1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/BitVector.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/DenseSet.h" 23 #include "llvm/ADT/MapVector.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 31 #include "llvm/BinaryFormat/ELF.h" 32 #include "llvm/BinaryFormat/MsgPackDocument.h" 33 #include "llvm/Demangle/Demangle.h" 34 #include "llvm/Object/Archive.h" 35 #include "llvm/Object/ELF.h" 36 #include "llvm/Object/ELFObjectFile.h" 37 #include "llvm/Object/ELFTypes.h" 38 #include "llvm/Object/Error.h" 39 #include "llvm/Object/ObjectFile.h" 40 #include "llvm/Object/RelocationResolver.h" 41 #include "llvm/Object/StackMapParser.h" 42 #include "llvm/Support/AMDGPUMetadata.h" 43 #include "llvm/Support/ARMAttributeParser.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Endian.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/FormatVariadic.h" 51 #include "llvm/Support/FormattedStream.h" 52 #include "llvm/Support/LEB128.h" 53 #include "llvm/Support/MSP430AttributeParser.h" 54 #include "llvm/Support/MSP430Attributes.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/MipsABIFlags.h" 57 #include "llvm/Support/RISCVAttributeParser.h" 58 #include "llvm/Support/RISCVAttributes.h" 59 #include "llvm/Support/ScopedPrinter.h" 60 #include "llvm/Support/SystemZ/zOSSupport.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include <algorithm> 63 #include <cinttypes> 64 #include <cstddef> 65 #include <cstdint> 66 #include <cstdlib> 67 #include <iterator> 68 #include <memory> 69 #include <optional> 70 #include <string> 71 #include <system_error> 72 #include <vector> 73 74 using namespace llvm; 75 using namespace llvm::object; 76 using namespace ELF; 77 78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 79 case ns::enum: \ 80 return #enum; 81 82 #define ENUM_ENT(enum, altName) \ 83 { #enum, altName, ELF::enum } 84 85 #define ENUM_ENT_1(enum) \ 86 { #enum, #enum, ELF::enum } 87 88 namespace { 89 90 template <class ELFT> struct RelSymbol { 91 RelSymbol(const typename ELFT::Sym *S, StringRef N) 92 : Sym(S), Name(N.str()) {} 93 const typename ELFT::Sym *Sym; 94 std::string Name; 95 }; 96 97 /// Represents a contiguous uniform range in the file. We cannot just create a 98 /// range directly because when creating one of these from the .dynamic table 99 /// the size, entity size and virtual address are different entries in arbitrary 100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 101 struct DynRegionInfo { 102 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 103 : Obj(&Owner), Dumper(&D) {} 104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 105 uint64_t S, uint64_t ES) 106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 107 108 /// Address in current address space. 109 const uint8_t *Addr = nullptr; 110 /// Size in bytes of the region. 111 uint64_t Size = 0; 112 /// Size of each entity in the region. 113 uint64_t EntSize = 0; 114 115 /// Owner object. Used for error reporting. 116 const Binary *Obj; 117 /// Dumper used for error reporting. 118 const ObjDumper *Dumper; 119 /// Error prefix. Used for error reporting to provide more information. 120 std::string Context; 121 /// Region size name. Used for error reporting. 122 StringRef SizePrintName = "size"; 123 /// Entry size name. Used for error reporting. If this field is empty, errors 124 /// will not mention the entry size. 125 StringRef EntSizePrintName = "entry size"; 126 127 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 128 const Type *Start = reinterpret_cast<const Type *>(Addr); 129 if (!Start) 130 return {Start, Start}; 131 132 const uint64_t Offset = 133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 135 136 if (Size > ObjSize - Offset) { 137 Dumper->reportUniqueWarning( 138 "unable to read data at 0x" + Twine::utohexstr(Offset) + 139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 140 "): it goes past the end of the file of size 0x" + 141 Twine::utohexstr(ObjSize)); 142 return {Start, Start}; 143 } 144 145 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 146 return {Start, Start + (Size / EntSize)}; 147 148 std::string Msg; 149 if (!Context.empty()) 150 Msg += Context + " has "; 151 152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 153 .str(); 154 if (!EntSizePrintName.empty()) 155 Msg += 156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 157 .str(); 158 159 Dumper->reportUniqueWarning(Msg); 160 return {Start, Start}; 161 } 162 }; 163 164 struct GroupMember { 165 StringRef Name; 166 uint64_t Index; 167 }; 168 169 struct GroupSection { 170 StringRef Name; 171 std::string Signature; 172 uint64_t ShName; 173 uint64_t Index; 174 uint32_t Link; 175 uint32_t Info; 176 uint32_t Type; 177 std::vector<GroupMember> Members; 178 }; 179 180 namespace { 181 182 struct NoteType { 183 uint32_t ID; 184 StringRef Name; 185 }; 186 187 } // namespace 188 189 template <class ELFT> class Relocation { 190 public: 191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 193 Offset(R.r_offset), Info(R.r_info) {} 194 195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 197 Addend = R.r_addend; 198 } 199 200 uint32_t Type; 201 uint32_t Symbol; 202 typename ELFT::uint Offset; 203 typename ELFT::uint Info; 204 std::optional<int64_t> Addend; 205 }; 206 207 template <class ELFT> class MipsGOTParser; 208 209 template <typename ELFT> class ELFDumper : public ObjDumper { 210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 211 212 public: 213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 214 215 void printUnwindInfo() override; 216 void printNeededLibraries() override; 217 void printHashTable() override; 218 void printGnuHashTable() override; 219 void printLoadName() override; 220 void printVersionInfo() override; 221 void printArchSpecificInfo() override; 222 void printStackMap() const override; 223 void printMemtag() override; 224 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr); 225 226 // Hash histogram shows statistics of how efficient the hash was for the 227 // dynamic symbol table. The table shows the number of hash buckets for 228 // different lengths of chains as an absolute number and percentage of the 229 // total buckets, and the cumulative coverage of symbols for each set of 230 // buckets. 231 void printHashHistograms() override; 232 233 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 234 235 std::string describe(const Elf_Shdr &Sec) const; 236 237 unsigned getHashTableEntSize() const { 238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 239 // sections. This violates the ELF specification. 240 if (Obj.getHeader().e_machine == ELF::EM_S390 || 241 Obj.getHeader().e_machine == ELF::EM_ALPHA) 242 return 8; 243 return 4; 244 } 245 246 std::vector<EnumEntry<unsigned>> 247 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const; 248 249 Elf_Dyn_Range dynamic_table() const { 250 // A valid .dynamic section contains an array of entries terminated 251 // with a DT_NULL entry. However, sometimes the section content may 252 // continue past the DT_NULL entry, so to dump the section correctly, 253 // we first find the end of the entries by iterating over them. 254 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 255 256 size_t Size = 0; 257 while (Size < Table.size()) 258 if (Table[Size++].getTag() == DT_NULL) 259 break; 260 261 return Table.slice(0, Size); 262 } 263 264 Elf_Sym_Range dynamic_symbols() const { 265 if (!DynSymRegion) 266 return Elf_Sym_Range(); 267 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 268 } 269 270 const Elf_Shdr *findSectionByName(StringRef Name) const; 271 272 StringRef getDynamicStringTable() const { return DynamicStringTable; } 273 274 protected: 275 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 276 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 277 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 278 279 void 280 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 281 function_ref<void(StringRef, uint64_t)> OnLibEntry); 282 283 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 284 const RelSymbol<ELFT> &RelSym) = 0; 285 virtual void printRelrReloc(const Elf_Relr &R) = 0; 286 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 287 const DynRegionInfo &Reg) {} 288 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 289 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 290 void printDynamicReloc(const Relocation<ELFT> &R); 291 void printDynamicRelocationsHelper(); 292 void printRelocationsHelper(const Elf_Shdr &Sec); 293 void forEachRelocationDo( 294 const Elf_Shdr &Sec, bool RawRelr, 295 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 296 const Elf_Shdr &, const Elf_Shdr *)> 297 RelRelaFn, 298 llvm::function_ref<void(const Elf_Relr &)> RelrFn); 299 300 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 301 bool NonVisibilityBitsUsed, 302 bool ExtraSymInfo) const {}; 303 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 304 DataRegion<Elf_Word> ShndxTable, 305 std::optional<StringRef> StrTable, bool IsDynamic, 306 bool NonVisibilityBitsUsed, 307 bool ExtraSymInfo) const = 0; 308 309 virtual void printMipsABIFlags() = 0; 310 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 311 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 312 313 virtual void printMemtag( 314 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 315 const ArrayRef<uint8_t> AndroidNoteDesc, 316 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0; 317 318 virtual void printHashHistogram(const Elf_Hash &HashTable) const; 319 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const; 320 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain, 321 size_t TotalSyms, ArrayRef<size_t> Count, 322 bool IsGnu) const = 0; 323 324 Expected<ArrayRef<Elf_Versym>> 325 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 326 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 327 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 328 329 std::vector<GroupSection> getGroups(); 330 331 // Returns the function symbol index for the given address. Matches the 332 // symbol's section with FunctionSec when specified. 333 // Returns std::nullopt if no function symbol can be found for the address or 334 // in case it is not defined in the specified section. 335 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress( 336 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec); 337 bool printFunctionStackSize(uint64_t SymValue, 338 std::optional<const Elf_Shdr *> FunctionSec, 339 const Elf_Shdr &StackSizeSec, DataExtractor Data, 340 uint64_t *Offset); 341 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 342 unsigned Ndx, const Elf_Shdr *SymTab, 343 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 344 const RelocationResolver &Resolver, DataExtractor Data); 345 virtual void printStackSizeEntry(uint64_t Size, 346 ArrayRef<std::string> FuncNames) = 0; 347 348 void printRelocatableStackSizes(std::function<void()> PrintHeader); 349 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 350 351 const object::ELFObjectFile<ELFT> &ObjF; 352 const ELFFile<ELFT> &Obj; 353 StringRef FileName; 354 355 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 356 uint64_t EntSize) { 357 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 358 return createError("offset (0x" + Twine::utohexstr(Offset) + 359 ") + size (0x" + Twine::utohexstr(Size) + 360 ") is greater than the file size (0x" + 361 Twine::utohexstr(Obj.getBufSize()) + ")"); 362 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 363 } 364 365 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>, 366 llvm::endianness); 367 void printMipsReginfo(); 368 void printMipsOptions(); 369 370 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 371 void loadDynamicTable(); 372 void parseDynamicTable(); 373 374 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 375 bool &IsDefault) const; 376 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const; 377 378 DynRegionInfo DynRelRegion; 379 DynRegionInfo DynRelaRegion; 380 DynRegionInfo DynRelrRegion; 381 DynRegionInfo DynPLTRelRegion; 382 std::optional<DynRegionInfo> DynSymRegion; 383 DynRegionInfo DynSymTabShndxRegion; 384 DynRegionInfo DynamicTable; 385 StringRef DynamicStringTable; 386 const Elf_Hash *HashTable = nullptr; 387 const Elf_GnuHash *GnuHashTable = nullptr; 388 const Elf_Shdr *DotSymtabSec = nullptr; 389 const Elf_Shdr *DotDynsymSec = nullptr; 390 const Elf_Shdr *DotAddrsigSec = nullptr; 391 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 392 std::optional<uint64_t> SONameOffset; 393 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap; 394 395 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 396 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 397 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 398 399 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 400 DataRegion<Elf_Word> ShndxTable, 401 std::optional<StringRef> StrTable, 402 bool IsDynamic) const; 403 Expected<unsigned> 404 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 405 DataRegion<Elf_Word> ShndxTable) const; 406 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 407 unsigned SectionIndex) const; 408 std::string getStaticSymbolName(uint32_t Index) const; 409 StringRef getDynamicString(uint64_t Value) const; 410 411 void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const; 412 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 413 414 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 415 const Elf_Shdr *SymTab) const; 416 417 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 418 419 private: 420 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap; 421 }; 422 423 template <class ELFT> 424 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 425 return ::describe(Obj, Sec); 426 } 427 428 namespace { 429 430 template <class ELFT> struct SymtabLink { 431 typename ELFT::SymRange Symbols; 432 StringRef StringTable; 433 const typename ELFT::Shdr *SymTab; 434 }; 435 436 // Returns the linked symbol table, symbols and associated string table for a 437 // given section. 438 template <class ELFT> 439 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 440 const typename ELFT::Shdr &Sec, 441 unsigned ExpectedType) { 442 Expected<const typename ELFT::Shdr *> SymtabOrErr = 443 Obj.getSection(Sec.sh_link); 444 if (!SymtabOrErr) 445 return createError("invalid section linked to " + describe(Obj, Sec) + 446 ": " + toString(SymtabOrErr.takeError())); 447 448 if ((*SymtabOrErr)->sh_type != ExpectedType) 449 return createError( 450 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 451 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 452 ", but got " + 453 object::getELFSectionTypeName(Obj.getHeader().e_machine, 454 (*SymtabOrErr)->sh_type)); 455 456 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 457 if (!StrTabOrErr) 458 return createError( 459 "can't get a string table for the symbol table linked to " + 460 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 461 462 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 463 if (!SymsOrErr) 464 return createError("unable to read symbols from the " + describe(Obj, Sec) + 465 ": " + toString(SymsOrErr.takeError())); 466 467 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 468 } 469 470 } // namespace 471 472 template <class ELFT> 473 Expected<ArrayRef<typename ELFT::Versym>> 474 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 475 StringRef *StrTab, 476 const Elf_Shdr **SymTabSec) const { 477 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 478 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 479 sizeof(uint16_t) != 480 0) 481 return createError("the " + describe(Sec) + " is misaligned"); 482 483 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 484 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 485 if (!VersionsOrErr) 486 return createError("cannot read content of " + describe(Sec) + ": " + 487 toString(VersionsOrErr.takeError())); 488 489 Expected<SymtabLink<ELFT>> SymTabOrErr = 490 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 491 if (!SymTabOrErr) { 492 reportUniqueWarning(SymTabOrErr.takeError()); 493 return *VersionsOrErr; 494 } 495 496 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 497 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 498 Twine(VersionsOrErr->size()) + 499 ") does not match the number of symbols (" + 500 Twine(SymTabOrErr->Symbols.size()) + 501 ") in the symbol table with index " + 502 Twine(Sec.sh_link)); 503 504 if (SymTab) { 505 *SymTab = SymTabOrErr->Symbols; 506 *StrTab = SymTabOrErr->StringTable; 507 *SymTabSec = SymTabOrErr->SymTab; 508 } 509 return *VersionsOrErr; 510 } 511 512 template <class ELFT> 513 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic, 514 bool ExtraSymInfo) const { 515 std::optional<StringRef> StrTable; 516 size_t Entries = 0; 517 Elf_Sym_Range Syms(nullptr, nullptr); 518 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 519 520 if (IsDynamic) { 521 StrTable = DynamicStringTable; 522 Syms = dynamic_symbols(); 523 Entries = Syms.size(); 524 } else if (DotSymtabSec) { 525 if (Expected<StringRef> StrTableOrErr = 526 Obj.getStringTableForSymtab(*DotSymtabSec)) 527 StrTable = *StrTableOrErr; 528 else 529 reportUniqueWarning( 530 "unable to get the string table for the SHT_SYMTAB section: " + 531 toString(StrTableOrErr.takeError())); 532 533 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 534 Syms = *SymsOrErr; 535 else 536 reportUniqueWarning( 537 "unable to read symbols from the SHT_SYMTAB section: " + 538 toString(SymsOrErr.takeError())); 539 Entries = DotSymtabSec->getEntityCount(); 540 } 541 if (Syms.empty()) 542 return; 543 544 // The st_other field has 2 logical parts. The first two bits hold the symbol 545 // visibility (STV_*) and the remainder hold other platform-specific values. 546 bool NonVisibilityBitsUsed = 547 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 548 549 DataRegion<Elf_Word> ShndxTable = 550 IsDynamic ? DataRegion<Elf_Word>( 551 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 552 this->getElfObject().getELFFile().end()) 553 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 554 555 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo); 556 for (const Elf_Sym &Sym : Syms) 557 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 558 NonVisibilityBitsUsed, ExtraSymInfo); 559 } 560 561 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 562 formatted_raw_ostream &OS; 563 564 public: 565 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 566 567 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 568 : ELFDumper<ELFT>(ObjF, Writer), 569 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 570 assert(&this->W.getOStream() == &llvm::fouts()); 571 } 572 573 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 574 ArrayRef<std::string> InputFilenames, 575 const Archive *A) override; 576 void printFileHeaders() override; 577 void printGroupSections() override; 578 void printRelocations() override; 579 void printSectionHeaders() override; 580 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, 581 bool ExtraSymInfo) override; 582 void printHashSymbols() override; 583 void printSectionDetails() override; 584 void printDependentLibs() override; 585 void printDynamicTable() override; 586 void printDynamicRelocations() override; 587 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 588 bool NonVisibilityBitsUsed, 589 bool ExtraSymInfo) const override; 590 void printProgramHeaders(bool PrintProgramHeaders, 591 cl::boolOrDefault PrintSectionMapping) override; 592 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 593 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 594 void printVersionDependencySection(const Elf_Shdr *Sec) override; 595 void printCGProfile() override; 596 void printBBAddrMaps() override; 597 void printAddrsig() override; 598 void printNotes() override; 599 void printELFLinkerOptions() override; 600 void printStackSizes() override; 601 void printMemtag( 602 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 603 const ArrayRef<uint8_t> AndroidNoteDesc, 604 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 605 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 606 size_t TotalSyms, ArrayRef<size_t> Count, 607 bool IsGnu) const override; 608 609 private: 610 void printHashTableSymbols(const Elf_Hash &HashTable); 611 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 612 613 struct Field { 614 std::string Str; 615 unsigned Column; 616 617 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 618 Field(unsigned Col) : Column(Col) {} 619 }; 620 621 template <typename T, typename TEnum> 622 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 623 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 624 TEnum EnumMask3 = {}) const { 625 std::string Str; 626 for (const EnumEntry<TEnum> &Flag : EnumValues) { 627 if (Flag.Value == 0) 628 continue; 629 630 TEnum EnumMask{}; 631 if (Flag.Value & EnumMask1) 632 EnumMask = EnumMask1; 633 else if (Flag.Value & EnumMask2) 634 EnumMask = EnumMask2; 635 else if (Flag.Value & EnumMask3) 636 EnumMask = EnumMask3; 637 bool IsEnum = (Flag.Value & EnumMask) != 0; 638 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 639 (IsEnum && (Value & EnumMask) == Flag.Value)) { 640 if (!Str.empty()) 641 Str += ", "; 642 Str += Flag.AltName; 643 } 644 } 645 return Str; 646 } 647 648 formatted_raw_ostream &printField(struct Field F) const { 649 if (F.Column != 0) 650 OS.PadToColumn(F.Column); 651 OS << F.Str; 652 OS.flush(); 653 return OS; 654 } 655 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 656 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 657 uint32_t Bucket); 658 void printRelrReloc(const Elf_Relr &R) override; 659 void printRelRelaReloc(const Relocation<ELFT> &R, 660 const RelSymbol<ELFT> &RelSym) override; 661 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 662 DataRegion<Elf_Word> ShndxTable, 663 std::optional<StringRef> StrTable, bool IsDynamic, 664 bool NonVisibilityBitsUsed, 665 bool ExtraSymInfo) const override; 666 void printDynamicRelocHeader(unsigned Type, StringRef Name, 667 const DynRegionInfo &Reg) override; 668 669 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 670 DataRegion<Elf_Word> ShndxTable, 671 bool ExtraSymInfo = false) const; 672 void printProgramHeaders() override; 673 void printSectionMapping() override; 674 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 675 const Twine &Label, unsigned EntriesNum); 676 677 void printStackSizeEntry(uint64_t Size, 678 ArrayRef<std::string> FuncNames) override; 679 680 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 681 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 682 void printMipsABIFlags() override; 683 }; 684 685 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 686 public: 687 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 688 689 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 690 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 691 692 void printFileHeaders() override; 693 void printGroupSections() override; 694 void printRelocations() override; 695 void printSectionHeaders() override; 696 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols, 697 bool ExtraSymInfo) override; 698 void printDependentLibs() override; 699 void printDynamicTable() override; 700 void printDynamicRelocations() override; 701 void printProgramHeaders(bool PrintProgramHeaders, 702 cl::boolOrDefault PrintSectionMapping) override; 703 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 704 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 705 void printVersionDependencySection(const Elf_Shdr *Sec) override; 706 void printCGProfile() override; 707 void printBBAddrMaps() override; 708 void printAddrsig() override; 709 void printNotes() override; 710 void printELFLinkerOptions() override; 711 void printStackSizes() override; 712 void printMemtag( 713 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 714 const ArrayRef<uint8_t> AndroidNoteDesc, 715 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override; 716 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 717 DataRegion<Elf_Word> ShndxTable) const; 718 void printHashHistogramStats(size_t NBucket, size_t MaxChain, 719 size_t TotalSyms, ArrayRef<size_t> Count, 720 bool IsGnu) const override; 721 722 private: 723 void printRelrReloc(const Elf_Relr &R) override; 724 void printRelRelaReloc(const Relocation<ELFT> &R, 725 const RelSymbol<ELFT> &RelSym) override; 726 727 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 728 DataRegion<Elf_Word> ShndxTable, 729 std::optional<StringRef> StrTable, bool IsDynamic, 730 bool /*NonVisibilityBitsUsed*/, 731 bool /*ExtraSymInfo*/) const override; 732 void printProgramHeaders() override; 733 void printSectionMapping() override {} 734 void printStackSizeEntry(uint64_t Size, 735 ArrayRef<std::string> FuncNames) override; 736 737 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 738 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 739 void printMipsABIFlags() override; 740 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const; 741 742 protected: 743 virtual std::string getGroupSectionHeaderName() const; 744 void printSymbolOtherField(const Elf_Sym &Symbol) const; 745 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R, 746 StringRef SymbolName, 747 StringRef RelocName); 748 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 749 StringRef SymbolName, 750 StringRef RelocName); 751 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 752 const unsigned SecNdx); 753 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const; 754 virtual void printEmptyGroupMessage() const; 755 756 ScopedPrinter &W; 757 }; 758 759 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except 760 // it uses a JSONScopedPrinter. 761 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> { 762 public: 763 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 764 765 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 766 : LLVMELFDumper<ELFT>(ObjF, Writer) {} 767 768 std::string getGroupSectionHeaderName() const override; 769 770 void printFileSummary(StringRef FileStr, ObjectFile &Obj, 771 ArrayRef<std::string> InputFilenames, 772 const Archive *A) override; 773 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override; 774 775 void printDefaultRelRelaReloc(const Relocation<ELFT> &R, 776 StringRef SymbolName, 777 StringRef RelocName) override; 778 779 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name, 780 const unsigned SecNdx) override; 781 782 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override; 783 784 void printEmptyGroupMessage() const override; 785 786 private: 787 std::unique_ptr<DictScope> FileScope; 788 }; 789 790 } // end anonymous namespace 791 792 namespace llvm { 793 794 template <class ELFT> 795 static std::unique_ptr<ObjDumper> 796 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 797 if (opts::Output == opts::GNU) 798 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 799 else if (opts::Output == opts::JSON) 800 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer); 801 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 802 } 803 804 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 805 ScopedPrinter &Writer) { 806 // Little-endian 32-bit 807 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 808 return createELFDumper(*ELFObj, Writer); 809 810 // Big-endian 32-bit 811 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 812 return createELFDumper(*ELFObj, Writer); 813 814 // Little-endian 64-bit 815 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 816 return createELFDumper(*ELFObj, Writer); 817 818 // Big-endian 64-bit 819 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 820 } 821 822 } // end namespace llvm 823 824 template <class ELFT> 825 Expected<SmallVector<std::optional<VersionEntry>, 0> *> 826 ELFDumper<ELFT>::getVersionMap() const { 827 // If the VersionMap has already been loaded or if there is no dynamic symtab 828 // or version table, there is nothing to do. 829 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 830 return &VersionMap; 831 832 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr = 833 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 834 if (MapOrErr) 835 VersionMap = *MapOrErr; 836 else 837 return MapOrErr.takeError(); 838 839 return &VersionMap; 840 } 841 842 template <typename ELFT> 843 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 844 bool &IsDefault) const { 845 // This is a dynamic symbol. Look in the GNU symbol version table. 846 if (!SymbolVersionSection) { 847 // No version table. 848 IsDefault = false; 849 return ""; 850 } 851 852 assert(DynSymRegion && "DynSymRegion has not been initialised"); 853 // Determine the position in the symbol table of this entry. 854 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 855 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 856 sizeof(Elf_Sym); 857 858 // Get the corresponding version index entry. 859 Expected<const Elf_Versym *> EntryOrErr = 860 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 861 if (!EntryOrErr) 862 return EntryOrErr.takeError(); 863 864 unsigned Version = (*EntryOrErr)->vs_index; 865 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 866 IsDefault = false; 867 return ""; 868 } 869 870 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 871 getVersionMap(); 872 if (!MapOrErr) 873 return MapOrErr.takeError(); 874 875 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 876 Sym.st_shndx == ELF::SHN_UNDEF); 877 } 878 879 template <typename ELFT> 880 Expected<RelSymbol<ELFT>> 881 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 882 const Elf_Shdr *SymTab) const { 883 if (R.Symbol == 0) 884 return RelSymbol<ELFT>(nullptr, ""); 885 886 Expected<const Elf_Sym *> SymOrErr = 887 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 888 if (!SymOrErr) 889 return createError("unable to read an entry with index " + Twine(R.Symbol) + 890 " from " + describe(*SymTab) + ": " + 891 toString(SymOrErr.takeError())); 892 const Elf_Sym *Sym = *SymOrErr; 893 if (!Sym) 894 return RelSymbol<ELFT>(nullptr, ""); 895 896 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 897 if (!StrTableOrErr) 898 return StrTableOrErr.takeError(); 899 900 const Elf_Sym *FirstSym = 901 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 902 std::string SymbolName = 903 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 904 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 905 return RelSymbol<ELFT>(Sym, SymbolName); 906 } 907 908 template <typename ELFT> 909 ArrayRef<typename ELFT::Word> 910 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 911 if (Symtab) { 912 auto It = ShndxTables.find(Symtab); 913 if (It != ShndxTables.end()) 914 return It->second; 915 } 916 return {}; 917 } 918 919 static std::string maybeDemangle(StringRef Name) { 920 return opts::Demangle ? demangle(Name) : Name.str(); 921 } 922 923 template <typename ELFT> 924 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 925 auto Warn = [&](Error E) -> std::string { 926 reportUniqueWarning("unable to read the name of symbol with index " + 927 Twine(Index) + ": " + toString(std::move(E))); 928 return "<?>"; 929 }; 930 931 Expected<const typename ELFT::Sym *> SymOrErr = 932 Obj.getSymbol(DotSymtabSec, Index); 933 if (!SymOrErr) 934 return Warn(SymOrErr.takeError()); 935 936 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 937 if (!StrTabOrErr) 938 return Warn(StrTabOrErr.takeError()); 939 940 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 941 if (!NameOrErr) 942 return Warn(NameOrErr.takeError()); 943 return maybeDemangle(*NameOrErr); 944 } 945 946 template <typename ELFT> 947 std::string ELFDumper<ELFT>::getFullSymbolName( 948 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 949 std::optional<StringRef> StrTable, bool IsDynamic) const { 950 if (!StrTable) 951 return "<?>"; 952 953 std::string SymbolName; 954 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 955 SymbolName = maybeDemangle(*NameOrErr); 956 } else { 957 reportUniqueWarning(NameOrErr.takeError()); 958 return "<?>"; 959 } 960 961 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 962 Expected<unsigned> SectionIndex = 963 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 964 if (!SectionIndex) { 965 reportUniqueWarning(SectionIndex.takeError()); 966 return "<?>"; 967 } 968 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 969 if (!NameOrErr) { 970 reportUniqueWarning(NameOrErr.takeError()); 971 return ("<section " + Twine(*SectionIndex) + ">").str(); 972 } 973 return std::string(*NameOrErr); 974 } 975 976 if (!IsDynamic) 977 return SymbolName; 978 979 bool IsDefault; 980 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 981 if (!VersionOrErr) { 982 reportUniqueWarning(VersionOrErr.takeError()); 983 return SymbolName + "@<corrupt>"; 984 } 985 986 if (!VersionOrErr->empty()) { 987 SymbolName += (IsDefault ? "@@" : "@"); 988 SymbolName += *VersionOrErr; 989 } 990 return SymbolName; 991 } 992 993 template <typename ELFT> 994 Expected<unsigned> 995 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 996 DataRegion<Elf_Word> ShndxTable) const { 997 unsigned Ndx = Symbol.st_shndx; 998 if (Ndx == SHN_XINDEX) 999 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 1000 ShndxTable); 1001 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 1002 return Ndx; 1003 1004 auto CreateErr = [&](const Twine &Name, 1005 std::optional<unsigned> Offset = std::nullopt) { 1006 std::string Desc; 1007 if (Offset) 1008 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 1009 else 1010 Desc = Name.str(); 1011 return createError( 1012 "unable to get section index for symbol with st_shndx = 0x" + 1013 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 1014 }; 1015 1016 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 1017 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 1018 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 1019 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 1020 if (Ndx == ELF::SHN_UNDEF) 1021 return CreateErr("SHN_UNDEF"); 1022 if (Ndx == ELF::SHN_ABS) 1023 return CreateErr("SHN_ABS"); 1024 if (Ndx == ELF::SHN_COMMON) 1025 return CreateErr("SHN_COMMON"); 1026 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 1027 } 1028 1029 template <typename ELFT> 1030 Expected<StringRef> 1031 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 1032 unsigned SectionIndex) const { 1033 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 1034 if (!SecOrErr) 1035 return SecOrErr.takeError(); 1036 return Obj.getSectionName(**SecOrErr); 1037 } 1038 1039 template <class ELFO> 1040 static const typename ELFO::Elf_Shdr * 1041 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 1042 uint64_t Addr) { 1043 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 1044 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 1045 return &Shdr; 1046 return nullptr; 1047 } 1048 1049 const EnumEntry<unsigned> ElfClass[] = { 1050 {"None", "none", ELF::ELFCLASSNONE}, 1051 {"32-bit", "ELF32", ELF::ELFCLASS32}, 1052 {"64-bit", "ELF64", ELF::ELFCLASS64}, 1053 }; 1054 1055 const EnumEntry<unsigned> ElfDataEncoding[] = { 1056 {"None", "none", ELF::ELFDATANONE}, 1057 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 1058 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 1059 }; 1060 1061 const EnumEntry<unsigned> ElfObjectFileType[] = { 1062 {"None", "NONE (none)", ELF::ET_NONE}, 1063 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 1064 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 1065 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 1066 {"Core", "CORE (Core file)", ELF::ET_CORE}, 1067 }; 1068 1069 const EnumEntry<unsigned> ElfOSABI[] = { 1070 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 1071 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 1072 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 1073 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 1074 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 1075 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 1076 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 1077 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 1078 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 1079 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 1080 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 1081 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 1082 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 1083 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 1084 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 1085 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 1086 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 1087 {"CUDA", "NVIDIA - CUDA", ELF::ELFOSABI_CUDA}, 1088 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 1089 }; 1090 1091 const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 1092 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 1093 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 1094 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 1095 }; 1096 1097 const EnumEntry<unsigned> ARMElfOSABI[] = { 1098 {"ARM", "ARM", ELF::ELFOSABI_ARM} 1099 }; 1100 1101 const EnumEntry<unsigned> C6000ElfOSABI[] = { 1102 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1103 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1104 }; 1105 1106 const EnumEntry<unsigned> ElfMachineType[] = { 1107 ENUM_ENT(EM_NONE, "None"), 1108 ENUM_ENT(EM_M32, "WE32100"), 1109 ENUM_ENT(EM_SPARC, "Sparc"), 1110 ENUM_ENT(EM_386, "Intel 80386"), 1111 ENUM_ENT(EM_68K, "MC68000"), 1112 ENUM_ENT(EM_88K, "MC88000"), 1113 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1114 ENUM_ENT(EM_860, "Intel 80860"), 1115 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1116 ENUM_ENT(EM_S370, "IBM System/370"), 1117 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1118 ENUM_ENT(EM_PARISC, "HPPA"), 1119 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1120 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1121 ENUM_ENT(EM_960, "Intel 80960"), 1122 ENUM_ENT(EM_PPC, "PowerPC"), 1123 ENUM_ENT(EM_PPC64, "PowerPC64"), 1124 ENUM_ENT(EM_S390, "IBM S/390"), 1125 ENUM_ENT(EM_SPU, "SPU"), 1126 ENUM_ENT(EM_V800, "NEC V800 series"), 1127 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1128 ENUM_ENT(EM_RH32, "TRW RH-32"), 1129 ENUM_ENT(EM_RCE, "Motorola RCE"), 1130 ENUM_ENT(EM_ARM, "ARM"), 1131 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1132 ENUM_ENT(EM_SH, "Hitachi SH"), 1133 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1134 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1135 ENUM_ENT(EM_ARC, "ARC"), 1136 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1137 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1138 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1139 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1140 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1141 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1142 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1143 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1144 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1145 ENUM_ENT(EM_PCP, "Siemens PCP"), 1146 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1147 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1148 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1149 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1150 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1151 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1152 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1153 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1154 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1155 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1156 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1157 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1158 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1159 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1160 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1161 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1162 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1163 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1164 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1165 ENUM_ENT(EM_VAX, "Digital VAX"), 1166 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1167 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1168 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1169 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1170 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1171 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1172 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1173 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1174 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1175 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1176 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1177 ENUM_ENT(EM_V850, "NEC v850"), 1178 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1179 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1180 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1181 ENUM_ENT(EM_PJ, "picoJava"), 1182 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1183 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1184 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1185 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1186 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1187 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1188 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1189 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1190 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1191 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1192 ENUM_ENT(EM_MAX, "MAX Processor"), 1193 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1194 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1195 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1196 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1197 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1198 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1199 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1200 ENUM_ENT(EM_UNICORE, "Unicore"), 1201 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1202 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1203 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1204 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1205 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1206 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1207 ENUM_ENT(EM_M16C, "Renesas M16C"), 1208 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1209 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1210 ENUM_ENT(EM_M32C, "Renesas M32C"), 1211 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1212 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1213 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1214 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1215 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1216 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1217 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1218 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1219 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1220 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1221 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1222 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1223 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1224 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1225 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1226 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1227 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1228 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1229 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1230 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1231 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1232 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1233 // an identical number to EM_ECOG1. 1234 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1235 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1236 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1237 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1238 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1239 ENUM_ENT(EM_RX, "Renesas RX"), 1240 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1241 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1242 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1243 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"), 1244 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1245 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1246 ENUM_ENT(EM_L10M, "EM_L10M"), 1247 ENUM_ENT(EM_K10M, "EM_K10M"), 1248 ENUM_ENT(EM_AARCH64, "AArch64"), 1249 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1250 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1251 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1252 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1253 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"), 1254 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1255 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1256 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1257 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1258 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1259 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1260 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1261 ENUM_ENT(EM_RL78, "Renesas RL78"), 1262 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1263 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1264 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1265 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1266 ENUM_ENT(EM_RISCV, "RISC-V"), 1267 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1268 ENUM_ENT(EM_BPF, "EM_BPF"), 1269 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1270 ENUM_ENT(EM_LOONGARCH, "LoongArch"), 1271 }; 1272 1273 const EnumEntry<unsigned> ElfSymbolBindings[] = { 1274 {"Local", "LOCAL", ELF::STB_LOCAL}, 1275 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1276 {"Weak", "WEAK", ELF::STB_WEAK}, 1277 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1278 1279 const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1280 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1281 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1282 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1283 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1284 1285 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1286 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1287 }; 1288 1289 static const char *getGroupType(uint32_t Flag) { 1290 if (Flag & ELF::GRP_COMDAT) 1291 return "COMDAT"; 1292 else 1293 return "(unknown)"; 1294 } 1295 1296 const EnumEntry<unsigned> ElfSectionFlags[] = { 1297 ENUM_ENT(SHF_WRITE, "W"), 1298 ENUM_ENT(SHF_ALLOC, "A"), 1299 ENUM_ENT(SHF_EXECINSTR, "X"), 1300 ENUM_ENT(SHF_MERGE, "M"), 1301 ENUM_ENT(SHF_STRINGS, "S"), 1302 ENUM_ENT(SHF_INFO_LINK, "I"), 1303 ENUM_ENT(SHF_LINK_ORDER, "L"), 1304 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1305 ENUM_ENT(SHF_GROUP, "G"), 1306 ENUM_ENT(SHF_TLS, "T"), 1307 ENUM_ENT(SHF_COMPRESSED, "C"), 1308 ENUM_ENT(SHF_EXCLUDE, "E"), 1309 }; 1310 1311 const EnumEntry<unsigned> ElfGNUSectionFlags[] = { 1312 ENUM_ENT(SHF_GNU_RETAIN, "R") 1313 }; 1314 1315 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = { 1316 ENUM_ENT(SHF_SUNW_NODISCARD, "R") 1317 }; 1318 1319 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1320 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1321 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1322 }; 1323 1324 const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1325 ENUM_ENT(SHF_ARM_PURECODE, "y") 1326 }; 1327 1328 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1329 ENUM_ENT(SHF_HEX_GPREL, "") 1330 }; 1331 1332 const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1333 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1334 ENUM_ENT(SHF_MIPS_NAMES, ""), 1335 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1336 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1337 ENUM_ENT(SHF_MIPS_GPREL, ""), 1338 ENUM_ENT(SHF_MIPS_MERGE, ""), 1339 ENUM_ENT(SHF_MIPS_ADDR, ""), 1340 ENUM_ENT(SHF_MIPS_STRING, "") 1341 }; 1342 1343 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1344 ENUM_ENT(SHF_X86_64_LARGE, "l") 1345 }; 1346 1347 static std::vector<EnumEntry<unsigned>> 1348 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) { 1349 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1350 std::end(ElfSectionFlags)); 1351 switch (EOSAbi) { 1352 case ELFOSABI_SOLARIS: 1353 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags), 1354 std::end(ElfSolarisSectionFlags)); 1355 break; 1356 default: 1357 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags), 1358 std::end(ElfGNUSectionFlags)); 1359 break; 1360 } 1361 switch (EMachine) { 1362 case EM_ARM: 1363 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1364 std::end(ElfARMSectionFlags)); 1365 break; 1366 case EM_HEXAGON: 1367 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1368 std::end(ElfHexagonSectionFlags)); 1369 break; 1370 case EM_MIPS: 1371 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1372 std::end(ElfMipsSectionFlags)); 1373 break; 1374 case EM_X86_64: 1375 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1376 std::end(ElfX86_64SectionFlags)); 1377 break; 1378 case EM_XCORE: 1379 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1380 std::end(ElfXCoreSectionFlags)); 1381 break; 1382 default: 1383 break; 1384 } 1385 return Ret; 1386 } 1387 1388 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine, 1389 uint64_t Flags) { 1390 // Here we are trying to build the flags string in the same way as GNU does. 1391 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1392 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1393 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1394 // "p". It only will print "E" when no other processor flag is set. 1395 std::string Str; 1396 bool HasUnknownFlag = false; 1397 bool HasOSFlag = false; 1398 bool HasProcFlag = false; 1399 std::vector<EnumEntry<unsigned>> FlagsList = 1400 getSectionFlagsForTarget(EOSAbi, EMachine); 1401 while (Flags) { 1402 // Take the least significant bit as a flag. 1403 uint64_t Flag = Flags & -Flags; 1404 Flags -= Flag; 1405 1406 // Find the flag in the known flags list. 1407 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1408 // Flags with empty names are not printed in GNU style output. 1409 return E.Value == Flag && !E.AltName.empty(); 1410 }); 1411 if (I != FlagsList.end()) { 1412 Str += I->AltName; 1413 continue; 1414 } 1415 1416 // If we did not find a matching regular flag, then we deal with an OS 1417 // specific flag, processor specific flag or an unknown flag. 1418 if (Flag & ELF::SHF_MASKOS) { 1419 HasOSFlag = true; 1420 Flags &= ~ELF::SHF_MASKOS; 1421 } else if (Flag & ELF::SHF_MASKPROC) { 1422 HasProcFlag = true; 1423 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1424 // bit if set so that it doesn't also get printed. 1425 Flags &= ~ELF::SHF_MASKPROC; 1426 } else { 1427 HasUnknownFlag = true; 1428 } 1429 } 1430 1431 // "o", "p" and "x" are printed last. 1432 if (HasOSFlag) 1433 Str += "o"; 1434 if (HasProcFlag) 1435 Str += "p"; 1436 if (HasUnknownFlag) 1437 Str += "x"; 1438 return Str; 1439 } 1440 1441 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1442 // Check potentially overlapped processor-specific program header type. 1443 switch (Arch) { 1444 case ELF::EM_ARM: 1445 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1446 break; 1447 case ELF::EM_MIPS: 1448 case ELF::EM_MIPS_RS3_LE: 1449 switch (Type) { 1450 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1451 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1452 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1453 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1454 } 1455 break; 1456 case ELF::EM_RISCV: 1457 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); } 1458 } 1459 1460 switch (Type) { 1461 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1462 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1463 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1464 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1465 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1466 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1468 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1469 1470 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1471 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1472 1473 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1474 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1475 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1476 1477 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE); 1478 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1479 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1480 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI); 1481 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1482 default: 1483 return ""; 1484 } 1485 } 1486 1487 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1488 StringRef Seg = segmentTypeToString(Arch, Type); 1489 if (Seg.empty()) 1490 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1491 1492 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1493 if (Seg.consume_front("PT_ARM_")) 1494 return Seg.str(); 1495 1496 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1497 if (Seg.consume_front("PT_MIPS_")) 1498 return Seg.str(); 1499 1500 // E.g. "PT_RISCV_ATTRIBUTES" 1501 if (Seg.consume_front("PT_RISCV_")) 1502 return Seg.str(); 1503 1504 // E.g. "PT_LOAD" -> "LOAD". 1505 assert(Seg.starts_with("PT_")); 1506 return Seg.drop_front(3).str(); 1507 } 1508 1509 const EnumEntry<unsigned> ElfSegmentFlags[] = { 1510 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1511 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1512 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1513 }; 1514 1515 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1516 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1517 ENUM_ENT(EF_MIPS_PIC, "pic"), 1518 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1519 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1520 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1521 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1522 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1523 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1524 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1525 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1526 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1527 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1528 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1529 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1530 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1531 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1532 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1533 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1534 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1535 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1536 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1537 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1538 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1539 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1540 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1541 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1542 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1543 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1544 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1545 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1546 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1547 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1548 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1549 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1550 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1551 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1552 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1553 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1554 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1555 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1556 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1557 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1558 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1559 }; 1560 1561 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = { 1562 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), 1563 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), 1564 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), 1565 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), 1566 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), 1567 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), 1568 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), 1569 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), 1570 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), 1571 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), 1572 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), 1573 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), 1574 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), 1575 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), 1576 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), 1577 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), 1578 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), 1579 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), 1580 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), 1581 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), 1582 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), 1583 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), 1584 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), 1585 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), 1586 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), 1587 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), 1588 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), 1589 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), 1590 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), 1591 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), 1592 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), 1593 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), 1594 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), 1595 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), 1596 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), 1597 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), 1598 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), 1599 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), 1600 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), 1601 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), 1602 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), 1603 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), 1604 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), 1605 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), 1606 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), 1607 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), 1608 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), 1609 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), 1610 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), 1611 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), 1612 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), 1613 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), 1614 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), 1615 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), 1616 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), 1617 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), 1618 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), 1619 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), 1620 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), 1621 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), 1622 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), 1623 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_V3, "xnack"), 1624 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_V3, "sramecc"), 1625 }; 1626 1627 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = { 1628 ENUM_ENT(EF_AMDGPU_MACH_NONE, "none"), 1629 ENUM_ENT(EF_AMDGPU_MACH_R600_R600, "r600"), 1630 ENUM_ENT(EF_AMDGPU_MACH_R600_R630, "r630"), 1631 ENUM_ENT(EF_AMDGPU_MACH_R600_RS880, "rs880"), 1632 ENUM_ENT(EF_AMDGPU_MACH_R600_RV670, "rv670"), 1633 ENUM_ENT(EF_AMDGPU_MACH_R600_RV710, "rv710"), 1634 ENUM_ENT(EF_AMDGPU_MACH_R600_RV730, "rv730"), 1635 ENUM_ENT(EF_AMDGPU_MACH_R600_RV770, "rv770"), 1636 ENUM_ENT(EF_AMDGPU_MACH_R600_CEDAR, "cedar"), 1637 ENUM_ENT(EF_AMDGPU_MACH_R600_CYPRESS, "cypress"), 1638 ENUM_ENT(EF_AMDGPU_MACH_R600_JUNIPER, "juniper"), 1639 ENUM_ENT(EF_AMDGPU_MACH_R600_REDWOOD, "redwood"), 1640 ENUM_ENT(EF_AMDGPU_MACH_R600_SUMO, "sumo"), 1641 ENUM_ENT(EF_AMDGPU_MACH_R600_BARTS, "barts"), 1642 ENUM_ENT(EF_AMDGPU_MACH_R600_CAICOS, "caicos"), 1643 ENUM_ENT(EF_AMDGPU_MACH_R600_CAYMAN, "cayman"), 1644 ENUM_ENT(EF_AMDGPU_MACH_R600_TURKS, "turks"), 1645 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX600, "gfx600"), 1646 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX601, "gfx601"), 1647 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX602, "gfx602"), 1648 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX700, "gfx700"), 1649 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX701, "gfx701"), 1650 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX702, "gfx702"), 1651 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX703, "gfx703"), 1652 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX704, "gfx704"), 1653 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX705, "gfx705"), 1654 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX801, "gfx801"), 1655 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX802, "gfx802"), 1656 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX803, "gfx803"), 1657 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX805, "gfx805"), 1658 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX810, "gfx810"), 1659 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX900, "gfx900"), 1660 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX902, "gfx902"), 1661 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX904, "gfx904"), 1662 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX906, "gfx906"), 1663 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX908, "gfx908"), 1664 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX909, "gfx909"), 1665 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90A, "gfx90a"), 1666 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX90C, "gfx90c"), 1667 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX940, "gfx940"), 1668 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX941, "gfx941"), 1669 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX942, "gfx942"), 1670 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1010, "gfx1010"), 1671 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1011, "gfx1011"), 1672 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1012, "gfx1012"), 1673 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1013, "gfx1013"), 1674 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1030, "gfx1030"), 1675 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1031, "gfx1031"), 1676 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1032, "gfx1032"), 1677 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1033, "gfx1033"), 1678 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1034, "gfx1034"), 1679 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1035, "gfx1035"), 1680 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1036, "gfx1036"), 1681 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1100, "gfx1100"), 1682 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1101, "gfx1101"), 1683 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1102, "gfx1102"), 1684 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1103, "gfx1103"), 1685 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1150, "gfx1150"), 1686 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1151, "gfx1151"), 1687 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1200, "gfx1200"), 1688 ENUM_ENT(EF_AMDGPU_MACH_AMDGCN_GFX1201, "gfx1201"), 1689 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ANY_V4, "xnack"), 1690 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_OFF_V4, "xnack-"), 1691 ENUM_ENT(EF_AMDGPU_FEATURE_XNACK_ON_V4, "xnack+"), 1692 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ANY_V4, "sramecc"), 1693 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_OFF_V4, "sramecc-"), 1694 ENUM_ENT(EF_AMDGPU_FEATURE_SRAMECC_ON_V4, "sramecc+"), 1695 }; 1696 1697 const EnumEntry<unsigned> ElfHeaderNVPTXFlags[] = { 1698 ENUM_ENT(EF_CUDA_SM20, "sm_20"), ENUM_ENT(EF_CUDA_SM21, "sm_21"), 1699 ENUM_ENT(EF_CUDA_SM30, "sm_30"), ENUM_ENT(EF_CUDA_SM32, "sm_32"), 1700 ENUM_ENT(EF_CUDA_SM35, "sm_35"), ENUM_ENT(EF_CUDA_SM37, "sm_37"), 1701 ENUM_ENT(EF_CUDA_SM50, "sm_50"), ENUM_ENT(EF_CUDA_SM52, "sm_52"), 1702 ENUM_ENT(EF_CUDA_SM53, "sm_53"), ENUM_ENT(EF_CUDA_SM60, "sm_60"), 1703 ENUM_ENT(EF_CUDA_SM61, "sm_61"), ENUM_ENT(EF_CUDA_SM62, "sm_62"), 1704 ENUM_ENT(EF_CUDA_SM70, "sm_70"), ENUM_ENT(EF_CUDA_SM72, "sm_72"), 1705 ENUM_ENT(EF_CUDA_SM75, "sm_75"), ENUM_ENT(EF_CUDA_SM80, "sm_80"), 1706 ENUM_ENT(EF_CUDA_SM86, "sm_86"), ENUM_ENT(EF_CUDA_SM87, "sm_87"), 1707 ENUM_ENT(EF_CUDA_SM89, "sm_89"), ENUM_ENT(EF_CUDA_SM90, "sm_90"), 1708 }; 1709 1710 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1711 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1712 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1713 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1714 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1715 ENUM_ENT(EF_RISCV_RVE, "RVE"), 1716 ENUM_ENT(EF_RISCV_TSO, "TSO"), 1717 }; 1718 1719 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = { 1720 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1), 1721 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2), 1722 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25), 1723 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3), 1724 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31), 1725 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35), 1726 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4), 1727 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5), 1728 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51), 1729 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6), 1730 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY), 1731 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1), 1732 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2), 1733 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3), 1734 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4), 1735 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5), 1736 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6), 1737 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7), 1738 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"), 1739 }; 1740 1741 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = { 1742 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"), 1743 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"), 1744 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"), 1745 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"), 1746 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"), 1747 }; 1748 1749 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = { 1750 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE), 1751 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN), 1752 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT) 1753 }; 1754 1755 const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1756 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1757 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1758 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1759 }; 1760 1761 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1762 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1763 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1764 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1765 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1766 }; 1767 1768 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1769 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1770 }; 1771 1772 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1773 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1774 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1775 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1776 }; 1777 1778 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = { 1779 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)}; 1780 1781 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1782 switch (Odk) { 1783 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1784 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1785 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1786 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1787 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1788 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1789 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1790 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1791 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1792 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1793 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1794 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1795 default: 1796 return "Unknown"; 1797 } 1798 } 1799 1800 template <typename ELFT> 1801 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1802 ELFDumper<ELFT>::findDynamic() { 1803 // Try to locate the PT_DYNAMIC header. 1804 const Elf_Phdr *DynamicPhdr = nullptr; 1805 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1806 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1807 if (Phdr.p_type != ELF::PT_DYNAMIC) 1808 continue; 1809 DynamicPhdr = &Phdr; 1810 break; 1811 } 1812 } else { 1813 reportUniqueWarning( 1814 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1815 toString(PhdrsOrErr.takeError())); 1816 } 1817 1818 // Try to locate the .dynamic section in the sections header table. 1819 const Elf_Shdr *DynamicSec = nullptr; 1820 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1821 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1822 continue; 1823 DynamicSec = &Sec; 1824 break; 1825 } 1826 1827 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1828 ObjF.getMemoryBufferRef().getBufferSize()) || 1829 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1830 DynamicPhdr->p_offset))) { 1831 reportUniqueWarning( 1832 "PT_DYNAMIC segment offset (0x" + 1833 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1834 Twine::utohexstr(DynamicPhdr->p_filesz) + 1835 ") exceeds the size of the file (0x" + 1836 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1837 // Don't use the broken dynamic header. 1838 DynamicPhdr = nullptr; 1839 } 1840 1841 if (DynamicPhdr && DynamicSec) { 1842 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1843 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1844 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1845 reportUniqueWarning(describe(*DynamicSec) + 1846 " is not contained within the " 1847 "PT_DYNAMIC segment"); 1848 1849 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1850 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1851 "PT_DYNAMIC segment"); 1852 } 1853 1854 return std::make_pair(DynamicPhdr, DynamicSec); 1855 } 1856 1857 template <typename ELFT> 1858 void ELFDumper<ELFT>::loadDynamicTable() { 1859 const Elf_Phdr *DynamicPhdr; 1860 const Elf_Shdr *DynamicSec; 1861 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1862 if (!DynamicPhdr && !DynamicSec) 1863 return; 1864 1865 DynRegionInfo FromPhdr(ObjF, *this); 1866 bool IsPhdrTableValid = false; 1867 if (DynamicPhdr) { 1868 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1869 // validated in findDynamic() and so createDRI() is not expected to fail. 1870 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1871 sizeof(Elf_Dyn))); 1872 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1873 FromPhdr.EntSizePrintName = ""; 1874 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1875 } 1876 1877 // Locate the dynamic table described in a section header. 1878 // Ignore sh_entsize and use the expected value for entry size explicitly. 1879 // This allows us to dump dynamic sections with a broken sh_entsize 1880 // field. 1881 DynRegionInfo FromSec(ObjF, *this); 1882 bool IsSecTableValid = false; 1883 if (DynamicSec) { 1884 Expected<DynRegionInfo> RegOrErr = 1885 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1886 if (RegOrErr) { 1887 FromSec = *RegOrErr; 1888 FromSec.Context = describe(*DynamicSec); 1889 FromSec.EntSizePrintName = ""; 1890 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1891 } else { 1892 reportUniqueWarning("unable to read the dynamic table from " + 1893 describe(*DynamicSec) + ": " + 1894 toString(RegOrErr.takeError())); 1895 } 1896 } 1897 1898 // When we only have information from one of the SHT_DYNAMIC section header or 1899 // PT_DYNAMIC program header, just use that. 1900 if (!DynamicPhdr || !DynamicSec) { 1901 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1902 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1903 parseDynamicTable(); 1904 } else { 1905 reportUniqueWarning("no valid dynamic table was found"); 1906 } 1907 return; 1908 } 1909 1910 // At this point we have tables found from the section header and from the 1911 // dynamic segment. Usually they match, but we have to do sanity checks to 1912 // verify that. 1913 1914 if (FromPhdr.Addr != FromSec.Addr) 1915 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1916 "program header disagree about " 1917 "the location of the dynamic table"); 1918 1919 if (!IsPhdrTableValid && !IsSecTableValid) { 1920 reportUniqueWarning("no valid dynamic table was found"); 1921 return; 1922 } 1923 1924 // Information in the PT_DYNAMIC program header has priority over the 1925 // information in a section header. 1926 if (IsPhdrTableValid) { 1927 if (!IsSecTableValid) 1928 reportUniqueWarning( 1929 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1930 DynamicTable = FromPhdr; 1931 } else { 1932 reportUniqueWarning( 1933 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1934 DynamicTable = FromSec; 1935 } 1936 1937 parseDynamicTable(); 1938 } 1939 1940 template <typename ELFT> 1941 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1942 ScopedPrinter &Writer) 1943 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1944 FileName(O.getFileName()), DynRelRegion(O, *this), 1945 DynRelaRegion(O, *this), DynRelrRegion(O, *this), 1946 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1947 DynamicTable(O, *this) { 1948 if (!O.IsContentValid()) 1949 return; 1950 1951 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1952 for (const Elf_Shdr &Sec : Sections) { 1953 switch (Sec.sh_type) { 1954 case ELF::SHT_SYMTAB: 1955 if (!DotSymtabSec) 1956 DotSymtabSec = &Sec; 1957 break; 1958 case ELF::SHT_DYNSYM: 1959 if (!DotDynsymSec) 1960 DotDynsymSec = &Sec; 1961 1962 if (!DynSymRegion) { 1963 Expected<DynRegionInfo> RegOrErr = 1964 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1965 if (RegOrErr) { 1966 DynSymRegion = *RegOrErr; 1967 DynSymRegion->Context = describe(Sec); 1968 1969 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1970 DynamicStringTable = *E; 1971 else 1972 reportUniqueWarning("unable to get the string table for the " + 1973 describe(Sec) + ": " + toString(E.takeError())); 1974 } else { 1975 reportUniqueWarning("unable to read dynamic symbols from " + 1976 describe(Sec) + ": " + 1977 toString(RegOrErr.takeError())); 1978 } 1979 } 1980 break; 1981 case ELF::SHT_SYMTAB_SHNDX: { 1982 uint32_t SymtabNdx = Sec.sh_link; 1983 if (SymtabNdx >= Sections.size()) { 1984 reportUniqueWarning( 1985 "unable to get the associated symbol table for " + describe(Sec) + 1986 ": sh_link (" + Twine(SymtabNdx) + 1987 ") is greater than or equal to the total number of sections (" + 1988 Twine(Sections.size()) + ")"); 1989 continue; 1990 } 1991 1992 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1993 Obj.getSHNDXTable(Sec)) { 1994 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1995 .second) 1996 reportUniqueWarning( 1997 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1998 describe(Sec)); 1999 } else { 2000 reportUniqueWarning(ShndxTableOrErr.takeError()); 2001 } 2002 break; 2003 } 2004 case ELF::SHT_GNU_versym: 2005 if (!SymbolVersionSection) 2006 SymbolVersionSection = &Sec; 2007 break; 2008 case ELF::SHT_GNU_verdef: 2009 if (!SymbolVersionDefSection) 2010 SymbolVersionDefSection = &Sec; 2011 break; 2012 case ELF::SHT_GNU_verneed: 2013 if (!SymbolVersionNeedSection) 2014 SymbolVersionNeedSection = &Sec; 2015 break; 2016 case ELF::SHT_LLVM_ADDRSIG: 2017 if (!DotAddrsigSec) 2018 DotAddrsigSec = &Sec; 2019 break; 2020 } 2021 } 2022 2023 loadDynamicTable(); 2024 } 2025 2026 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 2027 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 2028 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 2029 this->reportUniqueWarning(Msg); 2030 return Error::success(); 2031 }); 2032 if (!MappedAddrOrError) { 2033 this->reportUniqueWarning("unable to parse DT_" + 2034 Obj.getDynamicTagAsString(Tag) + ": " + 2035 llvm::toString(MappedAddrOrError.takeError())); 2036 return nullptr; 2037 } 2038 return MappedAddrOrError.get(); 2039 }; 2040 2041 const char *StringTableBegin = nullptr; 2042 uint64_t StringTableSize = 0; 2043 std::optional<DynRegionInfo> DynSymFromTable; 2044 for (const Elf_Dyn &Dyn : dynamic_table()) { 2045 if (Obj.getHeader().e_machine == EM_AARCH64) { 2046 switch (Dyn.d_tag) { 2047 case ELF::DT_AARCH64_AUTH_RELRSZ: 2048 DynRelrRegion.Size = Dyn.getVal(); 2049 DynRelrRegion.SizePrintName = "DT_AARCH64_AUTH_RELRSZ value"; 2050 continue; 2051 case ELF::DT_AARCH64_AUTH_RELRENT: 2052 DynRelrRegion.EntSize = Dyn.getVal(); 2053 DynRelrRegion.EntSizePrintName = "DT_AARCH64_AUTH_RELRENT value"; 2054 continue; 2055 } 2056 } 2057 switch (Dyn.d_tag) { 2058 case ELF::DT_HASH: 2059 HashTable = reinterpret_cast<const Elf_Hash *>( 2060 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2061 break; 2062 case ELF::DT_GNU_HASH: 2063 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 2064 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2065 break; 2066 case ELF::DT_STRTAB: 2067 StringTableBegin = reinterpret_cast<const char *>( 2068 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 2069 break; 2070 case ELF::DT_STRSZ: 2071 StringTableSize = Dyn.getVal(); 2072 break; 2073 case ELF::DT_SYMTAB: { 2074 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 2075 // no program headers), we ignore its value. 2076 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 2077 DynSymFromTable.emplace(ObjF, *this); 2078 DynSymFromTable->Addr = VA; 2079 DynSymFromTable->EntSize = sizeof(Elf_Sym); 2080 DynSymFromTable->EntSizePrintName = ""; 2081 } 2082 break; 2083 } 2084 case ELF::DT_SYMENT: { 2085 uint64_t Val = Dyn.getVal(); 2086 if (Val != sizeof(Elf_Sym)) 2087 this->reportUniqueWarning("DT_SYMENT value of 0x" + 2088 Twine::utohexstr(Val) + 2089 " is not the size of a symbol (0x" + 2090 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 2091 break; 2092 } 2093 case ELF::DT_RELA: 2094 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2095 break; 2096 case ELF::DT_RELASZ: 2097 DynRelaRegion.Size = Dyn.getVal(); 2098 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 2099 break; 2100 case ELF::DT_RELAENT: 2101 DynRelaRegion.EntSize = Dyn.getVal(); 2102 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 2103 break; 2104 case ELF::DT_SONAME: 2105 SONameOffset = Dyn.getVal(); 2106 break; 2107 case ELF::DT_REL: 2108 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2109 break; 2110 case ELF::DT_RELSZ: 2111 DynRelRegion.Size = Dyn.getVal(); 2112 DynRelRegion.SizePrintName = "DT_RELSZ value"; 2113 break; 2114 case ELF::DT_RELENT: 2115 DynRelRegion.EntSize = Dyn.getVal(); 2116 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 2117 break; 2118 case ELF::DT_RELR: 2119 case ELF::DT_ANDROID_RELR: 2120 case ELF::DT_AARCH64_AUTH_RELR: 2121 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2122 break; 2123 case ELF::DT_RELRSZ: 2124 case ELF::DT_ANDROID_RELRSZ: 2125 case ELF::DT_AARCH64_AUTH_RELRSZ: 2126 DynRelrRegion.Size = Dyn.getVal(); 2127 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 2128 ? "DT_RELRSZ value" 2129 : "DT_ANDROID_RELRSZ value"; 2130 break; 2131 case ELF::DT_RELRENT: 2132 case ELF::DT_ANDROID_RELRENT: 2133 case ELF::DT_AARCH64_AUTH_RELRENT: 2134 DynRelrRegion.EntSize = Dyn.getVal(); 2135 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 2136 ? "DT_RELRENT value" 2137 : "DT_ANDROID_RELRENT value"; 2138 break; 2139 case ELF::DT_PLTREL: 2140 if (Dyn.getVal() == DT_REL) 2141 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 2142 else if (Dyn.getVal() == DT_RELA) 2143 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 2144 else 2145 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 2146 Twine((uint64_t)Dyn.getVal())); 2147 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 2148 break; 2149 case ELF::DT_JMPREL: 2150 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2151 break; 2152 case ELF::DT_PLTRELSZ: 2153 DynPLTRelRegion.Size = Dyn.getVal(); 2154 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 2155 break; 2156 case ELF::DT_SYMTAB_SHNDX: 2157 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 2158 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 2159 break; 2160 } 2161 } 2162 2163 if (StringTableBegin) { 2164 const uint64_t FileSize = Obj.getBufSize(); 2165 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 2166 if (StringTableSize > FileSize - Offset) 2167 reportUniqueWarning( 2168 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 2169 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 2170 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 2171 else 2172 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 2173 } 2174 2175 const bool IsHashTableSupported = getHashTableEntSize() == 4; 2176 if (DynSymRegion) { 2177 // Often we find the information about the dynamic symbol table 2178 // location in the SHT_DYNSYM section header. However, the value in 2179 // DT_SYMTAB has priority, because it is used by dynamic loaders to 2180 // locate .dynsym at runtime. The location we find in the section header 2181 // and the location we find here should match. 2182 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 2183 reportUniqueWarning( 2184 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 2185 "the location of the dynamic symbol table")); 2186 2187 // According to the ELF gABI: "The number of symbol table entries should 2188 // equal nchain". Check to see if the DT_HASH hash table nchain value 2189 // conflicts with the number of symbols in the dynamic symbol table 2190 // according to the section header. 2191 if (HashTable && IsHashTableSupported) { 2192 if (DynSymRegion->EntSize == 0) 2193 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 2194 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 2195 reportUniqueWarning( 2196 "hash table nchain (" + Twine(HashTable->nchain) + 2197 ") differs from symbol count derived from SHT_DYNSYM section " 2198 "header (" + 2199 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 2200 } 2201 } 2202 2203 // Delay the creation of the actual dynamic symbol table until now, so that 2204 // checks can always be made against the section header-based properties, 2205 // without worrying about tag order. 2206 if (DynSymFromTable) { 2207 if (!DynSymRegion) { 2208 DynSymRegion = DynSymFromTable; 2209 } else { 2210 DynSymRegion->Addr = DynSymFromTable->Addr; 2211 DynSymRegion->EntSize = DynSymFromTable->EntSize; 2212 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 2213 } 2214 } 2215 2216 // Derive the dynamic symbol table size from the DT_HASH hash table, if 2217 // present. 2218 if (HashTable && IsHashTableSupported && DynSymRegion) { 2219 const uint64_t FileSize = Obj.getBufSize(); 2220 const uint64_t DerivedSize = 2221 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 2222 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 2223 if (DerivedSize > FileSize - Offset) 2224 reportUniqueWarning( 2225 "the size (0x" + Twine::utohexstr(DerivedSize) + 2226 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 2227 ", derived from the hash table, goes past the end of the file (0x" + 2228 Twine::utohexstr(FileSize) + ") and will be ignored"); 2229 else 2230 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 2231 } 2232 } 2233 2234 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 2235 // Dump version symbol section. 2236 printVersionSymbolSection(SymbolVersionSection); 2237 2238 // Dump version definition section. 2239 printVersionDefinitionSection(SymbolVersionDefSection); 2240 2241 // Dump version dependency section. 2242 printVersionDependencySection(SymbolVersionNeedSection); 2243 } 2244 2245 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 2246 { #enum, prefix##_##enum } 2247 2248 const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 2249 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 2250 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 2251 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 2252 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 2253 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 2254 }; 2255 2256 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 2257 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 2258 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 2259 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 2260 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 2261 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 2262 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 2263 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 2264 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 2265 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 2266 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 2267 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 2268 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 2269 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 2270 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 2271 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 2272 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 2273 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 2274 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 2275 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 2276 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 2277 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 2278 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 2279 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 2280 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2281 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2282 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2283 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2284 }; 2285 2286 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2287 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2288 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2289 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2290 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2291 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2292 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2293 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2294 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2295 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2296 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2297 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2298 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2299 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2300 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2301 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2302 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2303 }; 2304 2305 #undef LLVM_READOBJ_DT_FLAG_ENT 2306 2307 template <typename T, typename TFlag> 2308 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2309 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2310 for (const EnumEntry<TFlag> &Flag : Flags) 2311 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2312 SetFlags.push_back(Flag); 2313 2314 for (const EnumEntry<TFlag> &Flag : SetFlags) 2315 OS << Flag.Name << " "; 2316 } 2317 2318 template <class ELFT> 2319 const typename ELFT::Shdr * 2320 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2321 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2322 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2323 if (*NameOrErr == Name) 2324 return &Shdr; 2325 } else { 2326 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2327 ": " + toString(NameOrErr.takeError())); 2328 } 2329 } 2330 return nullptr; 2331 } 2332 2333 template <class ELFT> 2334 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2335 uint64_t Value) const { 2336 auto FormatHexValue = [](uint64_t V) { 2337 std::string Str; 2338 raw_string_ostream OS(Str); 2339 const char *ConvChar = 2340 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2341 OS << format(ConvChar, V); 2342 return OS.str(); 2343 }; 2344 2345 auto FormatFlags = [](uint64_t V, 2346 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2347 std::string Str; 2348 raw_string_ostream OS(Str); 2349 printFlags(V, Array, OS); 2350 return OS.str(); 2351 }; 2352 2353 // Handle custom printing of architecture specific tags 2354 switch (Obj.getHeader().e_machine) { 2355 case EM_AARCH64: 2356 switch (Type) { 2357 case DT_AARCH64_BTI_PLT: 2358 case DT_AARCH64_PAC_PLT: 2359 case DT_AARCH64_VARIANT_PCS: 2360 case DT_AARCH64_MEMTAG_GLOBALSSZ: 2361 return std::to_string(Value); 2362 case DT_AARCH64_MEMTAG_MODE: 2363 switch (Value) { 2364 case 0: 2365 return "Synchronous (0)"; 2366 case 1: 2367 return "Asynchronous (1)"; 2368 default: 2369 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2370 } 2371 case DT_AARCH64_MEMTAG_HEAP: 2372 case DT_AARCH64_MEMTAG_STACK: 2373 switch (Value) { 2374 case 0: 2375 return "Disabled (0)"; 2376 case 1: 2377 return "Enabled (1)"; 2378 default: 2379 return (Twine("Unknown (") + Twine(Value) + ")").str(); 2380 } 2381 case DT_AARCH64_MEMTAG_GLOBALS: 2382 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str(); 2383 default: 2384 break; 2385 } 2386 break; 2387 case EM_HEXAGON: 2388 switch (Type) { 2389 case DT_HEXAGON_VER: 2390 return std::to_string(Value); 2391 case DT_HEXAGON_SYMSZ: 2392 case DT_HEXAGON_PLT: 2393 return FormatHexValue(Value); 2394 default: 2395 break; 2396 } 2397 break; 2398 case EM_MIPS: 2399 switch (Type) { 2400 case DT_MIPS_RLD_VERSION: 2401 case DT_MIPS_LOCAL_GOTNO: 2402 case DT_MIPS_SYMTABNO: 2403 case DT_MIPS_UNREFEXTNO: 2404 return std::to_string(Value); 2405 case DT_MIPS_TIME_STAMP: 2406 case DT_MIPS_ICHECKSUM: 2407 case DT_MIPS_IVERSION: 2408 case DT_MIPS_BASE_ADDRESS: 2409 case DT_MIPS_MSYM: 2410 case DT_MIPS_CONFLICT: 2411 case DT_MIPS_LIBLIST: 2412 case DT_MIPS_CONFLICTNO: 2413 case DT_MIPS_LIBLISTNO: 2414 case DT_MIPS_GOTSYM: 2415 case DT_MIPS_HIPAGENO: 2416 case DT_MIPS_RLD_MAP: 2417 case DT_MIPS_DELTA_CLASS: 2418 case DT_MIPS_DELTA_CLASS_NO: 2419 case DT_MIPS_DELTA_INSTANCE: 2420 case DT_MIPS_DELTA_RELOC: 2421 case DT_MIPS_DELTA_RELOC_NO: 2422 case DT_MIPS_DELTA_SYM: 2423 case DT_MIPS_DELTA_SYM_NO: 2424 case DT_MIPS_DELTA_CLASSSYM: 2425 case DT_MIPS_DELTA_CLASSSYM_NO: 2426 case DT_MIPS_CXX_FLAGS: 2427 case DT_MIPS_PIXIE_INIT: 2428 case DT_MIPS_SYMBOL_LIB: 2429 case DT_MIPS_LOCALPAGE_GOTIDX: 2430 case DT_MIPS_LOCAL_GOTIDX: 2431 case DT_MIPS_HIDDEN_GOTIDX: 2432 case DT_MIPS_PROTECTED_GOTIDX: 2433 case DT_MIPS_OPTIONS: 2434 case DT_MIPS_INTERFACE: 2435 case DT_MIPS_DYNSTR_ALIGN: 2436 case DT_MIPS_INTERFACE_SIZE: 2437 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2438 case DT_MIPS_PERF_SUFFIX: 2439 case DT_MIPS_COMPACT_SIZE: 2440 case DT_MIPS_GP_VALUE: 2441 case DT_MIPS_AUX_DYNAMIC: 2442 case DT_MIPS_PLTGOT: 2443 case DT_MIPS_RWPLT: 2444 case DT_MIPS_RLD_MAP_REL: 2445 case DT_MIPS_XHASH: 2446 return FormatHexValue(Value); 2447 case DT_MIPS_FLAGS: 2448 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags)); 2449 default: 2450 break; 2451 } 2452 break; 2453 default: 2454 break; 2455 } 2456 2457 switch (Type) { 2458 case DT_PLTREL: 2459 if (Value == DT_REL) 2460 return "REL"; 2461 if (Value == DT_RELA) 2462 return "RELA"; 2463 [[fallthrough]]; 2464 case DT_PLTGOT: 2465 case DT_HASH: 2466 case DT_STRTAB: 2467 case DT_SYMTAB: 2468 case DT_RELA: 2469 case DT_INIT: 2470 case DT_FINI: 2471 case DT_REL: 2472 case DT_JMPREL: 2473 case DT_INIT_ARRAY: 2474 case DT_FINI_ARRAY: 2475 case DT_PREINIT_ARRAY: 2476 case DT_DEBUG: 2477 case DT_VERDEF: 2478 case DT_VERNEED: 2479 case DT_VERSYM: 2480 case DT_GNU_HASH: 2481 case DT_NULL: 2482 return FormatHexValue(Value); 2483 case DT_RELACOUNT: 2484 case DT_RELCOUNT: 2485 case DT_VERDEFNUM: 2486 case DT_VERNEEDNUM: 2487 return std::to_string(Value); 2488 case DT_PLTRELSZ: 2489 case DT_RELASZ: 2490 case DT_RELAENT: 2491 case DT_STRSZ: 2492 case DT_SYMENT: 2493 case DT_RELSZ: 2494 case DT_RELENT: 2495 case DT_INIT_ARRAYSZ: 2496 case DT_FINI_ARRAYSZ: 2497 case DT_PREINIT_ARRAYSZ: 2498 case DT_RELRSZ: 2499 case DT_RELRENT: 2500 case DT_AARCH64_AUTH_RELRSZ: 2501 case DT_AARCH64_AUTH_RELRENT: 2502 case DT_ANDROID_RELSZ: 2503 case DT_ANDROID_RELASZ: 2504 return std::to_string(Value) + " (bytes)"; 2505 case DT_NEEDED: 2506 case DT_SONAME: 2507 case DT_AUXILIARY: 2508 case DT_USED: 2509 case DT_FILTER: 2510 case DT_RPATH: 2511 case DT_RUNPATH: { 2512 const std::map<uint64_t, const char *> TagNames = { 2513 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2514 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2515 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2516 {DT_RUNPATH, "Library runpath"}, 2517 }; 2518 2519 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2520 .str(); 2521 } 2522 case DT_FLAGS: 2523 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags)); 2524 case DT_FLAGS_1: 2525 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1)); 2526 default: 2527 return FormatHexValue(Value); 2528 } 2529 } 2530 2531 template <class ELFT> 2532 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2533 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2534 reportUniqueWarning("string table was not found"); 2535 return "<?>"; 2536 } 2537 2538 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2539 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2540 Msg); 2541 return "<?>"; 2542 }; 2543 2544 const uint64_t FileSize = Obj.getBufSize(); 2545 const uint64_t Offset = 2546 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2547 if (DynamicStringTable.size() > FileSize - Offset) 2548 return WarnAndReturn(" with size 0x" + 2549 Twine::utohexstr(DynamicStringTable.size()) + 2550 " goes past the end of the file (0x" + 2551 Twine::utohexstr(FileSize) + ")", 2552 Offset); 2553 2554 if (Value >= DynamicStringTable.size()) 2555 return WarnAndReturn( 2556 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2557 ": it goes past the end of the table (0x" + 2558 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2559 Offset); 2560 2561 if (DynamicStringTable.back() != '\0') 2562 return WarnAndReturn(": unable to read the string at 0x" + 2563 Twine::utohexstr(Offset + Value) + 2564 ": the string table is not null-terminated", 2565 Offset); 2566 2567 return DynamicStringTable.data() + Value; 2568 } 2569 2570 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2571 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2572 Ctx.printUnwindInformation(); 2573 } 2574 2575 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2576 namespace { 2577 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2578 if (Obj.getHeader().e_machine == EM_ARM) { 2579 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2580 DotSymtabSec); 2581 Ctx.PrintUnwindInformation(); 2582 } 2583 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2584 Ctx.printUnwindInformation(); 2585 } 2586 } // namespace 2587 2588 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2589 ListScope D(W, "NeededLibraries"); 2590 2591 std::vector<StringRef> Libs; 2592 for (const auto &Entry : dynamic_table()) 2593 if (Entry.d_tag == ELF::DT_NEEDED) 2594 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2595 2596 llvm::sort(Libs); 2597 2598 for (StringRef L : Libs) 2599 W.printString(L); 2600 } 2601 2602 template <class ELFT> 2603 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2604 const typename ELFT::Hash *H, 2605 bool *IsHeaderValid = nullptr) { 2606 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2607 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2608 if (Dumper.getHashTableEntSize() == 8) { 2609 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2610 return E.Value == Obj.getHeader().e_machine; 2611 }); 2612 if (IsHeaderValid) 2613 *IsHeaderValid = false; 2614 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2615 " is not supported: it contains non-standard 8 " 2616 "byte entries on " + 2617 It->AltName + " platform"); 2618 } 2619 2620 auto MakeError = [&](const Twine &Msg = "") { 2621 return createError("the hash table at offset 0x" + 2622 Twine::utohexstr(SecOffset) + 2623 " goes past the end of the file (0x" + 2624 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2625 }; 2626 2627 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2628 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2629 2630 if (IsHeaderValid) 2631 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2632 2633 if (Obj.getBufSize() - SecOffset < HeaderSize) 2634 return MakeError(); 2635 2636 if (Obj.getBufSize() - SecOffset - HeaderSize < 2637 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2638 return MakeError(", nbucket = " + Twine(H->nbucket) + 2639 ", nchain = " + Twine(H->nchain)); 2640 return Error::success(); 2641 } 2642 2643 template <class ELFT> 2644 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2645 const typename ELFT::GnuHash *GnuHashTable, 2646 bool *IsHeaderValid = nullptr) { 2647 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2648 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2649 "GnuHashTable must always point to a location inside the file"); 2650 2651 uint64_t TableOffset = TableData - Obj.base(); 2652 if (IsHeaderValid) 2653 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2654 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2655 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2656 Obj.getBufSize()) 2657 return createError("unable to dump the SHT_GNU_HASH " 2658 "section at 0x" + 2659 Twine::utohexstr(TableOffset) + 2660 ": it goes past the end of the file"); 2661 return Error::success(); 2662 } 2663 2664 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2665 DictScope D(W, "HashTable"); 2666 if (!HashTable) 2667 return; 2668 2669 bool IsHeaderValid; 2670 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2671 if (IsHeaderValid) { 2672 W.printNumber("Num Buckets", HashTable->nbucket); 2673 W.printNumber("Num Chains", HashTable->nchain); 2674 } 2675 2676 if (Err) { 2677 reportUniqueWarning(std::move(Err)); 2678 return; 2679 } 2680 2681 W.printList("Buckets", HashTable->buckets()); 2682 W.printList("Chains", HashTable->chains()); 2683 } 2684 2685 template <class ELFT> 2686 static Expected<ArrayRef<typename ELFT::Word>> 2687 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion, 2688 const typename ELFT::GnuHash *GnuHashTable) { 2689 if (!DynSymRegion) 2690 return createError("no dynamic symbol table found"); 2691 2692 ArrayRef<typename ELFT::Sym> DynSymTable = 2693 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2694 size_t NumSyms = DynSymTable.size(); 2695 if (!NumSyms) 2696 return createError("the dynamic symbol table is empty"); 2697 2698 if (GnuHashTable->symndx < NumSyms) 2699 return GnuHashTable->values(NumSyms); 2700 2701 // A normal empty GNU hash table section produced by linker might have 2702 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2703 // and have dummy null values in the Bloom filter and in the buckets 2704 // vector (or no values at all). It happens because the value of symndx is not 2705 // important for dynamic loaders when the GNU hash table is empty. They just 2706 // skip the whole object during symbol lookup. In such cases, the symndx value 2707 // is irrelevant and we should not report a warning. 2708 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2709 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2710 return createError( 2711 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2712 ") is greater than or equal to the number of dynamic symbols (" + 2713 Twine(NumSyms) + ")"); 2714 // There is no way to represent an array of (dynamic symbols count - symndx) 2715 // length. 2716 return ArrayRef<typename ELFT::Word>(); 2717 } 2718 2719 template <typename ELFT> 2720 void ELFDumper<ELFT>::printGnuHashTable() { 2721 DictScope D(W, "GnuHashTable"); 2722 if (!GnuHashTable) 2723 return; 2724 2725 bool IsHeaderValid; 2726 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2727 if (IsHeaderValid) { 2728 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2729 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2730 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2731 W.printNumber("Shift Count", GnuHashTable->shift2); 2732 } 2733 2734 if (Err) { 2735 reportUniqueWarning(std::move(Err)); 2736 return; 2737 } 2738 2739 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2740 W.printHexList("Bloom Filter", BloomFilter); 2741 2742 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2743 W.printList("Buckets", Buckets); 2744 2745 Expected<ArrayRef<Elf_Word>> Chains = 2746 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2747 if (!Chains) { 2748 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2749 "section: " + 2750 toString(Chains.takeError())); 2751 return; 2752 } 2753 2754 W.printHexList("Values", *Chains); 2755 } 2756 2757 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() { 2758 // Print histogram for the .hash section. 2759 if (this->HashTable) { 2760 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 2761 this->reportUniqueWarning(std::move(E)); 2762 else 2763 printHashHistogram(*this->HashTable); 2764 } 2765 2766 // Print histogram for the .gnu.hash section. 2767 if (this->GnuHashTable) { 2768 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 2769 this->reportUniqueWarning(std::move(E)); 2770 else 2771 printGnuHashHistogram(*this->GnuHashTable); 2772 } 2773 } 2774 2775 template <typename ELFT> 2776 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const { 2777 size_t NBucket = HashTable.nbucket; 2778 size_t NChain = HashTable.nchain; 2779 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 2780 ArrayRef<Elf_Word> Chains = HashTable.chains(); 2781 size_t TotalSyms = 0; 2782 // If hash table is correct, we have at least chains with 0 length. 2783 size_t MaxChain = 1; 2784 2785 if (NChain == 0 || NBucket == 0) 2786 return; 2787 2788 std::vector<size_t> ChainLen(NBucket, 0); 2789 // Go over all buckets and note chain lengths of each bucket (total 2790 // unique chain lengths). 2791 for (size_t B = 0; B < NBucket; ++B) { 2792 BitVector Visited(NChain); 2793 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 2794 if (C == ELF::STN_UNDEF) 2795 break; 2796 if (Visited[C]) { 2797 this->reportUniqueWarning( 2798 ".hash section is invalid: bucket " + Twine(C) + 2799 ": a cycle was detected in the linked chain"); 2800 break; 2801 } 2802 Visited[C] = true; 2803 if (MaxChain <= ++ChainLen[B]) 2804 ++MaxChain; 2805 } 2806 TotalSyms += ChainLen[B]; 2807 } 2808 2809 if (!TotalSyms) 2810 return; 2811 2812 std::vector<size_t> Count(MaxChain, 0); 2813 // Count how long is the chain for each bucket. 2814 for (size_t B = 0; B < NBucket; B++) 2815 ++Count[ChainLen[B]]; 2816 // Print Number of buckets with each chain lengths and their cumulative 2817 // coverage of the symbols. 2818 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false); 2819 } 2820 2821 template <class ELFT> 2822 void ELFDumper<ELFT>::printGnuHashHistogram( 2823 const Elf_GnuHash &GnuHashTable) const { 2824 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 2825 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 2826 if (!ChainsOrErr) { 2827 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 2828 toString(ChainsOrErr.takeError())); 2829 return; 2830 } 2831 2832 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 2833 size_t Symndx = GnuHashTable.symndx; 2834 size_t TotalSyms = 0; 2835 size_t MaxChain = 1; 2836 2837 size_t NBucket = GnuHashTable.nbuckets; 2838 if (Chains.empty() || NBucket == 0) 2839 return; 2840 2841 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 2842 std::vector<size_t> ChainLen(NBucket, 0); 2843 for (size_t B = 0; B < NBucket; ++B) { 2844 if (!Buckets[B]) 2845 continue; 2846 size_t Len = 1; 2847 for (size_t C = Buckets[B] - Symndx; 2848 C < Chains.size() && (Chains[C] & 1) == 0; ++C) 2849 if (MaxChain < ++Len) 2850 ++MaxChain; 2851 ChainLen[B] = Len; 2852 TotalSyms += Len; 2853 } 2854 ++MaxChain; 2855 2856 if (!TotalSyms) 2857 return; 2858 2859 std::vector<size_t> Count(MaxChain, 0); 2860 for (size_t B = 0; B < NBucket; ++B) 2861 ++Count[ChainLen[B]]; 2862 // Print Number of buckets with each chain lengths and their cumulative 2863 // coverage of the symbols. 2864 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true); 2865 } 2866 2867 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2868 StringRef SOName = "<Not found>"; 2869 if (SONameOffset) 2870 SOName = getDynamicString(*SONameOffset); 2871 W.printString("LoadName", SOName); 2872 } 2873 2874 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2875 switch (Obj.getHeader().e_machine) { 2876 case EM_ARM: 2877 if (Obj.isLE()) 2878 printAttributes(ELF::SHT_ARM_ATTRIBUTES, 2879 std::make_unique<ARMAttributeParser>(&W), 2880 llvm::endianness::little); 2881 else 2882 reportUniqueWarning("attribute printing not implemented for big-endian " 2883 "ARM objects"); 2884 break; 2885 case EM_RISCV: 2886 if (Obj.isLE()) 2887 printAttributes(ELF::SHT_RISCV_ATTRIBUTES, 2888 std::make_unique<RISCVAttributeParser>(&W), 2889 llvm::endianness::little); 2890 else 2891 reportUniqueWarning("attribute printing not implemented for big-endian " 2892 "RISC-V objects"); 2893 break; 2894 case EM_MSP430: 2895 printAttributes(ELF::SHT_MSP430_ATTRIBUTES, 2896 std::make_unique<MSP430AttributeParser>(&W), 2897 llvm::endianness::little); 2898 break; 2899 case EM_MIPS: { 2900 printMipsABIFlags(); 2901 printMipsOptions(); 2902 printMipsReginfo(); 2903 MipsGOTParser<ELFT> Parser(*this); 2904 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2905 reportUniqueWarning(std::move(E)); 2906 else if (!Parser.isGotEmpty()) 2907 printMipsGOT(Parser); 2908 2909 if (Error E = Parser.findPLT(dynamic_table())) 2910 reportUniqueWarning(std::move(E)); 2911 else if (!Parser.isPltEmpty()) 2912 printMipsPLT(Parser); 2913 break; 2914 } 2915 default: 2916 break; 2917 } 2918 } 2919 2920 template <class ELFT> 2921 void ELFDumper<ELFT>::printAttributes( 2922 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser, 2923 llvm::endianness Endianness) { 2924 assert((AttrShType != ELF::SHT_NULL) && AttrParser && 2925 "Incomplete ELF attribute implementation"); 2926 DictScope BA(W, "BuildAttributes"); 2927 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2928 if (Sec.sh_type != AttrShType) 2929 continue; 2930 2931 ArrayRef<uint8_t> Contents; 2932 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2933 Obj.getSectionContents(Sec)) { 2934 Contents = *ContentOrErr; 2935 if (Contents.empty()) { 2936 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2937 continue; 2938 } 2939 } else { 2940 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2941 ": " + toString(ContentOrErr.takeError())); 2942 continue; 2943 } 2944 2945 W.printHex("FormatVersion", Contents[0]); 2946 2947 if (Error E = AttrParser->parse(Contents, Endianness)) 2948 reportUniqueWarning("unable to dump attributes from the " + 2949 describe(Sec) + ": " + toString(std::move(E))); 2950 } 2951 } 2952 2953 namespace { 2954 2955 template <class ELFT> class MipsGOTParser { 2956 public: 2957 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2958 using Entry = typename ELFT::Addr; 2959 using Entries = ArrayRef<Entry>; 2960 2961 const bool IsStatic; 2962 const ELFFile<ELFT> &Obj; 2963 const ELFDumper<ELFT> &Dumper; 2964 2965 MipsGOTParser(const ELFDumper<ELFT> &D); 2966 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2967 Error findPLT(Elf_Dyn_Range DynTable); 2968 2969 bool isGotEmpty() const { return GotEntries.empty(); } 2970 bool isPltEmpty() const { return PltEntries.empty(); } 2971 2972 uint64_t getGp() const; 2973 2974 const Entry *getGotLazyResolver() const; 2975 const Entry *getGotModulePointer() const; 2976 const Entry *getPltLazyResolver() const; 2977 const Entry *getPltModulePointer() const; 2978 2979 Entries getLocalEntries() const; 2980 Entries getGlobalEntries() const; 2981 Entries getOtherEntries() const; 2982 Entries getPltEntries() const; 2983 2984 uint64_t getGotAddress(const Entry * E) const; 2985 int64_t getGotOffset(const Entry * E) const; 2986 const Elf_Sym *getGotSym(const Entry *E) const; 2987 2988 uint64_t getPltAddress(const Entry * E) const; 2989 const Elf_Sym *getPltSym(const Entry *E) const; 2990 2991 StringRef getPltStrTable() const { return PltStrTable; } 2992 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2993 2994 private: 2995 const Elf_Shdr *GotSec; 2996 size_t LocalNum; 2997 size_t GlobalNum; 2998 2999 const Elf_Shdr *PltSec; 3000 const Elf_Shdr *PltRelSec; 3001 const Elf_Shdr *PltSymTable; 3002 StringRef FileName; 3003 3004 Elf_Sym_Range GotDynSyms; 3005 StringRef PltStrTable; 3006 3007 Entries GotEntries; 3008 Entries PltEntries; 3009 }; 3010 3011 } // end anonymous namespace 3012 3013 template <class ELFT> 3014 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 3015 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 3016 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 3017 PltRelSec(nullptr), PltSymTable(nullptr), 3018 FileName(D.getElfObject().getFileName()) {} 3019 3020 template <class ELFT> 3021 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 3022 Elf_Sym_Range DynSyms) { 3023 // See "Global Offset Table" in Chapter 5 in the following document 3024 // for detailed GOT description. 3025 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 3026 3027 // Find static GOT secton. 3028 if (IsStatic) { 3029 GotSec = Dumper.findSectionByName(".got"); 3030 if (!GotSec) 3031 return Error::success(); 3032 3033 ArrayRef<uint8_t> Content = 3034 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3035 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3036 Content.size() / sizeof(Entry)); 3037 LocalNum = GotEntries.size(); 3038 return Error::success(); 3039 } 3040 3041 // Lookup dynamic table tags which define the GOT layout. 3042 std::optional<uint64_t> DtPltGot; 3043 std::optional<uint64_t> DtLocalGotNum; 3044 std::optional<uint64_t> DtGotSym; 3045 for (const auto &Entry : DynTable) { 3046 switch (Entry.getTag()) { 3047 case ELF::DT_PLTGOT: 3048 DtPltGot = Entry.getVal(); 3049 break; 3050 case ELF::DT_MIPS_LOCAL_GOTNO: 3051 DtLocalGotNum = Entry.getVal(); 3052 break; 3053 case ELF::DT_MIPS_GOTSYM: 3054 DtGotSym = Entry.getVal(); 3055 break; 3056 } 3057 } 3058 3059 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 3060 return Error::success(); 3061 3062 if (!DtPltGot) 3063 return createError("cannot find PLTGOT dynamic tag"); 3064 if (!DtLocalGotNum) 3065 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 3066 if (!DtGotSym) 3067 return createError("cannot find MIPS_GOTSYM dynamic tag"); 3068 3069 size_t DynSymTotal = DynSyms.size(); 3070 if (*DtGotSym > DynSymTotal) 3071 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 3072 ") exceeds the number of dynamic symbols (" + 3073 Twine(DynSymTotal) + ")"); 3074 3075 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 3076 if (!GotSec) 3077 return createError("there is no non-empty GOT section at 0x" + 3078 Twine::utohexstr(*DtPltGot)); 3079 3080 LocalNum = *DtLocalGotNum; 3081 GlobalNum = DynSymTotal - *DtGotSym; 3082 3083 ArrayRef<uint8_t> Content = 3084 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 3085 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 3086 Content.size() / sizeof(Entry)); 3087 GotDynSyms = DynSyms.drop_front(*DtGotSym); 3088 3089 return Error::success(); 3090 } 3091 3092 template <class ELFT> 3093 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 3094 // Lookup dynamic table tags which define the PLT layout. 3095 std::optional<uint64_t> DtMipsPltGot; 3096 std::optional<uint64_t> DtJmpRel; 3097 for (const auto &Entry : DynTable) { 3098 switch (Entry.getTag()) { 3099 case ELF::DT_MIPS_PLTGOT: 3100 DtMipsPltGot = Entry.getVal(); 3101 break; 3102 case ELF::DT_JMPREL: 3103 DtJmpRel = Entry.getVal(); 3104 break; 3105 } 3106 } 3107 3108 if (!DtMipsPltGot && !DtJmpRel) 3109 return Error::success(); 3110 3111 // Find PLT section. 3112 if (!DtMipsPltGot) 3113 return createError("cannot find MIPS_PLTGOT dynamic tag"); 3114 if (!DtJmpRel) 3115 return createError("cannot find JMPREL dynamic tag"); 3116 3117 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 3118 if (!PltSec) 3119 return createError("there is no non-empty PLTGOT section at 0x" + 3120 Twine::utohexstr(*DtMipsPltGot)); 3121 3122 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 3123 if (!PltRelSec) 3124 return createError("there is no non-empty RELPLT section at 0x" + 3125 Twine::utohexstr(*DtJmpRel)); 3126 3127 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 3128 Obj.getSectionContents(*PltSec)) 3129 PltEntries = 3130 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 3131 PltContentOrErr->size() / sizeof(Entry)); 3132 else 3133 return createError("unable to read PLTGOT section content: " + 3134 toString(PltContentOrErr.takeError())); 3135 3136 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 3137 Obj.getSection(PltRelSec->sh_link)) 3138 PltSymTable = *PltSymTableOrErr; 3139 else 3140 return createError("unable to get a symbol table linked to the " + 3141 describe(Obj, *PltRelSec) + ": " + 3142 toString(PltSymTableOrErr.takeError())); 3143 3144 if (Expected<StringRef> StrTabOrErr = 3145 Obj.getStringTableForSymtab(*PltSymTable)) 3146 PltStrTable = *StrTabOrErr; 3147 else 3148 return createError("unable to get a string table for the " + 3149 describe(Obj, *PltSymTable) + ": " + 3150 toString(StrTabOrErr.takeError())); 3151 3152 return Error::success(); 3153 } 3154 3155 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 3156 return GotSec->sh_addr + 0x7ff0; 3157 } 3158 3159 template <class ELFT> 3160 const typename MipsGOTParser<ELFT>::Entry * 3161 MipsGOTParser<ELFT>::getGotLazyResolver() const { 3162 return LocalNum > 0 ? &GotEntries[0] : nullptr; 3163 } 3164 3165 template <class ELFT> 3166 const typename MipsGOTParser<ELFT>::Entry * 3167 MipsGOTParser<ELFT>::getGotModulePointer() const { 3168 if (LocalNum < 2) 3169 return nullptr; 3170 const Entry &E = GotEntries[1]; 3171 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 3172 return nullptr; 3173 return &E; 3174 } 3175 3176 template <class ELFT> 3177 typename MipsGOTParser<ELFT>::Entries 3178 MipsGOTParser<ELFT>::getLocalEntries() const { 3179 size_t Skip = getGotModulePointer() ? 2 : 1; 3180 if (LocalNum - Skip <= 0) 3181 return Entries(); 3182 return GotEntries.slice(Skip, LocalNum - Skip); 3183 } 3184 3185 template <class ELFT> 3186 typename MipsGOTParser<ELFT>::Entries 3187 MipsGOTParser<ELFT>::getGlobalEntries() const { 3188 if (GlobalNum == 0) 3189 return Entries(); 3190 return GotEntries.slice(LocalNum, GlobalNum); 3191 } 3192 3193 template <class ELFT> 3194 typename MipsGOTParser<ELFT>::Entries 3195 MipsGOTParser<ELFT>::getOtherEntries() const { 3196 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 3197 if (OtherNum == 0) 3198 return Entries(); 3199 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 3200 } 3201 3202 template <class ELFT> 3203 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 3204 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3205 return GotSec->sh_addr + Offset; 3206 } 3207 3208 template <class ELFT> 3209 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 3210 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 3211 return Offset - 0x7ff0; 3212 } 3213 3214 template <class ELFT> 3215 const typename MipsGOTParser<ELFT>::Elf_Sym * 3216 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 3217 int64_t Offset = std::distance(GotEntries.data(), E); 3218 return &GotDynSyms[Offset - LocalNum]; 3219 } 3220 3221 template <class ELFT> 3222 const typename MipsGOTParser<ELFT>::Entry * 3223 MipsGOTParser<ELFT>::getPltLazyResolver() const { 3224 return PltEntries.empty() ? nullptr : &PltEntries[0]; 3225 } 3226 3227 template <class ELFT> 3228 const typename MipsGOTParser<ELFT>::Entry * 3229 MipsGOTParser<ELFT>::getPltModulePointer() const { 3230 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 3231 } 3232 3233 template <class ELFT> 3234 typename MipsGOTParser<ELFT>::Entries 3235 MipsGOTParser<ELFT>::getPltEntries() const { 3236 if (PltEntries.size() <= 2) 3237 return Entries(); 3238 return PltEntries.slice(2, PltEntries.size() - 2); 3239 } 3240 3241 template <class ELFT> 3242 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 3243 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 3244 return PltSec->sh_addr + Offset; 3245 } 3246 3247 template <class ELFT> 3248 const typename MipsGOTParser<ELFT>::Elf_Sym * 3249 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 3250 int64_t Offset = std::distance(getPltEntries().data(), E); 3251 if (PltRelSec->sh_type == ELF::SHT_REL) { 3252 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 3253 return unwrapOrError(FileName, 3254 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3255 } else { 3256 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 3257 return unwrapOrError(FileName, 3258 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 3259 } 3260 } 3261 3262 const EnumEntry<unsigned> ElfMipsISAExtType[] = { 3263 {"None", Mips::AFL_EXT_NONE}, 3264 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 3265 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 3266 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 3267 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 3268 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 3269 {"LSI R4010", Mips::AFL_EXT_4010}, 3270 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 3271 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 3272 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 3273 {"MIPS R4650", Mips::AFL_EXT_4650}, 3274 {"MIPS R5900", Mips::AFL_EXT_5900}, 3275 {"MIPS R10000", Mips::AFL_EXT_10000}, 3276 {"NEC VR4100", Mips::AFL_EXT_4100}, 3277 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 3278 {"NEC VR4120", Mips::AFL_EXT_4120}, 3279 {"NEC VR5400", Mips::AFL_EXT_5400}, 3280 {"NEC VR5500", Mips::AFL_EXT_5500}, 3281 {"RMI Xlr", Mips::AFL_EXT_XLR}, 3282 {"Toshiba R3900", Mips::AFL_EXT_3900} 3283 }; 3284 3285 const EnumEntry<unsigned> ElfMipsASEFlags[] = { 3286 {"DSP", Mips::AFL_ASE_DSP}, 3287 {"DSPR2", Mips::AFL_ASE_DSPR2}, 3288 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 3289 {"MCU", Mips::AFL_ASE_MCU}, 3290 {"MDMX", Mips::AFL_ASE_MDMX}, 3291 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 3292 {"MT", Mips::AFL_ASE_MT}, 3293 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 3294 {"VZ", Mips::AFL_ASE_VIRT}, 3295 {"MSA", Mips::AFL_ASE_MSA}, 3296 {"MIPS16", Mips::AFL_ASE_MIPS16}, 3297 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 3298 {"XPA", Mips::AFL_ASE_XPA}, 3299 {"CRC", Mips::AFL_ASE_CRC}, 3300 {"GINV", Mips::AFL_ASE_GINV}, 3301 }; 3302 3303 const EnumEntry<unsigned> ElfMipsFpABIType[] = { 3304 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 3305 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 3306 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 3307 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 3308 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 3309 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 3310 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 3311 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 3312 {"Hard float compat (32-bit CPU, 64-bit FPU)", 3313 Mips::Val_GNU_MIPS_ABI_FP_64A} 3314 }; 3315 3316 static const EnumEntry<unsigned> ElfMipsFlags1[] { 3317 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 3318 }; 3319 3320 static int getMipsRegisterSize(uint8_t Flag) { 3321 switch (Flag) { 3322 case Mips::AFL_REG_NONE: 3323 return 0; 3324 case Mips::AFL_REG_32: 3325 return 32; 3326 case Mips::AFL_REG_64: 3327 return 64; 3328 case Mips::AFL_REG_128: 3329 return 128; 3330 default: 3331 return -1; 3332 } 3333 } 3334 3335 template <class ELFT> 3336 static void printMipsReginfoData(ScopedPrinter &W, 3337 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 3338 W.printHex("GP", Reginfo.ri_gp_value); 3339 W.printHex("General Mask", Reginfo.ri_gprmask); 3340 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 3341 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 3342 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 3343 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 3344 } 3345 3346 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 3347 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 3348 if (!RegInfoSec) { 3349 W.startLine() << "There is no .reginfo section in the file.\n"; 3350 return; 3351 } 3352 3353 Expected<ArrayRef<uint8_t>> ContentsOrErr = 3354 Obj.getSectionContents(*RegInfoSec); 3355 if (!ContentsOrErr) { 3356 this->reportUniqueWarning( 3357 "unable to read the content of the .reginfo section (" + 3358 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 3359 return; 3360 } 3361 3362 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 3363 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 3364 Twine::utohexstr(ContentsOrErr->size()) + ")"); 3365 return; 3366 } 3367 3368 DictScope GS(W, "MIPS RegInfo"); 3369 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 3370 ContentsOrErr->data())); 3371 } 3372 3373 template <class ELFT> 3374 static Expected<const Elf_Mips_Options<ELFT> *> 3375 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 3376 bool &IsSupported) { 3377 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 3378 return createError("the .MIPS.options section has an invalid size (0x" + 3379 Twine::utohexstr(SecData.size()) + ")"); 3380 3381 const Elf_Mips_Options<ELFT> *O = 3382 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 3383 const uint8_t Size = O->size; 3384 if (Size > SecData.size()) { 3385 const uint64_t Offset = SecData.data() - SecBegin; 3386 const uint64_t SecSize = Offset + SecData.size(); 3387 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 3388 " at offset 0x" + Twine::utohexstr(Offset) + 3389 " goes past the end of the .MIPS.options " 3390 "section of size 0x" + 3391 Twine::utohexstr(SecSize)); 3392 } 3393 3394 IsSupported = O->kind == ODK_REGINFO; 3395 const size_t ExpectedSize = 3396 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 3397 3398 if (IsSupported) 3399 if (Size < ExpectedSize) 3400 return createError( 3401 "a .MIPS.options entry of kind " + 3402 Twine(getElfMipsOptionsOdkType(O->kind)) + 3403 " has an invalid size (0x" + Twine::utohexstr(Size) + 3404 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 3405 3406 SecData = SecData.drop_front(Size); 3407 return O; 3408 } 3409 3410 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 3411 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 3412 if (!MipsOpts) { 3413 W.startLine() << "There is no .MIPS.options section in the file.\n"; 3414 return; 3415 } 3416 3417 DictScope GS(W, "MIPS Options"); 3418 3419 ArrayRef<uint8_t> Data = 3420 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 3421 const uint8_t *const SecBegin = Data.begin(); 3422 while (!Data.empty()) { 3423 bool IsSupported; 3424 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 3425 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3426 if (!OptsOrErr) { 3427 reportUniqueWarning(OptsOrErr.takeError()); 3428 break; 3429 } 3430 3431 unsigned Kind = (*OptsOrErr)->kind; 3432 const char *Type = getElfMipsOptionsOdkType(Kind); 3433 if (!IsSupported) { 3434 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3435 << ")\n"; 3436 continue; 3437 } 3438 3439 DictScope GS(W, Type); 3440 if (Kind == ODK_REGINFO) 3441 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3442 else 3443 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3444 } 3445 } 3446 3447 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3448 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3449 if (!StackMapSection) 3450 return; 3451 3452 auto Warn = [&](Error &&E) { 3453 this->reportUniqueWarning("unable to read the stack map from " + 3454 describe(*StackMapSection) + ": " + 3455 toString(std::move(E))); 3456 }; 3457 3458 Expected<ArrayRef<uint8_t>> ContentOrErr = 3459 Obj.getSectionContents(*StackMapSection); 3460 if (!ContentOrErr) { 3461 Warn(ContentOrErr.takeError()); 3462 return; 3463 } 3464 3465 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader( 3466 *ContentOrErr)) { 3467 Warn(std::move(E)); 3468 return; 3469 } 3470 3471 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr)); 3472 } 3473 3474 template <class ELFT> 3475 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3476 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3477 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3478 if (!Target) 3479 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3480 " in " + describe(Sec) + ": " + 3481 toString(Target.takeError())); 3482 else 3483 printRelRelaReloc(R, *Target); 3484 } 3485 3486 template <class ELFT> 3487 std::vector<EnumEntry<unsigned>> 3488 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header, 3489 const Elf_Sym &Symbol) const { 3490 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 3491 std::end(ElfSymOtherFlags)); 3492 if (Header.e_machine == EM_MIPS) { 3493 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16 3494 // flag overlap with other ST_MIPS_xxx flags. So consider both 3495 // cases separately. 3496 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 3497 SymOtherFlags.insert(SymOtherFlags.end(), 3498 std::begin(ElfMips16SymOtherFlags), 3499 std::end(ElfMips16SymOtherFlags)); 3500 else 3501 SymOtherFlags.insert(SymOtherFlags.end(), 3502 std::begin(ElfMipsSymOtherFlags), 3503 std::end(ElfMipsSymOtherFlags)); 3504 } else if (Header.e_machine == EM_AARCH64) { 3505 SymOtherFlags.insert(SymOtherFlags.end(), 3506 std::begin(ElfAArch64SymOtherFlags), 3507 std::end(ElfAArch64SymOtherFlags)); 3508 } else if (Header.e_machine == EM_RISCV) { 3509 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags), 3510 std::end(ElfRISCVSymOtherFlags)); 3511 } 3512 return SymOtherFlags; 3513 } 3514 3515 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3516 StringRef Str2) { 3517 OS.PadToColumn(2u); 3518 OS << Str1; 3519 OS.PadToColumn(37u); 3520 OS << Str2 << "\n"; 3521 OS.flush(); 3522 } 3523 3524 template <class ELFT> 3525 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3526 StringRef FileName) { 3527 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3528 if (ElfHeader.e_shnum != 0) 3529 return to_string(ElfHeader.e_shnum); 3530 3531 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3532 if (!ArrOrErr) { 3533 // In this case we can ignore an error, because we have already reported a 3534 // warning about the broken section header table earlier. 3535 consumeError(ArrOrErr.takeError()); 3536 return "<?>"; 3537 } 3538 3539 if (ArrOrErr->empty()) 3540 return "0"; 3541 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3542 } 3543 3544 template <class ELFT> 3545 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3546 StringRef FileName) { 3547 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3548 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3549 return to_string(ElfHeader.e_shstrndx); 3550 3551 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3552 if (!ArrOrErr) { 3553 // In this case we can ignore an error, because we have already reported a 3554 // warning about the broken section header table earlier. 3555 consumeError(ArrOrErr.takeError()); 3556 return "<?>"; 3557 } 3558 3559 if (ArrOrErr->empty()) 3560 return "65535 (corrupt: out of range)"; 3561 return to_string(ElfHeader.e_shstrndx) + " (" + 3562 to_string((*ArrOrErr)[0].sh_link) + ")"; 3563 } 3564 3565 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3566 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3567 return E.Value == Type; 3568 }); 3569 if (It != ArrayRef(ElfObjectFileType).end()) 3570 return It; 3571 return nullptr; 3572 } 3573 3574 template <class ELFT> 3575 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 3576 ArrayRef<std::string> InputFilenames, 3577 const Archive *A) { 3578 if (InputFilenames.size() > 1 || A) { 3579 this->W.startLine() << "\n"; 3580 this->W.printString("File", FileStr); 3581 } 3582 } 3583 3584 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3585 const Elf_Ehdr &e = this->Obj.getHeader(); 3586 OS << "ELF Header:\n"; 3587 OS << " Magic: "; 3588 std::string Str; 3589 for (int i = 0; i < ELF::EI_NIDENT; i++) 3590 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3591 OS << "\n"; 3592 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 3593 printFields(OS, "Class:", Str); 3594 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding)); 3595 printFields(OS, "Data:", Str); 3596 OS.PadToColumn(2u); 3597 OS << "Version:"; 3598 OS.PadToColumn(37u); 3599 OS << utohexstr(e.e_ident[ELF::EI_VERSION]); 3600 if (e.e_version == ELF::EV_CURRENT) 3601 OS << " (current)"; 3602 OS << "\n"; 3603 auto OSABI = ArrayRef(ElfOSABI); 3604 if (e.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 3605 e.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 3606 switch (e.e_machine) { 3607 case ELF::EM_AMDGPU: 3608 OSABI = ArrayRef(AMDGPUElfOSABI); 3609 break; 3610 default: 3611 break; 3612 } 3613 } 3614 Str = enumToString(e.e_ident[ELF::EI_OSABI], OSABI); 3615 printFields(OS, "OS/ABI:", Str); 3616 printFields(OS, 3617 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3618 3619 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3620 Str = E->AltName.str(); 3621 } else { 3622 if (e.e_type >= ET_LOPROC) 3623 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3624 else if (e.e_type >= ET_LOOS) 3625 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")"; 3626 else 3627 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true); 3628 } 3629 printFields(OS, "Type:", Str); 3630 3631 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType)); 3632 printFields(OS, "Machine:", Str); 3633 Str = "0x" + utohexstr(e.e_version); 3634 printFields(OS, "Version:", Str); 3635 Str = "0x" + utohexstr(e.e_entry); 3636 printFields(OS, "Entry point address:", Str); 3637 Str = to_string(e.e_phoff) + " (bytes into file)"; 3638 printFields(OS, "Start of program headers:", Str); 3639 Str = to_string(e.e_shoff) + " (bytes into file)"; 3640 printFields(OS, "Start of section headers:", Str); 3641 std::string ElfFlags; 3642 if (e.e_machine == EM_MIPS) 3643 ElfFlags = printFlags( 3644 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), 3645 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); 3646 else if (e.e_machine == EM_RISCV) 3647 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 3648 else if (e.e_machine == EM_AVR) 3649 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags), 3650 unsigned(ELF::EF_AVR_ARCH_MASK)); 3651 else if (e.e_machine == EM_LOONGARCH) 3652 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 3653 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 3654 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 3655 else if (e.e_machine == EM_XTENSA) 3656 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags), 3657 unsigned(ELF::EF_XTENSA_MACH)); 3658 else if (e.e_machine == EM_CUDA) 3659 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderNVPTXFlags), 3660 unsigned(ELF::EF_CUDA_SM)); 3661 else if (e.e_machine == EM_AMDGPU) { 3662 switch (e.e_ident[ELF::EI_ABIVERSION]) { 3663 default: 3664 break; 3665 case 0: 3666 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 3667 [[fallthrough]]; 3668 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 3669 ElfFlags = 3670 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 3671 unsigned(ELF::EF_AMDGPU_MACH)); 3672 break; 3673 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 3674 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 3675 ElfFlags = 3676 printFlags(e.e_flags, ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 3677 unsigned(ELF::EF_AMDGPU_MACH), 3678 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 3679 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 3680 break; 3681 } 3682 } 3683 Str = "0x" + utohexstr(e.e_flags); 3684 if (!ElfFlags.empty()) 3685 Str = Str + ", " + ElfFlags; 3686 printFields(OS, "Flags:", Str); 3687 Str = to_string(e.e_ehsize) + " (bytes)"; 3688 printFields(OS, "Size of this header:", Str); 3689 Str = to_string(e.e_phentsize) + " (bytes)"; 3690 printFields(OS, "Size of program headers:", Str); 3691 Str = to_string(e.e_phnum); 3692 printFields(OS, "Number of program headers:", Str); 3693 Str = to_string(e.e_shentsize) + " (bytes)"; 3694 printFields(OS, "Size of section headers:", Str); 3695 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3696 printFields(OS, "Number of section headers:", Str); 3697 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3698 printFields(OS, "Section header string table index:", Str); 3699 } 3700 3701 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3702 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3703 const Elf_Shdr &Symtab) -> StringRef { 3704 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3705 if (!StrTableOrErr) { 3706 reportUniqueWarning("unable to get the string table for " + 3707 describe(Symtab) + ": " + 3708 toString(StrTableOrErr.takeError())); 3709 return "<?>"; 3710 } 3711 3712 StringRef Strings = *StrTableOrErr; 3713 if (Sym.st_name >= Strings.size()) { 3714 reportUniqueWarning("unable to get the name of the symbol with index " + 3715 Twine(SymNdx) + ": st_name (0x" + 3716 Twine::utohexstr(Sym.st_name) + 3717 ") is past the end of the string table of size 0x" + 3718 Twine::utohexstr(Strings.size())); 3719 return "<?>"; 3720 } 3721 3722 return StrTableOrErr->data() + Sym.st_name; 3723 }; 3724 3725 std::vector<GroupSection> Ret; 3726 uint64_t I = 0; 3727 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3728 ++I; 3729 if (Sec.sh_type != ELF::SHT_GROUP) 3730 continue; 3731 3732 StringRef Signature = "<?>"; 3733 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3734 if (Expected<const Elf_Sym *> SymOrErr = 3735 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3736 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3737 else 3738 reportUniqueWarning("unable to get the signature symbol for " + 3739 describe(Sec) + ": " + 3740 toString(SymOrErr.takeError())); 3741 } else { 3742 reportUniqueWarning("unable to get the symbol table for " + 3743 describe(Sec) + ": " + 3744 toString(SymtabOrErr.takeError())); 3745 } 3746 3747 ArrayRef<Elf_Word> Data; 3748 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3749 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3750 if (ContentsOrErr->empty()) 3751 reportUniqueWarning("unable to read the section group flag from the " + 3752 describe(Sec) + ": the section is empty"); 3753 else 3754 Data = *ContentsOrErr; 3755 } else { 3756 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3757 ": " + toString(ContentsOrErr.takeError())); 3758 } 3759 3760 Ret.push_back({getPrintableSectionName(Sec), 3761 maybeDemangle(Signature), 3762 Sec.sh_name, 3763 I - 1, 3764 Sec.sh_link, 3765 Sec.sh_info, 3766 Data.empty() ? Elf_Word(0) : Data[0], 3767 {}}); 3768 3769 if (Data.empty()) 3770 continue; 3771 3772 std::vector<GroupMember> &GM = Ret.back().Members; 3773 for (uint32_t Ndx : Data.slice(1)) { 3774 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3775 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3776 } else { 3777 reportUniqueWarning("unable to get the section with index " + 3778 Twine(Ndx) + " when dumping the " + describe(Sec) + 3779 ": " + toString(SecOrErr.takeError())); 3780 GM.push_back({"<?>", Ndx}); 3781 } 3782 } 3783 } 3784 return Ret; 3785 } 3786 3787 static DenseMap<uint64_t, const GroupSection *> 3788 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3789 DenseMap<uint64_t, const GroupSection *> Ret; 3790 for (const GroupSection &G : Groups) 3791 for (const GroupMember &GM : G.Members) 3792 Ret.insert({GM.Index, &G}); 3793 return Ret; 3794 } 3795 3796 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3797 std::vector<GroupSection> V = this->getGroups(); 3798 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3799 for (const GroupSection &G : V) { 3800 OS << "\n" 3801 << getGroupType(G.Type) << " group section [" 3802 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3803 << "] contains " << G.Members.size() << " sections:\n" 3804 << " [Index] Name\n"; 3805 for (const GroupMember &GM : G.Members) { 3806 const GroupSection *MainGroup = Map[GM.Index]; 3807 if (MainGroup != &G) 3808 this->reportUniqueWarning( 3809 "section with index " + Twine(GM.Index) + 3810 ", included in the group section with index " + 3811 Twine(MainGroup->Index) + 3812 ", was also found in the group section with index " + 3813 Twine(G.Index)); 3814 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3815 } 3816 } 3817 3818 if (V.empty()) 3819 OS << "There are no section groups in this file.\n"; 3820 } 3821 3822 template <class ELFT> 3823 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 3824 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; 3825 } 3826 3827 template <class ELFT> 3828 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3829 const RelSymbol<ELFT> &RelSym) { 3830 // First two fields are bit width dependent. The rest of them are fixed width. 3831 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3832 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3833 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3834 3835 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3836 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3837 3838 SmallString<32> RelocName; 3839 this->Obj.getRelocationTypeName(R.Type, RelocName); 3840 Fields[2].Str = RelocName.c_str(); 3841 3842 if (RelSym.Sym) 3843 Fields[3].Str = 3844 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3845 if (RelSym.Sym && RelSym.Name.empty()) 3846 Fields[4].Str = "<null>"; 3847 else 3848 Fields[4].Str = std::string(RelSym.Name); 3849 3850 for (const Field &F : Fields) 3851 printField(F); 3852 3853 std::string Addend; 3854 if (std::optional<int64_t> A = R.Addend) { 3855 int64_t RelAddend = *A; 3856 if (!Fields[4].Str.empty()) { 3857 if (RelAddend < 0) { 3858 Addend = " - "; 3859 RelAddend = -static_cast<uint64_t>(RelAddend); 3860 } else { 3861 Addend = " + "; 3862 } 3863 } 3864 Addend += utohexstr(RelAddend, /*LowerCase=*/true); 3865 } 3866 OS << Addend << "\n"; 3867 } 3868 3869 template <class ELFT> 3870 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType, 3871 const typename ELFT::Ehdr &EHeader) { 3872 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3873 bool IsRelr = 3874 SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR || 3875 (EHeader.e_machine == EM_AARCH64 && SType == ELF::SHT_AARCH64_AUTH_RELR); 3876 if (ELFT::Is64Bits) 3877 OS << " "; 3878 else 3879 OS << " "; 3880 if (IsRelr && opts::RawRelr) 3881 OS << "Data "; 3882 else 3883 OS << "Offset"; 3884 if (ELFT::Is64Bits) 3885 OS << " Info Type" 3886 << " Symbol's Value Symbol's Name"; 3887 else 3888 OS << " Info Type Sym. Value Symbol's Name"; 3889 if (IsRela) 3890 OS << " + Addend"; 3891 OS << "\n"; 3892 } 3893 3894 template <class ELFT> 3895 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3896 const DynRegionInfo &Reg) { 3897 uint64_t Offset = Reg.Addr - this->Obj.base(); 3898 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3899 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n"; 3900 printRelocHeaderFields<ELFT>(OS, Type, this->Obj.getHeader()); 3901 } 3902 3903 template <class ELFT> 3904 static bool isRelocationSec(const typename ELFT::Shdr &Sec, 3905 const typename ELFT::Ehdr &EHeader) { 3906 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3907 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || 3908 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3909 Sec.sh_type == ELF::SHT_ANDROID_RELR || 3910 (EHeader.e_machine == EM_AARCH64 && 3911 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR); 3912 } 3913 3914 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3915 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3916 // Android's packed relocation section needs to be unpacked first 3917 // to get the actual number of entries. 3918 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3919 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3920 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3921 this->Obj.android_relas(Sec); 3922 if (!RelasOrErr) 3923 return RelasOrErr.takeError(); 3924 return RelasOrErr->size(); 3925 } 3926 3927 if (!opts::RawRelr && 3928 (Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_RELR || 3929 (this->Obj.getHeader().e_machine == EM_AARCH64 && 3930 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR))) { 3931 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3932 if (!RelrsOrErr) 3933 return RelrsOrErr.takeError(); 3934 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3935 } 3936 3937 return Sec.getEntityCount(); 3938 }; 3939 3940 bool HasRelocSections = false; 3941 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3942 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) 3943 continue; 3944 HasRelocSections = true; 3945 3946 std::string EntriesNum = "<?>"; 3947 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3948 EntriesNum = std::to_string(*NumOrErr); 3949 else 3950 this->reportUniqueWarning("unable to get the number of relocations in " + 3951 this->describe(Sec) + ": " + 3952 toString(NumOrErr.takeError())); 3953 3954 uintX_t Offset = Sec.sh_offset; 3955 StringRef Name = this->getPrintableSectionName(Sec); 3956 OS << "\nRelocation section '" << Name << "' at offset 0x" 3957 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum 3958 << " entries:\n"; 3959 printRelocHeaderFields<ELFT>(OS, Sec.sh_type, this->Obj.getHeader()); 3960 this->printRelocationsHelper(Sec); 3961 } 3962 if (!HasRelocSections) 3963 OS << "\nThere are no relocations in this file.\n"; 3964 } 3965 3966 // Print the offset of a particular section from anyone of the ranges: 3967 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3968 // If 'Type' does not fall within any of those ranges, then a string is 3969 // returned as '<unknown>' followed by the type value. 3970 static std::string getSectionTypeOffsetString(unsigned Type) { 3971 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3972 return "LOOS+0x" + utohexstr(Type - SHT_LOOS); 3973 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3974 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC); 3975 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3976 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER); 3977 return "0x" + utohexstr(Type) + ": <unknown>"; 3978 } 3979 3980 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 3981 StringRef Name = getELFSectionTypeName(Machine, Type); 3982 3983 // Handle SHT_GNU_* type names. 3984 if (Name.consume_front("SHT_GNU_")) { 3985 if (Name == "HASH") 3986 return "GNU_HASH"; 3987 // E.g. SHT_GNU_verneed -> VERNEED. 3988 return Name.upper(); 3989 } 3990 3991 if (Name == "SHT_SYMTAB_SHNDX") 3992 return "SYMTAB SECTION INDICES"; 3993 3994 if (Name.consume_front("SHT_")) 3995 return Name.str(); 3996 return getSectionTypeOffsetString(Type); 3997 } 3998 3999 static void printSectionDescription(formatted_raw_ostream &OS, 4000 unsigned EMachine) { 4001 OS << "Key to Flags:\n"; 4002 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 4003 "(info),\n"; 4004 OS << " L (link order), O (extra OS processing required), G (group), T " 4005 "(TLS),\n"; 4006 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 4007 OS << " R (retain)"; 4008 4009 if (EMachine == EM_X86_64) 4010 OS << ", l (large)"; 4011 else if (EMachine == EM_ARM) 4012 OS << ", y (purecode)"; 4013 4014 OS << ", p (processor specific)\n"; 4015 } 4016 4017 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 4018 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4019 if (Sections.empty()) { 4020 OS << "\nThere are no sections in this file.\n"; 4021 Expected<StringRef> SecStrTableOrErr = 4022 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4023 if (!SecStrTableOrErr) 4024 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4025 return; 4026 } 4027 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 4028 OS << "There are " << to_string(Sections.size()) 4029 << " section headers, starting at offset " 4030 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4031 OS << "Section Headers:\n"; 4032 Field Fields[11] = { 4033 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 4034 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 4035 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 4036 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 4037 for (const Field &F : Fields) 4038 printField(F); 4039 OS << "\n"; 4040 4041 StringRef SecStrTable; 4042 if (Expected<StringRef> SecStrTableOrErr = 4043 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4044 SecStrTable = *SecStrTableOrErr; 4045 else 4046 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4047 4048 size_t SectionIndex = 0; 4049 for (const Elf_Shdr &Sec : Sections) { 4050 Fields[0].Str = to_string(SectionIndex); 4051 if (SecStrTable.empty()) 4052 Fields[1].Str = "<no-strings>"; 4053 else 4054 Fields[1].Str = std::string(unwrapOrError<StringRef>( 4055 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 4056 Fields[2].Str = 4057 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 4058 Fields[3].Str = 4059 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 4060 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 4061 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 4062 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 4063 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 4064 this->Obj.getHeader().e_machine, Sec.sh_flags); 4065 Fields[8].Str = to_string(Sec.sh_link); 4066 Fields[9].Str = to_string(Sec.sh_info); 4067 Fields[10].Str = to_string(Sec.sh_addralign); 4068 4069 OS.PadToColumn(Fields[0].Column); 4070 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 4071 for (int i = 1; i < 7; i++) 4072 printField(Fields[i]); 4073 OS.PadToColumn(Fields[7].Column); 4074 OS << right_justify(Fields[7].Str, 3); 4075 OS.PadToColumn(Fields[8].Column); 4076 OS << right_justify(Fields[8].Str, 2); 4077 OS.PadToColumn(Fields[9].Column); 4078 OS << right_justify(Fields[9].Str, 3); 4079 OS.PadToColumn(Fields[10].Column); 4080 OS << right_justify(Fields[10].Str, 2); 4081 OS << "\n"; 4082 ++SectionIndex; 4083 } 4084 printSectionDescription(OS, this->Obj.getHeader().e_machine); 4085 } 4086 4087 template <class ELFT> 4088 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 4089 size_t Entries, 4090 bool NonVisibilityBitsUsed, 4091 bool ExtraSymInfo) const { 4092 StringRef Name; 4093 if (Symtab) 4094 Name = this->getPrintableSectionName(*Symtab); 4095 if (!Name.empty()) 4096 OS << "\nSymbol table '" << Name << "'"; 4097 else 4098 OS << "\nSymbol table for image"; 4099 OS << " contains " << Entries << " entries:\n"; 4100 4101 if (ELFT::Is64Bits) { 4102 OS << " Num: Value Size Type Bind Vis"; 4103 if (ExtraSymInfo) 4104 OS << "+Other"; 4105 } else { 4106 OS << " Num: Value Size Type Bind Vis"; 4107 if (ExtraSymInfo) 4108 OS << "+Other"; 4109 } 4110 4111 OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0)); 4112 if (ExtraSymInfo) 4113 OS << "Ndx(SecName) Name [+ Version Info]\n"; 4114 else 4115 OS << "Ndx Name\n"; 4116 } 4117 4118 template <class ELFT> 4119 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx( 4120 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable, 4121 bool ExtraSymInfo) const { 4122 unsigned SectionIndex = Symbol.st_shndx; 4123 switch (SectionIndex) { 4124 case ELF::SHN_UNDEF: 4125 return "UND"; 4126 case ELF::SHN_ABS: 4127 return "ABS"; 4128 case ELF::SHN_COMMON: 4129 return "COM"; 4130 case ELF::SHN_XINDEX: { 4131 Expected<uint32_t> IndexOrErr = 4132 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 4133 if (!IndexOrErr) { 4134 assert(Symbol.st_shndx == SHN_XINDEX && 4135 "getExtendedSymbolTableIndex should only fail due to an invalid " 4136 "SHT_SYMTAB_SHNDX table/reference"); 4137 this->reportUniqueWarning(IndexOrErr.takeError()); 4138 return "RSV[0xffff]"; 4139 } 4140 SectionIndex = *IndexOrErr; 4141 break; 4142 } 4143 default: 4144 // Find if: 4145 // Processor specific 4146 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 4147 return std::string("PRC[0x") + 4148 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4149 // OS specific 4150 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 4151 return std::string("OS[0x") + 4152 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4153 // Architecture reserved: 4154 if (SectionIndex >= ELF::SHN_LORESERVE && 4155 SectionIndex <= ELF::SHN_HIRESERVE) 4156 return std::string("RSV[0x") + 4157 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 4158 break; 4159 } 4160 4161 std::string Extra; 4162 if (ExtraSymInfo) { 4163 auto Sec = this->Obj.getSection(SectionIndex); 4164 if (!Sec) { 4165 this->reportUniqueWarning(Sec.takeError()); 4166 } else { 4167 auto SecName = this->Obj.getSectionName(**Sec); 4168 if (!SecName) 4169 this->reportUniqueWarning(SecName.takeError()); 4170 else 4171 Extra = Twine(" (" + *SecName + ")").str(); 4172 } 4173 } 4174 return to_string(format_decimal(SectionIndex, 3)) + Extra; 4175 } 4176 4177 template <class ELFT> 4178 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 4179 DataRegion<Elf_Word> ShndxTable, 4180 std::optional<StringRef> StrTable, 4181 bool IsDynamic, bool NonVisibilityBitsUsed, 4182 bool ExtraSymInfo) const { 4183 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4184 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 4185 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 4186 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 4187 Fields[1].Str = 4188 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 4189 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 4190 4191 unsigned char SymbolType = Symbol.getType(); 4192 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4193 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4194 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4195 else 4196 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4197 4198 Fields[4].Str = 4199 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 4200 Fields[5].Str = 4201 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4202 4203 if (Symbol.st_other & ~0x3) { 4204 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 4205 uint8_t Other = Symbol.st_other & ~0x3; 4206 if (Other & STO_AARCH64_VARIANT_PCS) { 4207 Other &= ~STO_AARCH64_VARIANT_PCS; 4208 Fields[5].Str += " [VARIANT_PCS"; 4209 if (Other != 0) 4210 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4211 Fields[5].Str.append("]"); 4212 } 4213 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) { 4214 uint8_t Other = Symbol.st_other & ~0x3; 4215 if (Other & STO_RISCV_VARIANT_CC) { 4216 Other &= ~STO_RISCV_VARIANT_CC; 4217 Fields[5].Str += " [VARIANT_CC"; 4218 if (Other != 0) 4219 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true)); 4220 Fields[5].Str.append("]"); 4221 } 4222 } else { 4223 Fields[5].Str += 4224 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 4225 } 4226 } 4227 4228 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 4229 Fields[6].Str = 4230 getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo); 4231 4232 Fields[7].Column += ExtraSymInfo ? 10 : 0; 4233 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 4234 StrTable, IsDynamic); 4235 for (const Field &Entry : Fields) 4236 printField(Entry); 4237 OS << "\n"; 4238 } 4239 4240 template <class ELFT> 4241 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 4242 unsigned SymIndex, 4243 DataRegion<Elf_Word> ShndxTable, 4244 StringRef StrTable, 4245 uint32_t Bucket) { 4246 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4247 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 4248 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 4249 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 4250 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 4251 4252 Fields[2].Str = to_string( 4253 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 4254 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 4255 4256 unsigned char SymbolType = Symbol->getType(); 4257 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 4258 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 4259 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes)); 4260 else 4261 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes)); 4262 4263 Fields[5].Str = 4264 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings)); 4265 Fields[6].Str = 4266 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities)); 4267 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 4268 Fields[8].Str = 4269 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 4270 4271 for (const Field &Entry : Fields) 4272 printField(Entry); 4273 OS << "\n"; 4274 } 4275 4276 template <class ELFT> 4277 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 4278 bool PrintDynamicSymbols, 4279 bool ExtraSymInfo) { 4280 if (!PrintSymbols && !PrintDynamicSymbols) 4281 return; 4282 // GNU readelf prints both the .dynsym and .symtab with --symbols. 4283 this->printSymbolsHelper(true, ExtraSymInfo); 4284 if (PrintSymbols) 4285 this->printSymbolsHelper(false, ExtraSymInfo); 4286 } 4287 4288 template <class ELFT> 4289 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 4290 if (this->DynamicStringTable.empty()) 4291 return; 4292 4293 if (ELFT::Is64Bits) 4294 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4295 else 4296 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4297 OS << "\n"; 4298 4299 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4300 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4301 if (!FirstSym) { 4302 this->reportUniqueWarning( 4303 Twine("unable to print symbols for the .hash table: the " 4304 "dynamic symbol table ") + 4305 (this->DynSymRegion ? "is empty" : "was not found")); 4306 return; 4307 } 4308 4309 DataRegion<Elf_Word> ShndxTable( 4310 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4311 auto Buckets = SysVHash.buckets(); 4312 auto Chains = SysVHash.chains(); 4313 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 4314 if (Buckets[Buc] == ELF::STN_UNDEF) 4315 continue; 4316 BitVector Visited(SysVHash.nchain); 4317 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 4318 if (Ch == ELF::STN_UNDEF) 4319 break; 4320 4321 if (Visited[Ch]) { 4322 this->reportUniqueWarning(".hash section is invalid: bucket " + 4323 Twine(Ch) + 4324 ": a cycle was detected in the linked chain"); 4325 break; 4326 } 4327 4328 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 4329 Buc); 4330 Visited[Ch] = true; 4331 } 4332 } 4333 } 4334 4335 template <class ELFT> 4336 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 4337 if (this->DynamicStringTable.empty()) 4338 return; 4339 4340 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 4341 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 4342 if (!FirstSym) { 4343 this->reportUniqueWarning( 4344 Twine("unable to print symbols for the .gnu.hash table: the " 4345 "dynamic symbol table ") + 4346 (this->DynSymRegion ? "is empty" : "was not found")); 4347 return; 4348 } 4349 4350 auto GetSymbol = [&](uint64_t SymIndex, 4351 uint64_t SymsTotal) -> const Elf_Sym * { 4352 if (SymIndex >= SymsTotal) { 4353 this->reportUniqueWarning( 4354 "unable to print hashed symbol with index " + Twine(SymIndex) + 4355 ", which is greater than or equal to the number of dynamic symbols " 4356 "(" + 4357 Twine::utohexstr(SymsTotal) + ")"); 4358 return nullptr; 4359 } 4360 return FirstSym + SymIndex; 4361 }; 4362 4363 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 4364 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 4365 ArrayRef<Elf_Word> Values; 4366 if (!ValuesOrErr) 4367 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 4368 "section: " + 4369 toString(ValuesOrErr.takeError())); 4370 else 4371 Values = *ValuesOrErr; 4372 4373 DataRegion<Elf_Word> ShndxTable( 4374 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 4375 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 4376 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 4377 if (Buckets[Buc] == ELF::STN_UNDEF) 4378 continue; 4379 uint32_t Index = Buckets[Buc]; 4380 // Print whole chain. 4381 while (true) { 4382 uint32_t SymIndex = Index++; 4383 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 4384 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 4385 Buc); 4386 else 4387 break; 4388 4389 if (SymIndex < GnuHash.symndx) { 4390 this->reportUniqueWarning( 4391 "unable to read the hash value for symbol with index " + 4392 Twine(SymIndex) + 4393 ", which is less than the index of the first hashed symbol (" + 4394 Twine(GnuHash.symndx) + ")"); 4395 break; 4396 } 4397 4398 // Chain ends at symbol with stopper bit. 4399 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 4400 break; 4401 } 4402 } 4403 } 4404 4405 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 4406 if (this->HashTable) { 4407 OS << "\n Symbol table of .hash for image:\n"; 4408 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4409 this->reportUniqueWarning(std::move(E)); 4410 else 4411 printHashTableSymbols(*this->HashTable); 4412 } 4413 4414 // Try printing the .gnu.hash table. 4415 if (this->GnuHashTable) { 4416 OS << "\n Symbol table of .gnu.hash for image:\n"; 4417 if (ELFT::Is64Bits) 4418 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4419 else 4420 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 4421 OS << "\n"; 4422 4423 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4424 this->reportUniqueWarning(std::move(E)); 4425 else 4426 printGnuHashTableSymbols(*this->GnuHashTable); 4427 } 4428 } 4429 4430 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 4431 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 4432 if (Sections.empty()) { 4433 OS << "\nThere are no sections in this file.\n"; 4434 Expected<StringRef> SecStrTableOrErr = 4435 this->Obj.getSectionStringTable(Sections, this->WarningHandler); 4436 if (!SecStrTableOrErr) 4437 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4438 return; 4439 } 4440 OS << "There are " << to_string(Sections.size()) 4441 << " section headers, starting at offset " 4442 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n"; 4443 4444 OS << "Section Headers:\n"; 4445 4446 auto PrintFields = [&](ArrayRef<Field> V) { 4447 for (const Field &F : V) 4448 printField(F); 4449 OS << "\n"; 4450 }; 4451 4452 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 4453 4454 constexpr bool Is64 = ELFT::Is64Bits; 4455 PrintFields({{"Type", 7}, 4456 {Is64 ? "Address" : "Addr", 23}, 4457 {"Off", Is64 ? 40 : 32}, 4458 {"Size", Is64 ? 47 : 39}, 4459 {"ES", Is64 ? 54 : 46}, 4460 {"Lk", Is64 ? 59 : 51}, 4461 {"Inf", Is64 ? 62 : 54}, 4462 {"Al", Is64 ? 66 : 57}}); 4463 PrintFields({{"Flags", 7}}); 4464 4465 StringRef SecStrTable; 4466 if (Expected<StringRef> SecStrTableOrErr = 4467 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 4468 SecStrTable = *SecStrTableOrErr; 4469 else 4470 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 4471 4472 size_t SectionIndex = 0; 4473 const unsigned AddrSize = Is64 ? 16 : 8; 4474 for (const Elf_Shdr &S : Sections) { 4475 StringRef Name = "<?>"; 4476 if (Expected<StringRef> NameOrErr = 4477 this->Obj.getSectionName(S, SecStrTable)) 4478 Name = *NameOrErr; 4479 else 4480 this->reportUniqueWarning(NameOrErr.takeError()); 4481 4482 OS.PadToColumn(2); 4483 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 4484 PrintFields({{Name, 7}}); 4485 PrintFields( 4486 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 4487 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 4488 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 4489 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 4490 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 4491 {to_string(S.sh_link), Is64 ? 59 : 51}, 4492 {to_string(S.sh_info), Is64 ? 63 : 55}, 4493 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 4494 4495 OS.PadToColumn(7); 4496 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 4497 4498 DenseMap<unsigned, StringRef> FlagToName = { 4499 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 4500 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 4501 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 4502 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 4503 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 4504 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 4505 4506 uint64_t Flags = S.sh_flags; 4507 uint64_t UnknownFlags = 0; 4508 ListSeparator LS; 4509 while (Flags) { 4510 // Take the least significant bit as a flag. 4511 uint64_t Flag = Flags & -Flags; 4512 Flags -= Flag; 4513 4514 auto It = FlagToName.find(Flag); 4515 if (It != FlagToName.end()) 4516 OS << LS << It->second; 4517 else 4518 UnknownFlags |= Flag; 4519 } 4520 4521 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 4522 uint64_t FlagsToPrint = UnknownFlags & Mask; 4523 if (!FlagsToPrint) 4524 return; 4525 4526 OS << LS << Name << " (" 4527 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 4528 UnknownFlags &= ~Mask; 4529 }; 4530 4531 PrintUnknownFlags(SHF_MASKOS, "OS"); 4532 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 4533 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 4534 4535 OS << "\n"; 4536 ++SectionIndex; 4537 4538 if (!(S.sh_flags & SHF_COMPRESSED)) 4539 continue; 4540 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S); 4541 if (!Data || Data->size() < sizeof(Elf_Chdr)) { 4542 consumeError(Data.takeError()); 4543 reportWarning(createError("SHF_COMPRESSED section '" + Name + 4544 "' does not have an Elf_Chdr header"), 4545 this->FileName); 4546 OS.indent(7); 4547 OS << "[<corrupt>]"; 4548 } else { 4549 OS.indent(7); 4550 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data()); 4551 if (Chdr->ch_type == ELFCOMPRESS_ZLIB) 4552 OS << "ZLIB"; 4553 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD) 4554 OS << "ZSTD"; 4555 else 4556 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type)); 4557 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8) 4558 << ", " << Chdr->ch_addralign; 4559 } 4560 OS << '\n'; 4561 } 4562 } 4563 4564 static inline std::string printPhdrFlags(unsigned Flag) { 4565 std::string Str; 4566 Str = (Flag & PF_R) ? "R" : " "; 4567 Str += (Flag & PF_W) ? "W" : " "; 4568 Str += (Flag & PF_X) ? "E" : " "; 4569 return Str; 4570 } 4571 4572 template <class ELFT> 4573 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 4574 const typename ELFT::Shdr &Sec) { 4575 if (Sec.sh_flags & ELF::SHF_TLS) { 4576 // .tbss must only be shown in the PT_TLS segment. 4577 if (Sec.sh_type == ELF::SHT_NOBITS) 4578 return Phdr.p_type == ELF::PT_TLS; 4579 4580 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 4581 // segments. 4582 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 4583 (Phdr.p_type == ELF::PT_GNU_RELRO); 4584 } 4585 4586 // PT_TLS must only have SHF_TLS sections. 4587 return Phdr.p_type != ELF::PT_TLS; 4588 } 4589 4590 template <class ELFT> 4591 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4592 const typename ELFT::Shdr &Sec) { 4593 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4594 return true; 4595 4596 // We get here when we have an empty section. Only non-empty sections can be 4597 // at the start or at the end of PT_DYNAMIC. 4598 // Is section within the phdr both based on offset and VMA? 4599 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4600 (Sec.sh_offset > Phdr.p_offset && 4601 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4602 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4603 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4604 return CheckOffset && CheckVA; 4605 } 4606 4607 template <class ELFT> 4608 void GNUELFDumper<ELFT>::printProgramHeaders( 4609 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4610 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE); 4611 // Exit early if no program header or section mapping details were requested. 4612 if (!PrintProgramHeaders && !ShouldPrintSectionMapping) 4613 return; 4614 4615 if (PrintProgramHeaders) { 4616 const Elf_Ehdr &Header = this->Obj.getHeader(); 4617 if (Header.e_phnum == 0) { 4618 OS << "\nThere are no program headers in this file.\n"; 4619 } else { 4620 printProgramHeaders(); 4621 } 4622 } 4623 4624 if (ShouldPrintSectionMapping) 4625 printSectionMapping(); 4626 } 4627 4628 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4629 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4630 const Elf_Ehdr &Header = this->Obj.getHeader(); 4631 Field Fields[8] = {2, 17, 26, 37 + Bias, 4632 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4633 OS << "\nElf file type is " 4634 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n" 4635 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4636 << "There are " << Header.e_phnum << " program headers," 4637 << " starting at offset " << Header.e_phoff << "\n\n" 4638 << "Program Headers:\n"; 4639 if (ELFT::Is64Bits) 4640 OS << " Type Offset VirtAddr PhysAddr " 4641 << " FileSiz MemSiz Flg Align\n"; 4642 else 4643 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4644 << "MemSiz Flg Align\n"; 4645 4646 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4647 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4648 4649 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4650 if (!PhdrsOrErr) { 4651 this->reportUniqueWarning("unable to dump program headers: " + 4652 toString(PhdrsOrErr.takeError())); 4653 return; 4654 } 4655 4656 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4657 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4658 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4659 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4660 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4661 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4662 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4663 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4664 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4665 for (const Field &F : Fields) 4666 printField(F); 4667 if (Phdr.p_type == ELF::PT_INTERP) { 4668 OS << "\n"; 4669 auto ReportBadInterp = [&](const Twine &Msg) { 4670 this->reportUniqueWarning( 4671 "unable to read program interpreter name at offset 0x" + 4672 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4673 }; 4674 4675 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4676 ReportBadInterp("it goes past the end of the file (0x" + 4677 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4678 continue; 4679 } 4680 4681 const char *Data = 4682 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4683 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4684 size_t Len = strnlen(Data, MaxSize); 4685 if (Len == MaxSize) { 4686 ReportBadInterp("it is not null-terminated"); 4687 continue; 4688 } 4689 4690 OS << " [Requesting program interpreter: "; 4691 OS << StringRef(Data, Len) << "]"; 4692 } 4693 OS << "\n"; 4694 } 4695 } 4696 4697 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4698 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4699 DenseSet<const Elf_Shdr *> BelongsToSegment; 4700 int Phnum = 0; 4701 4702 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4703 if (!PhdrsOrErr) { 4704 this->reportUniqueWarning( 4705 "can't read program headers to build section to segment mapping: " + 4706 toString(PhdrsOrErr.takeError())); 4707 return; 4708 } 4709 4710 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4711 std::string Sections; 4712 OS << format(" %2.2d ", Phnum++); 4713 // Check if each section is in a segment and then print mapping. 4714 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4715 if (Sec.sh_type == ELF::SHT_NULL) 4716 continue; 4717 4718 // readelf additionally makes sure it does not print zero sized sections 4719 // at end of segments and for PT_DYNAMIC both start and end of section 4720 // .tbss must only be shown in PT_TLS section. 4721 if (isSectionInSegment<ELFT>(Phdr, Sec) && 4722 checkTLSSections<ELFT>(Phdr, Sec) && 4723 checkPTDynamic<ELFT>(Phdr, Sec)) { 4724 Sections += 4725 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4726 " "; 4727 BelongsToSegment.insert(&Sec); 4728 } 4729 } 4730 OS << Sections << "\n"; 4731 OS.flush(); 4732 } 4733 4734 // Display sections that do not belong to a segment. 4735 std::string Sections; 4736 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4737 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4738 Sections += 4739 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4740 ' '; 4741 } 4742 if (!Sections.empty()) { 4743 OS << " None " << Sections << '\n'; 4744 OS.flush(); 4745 } 4746 } 4747 4748 namespace { 4749 4750 template <class ELFT> 4751 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4752 const Relocation<ELFT> &Reloc) { 4753 using Elf_Sym = typename ELFT::Sym; 4754 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4755 const Twine &Reason) -> RelSymbol<ELFT> { 4756 Dumper.reportUniqueWarning( 4757 "unable to get name of the dynamic symbol with index " + 4758 Twine(Reloc.Symbol) + ": " + Reason); 4759 return {Sym, "<corrupt>"}; 4760 }; 4761 4762 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4763 const Elf_Sym *FirstSym = Symbols.begin(); 4764 if (!FirstSym) 4765 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4766 4767 // We might have an object without a section header. In this case the size of 4768 // Symbols is zero, because there is no way to know the size of the dynamic 4769 // table. We should allow this case and not print a warning. 4770 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4771 return WarnAndReturn( 4772 nullptr, 4773 "index is greater than or equal to the number of dynamic symbols (" + 4774 Twine(Symbols.size()) + ")"); 4775 4776 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4777 const uint64_t FileSize = Obj.getBufSize(); 4778 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4779 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4780 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4781 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4782 " goes past the end of the file (0x" + 4783 Twine::utohexstr(FileSize) + ")"); 4784 4785 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4786 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4787 if (!ErrOrName) 4788 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4789 4790 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4791 } 4792 } // namespace 4793 4794 template <class ELFT> 4795 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4796 typename ELFT::DynRange Tags) { 4797 size_t Max = 0; 4798 for (const typename ELFT::Dyn &Dyn : Tags) 4799 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4800 return Max; 4801 } 4802 4803 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4804 Elf_Dyn_Range Table = this->dynamic_table(); 4805 if (Table.empty()) 4806 return; 4807 4808 OS << "Dynamic section at offset " 4809 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4810 this->Obj.base(), 4811 1) 4812 << " contains " << Table.size() << " entries:\n"; 4813 4814 // The type name is surrounded with round brackets, hence add 2. 4815 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4816 // The "Name/Value" column should be indented from the "Type" column by N 4817 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4818 // space (1) = 3. 4819 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4820 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4821 4822 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4823 for (auto Entry : Table) { 4824 uintX_t Tag = Entry.getTag(); 4825 std::string Type = 4826 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")"; 4827 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4828 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4829 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4830 } 4831 } 4832 4833 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4834 this->printDynamicRelocationsHelper(); 4835 } 4836 4837 template <class ELFT> 4838 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4839 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4840 } 4841 4842 template <class ELFT> 4843 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4844 this->forEachRelocationDo( 4845 Sec, opts::RawRelr, 4846 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4847 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }, 4848 [&](const Elf_Relr &R) { printRelrReloc(R); }); 4849 } 4850 4851 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4852 const bool IsMips64EL = this->Obj.isMips64EL(); 4853 if (this->DynRelaRegion.Size > 0) { 4854 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4855 for (const Elf_Rela &Rela : 4856 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4857 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4858 } 4859 4860 if (this->DynRelRegion.Size > 0) { 4861 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4862 for (const Elf_Rel &Rel : 4863 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4864 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4865 } 4866 4867 if (this->DynRelrRegion.Size > 0) { 4868 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4869 Elf_Relr_Range Relrs = 4870 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4871 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4872 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4873 } 4874 4875 if (this->DynPLTRelRegion.Size) { 4876 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4877 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4878 for (const Elf_Rela &Rela : 4879 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4880 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4881 } else { 4882 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4883 for (const Elf_Rel &Rel : 4884 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4885 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4886 } 4887 } 4888 } 4889 4890 template <class ELFT> 4891 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 4892 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 4893 // Don't inline the SecName, because it might report a warning to stderr and 4894 // corrupt the output. 4895 StringRef SecName = this->getPrintableSectionName(Sec); 4896 OS << Label << " section '" << SecName << "' " 4897 << "contains " << EntriesNum << " entries:\n"; 4898 4899 StringRef LinkedSecName = "<corrupt>"; 4900 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 4901 this->Obj.getSection(Sec.sh_link)) 4902 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 4903 else 4904 this->reportUniqueWarning("invalid section linked to " + 4905 this->describe(Sec) + ": " + 4906 toString(LinkedSecOrErr.takeError())); 4907 4908 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 4909 << " Offset: " << format_hex(Sec.sh_offset, 8) 4910 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 4911 } 4912 4913 template <class ELFT> 4914 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 4915 if (!Sec) 4916 return; 4917 4918 printGNUVersionSectionProlog(*Sec, "Version symbols", 4919 Sec->sh_size / sizeof(Elf_Versym)); 4920 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 4921 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 4922 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 4923 if (!VerTableOrErr) { 4924 this->reportUniqueWarning(VerTableOrErr.takeError()); 4925 return; 4926 } 4927 4928 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr; 4929 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr = 4930 this->getVersionMap()) 4931 VersionMap = *MapOrErr; 4932 else 4933 this->reportUniqueWarning(MapOrErr.takeError()); 4934 4935 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 4936 std::vector<StringRef> Versions; 4937 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 4938 unsigned Ndx = VerTable[I].vs_index; 4939 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 4940 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 4941 continue; 4942 } 4943 4944 if (!VersionMap) { 4945 Versions.emplace_back("<corrupt>"); 4946 continue; 4947 } 4948 4949 bool IsDefault; 4950 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 4951 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt); 4952 if (!NameOrErr) { 4953 this->reportUniqueWarning("unable to get a version for entry " + 4954 Twine(I) + " of " + this->describe(*Sec) + 4955 ": " + toString(NameOrErr.takeError())); 4956 Versions.emplace_back("<corrupt>"); 4957 continue; 4958 } 4959 Versions.emplace_back(*NameOrErr); 4960 } 4961 4962 // readelf prints 4 entries per line. 4963 uint64_t Entries = VerTable.size(); 4964 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 4965 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 4966 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 4967 unsigned Ndx = VerTable[VersymRow + I].vs_index; 4968 OS << format("%4x%c", Ndx & VERSYM_VERSION, 4969 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 4970 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 4971 } 4972 OS << '\n'; 4973 } 4974 OS << '\n'; 4975 } 4976 4977 static std::string versionFlagToString(unsigned Flags) { 4978 if (Flags == 0) 4979 return "none"; 4980 4981 std::string Ret; 4982 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 4983 if (!(Flags & Flag)) 4984 return; 4985 if (!Ret.empty()) 4986 Ret += " | "; 4987 Ret += Name; 4988 Flags &= ~Flag; 4989 }; 4990 4991 AddFlag(VER_FLG_BASE, "BASE"); 4992 AddFlag(VER_FLG_WEAK, "WEAK"); 4993 AddFlag(VER_FLG_INFO, "INFO"); 4994 AddFlag(~0, "<unknown>"); 4995 return Ret; 4996 } 4997 4998 template <class ELFT> 4999 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 5000 if (!Sec) 5001 return; 5002 5003 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 5004 5005 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 5006 if (!V) { 5007 this->reportUniqueWarning(V.takeError()); 5008 return; 5009 } 5010 5011 for (const VerDef &Def : *V) { 5012 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 5013 Def.Offset, Def.Version, 5014 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 5015 Def.Name.data()); 5016 unsigned I = 0; 5017 for (const VerdAux &Aux : Def.AuxV) 5018 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 5019 Aux.Name.data()); 5020 } 5021 5022 OS << '\n'; 5023 } 5024 5025 template <class ELFT> 5026 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 5027 if (!Sec) 5028 return; 5029 5030 unsigned VerneedNum = Sec->sh_info; 5031 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 5032 5033 Expected<std::vector<VerNeed>> V = 5034 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 5035 if (!V) { 5036 this->reportUniqueWarning(V.takeError()); 5037 return; 5038 } 5039 5040 for (const VerNeed &VN : *V) { 5041 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 5042 VN.Version, VN.File.data(), VN.Cnt); 5043 for (const VernAux &Aux : VN.AuxV) 5044 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 5045 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 5046 Aux.Other); 5047 } 5048 OS << '\n'; 5049 } 5050 5051 template <class ELFT> 5052 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 5053 size_t MaxChain, 5054 size_t TotalSyms, 5055 ArrayRef<size_t> Count, 5056 bool IsGnu) const { 5057 size_t CumulativeNonZero = 0; 5058 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "") 5059 << " bucket list length (total of " << NBucket << " buckets)\n" 5060 << " Length Number % of total Coverage\n"; 5061 for (size_t I = 0; I < MaxChain; ++I) { 5062 CumulativeNonZero += Count[I] * I; 5063 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 5064 (Count[I] * 100.0) / NBucket, 5065 (CumulativeNonZero * 100.0) / TotalSyms); 5066 } 5067 } 5068 5069 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 5070 OS << "GNUStyle::printCGProfile not implemented\n"; 5071 } 5072 5073 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() { 5074 OS << "GNUStyle::printBBAddrMaps not implemented\n"; 5075 } 5076 5077 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 5078 std::vector<uint64_t> Ret; 5079 const uint8_t *Cur = Data.begin(); 5080 const uint8_t *End = Data.end(); 5081 while (Cur != End) { 5082 unsigned Size; 5083 const char *Err = nullptr; 5084 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 5085 if (Err) 5086 return createError(Err); 5087 Cur += Size; 5088 } 5089 return Ret; 5090 } 5091 5092 template <class ELFT> 5093 static Expected<std::vector<uint64_t>> 5094 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 5095 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 5096 if (!ContentsOrErr) 5097 return ContentsOrErr.takeError(); 5098 5099 if (Expected<std::vector<uint64_t>> SymsOrErr = 5100 toULEB128Array(*ContentsOrErr)) 5101 return *SymsOrErr; 5102 else 5103 return createError("unable to decode " + describe(Obj, Sec) + ": " + 5104 toString(SymsOrErr.takeError())); 5105 } 5106 5107 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 5108 if (!this->DotAddrsigSec) 5109 return; 5110 5111 Expected<std::vector<uint64_t>> SymsOrErr = 5112 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 5113 if (!SymsOrErr) { 5114 this->reportUniqueWarning(SymsOrErr.takeError()); 5115 return; 5116 } 5117 5118 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 5119 OS << "\nAddress-significant symbols section '" << Name << "'" 5120 << " contains " << SymsOrErr->size() << " entries:\n"; 5121 OS << " Num: Name\n"; 5122 5123 Field Fields[2] = {0, 8}; 5124 size_t SymIndex = 0; 5125 for (uint64_t Sym : *SymsOrErr) { 5126 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 5127 Fields[1].Str = this->getStaticSymbolName(Sym); 5128 for (const Field &Entry : Fields) 5129 printField(Entry); 5130 OS << "\n"; 5131 } 5132 } 5133 5134 template <typename ELFT> 5135 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 5136 ArrayRef<uint8_t> Data) { 5137 std::string str; 5138 raw_string_ostream OS(str); 5139 uint32_t PrData; 5140 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 5141 if (PrData & Flag) { 5142 PrData &= ~Flag; 5143 OS << Name; 5144 if (PrData) 5145 OS << ", "; 5146 } 5147 }; 5148 5149 switch (Type) { 5150 default: 5151 OS << format("<application-specific type 0x%x>", Type); 5152 return OS.str(); 5153 case GNU_PROPERTY_STACK_SIZE: { 5154 OS << "stack size: "; 5155 if (DataSize == sizeof(typename ELFT::uint)) 5156 OS << formatv("{0:x}", 5157 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 5158 else 5159 OS << format("<corrupt length: 0x%x>", DataSize); 5160 return OS.str(); 5161 } 5162 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 5163 OS << "no copy on protected"; 5164 if (DataSize) 5165 OS << format(" <corrupt length: 0x%x>", DataSize); 5166 return OS.str(); 5167 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 5168 case GNU_PROPERTY_X86_FEATURE_1_AND: 5169 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 5170 : "x86 feature: "); 5171 if (DataSize != 4) { 5172 OS << format("<corrupt length: 0x%x>", DataSize); 5173 return OS.str(); 5174 } 5175 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5176 if (PrData == 0) { 5177 OS << "<None>"; 5178 return OS.str(); 5179 } 5180 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 5181 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 5182 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 5183 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_GCS, "GCS"); 5184 } else { 5185 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 5186 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 5187 } 5188 if (PrData) 5189 OS << format("<unknown flags: 0x%x>", PrData); 5190 return OS.str(); 5191 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 5192 case GNU_PROPERTY_X86_FEATURE_2_USED: 5193 OS << "x86 feature " 5194 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 5195 if (DataSize != 4) { 5196 OS << format("<corrupt length: 0x%x>", DataSize); 5197 return OS.str(); 5198 } 5199 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5200 if (PrData == 0) { 5201 OS << "<None>"; 5202 return OS.str(); 5203 } 5204 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 5205 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 5206 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 5207 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 5208 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 5209 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 5210 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 5211 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 5212 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 5213 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 5214 if (PrData) 5215 OS << format("<unknown flags: 0x%x>", PrData); 5216 return OS.str(); 5217 case GNU_PROPERTY_X86_ISA_1_NEEDED: 5218 case GNU_PROPERTY_X86_ISA_1_USED: 5219 OS << "x86 ISA " 5220 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 5221 if (DataSize != 4) { 5222 OS << format("<corrupt length: 0x%x>", DataSize); 5223 return OS.str(); 5224 } 5225 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 5226 if (PrData == 0) { 5227 OS << "<None>"; 5228 return OS.str(); 5229 } 5230 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline"); 5231 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2"); 5232 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3"); 5233 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4"); 5234 if (PrData) 5235 OS << format("<unknown flags: 0x%x>", PrData); 5236 return OS.str(); 5237 } 5238 } 5239 5240 template <typename ELFT> 5241 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 5242 using Elf_Word = typename ELFT::Word; 5243 5244 SmallVector<std::string, 4> Properties; 5245 while (Arr.size() >= 8) { 5246 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 5247 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 5248 Arr = Arr.drop_front(8); 5249 5250 // Take padding size into account if present. 5251 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 5252 std::string str; 5253 raw_string_ostream OS(str); 5254 if (Arr.size() < PaddedSize) { 5255 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 5256 Properties.push_back(OS.str()); 5257 break; 5258 } 5259 Properties.push_back( 5260 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 5261 Arr = Arr.drop_front(PaddedSize); 5262 } 5263 5264 if (!Arr.empty()) 5265 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 5266 5267 return Properties; 5268 } 5269 5270 struct GNUAbiTag { 5271 std::string OSName; 5272 std::string ABI; 5273 bool IsValid; 5274 }; 5275 5276 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 5277 typedef typename ELFT::Word Elf_Word; 5278 5279 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 5280 reinterpret_cast<const Elf_Word *>(Desc.end())); 5281 5282 if (Words.size() < 4) 5283 return {"", "", /*IsValid=*/false}; 5284 5285 static const char *OSNames[] = { 5286 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 5287 }; 5288 StringRef OSName = "Unknown"; 5289 if (Words[0] < std::size(OSNames)) 5290 OSName = OSNames[Words[0]]; 5291 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 5292 std::string str; 5293 raw_string_ostream ABI(str); 5294 ABI << Major << "." << Minor << "." << Patch; 5295 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 5296 } 5297 5298 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 5299 std::string str; 5300 raw_string_ostream OS(str); 5301 for (uint8_t B : Desc) 5302 OS << format_hex_no_prefix(B, 2); 5303 return OS.str(); 5304 } 5305 5306 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) { 5307 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5308 } 5309 5310 template <typename ELFT> 5311 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType, 5312 ArrayRef<uint8_t> Desc) { 5313 // Return true if we were able to pretty-print the note, false otherwise. 5314 switch (NoteType) { 5315 default: 5316 return false; 5317 case ELF::NT_GNU_ABI_TAG: { 5318 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 5319 if (!AbiTag.IsValid) 5320 OS << " <corrupt GNU_ABI_TAG>"; 5321 else 5322 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 5323 break; 5324 } 5325 case ELF::NT_GNU_BUILD_ID: { 5326 OS << " Build ID: " << getGNUBuildId(Desc); 5327 break; 5328 } 5329 case ELF::NT_GNU_GOLD_VERSION: 5330 OS << " Version: " << getDescAsStringRef(Desc); 5331 break; 5332 case ELF::NT_GNU_PROPERTY_TYPE_0: 5333 OS << " Properties:"; 5334 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 5335 OS << " " << Property << "\n"; 5336 break; 5337 } 5338 OS << '\n'; 5339 return true; 5340 } 5341 5342 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>; 5343 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType, 5344 ArrayRef<uint8_t> Desc) { 5345 AndroidNoteProperties Props; 5346 switch (NoteType) { 5347 case ELF::NT_ANDROID_TYPE_MEMTAG: 5348 if (Desc.empty()) { 5349 Props.emplace_back("Invalid .note.android.memtag", ""); 5350 return Props; 5351 } 5352 5353 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) { 5354 case NT_MEMTAG_LEVEL_NONE: 5355 Props.emplace_back("Tagging Mode", "NONE"); 5356 break; 5357 case NT_MEMTAG_LEVEL_ASYNC: 5358 Props.emplace_back("Tagging Mode", "ASYNC"); 5359 break; 5360 case NT_MEMTAG_LEVEL_SYNC: 5361 Props.emplace_back("Tagging Mode", "SYNC"); 5362 break; 5363 default: 5364 Props.emplace_back( 5365 "Tagging Mode", 5366 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")") 5367 .str()); 5368 break; 5369 } 5370 Props.emplace_back("Heap", 5371 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled"); 5372 Props.emplace_back("Stack", 5373 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled"); 5374 break; 5375 default: 5376 return Props; 5377 } 5378 return Props; 5379 } 5380 5381 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType, 5382 ArrayRef<uint8_t> Desc) { 5383 // Return true if we were able to pretty-print the note, false otherwise. 5384 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 5385 if (Props.empty()) 5386 return false; 5387 for (const auto &KV : Props) 5388 OS << " " << KV.first << ": " << KV.second << '\n'; 5389 return true; 5390 } 5391 5392 template <class ELFT> 5393 static bool printAArch64Note(raw_ostream &OS, uint32_t NoteType, 5394 ArrayRef<uint8_t> Desc) { 5395 if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG) 5396 return false; 5397 5398 OS << " AArch64 PAuth ABI tag: "; 5399 if (Desc.size() < 16) { 5400 OS << format("<corrupted size: expected at least 16, got %d>", Desc.size()); 5401 return false; 5402 } 5403 5404 uint64_t Platform = 5405 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0); 5406 uint64_t Version = 5407 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8); 5408 OS << format("platform 0x%" PRIx64 ", version 0x%" PRIx64, Platform, Version); 5409 5410 if (Desc.size() > 16) 5411 OS << ", additional info 0x" 5412 << toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16)); 5413 5414 return true; 5415 } 5416 5417 template <class ELFT> 5418 void GNUELFDumper<ELFT>::printMemtag( 5419 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 5420 const ArrayRef<uint8_t> AndroidNoteDesc, 5421 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 5422 OS << "Memtag Dynamic Entries:\n"; 5423 if (DynamicEntries.empty()) 5424 OS << " < none found >\n"; 5425 for (const auto &DynamicEntryKV : DynamicEntries) 5426 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second 5427 << "\n"; 5428 5429 if (!AndroidNoteDesc.empty()) { 5430 OS << "Memtag Android Note:\n"; 5431 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc); 5432 } 5433 5434 if (Descriptors.empty()) 5435 return; 5436 5437 OS << "Memtag Global Descriptors:\n"; 5438 for (const auto &[Addr, BytesToTag] : Descriptors) { 5439 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x" 5440 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n"; 5441 } 5442 } 5443 5444 template <typename ELFT> 5445 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType, 5446 ArrayRef<uint8_t> Desc) { 5447 switch (NoteType) { 5448 default: 5449 return false; 5450 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 5451 OS << " Version: " << getDescAsStringRef(Desc); 5452 break; 5453 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 5454 OS << " Producer: " << getDescAsStringRef(Desc); 5455 break; 5456 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 5457 OS << " Producer version: " << getDescAsStringRef(Desc); 5458 break; 5459 } 5460 OS << '\n'; 5461 return true; 5462 } 5463 5464 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = { 5465 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE}, 5466 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE}, 5467 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE}, 5468 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED}, 5469 {"LA48", NT_FREEBSD_FCTL_LA48}, 5470 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE}, 5471 }; 5472 5473 struct FreeBSDNote { 5474 std::string Type; 5475 std::string Value; 5476 }; 5477 5478 template <typename ELFT> 5479 static std::optional<FreeBSDNote> 5480 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) { 5481 if (IsCore) 5482 return std::nullopt; // No pretty-printing yet. 5483 switch (NoteType) { 5484 case ELF::NT_FREEBSD_ABI_TAG: 5485 if (Desc.size() != 4) 5486 return std::nullopt; 5487 return FreeBSDNote{ 5488 "ABI tag", 5489 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))}; 5490 case ELF::NT_FREEBSD_ARCH_TAG: 5491 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()}; 5492 case ELF::NT_FREEBSD_FEATURE_CTL: { 5493 if (Desc.size() != 4) 5494 return std::nullopt; 5495 unsigned Value = 5496 support::endian::read32<ELFT::TargetEndianness>(Desc.data()); 5497 std::string FlagsStr; 5498 raw_string_ostream OS(FlagsStr); 5499 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS); 5500 if (OS.str().empty()) 5501 OS << "0x" << utohexstr(Value); 5502 else 5503 OS << "(0x" << utohexstr(Value) << ")"; 5504 return FreeBSDNote{"Feature flags", OS.str()}; 5505 } 5506 default: 5507 return std::nullopt; 5508 } 5509 } 5510 5511 struct AMDNote { 5512 std::string Type; 5513 std::string Value; 5514 }; 5515 5516 template <typename ELFT> 5517 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5518 switch (NoteType) { 5519 default: 5520 return {"", ""}; 5521 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: { 5522 struct CodeObjectVersion { 5523 support::aligned_ulittle32_t MajorVersion; 5524 support::aligned_ulittle32_t MinorVersion; 5525 }; 5526 if (Desc.size() != sizeof(CodeObjectVersion)) 5527 return {"AMD HSA Code Object Version", 5528 "Invalid AMD HSA Code Object Version"}; 5529 std::string VersionString; 5530 raw_string_ostream StrOS(VersionString); 5531 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data()); 5532 StrOS << "[Major: " << Version->MajorVersion 5533 << ", Minor: " << Version->MinorVersion << "]"; 5534 return {"AMD HSA Code Object Version", VersionString}; 5535 } 5536 case ELF::NT_AMD_HSA_HSAIL: { 5537 struct HSAILProperties { 5538 support::aligned_ulittle32_t HSAILMajorVersion; 5539 support::aligned_ulittle32_t HSAILMinorVersion; 5540 uint8_t Profile; 5541 uint8_t MachineModel; 5542 uint8_t DefaultFloatRound; 5543 }; 5544 if (Desc.size() != sizeof(HSAILProperties)) 5545 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"}; 5546 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data()); 5547 std::string HSAILPropetiesString; 5548 raw_string_ostream StrOS(HSAILPropetiesString); 5549 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion 5550 << ", HSAIL Minor: " << Properties->HSAILMinorVersion 5551 << ", Profile: " << uint32_t(Properties->Profile) 5552 << ", Machine Model: " << uint32_t(Properties->MachineModel) 5553 << ", Default Float Round: " 5554 << uint32_t(Properties->DefaultFloatRound) << "]"; 5555 return {"AMD HSA HSAIL Properties", HSAILPropetiesString}; 5556 } 5557 case ELF::NT_AMD_HSA_ISA_VERSION: { 5558 struct IsaVersion { 5559 support::aligned_ulittle16_t VendorNameSize; 5560 support::aligned_ulittle16_t ArchitectureNameSize; 5561 support::aligned_ulittle32_t Major; 5562 support::aligned_ulittle32_t Minor; 5563 support::aligned_ulittle32_t Stepping; 5564 }; 5565 if (Desc.size() < sizeof(IsaVersion)) 5566 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5567 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data()); 5568 if (Desc.size() < sizeof(IsaVersion) + 5569 Isa->VendorNameSize + Isa->ArchitectureNameSize || 5570 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0) 5571 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"}; 5572 std::string IsaString; 5573 raw_string_ostream StrOS(IsaString); 5574 StrOS << "[Vendor: " 5575 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1) 5576 << ", Architecture: " 5577 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize, 5578 Isa->ArchitectureNameSize - 1) 5579 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor 5580 << ", Stepping: " << Isa->Stepping << "]"; 5581 return {"AMD HSA ISA Version", IsaString}; 5582 } 5583 case ELF::NT_AMD_HSA_METADATA: { 5584 if (Desc.size() == 0) 5585 return {"AMD HSA Metadata", ""}; 5586 return { 5587 "AMD HSA Metadata", 5588 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)}; 5589 } 5590 case ELF::NT_AMD_HSA_ISA_NAME: { 5591 if (Desc.size() == 0) 5592 return {"AMD HSA ISA Name", ""}; 5593 return { 5594 "AMD HSA ISA Name", 5595 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 5596 } 5597 case ELF::NT_AMD_PAL_METADATA: { 5598 struct PALMetadata { 5599 support::aligned_ulittle32_t Key; 5600 support::aligned_ulittle32_t Value; 5601 }; 5602 if (Desc.size() % sizeof(PALMetadata) != 0) 5603 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"}; 5604 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data()); 5605 std::string MetadataString; 5606 raw_string_ostream StrOS(MetadataString); 5607 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) { 5608 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]"; 5609 } 5610 return {"AMD PAL Metadata", MetadataString}; 5611 } 5612 } 5613 } 5614 5615 struct AMDGPUNote { 5616 std::string Type; 5617 std::string Value; 5618 }; 5619 5620 template <typename ELFT> 5621 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 5622 switch (NoteType) { 5623 default: 5624 return {"", ""}; 5625 case ELF::NT_AMDGPU_METADATA: { 5626 StringRef MsgPackString = 5627 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 5628 msgpack::Document MsgPackDoc; 5629 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 5630 return {"", ""}; 5631 5632 std::string MetadataString; 5633 5634 // FIXME: Metadata Verifier only works with AMDHSA. 5635 // This is an ugly workaround to avoid the verifier for other MD 5636 // formats (e.g. amdpal) 5637 if (MsgPackString.contains("amdhsa.")) { 5638 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 5639 if (!Verifier.verify(MsgPackDoc.getRoot())) 5640 MetadataString = "Invalid AMDGPU Metadata\n"; 5641 } 5642 5643 raw_string_ostream StrOS(MetadataString); 5644 if (MsgPackDoc.getRoot().isScalar()) { 5645 // TODO: passing a scalar root to toYAML() asserts: 5646 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && 5647 // "plain scalar documents are not supported") 5648 // To avoid this crash we print the raw data instead. 5649 return {"", ""}; 5650 } 5651 MsgPackDoc.toYAML(StrOS); 5652 return {"AMDGPU Metadata", StrOS.str()}; 5653 } 5654 } 5655 } 5656 5657 struct CoreFileMapping { 5658 uint64_t Start, End, Offset; 5659 StringRef Filename; 5660 }; 5661 5662 struct CoreNote { 5663 uint64_t PageSize; 5664 std::vector<CoreFileMapping> Mappings; 5665 }; 5666 5667 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 5668 // Expected format of the NT_FILE note description: 5669 // 1. # of file mappings (call it N) 5670 // 2. Page size 5671 // 3. N (start, end, offset) triples 5672 // 4. N packed filenames (null delimited) 5673 // Each field is an Elf_Addr, except for filenames which are char* strings. 5674 5675 CoreNote Ret; 5676 const int Bytes = Desc.getAddressSize(); 5677 5678 if (!Desc.isValidOffsetForAddress(2)) 5679 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 5680 " is too short, expected at least 0x" + 5681 Twine::utohexstr(Bytes * 2)); 5682 if (Desc.getData().back() != 0) 5683 return createError("the note is not NUL terminated"); 5684 5685 uint64_t DescOffset = 0; 5686 uint64_t FileCount = Desc.getAddress(&DescOffset); 5687 Ret.PageSize = Desc.getAddress(&DescOffset); 5688 5689 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 5690 return createError("unable to read file mappings (found " + 5691 Twine(FileCount) + "): the note of size 0x" + 5692 Twine::utohexstr(Desc.size()) + " is too short"); 5693 5694 uint64_t FilenamesOffset = 0; 5695 DataExtractor Filenames( 5696 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5697 Desc.isLittleEndian(), Desc.getAddressSize()); 5698 5699 Ret.Mappings.resize(FileCount); 5700 size_t I = 0; 5701 for (CoreFileMapping &Mapping : Ret.Mappings) { 5702 ++I; 5703 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5704 return createError( 5705 "unable to read the file name for the mapping with index " + 5706 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5707 " is truncated"); 5708 Mapping.Start = Desc.getAddress(&DescOffset); 5709 Mapping.End = Desc.getAddress(&DescOffset); 5710 Mapping.Offset = Desc.getAddress(&DescOffset); 5711 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5712 } 5713 5714 return Ret; 5715 } 5716 5717 template <typename ELFT> 5718 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5719 // Length of "0x<address>" string. 5720 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5721 5722 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5723 OS << " " << right_justify("Start", FieldWidth) << " " 5724 << right_justify("End", FieldWidth) << " " 5725 << right_justify("Page Offset", FieldWidth) << '\n'; 5726 for (const CoreFileMapping &Mapping : Note.Mappings) { 5727 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5728 << format_hex(Mapping.End, FieldWidth) << " " 5729 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5730 << Mapping.Filename << '\n'; 5731 } 5732 } 5733 5734 const NoteType GenericNoteTypes[] = { 5735 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5736 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5737 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5738 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5739 }; 5740 5741 const NoteType GNUNoteTypes[] = { 5742 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5743 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5744 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5745 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5746 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5747 }; 5748 5749 const NoteType FreeBSDCoreNoteTypes[] = { 5750 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5751 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5752 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5753 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5754 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5755 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5756 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5757 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5758 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5759 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5760 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5761 }; 5762 5763 const NoteType FreeBSDNoteTypes[] = { 5764 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"}, 5765 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"}, 5766 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"}, 5767 {ELF::NT_FREEBSD_FEATURE_CTL, 5768 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"}, 5769 }; 5770 5771 const NoteType NetBSDCoreNoteTypes[] = { 5772 {ELF::NT_NETBSDCORE_PROCINFO, 5773 "NT_NETBSDCORE_PROCINFO (procinfo structure)"}, 5774 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"}, 5775 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"}, 5776 }; 5777 5778 const NoteType OpenBSDCoreNoteTypes[] = { 5779 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"}, 5780 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"}, 5781 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"}, 5782 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"}, 5783 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"}, 5784 }; 5785 5786 const NoteType AMDNoteTypes[] = { 5787 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION, 5788 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"}, 5789 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"}, 5790 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"}, 5791 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"}, 5792 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"}, 5793 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"}, 5794 }; 5795 5796 const NoteType AMDGPUNoteTypes[] = { 5797 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5798 }; 5799 5800 const NoteType LLVMOMPOFFLOADNoteTypes[] = { 5801 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION, 5802 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"}, 5803 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER, 5804 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"}, 5805 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION, 5806 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"}, 5807 }; 5808 5809 const NoteType AndroidNoteTypes[] = { 5810 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"}, 5811 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"}, 5812 {ELF::NT_ANDROID_TYPE_MEMTAG, 5813 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"}, 5814 }; 5815 5816 const NoteType ARMNoteTypes[] = { 5817 {ELF::NT_ARM_TYPE_PAUTH_ABI_TAG, "NT_ARM_TYPE_PAUTH_ABI_TAG"}, 5818 }; 5819 5820 const NoteType CoreNoteTypes[] = { 5821 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5822 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5823 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5824 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5825 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5826 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5827 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5828 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5829 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5830 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5831 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5832 5833 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5834 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5835 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5836 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5837 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5838 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5839 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5840 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5841 {ELF::NT_PPC_TM_CFPR, 5842 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5843 {ELF::NT_PPC_TM_CVMX, 5844 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5845 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5846 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5847 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5848 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5849 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5850 5851 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 5852 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 5853 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 5854 5855 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 5856 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 5857 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 5858 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 5859 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 5860 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 5861 {ELF::NT_S390_LAST_BREAK, 5862 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 5863 {ELF::NT_S390_SYSTEM_CALL, 5864 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 5865 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 5866 {ELF::NT_S390_VXRS_LOW, 5867 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 5868 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 5869 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 5870 {ELF::NT_S390_GS_BC, 5871 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 5872 5873 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 5874 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 5875 {ELF::NT_ARM_HW_BREAK, 5876 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 5877 {ELF::NT_ARM_HW_WATCH, 5878 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 5879 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"}, 5880 {ELF::NT_ARM_PAC_MASK, 5881 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"}, 5882 {ELF::NT_ARM_TAGGED_ADDR_CTRL, 5883 "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"}, 5884 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"}, 5885 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"}, 5886 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"}, 5887 5888 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 5889 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 5890 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 5891 }; 5892 5893 template <class ELFT> 5894 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) { 5895 uint32_t Type = Note.getType(); 5896 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 5897 for (const NoteType &N : V) 5898 if (N.ID == Type) 5899 return N.Name; 5900 return ""; 5901 }; 5902 5903 StringRef Name = Note.getName(); 5904 if (Name == "GNU") 5905 return FindNote(GNUNoteTypes); 5906 if (Name == "FreeBSD") { 5907 if (ELFType == ELF::ET_CORE) { 5908 // FreeBSD also places the generic core notes in the FreeBSD namespace. 5909 StringRef Result = FindNote(FreeBSDCoreNoteTypes); 5910 if (!Result.empty()) 5911 return Result; 5912 return FindNote(CoreNoteTypes); 5913 } else { 5914 return FindNote(FreeBSDNoteTypes); 5915 } 5916 } 5917 if (ELFType == ELF::ET_CORE && Name.starts_with("NetBSD-CORE")) { 5918 StringRef Result = FindNote(NetBSDCoreNoteTypes); 5919 if (!Result.empty()) 5920 return Result; 5921 return FindNote(CoreNoteTypes); 5922 } 5923 if (ELFType == ELF::ET_CORE && Name.starts_with("OpenBSD")) { 5924 // OpenBSD also places the generic core notes in the OpenBSD namespace. 5925 StringRef Result = FindNote(OpenBSDCoreNoteTypes); 5926 if (!Result.empty()) 5927 return Result; 5928 return FindNote(CoreNoteTypes); 5929 } 5930 if (Name == "AMD") 5931 return FindNote(AMDNoteTypes); 5932 if (Name == "AMDGPU") 5933 return FindNote(AMDGPUNoteTypes); 5934 if (Name == "LLVMOMPOFFLOAD") 5935 return FindNote(LLVMOMPOFFLOADNoteTypes); 5936 if (Name == "Android") 5937 return FindNote(AndroidNoteTypes); 5938 if (Name == "ARM") 5939 return FindNote(ARMNoteTypes); 5940 5941 if (ELFType == ELF::ET_CORE) 5942 return FindNote(CoreNoteTypes); 5943 return FindNote(GenericNoteTypes); 5944 } 5945 5946 template <class ELFT> 5947 static void processNotesHelper( 5948 const ELFDumper<ELFT> &Dumper, 5949 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off, 5950 typename ELFT::Addr, size_t)> 5951 StartNotesFn, 5952 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn, 5953 llvm::function_ref<void()> FinishNotesFn) { 5954 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 5955 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE; 5956 5957 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 5958 if (!IsCoreFile && !Sections.empty()) { 5959 for (const typename ELFT::Shdr &S : Sections) { 5960 if (S.sh_type != SHT_NOTE) 5961 continue; 5962 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset, 5963 S.sh_size, S.sh_addralign); 5964 Error Err = Error::success(); 5965 size_t I = 0; 5966 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 5967 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5968 Dumper.reportUniqueWarning( 5969 "unable to read note with index " + Twine(I) + " from the " + 5970 describe(Obj, S) + ": " + toString(std::move(E))); 5971 ++I; 5972 } 5973 if (Err) 5974 Dumper.reportUniqueWarning("unable to read notes from the " + 5975 describe(Obj, S) + ": " + 5976 toString(std::move(Err))); 5977 FinishNotesFn(); 5978 } 5979 return; 5980 } 5981 5982 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 5983 if (!PhdrsOrErr) { 5984 Dumper.reportUniqueWarning( 5985 "unable to read program headers to locate the PT_NOTE segment: " + 5986 toString(PhdrsOrErr.takeError())); 5987 return; 5988 } 5989 5990 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 5991 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 5992 if (P.p_type != PT_NOTE) 5993 continue; 5994 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align); 5995 Error Err = Error::success(); 5996 size_t Index = 0; 5997 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 5998 if (Error E = ProcessNoteFn(Note, IsCoreFile)) 5999 Dumper.reportUniqueWarning("unable to read note with index " + 6000 Twine(Index) + 6001 " from the PT_NOTE segment with index " + 6002 Twine(I) + ": " + toString(std::move(E))); 6003 ++Index; 6004 } 6005 if (Err) 6006 Dumper.reportUniqueWarning( 6007 "unable to read notes from the PT_NOTE segment with index " + 6008 Twine(I) + ": " + toString(std::move(Err))); 6009 FinishNotesFn(); 6010 } 6011 } 6012 6013 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 6014 size_t Align = 0; 6015 bool IsFirstHeader = true; 6016 auto PrintHeader = [&](std::optional<StringRef> SecName, 6017 const typename ELFT::Off Offset, 6018 const typename ELFT::Addr Size, size_t Al) { 6019 Align = std::max<size_t>(Al, 4); 6020 // Print a newline between notes sections to match GNU readelf. 6021 if (!IsFirstHeader) { 6022 OS << '\n'; 6023 } else { 6024 IsFirstHeader = false; 6025 } 6026 6027 OS << "Displaying notes found "; 6028 6029 if (SecName) 6030 OS << "in: " << *SecName << "\n"; 6031 else 6032 OS << "at file offset " << format_hex(Offset, 10) << " with length " 6033 << format_hex(Size, 10) << ":\n"; 6034 6035 OS << " Owner Data size \tDescription\n"; 6036 }; 6037 6038 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6039 StringRef Name = Note.getName(); 6040 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 6041 Elf_Word Type = Note.getType(); 6042 6043 // Print the note owner/type. 6044 OS << " " << left_justify(Name, 20) << ' ' 6045 << format_hex(Descriptor.size(), 10) << '\t'; 6046 6047 StringRef NoteType = 6048 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 6049 if (!NoteType.empty()) 6050 OS << NoteType << '\n'; 6051 else 6052 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 6053 6054 // Print the description, or fallback to printing raw bytes for unknown 6055 // owners/if we fail to pretty-print the contents. 6056 if (Name == "GNU") { 6057 if (printGNUNote<ELFT>(OS, Type, Descriptor)) 6058 return Error::success(); 6059 } else if (Name == "FreeBSD") { 6060 if (std::optional<FreeBSDNote> N = 6061 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 6062 OS << " " << N->Type << ": " << N->Value << '\n'; 6063 return Error::success(); 6064 } 6065 } else if (Name == "AMD") { 6066 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 6067 if (!N.Type.empty()) { 6068 OS << " " << N.Type << ":\n " << N.Value << '\n'; 6069 return Error::success(); 6070 } 6071 } else if (Name == "AMDGPU") { 6072 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 6073 if (!N.Type.empty()) { 6074 OS << " " << N.Type << ":\n " << N.Value << '\n'; 6075 return Error::success(); 6076 } 6077 } else if (Name == "LLVMOMPOFFLOAD") { 6078 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor)) 6079 return Error::success(); 6080 } else if (Name == "CORE") { 6081 if (Type == ELF::NT_FILE) { 6082 DataExtractor DescExtractor( 6083 Descriptor, ELFT::TargetEndianness == llvm::endianness::little, 6084 sizeof(Elf_Addr)); 6085 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) { 6086 printCoreNote<ELFT>(OS, *NoteOrErr); 6087 return Error::success(); 6088 } else { 6089 return NoteOrErr.takeError(); 6090 } 6091 } 6092 } else if (Name == "Android") { 6093 if (printAndroidNote(OS, Type, Descriptor)) 6094 return Error::success(); 6095 } else if (Name == "ARM") { 6096 if (printAArch64Note<ELFT>(OS, Type, Descriptor)) 6097 return Error::success(); 6098 } 6099 if (!Descriptor.empty()) { 6100 OS << " description data:"; 6101 for (uint8_t B : Descriptor) 6102 OS << " " << format("%02x", B); 6103 OS << '\n'; 6104 } 6105 return Error::success(); 6106 }; 6107 6108 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader, 6109 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {}); 6110 } 6111 6112 template <class ELFT> 6113 ArrayRef<uint8_t> 6114 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) { 6115 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) { 6116 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC) 6117 continue; 6118 if (Sec.sh_addr != ExpectedAddr) { 6119 reportUniqueWarning( 6120 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" + 6121 Twine::utohexstr(Sec.sh_addr) + 6122 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" + 6123 Twine::utohexstr(ExpectedAddr)); 6124 return ArrayRef<uint8_t>(); 6125 } 6126 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec); 6127 if (auto E = Contents.takeError()) { 6128 reportUniqueWarning( 6129 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " + 6130 toString(std::move(E))); 6131 return ArrayRef<uint8_t>(); 6132 } 6133 return Contents.get(); 6134 } 6135 return ArrayRef<uint8_t>(); 6136 } 6137 6138 // Reserve the lower three bits of the first byte of the step distance when 6139 // encoding the memtag descriptors. Found to be the best overall size tradeoff 6140 // when compiling Android T with full MTE globals enabled. 6141 constexpr uint64_t MemtagStepVarintReservedBits = 3; 6142 constexpr uint64_t MemtagGranuleSize = 16; 6143 6144 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() { 6145 if (Obj.getHeader().e_machine != EM_AARCH64) return; 6146 std::vector<std::pair<std::string, std::string>> DynamicEntries; 6147 uint64_t MemtagGlobalsSz = 0; 6148 uint64_t MemtagGlobals = 0; 6149 for (const typename ELFT::Dyn &Entry : dynamic_table()) { 6150 uintX_t Tag = Entry.getTag(); 6151 switch (Tag) { 6152 case DT_AARCH64_MEMTAG_GLOBALSSZ: 6153 MemtagGlobalsSz = Entry.getVal(); 6154 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6155 getDynamicEntry(Tag, Entry.getVal())); 6156 break; 6157 case DT_AARCH64_MEMTAG_GLOBALS: 6158 MemtagGlobals = Entry.getVal(); 6159 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6160 getDynamicEntry(Tag, Entry.getVal())); 6161 break; 6162 case DT_AARCH64_MEMTAG_MODE: 6163 case DT_AARCH64_MEMTAG_HEAP: 6164 case DT_AARCH64_MEMTAG_STACK: 6165 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag), 6166 getDynamicEntry(Tag, Entry.getVal())); 6167 break; 6168 } 6169 } 6170 6171 ArrayRef<uint8_t> AndroidNoteDesc; 6172 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 6173 if (Note.getName() == "Android" && 6174 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG) 6175 AndroidNoteDesc = Note.getDesc(4); 6176 return Error::success(); 6177 }; 6178 6179 processNotesHelper( 6180 *this, 6181 /*StartNotesFn=*/ 6182 [](std::optional<StringRef>, const typename ELFT::Off, 6183 const typename ELFT::Addr, size_t) {}, 6184 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {}); 6185 6186 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals); 6187 if (Contents.size() != MemtagGlobalsSz) { 6188 reportUniqueWarning( 6189 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" + 6190 Twine::utohexstr(MemtagGlobalsSz) + 6191 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" + 6192 Twine::utohexstr(Contents.size()) + ")"); 6193 Contents = ArrayRef<uint8_t>(); 6194 } 6195 6196 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors; 6197 uint64_t Address = 0; 6198 // See the AArch64 MemtagABI document for a description of encoding scheme: 6199 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic 6200 for (size_t I = 0; I < Contents.size();) { 6201 const char *Error = nullptr; 6202 unsigned DecodedBytes = 0; 6203 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes, 6204 Contents.end(), &Error); 6205 I += DecodedBytes; 6206 if (Error) { 6207 reportUniqueWarning( 6208 "error decoding distance uleb, " + Twine(DecodedBytes) + 6209 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6210 GlobalDescriptors.clear(); 6211 break; 6212 } 6213 uint64_t Distance = Value >> MemtagStepVarintReservedBits; 6214 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1); 6215 if (GranulesToTag == 0) { 6216 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes, 6217 Contents.end(), &Error) + 6218 1; 6219 I += DecodedBytes; 6220 if (Error) { 6221 reportUniqueWarning( 6222 "error decoding size-only uleb, " + Twine(DecodedBytes) + 6223 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error)); 6224 GlobalDescriptors.clear(); 6225 break; 6226 } 6227 } 6228 Address += Distance * MemtagGranuleSize; 6229 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize); 6230 Address += GranulesToTag * MemtagGranuleSize; 6231 } 6232 6233 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors); 6234 } 6235 6236 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 6237 OS << "printELFLinkerOptions not implemented!\n"; 6238 } 6239 6240 template <class ELFT> 6241 void ELFDumper<ELFT>::printDependentLibsHelper( 6242 function_ref<void(const Elf_Shdr &)> OnSectionStart, 6243 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 6244 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 6245 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 6246 Twine(SecNdx) + " is broken: " + Msg); 6247 }; 6248 6249 unsigned I = -1; 6250 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 6251 ++I; 6252 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 6253 continue; 6254 6255 OnSectionStart(Shdr); 6256 6257 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 6258 if (!ContentsOrErr) { 6259 Warn(I, toString(ContentsOrErr.takeError())); 6260 continue; 6261 } 6262 6263 ArrayRef<uint8_t> Contents = *ContentsOrErr; 6264 if (!Contents.empty() && Contents.back() != 0) { 6265 Warn(I, "the content is not null-terminated"); 6266 continue; 6267 } 6268 6269 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 6270 StringRef Lib((const char *)I); 6271 OnLibEntry(Lib, I - Contents.begin()); 6272 I += Lib.size() + 1; 6273 } 6274 } 6275 } 6276 6277 template <class ELFT> 6278 void ELFDumper<ELFT>::forEachRelocationDo( 6279 const Elf_Shdr &Sec, bool RawRelr, 6280 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 6281 const Elf_Shdr &, const Elf_Shdr *)> 6282 RelRelaFn, 6283 llvm::function_ref<void(const Elf_Relr &)> RelrFn) { 6284 auto Warn = [&](Error &&E, 6285 const Twine &Prefix = "unable to read relocations from") { 6286 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 6287 toString(std::move(E))); 6288 }; 6289 6290 // SHT_RELR/SHT_ANDROID_RELR/SHT_AARCH64_AUTH_RELR sections do not have an 6291 // associated symbol table. For them we should not treat the value of the 6292 // sh_link field as an index of a symbol table. 6293 const Elf_Shdr *SymTab; 6294 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR && 6295 !(Obj.getHeader().e_machine == EM_AARCH64 && 6296 Sec.sh_type == ELF::SHT_AARCH64_AUTH_RELR)) { 6297 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 6298 if (!SymTabOrErr) { 6299 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 6300 return; 6301 } 6302 SymTab = *SymTabOrErr; 6303 } 6304 6305 unsigned RelNdx = 0; 6306 const bool IsMips64EL = this->Obj.isMips64EL(); 6307 switch (Sec.sh_type) { 6308 case ELF::SHT_REL: 6309 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 6310 for (const Elf_Rel &R : *RangeOrErr) 6311 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6312 } else { 6313 Warn(RangeOrErr.takeError()); 6314 } 6315 break; 6316 case ELF::SHT_RELA: 6317 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 6318 for (const Elf_Rela &R : *RangeOrErr) 6319 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6320 } else { 6321 Warn(RangeOrErr.takeError()); 6322 } 6323 break; 6324 case ELF::SHT_AARCH64_AUTH_RELR: 6325 if (Obj.getHeader().e_machine != EM_AARCH64) 6326 break; 6327 [[fallthrough]]; 6328 case ELF::SHT_RELR: 6329 case ELF::SHT_ANDROID_RELR: { 6330 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 6331 if (!RangeOrErr) { 6332 Warn(RangeOrErr.takeError()); 6333 break; 6334 } 6335 if (RawRelr) { 6336 for (const Elf_Relr &R : *RangeOrErr) 6337 RelrFn(R); 6338 break; 6339 } 6340 6341 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 6342 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 6343 /*SymTab=*/nullptr); 6344 break; 6345 } 6346 case ELF::SHT_ANDROID_REL: 6347 case ELF::SHT_ANDROID_RELA: 6348 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 6349 for (const Elf_Rela &R : *RelasOrErr) 6350 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 6351 } else { 6352 Warn(RelasOrErr.takeError()); 6353 } 6354 break; 6355 } 6356 } 6357 6358 template <class ELFT> 6359 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 6360 StringRef Name = "<?>"; 6361 if (Expected<StringRef> SecNameOrErr = 6362 Obj.getSectionName(Sec, this->WarningHandler)) 6363 Name = *SecNameOrErr; 6364 else 6365 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 6366 ": " + toString(SecNameOrErr.takeError())); 6367 return Name; 6368 } 6369 6370 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 6371 bool SectionStarted = false; 6372 struct NameOffset { 6373 StringRef Name; 6374 uint64_t Offset; 6375 }; 6376 std::vector<NameOffset> SecEntries; 6377 NameOffset Current; 6378 auto PrintSection = [&]() { 6379 OS << "Dependent libraries section " << Current.Name << " at offset " 6380 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 6381 << " entries:\n"; 6382 for (NameOffset Entry : SecEntries) 6383 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 6384 << "\n"; 6385 OS << "\n"; 6386 SecEntries.clear(); 6387 }; 6388 6389 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 6390 if (SectionStarted) 6391 PrintSection(); 6392 SectionStarted = true; 6393 Current.Offset = Shdr.sh_offset; 6394 Current.Name = this->getPrintableSectionName(Shdr); 6395 }; 6396 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 6397 SecEntries.push_back(NameOffset{Lib, Offset}); 6398 }; 6399 6400 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 6401 if (SectionStarted) 6402 PrintSection(); 6403 } 6404 6405 template <class ELFT> 6406 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress( 6407 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) { 6408 SmallVector<uint32_t> SymbolIndexes; 6409 if (!this->AddressToIndexMap) { 6410 // Populate the address to index map upon the first invocation of this 6411 // function. 6412 this->AddressToIndexMap.emplace(); 6413 if (this->DotSymtabSec) { 6414 if (Expected<Elf_Sym_Range> SymsOrError = 6415 Obj.symbols(this->DotSymtabSec)) { 6416 uint32_t Index = (uint32_t)-1; 6417 for (const Elf_Sym &Sym : *SymsOrError) { 6418 ++Index; 6419 6420 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 6421 continue; 6422 6423 Expected<uint64_t> SymAddrOrErr = 6424 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress(); 6425 if (!SymAddrOrErr) { 6426 std::string Name = this->getStaticSymbolName(Index); 6427 reportUniqueWarning("unable to get address of symbol '" + Name + 6428 "': " + toString(SymAddrOrErr.takeError())); 6429 return SymbolIndexes; 6430 } 6431 6432 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index); 6433 } 6434 } else { 6435 reportUniqueWarning("unable to read the symbol table: " + 6436 toString(SymsOrError.takeError())); 6437 } 6438 } 6439 } 6440 6441 auto Symbols = this->AddressToIndexMap->find(SymValue); 6442 if (Symbols == this->AddressToIndexMap->end()) 6443 return SymbolIndexes; 6444 6445 for (uint32_t Index : Symbols->second) { 6446 // Check if the symbol is in the right section. FunctionSec == None 6447 // means "any section". 6448 if (FunctionSec) { 6449 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index)); 6450 if (Expected<const Elf_Shdr *> SecOrErr = 6451 Obj.getSection(Sym, this->DotSymtabSec, 6452 this->getShndxTable(this->DotSymtabSec))) { 6453 if (*FunctionSec != *SecOrErr) 6454 continue; 6455 } else { 6456 std::string Name = this->getStaticSymbolName(Index); 6457 // Note: it is impossible to trigger this error currently, it is 6458 // untested. 6459 reportUniqueWarning("unable to get section of symbol '" + Name + 6460 "': " + toString(SecOrErr.takeError())); 6461 return SymbolIndexes; 6462 } 6463 } 6464 6465 SymbolIndexes.push_back(Index); 6466 } 6467 6468 return SymbolIndexes; 6469 } 6470 6471 template <class ELFT> 6472 bool ELFDumper<ELFT>::printFunctionStackSize( 6473 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec, 6474 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 6475 SmallVector<uint32_t> FuncSymIndexes = 6476 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec); 6477 if (FuncSymIndexes.empty()) 6478 reportUniqueWarning( 6479 "could not identify function symbol for stack size entry in " + 6480 describe(StackSizeSec)); 6481 6482 // Extract the size. The expectation is that Offset is pointing to the right 6483 // place, i.e. past the function address. 6484 Error Err = Error::success(); 6485 uint64_t StackSize = Data.getULEB128(Offset, &Err); 6486 if (Err) { 6487 reportUniqueWarning("could not extract a valid stack size from " + 6488 describe(StackSizeSec) + ": " + 6489 toString(std::move(Err))); 6490 return false; 6491 } 6492 6493 if (FuncSymIndexes.empty()) { 6494 printStackSizeEntry(StackSize, {"?"}); 6495 } else { 6496 SmallVector<std::string> FuncSymNames; 6497 for (uint32_t Index : FuncSymIndexes) 6498 FuncSymNames.push_back(this->getStaticSymbolName(Index)); 6499 printStackSizeEntry(StackSize, FuncSymNames); 6500 } 6501 6502 return true; 6503 } 6504 6505 template <class ELFT> 6506 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 6507 ArrayRef<std::string> FuncNames) { 6508 OS.PadToColumn(2); 6509 OS << format_decimal(Size, 11); 6510 OS.PadToColumn(18); 6511 6512 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n"; 6513 } 6514 6515 template <class ELFT> 6516 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 6517 const Elf_Shdr &RelocSec, unsigned Ndx, 6518 const Elf_Shdr *SymTab, 6519 const Elf_Shdr *FunctionSec, 6520 const Elf_Shdr &StackSizeSec, 6521 const RelocationResolver &Resolver, 6522 DataExtractor Data) { 6523 // This function ignores potentially erroneous input, unless it is directly 6524 // related to stack size reporting. 6525 const Elf_Sym *Sym = nullptr; 6526 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 6527 if (!TargetOrErr) 6528 reportUniqueWarning("unable to get the target of relocation with index " + 6529 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 6530 toString(TargetOrErr.takeError())); 6531 else 6532 Sym = TargetOrErr->Sym; 6533 6534 uint64_t RelocSymValue = 0; 6535 if (Sym) { 6536 Expected<const Elf_Shdr *> SectionOrErr = 6537 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 6538 if (!SectionOrErr) { 6539 reportUniqueWarning( 6540 "cannot identify the section for relocation symbol '" + 6541 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 6542 } else if (*SectionOrErr != FunctionSec) { 6543 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 6544 "' is not in the expected section"); 6545 // Pretend that the symbol is in the correct section and report its 6546 // stack size anyway. 6547 FunctionSec = *SectionOrErr; 6548 } 6549 6550 RelocSymValue = Sym->st_value; 6551 } 6552 6553 uint64_t Offset = R.Offset; 6554 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6555 reportUniqueWarning("found invalid relocation offset (0x" + 6556 Twine::utohexstr(Offset) + ") into " + 6557 describe(StackSizeSec) + 6558 " while trying to extract a stack size entry"); 6559 return; 6560 } 6561 6562 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue, 6563 Data.getAddress(&Offset), R.Addend.value_or(0)); 6564 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 6565 &Offset); 6566 } 6567 6568 template <class ELFT> 6569 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 6570 std::function<void()> PrintHeader) { 6571 // This function ignores potentially erroneous input, unless it is directly 6572 // related to stack size reporting. 6573 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 6574 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 6575 continue; 6576 PrintHeader(); 6577 ArrayRef<uint8_t> Contents = 6578 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 6579 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6580 uint64_t Offset = 0; 6581 while (Offset < Contents.size()) { 6582 // The function address is followed by a ULEB representing the stack 6583 // size. Check for an extra byte before we try to process the entry. 6584 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 6585 reportUniqueWarning( 6586 describe(Sec) + 6587 " ended while trying to extract a stack size entry"); 6588 break; 6589 } 6590 uint64_t SymValue = Data.getAddress(&Offset); 6591 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec, 6592 Data, &Offset)) 6593 break; 6594 } 6595 } 6596 } 6597 6598 template <class ELFT> 6599 void ELFDumper<ELFT>::printRelocatableStackSizes( 6600 std::function<void()> PrintHeader) { 6601 // Build a map between stack size sections and their corresponding relocation 6602 // sections. 6603 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool { 6604 StringRef SectionName; 6605 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 6606 SectionName = *NameOrErr; 6607 else 6608 consumeError(NameOrErr.takeError()); 6609 6610 return SectionName == ".stack_sizes"; 6611 }; 6612 6613 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> 6614 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch); 6615 if (!StackSizeRelocMapOrErr) { 6616 reportUniqueWarning("unable to get stack size map section(s): " + 6617 toString(StackSizeRelocMapOrErr.takeError())); 6618 return; 6619 } 6620 6621 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) { 6622 PrintHeader(); 6623 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 6624 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 6625 6626 // Warn about stack size sections without a relocation section. 6627 if (!RelocSec) { 6628 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 6629 ") does not have a corresponding " 6630 "relocation section"), 6631 FileName); 6632 continue; 6633 } 6634 6635 // A .stack_sizes section header's sh_link field is supposed to point 6636 // to the section that contains the functions whose stack sizes are 6637 // described in it. 6638 const Elf_Shdr *FunctionSec = unwrapOrError( 6639 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 6640 6641 SupportsRelocation IsSupportedFn; 6642 RelocationResolver Resolver; 6643 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 6644 ArrayRef<uint8_t> Contents = 6645 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 6646 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 6647 6648 forEachRelocationDo( 6649 *RelocSec, /*RawRelr=*/false, 6650 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 6651 const Elf_Shdr *SymTab) { 6652 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 6653 reportUniqueWarning( 6654 describe(*RelocSec) + 6655 " contains an unsupported relocation with index " + Twine(Ndx) + 6656 ": " + Obj.getRelocationTypeName(R.Type)); 6657 return; 6658 } 6659 6660 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 6661 *StackSizesELFSec, Resolver, Data); 6662 }, 6663 [](const Elf_Relr &) { 6664 llvm_unreachable("can't get here, because we only support " 6665 "SHT_REL/SHT_RELA sections"); 6666 }); 6667 } 6668 } 6669 6670 template <class ELFT> 6671 void GNUELFDumper<ELFT>::printStackSizes() { 6672 bool HeaderHasBeenPrinted = false; 6673 auto PrintHeader = [&]() { 6674 if (HeaderHasBeenPrinted) 6675 return; 6676 OS << "\nStack Sizes:\n"; 6677 OS.PadToColumn(9); 6678 OS << "Size"; 6679 OS.PadToColumn(18); 6680 OS << "Functions\n"; 6681 HeaderHasBeenPrinted = true; 6682 }; 6683 6684 // For non-relocatable objects, look directly for sections whose name starts 6685 // with .stack_sizes and process the contents. 6686 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6687 this->printRelocatableStackSizes(PrintHeader); 6688 else 6689 this->printNonRelocatableStackSizes(PrintHeader); 6690 } 6691 6692 template <class ELFT> 6693 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6694 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6695 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6696 OS.PadToColumn(2); 6697 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 6698 OS.PadToColumn(11 + Bias); 6699 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 6700 OS.PadToColumn(22 + Bias); 6701 OS << format_hex_no_prefix(*E, 8 + Bias); 6702 OS.PadToColumn(31 + 2 * Bias); 6703 OS << Purpose << "\n"; 6704 }; 6705 6706 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 6707 OS << " Canonical gp value: " 6708 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 6709 6710 OS << " Reserved entries:\n"; 6711 if (ELFT::Is64Bits) 6712 OS << " Address Access Initial Purpose\n"; 6713 else 6714 OS << " Address Access Initial Purpose\n"; 6715 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 6716 if (Parser.getGotModulePointer()) 6717 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 6718 6719 if (!Parser.getLocalEntries().empty()) { 6720 OS << "\n"; 6721 OS << " Local entries:\n"; 6722 if (ELFT::Is64Bits) 6723 OS << " Address Access Initial\n"; 6724 else 6725 OS << " Address Access Initial\n"; 6726 for (auto &E : Parser.getLocalEntries()) 6727 PrintEntry(&E, ""); 6728 } 6729 6730 if (Parser.IsStatic) 6731 return; 6732 6733 if (!Parser.getGlobalEntries().empty()) { 6734 OS << "\n"; 6735 OS << " Global entries:\n"; 6736 if (ELFT::Is64Bits) 6737 OS << " Address Access Initial Sym.Val." 6738 << " Type Ndx Name\n"; 6739 else 6740 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 6741 6742 DataRegion<Elf_Word> ShndxTable( 6743 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6744 for (auto &E : Parser.getGlobalEntries()) { 6745 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6746 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 6747 std::string SymName = this->getFullSymbolName( 6748 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6749 6750 OS.PadToColumn(2); 6751 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 6752 OS.PadToColumn(11 + Bias); 6753 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 6754 OS.PadToColumn(22 + Bias); 6755 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6756 OS.PadToColumn(31 + 2 * Bias); 6757 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6758 OS.PadToColumn(40 + 3 * Bias); 6759 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6760 OS.PadToColumn(48 + 3 * Bias); 6761 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6762 ShndxTable); 6763 OS.PadToColumn(52 + 3 * Bias); 6764 OS << SymName << "\n"; 6765 } 6766 } 6767 6768 if (!Parser.getOtherEntries().empty()) 6769 OS << "\n Number of TLS and multi-GOT entries " 6770 << Parser.getOtherEntries().size() << "\n"; 6771 } 6772 6773 template <class ELFT> 6774 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6775 size_t Bias = ELFT::Is64Bits ? 8 : 0; 6776 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 6777 OS.PadToColumn(2); 6778 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 6779 OS.PadToColumn(11 + Bias); 6780 OS << format_hex_no_prefix(*E, 8 + Bias); 6781 OS.PadToColumn(20 + 2 * Bias); 6782 OS << Purpose << "\n"; 6783 }; 6784 6785 OS << "PLT GOT:\n\n"; 6786 6787 OS << " Reserved entries:\n"; 6788 OS << " Address Initial Purpose\n"; 6789 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 6790 if (Parser.getPltModulePointer()) 6791 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 6792 6793 if (!Parser.getPltEntries().empty()) { 6794 OS << "\n"; 6795 OS << " Entries:\n"; 6796 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 6797 DataRegion<Elf_Word> ShndxTable( 6798 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6799 for (auto &E : Parser.getPltEntries()) { 6800 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6801 const Elf_Sym &FirstSym = *cantFail( 6802 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6803 std::string SymName = this->getFullSymbolName( 6804 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 6805 6806 OS.PadToColumn(2); 6807 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 6808 OS.PadToColumn(11 + Bias); 6809 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 6810 OS.PadToColumn(20 + 2 * Bias); 6811 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 6812 OS.PadToColumn(29 + 3 * Bias); 6813 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes)); 6814 OS.PadToColumn(37 + 3 * Bias); 6815 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 6816 ShndxTable); 6817 OS.PadToColumn(41 + 3 * Bias); 6818 OS << SymName << "\n"; 6819 } 6820 } 6821 } 6822 6823 template <class ELFT> 6824 Expected<const Elf_Mips_ABIFlags<ELFT> *> 6825 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 6826 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 6827 if (Sec == nullptr) 6828 return nullptr; 6829 6830 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 6831 Expected<ArrayRef<uint8_t>> DataOrErr = 6832 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 6833 if (!DataOrErr) 6834 return createError(ErrPrefix + toString(DataOrErr.takeError())); 6835 6836 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 6837 return createError(ErrPrefix + "it has a wrong size (" + 6838 Twine(DataOrErr->size()) + ")"); 6839 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 6840 } 6841 6842 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 6843 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 6844 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6845 getMipsAbiFlagsSection(*this)) 6846 Flags = *SecOrErr; 6847 else 6848 this->reportUniqueWarning(SecOrErr.takeError()); 6849 if (!Flags) 6850 return; 6851 6852 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 6853 OS << "ISA: MIPS" << int(Flags->isa_level); 6854 if (Flags->isa_rev > 1) 6855 OS << "r" << int(Flags->isa_rev); 6856 OS << "\n"; 6857 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 6858 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 6859 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 6860 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType)) 6861 << "\n"; 6862 OS << "ISA Extension: " 6863 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n"; 6864 if (Flags->ases == 0) 6865 OS << "ASEs: None\n"; 6866 else 6867 // FIXME: Print each flag on a separate line. 6868 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags)) 6869 << "\n"; 6870 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 6871 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 6872 OS << "\n"; 6873 } 6874 6875 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 6876 const Elf_Ehdr &E = this->Obj.getHeader(); 6877 { 6878 DictScope D(W, "ElfHeader"); 6879 { 6880 DictScope D(W, "Ident"); 6881 W.printBinary("Magic", 6882 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4)); 6883 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass)); 6884 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 6885 ArrayRef(ElfDataEncoding)); 6886 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 6887 6888 auto OSABI = ArrayRef(ElfOSABI); 6889 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 6890 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 6891 switch (E.e_machine) { 6892 case ELF::EM_AMDGPU: 6893 OSABI = ArrayRef(AMDGPUElfOSABI); 6894 break; 6895 case ELF::EM_ARM: 6896 OSABI = ArrayRef(ARMElfOSABI); 6897 break; 6898 case ELF::EM_TI_C6000: 6899 OSABI = ArrayRef(C6000ElfOSABI); 6900 break; 6901 } 6902 } 6903 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 6904 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 6905 W.printBinary("Unused", 6906 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD)); 6907 } 6908 6909 std::string TypeStr; 6910 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 6911 TypeStr = Ent->Name.str(); 6912 } else { 6913 if (E.e_type >= ET_LOPROC) 6914 TypeStr = "Processor Specific"; 6915 else if (E.e_type >= ET_LOOS) 6916 TypeStr = "OS Specific"; 6917 else 6918 TypeStr = "Unknown"; 6919 } 6920 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")"); 6921 6922 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType)); 6923 W.printNumber("Version", E.e_version); 6924 W.printHex("Entry", E.e_entry); 6925 W.printHex("ProgramHeaderOffset", E.e_phoff); 6926 W.printHex("SectionHeaderOffset", E.e_shoff); 6927 if (E.e_machine == EM_MIPS) 6928 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags), 6929 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 6930 unsigned(ELF::EF_MIPS_MACH)); 6931 else if (E.e_machine == EM_AMDGPU) { 6932 switch (E.e_ident[ELF::EI_ABIVERSION]) { 6933 default: 6934 W.printHex("Flags", E.e_flags); 6935 break; 6936 case 0: 6937 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags. 6938 [[fallthrough]]; 6939 case ELF::ELFABIVERSION_AMDGPU_HSA_V3: 6940 W.printFlags("Flags", E.e_flags, 6941 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3), 6942 unsigned(ELF::EF_AMDGPU_MACH)); 6943 break; 6944 case ELF::ELFABIVERSION_AMDGPU_HSA_V4: 6945 case ELF::ELFABIVERSION_AMDGPU_HSA_V5: 6946 W.printFlags("Flags", E.e_flags, 6947 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4), 6948 unsigned(ELF::EF_AMDGPU_MACH), 6949 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4), 6950 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4)); 6951 break; 6952 } 6953 } else if (E.e_machine == EM_RISCV) 6954 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags)); 6955 else if (E.e_machine == EM_AVR) 6956 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags), 6957 unsigned(ELF::EF_AVR_ARCH_MASK)); 6958 else if (E.e_machine == EM_LOONGARCH) 6959 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags), 6960 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK), 6961 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK)); 6962 else if (E.e_machine == EM_XTENSA) 6963 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags), 6964 unsigned(ELF::EF_XTENSA_MACH)); 6965 else if (E.e_machine == EM_CUDA) 6966 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderNVPTXFlags), 6967 unsigned(ELF::EF_CUDA_SM)); 6968 else 6969 W.printFlags("Flags", E.e_flags); 6970 W.printNumber("HeaderSize", E.e_ehsize); 6971 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 6972 W.printNumber("ProgramHeaderCount", E.e_phnum); 6973 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 6974 W.printString("SectionHeaderCount", 6975 getSectionHeadersNumString(this->Obj, this->FileName)); 6976 W.printString("StringTableSectionIndex", 6977 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 6978 } 6979 } 6980 6981 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 6982 DictScope Lists(W, "Groups"); 6983 std::vector<GroupSection> V = this->getGroups(); 6984 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 6985 for (const GroupSection &G : V) { 6986 DictScope D(W, "Group"); 6987 W.printNumber("Name", G.Name, G.ShName); 6988 W.printNumber("Index", G.Index); 6989 W.printNumber("Link", G.Link); 6990 W.printNumber("Info", G.Info); 6991 W.printHex("Type", getGroupType(G.Type), G.Type); 6992 W.printString("Signature", G.Signature); 6993 6994 ListScope L(W, getGroupSectionHeaderName()); 6995 for (const GroupMember &GM : G.Members) { 6996 const GroupSection *MainGroup = Map[GM.Index]; 6997 if (MainGroup != &G) 6998 this->reportUniqueWarning( 6999 "section with index " + Twine(GM.Index) + 7000 ", included in the group section with index " + 7001 Twine(MainGroup->Index) + 7002 ", was also found in the group section with index " + 7003 Twine(G.Index)); 7004 printSectionGroupMembers(GM.Name, GM.Index); 7005 } 7006 } 7007 7008 if (V.empty()) 7009 printEmptyGroupMessage(); 7010 } 7011 7012 template <class ELFT> 7013 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const { 7014 return "Section(s) in group"; 7015 } 7016 7017 template <class ELFT> 7018 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 7019 uint64_t Idx) const { 7020 W.startLine() << Name << " (" << Idx << ")\n"; 7021 } 7022 7023 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 7024 ListScope D(W, "Relocations"); 7025 7026 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 7027 if (!isRelocationSec<ELFT>(Sec, this->Obj.getHeader())) 7028 continue; 7029 7030 StringRef Name = this->getPrintableSectionName(Sec); 7031 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 7032 printRelocationSectionInfo(Sec, Name, SecNdx); 7033 } 7034 } 7035 7036 template <class ELFT> 7037 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 7038 W.startLine() << W.hex(R) << "\n"; 7039 } 7040 7041 template <class ELFT> 7042 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R, 7043 StringRef SymbolName, 7044 StringRef RelocName) { 7045 DictScope Group(W, "Relocation"); 7046 W.printHex("Offset", R.Offset); 7047 W.printNumber("Type", RelocName, R.Type); 7048 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 7049 if (R.Addend) 7050 W.printHex("Addend", (uintX_t)*R.Addend); 7051 } 7052 7053 template <class ELFT> 7054 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 7055 StringRef SymbolName, 7056 StringRef RelocName) { 7057 raw_ostream &OS = W.startLine(); 7058 OS << W.hex(R.Offset) << " " << RelocName << " " 7059 << (!SymbolName.empty() ? SymbolName : "-"); 7060 if (R.Addend) 7061 OS << " " << W.hex((uintX_t)*R.Addend); 7062 OS << "\n"; 7063 } 7064 7065 template <class ELFT> 7066 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 7067 StringRef Name, 7068 const unsigned SecNdx) { 7069 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str()); 7070 this->printRelocationsHelper(Sec); 7071 } 7072 7073 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const { 7074 W.startLine() << "There are no group sections in the file.\n"; 7075 } 7076 7077 template <class ELFT> 7078 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 7079 const RelSymbol<ELFT> &RelSym) { 7080 StringRef SymbolName = RelSym.Name; 7081 if (RelSym.Sym && RelSym.Name.empty()) 7082 SymbolName = "<null>"; 7083 SmallString<32> RelocName; 7084 this->Obj.getRelocationTypeName(R.Type, RelocName); 7085 7086 if (opts::ExpandRelocs) { 7087 printExpandedRelRelaReloc(R, SymbolName, RelocName); 7088 } else { 7089 printDefaultRelRelaReloc(R, SymbolName, RelocName); 7090 } 7091 } 7092 7093 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 7094 ListScope SectionsD(W, "Sections"); 7095 7096 int SectionIndex = -1; 7097 std::vector<EnumEntry<unsigned>> FlagsList = 7098 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI], 7099 this->Obj.getHeader().e_machine); 7100 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 7101 DictScope SectionD(W, "Section"); 7102 W.printNumber("Index", ++SectionIndex); 7103 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 7104 W.printHex("Type", 7105 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 7106 Sec.sh_type), 7107 Sec.sh_type); 7108 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList)); 7109 W.printHex("Address", Sec.sh_addr); 7110 W.printHex("Offset", Sec.sh_offset); 7111 W.printNumber("Size", Sec.sh_size); 7112 W.printNumber("Link", Sec.sh_link); 7113 W.printNumber("Info", Sec.sh_info); 7114 W.printNumber("AddressAlignment", Sec.sh_addralign); 7115 W.printNumber("EntrySize", Sec.sh_entsize); 7116 7117 if (opts::SectionRelocations) { 7118 ListScope D(W, "Relocations"); 7119 this->printRelocationsHelper(Sec); 7120 } 7121 7122 if (opts::SectionSymbols) { 7123 ListScope D(W, "Symbols"); 7124 if (this->DotSymtabSec) { 7125 StringRef StrTable = unwrapOrError( 7126 this->FileName, 7127 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 7128 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 7129 7130 typename ELFT::SymRange Symbols = unwrapOrError( 7131 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 7132 for (const Elf_Sym &Sym : Symbols) { 7133 const Elf_Shdr *SymSec = unwrapOrError( 7134 this->FileName, 7135 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 7136 if (SymSec == &Sec) 7137 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 7138 /*NonVisibilityBitsUsed=*/false, 7139 /*ExtraSymInfo=*/false); 7140 } 7141 } 7142 } 7143 7144 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 7145 ArrayRef<uint8_t> Data = 7146 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 7147 W.printBinaryBlock( 7148 "SectionData", 7149 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 7150 } 7151 } 7152 } 7153 7154 template <class ELFT> 7155 void LLVMELFDumper<ELFT>::printSymbolSection( 7156 const Elf_Sym &Symbol, unsigned SymIndex, 7157 DataRegion<Elf_Word> ShndxTable) const { 7158 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> { 7159 if (Symbol.isUndefined()) 7160 return StringRef("Undefined"); 7161 if (Symbol.isProcessorSpecific()) 7162 return StringRef("Processor Specific"); 7163 if (Symbol.isOSSpecific()) 7164 return StringRef("Operating System Specific"); 7165 if (Symbol.isAbsolute()) 7166 return StringRef("Absolute"); 7167 if (Symbol.isCommon()) 7168 return StringRef("Common"); 7169 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 7170 return StringRef("Reserved"); 7171 return std::nullopt; 7172 }; 7173 7174 if (std::optional<StringRef> Type = GetSectionSpecialType()) { 7175 W.printHex("Section", *Type, Symbol.st_shndx); 7176 return; 7177 } 7178 7179 Expected<unsigned> SectionIndex = 7180 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 7181 if (!SectionIndex) { 7182 assert(Symbol.st_shndx == SHN_XINDEX && 7183 "getSymbolSectionIndex should only fail due to an invalid " 7184 "SHT_SYMTAB_SHNDX table/reference"); 7185 this->reportUniqueWarning(SectionIndex.takeError()); 7186 W.printHex("Section", "Reserved", SHN_XINDEX); 7187 return; 7188 } 7189 7190 Expected<StringRef> SectionName = 7191 this->getSymbolSectionName(Symbol, *SectionIndex); 7192 if (!SectionName) { 7193 // Don't report an invalid section name if the section headers are missing. 7194 // In such situations, all sections will be "invalid". 7195 if (!this->ObjF.sections().empty()) 7196 this->reportUniqueWarning(SectionName.takeError()); 7197 else 7198 consumeError(SectionName.takeError()); 7199 W.printHex("Section", "<?>", *SectionIndex); 7200 } else { 7201 W.printHex("Section", *SectionName, *SectionIndex); 7202 } 7203 } 7204 7205 template <class ELFT> 7206 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const { 7207 std::vector<EnumEntry<unsigned>> SymOtherFlags = 7208 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol); 7209 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u); 7210 } 7211 7212 template <class ELFT> 7213 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField( 7214 const Elf_Sym &Symbol) const { 7215 assert(Symbol.st_other == 0 && "non-zero Other Field"); 7216 // Usually st_other flag is zero. Do not pollute the output 7217 // by flags enumeration in that case. 7218 W.printNumber("Other", 0); 7219 } 7220 7221 template <class ELFT> 7222 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 7223 DataRegion<Elf_Word> ShndxTable, 7224 std::optional<StringRef> StrTable, 7225 bool IsDynamic, 7226 bool /*NonVisibilityBitsUsed*/, 7227 bool /*ExtraSymInfo*/) const { 7228 std::string FullSymbolName = this->getFullSymbolName( 7229 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 7230 unsigned char SymbolType = Symbol.getType(); 7231 7232 DictScope D(W, "Symbol"); 7233 W.printNumber("Name", FullSymbolName, Symbol.st_name); 7234 W.printHex("Value", Symbol.st_value); 7235 W.printNumber("Size", Symbol.st_size); 7236 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings)); 7237 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 7238 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 7239 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes)); 7240 else 7241 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes)); 7242 if (Symbol.st_other == 0) 7243 printZeroSymbolOtherField(Symbol); 7244 else 7245 printSymbolOtherField(Symbol); 7246 printSymbolSection(Symbol, SymIndex, ShndxTable); 7247 } 7248 7249 template <class ELFT> 7250 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 7251 bool PrintDynamicSymbols, 7252 bool ExtraSymInfo) { 7253 if (PrintSymbols) { 7254 ListScope Group(W, "Symbols"); 7255 this->printSymbolsHelper(false, ExtraSymInfo); 7256 } 7257 if (PrintDynamicSymbols) { 7258 ListScope Group(W, "DynamicSymbols"); 7259 this->printSymbolsHelper(true, ExtraSymInfo); 7260 } 7261 } 7262 7263 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 7264 Elf_Dyn_Range Table = this->dynamic_table(); 7265 if (Table.empty()) 7266 return; 7267 7268 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 7269 7270 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 7271 // The "Name/Value" column should be indented from the "Type" column by N 7272 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 7273 // space (1) = -3. 7274 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 7275 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 7276 7277 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 7278 for (auto Entry : Table) { 7279 uintX_t Tag = Entry.getTag(); 7280 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 7281 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 7282 << " " 7283 << format(ValueFmt.c_str(), 7284 this->Obj.getDynamicTagAsString(Tag).c_str()) 7285 << Value << "\n"; 7286 } 7287 W.startLine() << "]\n"; 7288 } 7289 7290 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 7291 W.startLine() << "Dynamic Relocations {\n"; 7292 W.indent(); 7293 this->printDynamicRelocationsHelper(); 7294 W.unindent(); 7295 W.startLine() << "}\n"; 7296 } 7297 7298 template <class ELFT> 7299 void LLVMELFDumper<ELFT>::printProgramHeaders( 7300 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 7301 if (PrintProgramHeaders) 7302 printProgramHeaders(); 7303 if (PrintSectionMapping == cl::BOU_TRUE) 7304 printSectionMapping(); 7305 } 7306 7307 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 7308 ListScope L(W, "ProgramHeaders"); 7309 7310 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 7311 if (!PhdrsOrErr) { 7312 this->reportUniqueWarning("unable to dump program headers: " + 7313 toString(PhdrsOrErr.takeError())); 7314 return; 7315 } 7316 7317 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 7318 DictScope P(W, "ProgramHeader"); 7319 StringRef Type = 7320 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 7321 7322 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 7323 W.printHex("Offset", Phdr.p_offset); 7324 W.printHex("VirtualAddress", Phdr.p_vaddr); 7325 W.printHex("PhysicalAddress", Phdr.p_paddr); 7326 W.printNumber("FileSize", Phdr.p_filesz); 7327 W.printNumber("MemSize", Phdr.p_memsz); 7328 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags)); 7329 W.printNumber("Alignment", Phdr.p_align); 7330 } 7331 } 7332 7333 template <class ELFT> 7334 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 7335 ListScope SS(W, "VersionSymbols"); 7336 if (!Sec) 7337 return; 7338 7339 StringRef StrTable; 7340 ArrayRef<Elf_Sym> Syms; 7341 const Elf_Shdr *SymTabSec; 7342 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 7343 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 7344 if (!VerTableOrErr) { 7345 this->reportUniqueWarning(VerTableOrErr.takeError()); 7346 return; 7347 } 7348 7349 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 7350 return; 7351 7352 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 7353 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 7354 DictScope S(W, "Symbol"); 7355 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 7356 W.printString("Name", 7357 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 7358 /*IsDynamic=*/true)); 7359 } 7360 } 7361 7362 const EnumEntry<unsigned> SymVersionFlags[] = { 7363 {"Base", "BASE", VER_FLG_BASE}, 7364 {"Weak", "WEAK", VER_FLG_WEAK}, 7365 {"Info", "INFO", VER_FLG_INFO}}; 7366 7367 template <class ELFT> 7368 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 7369 ListScope SD(W, "VersionDefinitions"); 7370 if (!Sec) 7371 return; 7372 7373 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 7374 if (!V) { 7375 this->reportUniqueWarning(V.takeError()); 7376 return; 7377 } 7378 7379 for (const VerDef &D : *V) { 7380 DictScope Def(W, "Definition"); 7381 W.printNumber("Version", D.Version); 7382 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags)); 7383 W.printNumber("Index", D.Ndx); 7384 W.printNumber("Hash", D.Hash); 7385 W.printString("Name", D.Name.c_str()); 7386 W.printList( 7387 "Predecessors", D.AuxV, 7388 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 7389 } 7390 } 7391 7392 template <class ELFT> 7393 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 7394 ListScope SD(W, "VersionRequirements"); 7395 if (!Sec) 7396 return; 7397 7398 Expected<std::vector<VerNeed>> V = 7399 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 7400 if (!V) { 7401 this->reportUniqueWarning(V.takeError()); 7402 return; 7403 } 7404 7405 for (const VerNeed &VN : *V) { 7406 DictScope Entry(W, "Dependency"); 7407 W.printNumber("Version", VN.Version); 7408 W.printNumber("Count", VN.Cnt); 7409 W.printString("FileName", VN.File.c_str()); 7410 7411 ListScope L(W, "Entries"); 7412 for (const VernAux &Aux : VN.AuxV) { 7413 DictScope Entry(W, "Entry"); 7414 W.printNumber("Hash", Aux.Hash); 7415 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags)); 7416 W.printNumber("Index", Aux.Other); 7417 W.printString("Name", Aux.Name.c_str()); 7418 } 7419 } 7420 } 7421 7422 template <class ELFT> 7423 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket, 7424 size_t MaxChain, 7425 size_t TotalSyms, 7426 ArrayRef<size_t> Count, 7427 bool IsGnu) const { 7428 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram"; 7429 StringRef BucketName = IsGnu ? "Bucket" : "Chain"; 7430 StringRef ListName = IsGnu ? "Buckets" : "Chains"; 7431 DictScope Outer(W, HistName); 7432 W.printNumber("TotalBuckets", NBucket); 7433 ListScope Buckets(W, ListName); 7434 size_t CumulativeNonZero = 0; 7435 for (size_t I = 0; I < MaxChain; ++I) { 7436 CumulativeNonZero += Count[I] * I; 7437 DictScope Bucket(W, BucketName); 7438 W.printNumber("Length", I); 7439 W.printNumber("Count", Count[I]); 7440 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket); 7441 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms); 7442 } 7443 } 7444 7445 // Returns true if rel/rela section exists, and populates SymbolIndices. 7446 // Otherwise returns false. 7447 template <class ELFT> 7448 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection, 7449 const ELFFile<ELFT> &Obj, 7450 const LLVMELFDumper<ELFT> *Dumper, 7451 SmallVector<uint32_t, 128> &SymbolIndices) { 7452 if (!CGRelSection) { 7453 Dumper->reportUniqueWarning( 7454 "relocation section for a call graph section doesn't exist"); 7455 return false; 7456 } 7457 7458 if (CGRelSection->sh_type == SHT_REL) { 7459 typename ELFT::RelRange CGProfileRel; 7460 Expected<typename ELFT::RelRange> CGProfileRelOrError = 7461 Obj.rels(*CGRelSection); 7462 if (!CGProfileRelOrError) { 7463 Dumper->reportUniqueWarning("unable to load relocations for " 7464 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7465 toString(CGProfileRelOrError.takeError())); 7466 return false; 7467 } 7468 7469 CGProfileRel = *CGProfileRelOrError; 7470 for (const typename ELFT::Rel &Rel : CGProfileRel) 7471 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL())); 7472 } else { 7473 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert 7474 // the format to SHT_RELA 7475 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035) 7476 typename ELFT::RelaRange CGProfileRela; 7477 Expected<typename ELFT::RelaRange> CGProfileRelaOrError = 7478 Obj.relas(*CGRelSection); 7479 if (!CGProfileRelaOrError) { 7480 Dumper->reportUniqueWarning("unable to load relocations for " 7481 "SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7482 toString(CGProfileRelaOrError.takeError())); 7483 return false; 7484 } 7485 7486 CGProfileRela = *CGProfileRelaOrError; 7487 for (const typename ELFT::Rela &Rela : CGProfileRela) 7488 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL())); 7489 } 7490 7491 return true; 7492 } 7493 7494 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 7495 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7496 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE; 7497 }; 7498 7499 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr = 7500 this->Obj.getSectionAndRelocations(IsMatch); 7501 if (!SecToRelocMapOrErr) { 7502 this->reportUniqueWarning("unable to get CG Profile section(s): " + 7503 toString(SecToRelocMapOrErr.takeError())); 7504 return; 7505 } 7506 7507 for (const auto &CGMapEntry : *SecToRelocMapOrErr) { 7508 const Elf_Shdr *CGSection = CGMapEntry.first; 7509 const Elf_Shdr *CGRelSection = CGMapEntry.second; 7510 7511 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 7512 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection); 7513 if (!CGProfileOrErr) { 7514 this->reportUniqueWarning( 7515 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 7516 toString(CGProfileOrErr.takeError())); 7517 return; 7518 } 7519 7520 SmallVector<uint32_t, 128> SymbolIndices; 7521 bool UseReloc = 7522 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices); 7523 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) { 7524 this->reportUniqueWarning( 7525 "number of from/to pairs does not match number of frequencies"); 7526 UseReloc = false; 7527 } 7528 7529 ListScope L(W, "CGProfile"); 7530 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) { 7531 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I]; 7532 DictScope D(W, "CGProfileEntry"); 7533 if (UseReloc) { 7534 uint32_t From = SymbolIndices[I * 2]; 7535 uint32_t To = SymbolIndices[I * 2 + 1]; 7536 W.printNumber("From", this->getStaticSymbolName(From), From); 7537 W.printNumber("To", this->getStaticSymbolName(To), To); 7538 } 7539 W.printNumber("Weight", CGPE.cgp_weight); 7540 } 7541 } 7542 } 7543 7544 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() { 7545 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL; 7546 using Elf_Shdr = typename ELFT::Shdr; 7547 auto IsMatch = [](const Elf_Shdr &Sec) -> bool { 7548 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP || 7549 Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0; 7550 }; 7551 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr = 7552 this->Obj.getSectionAndRelocations(IsMatch); 7553 if (!SecRelocMapOrErr) { 7554 this->reportUniqueWarning( 7555 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " + 7556 toString(SecRelocMapOrErr.takeError())); 7557 return; 7558 } 7559 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) { 7560 std::optional<const Elf_Shdr *> FunctionSec; 7561 if (IsRelocatable) 7562 FunctionSec = 7563 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link)); 7564 ListScope L(W, "BBAddrMap"); 7565 if (IsRelocatable && !RelocSec) { 7566 this->reportUniqueWarning("unable to get relocation section for " + 7567 this->describe(*Sec)); 7568 continue; 7569 } 7570 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr = 7571 this->Obj.decodeBBAddrMap(*Sec, RelocSec); 7572 if (!BBAddrMapOrErr) { 7573 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) + 7574 ": " + toString(BBAddrMapOrErr.takeError())); 7575 continue; 7576 } 7577 for (const BBAddrMap &AM : *BBAddrMapOrErr) { 7578 DictScope D(W, "Function"); 7579 W.printHex("At", AM.Addr); 7580 SmallVector<uint32_t> FuncSymIndex = 7581 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec); 7582 std::string FuncName = "<?>"; 7583 if (FuncSymIndex.empty()) 7584 this->reportUniqueWarning( 7585 "could not identify function symbol for address (0x" + 7586 Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec)); 7587 else 7588 FuncName = this->getStaticSymbolName(FuncSymIndex.front()); 7589 W.printString("Name", FuncName); 7590 7591 ListScope L(W, "BB entries"); 7592 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) { 7593 DictScope L(W); 7594 W.printNumber("ID", BBE.ID); 7595 W.printHex("Offset", BBE.Offset); 7596 W.printHex("Size", BBE.Size); 7597 W.printBoolean("HasReturn", BBE.hasReturn()); 7598 W.printBoolean("HasTailCall", BBE.hasTailCall()); 7599 W.printBoolean("IsEHPad", BBE.isEHPad()); 7600 W.printBoolean("CanFallThrough", BBE.canFallThrough()); 7601 W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch()); 7602 } 7603 } 7604 } 7605 } 7606 7607 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 7608 ListScope L(W, "Addrsig"); 7609 if (!this->DotAddrsigSec) 7610 return; 7611 7612 Expected<std::vector<uint64_t>> SymsOrErr = 7613 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 7614 if (!SymsOrErr) { 7615 this->reportUniqueWarning(SymsOrErr.takeError()); 7616 return; 7617 } 7618 7619 for (uint64_t Sym : *SymsOrErr) 7620 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 7621 } 7622 7623 template <typename ELFT> 7624 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7625 ScopedPrinter &W) { 7626 // Return true if we were able to pretty-print the note, false otherwise. 7627 switch (NoteType) { 7628 default: 7629 return false; 7630 case ELF::NT_GNU_ABI_TAG: { 7631 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 7632 if (!AbiTag.IsValid) { 7633 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 7634 return false; 7635 } else { 7636 W.printString("OS", AbiTag.OSName); 7637 W.printString("ABI", AbiTag.ABI); 7638 } 7639 break; 7640 } 7641 case ELF::NT_GNU_BUILD_ID: { 7642 W.printString("Build ID", getGNUBuildId(Desc)); 7643 break; 7644 } 7645 case ELF::NT_GNU_GOLD_VERSION: 7646 W.printString("Version", getDescAsStringRef(Desc)); 7647 break; 7648 case ELF::NT_GNU_PROPERTY_TYPE_0: 7649 ListScope D(W, "Property"); 7650 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 7651 W.printString(Property); 7652 break; 7653 } 7654 return true; 7655 } 7656 7657 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7658 ScopedPrinter &W) { 7659 // Return true if we were able to pretty-print the note, false otherwise. 7660 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc); 7661 if (Props.empty()) 7662 return false; 7663 for (const auto &KV : Props) 7664 W.printString(KV.first, KV.second); 7665 return true; 7666 } 7667 7668 template <class ELFT> 7669 static bool printAarch64NoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 7670 ScopedPrinter &W) { 7671 if (NoteType != NT_ARM_TYPE_PAUTH_ABI_TAG) 7672 return false; 7673 7674 if (Desc.size() < 16) 7675 return false; 7676 7677 uint64_t platform = 7678 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 0); 7679 uint64_t version = 7680 support::endian::read64<ELFT::TargetEndianness>(Desc.data() + 8); 7681 W.printNumber("Platform", platform); 7682 W.printNumber("Version", version); 7683 7684 if (Desc.size() > 16) 7685 W.printString("Additional info", 7686 toHex(ArrayRef<uint8_t>(Desc.data() + 16, Desc.size() - 16))); 7687 7688 return true; 7689 } 7690 7691 template <class ELFT> 7692 void LLVMELFDumper<ELFT>::printMemtag( 7693 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries, 7694 const ArrayRef<uint8_t> AndroidNoteDesc, 7695 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) { 7696 { 7697 ListScope L(W, "Memtag Dynamic Entries:"); 7698 if (DynamicEntries.empty()) 7699 W.printString("< none found >"); 7700 for (const auto &DynamicEntryKV : DynamicEntries) 7701 W.printString(DynamicEntryKV.first, DynamicEntryKV.second); 7702 } 7703 7704 if (!AndroidNoteDesc.empty()) { 7705 ListScope L(W, "Memtag Android Note:"); 7706 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W); 7707 } 7708 7709 if (Descriptors.empty()) 7710 return; 7711 7712 { 7713 ListScope L(W, "Memtag Global Descriptors:"); 7714 for (const auto &[Addr, BytesToTag] : Descriptors) { 7715 W.printHex("0x" + utohexstr(Addr), BytesToTag); 7716 } 7717 } 7718 } 7719 7720 template <typename ELFT> 7721 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType, 7722 ArrayRef<uint8_t> Desc, 7723 ScopedPrinter &W) { 7724 switch (NoteType) { 7725 default: 7726 return false; 7727 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION: 7728 W.printString("Version", getDescAsStringRef(Desc)); 7729 break; 7730 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER: 7731 W.printString("Producer", getDescAsStringRef(Desc)); 7732 break; 7733 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION: 7734 W.printString("Producer version", getDescAsStringRef(Desc)); 7735 break; 7736 } 7737 return true; 7738 } 7739 7740 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 7741 W.printNumber("Page Size", Note.PageSize); 7742 for (const CoreFileMapping &Mapping : Note.Mappings) { 7743 ListScope D(W, "Mapping"); 7744 W.printHex("Start", Mapping.Start); 7745 W.printHex("End", Mapping.End); 7746 W.printHex("Offset", Mapping.Offset); 7747 W.printString("Filename", Mapping.Filename); 7748 } 7749 } 7750 7751 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 7752 ListScope L(W, "Notes"); 7753 7754 std::unique_ptr<DictScope> NoteScope; 7755 size_t Align = 0; 7756 auto StartNotes = [&](std::optional<StringRef> SecName, 7757 const typename ELFT::Off Offset, 7758 const typename ELFT::Addr Size, size_t Al) { 7759 Align = std::max<size_t>(Al, 4); 7760 NoteScope = std::make_unique<DictScope>(W, "NoteSection"); 7761 W.printString("Name", SecName ? *SecName : "<?>"); 7762 W.printHex("Offset", Offset); 7763 W.printHex("Size", Size); 7764 }; 7765 7766 auto EndNotes = [&] { NoteScope.reset(); }; 7767 7768 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error { 7769 DictScope D2(W, "Note"); 7770 StringRef Name = Note.getName(); 7771 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align); 7772 Elf_Word Type = Note.getType(); 7773 7774 // Print the note owner/type. 7775 W.printString("Owner", Name); 7776 W.printHex("Data size", Descriptor.size()); 7777 7778 StringRef NoteType = 7779 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 7780 if (!NoteType.empty()) 7781 W.printString("Type", NoteType); 7782 else 7783 W.printString("Type", 7784 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 7785 7786 // Print the description, or fallback to printing raw bytes for unknown 7787 // owners/if we fail to pretty-print the contents. 7788 if (Name == "GNU") { 7789 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7790 return Error::success(); 7791 } else if (Name == "FreeBSD") { 7792 if (std::optional<FreeBSDNote> N = 7793 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) { 7794 W.printString(N->Type, N->Value); 7795 return Error::success(); 7796 } 7797 } else if (Name == "AMD") { 7798 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 7799 if (!N.Type.empty()) { 7800 W.printString(N.Type, N.Value); 7801 return Error::success(); 7802 } 7803 } else if (Name == "AMDGPU") { 7804 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 7805 if (!N.Type.empty()) { 7806 W.printString(N.Type, N.Value); 7807 return Error::success(); 7808 } 7809 } else if (Name == "LLVMOMPOFFLOAD") { 7810 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7811 return Error::success(); 7812 } else if (Name == "CORE") { 7813 if (Type == ELF::NT_FILE) { 7814 DataExtractor DescExtractor( 7815 Descriptor, ELFT::TargetEndianness == llvm::endianness::little, 7816 sizeof(Elf_Addr)); 7817 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) { 7818 printCoreNoteLLVMStyle(*N, W); 7819 return Error::success(); 7820 } else { 7821 return N.takeError(); 7822 } 7823 } 7824 } else if (Name == "Android") { 7825 if (printAndroidNoteLLVMStyle(Type, Descriptor, W)) 7826 return Error::success(); 7827 } else if (Name == "ARM") { 7828 if (printAarch64NoteLLVMStyle<ELFT>(Type, Descriptor, W)) 7829 return Error::success(); 7830 } 7831 if (!Descriptor.empty()) { 7832 W.printBinaryBlock("Description data", Descriptor); 7833 } 7834 return Error::success(); 7835 }; 7836 7837 processNotesHelper(*this, /*StartNotesFn=*/StartNotes, 7838 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes); 7839 } 7840 7841 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 7842 ListScope L(W, "LinkerOptions"); 7843 7844 unsigned I = -1; 7845 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 7846 ++I; 7847 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 7848 continue; 7849 7850 Expected<ArrayRef<uint8_t>> ContentsOrErr = 7851 this->Obj.getSectionContents(Shdr); 7852 if (!ContentsOrErr) { 7853 this->reportUniqueWarning("unable to read the content of the " 7854 "SHT_LLVM_LINKER_OPTIONS section: " + 7855 toString(ContentsOrErr.takeError())); 7856 continue; 7857 } 7858 if (ContentsOrErr->empty()) 7859 continue; 7860 7861 if (ContentsOrErr->back() != 0) { 7862 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 7863 Twine(I) + 7864 " is broken: the " 7865 "content is not null-terminated"); 7866 continue; 7867 } 7868 7869 SmallVector<StringRef, 16> Strings; 7870 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 7871 if (Strings.size() % 2 != 0) { 7872 this->reportUniqueWarning( 7873 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 7874 " is broken: an incomplete " 7875 "key-value pair was found. The last possible key was: \"" + 7876 Strings.back() + "\""); 7877 continue; 7878 } 7879 7880 for (size_t I = 0; I < Strings.size(); I += 2) 7881 W.printString(Strings[I], Strings[I + 1]); 7882 } 7883 } 7884 7885 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 7886 ListScope L(W, "DependentLibs"); 7887 this->printDependentLibsHelper( 7888 [](const Elf_Shdr &) {}, 7889 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 7890 } 7891 7892 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 7893 ListScope L(W, "StackSizes"); 7894 if (this->Obj.getHeader().e_type == ELF::ET_REL) 7895 this->printRelocatableStackSizes([]() {}); 7896 else 7897 this->printNonRelocatableStackSizes([]() {}); 7898 } 7899 7900 template <class ELFT> 7901 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 7902 ArrayRef<std::string> FuncNames) { 7903 DictScope D(W, "Entry"); 7904 W.printList("Functions", FuncNames); 7905 W.printHex("Size", Size); 7906 } 7907 7908 template <class ELFT> 7909 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 7910 auto PrintEntry = [&](const Elf_Addr *E) { 7911 W.printHex("Address", Parser.getGotAddress(E)); 7912 W.printNumber("Access", Parser.getGotOffset(E)); 7913 W.printHex("Initial", *E); 7914 }; 7915 7916 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 7917 7918 W.printHex("Canonical gp value", Parser.getGp()); 7919 { 7920 ListScope RS(W, "Reserved entries"); 7921 { 7922 DictScope D(W, "Entry"); 7923 PrintEntry(Parser.getGotLazyResolver()); 7924 W.printString("Purpose", StringRef("Lazy resolver")); 7925 } 7926 7927 if (Parser.getGotModulePointer()) { 7928 DictScope D(W, "Entry"); 7929 PrintEntry(Parser.getGotModulePointer()); 7930 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 7931 } 7932 } 7933 { 7934 ListScope LS(W, "Local entries"); 7935 for (auto &E : Parser.getLocalEntries()) { 7936 DictScope D(W, "Entry"); 7937 PrintEntry(&E); 7938 } 7939 } 7940 7941 if (Parser.IsStatic) 7942 return; 7943 7944 { 7945 ListScope GS(W, "Global entries"); 7946 for (auto &E : Parser.getGlobalEntries()) { 7947 DictScope D(W, "Entry"); 7948 7949 PrintEntry(&E); 7950 7951 const Elf_Sym &Sym = *Parser.getGotSym(&E); 7952 W.printHex("Value", Sym.st_value); 7953 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 7954 7955 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 7956 DataRegion<Elf_Word> ShndxTable( 7957 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7958 printSymbolSection(Sym, SymIndex, ShndxTable); 7959 7960 std::string SymName = this->getFullSymbolName( 7961 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 7962 W.printNumber("Name", SymName, Sym.st_name); 7963 } 7964 } 7965 7966 W.printNumber("Number of TLS and multi-GOT entries", 7967 uint64_t(Parser.getOtherEntries().size())); 7968 } 7969 7970 template <class ELFT> 7971 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 7972 auto PrintEntry = [&](const Elf_Addr *E) { 7973 W.printHex("Address", Parser.getPltAddress(E)); 7974 W.printHex("Initial", *E); 7975 }; 7976 7977 DictScope GS(W, "PLT GOT"); 7978 7979 { 7980 ListScope RS(W, "Reserved entries"); 7981 { 7982 DictScope D(W, "Entry"); 7983 PrintEntry(Parser.getPltLazyResolver()); 7984 W.printString("Purpose", StringRef("PLT lazy resolver")); 7985 } 7986 7987 if (auto E = Parser.getPltModulePointer()) { 7988 DictScope D(W, "Entry"); 7989 PrintEntry(E); 7990 W.printString("Purpose", StringRef("Module pointer")); 7991 } 7992 } 7993 { 7994 ListScope LS(W, "Entries"); 7995 DataRegion<Elf_Word> ShndxTable( 7996 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 7997 for (auto &E : Parser.getPltEntries()) { 7998 DictScope D(W, "Entry"); 7999 PrintEntry(&E); 8000 8001 const Elf_Sym &Sym = *Parser.getPltSym(&E); 8002 W.printHex("Value", Sym.st_value); 8003 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes)); 8004 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 8005 ShndxTable); 8006 8007 const Elf_Sym *FirstSym = cantFail( 8008 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 8009 std::string SymName = this->getFullSymbolName( 8010 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 8011 W.printNumber("Name", SymName, Sym.st_name); 8012 } 8013 } 8014 } 8015 8016 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 8017 const Elf_Mips_ABIFlags<ELFT> *Flags; 8018 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 8019 getMipsAbiFlagsSection(*this)) { 8020 Flags = *SecOrErr; 8021 if (!Flags) { 8022 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 8023 return; 8024 } 8025 } else { 8026 this->reportUniqueWarning(SecOrErr.takeError()); 8027 return; 8028 } 8029 8030 raw_ostream &OS = W.getOStream(); 8031 DictScope GS(W, "MIPS ABI Flags"); 8032 8033 W.printNumber("Version", Flags->version); 8034 W.startLine() << "ISA: "; 8035 if (Flags->isa_rev <= 1) 8036 OS << format("MIPS%u", Flags->isa_level); 8037 else 8038 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 8039 OS << "\n"; 8040 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType)); 8041 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags)); 8042 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType)); 8043 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 8044 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 8045 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 8046 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1)); 8047 W.printHex("Flags 2", Flags->flags2); 8048 } 8049 8050 template <class ELFT> 8051 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj, 8052 ArrayRef<std::string> InputFilenames, 8053 const Archive *A) { 8054 FileScope = std::make_unique<DictScope>(this->W); 8055 DictScope D(this->W, "FileSummary"); 8056 this->W.printString("File", FileStr); 8057 this->W.printString("Format", Obj.getFileFormatName()); 8058 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch())); 8059 this->W.printString( 8060 "AddressSize", 8061 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress()))); 8062 this->printLoadName(); 8063 } 8064 8065 template <class ELFT> 8066 void JSONELFDumper<ELFT>::printZeroSymbolOtherField( 8067 const Elf_Sym &Symbol) const { 8068 // We want the JSON format to be uniform, since it is machine readable, so 8069 // always print the `Other` field the same way. 8070 this->printSymbolOtherField(Symbol); 8071 } 8072 8073 template <class ELFT> 8074 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R, 8075 StringRef SymbolName, 8076 StringRef RelocName) { 8077 this->printExpandedRelRelaReloc(R, SymbolName, RelocName); 8078 } 8079 8080 template <class ELFT> 8081 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec, 8082 StringRef Name, 8083 const unsigned SecNdx) { 8084 DictScope Group(this->W); 8085 this->W.printNumber("SectionIndex", SecNdx); 8086 ListScope D(this->W, "Relocs"); 8087 this->printRelocationsHelper(Sec); 8088 } 8089 8090 template <class ELFT> 8091 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const { 8092 return "GroupSections"; 8093 } 8094 8095 template <class ELFT> 8096 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name, 8097 uint64_t Idx) const { 8098 DictScope Grp(this->W); 8099 this->W.printString("Name", Name); 8100 this->W.printNumber("Index", Idx); 8101 } 8102 8103 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const { 8104 // JSON output does not need to print anything for empty groups 8105 } 8106