 3083 Obj.getSectionContents(*PltSec)) 3084 PltEntries = 3085 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 3086 PltContentOrErr->size() / sizeof(Entry)); 3087 else 3088 return createError("unable to read PLTGOT section content: " + 3089 toString(PltContentOrErr.takeError())); 3090 3091 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 3092 Obj.getSection(PltRelSec->sh_link)) 3093 PltSymTable = *PltSymTableOrErr; 3094 else 3095 return createError("unable to get a symbol table linked to the " + 3096 describe(Obj, *PltRelSec) + ": " + 3097 toString(PltSymTableOrErr.takeError())); 3098 3099 if (Expected<StringRef> StrTabOrErr = 3100 Obj.getStringTableForSymtab(*PltSymTable)) 3101 PltStrTable = *StrTabOrErr; 3102 else 3103 return createError("unable to get a string table for the " + 3104 describe(Obj, *PltSymTable) + ": " + 3105 toString(StrTabOrErr.takeError())); 3106 3107 return Error::success(); 3108 } 3109 3110 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 3111 return GotSec->sh_addr + 0x7ff0; 3112 } 3113 3114 template <class ELFT> 3115 const typename MipsGOTParser<ELFT>::Entry * 3116 MipsGOTParser<ELFT>::getGotLazyResolver() const { 3117 return LocalNum > 0 ? &GotEntries[0] : nullptr; 3118 } 3119 3120 template <class ELFT> 3121 const typename MipsGOTParser<ELFT>::Entry * 3122 MipsGOTParser<ELFT>::getGotModulePointer() const { 3123 if (LocalNum < 2) 3124 return nullptr; 3125 const Entry &E = GotEntries[1]; 3126 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 3127 return nullptr; 3128 return &E; 3129 } 3130 3131 template <class ELFT> 3132 typename MipsGOTParser<ELFT>::Entries 3133 MipsGOTParser<ELFT>::getLocalEntries() const { 3134 size_t Skip = getGotModulePointer() ? 2 : 1; 3135 if (LocalNum - Skip <= 0) 3136 return Entries(); 3137 return GotEntries.slice(Skip, LocalNum - Skip); 3138 } 3139 3140 template <class ELFT> 3141 typename MipsGOTParser<ELFT>::Entries 3142 MipsGOTParser<ELFT>::getGlobalEntries() const { 3143 if (GlobalNum == 0) 3144 return Entries(); 3145 return GotEntries.slice(LocalNum, GlobalNum); 3146 } 3147 3148 template <class ELFT> 3149 typename MipsGOTParser<ELFT>::Entries 3150 MipsGOTParser<ELFT>::getOtherEntries() const { 3151 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 3152 if (OtherNum == 0) 3153 return Entries(); 3154 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 3155 } 3156 3157 template <class ELFT> 3158 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 3159 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3160 return GotSec->sh_addr + Offset; 3161 } 3162 3163 template <class ELFT> 3164 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 3165 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3166 return Offset - 0x7ff0; 3167 } 3168 3169 template <class ELFT> 3170 const typename MipsGOTParser<ELFT>::Elf_Sym * 3171 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 3172 int64_t Offset = std::distance(GotEntries.data(), E); 3173 return &GotDynSyms[Offset - LocalNum]; 3174 } 3175 3176 template <class ELFT> 3177 const typename MipsGOTParser<ELFT>::Entry * 3178 MipsGOTParser<ELFT>::getPltLazyResolver() const { 3179 return PltEntries.empty() ? nullptr : &PltEntries[0]; 3180 } 3181 3182 template <class ELFT> 3183 const typename MipsGOTParser<ELFT>::Entry * 3184 MipsGOTParser<ELFT>::getPltModulePointer() const { 3185 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 3186 } 3187 3188 template <class ELFT> 3189 typename MipsGOTParser<ELFT>::Entries 3190 MipsGOTParser<ELFT>::getPltEntries() const { 3191 if (PltEntries.size() <= 2) 3192 return Entries(); 3193 return PltEntries.slice(2, PltEntries.size() - 2); 3194 } 3195 3196 template <class ELFT> 3197 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 3198 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 3199 return PltSec->sh_addr + Offset; 3200 } 3201 3202 template <class ELFT> 3203 const typename MipsGOTParser<ELFT>::Elf_Sym * 3204 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 3205 int64_t Offset = std::distance(getPltEntries().data(), E); 3206 if (PltRelSec->sh_type == ELF::SHT_REL) { 3207 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 3208 return unwrapOrError(FileName, 3209 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3210 } else { 3211 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 3212 return unwrapOrError(FileName, 3213 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3214 } 3215 } 3216 3217 const EnumEntry<unsigned> ElfMipsISAExtType[] = { 3218 {"None", Mips::AFL_EXT_NONE}, 3219 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 3220 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 3221 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 3222 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 3223 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 3224 {"LSI R4010", Mips::AFL_EXT_4010}, 3225 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 3226 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 3227 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 3228 {"MIPS R4650", Mips::AFL_EXT_4650}, 3229 {"MIPS R5900", Mips::AFL_EXT_5900}, 3230 {"MIPS R10000", Mips::AFL_EXT_10000}, 3231 {"NEC VR4100", Mips::AFL_EXT_4100}, 3232 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 3233 {"NEC VR4120", Mips::AFL_EXT_4120}, 3234 {"NEC VR5400", Mips::AFL_EXT_5400}, 3235 {"NEC VR5500", Mips::AFL_EXT_5500}, 3236 {"RMI Xlr", Mips::AFL_EXT_XLR}, 3237 {"Toshiba R3900", Mips::AFL_EXT_3900} 3238 }; 3239 3240 const EnumEntry<unsigned> ElfMipsASEFlags[] = { 3241 {"DSP", Mips::AFL_ASE_DSP}, 3242 {"DSPR2", Mips::AFL_ASE_DSPR2}, 3243 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 3244 {"MCU", Mips::AFL_ASE_MCU}, 3245 {"MDMX", Mips::AFL_ASE_MDMX}, 3246 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 3247 {"MT", Mips::AFL_ASE_MT}, 3248 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 3249 {"VZ", Mips::AFL_ASE_VIRT}, 3250 {"MSA", Mips::AFL_ASE_MSA}, 3251 {"MIPS16", Mips::AFL_ASE_MIPS16}, 3252 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 3253 {"XPA", Mips::AFL_ASE_XPA}, 3254 {"CRC", Mips::AFL_ASE_CRC}, 3255 {"GINV", Mips::AFL_ASE_GINV}, 3256 }; 3257 3258 const EnumEntry<unsigned> ElfMipsFpABIType[] = { 3259 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 3260 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 3261 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 3262 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 3263 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 3264 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 3265 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 3266 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 3267 {"Hard float compat (32-bit CPU, 64-bit FPU)", 3268 Mips::Val_GNU_MIPS_ABI_FP_64A} 3269 }; 3270 3271 static const EnumEntry<unsigned> ElfMipsFlags1[] { 3272 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 3273 }; 3274 3275 static int getMipsRegisterSize(uint8_t Flag) { 3276 switch (Flag) { 3277 case Mips::AFL_REG_NONE: 3278 return 0; 3279 case Mips::AFL_REG_32: 3280 return 32; 3281 case Mips::AFL_REG_64: 3282 return 64; 3283 case Mips::AFL_REG_128: 3284 return 128; 3285 default: 3286 return -1; 3287 } 3288 } 3289 3290 template <class ELFT> 3291 static void printMipsReginfoData(ScopedPrinter &W, 3292 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 3293 W.printHex("GP", Reginfo.ri_gp_value); 3294 W.printHex("General Mask", Reginfo.ri_gprmask); 3295 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 3296 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 3297 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 3298 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 3299 } 3300 3301 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 3302 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 3303 if (!RegInfoSec) { 3304 W.startLine() << "There is no .reginfo section in the file.\n"; 3305 return; 3306 } 3307 3308 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3309 Obj.getSectionContents(*RegInfoSec); 3310 if (!ContentsOrErr) { 3311 this->reportUniqueWarning( 3312 "unable to read the content of the .reginfo section (" + 3313 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 3314 return; 3315 } 3316 3317 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 3318 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 3319 Twine::utohexstr(ContentsOrErr->size()) + ")"); 3320 return; 3321 } 3322 3323 DictScope GS(W, "MIPS RegInfo"); 3324 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 3325 ContentsOrErr->data())); 3326 } 3327 3328 template <class ELFT> 3329 static Expected<const Elf_Mips_Options<ELFT> *> 3330 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 3331 bool &IsSupported) { 3332 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 3333 return createError("the .MIPS.options section has an invalid size (0x" + 3334 Twine::utohexstr(SecData.size()) + ")"); 3335 3336 const Elf_Mips_Options<ELFT> *O = 3337 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 3338 const uint8_t Size = O->size; 3339 if (Size > SecData.size()) { 3340 const uint64_t Offset = SecData.data() - SecBegin; 3341 const uint64_t SecSize = Offset + SecData.size(); 3342 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 3343 " at offset 0x" + Twine::utohexstr(Offset) + 3344 " goes past the end of the .MIPS.options " 3345 "section of size 0x" + 3346 Twine::utohexstr(SecSize)); 3347 } 3348 3349 IsSupported = O->kind == ODK_REGINFO; 3350 const size_t ExpectedSize = 3351 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 3352 3353 if (IsSupported) 3354 if (Size < ExpectedSize) 3355 return createError( 3356 "a .MIPS.options entry of kind " + 3357 Twine(getElfMipsOptionsOdkType(O->kind)) + 3358 " has an invalid size (0x" + Twine::utohexstr(Size) + 3359 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 3360 3361 SecData = SecData.drop_front(Size); 3362 return O; 3363 } 3364 3365 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 3366 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 3367 if (!MipsOpts) { 3368 W.startLine() << "There is no .MIPS.options section in the file.\n"; 3369 return; 3370 } 3371 3372 DictScope GS(W, "MIPS Options"); 3373 3374 ArrayRef<uint8_t> Data = 3375 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 3376 const uint8_t *const SecBegin = Data.begin(); 3377 while (!Data.empty()) { 3378 bool IsSupported; 3379 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 3380 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3381 if (!OptsOrErr) { 3382 reportUniqueWarning(OptsOrErr.takeError()); 3383 break; 3384 } 3385 3386 unsigned Kind = (*OptsOrErr)->kind; 3387 const char *Type = getElfMipsOptionsOdkType(Kind); 3388 if (!IsSupported) { 3389 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3390 << ")\n"; 3391 continue; 3392 } 3393 3394 DictScope GS(W, Type); 3395 if (Kind == ODK_REGINFO) 3396 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3397 else 3398 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3399 } 3400 } 3401 3402 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3403 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3404 if (!StackMapSection) 3405 return; 3406 3407 auto Warn = [&](Error &&E) { 3408 this->reportUniqueWarning("unable to read the stack map from " + 3409 describe(*StackMapSection) + ": " + 3410 toString(std::move(E))); 3411 }; 3412 3413 Expected<ArrayRef<uint8_t>> ContentOrErr = 3414 Obj.getSectionContents(*StackMapSection); 3415 if (!ContentOrErr) { 3416 Warn(ContentOrErr.takeError()); 3417 return; 3418 } 3419 3420 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader( 3421 *ContentOrErr)) { 3422 Warn(std::move(E)); 3423 return; 3424 } 3425 3426 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr)); 3427 } 3428 3429 template <class ELFT> 3430 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3431 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3432 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3433 if (!Target) 3434 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3435 " in " + describe(Sec) + ": " + 3436 toString(Target.takeError())); 3437 else 3438 printRelRelaReloc(R, *Target); 3439 } 3440 3441 template <class ELFT> 3442 std::vector<EnumEntry<unsigned>> 3443 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header, 3444 const Elf_Sym &Symbol) const { 3445 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 3446 std::end(ElfSymOtherFlags)); 3447 if (Header.e_machine == EM_MIPS) { 3448 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16 3449 // flag overlap with other ST_MIPS_xxx flags. So consider both 3450 // cases separately. 3451 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 3452 SymOtherFlags.insert(SymOtherFlags.end(), 3453 std::begin(ElfMips16SymOtherFlags), 3454 std::end(ElfMips16SymOtherFlags)); 3455 else 3456 SymOtherFlags.insert(SymOtherFlags.end(), 3457 std::begin(ElfMipsSymOtherFlags), 3458 std::end(ElfMipsSymOtherFlags)); 3459 } else if (Header.e_machine == EM_AARCH64) { 3460 SymOtherFlags.insert(SymOtherFlags.end(), 3461 std::begin(ElfAArch64SymOtherFlags), 3462 std::end(ElfAArch64SymOtherFlags)); 3463 } else if (Header.e_machine == EM_RISCV) { 3464 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags), 3465 std::end(ElfRISCVSymOtherFlags)); 3466 } 3467 return SymOtherFlags; 3468 } 3469 3470 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3471 StringRef Str2) { 3472 OS.PadToColumn(2u); 3473 OS << Str1; 3474 OS.PadToColumn(37u); 3475 OS << Str2 << "\n"; 3476 OS.flush(); 3477 } 3478 3479 template <class ELFT> 3480 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3481 StringRef FileName) { 3482 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3483 if (ElfHeader.e_shnum != 0) 3484 return to_string(ElfHeader.e_shnum); 3485 3486 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3487 if (!ArrOrErr) { 3488 // In this case we can ignore an error, because we have already reported a 3489 // warning about the broken section header table earlier. 3490 consumeError(ArrOrErr.takeError()); 3491 return "<?>"; 3492 } 3493 3494 if (ArrOrErr->empty()) 3495 return "0"; 3496 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3497 } 3498 3499 template <class ELFT> 3500 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3501 StringRef FileName) { 3502 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3503 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3504 return to_string(ElfHeader.e_shstrndx); 3505 3506 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3507 if (!ArrOrErr) { 3508 // In this case we can ignore an error, because we have already reported a 3509 // warning about the broken section header table earlier. 3510 consumeError(ArrOrErr.takeError()); 3511 return "<?>"; 3512 } 3513 3514 if (ArrOrErr->empty()) 3515 return "65535 (corrupt: out of range)"; 3516 return to_string(ElfHeader.e_shstrndx) + " (" + 3517 to_string((*ArrOrErr)[0].sh_link) + ")"; 3518 } 3519 3520 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3521 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3522 return E.Value == Type; 3523 }); 3524 if (It != ArrayRef(ElfObjectFileType).end()) 3525 return It; 3526 return nullptr; 3527 } 3528 3529 template <class ELFT> 3530 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 3531 ArrayRef<std::string> InputFilenames, 3532 const Archive *A) { 3533 if (InputFilenames.size() > 1 || A) { 3534 this->W.startLine() << "\n"; 3535 this->W.printString("File", FileStr); 3536 } 3537 } 3538 3539 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3540 const Elf_Ehdr &e = this->Obj.getHeader(); 3541 OS << "ELF Header:\n"; 3542 OS << " Magic: "; 3543 std::string Str; 3544 for (int i = 0; i < ELF::EI_NIDENT; i++) 3545 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3546 OS << "\n"; 3547 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 3548 printFields(OS, "Class:", Str); 3549 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding)); 3550 printFields(OS, "Data:", Str); 3551 OS.PadToColumn(2u); 3552 OS << "Version:"; 3553 OS.PadToColumn(37u); 3554 OS << utohexstr(e.e_ident[ELF::EI_VERSION]); 3555 if (e.e_version == ELF::EV_CURRENT) 3556 OS << " (current)"; 3557 OS << "\n"; 3558 Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI)); 3559 printFields(OS, "OS/ABI:", Str); 3560 printFields(OS, 3561 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3562 3563 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3564 Str = E->AltName.str(); 3565 } else { 3566 if (e.e_type >= ET_LOPROC) 3567 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3568 else if (e.e_type >= ET_LOOS) 3569 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3570 else 3571 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true); 3572 } 3573 printFields(OS, "Type:", Str); 3574 3575 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType)); 3576 printFields(OS, "Machine:", Str); 3577 Str = "0x" + utohexstr(e.e_version); 3578 printFields(OS, "Version:", Str); 3579 Str = "0x" + utohexstr(e.e_entry); 3580 printFields(OS, "Entry point address:", Str); 3581 Str = to_string(e.e_phoff) + " (bytes into file)"; 3582 printFields(OS, "Start of program headers:", Str); 3583 Str = to_string(e.e_shoff) + " (bytes into file)"; 3584 printFields(OS, "Start of section headers:", Str); 3585 std::string ElfFlags; 3586 if (e.e_machine == EM_MIPS) 3587 ElfFlags = printFlags( 3588 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), 3589 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); 3590 else if (e.e_machine == EM_RISCV) 3591 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 3592 else if (e.e_machine == EM_AVR) 3593 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags), 3594 unsigned(ELF::EF_AVR_ARCH_MASK)); 3595 else if (e.e_machine == EM_LOONGARCH) 3596 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 3597 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 3598 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 3599 else if (e.e_machine == EM_XTENSA) 3600 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags), 3601 unsigned(ELF::EF_XTENSA_MACH)); 3602 Str = "0x" + utohexstr(e.e_flags); 3603 if (!ElfFlags.empty()) 3604 Str = Str + ", " + ElfFlags; 3605 printFields(OS, "Flags:", Str); 3606 Str = to_string(e.e_ehsize) + " (bytes)"; 3607 printFields(OS, "Size of this header:", Str); 3608 Str = to_string(e.e_phentsize) + " (bytes)"; 3609 printFields(OS, "Size of program headers:", Str); 3610 Str = to_string(e.e_phnum); 3611 printFields(OS, "Number of program headers:", Str); 3612 Str = to_string(e.e_shentsize) + " (bytes)"; 3613 printFields(OS, "Size of section headers:", Str); 3614 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3615 printFields(OS, "Number of section headers:", Str); 3616 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3617 printFields(OS, "Section header string table index:", Str); 3618 } 3619 3620 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3621 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3622 const Elf_Shdr &Symtab) -> StringRef { 3623 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3624 if (!StrTableOrErr) { 3625 reportUniqueWarning("unable to get the string table for " + 3626 describe(Symtab) + ": " + 3627 toString(StrTableOrErr.takeError())); 3628 return "<?>"; 3629 } 3630 3631 StringRef Strings = *StrTableOrErr; 3632 if (Sym.st_name >= Strings.size()) { 3633 reportUniqueWarning("unable to get the name of the symbol with index " + 3634 Twine(SymNdx) + ": st_name (0x" + 3635 Twine::utohexstr(Sym.st_name) + 3636 ") is past the end of the string table of size 0x" + 3637 Twine::utohexstr(Strings.size())); 3638 return "<?>"; 3639 } 3640 3641 return StrTableOrErr->data() + Sym.st_name; 3642 }; 3643 3644 std::vector<GroupSection> Ret; 3645 uint64_t I = 0; 3646 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3647 ++I; 3648 if (Sec.sh_type != ELF::SHT_GROUP) 3649 continue; 3650 3651 StringRef Signature = "<?>"; 3652 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3653 if (Expected<const Elf_Sym *> SymOrErr = 3654 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3655 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3656 else 3657 reportUniqueWarning("unable to get the signature symbol for " + 3658 describe(Sec) + ": " + 3659 toString(SymOrErr.takeError())); 3660 } else { 3661 reportUniqueWarning("unable to get the symbol table for " + 3662 describe(Sec) + ": " + 3663 toString(SymtabOrErr.takeError())); 3664 } 3665 3666 ArrayRef<Elf_Word> Data; 3667 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3668 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3669 if (ContentsOrErr->empty()) 3670 reportUniqueWarning("unable to read the section group flag from the " + 3671 describe(Sec) + ": the section is empty"); 3672 else 3673 Data = *ContentsOrErr; 3674 } else { 3675 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3676 ": " + toString(ContentsOrErr.takeError())); 3677 } 3678 3679 Ret.push_back({getPrintableSectionName(Sec), 3680 maybeDemangle(Signature), 3681 Sec.sh_name, 3682 I - 1, 3683 Sec.sh_link, 3684 Sec.sh_info, 3685 Data.empty() ? Elf_Word(0) : Data[0], 3686 {}}); 3687 3688 if (Data.empty()) 3689 continue; 3690 3691 std::vector<GroupMember> &GM = Ret.back().Members; 3692 for (uint32_t Ndx : Data.slice(1)) { 3693 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3694 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3695 } else { 3696 reportUniqueWarning("unable to get the section with index " + 3697 Twine(Ndx) + " when dumping the " + describe(Sec) + 3698 ": " + toString(SecOrErr.takeError())); 3699 GM.push_back({"<?>", Ndx}); 3700 } 3701 } 3702 } 3703 return Ret; 3704 } 3705 3706 static DenseMap<uint64_t, const GroupSection *> 3707 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3708 DenseMap<uint64_t, const GroupSection *> Ret; 3709 for (const GroupSection &G : Groups) 3710 for (const GroupMember &GM : G.Members) 3711 Ret.insert({GM.Index, &G}); 3712 return Ret; 3713 } 3714 3715 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3716 std::vector<GroupSection> V = this->getGroups(); 3717 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3718 for (const GroupSection &G : V) { 3719 OS << "\n" 3720 << getGroupType(G.Type) << " group section [" 3721 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3722 << "] contains " << G.Members.size() << " sections:\n" 3723 << " [Index] Name\n"; 3724 for (const GroupMember &GM : G.Members) { 3725 const GroupSection *MainGroup = Map[GM.Index]; 3726 if (MainGroup != &G) 3727 this->reportUniqueWarning( 3728 "section with index " + Twine(GM.Index) + 3729 ", included in the group section with index " + 3730 Twine(MainGroup->Index) + 3731 ", was also found in the group section with index " + 3732 Twine(G.Index)); 3733 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3734 } 3735 } 3736 3737 if (V.empty()) 3738 OS << "There are no section groups in this file.\n"; 3739 } 3740 3741 template <class ELFT> 3742 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 3743 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; 3744 } 3745 3746 template <class ELFT> 3747 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3748 const RelSymbol<ELFT> &RelSym) { 3749 // First two fields are bit width dependent. The rest of them are fixed width. 3750 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3751 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3752 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3753 3754 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3755 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3756 3757 SmallString<32> RelocName; 3758 this->Obj.getRelocationTypeName(R.Type, RelocName); 3759 Fields[2].Str = RelocName.c_str(); 3760 3761 if (RelSym.Sym) 3762 Fields[3].Str = 3763 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3764 if (RelSym.Sym && RelSym.Name.empty()) 3765 Fields[4].Str = "<null>"; 3766 else 3767 Fields[4].Str = std::string(RelSym.Name); 3768 3769 for (const Field &F : Fields) 3770 printField(F); 3771 3772 std::string Addend; 3773 if (std::optional<int64_t> A = R.Addend) { 3774 int64_t RelAddend = *A; 3775 if (!Fields[4].Str.empty()) { 3776 if (RelAddend < 0) { 3777 Addend = " - "; 3778 RelAddend = -static_cast<uint64_t>(RelAddend); 3779 } else { 3780 Addend = " + "; 3781 } 3782 } 3783 Addend += utohexstr(RelAddend, /*LowerCase=*/true); 3784 } 3785 OS << Addend << "\n"; 3786 } 3787 3788 template <class ELFT> 3789 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) { 3790 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3791 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; 3792 if (ELFT::Is64Bits) 3793 OS << " "; 3794 else 3795 OS << " "; 3796 if (IsRelr && opts::RawRelr) 3797 OS << "Data "; 3798 else 3799 OS << "Offset"; 3800 if (ELFT::Is64Bits) 3801 OS << " Info Type" 3802 << " Symbol's Value Symbol's Name"; 3803 else 3804 OS << " Info Type Sym. Value Symbol's Name"; 3805 if (IsRela) 3806 OS << " + Addend"; 3807 OS << "\n"; 3808 } 3809 3810 template <class ELFT> 3811 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3812 const DynRegionInfo &Reg) { 3813 uint64_t Offset = Reg.Addr - this->Obj.base(); 3814 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3815 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n"; 3816 printRelocHeaderFields<ELFT>(OS, Type); 3817 } 3818 3819 template <class ELFT> 3820 static bool isRelocationSec(const typename ELFT::Shdr &Sec) { 3821 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3822 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || 3823 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3824 Sec.sh_type == ELF::SHT_ANDROID_RELR; 3825 } 3826 3827 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3828 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3829 // Android's packed relocation section needs to be unpacked first 3830 // to get the actual number of entries. 3831 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3832 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3833 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3834 this->Obj.android_relas(Sec); 3835 if (!RelasOrErr) 3836 return RelasOrErr.takeError(); 3837 return RelasOrErr->size(); 3838 } 3839 3840 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || 3841 Sec.sh_type == ELF::SHT_ANDROID_RELR)) { 3842 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3843 if (!RelrsOrErr) 3844 return RelrsOrErr.takeError(); 3845 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3846 } 3847 3848 return Sec.getEntityCount(); 3849 }; 3850 3851 bool HasRelocSections = false; 3852 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3853 if (!isRelocationSec<ELFT>(Sec)) 3854 continue; 3855 HasRelocSections = true; 3856 3857 std::string EntriesNum = "<?>"; 3858 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3859 EntriesNum = std::to_string(*NumOrErr); 3860 else 3861 this->reportUniqueWarning("unable to get the number of relocations in " + 3862 this->describe(Sec) + ": " + 3863 toString(NumOrErr.takeError())); 3864 3865 uintX_t Offset = Sec.sh_offset; 3866 StringRef Name = this->getPrintableSectionName(Sec); 3867 OS << "\nRelocation section '" << Name << "' at offset 0x" 3868 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum 3869 << " entries:\n"; 3870 printRelocHeaderFields<ELFT>(OS, Sec.sh_type); 3871 this->printRelocationsHelper(Sec); 3872 } 3873 if (!HasRelocSections) 3874 OS << "\nThere are no relocations in this file.\n"; 3875 } 3876 3877 // Print the offset of a particular section from anyone of the ranges: 3878 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3879 // If 'Type' does not fall within any of those ranges, then a string is 3880 // returned as '<unknown>' followed by the type value. 3881 static std::string getSectionTypeOffsetString(unsigned Type) { 3882 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3883 return "LOOS+0x" + utohexstr(Type - SHT_LOOS); 3884 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3885 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC); 3886 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3887 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER); 3888 return "0x" + utohexstr(Type) + ": <unknown>"; 3889 } 3890 3891 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 3892 StringRef Name = getELFSectionTypeName(Machine, Type); 3893 3894 // Handle SHT_GNU_* type names. 3895 if (Name.consume_front("SHT_GNU_")) { 3896 if (Name == "HASH") 3897 return "GNU_HASH"; 3898 // E.g. SHT_GNU_verneed -> VERNEED. 3899 return Name.upper(); 3900 } 3901 3902 if (Name == "SHT_SYMTAB_SHNDX") 3903 return "SYMTAB SECTION INDICES"; 3904 3905 if (Name.consume_front("SHT_")) 3906 return Name.str(); 3907 return getSectionTypeOffsetString(Type); 3908 } 3909 3910 static void printSectionDescription(formatted_raw_ostream &OS, 3911 unsigned EMachine) { 3912 OS << "Key to Flags:\n"; 3913 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 3914 "(info),\n"; 3915 OS << " L (link order), O (extra OS processing required), G (group), T " 3916 "(TLS),\n"; 3917 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 3918 OS << " R (retain)"; 3919 3920 if (EMachine == EM_X86_64) 3921 OS << ", l (large)"; 3922 else if (EMachine == EM_ARM) 3923 OS << ", y (purecode)"; 3924 3925 OS << ", p (processor specific)\n"; 3926 } 3927 3928 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 3929 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 3930 if (Sections.empty()) { 3931 OS << "\nThere are no sections in this file.\n"; 3932 Expected<StringRef> SecStrTableOrErr = 3933 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 3934 if (!SecStrTableOrErr) 3935 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 3936 return; 3937 } 3938 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 3939 OS << "There are " << to_string(Sections.size()) 3940 << " section headers, starting at offset " 3941 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 3942 OS << "Section Headers:\n"; 3943 Field Fields[11] = { 3944 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 3945 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 3946 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 3947 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 3948 for (const Field &F : Fields) 3949 printField(F); 3950 OS << "\n"; 3951 3952 StringRef SecStrTable; 3953 if (Expected<StringRef> SecStrTableOrErr = 3954 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 3955 SecStrTable = *SecStrTableOrErr; 3956 else 3957 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 3958 3959 size_t SectionIndex = 0; 3960 for (const Elf_Shdr &Sec : Sections) { 3961 Fields[0].Str = to_string(SectionIndex); 3962 if (SecStrTable.empty()) 3963 Fields[1].Str = "<no-strings>"; 3964 else 3965 Fields[1].Str = std::string(unwrapOrError<StringRef>( 3966 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 3967 Fields[2].Str = 3968 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 3969 Fields[3].Str = 3970 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 3971 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 3972 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 3973 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 3974 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 3975 this->Obj.getHeader().e_machine, Sec.sh_flags); 3976 Fields[8].Str = to_string(Sec.sh_link); 3977 Fields[9].Str = to_string(Sec.sh_info); 3978 Fields[10].Str = to_string(Sec.sh_addralign); 3979 3980 OS.PadToColumn(Fields[0].Column); 3981 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 3982 for (int i = 1; i < 7; i++) 3983 printField(Fields[i]); 3984 OS.PadToColumn(Fields[7].Column); 3985 OS << right_justify(Fields[7].Str, 3); 3986 OS.PadToColumn(Fields[8].Column); 3987 OS << right_justify(Fields[8].Str, 2); 3988 OS.PadToColumn(Fields[9].Column); 3989 OS << right_justify(Fields[9].Str, 3); 3990 OS.PadToColumn(Fields[10].Column); 3991 OS << right_justify(Fields[10].Str, 2); 3992 OS << "\n"; 3993 ++SectionIndex; 3994 } 3995 printSectionDescription(OS, this->Obj.getHeader().e_machine); 3996 } 3997 3998 template <class ELFT> 3999 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 4000 size_t Entries, 4001 bool NonVisibilityBitsUsed) const { 4002 StringRef Name; 4003 if (Symtab) 4004 Name = this->getPrintableSectionName(*Symtab); 4005 if (!Name.empty()) 4006 OS << "\nSymbol table '" << Name << "'"; 4007 else 4008 OS << "\nSymbol table for image"; 4009 OS << " contains " << Entries << " entries:\n"; 4010 4011 if (ELFT::Is64Bits) 4012 OS << " Num: Value Size Type Bind Vis"; 4013 else 4014 OS << " Num: Value Size Type Bind Vis"; 4015 4016 if (NonVisibilityBitsUsed) 4017 OS << " "; 4018 OS << " Ndx Name\n"; 4019 } 4020 4021 template <class ELFT> 4022 std::string 4023 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol, 4024 unsigned SymIndex, 4025 DataRegion<Elf_Word> ShndxTable) const { 4026 unsigned SectionIndex = Symbol.st_shndx; 4027 switch (SectionIndex) { 4028 case ELF::SHN_UNDEF: 4029 return "UND"; 4030 case ELF::SHN_ABS: 4031 return "ABS"; 4032 case ELF::SHN_COMMON: 4033 return "COM"; 4034 case ELF::SHN_XINDEX: { 4035 Expected<uint32_t> IndexOrErr = 4036 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 4037 if (!IndexOrErr) { 4038 assert(Symbol.st_shndx == SHN_XINDEX && 4039 "getExtendedSymbolTableIndex should only fail due to an invalid " 4040 "SHT_SYMTAB_SHNDX table/reference"); 4041 this->reportUniqueWarning(IndexOrErr.takeError()); 4042 return "RSV[0xffff]"; 4043 } 4044 return to_string(format_decimal(*IndexOrErr, 3)); 4045 } 4046 default: 4047 // Find if: 4048 // Processor specific 4049 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 4050 return std::string("PRC[0x") + 4051 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4052 // OS specific 4053 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 4054 return std::string("OS[0x") + 4055 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4056 // Architecture reserved: 4057 if (SectionIndex >= ELF::SHN_LORESERVE && 4058 SectionIndex <= ELF::SHN_HIRESERVE) 4059 return std::string("RSV[0x") + 4060 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4061 // A normal section with an index 4062 return to_string(format_decimal(SectionIndex, 3)); 4063 } 4064 } 4065 4066 template <class ELFT> 4067 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 4068 DataRegion<Elf_Word> ShndxTable, 4069 std::optional<StringRef> StrTable, 4070 bool IsDynamic, 4071 bool NonVisibilityBitsUsed) const { 4072 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4073 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 4074 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 4075 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 4076 Fields[1].Str = 4077 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 4078 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 4079 4080 unsigned char SymbolType = Symbol.getType(); 4081 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4082 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4083 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4084 else 4085 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4086 4087 Fields[4].Str = 4088 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 4089 Fields[5].Str = 4090 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4091 4092 if (Symbol.st_other & ~0x3) { 4093 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 4094 uint8_t Other = Symbol.st_other & ~0x3; 4095 if (Other & STO_AARCH64_VARIANT_PCS) { 4096 Other &= ~STO_AARCH64_VARIANT_PCS; 4097 Fields[5].Str += " [VARIANT_PCS"; 4098 if (Other != 0) 4099 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4100 Fields[5].Str.append("]"); 4101 } 4102 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { 4103 uint8_t Other = Symbol.st_other & ~0x3; 4104 if (Other & STO_RISCV_VARIANT_CC) { 4105 Other &= ~STO_RISCV_VARIANT_CC; 4106 Fields[5].Str += " [VARIANT_CC"; 4107 if (Other != 0) 4108 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4109 Fields[5].Str.append("]"); 4110 } 4111 } else { 4112 Fields[5].Str += 4113 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 4114 } 4115 } 4116 4117 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 4118 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable); 4119 4120 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 4121 StrTable, IsDynamic); 4122 for (const Field &Entry : Fields) 4123 printField(Entry); 4124 OS << "\n"; 4125 } 4126 4127 template <class ELFT> 4128 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 4129 unsigned SymIndex, 4130 DataRegion<Elf_Word> ShndxTable, 4131 StringRef StrTable, 4132 uint32_t Bucket) { 4133 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4134 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 4135 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 4136 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 4137 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 4138 4139 Fields[2].Str = to_string( 4140 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 4141 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 4142 4143 unsigned char SymbolType = Symbol->getType(); 4144 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4145 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4146 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4147 else 4148 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4149 4150 Fields[5].Str = 4151 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings)); 4152 Fields[6].Str = 4153 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4154 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 4155 Fields[8].Str = 4156 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 4157 4158 for (const Field &Entry : Fields) 4159 printField(Entry); 4160 OS << "\n"; 4161 } 4162 4163 template <class ELFT> 4164 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 4165 bool PrintDynamicSymbols) { 4166 if (!PrintSymbols && !PrintDynamicSymbols) 4167 return; 4168 // GNU readelf prints both the .dynsym and .symtab with --symbols. 4169 this->printSymbolsHelper(true); 4170 if (PrintSymbols) 4171 this->printSymbolsHelper(false); 4172 } 4173 4174 template <class ELFT> 4175 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 4176 if (this->DynamicStringTable.empty()) 4177 return; 4178 4179 if (ELFT::Is64Bits) 4180 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4181 else 4182 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4183 OS << "\n"; 4184 4185 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4186 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4187 if (!FirstSym) { 4188 this->reportUniqueWarning( 4189 Twine("unable to print symbols for the .hash table: the " 4190 "dynamic symbol table ") + 4191 (this->DynSymRegion ? "is empty" : "was not found")); 4192 return; 4193 } 4194 4195 DataRegion<Elf_Word> ShndxTable( 4196 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4197 auto Buckets = SysVHash.buckets(); 4198 auto Chains = SysVHash.chains(); 4199 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 4200 if (Buckets[Buc] == ELF::STN_UNDEF) 4201 continue; 4202 BitVector Visited(SysVHash.nchain); 4203 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 4204 if (Ch == ELF::STN_UNDEF) 4205 break; 4206 4207 if (Visited[Ch]) { 4208 this->reportUniqueWarning(".hash section is invalid: bucket " + 4209 Twine(Ch) + 4210 ": a cycle was detected in the linked chain"); 4211 break; 4212 } 4213 4214 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 4215 Buc); 4216 Visited[Ch] = true; 4217 } 4218 } 4219 } 4220 4221 template <class ELFT> 4222 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 4223 if (this->DynamicStringTable.empty()) 4224 return; 4225 4226 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4227 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4228 if (!FirstSym) { 4229 this->reportUniqueWarning( 4230 Twine("unable to print symbols for the .gnu.hash table: the " 4231 "dynamic symbol table ") + 4232 (this->DynSymRegion ? "is empty" : "was not found")); 4233 return; 4234 } 4235 4236 auto GetSymbol = [&](uint64_t SymIndex, 4237 uint64_t SymsTotal) -> const Elf_Sym * { 4238 if (SymIndex >= SymsTotal) { 4239 this->reportUniqueWarning( 4240 "unable to print hashed symbol with index " + Twine(SymIndex) + 4241 ", which is greater than or equal to the number of dynamic symbols " 4242 "(" + 4243 Twine::utohexstr(SymsTotal) + ")"); 4244 return nullptr; 4245 } 4246 return FirstSym + SymIndex; 4247 }; 4248 4249 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 4250 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 4251 ArrayRef<Elf_Word> Values; 4252 if (!ValuesOrErr) 4253 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 4254 "section: " + 4255 toString(ValuesOrErr.takeError())); 4256 else 4257 Values = *ValuesOrErr; 4258 4259 DataRegion<Elf_Word> ShndxTable( 4260 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4261 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 4262 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 4263 if (Buckets[Buc] == ELF::STN_UNDEF) 4264 continue; 4265 uint32_t Index = Buckets[Buc]; 4266 // Print whole chain. 4267 while (true) { 4268 uint32_t SymIndex = Index++; 4269 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 4270 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 4271 Buc); 4272 else 4273 break; 4274 4275 if (SymIndex < GnuHash.symndx) { 4276 this->reportUniqueWarning( 4277 "unable to read the hash value for symbol with index " + 4278 Twine(SymIndex) + 4279 ", which is less than the index of the first hashed symbol (" + 4280 Twine(GnuHash.symndx) + ")"); 4281 break; 4282 } 4283 4284 // Chain ends at symbol with stopper bit. 4285 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 4286 break; 4287 } 4288 } 4289 } 4290 4291 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 4292 if (this->HashTable) { 4293 OS << "\n Symbol table of .hash for image:\n"; 4294 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4295 this->reportUniqueWarning(std::move(E)); 4296 else 4297 printHashTableSymbols(*this->HashTable); 4298 } 4299 4300 // Try printing the .gnu.hash table. 4301 if (this->GnuHashTable) { 4302 OS << "\n Symbol table of .gnu.hash for image:\n"; 4303 if (ELFT::Is64Bits) 4304 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4305 else 4306 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4307 OS << "\n"; 4308 4309 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4310 this->reportUniqueWarning(std::move(E)); 4311 else 4312 printGnuHashTableSymbols(*this->GnuHashTable); 4313 } 4314 } 4315 4316 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 4317 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4318 if (Sections.empty()) { 4319 OS << "\nThere are no sections in this file.\n"; 4320 Expected<StringRef> SecStrTableOrErr = 4321 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4322 if (!SecStrTableOrErr) 4323 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4324 return; 4325 } 4326 OS << "There are " << to_string(Sections.size()) 4327 << " section headers, starting at offset " 4328 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4329 4330 OS << "Section Headers:\n"; 4331 4332 auto PrintFields = [&](ArrayRef<Field> V) { 4333 for (const Field &F : V) 4334 printField(F); 4335 OS << "\n"; 4336 }; 4337 4338 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 4339 4340 constexpr bool Is64 = ELFT::Is64Bits; 4341 PrintFields({{"Type", 7}, 4342 {Is64 ? "Address" : "Addr", 23}, 4343 {"Off", Is64 ? 40 : 32}, 4344 {"Size", Is64 ? 47 : 39}, 4345 {"ES", Is64 ? 54 : 46}, 4346 {"Lk", Is64 ? 59 : 51}, 4347 {"Inf", Is64 ? 62 : 54}, 4348 {"Al", Is64 ? 66 : 57}}); 4349 PrintFields({{"Flags", 7}}); 4350 4351 StringRef SecStrTable; 4352 if (Expected<StringRef> SecStrTableOrErr = 4353 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4354 SecStrTable = *SecStrTableOrErr; 4355 else 4356 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4357 4358 size_t SectionIndex = 0; 4359 const unsigned AddrSize = Is64 ? 16 : 8; 4360 for (const Elf_Shdr &S : Sections) { 4361 StringRef Name = "<?>"; 4362 if (Expected<StringRef> NameOrErr = 4363 this->Obj.getSectionName(S, SecStrTable)) 4364 Name = *NameOrErr; 4365 else 4366 this->reportUniqueWarning(NameOrErr.takeError()); 4367 4368 OS.PadToColumn(2); 4369 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 4370 PrintFields({{Name, 7}}); 4371 PrintFields( 4372 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 4373 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 4374 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 4375 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 4376 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 4377 {to_string(S.sh_link), Is64 ? 59 : 51}, 4378 {to_string(S.sh_info), Is64 ? 63 : 55}, 4379 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 4380 4381 OS.PadToColumn(7); 4382 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 4383 4384 DenseMap<unsigned, StringRef> FlagToName = { 4385 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 4386 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 4387 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 4388 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 4389 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 4390 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 4391 4392 uint64_t Flags = S.sh_flags; 4393 uint64_t UnknownFlags = 0; 4394 ListSeparator LS; 4395 while (Flags) { 4396 // Take the least significant bit as a flag. 4397 uint64_t Flag = Flags & -Flags; 4398 Flags -= Flag; 4399 4400 auto It = FlagToName.find(Flag); 4401 if (It != FlagToName.end()) 4402 OS << LS << It->second; 4403 else 4404 UnknownFlags |= Flag; 4405 } 4406 4407 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 4408 uint64_t FlagsToPrint = UnknownFlags & Mask; 4409 if (!FlagsToPrint) 4410 return; 4411 4412 OS << LS << Name << " (" 4413 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 4414 UnknownFlags &= ~Mask; 4415 }; 4416 4417 PrintUnknownFlags(SHF_MASKOS, "OS"); 4418 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 4419 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 4420 4421 OS << "\n"; 4422 ++SectionIndex; 4423 4424 if (!(S.sh_flags & SHF_COMPRESSED)) 4425 continue; 4426 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S); 4427 if (!Data || Data->size() < sizeof(Elf_Chdr)) { 4428 consumeError(Data.takeError()); 4429 reportWarning(createError("SHF_COMPRESSED section '" + Name + 4430 "' does not have an Elf_Chdr header"), 4431 this->FileName); 4432 OS.indent(7); 4433 OS << "[<corrupt>]"; 4434 } else { 4435 OS.indent(7); 4436 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data()); 4437 if (Chdr->ch_type == ELFCOMPRESS_ZLIB) 4438 OS << "ZLIB"; 4439 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD) 4440 OS << "ZSTD"; 4441 else 4442 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type)); 4443 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8) 4444 << ", " << Chdr->ch_addralign; 4445 } 4446 OS << '\n'; 4447 } 4448 } 4449 4450 static inline std::string printPhdrFlags(unsigned Flag) { 4451 std::string Str; 4452 Str = (Flag & PF_R) ? "R" : " "; 4453 Str += (Flag & PF_W) ? "W" : " "; 4454 Str += (Flag & PF_X) ? "E" : " "; 4455 return Str; 4456 } 4457 4458 template <class ELFT> 4459 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 4460 const typename ELFT::Shdr &Sec) { 4461 if (Sec.sh_flags & ELF::SHF_TLS) { 4462 // .tbss must only be shown in the PT_TLS segment. 4463 if (Sec.sh_type == ELF::SHT_NOBITS) 4464 return Phdr.p_type == ELF::PT_TLS; 4465 4466 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 4467 // segments. 4468 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 4469 (Phdr.p_type == ELF::PT_GNU_RELRO); 4470 } 4471 4472 // PT_TLS must only have SHF_TLS sections. 4473 return Phdr.p_type != ELF::PT_TLS; 4474 } 4475 4476 template <class ELFT> 4477 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 4478 const typename ELFT::Shdr &Sec) { 4479 // SHT_NOBITS sections don't need to have an offset inside the segment. 4480 if (Sec.sh_type == ELF::SHT_NOBITS) 4481 return true; 4482 4483 if (Sec.sh_offset < Phdr.p_offset) 4484 return false; 4485 4486 // Only non-empty sections can be at the end of a segment. 4487 if (Sec.sh_size == 0) 4488 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz); 4489 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz; 4490 } 4491 4492 // Check that an allocatable section belongs to a virtual address 4493 // space of a segment. 4494 template <class ELFT> 4495 static bool checkVMA(const typename ELFT::Phdr &Phdr, 4496 const typename ELFT::Shdr &Sec) { 4497 if (!(Sec.sh_flags & ELF::SHF_ALLOC)) 4498 return true; 4499 4500 if (Sec.sh_addr < Phdr.p_vaddr) 4501 return false; 4502 4503 bool IsTbss = 4504 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); 4505 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties. 4506 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS; 4507 // Only non-empty sections can be at the end of a segment. 4508 if (Sec.sh_size == 0 || IsTbssInNonTLS) 4509 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz; 4510 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz; 4511 } 4512 4513 template <class ELFT> 4514 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4515 const typename ELFT::Shdr &Sec) { 4516 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4517 return true; 4518 4519 // We get here when we have an empty section. Only non-empty sections can be 4520 // at the start or at the end of PT_DYNAMIC. 4521 // Is section within the phdr both based on offset and VMA? 4522 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4523 (Sec.sh_offset > Phdr.p_offset && 4524 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4525 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4526 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4527 return CheckOffset && CheckVA; 4528 } 4529 4530 template <class ELFT> 4531 void GNUELFDumper<ELFT>::printProgramHeaders( 4532 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4533 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE); 4534 // Exit early if no program header or section mapping details were requested. 4535 if (!PrintProgramHeaders && !ShouldPrintSectionMapping) 4536 return; 4537 4538 if (PrintProgramHeaders) { 4539 const Elf_Ehdr &Header = this->Obj.getHeader(); 4540 if (Header.e_phnum == 0) { 4541 OS << "\nThere are no program headers in this file.\n"; 4542 } else { 4543 printProgramHeaders(); 4544 } 4545 } 4546 4547 if (ShouldPrintSectionMapping) 4548 printSectionMapping(); 4549 } 4550 4551 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4552 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4553 const Elf_Ehdr &Header = this->Obj.getHeader(); 4554 Field Fields[8] = {2, 17, 26, 37 + Bias, 4555 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4556 OS << "\nElf file type is " 4557 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n" 4558 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4559 << "There are " << Header.e_phnum << " program headers," 4560 << " starting at offset " << Header.e_phoff << "\n\n" 4561 << "Program Headers:\n"; 4562 if (ELFT::Is64Bits) 4563 OS << " Type Offset VirtAddr PhysAddr " 4564 << " FileSiz MemSiz Flg Align\n"; 4565 else 4566 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4567 << "MemSiz Flg Align\n"; 4568 4569 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4570 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4571 4572 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4573 if (!PhdrsOrErr) { 4574 this->reportUniqueWarning("unable to dump program headers: " + 4575 toString(PhdrsOrErr.takeError())); 4576 return; 4577 } 4578 4579 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4580 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4581 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4582 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4583 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4584 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4585 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4586 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4587 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4588 for (const Field &F : Fields) 4589 printField(F); 4590 if (Phdr.p_type == ELF::PT_INTERP) { 4591 OS << "\n"; 4592 auto ReportBadInterp = [&](const Twine &Msg) { 4593 this->reportUniqueWarning( 4594 "unable to read program interpreter name at offset 0x" + 4595 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4596 }; 4597 4598 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4599 ReportBadInterp("it goes past the end of the file (0x" + 4600 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4601 continue; 4602 } 4603 4604 const char *Data = 4605 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4606 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4607 size_t Len = strnlen(Data, MaxSize); 4608 if (Len == MaxSize) { 4609 ReportBadInterp("it is not null-terminated"); 4610 continue; 4611 } 4612 4613 OS << " [Requesting program interpreter: "; 4614 OS << StringRef(Data, Len) << "]"; 4615 } 4616 OS << "\n"; 4617 } 4618 } 4619 4620 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4621 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4622 DenseSet<const Elf_Shdr *> BelongsToSegment; 4623 int Phnum = 0; 4624 4625 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4626 if (!PhdrsOrErr) { 4627 this->reportUniqueWarning( 4628 "can't read program headers to build section to segment mapping: " + 4629 toString(PhdrsOrErr.takeError())); 4630 return; 4631 } 4632 4633 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4634 std::string Sections; 4635 OS << format(" %2.2d ", Phnum++); 4636 // Check if each section is in a segment and then print mapping. 4637 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4638 if (Sec.sh_type == ELF::SHT_NULL) 4639 continue; 4640 4641 // readelf additionally makes sure it does not print zero sized sections 4642 // at end of segments and for PT_DYNAMIC both start and end of section 4643 // .tbss must only be shown in PT_TLS section. 4644 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) && 4645 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) { 4646 Sections += 4647 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4648 " "; 4649 BelongsToSegment.insert(&Sec); 4650 } 4651 } 4652 OS << Sections << "\n"; 4653 OS.flush(); 4654 } 4655 4656 // Display sections that do not belong to a segment. 4657 std::string Sections; 4658 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4659 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4660 Sections += 4661 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4662 ' '; 4663 } 4664 if (!Sections.empty()) { 4665 OS << " None " << Sections << '\n'; 4666 OS.flush(); 4667 } 4668 } 4669 4670 namespace { 4671 4672 template <class ELFT> 4673 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4674 const Relocation<ELFT> &Reloc) { 4675 using Elf_Sym = typename ELFT::Sym; 4676 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4677 const Twine &Reason) -> RelSymbol<ELFT> { 4678 Dumper.reportUniqueWarning( 4679 "unable to get name of the dynamic symbol with index " + 4680 Twine(Reloc.Symbol) + ": " + Reason); 4681 return {Sym, "<corrupt>"}; 4682 }; 4683 4684 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4685 const Elf_Sym *FirstSym = Symbols.begin(); 4686 if (!FirstSym) 4687 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4688 4689 // We might have an object without a section header. In this case the size of 4690 // Symbols is zero, because there is no way to know the size of the dynamic 4691 // table. We should allow this case and not print a warning. 4692 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4693 return WarnAndReturn( 4694 nullptr, 4695 "index is greater than or equal to the number of dynamic symbols (" + 4696 Twine(Symbols.size()) + ")"); 4697 4698 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4699 const uint64_t FileSize = Obj.getBufSize(); 4700 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4701 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4702 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4703 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4704 " goes past the end of the file (0x" + 4705 Twine::utohexstr(FileSize) + ")"); 4706 4707 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4708 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4709 if (!ErrOrName) 4710 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4711 4712 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4713 } 4714 } // namespace 4715 4716 template <class ELFT> 4717 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4718 typename ELFT::DynRange Tags) { 4719 size_t Max = 0; 4720 for (const typename ELFT::Dyn &Dyn : Tags) 4721 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4722 return Max; 4723 } 4724 4725 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4726 Elf_Dyn_Range Table = this->dynamic_table(); 4727 if (Table.empty()) 4728 return; 4729 4730 OS << "Dynamic section at offset " 4731 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4732 this->Obj.base(), 4733 1) 4734 << " contains " << Table.size() << " entries:\n"; 4735 4736 // The type name is surrounded with round brackets, hence add 2. 4737 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4738 // The "Name/Value" column should be indented from the "Type" column by N 4739 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4740 // space (1) = 3. 4741 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4742 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4743 4744 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4745 for (auto Entry : Table) { 4746 uintX_t Tag = Entry.getTag(); 4747 std::string Type = 4748 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")"; 4749 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4750 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4751 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4752 } 4753 } 4754 4755 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4756 this->printDynamicRelocationsHelper(); 4757 } 4758 4759 template <class ELFT> 4760 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4761 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4762 } 4763 4764 template <class ELFT> 4765 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4766 this->forEachRelocationDo( 4767 Sec, opts::RawRelr, 4768 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4769 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }, 4770 [&](const Elf_Relr &R) { printRelrReloc(R); }); 4771 } 4772 4773 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4774 const bool IsMips64EL = this->Obj.isMips64EL(); 4775 if (this->DynRelaRegion.Size > 0) { 4776 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4777 for (const Elf_Rela &Rela : 4778 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4779 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4780 } 4781 4782 if (this->DynRelRegion.Size > 0) { 4783 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4784 for (const Elf_Rel &Rel : 4785 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4786 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4787 } 4788 4789 if (this->DynRelrRegion.Size > 0) { 4790 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4791 Elf_Relr_Range Relrs = 4792 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4793 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4794 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4795 } 4796 4797 if (this->DynPLTRelRegion.Size) { 4798 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4799 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4800 for (const Elf_Rela &Rela : 4801 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4802 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4803 } else { 4804 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4805 for (const Elf_Rel &Rel : 4806 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4807 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4808 } 4809 } 4810 } 4811 4812 template <class ELFT> 4813 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 4814 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 4815 // Don't inline the SecName, because it might report a warning to stderr and 4816 // corrupt the output. 4817 StringRef SecName = this->getPrintableSectionName(Sec); 4818 OS << Label << " section '" << SecName << "' " 4819 << "contains " << EntriesNum << " entries:\n"; 4820 4821 StringRef LinkedSecName = "<corrupt>"; 4822 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 4823 this->Obj.getSection(Sec.sh_link)) 4824 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 4825 else 4826 this->reportUniqueWarning("invalid section linked to " + 4827 this->describe(Sec) + ": " + 4828 toString(LinkedSecOrErr.takeError())); 4829 4830 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 4831 << " Offset: " << format_hex(Sec.sh_offset, 8) 4832 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 4833 } 4834 4835 template <class ELFT> 4836 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 4837 if (!Sec) 4838 return; 4839 4840 printGNUVersionSectionProlog(*Sec, "Version symbols", 4841 Sec->sh_size / sizeof(Elf_Versym)); 4842 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 4843 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 4844 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 4845 if (!VerTableOrErr) { 4846 this->reportUniqueWarning(VerTableOrErr.takeError()); 4847 return; 4848 } 4849 4850 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr; 4851 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 4852 this->getVersionMap()) 4853 VersionMap = *MapOrErr; 4854 else 4855 this->reportUniqueWarning(MapOrErr.takeError()); 4856 4857 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 4858 std::vector<StringRef> Versions; 4859 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 4860 unsigned Ndx = VerTable[I].vs_index; 4861 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 4862 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 4863 continue; 4864 } 4865 4866 if (!VersionMap) { 4867 Versions.emplace_back("<corrupt>"); 4868 continue; 4869 } 4870 4871 bool IsDefault; 4872 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 4873 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt); 4874 if (!NameOrErr) { 4875 this->reportUniqueWarning("unable to get a version for entry " + 4876 Twine(I) + " of " + this->describe(*Sec) + 4877 ": " + toString(NameOrErr.takeError())); 4878 Versions.emplace_back("<corrupt>"); 4879 continue; 4880 } 4881 Versions.emplace_back(*NameOrErr); 4882 } 4883 4884 // readelf prints 4 entries per line. 4885 uint64_t Entries = VerTable.size(); 4886 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 4887 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 4888 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 4889 unsigned Ndx = VerTable[VersymRow + I].vs_index; 4890 OS << format("%4x%c", Ndx & VERSYM_VERSION, 4891 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 4892 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 4893 } 4894 OS << '\n'; 4895 } 4896 OS << '\n'; 4897 } 4898 4899 static std::string versionFlagToString(unsigned Flags) { 4900 if (Flags == 0) 4901 return "none"; 4902 4903 std::string Ret; 4904 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 4905 if (!(Flags & Flag)) 4906 return; 4907 if (!Ret.empty()) 4908 Ret += " | "; 4909 Ret += Name; 4910 Flags &= ~Flag; 4911 }; 4912 4913 AddFlag(VER_FLG_BASE, "BASE"); 4914 AddFlag(VER_FLG_WEAK, "WEAK"); 4915 AddFlag(VER_FLG_INFO, "INFO"); 4916 AddFlag(~0, "<unknown>"); 4917 return Ret; 4918 } 4919 4920 template <class ELFT> 4921 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 4922 if (!Sec) 4923 return; 4924 4925 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 4926 4927 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 4928 if (!V) { 4929 this->reportUniqueWarning(V.takeError()); 4930 return; 4931 } 4932 4933 for (const VerDef &Def : *V) { 4934 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 4935 Def.Offset, Def.Version, 4936 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 4937 Def.Name.data()); 4938 unsigned I = 0; 4939 for (const VerdAux &Aux : Def.AuxV) 4940 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 4941 Aux.Name.data()); 4942 } 4943 4944 OS << '\n'; 4945 } 4946 4947 template <class ELFT> 4948 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 4949 if (!Sec) 4950 return; 4951 4952 unsigned VerneedNum = Sec->sh_info; 4953 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 4954 4955 Expected<std::vector<VerNeed>> V = 4956 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 4957 if (!V) { 4958 this->reportUniqueWarning(V.takeError()); 4959 return; 4960 } 4961 4962 for (const VerNeed &VN : *V) { 4963 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 4964 VN.Version, VN.File.data(), VN.Cnt); 4965 for (const VernAux &Aux : VN.AuxV) 4966 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 4967 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 4968 Aux.Other); 4969 } 4970 OS << '\n'; 4971 } 4972 4973 template <class ELFT> 4974 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 4975 size_t MaxChain, 4976 size_t TotalSyms, 4977 ArrayRef<size_t> Count, 4978 bool IsGnu) const { 4979 size_t CumulativeNonZero = 0; 4980 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "") 4981 << " bucket list length (total of " << NBucket << " buckets)\n" 4982 << " Length Number % of total Coverage\n"; 4983 for (size_t I = 0; I < MaxChain; ++I) { 4984 CumulativeNonZero += Count[I] * I; 4985 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4986 (Count[I] * 100.0) / NBucket, 4987 (CumulativeNonZero * 100.0) / TotalSyms); 4988 } 4989 } 4990 4991 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 4992 OS << "GNUStyle::printCGProfile not implemented\n"; 4993 } 4994 4995 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() { 4996 OS << "GNUStyle::printBBAddrMaps not implemented\n"; 4997 } 4998 4999 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 5000 std::vector<uint64_t> Ret; 5001 const uint8_t *Cur = Data.begin(); 5002 const uint8_t *End = Data.end(); 5003 while (Cur != End) { 5004 unsigned Size; 5005 const char *Err; 5006 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 5007 if (Err) 5008 return createError(Err); 5009 Cur += Size; 5010 } 5011 return Ret; 5012 } 5013 5014 template <class ELFT> 5015 static Expected<std::vector<uint64_t>> 5016 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 5017 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 5018 if (!ContentsOrErr) 5019 return ContentsOrErr.takeError(); 5020 5021 if (Expected<std::vector<uint64_t>> SymsOrErr = 5022 toULEB128Array(*ContentsOrErr)) 5023 return *SymsOrErr; 5024 else 5025 return createError("unable to decode " + describe(Obj, Sec) + ": " + 5026 toString(SymsOrErr.takeError())); 5027 } 5028 5029 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 5030 if (!this->DotAddrsigSec) 5031 return; 5032 5033 Expected<std::vector<uint64_t>> SymsOrErr = 5034 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 5035 if (!SymsOrErr) { 5036 this->reportUniqueWarning(SymsOrErr.takeError()); 5037 return; 5038 } 5039 5040 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 5041 OS << "\nAddress-significant symbols section '" << Name << "'" 5042 << " contains " << SymsOrErr->size() << " entries:\n"; 5043 OS << " Num: Name\n"; 5044 5045 Field Fields[2] = {0, 8}; 5046 size_t SymIndex = 0; 5047 for (uint64_t Sym : *SymsOrErr) { 5048 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 5049 Fields[1].Str = this->getStaticSymbolName(Sym); 5050 for (const Field &Entry : Fields) 5051 printField(Entry); 5052 OS << "\n"; 5053 } 5054 } 5055 5056 template <typename ELFT> 5057 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 5058 ArrayRef<uint8_t> Data) { 5059 std::string str; 5060 raw_string_ostream OS(str); 5061 uint32_t PrData; 5062 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 5063 if (PrData & Flag) { 5064 PrData &= ~Flag; 5065 OS << Name; 5066 if (PrData) 5067 OS << ", "; 5068 } 5069 }; 5070 5071 switch (Type) { 5072 default: 5073 OS << format("<application-specific type 0x%x>", Type); 5074 return OS.str(); 5075 case GNU_PROPERTY_STACK_SIZE: { 5076 OS << "stack size: "; 5077 if (DataSize == sizeof(typename ELFT::uint)) 5078 OS << formatv("{0:x}", 5079 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 5080 else 5081 OS << format("<corrupt length: 0x%x>", DataSize); 5082 return OS.str(); 5083 } 5084 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 5085 OS << "no copy on protected"; 5086 if (DataSize) 5087 OS << format(" <corrupt length: 0x%x>", DataSize); 5088 return OS.str(); 5089 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 5090 case GNU_PROPERTY_X86_FEATURE_1_AND: 5091 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 5092 : "x86 feature: "); 5093 if (DataSize != 4) { 5094 OS << format("<corrupt length: 0x%x>", DataSize); 5095 return OS.str(); 5096 } 5097 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5098 if (PrData == 0) { 5099 OS << "<None>"; 5100 return OS.str(); 5101 } 5102 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 5103 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 5104 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 5105 } else { 5106 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 5107 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 5108 } 5109 if (PrData) 5110 OS << format("<unknown flags: 0x%x>", PrData); 5111 return OS.str(); 5112 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 5113 case GNU_PROPERTY_X86_FEATURE_2_USED: 5114 OS << "x86 feature " 5115 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 5116 if (DataSize != 4) { 5117 OS << format("<corrupt length: 0x%x>", DataSize); 5118 return OS.str(); 5119 } 5120 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5121 if (PrData == 0) { 5122 OS << "<None>"; 5123 return OS.str(); 5124 } 5125 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 5126 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 5127 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 5128 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 5129 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 5130 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 5131 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 5132 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 5133 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 5134 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 5135 if (PrData) 5136 OS << format("<unknown flags: 0x%x>", PrData); 5137 return OS.str(); 5138 case GNU_PROPERTY_X86_ISA_1_NEEDED: 5139 case GNU_PROPERTY_X86_ISA_1_USED: 5140 OS << "x86 ISA " 5141 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 5142 if (DataSize != 4) { 5143 OS << format("<corrupt length: 0x%x>", DataSize); 5144 return OS.str(); 5145 } 5146 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5147 if (PrData == 0) { 5148 OS << "<None>"; 5149 return OS.str(); 5150 } 5151 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline"); 5152 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2"); 5153 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3"); 5154 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4"); 5155 if (PrData) 5156 OS << format("<unknown flags: 0x%x>", PrData); 5157 return OS.str(); 5158 } 5159 } 5160 5161 template <typename ELFT> 5162 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 5163 using Elf_Word = typename ELFT::Word; 5164 5165 SmallVector<std::string, 4> Properties; 5166 while (Arr.size() >= 8) { 5167 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 5168 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 5169 Arr = Arr.drop_front(8); 5170 5171 // Take padding size into account if present. 5172 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 5173 std::string str; 5174 raw_string_ostream OS(str); 5175 if (Arr.size() < PaddedSize) { 5176 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 5177 Properties.push_back(OS.str()); 5178 break; 5179 } 5180 Properties.push_back( 5181 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 5182 Arr = Arr.drop_front(PaddedSize); 5183 } 5184 5185 if (!Arr.empty()) 5186 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 5187 5188 return Properties; 5189 } 5190 5191 struct GNUAbiTag { 5192 std::string OSName; 5193 std::string ABI; 5194 bool IsValid; 5195 }; 5196 5197 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 5198 typedef typename ELFT::Word Elf_Word; 5199 5200 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 5201 reinterpret_cast<const Elf_Word *>(Desc.end())); 5202 5203 if (Words.size() < 4) 5204 return {"", "", /*IsValid=*/false}; 5205 5206 static const char *OSNames[] = { 5207 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 5208 }; 5209 StringRef OSName = "Unknown"; 5210 if (Words[0] < std::size(OSNames)) 5211 OSName = OSNames[Words[0]]; 5212 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 5213 std::string str; 5214 raw_string_ostream ABI(str); 5215 ABI << Major << "." << Minor << "." << Patch; 5216 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 5217 } 5218 5219 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 5220 std::string str; 5221 raw_string_ostream OS(str); 5222 for (uint8_t B : Desc) 5223 OS << format_hex_no_prefix(B, 2); 5224 return OS.str(); 5225 } 5226 5227 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { 5228 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5229 } 5230 5231 template <typename ELFT> 5232 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, 5233 ArrayRef<uint8_t> Desc) { 5234 // Return true if we were able to pretty-print the note, false otherwise. 5235 switch (NoteType) { 5236 default: 5237 return false; 5238 case ELF::NT_GNU_ABI_TAG: { 5239 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 5240 if (!AbiTag.IsValid) 5241 OS << " <corrupt GNU_ABI_TAG>"; 5242 else 5243 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 5244 break; 5245 } 5246 case ELF::NT_GNU_BUILD_ID: { 5247 OS << " Build ID: " << getGNUBuildId(Desc); 5248 break; 5249 } 5250 case ELF::NT_GNU_GOLD_VERSION: 5251 OS << " Version: " << getDescAsStringRef(Desc); 5252 break; 5253 case ELF::NT_GNU_PROPERTY_TYPE_0: 5254 OS << " Properties:"; 5255 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 5256 OS << " " << Property << "\n"; 5257 break; 5258 } 5259 OS << '\n'; 5260 return true; 5261 } 5262 5263 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>; 5264 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType, 5265 ArrayRef<uint8_t> Desc) { 5266 AndroidNoteProperties Props; 5267 switch (NoteType) { 5268 case ELF::NT_ANDROID_TYPE_MEMTAG: 5269 if (Desc.empty()) { 5270 Props.emplace_back("Invalid .note.android.memtag", ""); 5271 return Props; 5272 } 5273 5274 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) { 5275 case NT_MEMTAG_LEVEL_NONE: 5276 Props.emplace_back("Tagging Mode", "NONE"); 5277 break; 5278 case NT_MEMTAG_LEVEL_ASYNC: 5279 Props.emplace_back("Tagging Mode", "ASYNC"); 5280 break; 5281 case NT_MEMTAG_LEVEL_SYNC: 5282 Props.emplace_back("Tagging Mode", "SYNC"); 5283 break; 5284 default: 5285 Props.emplace_back( 5286 "Tagging Mode", 5287 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")") 5288 .str()); 5289 break; 5290 } 5291 Props.emplace_back("Heap", 5292 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled"); 5293 Props.emplace_back("Stack", 5294 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled"); 5295 break; 5296 default: 5297 return Props; 5298 } 5299 return Props; 5300 } 5301 5302 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType, 5303 ArrayRef<uint8_t> Desc) { 5304 // Return true if we were able to pretty-print the note, false otherwise. 5305 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 5306 if (Props.empty()) 5307 return false; 5308 for (const auto &KV : Props) 5309 OS << " " << KV.first << ": " << KV.second << '\n'; 5310 return true; 5311 } 5312 5313 template <class ELFT> 5314 void GNUELFDumper<ELFT>::printMemtag( 5315 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 5316 const ArrayRef<uint8_t> AndroidNoteDesc, 5317 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 5318 OS << "Memtag Dynamic Entries:\n"; 5319 if (DynamicEntries.empty()) 5320 OS << " < none found >\n"; 5321 for (const auto &DynamicEntryKV : DynamicEntries) 5322 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second 5323 << "\n"; 5324 5325 if (!AndroidNoteDesc.empty()) { 5326 OS << "Memtag Android Note:\n"; 5327 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc); 5328 } 5329 5330 if (Descriptors.empty()) 5331 return; 5332 5333 OS << "Memtag Global Descriptors:\n"; 5334 for (const auto &[Addr, BytesToTag] : Descriptors) { 5335 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x" 5336 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n"; 5337 } 5338 } 5339 5340 template <typename ELFT> 5341 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, 5342 ArrayRef<uint8_t> Desc) { 5343 switch (NoteType) { 5344 default: 5345 return false; 5346 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 5347 OS << " Version: " << getDescAsStringRef(Desc); 5348 break; 5349 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 5350 OS << " Producer: " << getDescAsStringRef(Desc); 5351 break; 5352 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 5353 OS << " Producer version: " << getDescAsStringRef(Desc); 5354 break; 5355 } 5356 OS << '\n'; 5357 return true; 5358 } 5359 5360 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { 5361 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE}, 5362 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE}, 5363 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE}, 5364 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED}, 5365 {"LA48", NT_FREEBSD_FCTL_LA48}, 5366 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE}, 5367 }; 5368 5369 struct FreeBSDNote { 5370 std::string Type; 5371 std::string Value; 5372 }; 5373 5374 template <typename ELFT> 5375 static std::optional<FreeBSDNote> 5376 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { 5377 if (IsCore) 5378 return std::nullopt; // No pretty-printing yet. 5379 switch (NoteType) { 5380 case ELF::NT_FREEBSD_ABI_TAG: 5381 if (Desc.size() != 4) 5382 return std::nullopt; 5383 return FreeBSDNote{ 5384 "ABI tag", 5385 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))}; 5386 case ELF::NT_FREEBSD_ARCH_TAG: 5387 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()}; 5388 case ELF::NT_FREEBSD_FEATURE_CTL: { 5389 if (Desc.size() != 4) 5390 return std::nullopt; 5391 unsigned Value = 5392 support::endian::read32<ELFT::TargetEndianness>(Desc.data()); 5393 std::string FlagsStr; 5394 raw_string_ostream OS(FlagsStr); 5395 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS); 5396 if (OS.str().empty()) 5397 OS << "0x" << utohexstr(Value); 5398 else 5399 OS << "(0x" << utohexstr(Value) << ")"; 5400 return FreeBSDNote{"Feature flags", OS.str()}; 5401 } 5402 default: 5403 return std::nullopt; 5404 } 5405 } 5406 5407 struct AMDNote { 5408 std::string Type; 5409 std::string Value; 5410 }; 5411 5412 template <typename ELFT> 5413 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5414 switch (NoteType) { 5415 default: 5416 return {"", ""}; 5417 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { 5418 struct CodeObjectVersion { 5419 uint32_t MajorVersion; 5420 uint32_t MinorVersion; 5421 }; 5422 if (Desc.size() != sizeof(CodeObjectVersion)) 5423 return {"AMD HSA Code Object Version", 5424 "Invalid AMD HSA Code Object Version"}; 5425 std::string VersionString; 5426 raw_string_ostream StrOS(VersionString); 5427 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); 5428 StrOS << "[Major: " << Version->MajorVersion 5429 << ", Minor: " << Version->MinorVersion << "]"; 5430 return {"AMD HSA Code Object Version", VersionString}; 5431 } 5432 case ELF::NT_AMD_HSA_HSAIL: { 5433 struct HSAILProperties { 5434 uint32_t HSAILMajorVersion; 5435 uint32_t HSAILMinorVersion; 5436 uint8_t Profile; 5437 uint8_t MachineModel; 5438 uint8_t DefaultFloatRound; 5439 }; 5440 if (Desc.size() != sizeof(HSAILProperties)) 5441 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"}; 5442 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); 5443 std::string HSAILPropetiesString; 5444 raw_string_ostream StrOS(HSAILPropetiesString); 5445 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion 5446 << ", HSAIL Minor: " << Properties->HSAILMinorVersion 5447 << ", Profile: " << uint32_t(Properties->Profile) 5448 << ", Machine Model: " << uint32_t(Properties->MachineModel) 5449 << ", Default Float Round: " 5450 << uint32_t(Properties->DefaultFloatRound) << "]"; 5451 return {"AMD HSA HSAIL Properties", HSAILPropetiesString}; 5452 } 5453 case ELF::NT_AMD_HSA_ISA_VERSION: { 5454 struct IsaVersion { 5455 uint16_t VendorNameSize; 5456 uint16_t ArchitectureNameSize; 5457 uint32_t Major; 5458 uint32_t Minor; 5459 uint32_t Stepping; 5460 }; 5461 if (Desc.size() < sizeof(IsaVersion)) 5462 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5463 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); 5464 if (Desc.size() < sizeof(IsaVersion) + 5465 Isa->VendorNameSize + Isa->ArchitectureNameSize || 5466 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) 5467 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5468 std::string IsaString; 5469 raw_string_ostream StrOS(IsaString); 5470 StrOS << "[Vendor: " 5471 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) 5472 << ", Architecture: " 5473 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, 5474 Isa->ArchitectureNameSize - 1) 5475 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor 5476 << ", Stepping: " << Isa->Stepping << "]"; 5477 return {"AMD HSA ISA Version", IsaString}; 5478 } 5479 case ELF::NT_AMD_HSA_METADATA: { 5480 if (Desc.size() == 0) 5481 return {"AMD HSA Metadata", ""}; 5482 return { 5483 "AMD HSA Metadata", 5484 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; 5485 } 5486 case ELF::NT_AMD_HSA_ISA_NAME: { 5487 if (Desc.size() == 0) 5488 return {"AMD HSA ISA Name", ""}; 5489 return { 5490 "AMD HSA ISA Name", 5491 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 5492 } 5493 case ELF::NT_AMD_PAL_METADATA: { 5494 struct PALMetadata { 5495 uint32_t Key; 5496 uint32_t Value; 5497 }; 5498 if (Desc.size() % sizeof(PALMetadata) != 0) 5499 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"}; 5500 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); 5501 std::string MetadataString; 5502 raw_string_ostream StrOS(MetadataString); 5503 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { 5504 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]"; 5505 } 5506 return {"AMD PAL Metadata", MetadataString}; 5507 } 5508 } 5509 } 5510 5511 struct AMDGPUNote { 5512 std::string Type; 5513 std::string Value; 5514 }; 5515 5516 template <typename ELFT> 5517 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5518 switch (NoteType) { 5519 default: 5520 return {"", ""}; 5521 case ELF::NT_AMDGPU_METADATA: { 5522 StringRef MsgPackString = 5523 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5524 msgpack::Document MsgPackDoc; 5525 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 5526 return {"", ""}; 5527 5528 std::string MetadataString; 5529 5530 // FIXME: Metadata Verifier only works with AMDHSA. 5531 // This is an ugly workaround to avoid the verifier for other MD 5532 // formats (e.g. amdpal) 5533 if (MsgPackString.find("amdhsa.") != StringRef::npos) { 5534 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 5535 if (!Verifier.verify(MsgPackDoc.getRoot())) 5536 MetadataString = "Invalid AMDGPU Metadata\n"; 5537 } 5538 5539 raw_string_ostream StrOS(MetadataString); 5540 if (MsgPackDoc.getRoot().isScalar()) { 5541 // TODO: passing a scalar root to toYAML() asserts: 5542 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && 5543 // "plain scalar documents are not supported") 5544 // To avoid this crash we print the raw data instead. 5545 return {"", ""}; 5546 } 5547 MsgPackDoc.toYAML(StrOS); 5548 return {"AMDGPU Metadata", StrOS.str()}; 5549 } 5550 } 5551 } 5552 5553 struct CoreFileMapping { 5554 uint64_t Start, End, Offset; 5555 StringRef Filename; 5556 }; 5557 5558 struct CoreNote { 5559 uint64_t PageSize; 5560 std::vector<CoreFileMapping> Mappings; 5561 }; 5562 5563 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 5564 // Expected format of the NT_FILE note description: 5565 // 1. # of file mappings (call it N) 5566 // 2. Page size 5567 // 3. N (start, end, offset) triples 5568 // 4. N packed filenames (null delimited) 5569 // Each field is an Elf_Addr, except for filenames which are char* strings. 5570 5571 CoreNote Ret; 5572 const int Bytes = Desc.getAddressSize(); 5573 5574 if (!Desc.isValidOffsetForAddress(2)) 5575 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 5576 " is too short, expected at least 0x" + 5577 Twine::utohexstr(Bytes * 2)); 5578 if (Desc.getData().back() != 0) 5579 return createError("the note is not NUL terminated"); 5580 5581 uint64_t DescOffset = 0; 5582 uint64_t FileCount = Desc.getAddress(&DescOffset); 5583 Ret.PageSize = Desc.getAddress(&DescOffset); 5584 5585 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 5586 return createError("unable to read file mappings (found " + 5587 Twine(FileCount) + "): the note of size 0x" + 5588 Twine::utohexstr(Desc.size()) + " is too short"); 5589 5590 uint64_t FilenamesOffset = 0; 5591 DataExtractor Filenames( 5592 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5593 Desc.isLittleEndian(), Desc.getAddressSize()); 5594 5595 Ret.Mappings.resize(FileCount); 5596 size_t I = 0; 5597 for (CoreFileMapping &Mapping : Ret.Mappings) { 5598 ++I; 5599 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5600 return createError( 5601 "unable to read the file name for the mapping with index " + 5602 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5603 " is truncated"); 5604 Mapping.Start = Desc.getAddress(&DescOffset); 5605 Mapping.End = Desc.getAddress(&DescOffset); 5606 Mapping.Offset = Desc.getAddress(&DescOffset); 5607 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5608 } 5609 5610 return Ret; 5611 } 5612 5613 template <typename ELFT> 5614 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5615 // Length of "0x<address>" string. 5616 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5617 5618 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5619 OS << " " << right_justify("Start", FieldWidth) << " " 5620 << right_justify("End", FieldWidth) << " " 5621 << right_justify("Page Offset", FieldWidth) << '\n'; 5622 for (const CoreFileMapping &Mapping : Note.Mappings) { 5623 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5624 << format_hex(Mapping.End, FieldWidth) << " " 5625 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5626 << Mapping.Filename << '\n'; 5627 } 5628 } 5629 5630 const NoteType GenericNoteTypes[] = { 5631 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5632 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5633 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5634 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5635 }; 5636 5637 const NoteType GNUNoteTypes[] = { 5638 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5639 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5640 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5641 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5642 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5643 }; 5644 5645 const NoteType FreeBSDCoreNoteTypes[] = { 5646 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5647 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5648 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5649 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5650 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5651 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5652 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5653 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5654 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5655 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5656 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5657 }; 5658 5659 const NoteType FreeBSDNoteTypes[] = { 5660 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"}, 5661 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"}, 5662 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"}, 5663 {ELF::NT_FREEBSD_FEATURE_CTL, 5664 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"}, 5665 }; 5666 5667 const NoteType NetBSDCoreNoteTypes[] = { 5668 {ELF::NT_NETBSDCORE_PROCINFO, 5669 "NT_NETBSDCORE_PROCINFO (procinfo structure)"}, 5670 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"}, 5671 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"}, 5672 }; 5673 5674 const NoteType OpenBSDCoreNoteTypes[] = { 5675 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"}, 5676 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"}, 5677 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"}, 5678 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"}, 5679 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"}, 5680 }; 5681 5682 const NoteType AMDNoteTypes[] = { 5683 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, 5684 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"}, 5685 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"}, 5686 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"}, 5687 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"}, 5688 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"}, 5689 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"}, 5690 }; 5691 5692 const NoteType AMDGPUNoteTypes[] = { 5693 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5694 }; 5695 5696 const NoteType LLVMOMPOFFLOADNoteTypes[] = { 5697 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, 5698 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"}, 5699 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, 5700 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"}, 5701 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, 5702 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"}, 5703 }; 5704 5705 const NoteType AndroidNoteTypes[] = { 5706 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"}, 5707 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"}, 5708 {ELF::NT_ANDROID_TYPE_MEMTAG, 5709 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"}, 5710 }; 5711 5712 const NoteType CoreNoteTypes[] = { 5713 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5714 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5715 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5716 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5717 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5718 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5719 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5720 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5721 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5722 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5723 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5724 5725 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5726 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5727 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5728 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5729 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5730 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5731 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5732 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5733 {ELF::NT_PPC_TM_CFPR, 5734 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5735 {ELF::NT_PPC_TM_CVMX, 5736 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5737 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5738 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5739 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5740 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5741 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5742 5743 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 5744 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 5745 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 5746 5747 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 5748 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 5749 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 5750 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 5751 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 5752 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 5753 {ELF::NT_S390_LAST_BREAK, 5754 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 5755 {ELF::NT_S390_SYSTEM_CALL, 5756 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 5757 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 5758 {ELF::NT_S390_VXRS_LOW, 5759 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 5760 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 5761 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 5762 {ELF::NT_S390_GS_BC, 5763 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 5764 5765 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 5766 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 5767 {ELF::NT_ARM_HW_BREAK, 5768 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 5769 {ELF::NT_ARM_HW_WATCH, 5770 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 5771 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"}, 5772 {ELF::NT_ARM_PAC_MASK, 5773 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"}, 5774 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"}, 5775 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"}, 5776 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"}, 5777 5778 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 5779 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 5780 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 5781 }; 5782 5783 template <class ELFT> 5784 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { 5785 uint32_t Type = Note.getType(); 5786 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 5787 for (const NoteType &N : V) 5788 if (N.ID == Type) 5789 return N.Name; 5790 return ""; 5791 }; 5792 5793 StringRef Name = Note.getName(); 5794 if (Name == "GNU") 5795 return FindNote(GNUNoteTypes); 5796 if (Name == "FreeBSD") { 5797 if (ELFType == ELF::ET_CORE) { 5798 // FreeBSD also places the generic core notes in the FreeBSD namespace. 5799 StringRef Result = FindNote(FreeBSDCoreNoteTypes); 5800 if (!Result.empty()) 5801 return Result; 5802 return FindNote(CoreNoteTypes); 5803 } else { 5804 return FindNote(FreeBSDNoteTypes); 5805 } 5806 } 5807 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) { 5808 StringRef Result = FindNote(NetBSDCoreNoteTypes); 5809 if (!Result.empty()) 5810 return Result; 5811 return FindNote(CoreNoteTypes); 5812 } 5813 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) { 5814 // OpenBSD also places the generic core notes in the OpenBSD namespace. 5815 StringRef Result = FindNote(OpenBSDCoreNoteTypes); 5816 if (!Result.empty()) 5817 return Result; 5818 return FindNote(CoreNoteTypes); 5819 } 5820 if (Name == "AMD") 5821 return FindNote(AMDNoteTypes); 5822 if (Name == "AMDGPU") 5823 return FindNote(AMDGPUNoteTypes); 5824 if (Name == "LLVMOMPOFFLOAD") 5825 return FindNote(LLVMOMPOFFLOADNoteTypes); 5826 if (Name == "Android") 5827 return FindNote(AndroidNoteTypes); 5828 5829 if (ELFType == ELF::ET_CORE) 5830 return FindNote(CoreNoteTypes); 5831 return FindNote(GenericNoteTypes); 5832 } 5833 5834 template <class ELFT> 5835 static void processNotesHelper( 5836 const ELFDumper<ELFT> &Dumper, 5837 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off, 5838 typename ELFT::Addr, size_t)> 5839 StartNotesFn, 5840 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, 5841 llvm::function_ref<void()> FinishNotesFn) { 5842 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 5843 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; 5844 5845 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 5846 if (!IsCoreFile && !Sections.empty()) { 5847 for (const typename ELFT::Shdr &S : Sections) { 5848 if (S.sh_type != SHT_NOTE) 5849 continue; 5850 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset, 5851 S.sh_size, S.sh_addralign); 5852 Error Err = Error::success(); 5853 size_t I = 0; 5854 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 5855 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5856 Dumper.reportUniqueWarning( 5857 "unable to read note with index " + Twine(I) + " from the " + 5858 describe(Obj, S) + ": " + toString(std::move(E))); 5859 ++I; 5860 } 5861 if (Err) 5862 Dumper.reportUniqueWarning("unable to read notes from the " + 5863 describe(Obj, S) + ": " + 5864 toString(std::move(Err))); 5865 FinishNotesFn(); 5866 } 5867 return; 5868 } 5869 5870 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 5871 if (!PhdrsOrErr) { 5872 Dumper.reportUniqueWarning( 5873 "unable to read program headers to locate the PT_NOTE segment: " + 5874 toString(PhdrsOrErr.takeError())); 5875 return; 5876 } 5877 5878 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 5879 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 5880 if (P.p_type != PT_NOTE) 5881 continue; 5882 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align); 5883 Error Err = Error::success(); 5884 size_t Index = 0; 5885 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 5886 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5887 Dumper.reportUniqueWarning("unable to read note with index " + 5888 Twine(Index) + 5889 " from the PT_NOTE segment with index " + 5890 Twine(I) + ": " + toString(std::move(E))); 5891 ++Index; 5892 } 5893 if (Err) 5894 Dumper.reportUniqueWarning( 5895 "unable to read notes from the PT_NOTE segment with index " + 5896 Twine(I) + ": " + toString(std::move(Err))); 5897 FinishNotesFn(); 5898 } 5899 } 5900 5901 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 5902 size_t Align = 0; 5903 bool IsFirstHeader = true; 5904 auto PrintHeader = [&](std::optional<StringRef> SecName, 5905 const typename ELFT::Off Offset, 5906 const typename ELFT::Addr Size, size_t Al) { 5907 Align = std::max<size_t>(Al, 4); 5908 // Print a newline between notes sections to match GNU readelf. 5909 if (!IsFirstHeader) { 5910 OS << '\n'; 5911 } else { 5912 IsFirstHeader = false; 5913 } 5914 5915 OS << "Displaying notes found "; 5916 5917 if (SecName) 5918 OS << "in: " << *SecName << "\n"; 5919 else 5920 OS << "at file offset " << format_hex(Offset, 10) << " with length " 5921 << format_hex(Size, 10) << ":\n"; 5922 5923 OS << " Owner Data size \tDescription\n"; 5924 }; 5925 5926 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 5927 StringRef Name = Note.getName(); 5928 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 5929 Elf_Word Type = Note.getType(); 5930 5931 // Print the note owner/type. 5932 OS << " " << left_justify(Name, 20) << ' ' 5933 << format_hex(Descriptor.size(), 10) << '\t'; 5934 5935 StringRef NoteType = 5936 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 5937 if (!NoteType.empty()) 5938 OS << NoteType << '\n'; 5939 else 5940 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 5941 5942 // Print the description, or fallback to printing raw bytes for unknown 5943 // owners/if we fail to pretty-print the contents. 5944 if (Name == "GNU") { 5945 if (printGNUNote<ELFT>(OS, Type, Descriptor)) 5946 return Error::success(); 5947 } else if (Name == "FreeBSD") { 5948 if (std::optional<FreeBSDNote> N = 5949 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 5950 OS << " " << N->Type << ": " << N->Value << '\n'; 5951 return Error::success(); 5952 } 5953 } else if (Name == "AMD") { 5954 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 5955 if (!N.Type.empty()) { 5956 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5957 return Error::success(); 5958 } 5959 } else if (Name == "AMDGPU") { 5960 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 5961 if (!N.Type.empty()) { 5962 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5963 return Error::success(); 5964 } 5965 } else if (Name == "LLVMOMPOFFLOAD") { 5966 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) 5967 return Error::success(); 5968 } else if (Name == "CORE") { 5969 if (Type == ELF::NT_FILE) { 5970 DataExtractor DescExtractor(Descriptor, 5971 ELFT::TargetEndianness == support::little, 5972 sizeof(Elf_Addr)); 5973 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) { 5974 printCoreNote<ELFT>(OS, *NoteOrErr); 5975 return Error::success(); 5976 } else { 5977 return NoteOrErr.takeError(); 5978 } 5979 } 5980 } else if (Name == "Android") { 5981 if (printAndroidNote(OS, Type, Descriptor)) 5982 return Error::success(); 5983 } 5984 if (!Descriptor.empty()) { 5985 OS << " description data:"; 5986 for (uint8_t B : Descriptor) 5987 OS << " " << format("%02x", B); 5988 OS << '\n'; 5989 } 5990 return Error::success(); 5991 }; 5992 5993 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader, 5994 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {}); 5995 } 5996 5997 template <class ELFT> 5998 ArrayRef<uint8_t> 5999 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) { 6000 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) { 6001 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC) 6002 continue; 6003 if (Sec.sh_addr != ExpectedAddr) { 6004 reportUniqueWarning( 6005 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" + 6006 Twine::utohexstr(Sec.sh_addr) + 6007 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" + 6008 Twine::utohexstr(ExpectedAddr)); 6009 return ArrayRef<uint8_t>(); 6010 } 6011 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec); 6012 if (auto E = Contents.takeError()) { 6013 reportUniqueWarning( 6014 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " + 6015 toString(std::move(E))); 6016 return ArrayRef<uint8_t>(); 6017 } 6018 return Contents.get(); 6019 } 6020 return ArrayRef<uint8_t>(); 6021 } 6022 6023 // Reserve the lower three bits of the first byte of the step distance when 6024 // encoding the memtag descriptors. Found to be the best overall size tradeoff 6025 // when compiling Android T with full MTE globals enabled. 6026 constexpr uint64_t MemtagStepVarintReservedBits = 3; 6027 constexpr uint64_t MemtagGranuleSize = 16; 6028 6029 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() { 6030 if (Obj.getHeader().e_machine != EM_AARCH64) return; 6031 std::vector<std::pair<std::string, std::string>> DynamicEntries; 6032 uint64_t MemtagGlobalsSz = 0; 6033 uint64_t MemtagGlobals = 0; 6034 for (const typename ELFT::Dyn &Entry : dynamic_table()) { 6035 uintX_t Tag = Entry.getTag(); 6036 switch (Tag) { 6037 case DT_AARCH64_MEMTAG_GLOBALSSZ: 6038 MemtagGlobalsSz = Entry.getVal(); 6039 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6040 getDynamicEntry(Tag, Entry.getVal())); 6041 break; 6042 case DT_AARCH64_MEMTAG_GLOBALS: 6043 MemtagGlobals = Entry.getVal(); 6044 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6045 getDynamicEntry(Tag, Entry.getVal())); 6046 break; 6047 case DT_AARCH64_MEMTAG_MODE: 6048 case DT_AARCH64_MEMTAG_HEAP: 6049 case DT_AARCH64_MEMTAG_STACK: 6050 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6051 getDynamicEntry(Tag, Entry.getVal())); 6052 break; 6053 } 6054 } 6055 6056 ArrayRef<uint8_t> AndroidNoteDesc; 6057 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6058 if (Note.getName() == "Android" && 6059 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG) 6060 AndroidNoteDesc = Note.getDesc(4); 6061 return Error::success(); 6062 }; 6063 6064 processNotesHelper( 6065 *this, 6066 /*StartNotesFn=*/ 6067 [](std::optional<StringRef>, const typename ELFT::Off, 6068 const typename ELFT::Addr, size_t) {}, 6069 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {}); 6070 6071 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals); 6072 if (Contents.size() != MemtagGlobalsSz) { 6073 reportUniqueWarning( 6074 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" + 6075 Twine::utohexstr(MemtagGlobalsSz) + 6076 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" + 6077 Twine::utohexstr(Contents.size()) + ")"); 6078 Contents = ArrayRef<uint8_t>(); 6079 } 6080 6081 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors; 6082 uint64_t Address = 0; 6083 // See the AArch64 MemtagABI document for a description of encoding scheme: 6084 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic 6085 for (size_t I = 0; I < Contents.size();) { 6086 const char *Error = nullptr; 6087 unsigned DecodedBytes = 0; 6088 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes, 6089 Contents.end(), &Error); 6090 I += DecodedBytes; 6091 if (Error) { 6092 reportUniqueWarning( 6093 "error decoding distance uleb, " + Twine(DecodedBytes) + 6094 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6095 GlobalDescriptors.clear(); 6096 break; 6097 } 6098 uint64_t Distance = Value >> MemtagStepVarintReservedBits; 6099 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1); 6100 if (GranulesToTag == 0) { 6101 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes, 6102 Contents.end(), &Error) + 6103 1; 6104 I += DecodedBytes; 6105 if (Error) { 6106 reportUniqueWarning( 6107 "error decoding size-only uleb, " + Twine(DecodedBytes) + 6108 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6109 GlobalDescriptors.clear(); 6110 break; 6111 } 6112 } 6113 Address += Distance * MemtagGranuleSize; 6114 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize); 6115 Address += GranulesToTag * MemtagGranuleSize; 6116 } 6117 6118 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors); 6119 } 6120 6121 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 6122 OS << "printELFLinkerOptions not implemented!\n"; 6123 } 6124 6125 template <class ELFT> 6126 void ELFDumper<ELFT>::printDependentLibsHelper( 6127 function_ref<void(const Elf_Shdr &)> OnSectionStart, 6128 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 6129 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 6130 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 6131 Twine(SecNdx) + " is broken: " + Msg); 6132 }; 6133 6134 unsigned I = -1; 6135 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 6136 ++I; 6137 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 6138 continue; 6139 6140 OnSectionStart(Shdr); 6141 6142 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 6143 if (!ContentsOrErr) { 6144 Warn(I, toString(ContentsOrErr.takeError())); 6145 continue; 6146 } 6147 6148 ArrayRef<uint8_t> Contents = *ContentsOrErr; 6149 if (!Contents.empty() && Contents.back() != 0) { 6150 Warn(I, "the content is not null-terminated"); 6151 continue; 6152 } 6153 6154 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 6155 StringRef Lib((const char *)I); 6156 OnLibEntry(Lib, I - Contents.begin()); 6157 I += Lib.size() + 1; 6158 } 6159 } 6160 } 6161 6162 template <class ELFT> 6163 void ELFDumper<ELFT>::forEachRelocationDo( 6164 const Elf_Shdr &Sec, bool RawRelr, 6165 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 6166 const Elf_Shdr &, const Elf_Shdr *)> 6167 RelRelaFn, 6168 llvm::function_ref<void(const Elf_Relr &)> RelrFn) { 6169 auto Warn = [&](Error &&E, 6170 const Twine &Prefix = "unable to read relocations from") { 6171 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 6172 toString(std::move(E))); 6173 }; 6174 6175 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table. 6176 // For them we should not treat the value of the sh_link field as an index of 6177 // a symbol table. 6178 const Elf_Shdr *SymTab; 6179 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) { 6180 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 6181 if (!SymTabOrErr) { 6182 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 6183 return; 6184 } 6185 SymTab = *SymTabOrErr; 6186 } 6187 6188 unsigned RelNdx = 0; 6189 const bool IsMips64EL = this->Obj.isMips64EL(); 6190 switch (Sec.sh_type) { 6191 case ELF::SHT_REL: 6192 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 6193 for (const Elf_Rel &R : *RangeOrErr) 6194 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6195 } else { 6196 Warn(RangeOrErr.takeError()); 6197 } 6198 break; 6199 case ELF::SHT_RELA: 6200 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 6201 for (const Elf_Rela &R : *RangeOrErr) 6202 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6203 } else { 6204 Warn(RangeOrErr.takeError()); 6205 } 6206 break; 6207 case ELF::SHT_RELR: 6208 case ELF::SHT_ANDROID_RELR: { 6209 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 6210 if (!RangeOrErr) { 6211 Warn(RangeOrErr.takeError()); 6212 break; 6213 } 6214 if (RawRelr) { 6215 for (const Elf_Relr &R : *RangeOrErr) 6216 RelrFn(R); 6217 break; 6218 } 6219 6220 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 6221 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 6222 /*SymTab=*/nullptr); 6223 break; 6224 } 6225 case ELF::SHT_ANDROID_REL: 6226 case ELF::SHT_ANDROID_RELA: 6227 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 6228 for (const Elf_Rela &R : *RelasOrErr) 6229 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6230 } else { 6231 Warn(RelasOrErr.takeError()); 6232 } 6233 break; 6234 } 6235 } 6236 6237 template <class ELFT> 6238 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 6239 StringRef Name = "<?>"; 6240 if (Expected<StringRef> SecNameOrErr = 6241 Obj.getSectionName(Sec, this->WarningHandler)) 6242 Name = *SecNameOrErr; 6243 else 6244 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 6245 ": " + toString(SecNameOrErr.takeError())); 6246 return Name; 6247 } 6248 6249 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 6250 bool SectionStarted = false; 6251 struct NameOffset { 6252 StringRef Name; 6253 uint64_t Offset; 6254 }; 6255 std::vector<NameOffset> SecEntries; 6256 NameOffset Current; 6257 auto PrintSection = [&]() { 6258 OS << "Dependent libraries section " << Current.Name << " at offset " 6259 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 6260 << " entries:\n"; 6261 for (NameOffset Entry : SecEntries) 6262 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 6263 << "\n"; 6264 OS << "\n"; 6265 SecEntries.clear(); 6266 }; 6267 6268 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 6269 if (SectionStarted) 6270 PrintSection(); 6271 SectionStarted = true; 6272 Current.Offset = Shdr.sh_offset; 6273 Current.Name = this->getPrintableSectionName(Shdr); 6274 }; 6275 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 6276 SecEntries.push_back(NameOffset{Lib, Offset}); 6277 }; 6278 6279 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 6280 if (SectionStarted) 6281 PrintSection(); 6282 } 6283 6284 template <class ELFT> 6285 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( 6286 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) { 6287 SmallVector<uint32_t> SymbolIndexes; 6288 if (!this->AddressToIndexMap) { 6289 // Populate the address to index map upon the first invocation of this 6290 // function. 6291 this->AddressToIndexMap.emplace(); 6292 if (this->DotSymtabSec) { 6293 if (Expected<Elf_Sym_Range> SymsOrError = 6294 Obj.symbols(this->DotSymtabSec)) { 6295 uint32_t Index = (uint32_t)-1; 6296 for (const Elf_Sym &Sym : *SymsOrError) { 6297 ++Index; 6298 6299 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 6300 continue; 6301 6302 Expected<uint64_t> SymAddrOrErr = 6303 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); 6304 if (!SymAddrOrErr) { 6305 std::string Name = this->getStaticSymbolName(Index); 6306 reportUniqueWarning("unable to get address of symbol '" + Name + 6307 "': " + toString(SymAddrOrErr.takeError())); 6308 return SymbolIndexes; 6309 } 6310 6311 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); 6312 } 6313 } else { 6314 reportUniqueWarning("unable to read the symbol table: " + 6315 toString(SymsOrError.takeError())); 6316 } 6317 } 6318 } 6319 6320 auto Symbols = this->AddressToIndexMap->find(SymValue); 6321 if (Symbols == this->AddressToIndexMap->end()) 6322 return SymbolIndexes; 6323 6324 for (uint32_t Index : Symbols->second) { 6325 // Check if the symbol is in the right section. FunctionSec == None 6326 // means "any section". 6327 if (FunctionSec) { 6328 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); 6329 if (Expected<const Elf_Shdr *> SecOrErr = 6330 Obj.getSection(Sym, this->DotSymtabSec, 6331 this->getShndxTable(this->DotSymtabSec))) { 6332 if (*FunctionSec != *SecOrErr) 6333 continue; 6334 } else { 6335 std::string Name = this->getStaticSymbolName(Index); 6336 // Note: it is impossible to trigger this error currently, it is 6337 // untested. 6338 reportUniqueWarning("unable to get section of symbol '" + Name + 6339 "': " + toString(SecOrErr.takeError())); 6340 return SymbolIndexes; 6341 } 6342 } 6343 6344 SymbolIndexes.push_back(Index); 6345 } 6346 6347 return SymbolIndexes; 6348 } 6349 6350 template <class ELFT> 6351 bool ELFDumper<ELFT>::printFunctionStackSize( 6352 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec, 6353 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 6354 SmallVector<uint32_t> FuncSymIndexes = 6355 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); 6356 if (FuncSymIndexes.empty()) 6357 reportUniqueWarning( 6358 "could not identify function symbol for stack size entry in " + 6359 describe(StackSizeSec)); 6360 6361 // Extract the size. The expectation is that Offset is pointing to the right 6362 // place, i.e. past the function address. 6363 Error Err = Error::success(); 6364 uint64_t StackSize = Data.getULEB128(Offset, &Err); 6365 if (Err) { 6366 reportUniqueWarning("could not extract a valid stack size from " + 6367 describe(StackSizeSec) + ": " + 6368 toString(std::move(Err))); 6369 return false; 6370 } 6371 6372 if (FuncSymIndexes.empty()) { 6373 printStackSizeEntry(StackSize, {"?"}); 6374 } else { 6375 SmallVector<std::string> FuncSymNames; 6376 for (uint32_t Index : FuncSymIndexes) 6377 FuncSymNames.push_back(this->getStaticSymbolName(Index)); 6378 printStackSizeEntry(StackSize, FuncSymNames); 6379 } 6380 6381 return true; 6382 } 6383 6384 template <class ELFT> 6385 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 6386 ArrayRef<std::string> FuncNames) { 6387 OS.PadToColumn(2); 6388 OS << format_decimal(Size, 11); 6389 OS.PadToColumn(18); 6390 6391 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n"; 6392 } 6393 6394 template <class ELFT> 6395 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 6396 const Elf_Shdr &RelocSec, unsigned Ndx, 6397 const Elf_Shdr *SymTab, 6398 const Elf_Shdr *FunctionSec, 6399 const Elf_Shdr &StackSizeSec, 6400 const RelocationResolver &Resolver, 6401 DataExtractor Data) { 6402 // This function ignores potentially erroneous input, unless it is directly 6403 // related to stack size reporting. 6404 const Elf_Sym *Sym = nullptr; 6405 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 6406 if (!TargetOrErr) 6407 reportUniqueWarning("unable to get the target of relocation with index " + 6408 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 6409 toString(TargetOrErr.takeError())); 6410 else 6411 Sym = TargetOrErr->Sym; 6412 6413 uint64_t RelocSymValue = 0; 6414 if (Sym) { 6415 Expected<const Elf_Shdr *> SectionOrErr = 6416 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 6417 if (!SectionOrErr) { 6418 reportUniqueWarning( 6419 "cannot identify the section for relocation symbol '" + 6420 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 6421 } else if (*SectionOrErr != FunctionSec) { 6422 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 6423 "' is not in the expected section"); 6424 // Pretend that the symbol is in the correct section and report its 6425 // stack size anyway. 6426 FunctionSec = *SectionOrErr; 6427 } 6428 6429 RelocSymValue = Sym->st_value; 6430 } 6431 6432 uint64_t Offset = R.Offset; 6433 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6434 reportUniqueWarning("found invalid relocation offset (0x" + 6435 Twine::utohexstr(Offset) + ") into " + 6436 describe(StackSizeSec) + 6437 " while trying to extract a stack size entry"); 6438 return; 6439 } 6440 6441 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue, 6442 Data.getAddress(&Offset), R.Addend.value_or(0)); 6443 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 6444 &Offset); 6445 } 6446 6447 template <class ELFT> 6448 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 6449 std::function<void()> PrintHeader) { 6450 // This function ignores potentially erroneous input, unless it is directly 6451 // related to stack size reporting. 6452 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 6453 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 6454 continue; 6455 PrintHeader(); 6456 ArrayRef<uint8_t> Contents = 6457 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 6458 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6459 uint64_t Offset = 0; 6460 while (Offset < Contents.size()) { 6461 // The function address is followed by a ULEB representing the stack 6462 // size. Check for an extra byte before we try to process the entry. 6463 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6464 reportUniqueWarning( 6465 describe(Sec) + 6466 " ended while trying to extract a stack size entry"); 6467 break; 6468 } 6469 uint64_t SymValue = Data.getAddress(&Offset); 6470 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec, 6471 Data, &Offset)) 6472 break; 6473 } 6474 } 6475 } 6476 6477 template <class ELFT> 6478 void ELFDumper<ELFT>::printRelocatableStackSizes( 6479 std::function<void()> PrintHeader) { 6480 // Build a map between stack size sections and their corresponding relocation 6481 // sections. 6482 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { 6483 StringRef SectionName; 6484 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 6485 SectionName = *NameOrErr; 6486 else 6487 consumeError(NameOrErr.takeError()); 6488 6489 return SectionName == ".stack_sizes"; 6490 }; 6491 6492 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> 6493 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch); 6494 if (!StackSizeRelocMapOrErr) { 6495 reportUniqueWarning("unable to get stack size map section(s): " + 6496 toString(StackSizeRelocMapOrErr.takeError())); 6497 return; 6498 } 6499 6500 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) { 6501 PrintHeader(); 6502 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 6503 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 6504 6505 // Warn about stack size sections without a relocation section. 6506 if (!RelocSec) { 6507 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 6508 ") does not have a corresponding " 6509 "relocation section"), 6510 FileName); 6511 continue; 6512 } 6513 6514 // A .stack_sizes section header's sh_link field is supposed to point 6515 // to the section that contains the functions whose stack sizes are 6516 // described in it. 6517 const Elf_Shdr *FunctionSec = unwrapOrError( 6518 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 6519 6520 SupportsRelocation IsSupportedFn; 6521 RelocationResolver Resolver; 6522 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 6523 ArrayRef<uint8_t> Contents = 6524 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 6525 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6526 6527 forEachRelocationDo( 6528 *RelocSec, /*RawRelr=*/false, 6529 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 6530 const Elf_Shdr *SymTab) { 6531 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 6532 reportUniqueWarning( 6533 describe(*RelocSec) + 6534 " contains an unsupported relocation with index " + Twine(Ndx) + 6535 ": " + Obj.getRelocationTypeName(R.Type)); 6536 return; 6537 } 6538 6539 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 6540 *StackSizesELFSec, Resolver, Data); 6541 }, 6542 [](const Elf_Relr &) { 6543 llvm_unreachable("can't get here, because we only support " 6544 "SHT_REL/SHT_RELA sections"); 6545 }); 6546 } 6547 } 6548 6549 template <class ELFT> 6550 void GNUELFDumper<ELFT>::printStackSizes() { 6551 bool HeaderHasBeenPrinted = false; 6552 auto PrintHeader = [&]() { 6553 if (HeaderHasBeenPrinted) 6554 return; 6555 OS << "\nStack Sizes:\n"; 6556 OS.PadToColumn(9); 6557 OS << "Size"; 6558 OS.PadToColumn(18); 6559 OS << "Functions\n"; 6560 HeaderHasBeenPrinted = true; 6561 }; 6562 6563 // For non-relocatable objects, look directly for sections whose name starts 6564 // with .stack_sizes and process the contents. 6565 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6566 this->printRelocatableStackSizes(PrintHeader); 6567 else 6568 this->printNonRelocatableStackSizes(PrintHeader); 6569 } 6570 6571 template <class ELFT> 6572 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6573 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6574 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6575 OS.PadToColumn(2); 6576 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 6577 OS.PadToColumn(11 + Bias); 6578 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 6579 OS.PadToColumn(22 + Bias); 6580 OS << format_hex_no_prefix(*E, 8 + Bias); 6581 OS.PadToColumn(31 + 2 * Bias); 6582 OS << Purpose << "\n"; 6583 }; 6584 6585 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 6586 OS << " Canonical gp value: " 6587 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 6588 6589 OS << " Reserved entries:\n"; 6590 if (ELFT::Is64Bits) 6591 OS << " Address Access Initial Purpose\n"; 6592 else 6593 OS << " Address Access Initial Purpose\n"; 6594 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 6595 if (Parser.getGotModulePointer()) 6596 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 6597 6598 if (!Parser.getLocalEntries().empty()) { 6599 OS << "\n"; 6600 OS << " Local entries:\n"; 6601 if (ELFT::Is64Bits) 6602 OS << " Address Access Initial\n"; 6603 else 6604 OS << " Address Access Initial\n"; 6605 for (auto &E : Parser.getLocalEntries()) 6606 PrintEntry(&E, ""); 6607 } 6608 6609 if (Parser.IsStatic) 6610 return; 6611 6612 if (!Parser.getGlobalEntries().empty()) { 6613 OS << "\n"; 6614 OS << " Global entries:\n"; 6615 if (ELFT::Is64Bits) 6616 OS << " Address Access Initial Sym.Val." 6617 << " Type Ndx Name\n"; 6618 else 6619 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 6620 6621 DataRegion<Elf_Word> ShndxTable( 6622 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6623 for (auto &E : Parser.getGlobalEntries()) { 6624 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6625 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 6626 std::string SymName = this->getFullSymbolName( 6627 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6628 6629 OS.PadToColumn(2); 6630 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 6631 OS.PadToColumn(11 + Bias); 6632 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 6633 OS.PadToColumn(22 + Bias); 6634 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6635 OS.PadToColumn(31 + 2 * Bias); 6636 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6637 OS.PadToColumn(40 + 3 * Bias); 6638 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6639 OS.PadToColumn(48 + 3 * Bias); 6640 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6641 ShndxTable); 6642 OS.PadToColumn(52 + 3 * Bias); 6643 OS << SymName << "\n"; 6644 } 6645 } 6646 6647 if (!Parser.getOtherEntries().empty()) 6648 OS << "\n Number of TLS and multi-GOT entries " 6649 << Parser.getOtherEntries().size() << "\n"; 6650 } 6651 6652 template <class ELFT> 6653 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6654 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6655 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6656 OS.PadToColumn(2); 6657 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 6658 OS.PadToColumn(11 + Bias); 6659 OS << format_hex_no_prefix(*E, 8 + Bias); 6660 OS.PadToColumn(20 + 2 * Bias); 6661 OS << Purpose << "\n"; 6662 }; 6663 6664 OS << "PLT GOT:\n\n"; 6665 6666 OS << " Reserved entries:\n"; 6667 OS << " Address Initial Purpose\n"; 6668 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 6669 if (Parser.getPltModulePointer()) 6670 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 6671 6672 if (!Parser.getPltEntries().empty()) { 6673 OS << "\n"; 6674 OS << " Entries:\n"; 6675 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 6676 DataRegion<Elf_Word> ShndxTable( 6677 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6678 for (auto &E : Parser.getPltEntries()) { 6679 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6680 const Elf_Sym &FirstSym = *cantFail( 6681 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6682 std::string SymName = this->getFullSymbolName( 6683 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6684 6685 OS.PadToColumn(2); 6686 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 6687 OS.PadToColumn(11 + Bias); 6688 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6689 OS.PadToColumn(20 + 2 * Bias); 6690 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6691 OS.PadToColumn(29 + 3 * Bias); 6692 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6693 OS.PadToColumn(37 + 3 * Bias); 6694 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6695 ShndxTable); 6696 OS.PadToColumn(41 + 3 * Bias); 6697 OS << SymName << "\n"; 6698 } 6699 } 6700 } 6701 6702 template <class ELFT> 6703 Expected<const Elf_Mips_ABIFlags<ELFT> *> 6704 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 6705 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 6706 if (Sec == nullptr) 6707 return nullptr; 6708 6709 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 6710 Expected<ArrayRef<uint8_t>> DataOrErr = 6711 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 6712 if (!DataOrErr) 6713 return createError(ErrPrefix + toString(DataOrErr.takeError())); 6714 6715 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 6716 return createError(ErrPrefix + "it has a wrong size (" + 6717 Twine(DataOrErr->size()) + ")"); 6718 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 6719 } 6720 6721 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 6722 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 6723 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6724 getMipsAbiFlagsSection(*this)) 6725 Flags = *SecOrErr; 6726 else 6727 this->reportUniqueWarning(SecOrErr.takeError()); 6728 if (!Flags) 6729 return; 6730 6731 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 6732 OS << "ISA: MIPS" << int(Flags->isa_level); 6733 if (Flags->isa_rev > 1) 6734 OS << "r" << int(Flags->isa_rev); 6735 OS << "\n"; 6736 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 6737 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 6738 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 6739 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType)) 6740 << "\n"; 6741 OS << "ISA Extension: " 6742 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n"; 6743 if (Flags->ases == 0) 6744 OS << "ASEs: None\n"; 6745 else 6746 // FIXME: Print each flag on a separate line. 6747 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags)) 6748 << "\n"; 6749 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 6750 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 6751 OS << "\n"; 6752 } 6753 6754 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 6755 const Elf_Ehdr &E = this->Obj.getHeader(); 6756 { 6757 DictScope D(W, "ElfHeader"); 6758 { 6759 DictScope D(W, "Ident"); 6760 W.printBinary("Magic", 6761 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4)); 6762 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 6763 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 6764 ArrayRef(ElfDataEncoding)); 6765 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 6766 6767 auto OSABI = ArrayRef(ElfOSABI); 6768 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 6769 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 6770 switch (E.e_machine) { 6771 case ELF::EM_AMDGPU: 6772 OSABI = ArrayRef(AMDGPUElfOSABI); 6773 break; 6774 case ELF::EM_ARM: 6775 OSABI = ArrayRef(ARMElfOSABI); 6776 break; 6777 case ELF::EM_TI_C6000: 6778 OSABI = ArrayRef(C6000ElfOSABI); 6779 break; 6780 } 6781 } 6782 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 6783 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 6784 W.printBinary("Unused", 6785 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD)); 6786 } 6787 6788 std::string TypeStr; 6789 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 6790 TypeStr = Ent->Name.str(); 6791 } else { 6792 if (E.e_type >= ET_LOPROC) 6793 TypeStr = "Processor Specific"; 6794 else if (E.e_type >= ET_LOOS) 6795 TypeStr = "OS Specific"; 6796 else 6797 TypeStr = "Unknown"; 6798 } 6799 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")"); 6800 6801 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType)); 6802 W.printNumber("Version", E.e_version); 6803 W.printHex("Entry", E.e_entry); 6804 W.printHex("ProgramHeaderOffset", E.e_phoff); 6805 W.printHex("SectionHeaderOffset", E.e_shoff); 6806 if (E.e_machine == EM_MIPS) 6807 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags), 6808 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 6809 unsigned(ELF::EF_MIPS_MACH)); 6810 else if (E.e_machine == EM_AMDGPU) { 6811 switch (E.e_ident[ELF::EI_ABIVERSION]) { 6812 default: 6813 W.printHex("Flags", E.e_flags); 6814 break; 6815 case 0: 6816 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 6817 [[fallthrough]]; 6818 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 6819 W.printFlags("Flags", E.e_flags, 6820 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 6821 unsigned(ELF::EF_AMDGPU_MACH)); 6822 break; 6823 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 6824 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 6825 W.printFlags("Flags", E.e_flags, 6826 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 6827 unsigned(ELF::EF_AMDGPU_MACH), 6828 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 6829 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 6830 break; 6831 } 6832 } else if (E.e_machine == EM_RISCV) 6833 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 6834 else if (E.e_machine == EM_AVR) 6835 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags), 6836 unsigned(ELF::EF_AVR_ARCH_MASK)); 6837 else if (E.e_machine == EM_LOONGARCH) 6838 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 6839 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 6840 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 6841 else if (E.e_machine == EM_XTENSA) 6842 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags), 6843 unsigned(ELF::EF_XTENSA_MACH)); 6844 else 6845 W.printFlags("Flags", E.e_flags); 6846 W.printNumber("HeaderSize", E.e_ehsize); 6847 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 6848 W.printNumber("ProgramHeaderCount", E.e_phnum); 6849 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 6850 W.printString("SectionHeaderCount", 6851 getSectionHeadersNumString(this->Obj, this->FileName)); 6852 W.printString("StringTableSectionIndex", 6853 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 6854 } 6855 } 6856 6857 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 6858 DictScope Lists(W, "Groups"); 6859 std::vector<GroupSection> V = this->getGroups(); 6860 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 6861 for (const GroupSection &G : V) { 6862 DictScope D(W, "Group"); 6863 W.printNumber("Name", G.Name, G.ShName); 6864 W.printNumber("Index", G.Index); 6865 W.printNumber("Link", G.Link); 6866 W.printNumber("Info", G.Info); 6867 W.printHex("Type", getGroupType(G.Type), G.Type); 6868 W.printString("Signature", G.Signature); 6869 6870 ListScope L(W, getGroupSectionHeaderName()); 6871 for (const GroupMember &GM : G.Members) { 6872 const GroupSection *MainGroup = Map[GM.Index]; 6873 if (MainGroup != &G) 6874 this->reportUniqueWarning( 6875 "section with index " + Twine(GM.Index) + 6876 ", included in the group section with index " + 6877 Twine(MainGroup->Index) + 6878 ", was also found in the group section with index " + 6879 Twine(G.Index)); 6880 printSectionGroupMembers(GM.Name, GM.Index); 6881 } 6882 } 6883 6884 if (V.empty()) 6885 printEmptyGroupMessage(); 6886 } 6887 6888 template <class ELFT> 6889 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const { 6890 return "Section(s) in group"; 6891 } 6892 6893 template <class ELFT> 6894 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 6895 uint64_t Idx) const { 6896 W.startLine() << Name << " (" << Idx << ")\n"; 6897 } 6898 6899 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 6900 ListScope D(W, "Relocations"); 6901 6902 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6903 if (!isRelocationSec<ELFT>(Sec)) 6904 continue; 6905 6906 StringRef Name = this->getPrintableSectionName(Sec); 6907 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 6908 printRelocationSectionInfo(Sec, Name, SecNdx); 6909 } 6910 } 6911 6912 template <class ELFT> 6913 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 6914 W.startLine() << W.hex(R) << "\n"; 6915 } 6916 6917 template <class ELFT> 6918 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R, 6919 StringRef SymbolName, 6920 StringRef RelocName) { 6921 DictScope Group(W, "Relocation"); 6922 W.printHex("Offset", R.Offset); 6923 W.printNumber("Type", RelocName, R.Type); 6924 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 6925 if (R.Addend) 6926 W.printHex("Addend", (uintX_t)*R.Addend); 6927 } 6928 6929 template <class ELFT> 6930 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 6931 StringRef SymbolName, 6932 StringRef RelocName) { 6933 raw_ostream &OS = W.startLine(); 6934 OS << W.hex(R.Offset) << " " << RelocName << " " 6935 << (!SymbolName.empty() ? SymbolName : "-"); 6936 if (R.Addend) 6937 OS << " " << W.hex((uintX_t)*R.Addend); 6938 OS << "\n"; 6939 } 6940 6941 template <class ELFT> 6942 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 6943 StringRef Name, 6944 const unsigned SecNdx) { 6945 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str()); 6946 this->printRelocationsHelper(Sec); 6947 } 6948 6949 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const { 6950 W.startLine() << "There are no group sections in the file.\n"; 6951 } 6952 6953 template <class ELFT> 6954 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 6955 const RelSymbol<ELFT> &RelSym) { 6956 StringRef SymbolName = RelSym.Name; 6957 if (RelSym.Sym && RelSym.Name.empty()) 6958 SymbolName = "<null>"; 6959 SmallString<32> RelocName; 6960 this->Obj.getRelocationTypeName(R.Type, RelocName); 6961 6962 if (opts::ExpandRelocs) { 6963 printExpandedRelRelaReloc(R, SymbolName, RelocName); 6964 } else { 6965 printDefaultRelRelaReloc(R, SymbolName, RelocName); 6966 } 6967 } 6968 6969 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 6970 ListScope SectionsD(W, "Sections"); 6971 6972 int SectionIndex = -1; 6973 std::vector<EnumEntry<unsigned>> FlagsList = 6974 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 6975 this->Obj.getHeader().e_machine); 6976 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6977 DictScope SectionD(W, "Section"); 6978 W.printNumber("Index", ++SectionIndex); 6979 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 6980 W.printHex("Type", 6981 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 6982 Sec.sh_type), 6983 Sec.sh_type); 6984 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList)); 6985 W.printHex("Address", Sec.sh_addr); 6986 W.printHex("Offset", Sec.sh_offset); 6987 W.printNumber("Size", Sec.sh_size); 6988 W.printNumber("Link", Sec.sh_link); 6989 W.printNumber("Info", Sec.sh_info); 6990 W.printNumber("AddressAlignment", Sec.sh_addralign); 6991 W.printNumber("EntrySize", Sec.sh_entsize); 6992 6993 if (opts::SectionRelocations) { 6994 ListScope D(W, "Relocations"); 6995 this->printRelocationsHelper(Sec); 6996 } 6997 6998 if (opts::SectionSymbols) { 6999 ListScope D(W, "Symbols"); 7000 if (this->DotSymtabSec) { 7001 StringRef StrTable = unwrapOrError( 7002 this->FileName, 7003 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 7004 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 7005 7006 typename ELFT::SymRange Symbols = unwrapOrError( 7007 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 7008 for (const Elf_Sym &Sym : Symbols) { 7009 const Elf_Shdr *SymSec = unwrapOrError( 7010 this->FileName, 7011 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 7012 if (SymSec == &Sec) 7013 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 7014 false); 7015 } 7016 } 7017 } 7018 7019 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 7020 ArrayRef<uint8_t> Data = 7021 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 7022 W.printBinaryBlock( 7023 "SectionData", 7024 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 7025 } 7026 } 7027 } 7028 7029 template <class ELFT> 7030 void LLVMELFDumper<ELFT>::printSymbolSection( 7031 const Elf_Sym &Symbol, unsigned SymIndex, 7032 DataRegion<Elf_Word> ShndxTable) const { 7033 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> { 7034 if (Symbol.isUndefined()) 7035 return StringRef("Undefined"); 7036 if (Symbol.isProcessorSpecific()) 7037 return StringRef("Processor Specific"); 7038 if (Symbol.isOSSpecific()) 7039 return StringRef("Operating System Specific"); 7040 if (Symbol.isAbsolute()) 7041 return StringRef("Absolute"); 7042 if (Symbol.isCommon()) 7043 return StringRef("Common"); 7044 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 7045 return StringRef("Reserved"); 7046 return std::nullopt; 7047 }; 7048 7049 if (std::optional<StringRef> Type = GetSectionSpecialType()) { 7050 W.printHex("Section", *Type, Symbol.st_shndx); 7051 return; 7052 } 7053 7054 Expected<unsigned> SectionIndex = 7055 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 7056 if (!SectionIndex) { 7057 assert(Symbol.st_shndx == SHN_XINDEX && 7058 "getSymbolSectionIndex should only fail due to an invalid " 7059 "SHT_SYMTAB_SHNDX table/reference"); 7060 this->reportUniqueWarning(SectionIndex.takeError()); 7061 W.printHex("Section", "Reserved", SHN_XINDEX); 7062 return; 7063 } 7064 7065 Expected<StringRef> SectionName = 7066 this->getSymbolSectionName(Symbol, *SectionIndex); 7067 if (!SectionName) { 7068 // Don't report an invalid section name if the section headers are missing. 7069 // In such situations, all sections will be "invalid". 7070 if (!this->ObjF.sections().empty()) 7071 this->reportUniqueWarning(SectionName.takeError()); 7072 else 7073 consumeError(SectionName.takeError()); 7074 W.printHex("Section", "<?>", *SectionIndex); 7075 } else { 7076 W.printHex("Section", *SectionName, *SectionIndex); 7077 } 7078 } 7079 7080 template <class ELFT> 7081 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const { 7082 std::vector<EnumEntry<unsigned>> SymOtherFlags = 7083 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol); 7084 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u); 7085 } 7086 7087 template <class ELFT> 7088 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField( 7089 const Elf_Sym &Symbol) const { 7090 assert(Symbol.st_other == 0 && "non-zero Other Field"); 7091 // Usually st_other flag is zero. Do not pollute the output 7092 // by flags enumeration in that case. 7093 W.printNumber("Other", 0); 7094 } 7095 7096 template <class ELFT> 7097 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 7098 DataRegion<Elf_Word> ShndxTable, 7099 std::optional<StringRef> StrTable, 7100 bool IsDynamic, 7101 bool /*NonVisibilityBitsUsed*/) const { 7102 std::string FullSymbolName = this->getFullSymbolName( 7103 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 7104 unsigned char SymbolType = Symbol.getType(); 7105 7106 DictScope D(W, "Symbol"); 7107 W.printNumber("Name", FullSymbolName, Symbol.st_name); 7108 W.printHex("Value", Symbol.st_value); 7109 W.printNumber("Size", Symbol.st_size); 7110 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 7111 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 7112 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 7113 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes)); 7114 else 7115 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes)); 7116 if (Symbol.st_other == 0) 7117 printZeroSymbolOtherField(Symbol); 7118 else 7119 printSymbolOtherField(Symbol); 7120 printSymbolSection(Symbol, SymIndex, ShndxTable); 7121 } 7122 7123 template <class ELFT> 7124 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 7125 bool PrintDynamicSymbols) { 7126 if (PrintSymbols) { 7127 ListScope Group(W, "Symbols"); 7128 this->printSymbolsHelper(false); 7129 } 7130 if (PrintDynamicSymbols) { 7131 ListScope Group(W, "DynamicSymbols"); 7132 this->printSymbolsHelper(true); 7133 } 7134 } 7135 7136 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 7137 Elf_Dyn_Range Table = this->dynamic_table(); 7138 if (Table.empty()) 7139 return; 7140 7141 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 7142 7143 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 7144 // The "Name/Value" column should be indented from the "Type" column by N 7145 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 7146 // space (1) = -3. 7147 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 7148 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 7149 7150 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 7151 for (auto Entry : Table) { 7152 uintX_t Tag = Entry.getTag(); 7153 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 7154 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 7155 << " " 7156 << format(ValueFmt.c_str(), 7157 this->Obj.getDynamicTagAsString(Tag).c_str()) 7158 << Value << "\n"; 7159 } 7160 W.startLine() << "]\n"; 7161 } 7162 7163 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 7164 W.startLine() << "Dynamic Relocations {\n"; 7165 W.indent(); 7166 this->printDynamicRelocationsHelper(); 7167 W.unindent(); 7168 W.startLine() << "}\n"; 7169 } 7170 7171 template <class ELFT> 7172 void LLVMELFDumper<ELFT>::printProgramHeaders( 7173 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 7174 if (PrintProgramHeaders) 7175 printProgramHeaders(); 7176 if (PrintSectionMapping == cl::BOU_TRUE) 7177 printSectionMapping(); 7178 } 7179 7180 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 7181 ListScope L(W, "ProgramHeaders"); 7182 7183 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 7184 if (!PhdrsOrErr) { 7185 this->reportUniqueWarning("unable to dump program headers: " + 7186 toString(PhdrsOrErr.takeError())); 7187 return; 7188 } 7189 7190 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 7191 DictScope P(W, "ProgramHeader"); 7192 StringRef Type = 7193 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 7194 7195 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 7196 W.printHex("Offset", Phdr.p_offset); 7197 W.printHex("VirtualAddress", Phdr.p_vaddr); 7198 W.printHex("PhysicalAddress", Phdr.p_paddr); 7199 W.printNumber("FileSize", Phdr.p_filesz); 7200 W.printNumber("MemSize", Phdr.p_memsz); 7201 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags)); 7202 W.printNumber("Alignment", Phdr.p_align); 7203 } 7204 } 7205 7206 template <class ELFT> 7207 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 7208 ListScope SS(W, "VersionSymbols"); 7209 if (!Sec) 7210 return; 7211 7212 StringRef StrTable; 7213 ArrayRef<Elf_Sym> Syms; 7214 const Elf_Shdr *SymTabSec; 7215 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 7216 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 7217 if (!VerTableOrErr) { 7218 this->reportUniqueWarning(VerTableOrErr.takeError()); 7219 return; 7220 } 7221 7222 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 7223 return; 7224 7225 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 7226 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 7227 DictScope S(W, "Symbol"); 7228 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 7229 W.printString("Name", 7230 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 7231 /*IsDynamic=*/true)); 7232 } 7233 } 7234 7235 const EnumEntry<unsigned> SymVersionFlags[] = { 7236 {"Base", "BASE", VER_FLG_BASE}, 7237 {"Weak", "WEAK", VER_FLG_WEAK}, 7238 {"Info", "INFO", VER_FLG_INFO}}; 7239 7240 template <class ELFT> 7241 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 7242 ListScope SD(W, "VersionDefinitions"); 7243 if (!Sec) 7244 return; 7245 7246 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 7247 if (!V) { 7248 this->reportUniqueWarning(V.takeError()); 7249 return; 7250 } 7251 7252 for (const VerDef &D : *V) { 7253 DictScope Def(W, "Definition"); 7254 W.printNumber("Version", D.Version); 7255 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags)); 7256 W.printNumber("Index", D.Ndx); 7257 W.printNumber("Hash", D.Hash); 7258 W.printString("Name", D.Name.c_str()); 7259 W.printList( 7260 "Predecessors", D.AuxV, 7261 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 7262 } 7263 } 7264 7265 template <class ELFT> 7266 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 7267 ListScope SD(W, "VersionRequirements"); 7268 if (!Sec) 7269 return; 7270 7271 Expected<std::vector<VerNeed>> V = 7272 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 7273 if (!V) { 7274 this->reportUniqueWarning(V.takeError()); 7275 return; 7276 } 7277 7278 for (const VerNeed &VN : *V) { 7279 DictScope Entry(W, "Dependency"); 7280 W.printNumber("Version", VN.Version); 7281 W.printNumber("Count", VN.Cnt); 7282 W.printString("FileName", VN.File.c_str()); 7283 7284 ListScope L(W, "Entries"); 7285 for (const VernAux &Aux : VN.AuxV) { 7286 DictScope Entry(W, "Entry"); 7287 W.printNumber("Hash", Aux.Hash); 7288 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags)); 7289 W.printNumber("Index", Aux.Other); 7290 W.printString("Name", Aux.Name.c_str()); 7291 } 7292 } 7293 } 7294 7295 template <class ELFT> 7296 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 7297 size_t MaxChain, 7298 size_t TotalSyms, 7299 ArrayRef<size_t> Count, 7300 bool IsGnu) const { 7301 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram"; 7302 StringRef BucketName = IsGnu ? "Bucket" : "Chain"; 7303 StringRef ListName = IsGnu ? "Buckets" : "Chains"; 7304 DictScope Outer(W, HistName); 7305 W.printNumber("TotalBuckets", NBucket); 7306 ListScope Buckets(W, ListName); 7307 size_t CumulativeNonZero = 0; 7308 for (size_t I = 0; I < MaxChain; ++I) { 7309 CumulativeNonZero += Count[I] * I; 7310 DictScope Bucket(W, BucketName); 7311 W.printNumber("Length", I); 7312 W.printNumber("Count", Count[I]); 7313 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket); 7314 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms); 7315 } 7316 } 7317 7318 // Returns true if rel/rela section exists, and populates SymbolIndices. 7319 // Otherwise returns false. 7320 template <class ELFT> 7321 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, 7322 const ELFFile<ELFT> &Obj, 7323 const LLVMELFDumper<ELFT> *Dumper, 7324 SmallVector<uint32_t, 128> &SymbolIndices) { 7325 if (!CGRelSection) { 7326 Dumper->reportUniqueWarning( 7327 "relocation section for a call graph section doesn't exist"); 7328 return false; 7329 } 7330 7331 if (CGRelSection->sh_type == SHT_REL) { 7332 typename ELFT::RelRange CGProfileRel; 7333 Expected<typename ELFT::RelRange> CGProfileRelOrError = 7334 Obj.rels(*CGRelSection); 7335 if (!CGProfileRelOrError) { 7336 Dumper->reportUniqueWarning("unable to load relocations for " 7337 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7338 toString(CGProfileRelOrError.takeError())); 7339 return false; 7340 } 7341 7342 CGProfileRel = *CGProfileRelOrError; 7343 for (const typename ELFT::Rel &Rel : CGProfileRel) 7344 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL())); 7345 } else { 7346 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert 7347 // the format to SHT_RELA 7348 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) 7349 typename ELFT::RelaRange CGProfileRela; 7350 Expected<typename ELFT::RelaRange> CGProfileRelaOrError = 7351 Obj.relas(*CGRelSection); 7352 if (!CGProfileRelaOrError) { 7353 Dumper->reportUniqueWarning("unable to load relocations for " 7354 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7355 toString(CGProfileRelaOrError.takeError())); 7356 return false; 7357 } 7358 7359 CGProfileRela = *CGProfileRelaOrError; 7360 for (const typename ELFT::Rela &Rela : CGProfileRela) 7361 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL())); 7362 } 7363 7364 return true; 7365 } 7366 7367 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 7368 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7369 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 7370 }; 7371 7372 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr = 7373 this->Obj.getSectionAndRelocations(IsMatch); 7374 if (!SecToRelocMapOrErr) { 7375 this->reportUniqueWarning("unable to get CG Profile section(s): " + 7376 toString(SecToRelocMapOrErr.takeError())); 7377 return; 7378 } 7379 7380 for (const auto &CGMapEntry : *SecToRelocMapOrErr) { 7381 const Elf_Shdr *CGSection = CGMapEntry.first; 7382 const Elf_Shdr *CGRelSection = CGMapEntry.second; 7383 7384 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 7385 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); 7386 if (!CGProfileOrErr) { 7387 this->reportUniqueWarning( 7388 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7389 toString(CGProfileOrErr.takeError())); 7390 return; 7391 } 7392 7393 SmallVector<uint32_t, 128> SymbolIndices; 7394 bool UseReloc = 7395 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); 7396 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { 7397 this->reportUniqueWarning( 7398 "number of from/to pairs does not match number of frequencies"); 7399 UseReloc = false; 7400 } 7401 7402 ListScope L(W, "CGProfile"); 7403 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { 7404 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; 7405 DictScope D(W, "CGProfileEntry"); 7406 if (UseReloc) { 7407 uint32_t From = SymbolIndices[I * 2]; 7408 uint32_t To = SymbolIndices[I * 2 + 1]; 7409 W.printNumber("From", this->getStaticSymbolName(From), From); 7410 W.printNumber("To", this->getStaticSymbolName(To), To); 7411 } 7412 W.printNumber("Weight", CGPE.cgp_weight); 7413 } 7414 } 7415 } 7416 7417 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() { 7418 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; 7419 using Elf_Shdr = typename ELFT::Shdr; 7420 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7421 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP || 7422 Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0; 7423 }; 7424 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr = 7425 this->Obj.getSectionAndRelocations(IsMatch); 7426 if (!SecRelocMapOrErr) { 7427 this->reportUniqueWarning( 7428 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " + 7429 toString(SecRelocMapOrErr.takeError())); 7430 return; 7431 } 7432 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) { 7433 std::optional<const Elf_Shdr *> FunctionSec; 7434 if (IsRelocatable) 7435 FunctionSec = 7436 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link)); 7437 ListScope L(W, "BBAddrMap"); 7438 if (IsRelocatable && !RelocSec) { 7439 this->reportUniqueWarning("unable to get relocation section for " + 7440 this->describe(*Sec)); 7441 continue; 7442 } 7443 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = 7444 this->Obj.decodeBBAddrMap(*Sec, RelocSec); 7445 if (!BBAddrMapOrErr) { 7446 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) + 7447 ": " + toString(BBAddrMapOrErr.takeError())); 7448 continue; 7449 } 7450 for (const BBAddrMap &AM : *BBAddrMapOrErr) { 7451 DictScope D(W, "Function"); 7452 W.printHex("At", AM.Addr); 7453 SmallVector<uint32_t> FuncSymIndex = 7454 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec); 7455 std::string FuncName = "<?>"; 7456 if (FuncSymIndex.empty()) 7457 this->reportUniqueWarning( 7458 "could not identify function symbol for address (0x" + 7459 Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec)); 7460 else 7461 FuncName = this->getStaticSymbolName(FuncSymIndex.front()); 7462 W.printString("Name", FuncName); 7463 7464 ListScope L(W, "BB entries"); 7465 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) { 7466 DictScope L(W); 7467 W.printNumber("ID", BBE.ID); 7468 W.printHex("Offset", BBE.Offset); 7469 W.printHex("Size", BBE.Size); 7470 W.printBoolean("HasReturn", BBE.hasReturn()); 7471 W.printBoolean("HasTailCall", BBE.hasTailCall()); 7472 W.printBoolean("IsEHPad", BBE.isEHPad()); 7473 W.printBoolean("CanFallThrough", BBE.canFallThrough()); 7474 W.printBoolean("HasIndirectBranch", BBE.MD.HasIndirectBranch); 7475 } 7476 } 7477 } 7478 } 7479 7480 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 7481 ListScope L(W, "Addrsig"); 7482 if (!this->DotAddrsigSec) 7483 return; 7484 7485 Expected<std::vector<uint64_t>> SymsOrErr = 7486 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 7487 if (!SymsOrErr) { 7488 this->reportUniqueWarning(SymsOrErr.takeError()); 7489 return; 7490 } 7491 7492 for (uint64_t Sym : *SymsOrErr) 7493 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 7494 } 7495 7496 template <typename ELFT> 7497 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7498 ScopedPrinter &W) { 7499 // Return true if we were able to pretty-print the note, false otherwise. 7500 switch (NoteType) { 7501 default: 7502 return false; 7503 case ELF::NT_GNU_ABI_TAG: { 7504 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 7505 if (!AbiTag.IsValid) { 7506 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 7507 return false; 7508 } else { 7509 W.printString("OS", AbiTag.OSName); 7510 W.printString("ABI", AbiTag.ABI); 7511 } 7512 break; 7513 } 7514 case ELF::NT_GNU_BUILD_ID: { 7515 W.printString("Build ID", getGNUBuildId(Desc)); 7516 break; 7517 } 7518 case ELF::NT_GNU_GOLD_VERSION: 7519 W.printString("Version", getDescAsStringRef(Desc)); 7520 break; 7521 case ELF::NT_GNU_PROPERTY_TYPE_0: 7522 ListScope D(W, "Property"); 7523 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 7524 W.printString(Property); 7525 break; 7526 } 7527 return true; 7528 } 7529 7530 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7531 ScopedPrinter &W) { 7532 // Return true if we were able to pretty-print the note, false otherwise. 7533 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 7534 if (Props.empty()) 7535 return false; 7536 for (const auto &KV : Props) 7537 W.printString(KV.first, KV.second); 7538 return true; 7539 } 7540 7541 template <class ELFT> 7542 void LLVMELFDumper<ELFT>::printMemtag( 7543 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 7544 const ArrayRef<uint8_t> AndroidNoteDesc, 7545 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 7546 { 7547 ListScope L(W, "Memtag Dynamic Entries:"); 7548 if (DynamicEntries.empty()) 7549 W.printString("< none found >"); 7550 for (const auto &DynamicEntryKV : DynamicEntries) 7551 W.printString(DynamicEntryKV.first, DynamicEntryKV.second); 7552 } 7553 7554 if (!AndroidNoteDesc.empty()) { 7555 ListScope L(W, "Memtag Android Note:"); 7556 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W); 7557 } 7558 7559 if (Descriptors.empty()) 7560 return; 7561 7562 { 7563 ListScope L(W, "Memtag Global Descriptors:"); 7564 for (const auto &[Addr, BytesToTag] : Descriptors) { 7565 W.printHex("0x" + utohexstr(Addr), BytesToTag); 7566 } 7567 } 7568 } 7569 7570 template <typename ELFT> 7571 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, 7572 ArrayRef<uint8_t> Desc, 7573 ScopedPrinter &W) { 7574 switch (NoteType) { 7575 default: 7576 return false; 7577 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 7578 W.printString("Version", getDescAsStringRef(Desc)); 7579 break; 7580 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 7581 W.printString("Producer", getDescAsStringRef(Desc)); 7582 break; 7583 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 7584 W.printString("Producer version", getDescAsStringRef(Desc)); 7585 break; 7586 } 7587 return true; 7588 } 7589 7590 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 7591 W.printNumber("Page Size", Note.PageSize); 7592 for (const CoreFileMapping &Mapping : Note.Mappings) { 7593 ListScope D(W, "Mapping"); 7594 W.printHex("Start", Mapping.Start); 7595 W.printHex("End", Mapping.End); 7596 W.printHex("Offset", Mapping.Offset); 7597 W.printString("Filename", Mapping.Filename); 7598 } 7599 } 7600 7601 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 7602 ListScope L(W, "Notes"); 7603 7604 std::unique_ptr<DictScope> NoteScope; 7605 size_t Align = 0; 7606 auto StartNotes = [&](std::optional<StringRef> SecName, 7607 const typename ELFT::Off Offset, 7608 const typename ELFT::Addr Size, size_t Al) { 7609 Align = std::max<size_t>(Al, 4); 7610 NoteScope = std::make_unique<DictScope>(W, "NoteSection"); 7611 W.printString("Name", SecName ? *SecName : "<?>"); 7612 W.printHex("Offset", Offset); 7613 W.printHex("Size", Size); 7614 }; 7615 7616 auto EndNotes = [&] { NoteScope.reset(); }; 7617 7618 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 7619 DictScope D2(W, "Note"); 7620 StringRef Name = Note.getName(); 7621 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 7622 Elf_Word Type = Note.getType(); 7623 7624 // Print the note owner/type. 7625 W.printString("Owner", Name); 7626 W.printHex("Data size", Descriptor.size()); 7627 7628 StringRef NoteType = 7629 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 7630 if (!NoteType.empty()) 7631 W.printString("Type", NoteType); 7632 else 7633 W.printString("Type", 7634 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 7635 7636 // Print the description, or fallback to printing raw bytes for unknown 7637 // owners/if we fail to pretty-print the contents. 7638 if (Name == "GNU") { 7639 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7640 return Error::success(); 7641 } else if (Name == "FreeBSD") { 7642 if (std::optional<FreeBSDNote> N = 7643 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 7644 W.printString(N->Type, N->Value); 7645 return Error::success(); 7646 } 7647 } else if (Name == "AMD") { 7648 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 7649 if (!N.Type.empty()) { 7650 W.printString(N.Type, N.Value); 7651 return Error::success(); 7652 } 7653 } else if (Name == "AMDGPU") { 7654 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 7655 if (!N.Type.empty()) { 7656 W.printString(N.Type, N.Value); 7657 return Error::success(); 7658 } 7659 } else if (Name == "LLVMOMPOFFLOAD") { 7660 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7661 return Error::success(); 7662 } else if (Name == "CORE") { 7663 if (Type == ELF::NT_FILE) { 7664 DataExtractor DescExtractor(Descriptor, 7665 ELFT::TargetEndianness == support::little, 7666 sizeof(Elf_Addr)); 7667 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) { 7668 printCoreNoteLLVMStyle(*N, W); 7669 return Error::success(); 7670 } else { 7671 return N.takeError(); 7672 } 7673 } 7674 } else if (Name == "Android") { 7675 if (printAndroidNoteLLVMStyle(Type, Descriptor, W)) 7676 return Error::success(); 7677 } 7678 if (!Descriptor.empty()) { 7679 W.printBinaryBlock("Description data", Descriptor); 7680 } 7681 return Error::success(); 7682 }; 7683 7684 processNotesHelper(*this, /*StartNotesFn=*/StartNotes, 7685 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes); 7686 } 7687 7688 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 7689 ListScope L(W, "LinkerOptions"); 7690 7691 unsigned I = -1; 7692 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 7693 ++I; 7694 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 7695 continue; 7696 7697 Expected<ArrayRef<uint8_t>> ContentsOrErr = 7698 this->Obj.getSectionContents(Shdr); 7699 if (!ContentsOrErr) { 7700 this->reportUniqueWarning("unable to read the content of the " 7701 "SHT_LLVM_LINKER_OPTIONS section: " + 7702 toString(ContentsOrErr.takeError())); 7703 continue; 7704 } 7705 if (ContentsOrErr->empty()) 7706 continue; 7707 7708 if (ContentsOrErr->back() != 0) { 7709 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 7710 Twine(I) + 7711 " is broken: the " 7712 "content is not null-terminated"); 7713 continue; 7714 } 7715 7716 SmallVector<StringRef, 16> Strings; 7717 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 7718 if (Strings.size() % 2 != 0) { 7719 this->reportUniqueWarning( 7720 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 7721 " is broken: an incomplete " 7722 "key-value pair was found. The last possible key was: \"" + 7723 Strings.back() + "\""); 7724 continue; 7725 } 7726 7727 for (size_t I = 0; I < Strings.size(); I += 2) 7728 W.printString(Strings[I], Strings[I + 1]); 7729 } 7730 } 7731 7732 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 7733 ListScope L(W, "DependentLibs"); 7734 this->printDependentLibsHelper( 7735 [](const Elf_Shdr &) {}, 7736 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 7737 } 7738 7739 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 7740 ListScope L(W, "StackSizes"); 7741 if (this->Obj.getHeader().e_type == ELF::ET_REL) 7742 this->printRelocatableStackSizes([]() {}); 7743 else 7744 this->printNonRelocatableStackSizes([]() {}); 7745 } 7746 7747 template <class ELFT> 7748 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 7749 ArrayRef<std::string> FuncNames) { 7750 DictScope D(W, "Entry"); 7751 W.printList("Functions", FuncNames); 7752 W.printHex("Size", Size); 7753 } 7754 7755 template <class ELFT> 7756 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 7757 auto PrintEntry = [&](const Elf_Addr *E) { 7758 W.printHex("Address", Parser.getGotAddress(E)); 7759 W.printNumber("Access", Parser.getGotOffset(E)); 7760 W.printHex("Initial", *E); 7761 }; 7762 7763 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 7764 7765 W.printHex("Canonical gp value", Parser.getGp()); 7766 { 7767 ListScope RS(W, "Reserved entries"); 7768 { 7769 DictScope D(W, "Entry"); 7770 PrintEntry(Parser.getGotLazyResolver()); 7771 W.printString("Purpose", StringRef("Lazy resolver")); 7772 } 7773 7774 if (Parser.getGotModulePointer()) { 7775 DictScope D(W, "Entry"); 7776 PrintEntry(Parser.getGotModulePointer()); 7777 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 7778 } 7779 } 7780 { 7781 ListScope LS(W, "Local entries"); 7782 for (auto &E : Parser.getLocalEntries()) { 7783 DictScope D(W, "Entry"); 7784 PrintEntry(&E); 7785 } 7786 } 7787 7788 if (Parser.IsStatic) 7789 return; 7790 7791 { 7792 ListScope GS(W, "Global entries"); 7793 for (auto &E : Parser.getGlobalEntries()) { 7794 DictScope D(W, "Entry"); 7795 7796 PrintEntry(&E); 7797 7798 const Elf_Sym &Sym = *Parser.getGotSym(&E); 7799 W.printHex("Value", Sym.st_value); 7800 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 7801 7802 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 7803 DataRegion<Elf_Word> ShndxTable( 7804 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7805 printSymbolSection(Sym, SymIndex, ShndxTable); 7806 7807 std::string SymName = this->getFullSymbolName( 7808 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 7809 W.printNumber("Name", SymName, Sym.st_name); 7810 } 7811 } 7812 7813 W.printNumber("Number of TLS and multi-GOT entries", 7814 uint64_t(Parser.getOtherEntries().size())); 7815 } 7816 7817 template <class ELFT> 7818 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 7819 auto PrintEntry = [&](const Elf_Addr *E) { 7820 W.printHex("Address", Parser.getPltAddress(E)); 7821 W.printHex("Initial", *E); 7822 }; 7823 7824 DictScope GS(W, "PLT GOT"); 7825 7826 { 7827 ListScope RS(W, "Reserved entries"); 7828 { 7829 DictScope D(W, "Entry"); 7830 PrintEntry(Parser.getPltLazyResolver()); 7831 W.printString("Purpose", StringRef("PLT lazy resolver")); 7832 } 7833 7834 if (auto E = Parser.getPltModulePointer()) { 7835 DictScope D(W, "Entry"); 7836 PrintEntry(E); 7837 W.printString("Purpose", StringRef("Module pointer")); 7838 } 7839 } 7840 { 7841 ListScope LS(W, "Entries"); 7842 DataRegion<Elf_Word> ShndxTable( 7843 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7844 for (auto &E : Parser.getPltEntries()) { 7845 DictScope D(W, "Entry"); 7846 PrintEntry(&E); 7847 7848 const Elf_Sym &Sym = *Parser.getPltSym(&E); 7849 W.printHex("Value", Sym.st_value); 7850 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 7851 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 7852 ShndxTable); 7853 7854 const Elf_Sym *FirstSym = cantFail( 7855 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 7856 std::string SymName = this->getFullSymbolName( 7857 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 7858 W.printNumber("Name", SymName, Sym.st_name); 7859 } 7860 } 7861 } 7862 7863 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 7864 const Elf_Mips_ABIFlags<ELFT> *Flags; 7865 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 7866 getMipsAbiFlagsSection(*this)) { 7867 Flags = *SecOrErr; 7868 if (!Flags) { 7869 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 7870 return; 7871 } 7872 } else { 7873 this->reportUniqueWarning(SecOrErr.takeError()); 7874 return; 7875 } 7876 7877 raw_ostream &OS = W.getOStream(); 7878 DictScope GS(W, "MIPS ABI Flags"); 7879 7880 W.printNumber("Version", Flags->version); 7881 W.startLine() << "ISA: "; 7882 if (Flags->isa_rev <= 1) 7883 OS << format("MIPS%u", Flags->isa_level); 7884 else 7885 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 7886 OS << "\n"; 7887 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType)); 7888 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags)); 7889 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType)); 7890 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 7891 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 7892 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 7893 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1)); 7894 W.printHex("Flags 2", Flags->flags2); 7895 } 7896 7897 template <class ELFT> 7898 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 7899 ArrayRef<std::string> InputFilenames, 7900 const Archive *A) { 7901 FileScope = std::make_unique<DictScope>(this->W); 7902 DictScope D(this->W, "FileSummary"); 7903 this->W.printString("File", FileStr); 7904 this->W.printString("Format", Obj.getFileFormatName()); 7905 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch())); 7906 this->W.printString( 7907 "AddressSize", 7908 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress()))); 7909 this->printLoadName(); 7910 } 7911 7912 template <class ELFT> 7913 void JSONELFDumper<ELFT>::printZeroSymbolOtherField( 7914 const Elf_Sym &Symbol) const { 7915 // We want the JSON format to be uniform, since it is machine readable, so 7916 // always print the `Other` field the same way. 7917 this->printSymbolOtherField(Symbol); 7918 } 7919 7920 template <class ELFT> 7921 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 7922 StringRef SymbolName, 7923 StringRef RelocName) { 7924 this->printExpandedRelRelaReloc(R, SymbolName, RelocName); 7925 } 7926 7927 template <class ELFT> 7928 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 7929 StringRef Name, 7930 const unsigned SecNdx) { 7931 DictScope Group(this->W); 7932 this->W.printNumber("SectionIndex", SecNdx); 7933 ListScope D(this->W, "Relocs"); 7934 this->printRelocationsHelper(Sec); 7935 } 7936 7937 template <class ELFT> 7938 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const { 7939 return "GroupSections"; 7940 } 7941 7942 template <class ELFT> 7943 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 7944 uint64_t Idx) const { 7945 DictScope Grp(this->W); 7946 this->W.printString("Name", Name); 7947 this->W.printNumber("Index", Idx); 7948 } 7949 7950 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const { 7951 // JSON output does not need to print anything for empty groups 7952 } 7953