1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-readobj. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMEHABIPrinter.h" 15 #include "DwarfCFIEHPrinter.h" 16 #include "ObjDumper.h" 17 #include "StackMapPrinter.h" 18 #include "llvm-readobj.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DenseSet.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/Optional.h" 24 #include "llvm/ADT/PointerIntPair.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h" 32 #include "llvm/BinaryFormat/ELF.h" 33 #include "llvm/Demangle/Demangle.h" 34 #include "llvm/Object/ELF.h" 35 #include "llvm/Object/ELFObjectFile.h" 36 #include "llvm/Object/ELFTypes.h" 37 #include "llvm/Object/Error.h" 38 #include "llvm/Object/ObjectFile.h" 39 #include "llvm/Object/RelocationResolver.h" 40 #include "llvm/Object/StackMapParser.h" 41 #include "llvm/Support/AMDGPUMetadata.h" 42 #include "llvm/Support/ARMAttributeParser.h" 43 #include "llvm/Support/ARMBuildAttributes.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Endian.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/FormatVariadic.h" 50 #include "llvm/Support/FormattedStream.h" 51 #include "llvm/Support/LEB128.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/MipsABIFlags.h" 54 #include "llvm/Support/RISCVAttributeParser.h" 55 #include "llvm/Support/RISCVAttributes.h" 56 #include "llvm/Support/ScopedPrinter.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cinttypes> 60 #include <cstddef> 61 #include <cstdint> 62 #include <cstdlib> 63 #include <iterator> 64 #include <memory> 65 #include <string> 66 #include <system_error> 67 #include <vector> 68 69 using namespace llvm; 70 using namespace llvm::object; 71 using namespace ELF; 72 73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ 74 case ns::enum: \ 75 return #enum; 76 77 #define ENUM_ENT(enum, altName) \ 78 { #enum, altName, ELF::enum } 79 80 #define ENUM_ENT_1(enum) \ 81 { #enum, #enum, ELF::enum } 82 83 namespace { 84 85 template <class ELFT> struct RelSymbol { 86 RelSymbol(const typename ELFT::Sym *S, StringRef N) 87 : Sym(S), Name(N.str()) {} 88 const typename ELFT::Sym *Sym; 89 std::string Name; 90 }; 91 92 /// Represents a contiguous uniform range in the file. We cannot just create a 93 /// range directly because when creating one of these from the .dynamic table 94 /// the size, entity size and virtual address are different entries in arbitrary 95 /// order (DT_REL, DT_RELSZ, DT_RELENT for example). 96 struct DynRegionInfo { 97 DynRegionInfo(const Binary &Owner, const ObjDumper &D) 98 : Obj(&Owner), Dumper(&D) {} 99 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A, 100 uint64_t S, uint64_t ES) 101 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {} 102 103 /// Address in current address space. 104 const uint8_t *Addr = nullptr; 105 /// Size in bytes of the region. 106 uint64_t Size = 0; 107 /// Size of each entity in the region. 108 uint64_t EntSize = 0; 109 110 /// Owner object. Used for error reporting. 111 const Binary *Obj; 112 /// Dumper used for error reporting. 113 const ObjDumper *Dumper; 114 /// Error prefix. Used for error reporting to provide more information. 115 std::string Context; 116 /// Region size name. Used for error reporting. 117 StringRef SizePrintName = "size"; 118 /// Entry size name. Used for error reporting. If this field is empty, errors 119 /// will not mention the entry size. 120 StringRef EntSizePrintName = "entry size"; 121 122 template <typename Type> ArrayRef<Type> getAsArrayRef() const { 123 const Type *Start = reinterpret_cast<const Type *>(Addr); 124 if (!Start) 125 return {Start, Start}; 126 127 const uint64_t Offset = 128 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart(); 129 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize(); 130 131 if (Size > ObjSize - Offset) { 132 Dumper->reportUniqueWarning( 133 "unable to read data at 0x" + Twine::utohexstr(Offset) + 134 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName + 135 "): it goes past the end of the file of size 0x" + 136 Twine::utohexstr(ObjSize)); 137 return {Start, Start}; 138 } 139 140 if (EntSize == sizeof(Type) && (Size % EntSize == 0)) 141 return {Start, Start + (Size / EntSize)}; 142 143 std::string Msg; 144 if (!Context.empty()) 145 Msg += Context + " has "; 146 147 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")") 148 .str(); 149 if (!EntSizePrintName.empty()) 150 Msg += 151 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")") 152 .str(); 153 154 Dumper->reportUniqueWarning(Msg); 155 return {Start, Start}; 156 } 157 }; 158 159 struct GroupMember { 160 StringRef Name; 161 uint64_t Index; 162 }; 163 164 struct GroupSection { 165 StringRef Name; 166 std::string Signature; 167 uint64_t ShName; 168 uint64_t Index; 169 uint32_t Link; 170 uint32_t Info; 171 uint32_t Type; 172 std::vector<GroupMember> Members; 173 }; 174 175 namespace { 176 177 struct NoteType { 178 uint32_t ID; 179 StringRef Name; 180 }; 181 182 } // namespace 183 184 template <class ELFT> class Relocation { 185 public: 186 Relocation(const typename ELFT::Rel &R, bool IsMips64EL) 187 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)), 188 Offset(R.r_offset), Info(R.r_info) {} 189 190 Relocation(const typename ELFT::Rela &R, bool IsMips64EL) 191 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) { 192 Addend = R.r_addend; 193 } 194 195 uint32_t Type; 196 uint32_t Symbol; 197 typename ELFT::uint Offset; 198 typename ELFT::uint Info; 199 Optional<int64_t> Addend; 200 }; 201 202 template <class ELFT> class MipsGOTParser; 203 204 template <typename ELFT> class ELFDumper : public ObjDumper { 205 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 206 207 public: 208 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer); 209 210 void printUnwindInfo() override; 211 void printNeededLibraries() override; 212 void printHashTable() override; 213 void printGnuHashTable() override; 214 void printLoadName() override; 215 void printVersionInfo() override; 216 void printArchSpecificInfo() override; 217 void printStackMap() const override; 218 219 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; }; 220 221 std::string describe(const Elf_Shdr &Sec) const; 222 223 unsigned getHashTableEntSize() const { 224 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH 225 // sections. This violates the ELF specification. 226 if (Obj.getHeader().e_machine == ELF::EM_S390 || 227 Obj.getHeader().e_machine == ELF::EM_ALPHA) 228 return 8; 229 return 4; 230 } 231 232 Elf_Dyn_Range dynamic_table() const { 233 // A valid .dynamic section contains an array of entries terminated 234 // with a DT_NULL entry. However, sometimes the section content may 235 // continue past the DT_NULL entry, so to dump the section correctly, 236 // we first find the end of the entries by iterating over them. 237 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>(); 238 239 size_t Size = 0; 240 while (Size < Table.size()) 241 if (Table[Size++].getTag() == DT_NULL) 242 break; 243 244 return Table.slice(0, Size); 245 } 246 247 Elf_Sym_Range dynamic_symbols() const { 248 if (!DynSymRegion) 249 return Elf_Sym_Range(); 250 return DynSymRegion->template getAsArrayRef<Elf_Sym>(); 251 } 252 253 const Elf_Shdr *findSectionByName(StringRef Name) const; 254 255 StringRef getDynamicStringTable() const { return DynamicStringTable; } 256 257 protected: 258 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0; 259 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0; 260 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0; 261 262 void 263 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart, 264 function_ref<void(StringRef, uint64_t)> OnLibEntry); 265 266 virtual void printRelRelaReloc(const Relocation<ELFT> &R, 267 const RelSymbol<ELFT> &RelSym) = 0; 268 virtual void printRelrReloc(const Elf_Relr &R) = 0; 269 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name, 270 const DynRegionInfo &Reg) {} 271 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 272 const Elf_Shdr &Sec, const Elf_Shdr *SymTab); 273 void printDynamicReloc(const Relocation<ELFT> &R); 274 void printDynamicRelocationsHelper(); 275 void printRelocationsHelper(const Elf_Shdr &Sec); 276 void forEachRelocationDo( 277 const Elf_Shdr &Sec, bool RawRelr, 278 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 279 const Elf_Shdr &, const Elf_Shdr *)> 280 RelRelaFn, 281 llvm::function_ref<void(const Elf_Relr &)> RelrFn); 282 283 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 284 bool NonVisibilityBitsUsed) const {}; 285 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 286 DataRegion<Elf_Word> ShndxTable, 287 Optional<StringRef> StrTable, bool IsDynamic, 288 bool NonVisibilityBitsUsed) const = 0; 289 290 virtual void printMipsABIFlags() = 0; 291 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0; 292 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0; 293 294 Expected<ArrayRef<Elf_Versym>> 295 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 296 StringRef *StrTab, const Elf_Shdr **SymTabSec) const; 297 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const; 298 299 std::vector<GroupSection> getGroups(); 300 301 bool printFunctionStackSize(uint64_t SymValue, 302 Optional<const Elf_Shdr *> FunctionSec, 303 const Elf_Shdr &StackSizeSec, DataExtractor Data, 304 uint64_t *Offset); 305 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec, 306 unsigned Ndx, const Elf_Shdr *SymTab, 307 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec, 308 const RelocationResolver &Resolver, DataExtractor Data); 309 virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0; 310 311 void printRelocatableStackSizes(std::function<void()> PrintHeader); 312 void printNonRelocatableStackSizes(std::function<void()> PrintHeader); 313 314 const object::ELFObjectFile<ELFT> &ObjF; 315 const ELFFile<ELFT> &Obj; 316 StringRef FileName; 317 318 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size, 319 uint64_t EntSize) { 320 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize()) 321 return createError("offset (0x" + Twine::utohexstr(Offset) + 322 ") + size (0x" + Twine::utohexstr(Size) + 323 ") is greater than the file size (0x" + 324 Twine::utohexstr(Obj.getBufSize()) + ")"); 325 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize); 326 } 327 328 void printAttributes(); 329 void printMipsReginfo(); 330 void printMipsOptions(); 331 332 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic(); 333 void loadDynamicTable(); 334 void parseDynamicTable(); 335 336 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym, 337 bool &IsDefault) const; 338 Expected<SmallVector<Optional<VersionEntry>, 0> *> getVersionMap() const; 339 340 DynRegionInfo DynRelRegion; 341 DynRegionInfo DynRelaRegion; 342 DynRegionInfo DynRelrRegion; 343 DynRegionInfo DynPLTRelRegion; 344 Optional<DynRegionInfo> DynSymRegion; 345 DynRegionInfo DynSymTabShndxRegion; 346 DynRegionInfo DynamicTable; 347 StringRef DynamicStringTable; 348 const Elf_Hash *HashTable = nullptr; 349 const Elf_GnuHash *GnuHashTable = nullptr; 350 const Elf_Shdr *DotSymtabSec = nullptr; 351 const Elf_Shdr *DotDynsymSec = nullptr; 352 const Elf_Shdr *DotCGProfileSec = nullptr; 353 const Elf_Shdr *DotAddrsigSec = nullptr; 354 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables; 355 Optional<uint64_t> SONameOffset; 356 357 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version 358 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r 359 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d 360 361 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex, 362 DataRegion<Elf_Word> ShndxTable, 363 Optional<StringRef> StrTable, 364 bool IsDynamic) const; 365 Expected<unsigned> 366 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 367 DataRegion<Elf_Word> ShndxTable) const; 368 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol, 369 unsigned SectionIndex) const; 370 std::string getStaticSymbolName(uint32_t Index) const; 371 StringRef getDynamicString(uint64_t Value) const; 372 373 void printSymbolsHelper(bool IsDynamic) const; 374 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const; 375 376 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R, 377 const Elf_Shdr *SymTab) const; 378 379 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const; 380 381 private: 382 mutable SmallVector<Optional<VersionEntry>, 0> VersionMap; 383 }; 384 385 template <class ELFT> 386 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const { 387 return ::describe(Obj, Sec); 388 } 389 390 namespace { 391 392 template <class ELFT> struct SymtabLink { 393 typename ELFT::SymRange Symbols; 394 StringRef StringTable; 395 const typename ELFT::Shdr *SymTab; 396 }; 397 398 // Returns the linked symbol table, symbols and associated string table for a 399 // given section. 400 template <class ELFT> 401 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj, 402 const typename ELFT::Shdr &Sec, 403 unsigned ExpectedType) { 404 Expected<const typename ELFT::Shdr *> SymtabOrErr = 405 Obj.getSection(Sec.sh_link); 406 if (!SymtabOrErr) 407 return createError("invalid section linked to " + describe(Obj, Sec) + 408 ": " + toString(SymtabOrErr.takeError())); 409 410 if ((*SymtabOrErr)->sh_type != ExpectedType) 411 return createError( 412 "invalid section linked to " + describe(Obj, Sec) + ": expected " + 413 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) + 414 ", but got " + 415 object::getELFSectionTypeName(Obj.getHeader().e_machine, 416 (*SymtabOrErr)->sh_type)); 417 418 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr); 419 if (!StrTabOrErr) 420 return createError( 421 "can't get a string table for the symbol table linked to " + 422 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError())); 423 424 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr); 425 if (!SymsOrErr) 426 return createError("unable to read symbols from the " + describe(Obj, Sec) + 427 ": " + toString(SymsOrErr.takeError())); 428 429 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr}; 430 } 431 432 } // namespace 433 434 template <class ELFT> 435 Expected<ArrayRef<typename ELFT::Versym>> 436 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab, 437 StringRef *StrTab, 438 const Elf_Shdr **SymTabSec) const { 439 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec)); 440 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) % 441 sizeof(uint16_t) != 442 0) 443 return createError("the " + describe(Sec) + " is misaligned"); 444 445 Expected<ArrayRef<Elf_Versym>> VersionsOrErr = 446 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec); 447 if (!VersionsOrErr) 448 return createError("cannot read content of " + describe(Sec) + ": " + 449 toString(VersionsOrErr.takeError())); 450 451 Expected<SymtabLink<ELFT>> SymTabOrErr = 452 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM); 453 if (!SymTabOrErr) { 454 reportUniqueWarning(SymTabOrErr.takeError()); 455 return *VersionsOrErr; 456 } 457 458 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size()) 459 reportUniqueWarning(describe(Sec) + ": the number of entries (" + 460 Twine(VersionsOrErr->size()) + 461 ") does not match the number of symbols (" + 462 Twine(SymTabOrErr->Symbols.size()) + 463 ") in the symbol table with index " + 464 Twine(Sec.sh_link)); 465 466 if (SymTab) { 467 *SymTab = SymTabOrErr->Symbols; 468 *StrTab = SymTabOrErr->StringTable; 469 *SymTabSec = SymTabOrErr->SymTab; 470 } 471 return *VersionsOrErr; 472 } 473 474 template <class ELFT> 475 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const { 476 Optional<StringRef> StrTable; 477 size_t Entries = 0; 478 Elf_Sym_Range Syms(nullptr, nullptr); 479 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec; 480 481 if (IsDynamic) { 482 StrTable = DynamicStringTable; 483 Syms = dynamic_symbols(); 484 Entries = Syms.size(); 485 } else if (DotSymtabSec) { 486 if (Expected<StringRef> StrTableOrErr = 487 Obj.getStringTableForSymtab(*DotSymtabSec)) 488 StrTable = *StrTableOrErr; 489 else 490 reportUniqueWarning( 491 "unable to get the string table for the SHT_SYMTAB section: " + 492 toString(StrTableOrErr.takeError())); 493 494 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec)) 495 Syms = *SymsOrErr; 496 else 497 reportUniqueWarning( 498 "unable to read symbols from the SHT_SYMTAB section: " + 499 toString(SymsOrErr.takeError())); 500 Entries = DotSymtabSec->getEntityCount(); 501 } 502 if (Syms.empty()) 503 return; 504 505 // The st_other field has 2 logical parts. The first two bits hold the symbol 506 // visibility (STV_*) and the remainder hold other platform-specific values. 507 bool NonVisibilityBitsUsed = 508 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; }); 509 510 DataRegion<Elf_Word> ShndxTable = 511 IsDynamic ? DataRegion<Elf_Word>( 512 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, 513 this->getElfObject().getELFFile().end()) 514 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec)); 515 516 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed); 517 for (const Elf_Sym &Sym : Syms) 518 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic, 519 NonVisibilityBitsUsed); 520 } 521 522 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> { 523 formatted_raw_ostream &OS; 524 525 public: 526 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 527 528 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 529 : ELFDumper<ELFT>(ObjF, Writer), 530 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) { 531 assert(&this->W.getOStream() == &llvm::fouts()); 532 } 533 534 void printFileHeaders() override; 535 void printGroupSections() override; 536 void printRelocations() override; 537 void printSectionHeaders() override; 538 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 539 void printHashSymbols() override; 540 void printSectionDetails() override; 541 void printDependentLibs() override; 542 void printDynamicTable() override; 543 void printDynamicRelocations() override; 544 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset, 545 bool NonVisibilityBitsUsed) const override; 546 void printProgramHeaders(bool PrintProgramHeaders, 547 cl::boolOrDefault PrintSectionMapping) override; 548 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 549 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 550 void printVersionDependencySection(const Elf_Shdr *Sec) override; 551 void printHashHistograms() override; 552 void printCGProfile() override; 553 void printAddrsig() override; 554 void printNotes() override; 555 void printELFLinkerOptions() override; 556 void printStackSizes() override; 557 558 private: 559 void printHashHistogram(const Elf_Hash &HashTable); 560 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable); 561 void printHashTableSymbols(const Elf_Hash &HashTable); 562 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable); 563 564 struct Field { 565 std::string Str; 566 unsigned Column; 567 568 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {} 569 Field(unsigned Col) : Column(Col) {} 570 }; 571 572 template <typename T, typename TEnum> 573 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) const { 574 for (const EnumEntry<TEnum> &EnumItem : EnumValues) 575 if (EnumItem.Value == Value) 576 return std::string(EnumItem.AltName); 577 return to_hexString(Value, false); 578 } 579 580 template <typename T, typename TEnum> 581 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues, 582 TEnum EnumMask1 = {}, TEnum EnumMask2 = {}, 583 TEnum EnumMask3 = {}) const { 584 std::string Str; 585 for (const EnumEntry<TEnum> &Flag : EnumValues) { 586 if (Flag.Value == 0) 587 continue; 588 589 TEnum EnumMask{}; 590 if (Flag.Value & EnumMask1) 591 EnumMask = EnumMask1; 592 else if (Flag.Value & EnumMask2) 593 EnumMask = EnumMask2; 594 else if (Flag.Value & EnumMask3) 595 EnumMask = EnumMask3; 596 bool IsEnum = (Flag.Value & EnumMask) != 0; 597 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) || 598 (IsEnum && (Value & EnumMask) == Flag.Value)) { 599 if (!Str.empty()) 600 Str += ", "; 601 Str += Flag.AltName; 602 } 603 } 604 return Str; 605 } 606 607 formatted_raw_ostream &printField(struct Field F) const { 608 if (F.Column != 0) 609 OS.PadToColumn(F.Column); 610 OS << F.Str; 611 OS.flush(); 612 return OS; 613 } 614 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex, 615 DataRegion<Elf_Word> ShndxTable, StringRef StrTable, 616 uint32_t Bucket); 617 void printRelrReloc(const Elf_Relr &R) override; 618 void printRelRelaReloc(const Relocation<ELFT> &R, 619 const RelSymbol<ELFT> &RelSym) override; 620 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 621 DataRegion<Elf_Word> ShndxTable, 622 Optional<StringRef> StrTable, bool IsDynamic, 623 bool NonVisibilityBitsUsed) const override; 624 void printDynamicRelocHeader(unsigned Type, StringRef Name, 625 const DynRegionInfo &Reg) override; 626 627 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex, 628 DataRegion<Elf_Word> ShndxTable) const; 629 void printProgramHeaders() override; 630 void printSectionMapping() override; 631 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec, 632 const Twine &Label, unsigned EntriesNum); 633 634 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; 635 636 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 637 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 638 void printMipsABIFlags() override; 639 }; 640 641 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> { 642 public: 643 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 644 645 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer) 646 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {} 647 648 void printFileHeaders() override; 649 void printGroupSections() override; 650 void printRelocations() override; 651 void printSectionHeaders() override; 652 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override; 653 void printDependentLibs() override; 654 void printDynamicTable() override; 655 void printDynamicRelocations() override; 656 void printProgramHeaders(bool PrintProgramHeaders, 657 cl::boolOrDefault PrintSectionMapping) override; 658 void printVersionSymbolSection(const Elf_Shdr *Sec) override; 659 void printVersionDefinitionSection(const Elf_Shdr *Sec) override; 660 void printVersionDependencySection(const Elf_Shdr *Sec) override; 661 void printHashHistograms() override; 662 void printCGProfile() override; 663 void printAddrsig() override; 664 void printNotes() override; 665 void printELFLinkerOptions() override; 666 void printStackSizes() override; 667 668 private: 669 void printRelrReloc(const Elf_Relr &R) override; 670 void printRelRelaReloc(const Relocation<ELFT> &R, 671 const RelSymbol<ELFT> &RelSym) override; 672 673 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex, 674 DataRegion<Elf_Word> ShndxTable) const; 675 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 676 DataRegion<Elf_Word> ShndxTable, 677 Optional<StringRef> StrTable, bool IsDynamic, 678 bool /*NonVisibilityBitsUsed*/) const override; 679 void printProgramHeaders() override; 680 void printSectionMapping() override {} 681 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override; 682 683 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override; 684 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override; 685 void printMipsABIFlags() override; 686 687 ScopedPrinter &W; 688 }; 689 690 } // end anonymous namespace 691 692 namespace llvm { 693 694 template <class ELFT> 695 static std::unique_ptr<ObjDumper> 696 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) { 697 if (opts::Output == opts::GNU) 698 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer); 699 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer); 700 } 701 702 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj, 703 ScopedPrinter &Writer) { 704 // Little-endian 32-bit 705 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 706 return createELFDumper(*ELFObj, Writer); 707 708 // Big-endian 32-bit 709 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 710 return createELFDumper(*ELFObj, Writer); 711 712 // Little-endian 64-bit 713 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 714 return createELFDumper(*ELFObj, Writer); 715 716 // Big-endian 64-bit 717 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer); 718 } 719 720 } // end namespace llvm 721 722 template <class ELFT> 723 Expected<SmallVector<Optional<VersionEntry>, 0> *> 724 ELFDumper<ELFT>::getVersionMap() const { 725 // If the VersionMap has already been loaded or if there is no dynamic symtab 726 // or version table, there is nothing to do. 727 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection) 728 return &VersionMap; 729 730 Expected<SmallVector<Optional<VersionEntry>, 0>> MapOrErr = 731 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection); 732 if (MapOrErr) 733 VersionMap = *MapOrErr; 734 else 735 return MapOrErr.takeError(); 736 737 return &VersionMap; 738 } 739 740 template <typename ELFT> 741 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym, 742 bool &IsDefault) const { 743 // This is a dynamic symbol. Look in the GNU symbol version table. 744 if (!SymbolVersionSection) { 745 // No version table. 746 IsDefault = false; 747 return ""; 748 } 749 750 assert(DynSymRegion && "DynSymRegion has not been initialised"); 751 // Determine the position in the symbol table of this entry. 752 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) - 753 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) / 754 sizeof(Elf_Sym); 755 756 // Get the corresponding version index entry. 757 Expected<const Elf_Versym *> EntryOrErr = 758 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex); 759 if (!EntryOrErr) 760 return EntryOrErr.takeError(); 761 762 unsigned Version = (*EntryOrErr)->vs_index; 763 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) { 764 IsDefault = false; 765 return ""; 766 } 767 768 Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr = 769 getVersionMap(); 770 if (!MapOrErr) 771 return MapOrErr.takeError(); 772 773 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr, 774 Sym.st_shndx == ELF::SHN_UNDEF); 775 } 776 777 template <typename ELFT> 778 Expected<RelSymbol<ELFT>> 779 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R, 780 const Elf_Shdr *SymTab) const { 781 if (R.Symbol == 0) 782 return RelSymbol<ELFT>(nullptr, ""); 783 784 Expected<const Elf_Sym *> SymOrErr = 785 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol); 786 if (!SymOrErr) 787 return createError("unable to read an entry with index " + Twine(R.Symbol) + 788 " from " + describe(*SymTab) + ": " + 789 toString(SymOrErr.takeError())); 790 const Elf_Sym *Sym = *SymOrErr; 791 if (!Sym) 792 return RelSymbol<ELFT>(nullptr, ""); 793 794 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab); 795 if (!StrTableOrErr) 796 return StrTableOrErr.takeError(); 797 798 const Elf_Sym *FirstSym = 799 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0)); 800 std::string SymbolName = 801 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab), 802 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM); 803 return RelSymbol<ELFT>(Sym, SymbolName); 804 } 805 806 template <typename ELFT> 807 ArrayRef<typename ELFT::Word> 808 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const { 809 if (Symtab) { 810 auto It = ShndxTables.find(Symtab); 811 if (It != ShndxTables.end()) 812 return It->second; 813 } 814 return {}; 815 } 816 817 static std::string maybeDemangle(StringRef Name) { 818 return opts::Demangle ? demangle(std::string(Name)) : Name.str(); 819 } 820 821 template <typename ELFT> 822 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const { 823 auto Warn = [&](Error E) -> std::string { 824 reportUniqueWarning("unable to read the name of symbol with index " + 825 Twine(Index) + ": " + toString(std::move(E))); 826 return "<?>"; 827 }; 828 829 Expected<const typename ELFT::Sym *> SymOrErr = 830 Obj.getSymbol(DotSymtabSec, Index); 831 if (!SymOrErr) 832 return Warn(SymOrErr.takeError()); 833 834 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec); 835 if (!StrTabOrErr) 836 return Warn(StrTabOrErr.takeError()); 837 838 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr); 839 if (!NameOrErr) 840 return Warn(NameOrErr.takeError()); 841 return maybeDemangle(*NameOrErr); 842 } 843 844 template <typename ELFT> 845 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol, 846 unsigned SymIndex, 847 DataRegion<Elf_Word> ShndxTable, 848 Optional<StringRef> StrTable, 849 bool IsDynamic) const { 850 if (!StrTable) 851 return "<?>"; 852 853 std::string SymbolName; 854 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) { 855 SymbolName = maybeDemangle(*NameOrErr); 856 } else { 857 reportUniqueWarning(NameOrErr.takeError()); 858 return "<?>"; 859 } 860 861 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) { 862 Expected<unsigned> SectionIndex = 863 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 864 if (!SectionIndex) { 865 reportUniqueWarning(SectionIndex.takeError()); 866 return "<?>"; 867 } 868 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex); 869 if (!NameOrErr) { 870 reportUniqueWarning(NameOrErr.takeError()); 871 return ("<section " + Twine(*SectionIndex) + ">").str(); 872 } 873 return std::string(*NameOrErr); 874 } 875 876 if (!IsDynamic) 877 return SymbolName; 878 879 bool IsDefault; 880 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault); 881 if (!VersionOrErr) { 882 reportUniqueWarning(VersionOrErr.takeError()); 883 return SymbolName + "@<corrupt>"; 884 } 885 886 if (!VersionOrErr->empty()) { 887 SymbolName += (IsDefault ? "@@" : "@"); 888 SymbolName += *VersionOrErr; 889 } 890 return SymbolName; 891 } 892 893 template <typename ELFT> 894 Expected<unsigned> 895 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex, 896 DataRegion<Elf_Word> ShndxTable) const { 897 unsigned Ndx = Symbol.st_shndx; 898 if (Ndx == SHN_XINDEX) 899 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, 900 ShndxTable); 901 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE) 902 return Ndx; 903 904 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) { 905 std::string Desc; 906 if (Offset) 907 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str(); 908 else 909 Desc = Name.str(); 910 return createError( 911 "unable to get section index for symbol with st_shndx = 0x" + 912 Twine::utohexstr(Ndx) + " (" + Desc + ")"); 913 }; 914 915 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC) 916 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC); 917 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS) 918 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS); 919 if (Ndx == ELF::SHN_UNDEF) 920 return CreateErr("SHN_UNDEF"); 921 if (Ndx == ELF::SHN_ABS) 922 return CreateErr("SHN_ABS"); 923 if (Ndx == ELF::SHN_COMMON) 924 return CreateErr("SHN_COMMON"); 925 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE); 926 } 927 928 template <typename ELFT> 929 Expected<StringRef> 930 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol, 931 unsigned SectionIndex) const { 932 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex); 933 if (!SecOrErr) 934 return SecOrErr.takeError(); 935 return Obj.getSectionName(**SecOrErr); 936 } 937 938 template <class ELFO> 939 static const typename ELFO::Elf_Shdr * 940 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName, 941 uint64_t Addr) { 942 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections())) 943 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0) 944 return &Shdr; 945 return nullptr; 946 } 947 948 static const EnumEntry<unsigned> ElfClass[] = { 949 {"None", "none", ELF::ELFCLASSNONE}, 950 {"32-bit", "ELF32", ELF::ELFCLASS32}, 951 {"64-bit", "ELF64", ELF::ELFCLASS64}, 952 }; 953 954 static const EnumEntry<unsigned> ElfDataEncoding[] = { 955 {"None", "none", ELF::ELFDATANONE}, 956 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB}, 957 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB}, 958 }; 959 960 static const EnumEntry<unsigned> ElfObjectFileType[] = { 961 {"None", "NONE (none)", ELF::ET_NONE}, 962 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL}, 963 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC}, 964 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN}, 965 {"Core", "CORE (Core file)", ELF::ET_CORE}, 966 }; 967 968 static const EnumEntry<unsigned> ElfOSABI[] = { 969 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE}, 970 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX}, 971 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD}, 972 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX}, 973 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD}, 974 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS}, 975 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX}, 976 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX}, 977 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD}, 978 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64}, 979 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO}, 980 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD}, 981 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS}, 982 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK}, 983 {"AROS", "AROS", ELF::ELFOSABI_AROS}, 984 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS}, 985 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI}, 986 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE} 987 }; 988 989 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = { 990 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA}, 991 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL}, 992 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D} 993 }; 994 995 static const EnumEntry<unsigned> ARMElfOSABI[] = { 996 {"ARM", "ARM", ELF::ELFOSABI_ARM} 997 }; 998 999 static const EnumEntry<unsigned> C6000ElfOSABI[] = { 1000 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI}, 1001 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX} 1002 }; 1003 1004 static const EnumEntry<unsigned> ElfMachineType[] = { 1005 ENUM_ENT(EM_NONE, "None"), 1006 ENUM_ENT(EM_M32, "WE32100"), 1007 ENUM_ENT(EM_SPARC, "Sparc"), 1008 ENUM_ENT(EM_386, "Intel 80386"), 1009 ENUM_ENT(EM_68K, "MC68000"), 1010 ENUM_ENT(EM_88K, "MC88000"), 1011 ENUM_ENT(EM_IAMCU, "EM_IAMCU"), 1012 ENUM_ENT(EM_860, "Intel 80860"), 1013 ENUM_ENT(EM_MIPS, "MIPS R3000"), 1014 ENUM_ENT(EM_S370, "IBM System/370"), 1015 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"), 1016 ENUM_ENT(EM_PARISC, "HPPA"), 1017 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"), 1018 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"), 1019 ENUM_ENT(EM_960, "Intel 80960"), 1020 ENUM_ENT(EM_PPC, "PowerPC"), 1021 ENUM_ENT(EM_PPC64, "PowerPC64"), 1022 ENUM_ENT(EM_S390, "IBM S/390"), 1023 ENUM_ENT(EM_SPU, "SPU"), 1024 ENUM_ENT(EM_V800, "NEC V800 series"), 1025 ENUM_ENT(EM_FR20, "Fujistsu FR20"), 1026 ENUM_ENT(EM_RH32, "TRW RH-32"), 1027 ENUM_ENT(EM_RCE, "Motorola RCE"), 1028 ENUM_ENT(EM_ARM, "ARM"), 1029 ENUM_ENT(EM_ALPHA, "EM_ALPHA"), 1030 ENUM_ENT(EM_SH, "Hitachi SH"), 1031 ENUM_ENT(EM_SPARCV9, "Sparc v9"), 1032 ENUM_ENT(EM_TRICORE, "Siemens Tricore"), 1033 ENUM_ENT(EM_ARC, "ARC"), 1034 ENUM_ENT(EM_H8_300, "Hitachi H8/300"), 1035 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"), 1036 ENUM_ENT(EM_H8S, "Hitachi H8S"), 1037 ENUM_ENT(EM_H8_500, "Hitachi H8/500"), 1038 ENUM_ENT(EM_IA_64, "Intel IA-64"), 1039 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"), 1040 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"), 1041 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"), 1042 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"), 1043 ENUM_ENT(EM_PCP, "Siemens PCP"), 1044 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"), 1045 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"), 1046 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"), 1047 ENUM_ENT(EM_ME16, "Toyota ME16 processor"), 1048 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"), 1049 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"), 1050 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"), 1051 ENUM_ENT(EM_PDSP, "Sony DSP processor"), 1052 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"), 1053 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"), 1054 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"), 1055 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"), 1056 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"), 1057 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"), 1058 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"), 1059 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"), 1060 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"), 1061 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"), 1062 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"), 1063 ENUM_ENT(EM_VAX, "Digital VAX"), 1064 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"), 1065 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"), 1066 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"), 1067 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"), 1068 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"), 1069 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"), 1070 ENUM_ENT(EM_PRISM, "Vitesse Prism"), 1071 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"), 1072 ENUM_ENT(EM_FR30, "Fujitsu FR30"), 1073 ENUM_ENT(EM_D10V, "Mitsubishi D10V"), 1074 ENUM_ENT(EM_D30V, "Mitsubishi D30V"), 1075 ENUM_ENT(EM_V850, "NEC v850"), 1076 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"), 1077 ENUM_ENT(EM_MN10300, "Matsushita MN10300"), 1078 ENUM_ENT(EM_MN10200, "Matsushita MN10200"), 1079 ENUM_ENT(EM_PJ, "picoJava"), 1080 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"), 1081 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"), 1082 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"), 1083 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"), 1084 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"), 1085 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"), 1086 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"), 1087 ENUM_ENT(EM_SNP1K, "EM_SNP1K"), 1088 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"), 1089 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"), 1090 ENUM_ENT(EM_MAX, "MAX Processor"), 1091 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"), 1092 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"), 1093 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"), 1094 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"), 1095 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"), 1096 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"), 1097 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"), 1098 ENUM_ENT(EM_UNICORE, "Unicore"), 1099 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"), 1100 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"), 1101 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"), 1102 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"), 1103 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"), 1104 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"), 1105 ENUM_ENT(EM_M16C, "Renesas M16C"), 1106 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"), 1107 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"), 1108 ENUM_ENT(EM_M32C, "Renesas M32C"), 1109 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"), 1110 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"), 1111 ENUM_ENT(EM_SHARC, "EM_SHARC"), 1112 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"), 1113 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"), 1114 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"), 1115 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"), 1116 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"), 1117 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"), 1118 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"), 1119 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"), 1120 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"), 1121 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"), 1122 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"), 1123 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"), 1124 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"), 1125 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"), 1126 ENUM_ENT(EM_8051, "Intel 8051 and variants"), 1127 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"), 1128 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"), 1129 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"), 1130 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has 1131 // an identical number to EM_ECOG1. 1132 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"), 1133 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"), 1134 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"), 1135 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"), 1136 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"), 1137 ENUM_ENT(EM_RX, "Renesas RX"), 1138 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"), 1139 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"), 1140 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"), 1141 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"), 1142 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"), 1143 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"), 1144 ENUM_ENT(EM_L10M, "EM_L10M"), 1145 ENUM_ENT(EM_K10M, "EM_K10M"), 1146 ENUM_ENT(EM_AARCH64, "AArch64"), 1147 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"), 1148 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"), 1149 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"), 1150 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"), 1151 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"), 1152 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"), 1153 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"), 1154 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"), 1155 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"), 1156 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"), 1157 ENUM_ENT(EM_OPEN8, "EM_OPEN8"), 1158 ENUM_ENT(EM_RL78, "Renesas RL78"), 1159 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"), 1160 ENUM_ENT(EM_78KOR, "EM_78KOR"), 1161 ENUM_ENT(EM_56800EX, "EM_56800EX"), 1162 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"), 1163 ENUM_ENT(EM_RISCV, "RISC-V"), 1164 ENUM_ENT(EM_LANAI, "EM_LANAI"), 1165 ENUM_ENT(EM_BPF, "EM_BPF"), 1166 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"), 1167 }; 1168 1169 static const EnumEntry<unsigned> ElfSymbolBindings[] = { 1170 {"Local", "LOCAL", ELF::STB_LOCAL}, 1171 {"Global", "GLOBAL", ELF::STB_GLOBAL}, 1172 {"Weak", "WEAK", ELF::STB_WEAK}, 1173 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}}; 1174 1175 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = { 1176 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT}, 1177 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL}, 1178 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN}, 1179 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}}; 1180 1181 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = { 1182 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL } 1183 }; 1184 1185 static const char *getGroupType(uint32_t Flag) { 1186 if (Flag & ELF::GRP_COMDAT) 1187 return "COMDAT"; 1188 else 1189 return "(unknown)"; 1190 } 1191 1192 static const EnumEntry<unsigned> ElfSectionFlags[] = { 1193 ENUM_ENT(SHF_WRITE, "W"), 1194 ENUM_ENT(SHF_ALLOC, "A"), 1195 ENUM_ENT(SHF_EXECINSTR, "X"), 1196 ENUM_ENT(SHF_MERGE, "M"), 1197 ENUM_ENT(SHF_STRINGS, "S"), 1198 ENUM_ENT(SHF_INFO_LINK, "I"), 1199 ENUM_ENT(SHF_LINK_ORDER, "L"), 1200 ENUM_ENT(SHF_OS_NONCONFORMING, "O"), 1201 ENUM_ENT(SHF_GROUP, "G"), 1202 ENUM_ENT(SHF_TLS, "T"), 1203 ENUM_ENT(SHF_COMPRESSED, "C"), 1204 ENUM_ENT(SHF_EXCLUDE, "E"), 1205 }; 1206 1207 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = { 1208 ENUM_ENT(XCORE_SHF_CP_SECTION, ""), 1209 ENUM_ENT(XCORE_SHF_DP_SECTION, "") 1210 }; 1211 1212 static const EnumEntry<unsigned> ElfARMSectionFlags[] = { 1213 ENUM_ENT(SHF_ARM_PURECODE, "y") 1214 }; 1215 1216 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = { 1217 ENUM_ENT(SHF_HEX_GPREL, "") 1218 }; 1219 1220 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = { 1221 ENUM_ENT(SHF_MIPS_NODUPES, ""), 1222 ENUM_ENT(SHF_MIPS_NAMES, ""), 1223 ENUM_ENT(SHF_MIPS_LOCAL, ""), 1224 ENUM_ENT(SHF_MIPS_NOSTRIP, ""), 1225 ENUM_ENT(SHF_MIPS_GPREL, ""), 1226 ENUM_ENT(SHF_MIPS_MERGE, ""), 1227 ENUM_ENT(SHF_MIPS_ADDR, ""), 1228 ENUM_ENT(SHF_MIPS_STRING, "") 1229 }; 1230 1231 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = { 1232 ENUM_ENT(SHF_X86_64_LARGE, "l") 1233 }; 1234 1235 static std::vector<EnumEntry<unsigned>> 1236 getSectionFlagsForTarget(unsigned EMachine) { 1237 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags), 1238 std::end(ElfSectionFlags)); 1239 switch (EMachine) { 1240 case EM_ARM: 1241 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags), 1242 std::end(ElfARMSectionFlags)); 1243 break; 1244 case EM_HEXAGON: 1245 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags), 1246 std::end(ElfHexagonSectionFlags)); 1247 break; 1248 case EM_MIPS: 1249 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags), 1250 std::end(ElfMipsSectionFlags)); 1251 break; 1252 case EM_X86_64: 1253 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags), 1254 std::end(ElfX86_64SectionFlags)); 1255 break; 1256 case EM_XCORE: 1257 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags), 1258 std::end(ElfXCoreSectionFlags)); 1259 break; 1260 default: 1261 break; 1262 } 1263 return Ret; 1264 } 1265 1266 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) { 1267 // Here we are trying to build the flags string in the same way as GNU does. 1268 // It is not that straightforward. Imagine we have sh_flags == 0x90000000. 1269 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000. 1270 // GNU readelf will not print "E" or "Ep" in this case, but will print just 1271 // "p". It only will print "E" when no other processor flag is set. 1272 std::string Str; 1273 bool HasUnknownFlag = false; 1274 bool HasOSFlag = false; 1275 bool HasProcFlag = false; 1276 std::vector<EnumEntry<unsigned>> FlagsList = 1277 getSectionFlagsForTarget(EMachine); 1278 while (Flags) { 1279 // Take the least significant bit as a flag. 1280 uint64_t Flag = Flags & -Flags; 1281 Flags -= Flag; 1282 1283 // Find the flag in the known flags list. 1284 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) { 1285 // Flags with empty names are not printed in GNU style output. 1286 return E.Value == Flag && !E.AltName.empty(); 1287 }); 1288 if (I != FlagsList.end()) { 1289 Str += I->AltName; 1290 continue; 1291 } 1292 1293 // If we did not find a matching regular flag, then we deal with an OS 1294 // specific flag, processor specific flag or an unknown flag. 1295 if (Flag & ELF::SHF_MASKOS) { 1296 HasOSFlag = true; 1297 Flags &= ~ELF::SHF_MASKOS; 1298 } else if (Flag & ELF::SHF_MASKPROC) { 1299 HasProcFlag = true; 1300 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE 1301 // bit if set so that it doesn't also get printed. 1302 Flags &= ~ELF::SHF_MASKPROC; 1303 } else { 1304 HasUnknownFlag = true; 1305 } 1306 } 1307 1308 // "o", "p" and "x" are printed last. 1309 if (HasOSFlag) 1310 Str += "o"; 1311 if (HasProcFlag) 1312 Str += "p"; 1313 if (HasUnknownFlag) 1314 Str += "x"; 1315 return Str; 1316 } 1317 1318 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) { 1319 // Check potentially overlapped processor-specific program header type. 1320 switch (Arch) { 1321 case ELF::EM_ARM: 1322 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } 1323 break; 1324 case ELF::EM_MIPS: 1325 case ELF::EM_MIPS_RS3_LE: 1326 switch (Type) { 1327 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); 1328 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); 1329 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); 1330 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); 1331 } 1332 break; 1333 } 1334 1335 switch (Type) { 1336 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL); 1337 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD); 1338 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); 1339 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP); 1340 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE); 1341 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB); 1342 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR); 1343 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS); 1344 1345 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); 1346 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); 1347 1348 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); 1349 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); 1350 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY); 1351 1352 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE); 1353 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED); 1354 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA); 1355 default: 1356 return ""; 1357 } 1358 } 1359 1360 static std::string getGNUPtType(unsigned Arch, unsigned Type) { 1361 StringRef Seg = segmentTypeToString(Arch, Type); 1362 if (Seg.empty()) 1363 return std::string("<unknown>: ") + to_string(format_hex(Type, 1)); 1364 1365 // E.g. "PT_ARM_EXIDX" -> "EXIDX". 1366 if (Seg.startswith("PT_ARM_")) 1367 return Seg.drop_front(7).str(); 1368 1369 // E.g. "PT_MIPS_REGINFO" -> "REGINFO". 1370 if (Seg.startswith("PT_MIPS_")) 1371 return Seg.drop_front(8).str(); 1372 1373 // E.g. "PT_LOAD" -> "LOAD". 1374 assert(Seg.startswith("PT_")); 1375 return Seg.drop_front(3).str(); 1376 } 1377 1378 static const EnumEntry<unsigned> ElfSegmentFlags[] = { 1379 LLVM_READOBJ_ENUM_ENT(ELF, PF_X), 1380 LLVM_READOBJ_ENUM_ENT(ELF, PF_W), 1381 LLVM_READOBJ_ENUM_ENT(ELF, PF_R) 1382 }; 1383 1384 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = { 1385 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"), 1386 ENUM_ENT(EF_MIPS_PIC, "pic"), 1387 ENUM_ENT(EF_MIPS_CPIC, "cpic"), 1388 ENUM_ENT(EF_MIPS_ABI2, "abi2"), 1389 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"), 1390 ENUM_ENT(EF_MIPS_FP64, "fp64"), 1391 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"), 1392 ENUM_ENT(EF_MIPS_ABI_O32, "o32"), 1393 ENUM_ENT(EF_MIPS_ABI_O64, "o64"), 1394 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"), 1395 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"), 1396 ENUM_ENT(EF_MIPS_MACH_3900, "3900"), 1397 ENUM_ENT(EF_MIPS_MACH_4010, "4010"), 1398 ENUM_ENT(EF_MIPS_MACH_4100, "4100"), 1399 ENUM_ENT(EF_MIPS_MACH_4650, "4650"), 1400 ENUM_ENT(EF_MIPS_MACH_4120, "4120"), 1401 ENUM_ENT(EF_MIPS_MACH_4111, "4111"), 1402 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"), 1403 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"), 1404 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"), 1405 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"), 1406 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"), 1407 ENUM_ENT(EF_MIPS_MACH_5400, "5400"), 1408 ENUM_ENT(EF_MIPS_MACH_5900, "5900"), 1409 ENUM_ENT(EF_MIPS_MACH_5500, "5500"), 1410 ENUM_ENT(EF_MIPS_MACH_9000, "9000"), 1411 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"), 1412 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"), 1413 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"), 1414 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"), 1415 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"), 1416 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"), 1417 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"), 1418 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"), 1419 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"), 1420 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"), 1421 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"), 1422 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"), 1423 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"), 1424 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"), 1425 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"), 1426 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"), 1427 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6") 1428 }; 1429 1430 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = { 1431 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE), 1432 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600), 1433 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630), 1434 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880), 1435 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670), 1436 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710), 1437 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730), 1438 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770), 1439 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR), 1440 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS), 1441 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER), 1442 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD), 1443 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO), 1444 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS), 1445 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS), 1446 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN), 1447 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS), 1448 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600), 1449 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601), 1450 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602), 1451 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700), 1452 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701), 1453 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702), 1454 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703), 1455 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704), 1456 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705), 1457 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801), 1458 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802), 1459 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803), 1460 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805), 1461 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810), 1462 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900), 1463 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902), 1464 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904), 1465 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906), 1466 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908), 1467 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909), 1468 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C), 1469 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010), 1470 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011), 1471 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012), 1472 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030), 1473 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031), 1474 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032), 1475 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033), 1476 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK), 1477 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC) 1478 }; 1479 1480 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = { 1481 ENUM_ENT(EF_RISCV_RVC, "RVC"), 1482 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"), 1483 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"), 1484 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"), 1485 ENUM_ENT(EF_RISCV_RVE, "RVE") 1486 }; 1487 1488 static const EnumEntry<unsigned> ElfSymOtherFlags[] = { 1489 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL), 1490 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN), 1491 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED) 1492 }; 1493 1494 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = { 1495 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1496 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1497 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC), 1498 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS) 1499 }; 1500 1501 static const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = { 1502 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS) 1503 }; 1504 1505 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = { 1506 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL), 1507 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT), 1508 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16) 1509 }; 1510 1511 static const char *getElfMipsOptionsOdkType(unsigned Odk) { 1512 switch (Odk) { 1513 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL); 1514 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO); 1515 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS); 1516 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD); 1517 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH); 1518 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL); 1519 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS); 1520 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND); 1521 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR); 1522 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP); 1523 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT); 1524 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE); 1525 default: 1526 return "Unknown"; 1527 } 1528 } 1529 1530 template <typename ELFT> 1531 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *> 1532 ELFDumper<ELFT>::findDynamic() { 1533 // Try to locate the PT_DYNAMIC header. 1534 const Elf_Phdr *DynamicPhdr = nullptr; 1535 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) { 1536 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 1537 if (Phdr.p_type != ELF::PT_DYNAMIC) 1538 continue; 1539 DynamicPhdr = &Phdr; 1540 break; 1541 } 1542 } else { 1543 reportUniqueWarning( 1544 "unable to read program headers to locate the PT_DYNAMIC segment: " + 1545 toString(PhdrsOrErr.takeError())); 1546 } 1547 1548 // Try to locate the .dynamic section in the sections header table. 1549 const Elf_Shdr *DynamicSec = nullptr; 1550 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 1551 if (Sec.sh_type != ELF::SHT_DYNAMIC) 1552 continue; 1553 DynamicSec = &Sec; 1554 break; 1555 } 1556 1557 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz > 1558 ObjF.getMemoryBufferRef().getBufferSize()) || 1559 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz < 1560 DynamicPhdr->p_offset))) { 1561 reportUniqueWarning( 1562 "PT_DYNAMIC segment offset (0x" + 1563 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" + 1564 Twine::utohexstr(DynamicPhdr->p_filesz) + 1565 ") exceeds the size of the file (0x" + 1566 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")"); 1567 // Don't use the broken dynamic header. 1568 DynamicPhdr = nullptr; 1569 } 1570 1571 if (DynamicPhdr && DynamicSec) { 1572 if (DynamicSec->sh_addr + DynamicSec->sh_size > 1573 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz || 1574 DynamicSec->sh_addr < DynamicPhdr->p_vaddr) 1575 reportUniqueWarning(describe(*DynamicSec) + 1576 " is not contained within the " 1577 "PT_DYNAMIC segment"); 1578 1579 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr) 1580 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of " 1581 "PT_DYNAMIC segment"); 1582 } 1583 1584 return std::make_pair(DynamicPhdr, DynamicSec); 1585 } 1586 1587 template <typename ELFT> 1588 void ELFDumper<ELFT>::loadDynamicTable() { 1589 const Elf_Phdr *DynamicPhdr; 1590 const Elf_Shdr *DynamicSec; 1591 std::tie(DynamicPhdr, DynamicSec) = findDynamic(); 1592 if (!DynamicPhdr && !DynamicSec) 1593 return; 1594 1595 DynRegionInfo FromPhdr(ObjF, *this); 1596 bool IsPhdrTableValid = false; 1597 if (DynamicPhdr) { 1598 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are 1599 // validated in findDynamic() and so createDRI() is not expected to fail. 1600 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz, 1601 sizeof(Elf_Dyn))); 1602 FromPhdr.SizePrintName = "PT_DYNAMIC size"; 1603 FromPhdr.EntSizePrintName = ""; 1604 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty(); 1605 } 1606 1607 // Locate the dynamic table described in a section header. 1608 // Ignore sh_entsize and use the expected value for entry size explicitly. 1609 // This allows us to dump dynamic sections with a broken sh_entsize 1610 // field. 1611 DynRegionInfo FromSec(ObjF, *this); 1612 bool IsSecTableValid = false; 1613 if (DynamicSec) { 1614 Expected<DynRegionInfo> RegOrErr = 1615 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn)); 1616 if (RegOrErr) { 1617 FromSec = *RegOrErr; 1618 FromSec.Context = describe(*DynamicSec); 1619 FromSec.EntSizePrintName = ""; 1620 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty(); 1621 } else { 1622 reportUniqueWarning("unable to read the dynamic table from " + 1623 describe(*DynamicSec) + ": " + 1624 toString(RegOrErr.takeError())); 1625 } 1626 } 1627 1628 // When we only have information from one of the SHT_DYNAMIC section header or 1629 // PT_DYNAMIC program header, just use that. 1630 if (!DynamicPhdr || !DynamicSec) { 1631 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) { 1632 DynamicTable = DynamicPhdr ? FromPhdr : FromSec; 1633 parseDynamicTable(); 1634 } else { 1635 reportUniqueWarning("no valid dynamic table was found"); 1636 } 1637 return; 1638 } 1639 1640 // At this point we have tables found from the section header and from the 1641 // dynamic segment. Usually they match, but we have to do sanity checks to 1642 // verify that. 1643 1644 if (FromPhdr.Addr != FromSec.Addr) 1645 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC " 1646 "program header disagree about " 1647 "the location of the dynamic table"); 1648 1649 if (!IsPhdrTableValid && !IsSecTableValid) { 1650 reportUniqueWarning("no valid dynamic table was found"); 1651 return; 1652 } 1653 1654 // Information in the PT_DYNAMIC program header has priority over the 1655 // information in a section header. 1656 if (IsPhdrTableValid) { 1657 if (!IsSecTableValid) 1658 reportUniqueWarning( 1659 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"); 1660 DynamicTable = FromPhdr; 1661 } else { 1662 reportUniqueWarning( 1663 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"); 1664 DynamicTable = FromSec; 1665 } 1666 1667 parseDynamicTable(); 1668 } 1669 1670 template <typename ELFT> 1671 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O, 1672 ScopedPrinter &Writer) 1673 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()), 1674 FileName(O.getFileName()), DynRelRegion(O, *this), 1675 DynRelaRegion(O, *this), DynRelrRegion(O, *this), 1676 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this), 1677 DynamicTable(O, *this) { 1678 if (!O.IsContentValid()) 1679 return; 1680 1681 typename ELFT::ShdrRange Sections = cantFail(Obj.sections()); 1682 for (const Elf_Shdr &Sec : Sections) { 1683 switch (Sec.sh_type) { 1684 case ELF::SHT_SYMTAB: 1685 if (!DotSymtabSec) 1686 DotSymtabSec = &Sec; 1687 break; 1688 case ELF::SHT_DYNSYM: 1689 if (!DotDynsymSec) 1690 DotDynsymSec = &Sec; 1691 1692 if (!DynSymRegion) { 1693 Expected<DynRegionInfo> RegOrErr = 1694 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize); 1695 if (RegOrErr) { 1696 DynSymRegion = *RegOrErr; 1697 DynSymRegion->Context = describe(Sec); 1698 1699 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec)) 1700 DynamicStringTable = *E; 1701 else 1702 reportUniqueWarning("unable to get the string table for the " + 1703 describe(Sec) + ": " + toString(E.takeError())); 1704 } else { 1705 reportUniqueWarning("unable to read dynamic symbols from " + 1706 describe(Sec) + ": " + 1707 toString(RegOrErr.takeError())); 1708 } 1709 } 1710 break; 1711 case ELF::SHT_SYMTAB_SHNDX: { 1712 uint32_t SymtabNdx = Sec.sh_link; 1713 if (SymtabNdx >= Sections.size()) { 1714 reportUniqueWarning( 1715 "unable to get the associated symbol table for " + describe(Sec) + 1716 ": sh_link (" + Twine(SymtabNdx) + 1717 ") is greater than or equal to the total number of sections (" + 1718 Twine(Sections.size()) + ")"); 1719 continue; 1720 } 1721 1722 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = 1723 Obj.getSHNDXTable(Sec)) { 1724 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr}) 1725 .second) 1726 reportUniqueWarning( 1727 "multiple SHT_SYMTAB_SHNDX sections are linked to " + 1728 describe(Sec)); 1729 } else { 1730 reportUniqueWarning(ShndxTableOrErr.takeError()); 1731 } 1732 break; 1733 } 1734 case ELF::SHT_GNU_versym: 1735 if (!SymbolVersionSection) 1736 SymbolVersionSection = &Sec; 1737 break; 1738 case ELF::SHT_GNU_verdef: 1739 if (!SymbolVersionDefSection) 1740 SymbolVersionDefSection = &Sec; 1741 break; 1742 case ELF::SHT_GNU_verneed: 1743 if (!SymbolVersionNeedSection) 1744 SymbolVersionNeedSection = &Sec; 1745 break; 1746 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE: 1747 if (!DotCGProfileSec) 1748 DotCGProfileSec = &Sec; 1749 break; 1750 case ELF::SHT_LLVM_ADDRSIG: 1751 if (!DotAddrsigSec) 1752 DotAddrsigSec = &Sec; 1753 break; 1754 } 1755 } 1756 1757 loadDynamicTable(); 1758 } 1759 1760 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() { 1761 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * { 1762 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) { 1763 this->reportUniqueWarning(Msg); 1764 return Error::success(); 1765 }); 1766 if (!MappedAddrOrError) { 1767 this->reportUniqueWarning("unable to parse DT_" + 1768 Obj.getDynamicTagAsString(Tag) + ": " + 1769 llvm::toString(MappedAddrOrError.takeError())); 1770 return nullptr; 1771 } 1772 return MappedAddrOrError.get(); 1773 }; 1774 1775 const char *StringTableBegin = nullptr; 1776 uint64_t StringTableSize = 0; 1777 Optional<DynRegionInfo> DynSymFromTable; 1778 for (const Elf_Dyn &Dyn : dynamic_table()) { 1779 switch (Dyn.d_tag) { 1780 case ELF::DT_HASH: 1781 HashTable = reinterpret_cast<const Elf_Hash *>( 1782 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1783 break; 1784 case ELF::DT_GNU_HASH: 1785 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>( 1786 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1787 break; 1788 case ELF::DT_STRTAB: 1789 StringTableBegin = reinterpret_cast<const char *>( 1790 toMappedAddr(Dyn.getTag(), Dyn.getPtr())); 1791 break; 1792 case ELF::DT_STRSZ: 1793 StringTableSize = Dyn.getVal(); 1794 break; 1795 case ELF::DT_SYMTAB: { 1796 // If we can't map the DT_SYMTAB value to an address (e.g. when there are 1797 // no program headers), we ignore its value. 1798 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) { 1799 DynSymFromTable.emplace(ObjF, *this); 1800 DynSymFromTable->Addr = VA; 1801 DynSymFromTable->EntSize = sizeof(Elf_Sym); 1802 DynSymFromTable->EntSizePrintName = ""; 1803 } 1804 break; 1805 } 1806 case ELF::DT_SYMENT: { 1807 uint64_t Val = Dyn.getVal(); 1808 if (Val != sizeof(Elf_Sym)) 1809 this->reportUniqueWarning("DT_SYMENT value of 0x" + 1810 Twine::utohexstr(Val) + 1811 " is not the size of a symbol (0x" + 1812 Twine::utohexstr(sizeof(Elf_Sym)) + ")"); 1813 break; 1814 } 1815 case ELF::DT_RELA: 1816 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1817 break; 1818 case ELF::DT_RELASZ: 1819 DynRelaRegion.Size = Dyn.getVal(); 1820 DynRelaRegion.SizePrintName = "DT_RELASZ value"; 1821 break; 1822 case ELF::DT_RELAENT: 1823 DynRelaRegion.EntSize = Dyn.getVal(); 1824 DynRelaRegion.EntSizePrintName = "DT_RELAENT value"; 1825 break; 1826 case ELF::DT_SONAME: 1827 SONameOffset = Dyn.getVal(); 1828 break; 1829 case ELF::DT_REL: 1830 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1831 break; 1832 case ELF::DT_RELSZ: 1833 DynRelRegion.Size = Dyn.getVal(); 1834 DynRelRegion.SizePrintName = "DT_RELSZ value"; 1835 break; 1836 case ELF::DT_RELENT: 1837 DynRelRegion.EntSize = Dyn.getVal(); 1838 DynRelRegion.EntSizePrintName = "DT_RELENT value"; 1839 break; 1840 case ELF::DT_RELR: 1841 case ELF::DT_ANDROID_RELR: 1842 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1843 break; 1844 case ELF::DT_RELRSZ: 1845 case ELF::DT_ANDROID_RELRSZ: 1846 DynRelrRegion.Size = Dyn.getVal(); 1847 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ 1848 ? "DT_RELRSZ value" 1849 : "DT_ANDROID_RELRSZ value"; 1850 break; 1851 case ELF::DT_RELRENT: 1852 case ELF::DT_ANDROID_RELRENT: 1853 DynRelrRegion.EntSize = Dyn.getVal(); 1854 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT 1855 ? "DT_RELRENT value" 1856 : "DT_ANDROID_RELRENT value"; 1857 break; 1858 case ELF::DT_PLTREL: 1859 if (Dyn.getVal() == DT_REL) 1860 DynPLTRelRegion.EntSize = sizeof(Elf_Rel); 1861 else if (Dyn.getVal() == DT_RELA) 1862 DynPLTRelRegion.EntSize = sizeof(Elf_Rela); 1863 else 1864 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") + 1865 Twine((uint64_t)Dyn.getVal())); 1866 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size"; 1867 break; 1868 case ELF::DT_JMPREL: 1869 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1870 break; 1871 case ELF::DT_PLTRELSZ: 1872 DynPLTRelRegion.Size = Dyn.getVal(); 1873 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value"; 1874 break; 1875 case ELF::DT_SYMTAB_SHNDX: 1876 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr()); 1877 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word); 1878 break; 1879 } 1880 } 1881 1882 if (StringTableBegin) { 1883 const uint64_t FileSize = Obj.getBufSize(); 1884 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base(); 1885 if (StringTableSize > FileSize - Offset) 1886 reportUniqueWarning( 1887 "the dynamic string table at 0x" + Twine::utohexstr(Offset) + 1888 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) + 1889 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)); 1890 else 1891 DynamicStringTable = StringRef(StringTableBegin, StringTableSize); 1892 } 1893 1894 const bool IsHashTableSupported = getHashTableEntSize() == 4; 1895 if (DynSymRegion) { 1896 // Often we find the information about the dynamic symbol table 1897 // location in the SHT_DYNSYM section header. However, the value in 1898 // DT_SYMTAB has priority, because it is used by dynamic loaders to 1899 // locate .dynsym at runtime. The location we find in the section header 1900 // and the location we find here should match. 1901 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr) 1902 reportUniqueWarning( 1903 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about " 1904 "the location of the dynamic symbol table")); 1905 1906 // According to the ELF gABI: "The number of symbol table entries should 1907 // equal nchain". Check to see if the DT_HASH hash table nchain value 1908 // conflicts with the number of symbols in the dynamic symbol table 1909 // according to the section header. 1910 if (HashTable && IsHashTableSupported) { 1911 if (DynSymRegion->EntSize == 0) 1912 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0"); 1913 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize) 1914 reportUniqueWarning( 1915 "hash table nchain (" + Twine(HashTable->nchain) + 1916 ") differs from symbol count derived from SHT_DYNSYM section " 1917 "header (" + 1918 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"); 1919 } 1920 } 1921 1922 // Delay the creation of the actual dynamic symbol table until now, so that 1923 // checks can always be made against the section header-based properties, 1924 // without worrying about tag order. 1925 if (DynSymFromTable) { 1926 if (!DynSymRegion) { 1927 DynSymRegion = DynSymFromTable; 1928 } else { 1929 DynSymRegion->Addr = DynSymFromTable->Addr; 1930 DynSymRegion->EntSize = DynSymFromTable->EntSize; 1931 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName; 1932 } 1933 } 1934 1935 // Derive the dynamic symbol table size from the DT_HASH hash table, if 1936 // present. 1937 if (HashTable && IsHashTableSupported && DynSymRegion) { 1938 const uint64_t FileSize = Obj.getBufSize(); 1939 const uint64_t DerivedSize = 1940 (uint64_t)HashTable->nchain * DynSymRegion->EntSize; 1941 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base(); 1942 if (DerivedSize > FileSize - Offset) 1943 reportUniqueWarning( 1944 "the size (0x" + Twine::utohexstr(DerivedSize) + 1945 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) + 1946 ", derived from the hash table, goes past the end of the file (0x" + 1947 Twine::utohexstr(FileSize) + ") and will be ignored"); 1948 else 1949 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize; 1950 } 1951 } 1952 1953 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() { 1954 // Dump version symbol section. 1955 printVersionSymbolSection(SymbolVersionSection); 1956 1957 // Dump version definition section. 1958 printVersionDefinitionSection(SymbolVersionDefSection); 1959 1960 // Dump version dependency section. 1961 printVersionDependencySection(SymbolVersionNeedSection); 1962 } 1963 1964 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ 1965 { #enum, prefix##_##enum } 1966 1967 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = { 1968 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), 1969 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), 1970 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), 1971 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), 1972 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) 1973 }; 1974 1975 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = { 1976 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), 1977 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), 1978 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), 1979 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), 1980 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), 1981 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), 1982 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), 1983 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), 1984 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), 1985 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), 1986 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), 1987 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), 1988 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), 1989 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), 1990 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), 1991 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), 1992 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND), 1993 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), 1994 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), 1995 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), 1996 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), 1997 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), 1998 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), 1999 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), 2000 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), 2001 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON), 2002 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE), 2003 }; 2004 2005 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = { 2006 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), 2007 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), 2008 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), 2009 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), 2010 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), 2011 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), 2012 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), 2013 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), 2014 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), 2015 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), 2016 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), 2017 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), 2018 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), 2019 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), 2020 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), 2021 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) 2022 }; 2023 2024 #undef LLVM_READOBJ_DT_FLAG_ENT 2025 2026 template <typename T, typename TFlag> 2027 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) { 2028 SmallVector<EnumEntry<TFlag>, 10> SetFlags; 2029 for (const EnumEntry<TFlag> &Flag : Flags) 2030 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value) 2031 SetFlags.push_back(Flag); 2032 2033 for (const EnumEntry<TFlag> &Flag : SetFlags) 2034 OS << Flag.Name << " "; 2035 } 2036 2037 template <class ELFT> 2038 const typename ELFT::Shdr * 2039 ELFDumper<ELFT>::findSectionByName(StringRef Name) const { 2040 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 2041 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) { 2042 if (*NameOrErr == Name) 2043 return &Shdr; 2044 } else { 2045 reportUniqueWarning("unable to read the name of " + describe(Shdr) + 2046 ": " + toString(NameOrErr.takeError())); 2047 } 2048 } 2049 return nullptr; 2050 } 2051 2052 template <class ELFT> 2053 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type, 2054 uint64_t Value) const { 2055 auto FormatHexValue = [](uint64_t V) { 2056 std::string Str; 2057 raw_string_ostream OS(Str); 2058 const char *ConvChar = 2059 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64; 2060 OS << format(ConvChar, V); 2061 return OS.str(); 2062 }; 2063 2064 auto FormatFlags = [](uint64_t V, 2065 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) { 2066 std::string Str; 2067 raw_string_ostream OS(Str); 2068 printFlags(V, Array, OS); 2069 return OS.str(); 2070 }; 2071 2072 // Handle custom printing of architecture specific tags 2073 switch (Obj.getHeader().e_machine) { 2074 case EM_AARCH64: 2075 switch (Type) { 2076 case DT_AARCH64_BTI_PLT: 2077 case DT_AARCH64_PAC_PLT: 2078 case DT_AARCH64_VARIANT_PCS: 2079 return std::to_string(Value); 2080 default: 2081 break; 2082 } 2083 break; 2084 case EM_HEXAGON: 2085 switch (Type) { 2086 case DT_HEXAGON_VER: 2087 return std::to_string(Value); 2088 case DT_HEXAGON_SYMSZ: 2089 case DT_HEXAGON_PLT: 2090 return FormatHexValue(Value); 2091 default: 2092 break; 2093 } 2094 break; 2095 case EM_MIPS: 2096 switch (Type) { 2097 case DT_MIPS_RLD_VERSION: 2098 case DT_MIPS_LOCAL_GOTNO: 2099 case DT_MIPS_SYMTABNO: 2100 case DT_MIPS_UNREFEXTNO: 2101 return std::to_string(Value); 2102 case DT_MIPS_TIME_STAMP: 2103 case DT_MIPS_ICHECKSUM: 2104 case DT_MIPS_IVERSION: 2105 case DT_MIPS_BASE_ADDRESS: 2106 case DT_MIPS_MSYM: 2107 case DT_MIPS_CONFLICT: 2108 case DT_MIPS_LIBLIST: 2109 case DT_MIPS_CONFLICTNO: 2110 case DT_MIPS_LIBLISTNO: 2111 case DT_MIPS_GOTSYM: 2112 case DT_MIPS_HIPAGENO: 2113 case DT_MIPS_RLD_MAP: 2114 case DT_MIPS_DELTA_CLASS: 2115 case DT_MIPS_DELTA_CLASS_NO: 2116 case DT_MIPS_DELTA_INSTANCE: 2117 case DT_MIPS_DELTA_RELOC: 2118 case DT_MIPS_DELTA_RELOC_NO: 2119 case DT_MIPS_DELTA_SYM: 2120 case DT_MIPS_DELTA_SYM_NO: 2121 case DT_MIPS_DELTA_CLASSSYM: 2122 case DT_MIPS_DELTA_CLASSSYM_NO: 2123 case DT_MIPS_CXX_FLAGS: 2124 case DT_MIPS_PIXIE_INIT: 2125 case DT_MIPS_SYMBOL_LIB: 2126 case DT_MIPS_LOCALPAGE_GOTIDX: 2127 case DT_MIPS_LOCAL_GOTIDX: 2128 case DT_MIPS_HIDDEN_GOTIDX: 2129 case DT_MIPS_PROTECTED_GOTIDX: 2130 case DT_MIPS_OPTIONS: 2131 case DT_MIPS_INTERFACE: 2132 case DT_MIPS_DYNSTR_ALIGN: 2133 case DT_MIPS_INTERFACE_SIZE: 2134 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 2135 case DT_MIPS_PERF_SUFFIX: 2136 case DT_MIPS_COMPACT_SIZE: 2137 case DT_MIPS_GP_VALUE: 2138 case DT_MIPS_AUX_DYNAMIC: 2139 case DT_MIPS_PLTGOT: 2140 case DT_MIPS_RWPLT: 2141 case DT_MIPS_RLD_MAP_REL: 2142 return FormatHexValue(Value); 2143 case DT_MIPS_FLAGS: 2144 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags)); 2145 default: 2146 break; 2147 } 2148 break; 2149 default: 2150 break; 2151 } 2152 2153 switch (Type) { 2154 case DT_PLTREL: 2155 if (Value == DT_REL) 2156 return "REL"; 2157 if (Value == DT_RELA) 2158 return "RELA"; 2159 LLVM_FALLTHROUGH; 2160 case DT_PLTGOT: 2161 case DT_HASH: 2162 case DT_STRTAB: 2163 case DT_SYMTAB: 2164 case DT_RELA: 2165 case DT_INIT: 2166 case DT_FINI: 2167 case DT_REL: 2168 case DT_JMPREL: 2169 case DT_INIT_ARRAY: 2170 case DT_FINI_ARRAY: 2171 case DT_PREINIT_ARRAY: 2172 case DT_DEBUG: 2173 case DT_VERDEF: 2174 case DT_VERNEED: 2175 case DT_VERSYM: 2176 case DT_GNU_HASH: 2177 case DT_NULL: 2178 return FormatHexValue(Value); 2179 case DT_RELACOUNT: 2180 case DT_RELCOUNT: 2181 case DT_VERDEFNUM: 2182 case DT_VERNEEDNUM: 2183 return std::to_string(Value); 2184 case DT_PLTRELSZ: 2185 case DT_RELASZ: 2186 case DT_RELAENT: 2187 case DT_STRSZ: 2188 case DT_SYMENT: 2189 case DT_RELSZ: 2190 case DT_RELENT: 2191 case DT_INIT_ARRAYSZ: 2192 case DT_FINI_ARRAYSZ: 2193 case DT_PREINIT_ARRAYSZ: 2194 case DT_ANDROID_RELSZ: 2195 case DT_ANDROID_RELASZ: 2196 return std::to_string(Value) + " (bytes)"; 2197 case DT_NEEDED: 2198 case DT_SONAME: 2199 case DT_AUXILIARY: 2200 case DT_USED: 2201 case DT_FILTER: 2202 case DT_RPATH: 2203 case DT_RUNPATH: { 2204 const std::map<uint64_t, const char *> TagNames = { 2205 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"}, 2206 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"}, 2207 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"}, 2208 {DT_RUNPATH, "Library runpath"}, 2209 }; 2210 2211 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]") 2212 .str(); 2213 } 2214 case DT_FLAGS: 2215 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags)); 2216 case DT_FLAGS_1: 2217 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1)); 2218 default: 2219 return FormatHexValue(Value); 2220 } 2221 } 2222 2223 template <class ELFT> 2224 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const { 2225 if (DynamicStringTable.empty() && !DynamicStringTable.data()) { 2226 reportUniqueWarning("string table was not found"); 2227 return "<?>"; 2228 } 2229 2230 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) { 2231 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) + 2232 Msg); 2233 return "<?>"; 2234 }; 2235 2236 const uint64_t FileSize = Obj.getBufSize(); 2237 const uint64_t Offset = 2238 (const uint8_t *)DynamicStringTable.data() - Obj.base(); 2239 if (DynamicStringTable.size() > FileSize - Offset) 2240 return WarnAndReturn(" with size 0x" + 2241 Twine::utohexstr(DynamicStringTable.size()) + 2242 " goes past the end of the file (0x" + 2243 Twine::utohexstr(FileSize) + ")", 2244 Offset); 2245 2246 if (Value >= DynamicStringTable.size()) 2247 return WarnAndReturn( 2248 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) + 2249 ": it goes past the end of the table (0x" + 2250 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")", 2251 Offset); 2252 2253 if (DynamicStringTable.back() != '\0') 2254 return WarnAndReturn(": unable to read the string at 0x" + 2255 Twine::utohexstr(Offset + Value) + 2256 ": the string table is not null-terminated", 2257 Offset); 2258 2259 return DynamicStringTable.data() + Value; 2260 } 2261 2262 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() { 2263 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF); 2264 Ctx.printUnwindInformation(); 2265 } 2266 2267 // The namespace is needed to fix the compilation with GCC older than 7.0+. 2268 namespace { 2269 template <> void ELFDumper<ELF32LE>::printUnwindInfo() { 2270 if (Obj.getHeader().e_machine == EM_ARM) { 2271 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(), 2272 DotSymtabSec); 2273 Ctx.PrintUnwindInformation(); 2274 } 2275 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF); 2276 Ctx.printUnwindInformation(); 2277 } 2278 } // namespace 2279 2280 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() { 2281 ListScope D(W, "NeededLibraries"); 2282 2283 std::vector<StringRef> Libs; 2284 for (const auto &Entry : dynamic_table()) 2285 if (Entry.d_tag == ELF::DT_NEEDED) 2286 Libs.push_back(getDynamicString(Entry.d_un.d_val)); 2287 2288 llvm::sort(Libs); 2289 2290 for (StringRef L : Libs) 2291 W.startLine() << L << "\n"; 2292 } 2293 2294 template <class ELFT> 2295 static Error checkHashTable(const ELFDumper<ELFT> &Dumper, 2296 const typename ELFT::Hash *H, 2297 bool *IsHeaderValid = nullptr) { 2298 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 2299 const uint64_t SecOffset = (const uint8_t *)H - Obj.base(); 2300 if (Dumper.getHashTableEntSize() == 8) { 2301 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) { 2302 return E.Value == Obj.getHeader().e_machine; 2303 }); 2304 if (IsHeaderValid) 2305 *IsHeaderValid = false; 2306 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) + 2307 " is not supported: it contains non-standard 8 " 2308 "byte entries on " + 2309 It->AltName + " platform"); 2310 } 2311 2312 auto MakeError = [&](const Twine &Msg = "") { 2313 return createError("the hash table at offset 0x" + 2314 Twine::utohexstr(SecOffset) + 2315 " goes past the end of the file (0x" + 2316 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg); 2317 }; 2318 2319 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain. 2320 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word); 2321 2322 if (IsHeaderValid) 2323 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize; 2324 2325 if (Obj.getBufSize() - SecOffset < HeaderSize) 2326 return MakeError(); 2327 2328 if (Obj.getBufSize() - SecOffset - HeaderSize < 2329 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word)) 2330 return MakeError(", nbucket = " + Twine(H->nbucket) + 2331 ", nchain = " + Twine(H->nchain)); 2332 return Error::success(); 2333 } 2334 2335 template <class ELFT> 2336 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj, 2337 const typename ELFT::GnuHash *GnuHashTable, 2338 bool *IsHeaderValid = nullptr) { 2339 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable); 2340 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() && 2341 "GnuHashTable must always point to a location inside the file"); 2342 2343 uint64_t TableOffset = TableData - Obj.base(); 2344 if (IsHeaderValid) 2345 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize(); 2346 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 + 2347 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >= 2348 Obj.getBufSize()) 2349 return createError("unable to dump the SHT_GNU_HASH " 2350 "section at 0x" + 2351 Twine::utohexstr(TableOffset) + 2352 ": it goes past the end of the file"); 2353 return Error::success(); 2354 } 2355 2356 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() { 2357 DictScope D(W, "HashTable"); 2358 if (!HashTable) 2359 return; 2360 2361 bool IsHeaderValid; 2362 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid); 2363 if (IsHeaderValid) { 2364 W.printNumber("Num Buckets", HashTable->nbucket); 2365 W.printNumber("Num Chains", HashTable->nchain); 2366 } 2367 2368 if (Err) { 2369 reportUniqueWarning(std::move(Err)); 2370 return; 2371 } 2372 2373 W.printList("Buckets", HashTable->buckets()); 2374 W.printList("Chains", HashTable->chains()); 2375 } 2376 2377 template <class ELFT> 2378 static Expected<ArrayRef<typename ELFT::Word>> 2379 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion, 2380 const typename ELFT::GnuHash *GnuHashTable) { 2381 if (!DynSymRegion) 2382 return createError("no dynamic symbol table found"); 2383 2384 ArrayRef<typename ELFT::Sym> DynSymTable = 2385 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>(); 2386 size_t NumSyms = DynSymTable.size(); 2387 if (!NumSyms) 2388 return createError("the dynamic symbol table is empty"); 2389 2390 if (GnuHashTable->symndx < NumSyms) 2391 return GnuHashTable->values(NumSyms); 2392 2393 // A normal empty GNU hash table section produced by linker might have 2394 // symndx set to the number of dynamic symbols + 1 (for the zero symbol) 2395 // and have dummy null values in the Bloom filter and in the buckets 2396 // vector (or no values at all). It happens because the value of symndx is not 2397 // important for dynamic loaders when the GNU hash table is empty. They just 2398 // skip the whole object during symbol lookup. In such cases, the symndx value 2399 // is irrelevant and we should not report a warning. 2400 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets(); 2401 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; })) 2402 return createError( 2403 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) + 2404 ") is greater than or equal to the number of dynamic symbols (" + 2405 Twine(NumSyms) + ")"); 2406 // There is no way to represent an array of (dynamic symbols count - symndx) 2407 // length. 2408 return ArrayRef<typename ELFT::Word>(); 2409 } 2410 2411 template <typename ELFT> 2412 void ELFDumper<ELFT>::printGnuHashTable() { 2413 DictScope D(W, "GnuHashTable"); 2414 if (!GnuHashTable) 2415 return; 2416 2417 bool IsHeaderValid; 2418 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid); 2419 if (IsHeaderValid) { 2420 W.printNumber("Num Buckets", GnuHashTable->nbuckets); 2421 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); 2422 W.printNumber("Num Mask Words", GnuHashTable->maskwords); 2423 W.printNumber("Shift Count", GnuHashTable->shift2); 2424 } 2425 2426 if (Err) { 2427 reportUniqueWarning(std::move(Err)); 2428 return; 2429 } 2430 2431 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter(); 2432 W.printHexList("Bloom Filter", BloomFilter); 2433 2434 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets(); 2435 W.printList("Buckets", Buckets); 2436 2437 Expected<ArrayRef<Elf_Word>> Chains = 2438 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable); 2439 if (!Chains) { 2440 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH " 2441 "section: " + 2442 toString(Chains.takeError())); 2443 return; 2444 } 2445 2446 W.printHexList("Values", *Chains); 2447 } 2448 2449 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() { 2450 StringRef SOName = "<Not found>"; 2451 if (SONameOffset) 2452 SOName = getDynamicString(*SONameOffset); 2453 W.printString("LoadName", SOName); 2454 } 2455 2456 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() { 2457 switch (Obj.getHeader().e_machine) { 2458 case EM_ARM: 2459 case EM_RISCV: 2460 printAttributes(); 2461 break; 2462 case EM_MIPS: { 2463 printMipsABIFlags(); 2464 printMipsOptions(); 2465 printMipsReginfo(); 2466 MipsGOTParser<ELFT> Parser(*this); 2467 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols())) 2468 reportUniqueWarning(std::move(E)); 2469 else if (!Parser.isGotEmpty()) 2470 printMipsGOT(Parser); 2471 2472 if (Error E = Parser.findPLT(dynamic_table())) 2473 reportUniqueWarning(std::move(E)); 2474 else if (!Parser.isPltEmpty()) 2475 printMipsPLT(Parser); 2476 break; 2477 } 2478 default: 2479 break; 2480 } 2481 } 2482 2483 template <class ELFT> void ELFDumper<ELFT>::printAttributes() { 2484 if (!Obj.isLE()) { 2485 W.startLine() << "Attributes not implemented.\n"; 2486 return; 2487 } 2488 2489 const unsigned Machine = Obj.getHeader().e_machine; 2490 assert((Machine == EM_ARM || Machine == EM_RISCV) && 2491 "Attributes not implemented."); 2492 2493 DictScope BA(W, "BuildAttributes"); 2494 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 2495 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES && 2496 Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES) 2497 continue; 2498 2499 ArrayRef<uint8_t> Contents; 2500 if (Expected<ArrayRef<uint8_t>> ContentOrErr = 2501 Obj.getSectionContents(Sec)) { 2502 Contents = *ContentOrErr; 2503 if (Contents.empty()) { 2504 reportUniqueWarning("the " + describe(Sec) + " is empty"); 2505 continue; 2506 } 2507 } else { 2508 reportUniqueWarning("unable to read the content of the " + describe(Sec) + 2509 ": " + toString(ContentOrErr.takeError())); 2510 continue; 2511 } 2512 2513 W.printHex("FormatVersion", Contents[0]); 2514 2515 auto ParseAttrubutes = [&]() { 2516 if (Machine == EM_ARM) 2517 return ARMAttributeParser(&W).parse(Contents, support::little); 2518 return RISCVAttributeParser(&W).parse(Contents, support::little); 2519 }; 2520 2521 if (Error E = ParseAttrubutes()) 2522 reportUniqueWarning("unable to dump attributes from the " + 2523 describe(Sec) + ": " + toString(std::move(E))); 2524 } 2525 } 2526 2527 namespace { 2528 2529 template <class ELFT> class MipsGOTParser { 2530 public: 2531 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) 2532 using Entry = typename ELFT::Addr; 2533 using Entries = ArrayRef<Entry>; 2534 2535 const bool IsStatic; 2536 const ELFFile<ELFT> &Obj; 2537 const ELFDumper<ELFT> &Dumper; 2538 2539 MipsGOTParser(const ELFDumper<ELFT> &D); 2540 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms); 2541 Error findPLT(Elf_Dyn_Range DynTable); 2542 2543 bool isGotEmpty() const { return GotEntries.empty(); } 2544 bool isPltEmpty() const { return PltEntries.empty(); } 2545 2546 uint64_t getGp() const; 2547 2548 const Entry *getGotLazyResolver() const; 2549 const Entry *getGotModulePointer() const; 2550 const Entry *getPltLazyResolver() const; 2551 const Entry *getPltModulePointer() const; 2552 2553 Entries getLocalEntries() const; 2554 Entries getGlobalEntries() const; 2555 Entries getOtherEntries() const; 2556 Entries getPltEntries() const; 2557 2558 uint64_t getGotAddress(const Entry * E) const; 2559 int64_t getGotOffset(const Entry * E) const; 2560 const Elf_Sym *getGotSym(const Entry *E) const; 2561 2562 uint64_t getPltAddress(const Entry * E) const; 2563 const Elf_Sym *getPltSym(const Entry *E) const; 2564 2565 StringRef getPltStrTable() const { return PltStrTable; } 2566 const Elf_Shdr *getPltSymTable() const { return PltSymTable; } 2567 2568 private: 2569 const Elf_Shdr *GotSec; 2570 size_t LocalNum; 2571 size_t GlobalNum; 2572 2573 const Elf_Shdr *PltSec; 2574 const Elf_Shdr *PltRelSec; 2575 const Elf_Shdr *PltSymTable; 2576 StringRef FileName; 2577 2578 Elf_Sym_Range GotDynSyms; 2579 StringRef PltStrTable; 2580 2581 Entries GotEntries; 2582 Entries PltEntries; 2583 }; 2584 2585 } // end anonymous namespace 2586 2587 template <class ELFT> 2588 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D) 2589 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()), 2590 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr), 2591 PltRelSec(nullptr), PltSymTable(nullptr), 2592 FileName(D.getElfObject().getFileName()) {} 2593 2594 template <class ELFT> 2595 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable, 2596 Elf_Sym_Range DynSyms) { 2597 // See "Global Offset Table" in Chapter 5 in the following document 2598 // for detailed GOT description. 2599 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf 2600 2601 // Find static GOT secton. 2602 if (IsStatic) { 2603 GotSec = Dumper.findSectionByName(".got"); 2604 if (!GotSec) 2605 return Error::success(); 2606 2607 ArrayRef<uint8_t> Content = 2608 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2609 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2610 Content.size() / sizeof(Entry)); 2611 LocalNum = GotEntries.size(); 2612 return Error::success(); 2613 } 2614 2615 // Lookup dynamic table tags which define the GOT layout. 2616 Optional<uint64_t> DtPltGot; 2617 Optional<uint64_t> DtLocalGotNum; 2618 Optional<uint64_t> DtGotSym; 2619 for (const auto &Entry : DynTable) { 2620 switch (Entry.getTag()) { 2621 case ELF::DT_PLTGOT: 2622 DtPltGot = Entry.getVal(); 2623 break; 2624 case ELF::DT_MIPS_LOCAL_GOTNO: 2625 DtLocalGotNum = Entry.getVal(); 2626 break; 2627 case ELF::DT_MIPS_GOTSYM: 2628 DtGotSym = Entry.getVal(); 2629 break; 2630 } 2631 } 2632 2633 if (!DtPltGot && !DtLocalGotNum && !DtGotSym) 2634 return Error::success(); 2635 2636 if (!DtPltGot) 2637 return createError("cannot find PLTGOT dynamic tag"); 2638 if (!DtLocalGotNum) 2639 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag"); 2640 if (!DtGotSym) 2641 return createError("cannot find MIPS_GOTSYM dynamic tag"); 2642 2643 size_t DynSymTotal = DynSyms.size(); 2644 if (*DtGotSym > DynSymTotal) 2645 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) + 2646 ") exceeds the number of dynamic symbols (" + 2647 Twine(DynSymTotal) + ")"); 2648 2649 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot); 2650 if (!GotSec) 2651 return createError("there is no non-empty GOT section at 0x" + 2652 Twine::utohexstr(*DtPltGot)); 2653 2654 LocalNum = *DtLocalGotNum; 2655 GlobalNum = DynSymTotal - *DtGotSym; 2656 2657 ArrayRef<uint8_t> Content = 2658 unwrapOrError(FileName, Obj.getSectionContents(*GotSec)); 2659 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()), 2660 Content.size() / sizeof(Entry)); 2661 GotDynSyms = DynSyms.drop_front(*DtGotSym); 2662 2663 return Error::success(); 2664 } 2665 2666 template <class ELFT> 2667 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) { 2668 // Lookup dynamic table tags which define the PLT layout. 2669 Optional<uint64_t> DtMipsPltGot; 2670 Optional<uint64_t> DtJmpRel; 2671 for (const auto &Entry : DynTable) { 2672 switch (Entry.getTag()) { 2673 case ELF::DT_MIPS_PLTGOT: 2674 DtMipsPltGot = Entry.getVal(); 2675 break; 2676 case ELF::DT_JMPREL: 2677 DtJmpRel = Entry.getVal(); 2678 break; 2679 } 2680 } 2681 2682 if (!DtMipsPltGot && !DtJmpRel) 2683 return Error::success(); 2684 2685 // Find PLT section. 2686 if (!DtMipsPltGot) 2687 return createError("cannot find MIPS_PLTGOT dynamic tag"); 2688 if (!DtJmpRel) 2689 return createError("cannot find JMPREL dynamic tag"); 2690 2691 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot); 2692 if (!PltSec) 2693 return createError("there is no non-empty PLTGOT section at 0x" + 2694 Twine::utohexstr(*DtMipsPltGot)); 2695 2696 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel); 2697 if (!PltRelSec) 2698 return createError("there is no non-empty RELPLT section at 0x" + 2699 Twine::utohexstr(*DtJmpRel)); 2700 2701 if (Expected<ArrayRef<uint8_t>> PltContentOrErr = 2702 Obj.getSectionContents(*PltSec)) 2703 PltEntries = 2704 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()), 2705 PltContentOrErr->size() / sizeof(Entry)); 2706 else 2707 return createError("unable to read PLTGOT section content: " + 2708 toString(PltContentOrErr.takeError())); 2709 2710 if (Expected<const Elf_Shdr *> PltSymTableOrErr = 2711 Obj.getSection(PltRelSec->sh_link)) 2712 PltSymTable = *PltSymTableOrErr; 2713 else 2714 return createError("unable to get a symbol table linked to the " + 2715 describe(Obj, *PltRelSec) + ": " + 2716 toString(PltSymTableOrErr.takeError())); 2717 2718 if (Expected<StringRef> StrTabOrErr = 2719 Obj.getStringTableForSymtab(*PltSymTable)) 2720 PltStrTable = *StrTabOrErr; 2721 else 2722 return createError("unable to get a string table for the " + 2723 describe(Obj, *PltSymTable) + ": " + 2724 toString(StrTabOrErr.takeError())); 2725 2726 return Error::success(); 2727 } 2728 2729 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const { 2730 return GotSec->sh_addr + 0x7ff0; 2731 } 2732 2733 template <class ELFT> 2734 const typename MipsGOTParser<ELFT>::Entry * 2735 MipsGOTParser<ELFT>::getGotLazyResolver() const { 2736 return LocalNum > 0 ? &GotEntries[0] : nullptr; 2737 } 2738 2739 template <class ELFT> 2740 const typename MipsGOTParser<ELFT>::Entry * 2741 MipsGOTParser<ELFT>::getGotModulePointer() const { 2742 if (LocalNum < 2) 2743 return nullptr; 2744 const Entry &E = GotEntries[1]; 2745 if ((E >> (sizeof(Entry) * 8 - 1)) == 0) 2746 return nullptr; 2747 return &E; 2748 } 2749 2750 template <class ELFT> 2751 typename MipsGOTParser<ELFT>::Entries 2752 MipsGOTParser<ELFT>::getLocalEntries() const { 2753 size_t Skip = getGotModulePointer() ? 2 : 1; 2754 if (LocalNum - Skip <= 0) 2755 return Entries(); 2756 return GotEntries.slice(Skip, LocalNum - Skip); 2757 } 2758 2759 template <class ELFT> 2760 typename MipsGOTParser<ELFT>::Entries 2761 MipsGOTParser<ELFT>::getGlobalEntries() const { 2762 if (GlobalNum == 0) 2763 return Entries(); 2764 return GotEntries.slice(LocalNum, GlobalNum); 2765 } 2766 2767 template <class ELFT> 2768 typename MipsGOTParser<ELFT>::Entries 2769 MipsGOTParser<ELFT>::getOtherEntries() const { 2770 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum; 2771 if (OtherNum == 0) 2772 return Entries(); 2773 return GotEntries.slice(LocalNum + GlobalNum, OtherNum); 2774 } 2775 2776 template <class ELFT> 2777 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const { 2778 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2779 return GotSec->sh_addr + Offset; 2780 } 2781 2782 template <class ELFT> 2783 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const { 2784 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry); 2785 return Offset - 0x7ff0; 2786 } 2787 2788 template <class ELFT> 2789 const typename MipsGOTParser<ELFT>::Elf_Sym * 2790 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const { 2791 int64_t Offset = std::distance(GotEntries.data(), E); 2792 return &GotDynSyms[Offset - LocalNum]; 2793 } 2794 2795 template <class ELFT> 2796 const typename MipsGOTParser<ELFT>::Entry * 2797 MipsGOTParser<ELFT>::getPltLazyResolver() const { 2798 return PltEntries.empty() ? nullptr : &PltEntries[0]; 2799 } 2800 2801 template <class ELFT> 2802 const typename MipsGOTParser<ELFT>::Entry * 2803 MipsGOTParser<ELFT>::getPltModulePointer() const { 2804 return PltEntries.size() < 2 ? nullptr : &PltEntries[1]; 2805 } 2806 2807 template <class ELFT> 2808 typename MipsGOTParser<ELFT>::Entries 2809 MipsGOTParser<ELFT>::getPltEntries() const { 2810 if (PltEntries.size() <= 2) 2811 return Entries(); 2812 return PltEntries.slice(2, PltEntries.size() - 2); 2813 } 2814 2815 template <class ELFT> 2816 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const { 2817 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry); 2818 return PltSec->sh_addr + Offset; 2819 } 2820 2821 template <class ELFT> 2822 const typename MipsGOTParser<ELFT>::Elf_Sym * 2823 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const { 2824 int64_t Offset = std::distance(getPltEntries().data(), E); 2825 if (PltRelSec->sh_type == ELF::SHT_REL) { 2826 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec)); 2827 return unwrapOrError(FileName, 2828 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 2829 } else { 2830 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec)); 2831 return unwrapOrError(FileName, 2832 Obj.getRelocationSymbol(Rels[Offset], PltSymTable)); 2833 } 2834 } 2835 2836 static const EnumEntry<unsigned> ElfMipsISAExtType[] = { 2837 {"None", Mips::AFL_EXT_NONE}, 2838 {"Broadcom SB-1", Mips::AFL_EXT_SB1}, 2839 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, 2840 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, 2841 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, 2842 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, 2843 {"LSI R4010", Mips::AFL_EXT_4010}, 2844 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, 2845 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, 2846 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, 2847 {"MIPS R4650", Mips::AFL_EXT_4650}, 2848 {"MIPS R5900", Mips::AFL_EXT_5900}, 2849 {"MIPS R10000", Mips::AFL_EXT_10000}, 2850 {"NEC VR4100", Mips::AFL_EXT_4100}, 2851 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, 2852 {"NEC VR4120", Mips::AFL_EXT_4120}, 2853 {"NEC VR5400", Mips::AFL_EXT_5400}, 2854 {"NEC VR5500", Mips::AFL_EXT_5500}, 2855 {"RMI Xlr", Mips::AFL_EXT_XLR}, 2856 {"Toshiba R3900", Mips::AFL_EXT_3900} 2857 }; 2858 2859 static const EnumEntry<unsigned> ElfMipsASEFlags[] = { 2860 {"DSP", Mips::AFL_ASE_DSP}, 2861 {"DSPR2", Mips::AFL_ASE_DSPR2}, 2862 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, 2863 {"MCU", Mips::AFL_ASE_MCU}, 2864 {"MDMX", Mips::AFL_ASE_MDMX}, 2865 {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, 2866 {"MT", Mips::AFL_ASE_MT}, 2867 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, 2868 {"VZ", Mips::AFL_ASE_VIRT}, 2869 {"MSA", Mips::AFL_ASE_MSA}, 2870 {"MIPS16", Mips::AFL_ASE_MIPS16}, 2871 {"microMIPS", Mips::AFL_ASE_MICROMIPS}, 2872 {"XPA", Mips::AFL_ASE_XPA}, 2873 {"CRC", Mips::AFL_ASE_CRC}, 2874 {"GINV", Mips::AFL_ASE_GINV}, 2875 }; 2876 2877 static const EnumEntry<unsigned> ElfMipsFpABIType[] = { 2878 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, 2879 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, 2880 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, 2881 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, 2882 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", 2883 Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, 2884 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, 2885 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, 2886 {"Hard float compat (32-bit CPU, 64-bit FPU)", 2887 Mips::Val_GNU_MIPS_ABI_FP_64A} 2888 }; 2889 2890 static const EnumEntry<unsigned> ElfMipsFlags1[] { 2891 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, 2892 }; 2893 2894 static int getMipsRegisterSize(uint8_t Flag) { 2895 switch (Flag) { 2896 case Mips::AFL_REG_NONE: 2897 return 0; 2898 case Mips::AFL_REG_32: 2899 return 32; 2900 case Mips::AFL_REG_64: 2901 return 64; 2902 case Mips::AFL_REG_128: 2903 return 128; 2904 default: 2905 return -1; 2906 } 2907 } 2908 2909 template <class ELFT> 2910 static void printMipsReginfoData(ScopedPrinter &W, 2911 const Elf_Mips_RegInfo<ELFT> &Reginfo) { 2912 W.printHex("GP", Reginfo.ri_gp_value); 2913 W.printHex("General Mask", Reginfo.ri_gprmask); 2914 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]); 2915 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]); 2916 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]); 2917 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]); 2918 } 2919 2920 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() { 2921 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo"); 2922 if (!RegInfoSec) { 2923 W.startLine() << "There is no .reginfo section in the file.\n"; 2924 return; 2925 } 2926 2927 Expected<ArrayRef<uint8_t>> ContentsOrErr = 2928 Obj.getSectionContents(*RegInfoSec); 2929 if (!ContentsOrErr) { 2930 this->reportUniqueWarning( 2931 "unable to read the content of the .reginfo section (" + 2932 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError())); 2933 return; 2934 } 2935 2936 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) { 2937 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" + 2938 Twine::utohexstr(ContentsOrErr->size()) + ")"); 2939 return; 2940 } 2941 2942 DictScope GS(W, "MIPS RegInfo"); 2943 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>( 2944 ContentsOrErr->data())); 2945 } 2946 2947 template <class ELFT> 2948 static Expected<const Elf_Mips_Options<ELFT> *> 2949 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData, 2950 bool &IsSupported) { 2951 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>)) 2952 return createError("the .MIPS.options section has an invalid size (0x" + 2953 Twine::utohexstr(SecData.size()) + ")"); 2954 2955 const Elf_Mips_Options<ELFT> *O = 2956 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data()); 2957 const uint8_t Size = O->size; 2958 if (Size > SecData.size()) { 2959 const uint64_t Offset = SecData.data() - SecBegin; 2960 const uint64_t SecSize = Offset + SecData.size(); 2961 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) + 2962 " at offset 0x" + Twine::utohexstr(Offset) + 2963 " goes past the end of the .MIPS.options " 2964 "section of size 0x" + 2965 Twine::utohexstr(SecSize)); 2966 } 2967 2968 IsSupported = O->kind == ODK_REGINFO; 2969 const size_t ExpectedSize = 2970 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>); 2971 2972 if (IsSupported) 2973 if (Size < ExpectedSize) 2974 return createError( 2975 "a .MIPS.options entry of kind " + 2976 Twine(getElfMipsOptionsOdkType(O->kind)) + 2977 " has an invalid size (0x" + Twine::utohexstr(Size) + 2978 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize)); 2979 2980 SecData = SecData.drop_front(Size); 2981 return O; 2982 } 2983 2984 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() { 2985 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options"); 2986 if (!MipsOpts) { 2987 W.startLine() << "There is no .MIPS.options section in the file.\n"; 2988 return; 2989 } 2990 2991 DictScope GS(W, "MIPS Options"); 2992 2993 ArrayRef<uint8_t> Data = 2994 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts)); 2995 const uint8_t *const SecBegin = Data.begin(); 2996 while (!Data.empty()) { 2997 bool IsSupported; 2998 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr = 2999 readMipsOptions<ELFT>(SecBegin, Data, IsSupported); 3000 if (!OptsOrErr) { 3001 reportUniqueWarning(OptsOrErr.takeError()); 3002 break; 3003 } 3004 3005 unsigned Kind = (*OptsOrErr)->kind; 3006 const char *Type = getElfMipsOptionsOdkType(Kind); 3007 if (!IsSupported) { 3008 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind 3009 << ")\n"; 3010 continue; 3011 } 3012 3013 DictScope GS(W, Type); 3014 if (Kind == ODK_REGINFO) 3015 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo()); 3016 else 3017 llvm_unreachable("unexpected .MIPS.options section descriptor kind"); 3018 } 3019 } 3020 3021 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const { 3022 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps"); 3023 if (!StackMapSection) 3024 return; 3025 3026 auto Warn = [&](Error &&E) { 3027 this->reportUniqueWarning("unable to read the stack map from " + 3028 describe(*StackMapSection) + ": " + 3029 toString(std::move(E))); 3030 }; 3031 3032 Expected<ArrayRef<uint8_t>> ContentOrErr = 3033 Obj.getSectionContents(*StackMapSection); 3034 if (!ContentOrErr) { 3035 Warn(ContentOrErr.takeError()); 3036 return; 3037 } 3038 3039 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader( 3040 *ContentOrErr)) { 3041 Warn(std::move(E)); 3042 return; 3043 } 3044 3045 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr)); 3046 } 3047 3048 template <class ELFT> 3049 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex, 3050 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) { 3051 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab); 3052 if (!Target) 3053 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) + 3054 " in " + describe(Sec) + ": " + 3055 toString(Target.takeError())); 3056 else 3057 printRelRelaReloc(R, *Target); 3058 } 3059 3060 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1, 3061 StringRef Str2) { 3062 OS.PadToColumn(2u); 3063 OS << Str1; 3064 OS.PadToColumn(37u); 3065 OS << Str2 << "\n"; 3066 OS.flush(); 3067 } 3068 3069 template <class ELFT> 3070 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj, 3071 StringRef FileName) { 3072 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3073 if (ElfHeader.e_shnum != 0) 3074 return to_string(ElfHeader.e_shnum); 3075 3076 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3077 if (!ArrOrErr) { 3078 // In this case we can ignore an error, because we have already reported a 3079 // warning about the broken section header table earlier. 3080 consumeError(ArrOrErr.takeError()); 3081 return "<?>"; 3082 } 3083 3084 if (ArrOrErr->empty()) 3085 return "0"; 3086 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")"; 3087 } 3088 3089 template <class ELFT> 3090 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj, 3091 StringRef FileName) { 3092 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader(); 3093 if (ElfHeader.e_shstrndx != SHN_XINDEX) 3094 return to_string(ElfHeader.e_shstrndx); 3095 3096 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections(); 3097 if (!ArrOrErr) { 3098 // In this case we can ignore an error, because we have already reported a 3099 // warning about the broken section header table earlier. 3100 consumeError(ArrOrErr.takeError()); 3101 return "<?>"; 3102 } 3103 3104 if (ArrOrErr->empty()) 3105 return "65535 (corrupt: out of range)"; 3106 return to_string(ElfHeader.e_shstrndx) + " (" + 3107 to_string((*ArrOrErr)[0].sh_link) + ")"; 3108 } 3109 3110 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) { 3111 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) { 3112 return E.Value == Type; 3113 }); 3114 if (It != makeArrayRef(ElfObjectFileType).end()) 3115 return It; 3116 return nullptr; 3117 } 3118 3119 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() { 3120 const Elf_Ehdr &e = this->Obj.getHeader(); 3121 OS << "ELF Header:\n"; 3122 OS << " Magic: "; 3123 std::string Str; 3124 for (int i = 0; i < ELF::EI_NIDENT; i++) 3125 OS << format(" %02x", static_cast<int>(e.e_ident[i])); 3126 OS << "\n"; 3127 Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 3128 printFields(OS, "Class:", Str); 3129 Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); 3130 printFields(OS, "Data:", Str); 3131 OS.PadToColumn(2u); 3132 OS << "Version:"; 3133 OS.PadToColumn(37u); 3134 OS << to_hexString(e.e_ident[ELF::EI_VERSION]); 3135 if (e.e_version == ELF::EV_CURRENT) 3136 OS << " (current)"; 3137 OS << "\n"; 3138 Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); 3139 printFields(OS, "OS/ABI:", Str); 3140 printFields(OS, 3141 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION])); 3142 3143 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) { 3144 Str = E->AltName.str(); 3145 } else { 3146 if (e.e_type >= ET_LOPROC) 3147 Str = "Processor Specific: (" + to_hexString(e.e_type, false) + ")"; 3148 else if (e.e_type >= ET_LOOS) 3149 Str = "OS Specific: (" + to_hexString(e.e_type, false) + ")"; 3150 else 3151 Str = "<unknown>: " + to_hexString(e.e_type, false); 3152 } 3153 printFields(OS, "Type:", Str); 3154 3155 Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType)); 3156 printFields(OS, "Machine:", Str); 3157 Str = "0x" + to_hexString(e.e_version); 3158 printFields(OS, "Version:", Str); 3159 Str = "0x" + to_hexString(e.e_entry); 3160 printFields(OS, "Entry point address:", Str); 3161 Str = to_string(e.e_phoff) + " (bytes into file)"; 3162 printFields(OS, "Start of program headers:", Str); 3163 Str = to_string(e.e_shoff) + " (bytes into file)"; 3164 printFields(OS, "Start of section headers:", Str); 3165 std::string ElfFlags; 3166 if (e.e_machine == EM_MIPS) 3167 ElfFlags = 3168 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags), 3169 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 3170 unsigned(ELF::EF_MIPS_MACH)); 3171 else if (e.e_machine == EM_RISCV) 3172 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 3173 Str = "0x" + to_hexString(e.e_flags); 3174 if (!ElfFlags.empty()) 3175 Str = Str + ", " + ElfFlags; 3176 printFields(OS, "Flags:", Str); 3177 Str = to_string(e.e_ehsize) + " (bytes)"; 3178 printFields(OS, "Size of this header:", Str); 3179 Str = to_string(e.e_phentsize) + " (bytes)"; 3180 printFields(OS, "Size of program headers:", Str); 3181 Str = to_string(e.e_phnum); 3182 printFields(OS, "Number of program headers:", Str); 3183 Str = to_string(e.e_shentsize) + " (bytes)"; 3184 printFields(OS, "Size of section headers:", Str); 3185 Str = getSectionHeadersNumString(this->Obj, this->FileName); 3186 printFields(OS, "Number of section headers:", Str); 3187 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName); 3188 printFields(OS, "Section header string table index:", Str); 3189 } 3190 3191 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() { 3192 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx, 3193 const Elf_Shdr &Symtab) -> StringRef { 3194 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab); 3195 if (!StrTableOrErr) { 3196 reportUniqueWarning("unable to get the string table for " + 3197 describe(Symtab) + ": " + 3198 toString(StrTableOrErr.takeError())); 3199 return "<?>"; 3200 } 3201 3202 StringRef Strings = *StrTableOrErr; 3203 if (Sym.st_name >= Strings.size()) { 3204 reportUniqueWarning("unable to get the name of the symbol with index " + 3205 Twine(SymNdx) + ": st_name (0x" + 3206 Twine::utohexstr(Sym.st_name) + 3207 ") is past the end of the string table of size 0x" + 3208 Twine::utohexstr(Strings.size())); 3209 return "<?>"; 3210 } 3211 3212 return StrTableOrErr->data() + Sym.st_name; 3213 }; 3214 3215 std::vector<GroupSection> Ret; 3216 uint64_t I = 0; 3217 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 3218 ++I; 3219 if (Sec.sh_type != ELF::SHT_GROUP) 3220 continue; 3221 3222 StringRef Signature = "<?>"; 3223 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) { 3224 if (Expected<const Elf_Sym *> SymOrErr = 3225 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info)) 3226 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr); 3227 else 3228 reportUniqueWarning("unable to get the signature symbol for " + 3229 describe(Sec) + ": " + 3230 toString(SymOrErr.takeError())); 3231 } else { 3232 reportUniqueWarning("unable to get the symbol table for " + 3233 describe(Sec) + ": " + 3234 toString(SymtabOrErr.takeError())); 3235 } 3236 3237 ArrayRef<Elf_Word> Data; 3238 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr = 3239 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) { 3240 if (ContentsOrErr->empty()) 3241 reportUniqueWarning("unable to read the section group flag from the " + 3242 describe(Sec) + ": the section is empty"); 3243 else 3244 Data = *ContentsOrErr; 3245 } else { 3246 reportUniqueWarning("unable to get the content of the " + describe(Sec) + 3247 ": " + toString(ContentsOrErr.takeError())); 3248 } 3249 3250 Ret.push_back({getPrintableSectionName(Sec), 3251 maybeDemangle(Signature), 3252 Sec.sh_name, 3253 I - 1, 3254 Sec.sh_link, 3255 Sec.sh_info, 3256 Data.empty() ? Elf_Word(0) : Data[0], 3257 {}}); 3258 3259 if (Data.empty()) 3260 continue; 3261 3262 std::vector<GroupMember> &GM = Ret.back().Members; 3263 for (uint32_t Ndx : Data.slice(1)) { 3264 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) { 3265 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx}); 3266 } else { 3267 reportUniqueWarning("unable to get the section with index " + 3268 Twine(Ndx) + " when dumping the " + describe(Sec) + 3269 ": " + toString(SecOrErr.takeError())); 3270 GM.push_back({"<?>", Ndx}); 3271 } 3272 } 3273 } 3274 return Ret; 3275 } 3276 3277 static DenseMap<uint64_t, const GroupSection *> 3278 mapSectionsToGroups(ArrayRef<GroupSection> Groups) { 3279 DenseMap<uint64_t, const GroupSection *> Ret; 3280 for (const GroupSection &G : Groups) 3281 for (const GroupMember &GM : G.Members) 3282 Ret.insert({GM.Index, &G}); 3283 return Ret; 3284 } 3285 3286 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() { 3287 std::vector<GroupSection> V = this->getGroups(); 3288 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 3289 for (const GroupSection &G : V) { 3290 OS << "\n" 3291 << getGroupType(G.Type) << " group section [" 3292 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature 3293 << "] contains " << G.Members.size() << " sections:\n" 3294 << " [Index] Name\n"; 3295 for (const GroupMember &GM : G.Members) { 3296 const GroupSection *MainGroup = Map[GM.Index]; 3297 if (MainGroup != &G) 3298 this->reportUniqueWarning( 3299 "section with index " + Twine(GM.Index) + 3300 ", included in the group section with index " + 3301 Twine(MainGroup->Index) + 3302 ", was also found in the group section with index " + 3303 Twine(G.Index)); 3304 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n"; 3305 } 3306 } 3307 3308 if (V.empty()) 3309 OS << "There are no section groups in this file.\n"; 3310 } 3311 3312 template <class ELFT> 3313 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 3314 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n"; 3315 } 3316 3317 template <class ELFT> 3318 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 3319 const RelSymbol<ELFT> &RelSym) { 3320 // First two fields are bit width dependent. The rest of them are fixed width. 3321 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3322 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias}; 3323 unsigned Width = ELFT::Is64Bits ? 16 : 8; 3324 3325 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width)); 3326 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width)); 3327 3328 SmallString<32> RelocName; 3329 this->Obj.getRelocationTypeName(R.Type, RelocName); 3330 Fields[2].Str = RelocName.c_str(); 3331 3332 if (RelSym.Sym) 3333 Fields[3].Str = 3334 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width)); 3335 3336 Fields[4].Str = std::string(RelSym.Name); 3337 for (const Field &F : Fields) 3338 printField(F); 3339 3340 std::string Addend; 3341 if (Optional<int64_t> A = R.Addend) { 3342 int64_t RelAddend = *A; 3343 if (!RelSym.Name.empty()) { 3344 if (RelAddend < 0) { 3345 Addend = " - "; 3346 RelAddend = std::abs(RelAddend); 3347 } else { 3348 Addend = " + "; 3349 } 3350 } 3351 Addend += to_hexString(RelAddend, false); 3352 } 3353 OS << Addend << "\n"; 3354 } 3355 3356 template <class ELFT> 3357 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) { 3358 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA; 3359 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR; 3360 if (ELFT::Is64Bits) 3361 OS << " "; 3362 else 3363 OS << " "; 3364 if (IsRelr && opts::RawRelr) 3365 OS << "Data "; 3366 else 3367 OS << "Offset"; 3368 if (ELFT::Is64Bits) 3369 OS << " Info Type" 3370 << " Symbol's Value Symbol's Name"; 3371 else 3372 OS << " Info Type Sym. Value Symbol's Name"; 3373 if (IsRela) 3374 OS << " + Addend"; 3375 OS << "\n"; 3376 } 3377 3378 template <class ELFT> 3379 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name, 3380 const DynRegionInfo &Reg) { 3381 uint64_t Offset = Reg.Addr - this->Obj.base(); 3382 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x" 3383 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n"; 3384 printRelocHeaderFields<ELFT>(OS, Type); 3385 } 3386 3387 template <class ELFT> 3388 static bool isRelocationSec(const typename ELFT::Shdr &Sec) { 3389 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA || 3390 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL || 3391 Sec.sh_type == ELF::SHT_ANDROID_RELA || 3392 Sec.sh_type == ELF::SHT_ANDROID_RELR; 3393 } 3394 3395 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() { 3396 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> { 3397 // Android's packed relocation section needs to be unpacked first 3398 // to get the actual number of entries. 3399 if (Sec.sh_type == ELF::SHT_ANDROID_REL || 3400 Sec.sh_type == ELF::SHT_ANDROID_RELA) { 3401 Expected<std::vector<typename ELFT::Rela>> RelasOrErr = 3402 this->Obj.android_relas(Sec); 3403 if (!RelasOrErr) 3404 return RelasOrErr.takeError(); 3405 return RelasOrErr->size(); 3406 } 3407 3408 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR || 3409 Sec.sh_type == ELF::SHT_ANDROID_RELR)) { 3410 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec); 3411 if (!RelrsOrErr) 3412 return RelrsOrErr.takeError(); 3413 return this->Obj.decode_relrs(*RelrsOrErr).size(); 3414 } 3415 3416 return Sec.getEntityCount(); 3417 }; 3418 3419 bool HasRelocSections = false; 3420 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 3421 if (!isRelocationSec<ELFT>(Sec)) 3422 continue; 3423 HasRelocSections = true; 3424 3425 std::string EntriesNum = "<?>"; 3426 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec)) 3427 EntriesNum = std::to_string(*NumOrErr); 3428 else 3429 this->reportUniqueWarning("unable to get the number of relocations in " + 3430 this->describe(Sec) + ": " + 3431 toString(NumOrErr.takeError())); 3432 3433 uintX_t Offset = Sec.sh_offset; 3434 StringRef Name = this->getPrintableSectionName(Sec); 3435 OS << "\nRelocation section '" << Name << "' at offset 0x" 3436 << to_hexString(Offset, false) << " contains " << EntriesNum 3437 << " entries:\n"; 3438 printRelocHeaderFields<ELFT>(OS, Sec.sh_type); 3439 this->printRelocationsHelper(Sec); 3440 } 3441 if (!HasRelocSections) 3442 OS << "\nThere are no relocations in this file.\n"; 3443 } 3444 3445 // Print the offset of a particular section from anyone of the ranges: 3446 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER]. 3447 // If 'Type' does not fall within any of those ranges, then a string is 3448 // returned as '<unknown>' followed by the type value. 3449 static std::string getSectionTypeOffsetString(unsigned Type) { 3450 if (Type >= SHT_LOOS && Type <= SHT_HIOS) 3451 return "LOOS+0x" + to_hexString(Type - SHT_LOOS); 3452 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC) 3453 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC); 3454 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER) 3455 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER); 3456 return "0x" + to_hexString(Type) + ": <unknown>"; 3457 } 3458 3459 static std::string getSectionTypeString(unsigned Machine, unsigned Type) { 3460 StringRef Name = getELFSectionTypeName(Machine, Type); 3461 3462 // Handle SHT_GNU_* type names. 3463 if (Name.startswith("SHT_GNU_")) { 3464 if (Name == "SHT_GNU_HASH") 3465 return "GNU_HASH"; 3466 // E.g. SHT_GNU_verneed -> VERNEED. 3467 return Name.drop_front(8).upper(); 3468 } 3469 3470 if (Name == "SHT_SYMTAB_SHNDX") 3471 return "SYMTAB SECTION INDICES"; 3472 3473 if (Name.startswith("SHT_")) 3474 return Name.drop_front(4).str(); 3475 return getSectionTypeOffsetString(Type); 3476 } 3477 3478 static void printSectionDescription(formatted_raw_ostream &OS, 3479 unsigned EMachine) { 3480 OS << "Key to Flags:\n"; 3481 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I " 3482 "(info),\n"; 3483 OS << " L (link order), O (extra OS processing required), G (group), T " 3484 "(TLS),\n"; 3485 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n"; 3486 3487 if (EMachine == EM_X86_64) 3488 OS << " l (large), "; 3489 else if (EMachine == EM_ARM) 3490 OS << " y (purecode), "; 3491 else 3492 OS << " "; 3493 3494 OS << "p (processor specific)\n"; 3495 } 3496 3497 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() { 3498 unsigned Bias = ELFT::Is64Bits ? 0 : 8; 3499 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 3500 OS << "There are " << to_string(Sections.size()) 3501 << " section headers, starting at offset " 3502 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; 3503 OS << "Section Headers:\n"; 3504 Field Fields[11] = { 3505 {"[Nr]", 2}, {"Name", 7}, {"Type", 25}, 3506 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias}, 3507 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias}, 3508 {"Inf", 82 - Bias}, {"Al", 86 - Bias}}; 3509 for (const Field &F : Fields) 3510 printField(F); 3511 OS << "\n"; 3512 3513 StringRef SecStrTable; 3514 if (Expected<StringRef> SecStrTableOrErr = 3515 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 3516 SecStrTable = *SecStrTableOrErr; 3517 else 3518 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 3519 3520 size_t SectionIndex = 0; 3521 for (const Elf_Shdr &Sec : Sections) { 3522 Fields[0].Str = to_string(SectionIndex); 3523 if (SecStrTable.empty()) 3524 Fields[1].Str = "<no-strings>"; 3525 else 3526 Fields[1].Str = std::string(unwrapOrError<StringRef>( 3527 this->FileName, this->Obj.getSectionName(Sec, SecStrTable))); 3528 Fields[2].Str = 3529 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type); 3530 Fields[3].Str = 3531 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8)); 3532 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6)); 3533 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6)); 3534 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2)); 3535 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags); 3536 Fields[8].Str = to_string(Sec.sh_link); 3537 Fields[9].Str = to_string(Sec.sh_info); 3538 Fields[10].Str = to_string(Sec.sh_addralign); 3539 3540 OS.PadToColumn(Fields[0].Column); 3541 OS << "[" << right_justify(Fields[0].Str, 2) << "]"; 3542 for (int i = 1; i < 7; i++) 3543 printField(Fields[i]); 3544 OS.PadToColumn(Fields[7].Column); 3545 OS << right_justify(Fields[7].Str, 3); 3546 OS.PadToColumn(Fields[8].Column); 3547 OS << right_justify(Fields[8].Str, 2); 3548 OS.PadToColumn(Fields[9].Column); 3549 OS << right_justify(Fields[9].Str, 3); 3550 OS.PadToColumn(Fields[10].Column); 3551 OS << right_justify(Fields[10].Str, 2); 3552 OS << "\n"; 3553 ++SectionIndex; 3554 } 3555 printSectionDescription(OS, this->Obj.getHeader().e_machine); 3556 } 3557 3558 template <class ELFT> 3559 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, 3560 size_t Entries, 3561 bool NonVisibilityBitsUsed) const { 3562 StringRef Name; 3563 if (Symtab) 3564 Name = this->getPrintableSectionName(*Symtab); 3565 if (!Name.empty()) 3566 OS << "\nSymbol table '" << Name << "'"; 3567 else 3568 OS << "\nSymbol table for image"; 3569 OS << " contains " << Entries << " entries:\n"; 3570 3571 if (ELFT::Is64Bits) 3572 OS << " Num: Value Size Type Bind Vis"; 3573 else 3574 OS << " Num: Value Size Type Bind Vis"; 3575 3576 if (NonVisibilityBitsUsed) 3577 OS << " "; 3578 OS << " Ndx Name\n"; 3579 } 3580 3581 template <class ELFT> 3582 std::string 3583 GNUELFDumper<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol, 3584 unsigned SymIndex, 3585 DataRegion<Elf_Word> ShndxTable) const { 3586 unsigned SectionIndex = Symbol.st_shndx; 3587 switch (SectionIndex) { 3588 case ELF::SHN_UNDEF: 3589 return "UND"; 3590 case ELF::SHN_ABS: 3591 return "ABS"; 3592 case ELF::SHN_COMMON: 3593 return "COM"; 3594 case ELF::SHN_XINDEX: { 3595 Expected<uint32_t> IndexOrErr = 3596 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable); 3597 if (!IndexOrErr) { 3598 assert(Symbol.st_shndx == SHN_XINDEX && 3599 "getExtendedSymbolTableIndex should only fail due to an invalid " 3600 "SHT_SYMTAB_SHNDX table/reference"); 3601 this->reportUniqueWarning(IndexOrErr.takeError()); 3602 return "RSV[0xffff]"; 3603 } 3604 return to_string(format_decimal(*IndexOrErr, 3)); 3605 } 3606 default: 3607 // Find if: 3608 // Processor specific 3609 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC) 3610 return std::string("PRC[0x") + 3611 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3612 // OS specific 3613 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS) 3614 return std::string("OS[0x") + 3615 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3616 // Architecture reserved: 3617 if (SectionIndex >= ELF::SHN_LORESERVE && 3618 SectionIndex <= ELF::SHN_HIRESERVE) 3619 return std::string("RSV[0x") + 3620 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]"; 3621 // A normal section with an index 3622 return to_string(format_decimal(SectionIndex, 3)); 3623 } 3624 } 3625 3626 template <class ELFT> 3627 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 3628 DataRegion<Elf_Word> ShndxTable, 3629 Optional<StringRef> StrTable, 3630 bool IsDynamic, 3631 bool NonVisibilityBitsUsed) const { 3632 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3633 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias, 3634 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias}; 3635 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":"; 3636 Fields[1].Str = 3637 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8)); 3638 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5)); 3639 3640 unsigned char SymbolType = Symbol.getType(); 3641 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 3642 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3643 Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3644 else 3645 Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); 3646 3647 Fields[4].Str = 3648 printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); 3649 Fields[5].Str = 3650 printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3651 3652 if (Symbol.st_other & ~0x3) { 3653 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) { 3654 uint8_t Other = Symbol.st_other & ~0x3; 3655 if (Other & STO_AARCH64_VARIANT_PCS) { 3656 Other &= ~STO_AARCH64_VARIANT_PCS; 3657 Fields[5].Str += " [VARIANT_PCS"; 3658 if (Other != 0) 3659 Fields[5].Str.append(" | " + to_hexString(Other, false)); 3660 Fields[5].Str.append("]"); 3661 } 3662 } else { 3663 Fields[5].Str += 3664 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]"; 3665 } 3666 } 3667 3668 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0; 3669 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex, ShndxTable); 3670 3671 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable, 3672 StrTable, IsDynamic); 3673 for (const Field &Entry : Fields) 3674 printField(Entry); 3675 OS << "\n"; 3676 } 3677 3678 template <class ELFT> 3679 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, 3680 unsigned SymIndex, 3681 DataRegion<Elf_Word> ShndxTable, 3682 StringRef StrTable, 3683 uint32_t Bucket) { 3684 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 3685 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias, 3686 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias}; 3687 Fields[0].Str = to_string(format_decimal(SymIndex, 5)); 3688 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":"; 3689 3690 Fields[2].Str = to_string( 3691 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8)); 3692 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5)); 3693 3694 unsigned char SymbolType = Symbol->getType(); 3695 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 3696 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 3697 Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 3698 else 3699 Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes)); 3700 3701 Fields[5].Str = 3702 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); 3703 Fields[6].Str = 3704 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities)); 3705 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable); 3706 Fields[8].Str = 3707 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true); 3708 3709 for (const Field &Entry : Fields) 3710 printField(Entry); 3711 OS << "\n"; 3712 } 3713 3714 template <class ELFT> 3715 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols, 3716 bool PrintDynamicSymbols) { 3717 if (!PrintSymbols && !PrintDynamicSymbols) 3718 return; 3719 // GNU readelf prints both the .dynsym and .symtab with --symbols. 3720 this->printSymbolsHelper(true); 3721 if (PrintSymbols) 3722 this->printSymbolsHelper(false); 3723 } 3724 3725 template <class ELFT> 3726 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) { 3727 if (this->DynamicStringTable.empty()) 3728 return; 3729 3730 if (ELFT::Is64Bits) 3731 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3732 else 3733 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3734 OS << "\n"; 3735 3736 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 3737 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 3738 if (!FirstSym) { 3739 this->reportUniqueWarning( 3740 Twine("unable to print symbols for the .hash table: the " 3741 "dynamic symbol table ") + 3742 (this->DynSymRegion ? "is empty" : "was not found")); 3743 return; 3744 } 3745 3746 DataRegion<Elf_Word> ShndxTable( 3747 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 3748 auto Buckets = SysVHash.buckets(); 3749 auto Chains = SysVHash.chains(); 3750 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) { 3751 if (Buckets[Buc] == ELF::STN_UNDEF) 3752 continue; 3753 std::vector<bool> Visited(SysVHash.nchain); 3754 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) { 3755 if (Ch == ELF::STN_UNDEF) 3756 break; 3757 3758 if (Visited[Ch]) { 3759 this->reportUniqueWarning(".hash section is invalid: bucket " + 3760 Twine(Ch) + 3761 ": a cycle was detected in the linked chain"); 3762 break; 3763 } 3764 3765 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable, 3766 Buc); 3767 Visited[Ch] = true; 3768 } 3769 } 3770 } 3771 3772 template <class ELFT> 3773 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) { 3774 if (this->DynamicStringTable.empty()) 3775 return; 3776 3777 Elf_Sym_Range DynSyms = this->dynamic_symbols(); 3778 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0]; 3779 if (!FirstSym) { 3780 this->reportUniqueWarning( 3781 Twine("unable to print symbols for the .gnu.hash table: the " 3782 "dynamic symbol table ") + 3783 (this->DynSymRegion ? "is empty" : "was not found")); 3784 return; 3785 } 3786 3787 auto GetSymbol = [&](uint64_t SymIndex, 3788 uint64_t SymsTotal) -> const Elf_Sym * { 3789 if (SymIndex >= SymsTotal) { 3790 this->reportUniqueWarning( 3791 "unable to print hashed symbol with index " + Twine(SymIndex) + 3792 ", which is greater than or equal to the number of dynamic symbols " 3793 "(" + 3794 Twine::utohexstr(SymsTotal) + ")"); 3795 return nullptr; 3796 } 3797 return FirstSym + SymIndex; 3798 }; 3799 3800 Expected<ArrayRef<Elf_Word>> ValuesOrErr = 3801 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash); 3802 ArrayRef<Elf_Word> Values; 3803 if (!ValuesOrErr) 3804 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH " 3805 "section: " + 3806 toString(ValuesOrErr.takeError())); 3807 else 3808 Values = *ValuesOrErr; 3809 3810 DataRegion<Elf_Word> ShndxTable( 3811 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 3812 ArrayRef<Elf_Word> Buckets = GnuHash.buckets(); 3813 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) { 3814 if (Buckets[Buc] == ELF::STN_UNDEF) 3815 continue; 3816 uint32_t Index = Buckets[Buc]; 3817 // Print whole chain. 3818 while (true) { 3819 uint32_t SymIndex = Index++; 3820 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size())) 3821 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable, 3822 Buc); 3823 else 3824 break; 3825 3826 if (SymIndex < GnuHash.symndx) { 3827 this->reportUniqueWarning( 3828 "unable to read the hash value for symbol with index " + 3829 Twine(SymIndex) + 3830 ", which is less than the index of the first hashed symbol (" + 3831 Twine(GnuHash.symndx) + ")"); 3832 break; 3833 } 3834 3835 // Chain ends at symbol with stopper bit. 3836 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1) 3837 break; 3838 } 3839 } 3840 } 3841 3842 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() { 3843 if (this->HashTable) { 3844 OS << "\n Symbol table of .hash for image:\n"; 3845 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 3846 this->reportUniqueWarning(std::move(E)); 3847 else 3848 printHashTableSymbols(*this->HashTable); 3849 } 3850 3851 // Try printing the .gnu.hash table. 3852 if (this->GnuHashTable) { 3853 OS << "\n Symbol table of .gnu.hash for image:\n"; 3854 if (ELFT::Is64Bits) 3855 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3856 else 3857 OS << " Num Buc: Value Size Type Bind Vis Ndx Name"; 3858 OS << "\n"; 3859 3860 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 3861 this->reportUniqueWarning(std::move(E)); 3862 else 3863 printGnuHashTableSymbols(*this->GnuHashTable); 3864 } 3865 } 3866 3867 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() { 3868 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections()); 3869 OS << "There are " << to_string(Sections.size()) 3870 << " section headers, starting at offset " 3871 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n"; 3872 3873 OS << "Section Headers:\n"; 3874 3875 auto PrintFields = [&](ArrayRef<Field> V) { 3876 for (const Field &F : V) 3877 printField(F); 3878 OS << "\n"; 3879 }; 3880 3881 PrintFields({{"[Nr]", 2}, {"Name", 7}}); 3882 3883 constexpr bool Is64 = ELFT::Is64Bits; 3884 PrintFields({{"Type", 7}, 3885 {Is64 ? "Address" : "Addr", 23}, 3886 {"Off", Is64 ? 40 : 32}, 3887 {"Size", Is64 ? 47 : 39}, 3888 {"ES", Is64 ? 54 : 46}, 3889 {"Lk", Is64 ? 59 : 51}, 3890 {"Inf", Is64 ? 62 : 54}, 3891 {"Al", Is64 ? 66 : 57}}); 3892 PrintFields({{"Flags", 7}}); 3893 3894 StringRef SecStrTable; 3895 if (Expected<StringRef> SecStrTableOrErr = 3896 this->Obj.getSectionStringTable(Sections, this->WarningHandler)) 3897 SecStrTable = *SecStrTableOrErr; 3898 else 3899 this->reportUniqueWarning(SecStrTableOrErr.takeError()); 3900 3901 size_t SectionIndex = 0; 3902 const unsigned AddrSize = Is64 ? 16 : 8; 3903 for (const Elf_Shdr &S : Sections) { 3904 StringRef Name = "<?>"; 3905 if (Expected<StringRef> NameOrErr = 3906 this->Obj.getSectionName(S, SecStrTable)) 3907 Name = *NameOrErr; 3908 else 3909 this->reportUniqueWarning(NameOrErr.takeError()); 3910 3911 OS.PadToColumn(2); 3912 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]"; 3913 PrintFields({{Name, 7}}); 3914 PrintFields( 3915 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7}, 3916 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23}, 3917 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32}, 3918 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39}, 3919 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46}, 3920 {to_string(S.sh_link), Is64 ? 59 : 51}, 3921 {to_string(S.sh_info), Is64 ? 63 : 55}, 3922 {to_string(S.sh_addralign), Is64 ? 66 : 58}}); 3923 3924 OS.PadToColumn(7); 3925 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: "; 3926 3927 DenseMap<unsigned, StringRef> FlagToName = { 3928 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"}, 3929 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"}, 3930 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"}, 3931 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"}, 3932 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"}, 3933 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}}; 3934 3935 uint64_t Flags = S.sh_flags; 3936 uint64_t UnknownFlags = 0; 3937 bool NeedsComma = false; 3938 while (Flags) { 3939 // Take the least significant bit as a flag. 3940 uint64_t Flag = Flags & -Flags; 3941 Flags -= Flag; 3942 3943 auto It = FlagToName.find(Flag); 3944 if (It != FlagToName.end()) { 3945 if (NeedsComma) 3946 OS << ", "; 3947 NeedsComma = true; 3948 OS << It->second; 3949 } else { 3950 UnknownFlags |= Flag; 3951 } 3952 } 3953 3954 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) { 3955 uint64_t FlagsToPrint = UnknownFlags & Mask; 3956 if (!FlagsToPrint) 3957 return; 3958 3959 if (NeedsComma) 3960 OS << ", "; 3961 OS << Name << " (" 3962 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")"; 3963 UnknownFlags &= ~Mask; 3964 NeedsComma = true; 3965 }; 3966 3967 PrintUnknownFlags(SHF_MASKOS, "OS"); 3968 PrintUnknownFlags(SHF_MASKPROC, "PROC"); 3969 PrintUnknownFlags(uint64_t(-1), "UNKNOWN"); 3970 3971 OS << "\n"; 3972 ++SectionIndex; 3973 } 3974 } 3975 3976 static inline std::string printPhdrFlags(unsigned Flag) { 3977 std::string Str; 3978 Str = (Flag & PF_R) ? "R" : " "; 3979 Str += (Flag & PF_W) ? "W" : " "; 3980 Str += (Flag & PF_X) ? "E" : " "; 3981 return Str; 3982 } 3983 3984 template <class ELFT> 3985 static bool checkTLSSections(const typename ELFT::Phdr &Phdr, 3986 const typename ELFT::Shdr &Sec) { 3987 if (Sec.sh_flags & ELF::SHF_TLS) { 3988 // .tbss must only be shown in the PT_TLS segment. 3989 if (Sec.sh_type == ELF::SHT_NOBITS) 3990 return Phdr.p_type == ELF::PT_TLS; 3991 3992 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO 3993 // segments. 3994 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) || 3995 (Phdr.p_type == ELF::PT_GNU_RELRO); 3996 } 3997 3998 // PT_TLS must only have SHF_TLS sections. 3999 return Phdr.p_type != ELF::PT_TLS; 4000 } 4001 4002 template <class ELFT> 4003 static bool checkOffsets(const typename ELFT::Phdr &Phdr, 4004 const typename ELFT::Shdr &Sec) { 4005 // SHT_NOBITS sections don't need to have an offset inside the segment. 4006 if (Sec.sh_type == ELF::SHT_NOBITS) 4007 return true; 4008 4009 if (Sec.sh_offset < Phdr.p_offset) 4010 return false; 4011 4012 // Only non-empty sections can be at the end of a segment. 4013 if (Sec.sh_size == 0) 4014 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz); 4015 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz; 4016 } 4017 4018 // Check that an allocatable section belongs to a virtual address 4019 // space of a segment. 4020 template <class ELFT> 4021 static bool checkVMA(const typename ELFT::Phdr &Phdr, 4022 const typename ELFT::Shdr &Sec) { 4023 if (!(Sec.sh_flags & ELF::SHF_ALLOC)) 4024 return true; 4025 4026 if (Sec.sh_addr < Phdr.p_vaddr) 4027 return false; 4028 4029 bool IsTbss = 4030 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0); 4031 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties. 4032 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS; 4033 // Only non-empty sections can be at the end of a segment. 4034 if (Sec.sh_size == 0 || IsTbssInNonTLS) 4035 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz; 4036 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz; 4037 } 4038 4039 template <class ELFT> 4040 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr, 4041 const typename ELFT::Shdr &Sec) { 4042 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0) 4043 return true; 4044 4045 // We get here when we have an empty section. Only non-empty sections can be 4046 // at the start or at the end of PT_DYNAMIC. 4047 // Is section within the phdr both based on offset and VMA? 4048 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) || 4049 (Sec.sh_offset > Phdr.p_offset && 4050 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz); 4051 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) || 4052 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz); 4053 return CheckOffset && CheckVA; 4054 } 4055 4056 template <class ELFT> 4057 void GNUELFDumper<ELFT>::printProgramHeaders( 4058 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 4059 if (PrintProgramHeaders) 4060 printProgramHeaders(); 4061 4062 // Display the section mapping along with the program headers, unless 4063 // -section-mapping is explicitly set to false. 4064 if (PrintSectionMapping != cl::BOU_FALSE) 4065 printSectionMapping(); 4066 } 4067 4068 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() { 4069 unsigned Bias = ELFT::Is64Bits ? 8 : 0; 4070 const Elf_Ehdr &Header = this->Obj.getHeader(); 4071 Field Fields[8] = {2, 17, 26, 37 + Bias, 4072 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias}; 4073 OS << "\nElf file type is " 4074 << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n" 4075 << "Entry point " << format_hex(Header.e_entry, 3) << "\n" 4076 << "There are " << Header.e_phnum << " program headers," 4077 << " starting at offset " << Header.e_phoff << "\n\n" 4078 << "Program Headers:\n"; 4079 if (ELFT::Is64Bits) 4080 OS << " Type Offset VirtAddr PhysAddr " 4081 << " FileSiz MemSiz Flg Align\n"; 4082 else 4083 OS << " Type Offset VirtAddr PhysAddr FileSiz " 4084 << "MemSiz Flg Align\n"; 4085 4086 unsigned Width = ELFT::Is64Bits ? 18 : 10; 4087 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7; 4088 4089 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4090 if (!PhdrsOrErr) { 4091 this->reportUniqueWarning("unable to dump program headers: " + 4092 toString(PhdrsOrErr.takeError())); 4093 return; 4094 } 4095 4096 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4097 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type); 4098 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8)); 4099 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width)); 4100 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width)); 4101 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth)); 4102 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth)); 4103 Fields[6].Str = printPhdrFlags(Phdr.p_flags); 4104 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1)); 4105 for (const Field &F : Fields) 4106 printField(F); 4107 if (Phdr.p_type == ELF::PT_INTERP) { 4108 OS << "\n"; 4109 auto ReportBadInterp = [&](const Twine &Msg) { 4110 this->reportUniqueWarning( 4111 "unable to read program interpreter name at offset 0x" + 4112 Twine::utohexstr(Phdr.p_offset) + ": " + Msg); 4113 }; 4114 4115 if (Phdr.p_offset >= this->Obj.getBufSize()) { 4116 ReportBadInterp("it goes past the end of the file (0x" + 4117 Twine::utohexstr(this->Obj.getBufSize()) + ")"); 4118 continue; 4119 } 4120 4121 const char *Data = 4122 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset; 4123 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset; 4124 size_t Len = strnlen(Data, MaxSize); 4125 if (Len == MaxSize) { 4126 ReportBadInterp("it is not null-terminated"); 4127 continue; 4128 } 4129 4130 OS << " [Requesting program interpreter: "; 4131 OS << StringRef(Data, Len) << "]"; 4132 } 4133 OS << "\n"; 4134 } 4135 } 4136 4137 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() { 4138 OS << "\n Section to Segment mapping:\n Segment Sections...\n"; 4139 DenseSet<const Elf_Shdr *> BelongsToSegment; 4140 int Phnum = 0; 4141 4142 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 4143 if (!PhdrsOrErr) { 4144 this->reportUniqueWarning( 4145 "can't read program headers to build section to segment mapping: " + 4146 toString(PhdrsOrErr.takeError())); 4147 return; 4148 } 4149 4150 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 4151 std::string Sections; 4152 OS << format(" %2.2d ", Phnum++); 4153 // Check if each section is in a segment and then print mapping. 4154 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4155 if (Sec.sh_type == ELF::SHT_NULL) 4156 continue; 4157 4158 // readelf additionally makes sure it does not print zero sized sections 4159 // at end of segments and for PT_DYNAMIC both start and end of section 4160 // .tbss must only be shown in PT_TLS section. 4161 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) && 4162 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) { 4163 Sections += 4164 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4165 " "; 4166 BelongsToSegment.insert(&Sec); 4167 } 4168 } 4169 OS << Sections << "\n"; 4170 OS.flush(); 4171 } 4172 4173 // Display sections that do not belong to a segment. 4174 std::string Sections; 4175 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 4176 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end()) 4177 Sections += 4178 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() + 4179 ' '; 4180 } 4181 if (!Sections.empty()) { 4182 OS << " None " << Sections << '\n'; 4183 OS.flush(); 4184 } 4185 } 4186 4187 namespace { 4188 4189 template <class ELFT> 4190 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper, 4191 const Relocation<ELFT> &Reloc) { 4192 using Elf_Sym = typename ELFT::Sym; 4193 auto WarnAndReturn = [&](const Elf_Sym *Sym, 4194 const Twine &Reason) -> RelSymbol<ELFT> { 4195 Dumper.reportUniqueWarning( 4196 "unable to get name of the dynamic symbol with index " + 4197 Twine(Reloc.Symbol) + ": " + Reason); 4198 return {Sym, "<corrupt>"}; 4199 }; 4200 4201 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols(); 4202 const Elf_Sym *FirstSym = Symbols.begin(); 4203 if (!FirstSym) 4204 return WarnAndReturn(nullptr, "no dynamic symbol table found"); 4205 4206 // We might have an object without a section header. In this case the size of 4207 // Symbols is zero, because there is no way to know the size of the dynamic 4208 // table. We should allow this case and not print a warning. 4209 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size()) 4210 return WarnAndReturn( 4211 nullptr, 4212 "index is greater than or equal to the number of dynamic symbols (" + 4213 Twine(Symbols.size()) + ")"); 4214 4215 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 4216 const uint64_t FileSize = Obj.getBufSize(); 4217 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) + 4218 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym); 4219 if (SymOffset + sizeof(Elf_Sym) > FileSize) 4220 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) + 4221 " goes past the end of the file (0x" + 4222 Twine::utohexstr(FileSize) + ")"); 4223 4224 const Elf_Sym *Sym = FirstSym + Reloc.Symbol; 4225 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable()); 4226 if (!ErrOrName) 4227 return WarnAndReturn(Sym, toString(ErrOrName.takeError())); 4228 4229 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)}; 4230 } 4231 } // namespace 4232 4233 template <class ELFT> 4234 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj, 4235 typename ELFT::DynRange Tags) { 4236 size_t Max = 0; 4237 for (const typename ELFT::Dyn &Dyn : Tags) 4238 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size()); 4239 return Max; 4240 } 4241 4242 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() { 4243 Elf_Dyn_Range Table = this->dynamic_table(); 4244 if (Table.empty()) 4245 return; 4246 4247 OS << "Dynamic section at offset " 4248 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) - 4249 this->Obj.base(), 4250 1) 4251 << " contains " << Table.size() << " entries:\n"; 4252 4253 // The type name is surrounded with round brackets, hence add 2. 4254 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2; 4255 // The "Name/Value" column should be indented from the "Type" column by N 4256 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 4257 // space (1) = 3. 4258 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type" 4259 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 4260 4261 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s "; 4262 for (auto Entry : Table) { 4263 uintX_t Tag = Entry.getTag(); 4264 std::string Type = 4265 std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")"; 4266 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 4267 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10) 4268 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n"; 4269 } 4270 } 4271 4272 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() { 4273 this->printDynamicRelocationsHelper(); 4274 } 4275 4276 template <class ELFT> 4277 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) { 4278 printRelRelaReloc(R, getSymbolForReloc(*this, R)); 4279 } 4280 4281 template <class ELFT> 4282 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) { 4283 this->forEachRelocationDo( 4284 Sec, opts::RawRelr, 4285 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 4286 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); }, 4287 [&](const Elf_Relr &R) { printRelrReloc(R); }); 4288 } 4289 4290 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() { 4291 const bool IsMips64EL = this->Obj.isMips64EL(); 4292 if (this->DynRelaRegion.Size > 0) { 4293 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion); 4294 for (const Elf_Rela &Rela : 4295 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>()) 4296 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4297 } 4298 4299 if (this->DynRelRegion.Size > 0) { 4300 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion); 4301 for (const Elf_Rel &Rel : 4302 this->DynRelRegion.template getAsArrayRef<Elf_Rel>()) 4303 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4304 } 4305 4306 if (this->DynRelrRegion.Size > 0) { 4307 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion); 4308 Elf_Relr_Range Relrs = 4309 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>(); 4310 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs)) 4311 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4312 } 4313 4314 if (this->DynPLTRelRegion.Size) { 4315 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) { 4316 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion); 4317 for (const Elf_Rela &Rela : 4318 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>()) 4319 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL)); 4320 } else { 4321 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion); 4322 for (const Elf_Rel &Rel : 4323 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>()) 4324 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL)); 4325 } 4326 } 4327 } 4328 4329 template <class ELFT> 4330 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog( 4331 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) { 4332 // Don't inline the SecName, because it might report a warning to stderr and 4333 // corrupt the output. 4334 StringRef SecName = this->getPrintableSectionName(Sec); 4335 OS << Label << " section '" << SecName << "' " 4336 << "contains " << EntriesNum << " entries:\n"; 4337 4338 StringRef LinkedSecName = "<corrupt>"; 4339 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr = 4340 this->Obj.getSection(Sec.sh_link)) 4341 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr); 4342 else 4343 this->reportUniqueWarning("invalid section linked to " + 4344 this->describe(Sec) + ": " + 4345 toString(LinkedSecOrErr.takeError())); 4346 4347 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16) 4348 << " Offset: " << format_hex(Sec.sh_offset, 8) 4349 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n"; 4350 } 4351 4352 template <class ELFT> 4353 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 4354 if (!Sec) 4355 return; 4356 4357 printGNUVersionSectionProlog(*Sec, "Version symbols", 4358 Sec->sh_size / sizeof(Elf_Versym)); 4359 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 4360 this->getVersionTable(*Sec, /*SymTab=*/nullptr, 4361 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr); 4362 if (!VerTableOrErr) { 4363 this->reportUniqueWarning(VerTableOrErr.takeError()); 4364 return; 4365 } 4366 4367 SmallVector<Optional<VersionEntry>, 0> *VersionMap = nullptr; 4368 if (Expected<SmallVector<Optional<VersionEntry>, 0> *> MapOrErr = 4369 this->getVersionMap()) 4370 VersionMap = *MapOrErr; 4371 else 4372 this->reportUniqueWarning(MapOrErr.takeError()); 4373 4374 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr; 4375 std::vector<StringRef> Versions; 4376 for (size_t I = 0, E = VerTable.size(); I < E; ++I) { 4377 unsigned Ndx = VerTable[I].vs_index; 4378 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) { 4379 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*"); 4380 continue; 4381 } 4382 4383 if (!VersionMap) { 4384 Versions.emplace_back("<corrupt>"); 4385 continue; 4386 } 4387 4388 bool IsDefault; 4389 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex( 4390 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/None); 4391 if (!NameOrErr) { 4392 this->reportUniqueWarning("unable to get a version for entry " + 4393 Twine(I) + " of " + this->describe(*Sec) + 4394 ": " + toString(NameOrErr.takeError())); 4395 Versions.emplace_back("<corrupt>"); 4396 continue; 4397 } 4398 Versions.emplace_back(*NameOrErr); 4399 } 4400 4401 // readelf prints 4 entries per line. 4402 uint64_t Entries = VerTable.size(); 4403 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) { 4404 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":"; 4405 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) { 4406 unsigned Ndx = VerTable[VersymRow + I].vs_index; 4407 OS << format("%4x%c", Ndx & VERSYM_VERSION, 4408 Ndx & VERSYM_HIDDEN ? 'h' : ' '); 4409 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13); 4410 } 4411 OS << '\n'; 4412 } 4413 OS << '\n'; 4414 } 4415 4416 static std::string versionFlagToString(unsigned Flags) { 4417 if (Flags == 0) 4418 return "none"; 4419 4420 std::string Ret; 4421 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) { 4422 if (!(Flags & Flag)) 4423 return; 4424 if (!Ret.empty()) 4425 Ret += " | "; 4426 Ret += Name; 4427 Flags &= ~Flag; 4428 }; 4429 4430 AddFlag(VER_FLG_BASE, "BASE"); 4431 AddFlag(VER_FLG_WEAK, "WEAK"); 4432 AddFlag(VER_FLG_INFO, "INFO"); 4433 AddFlag(~0, "<unknown>"); 4434 return Ret; 4435 } 4436 4437 template <class ELFT> 4438 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 4439 if (!Sec) 4440 return; 4441 4442 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info); 4443 4444 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 4445 if (!V) { 4446 this->reportUniqueWarning(V.takeError()); 4447 return; 4448 } 4449 4450 for (const VerDef &Def : *V) { 4451 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n", 4452 Def.Offset, Def.Version, 4453 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt, 4454 Def.Name.data()); 4455 unsigned I = 0; 4456 for (const VerdAux &Aux : Def.AuxV) 4457 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I, 4458 Aux.Name.data()); 4459 } 4460 4461 OS << '\n'; 4462 } 4463 4464 template <class ELFT> 4465 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 4466 if (!Sec) 4467 return; 4468 4469 unsigned VerneedNum = Sec->sh_info; 4470 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum); 4471 4472 Expected<std::vector<VerNeed>> V = 4473 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 4474 if (!V) { 4475 this->reportUniqueWarning(V.takeError()); 4476 return; 4477 } 4478 4479 for (const VerNeed &VN : *V) { 4480 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset, 4481 VN.Version, VN.File.data(), VN.Cnt); 4482 for (const VernAux &Aux : VN.AuxV) 4483 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset, 4484 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(), 4485 Aux.Other); 4486 } 4487 OS << '\n'; 4488 } 4489 4490 template <class ELFT> 4491 void GNUELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) { 4492 size_t NBucket = HashTable.nbucket; 4493 size_t NChain = HashTable.nchain; 4494 ArrayRef<Elf_Word> Buckets = HashTable.buckets(); 4495 ArrayRef<Elf_Word> Chains = HashTable.chains(); 4496 size_t TotalSyms = 0; 4497 // If hash table is correct, we have at least chains with 0 length 4498 size_t MaxChain = 1; 4499 size_t CumulativeNonZero = 0; 4500 4501 if (NChain == 0 || NBucket == 0) 4502 return; 4503 4504 std::vector<size_t> ChainLen(NBucket, 0); 4505 // Go over all buckets and and note chain lengths of each bucket (total 4506 // unique chain lengths). 4507 for (size_t B = 0; B < NBucket; B++) { 4508 std::vector<bool> Visited(NChain); 4509 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) { 4510 if (C == ELF::STN_UNDEF) 4511 break; 4512 if (Visited[C]) { 4513 this->reportUniqueWarning(".hash section is invalid: bucket " + 4514 Twine(C) + 4515 ": a cycle was detected in the linked chain"); 4516 break; 4517 } 4518 Visited[C] = true; 4519 if (MaxChain <= ++ChainLen[B]) 4520 MaxChain++; 4521 } 4522 TotalSyms += ChainLen[B]; 4523 } 4524 4525 if (!TotalSyms) 4526 return; 4527 4528 std::vector<size_t> Count(MaxChain, 0); 4529 // Count how long is the chain for each bucket 4530 for (size_t B = 0; B < NBucket; B++) 4531 ++Count[ChainLen[B]]; 4532 // Print Number of buckets with each chain lengths and their cumulative 4533 // coverage of the symbols 4534 OS << "Histogram for bucket list length (total of " << NBucket 4535 << " buckets)\n" 4536 << " Length Number % of total Coverage\n"; 4537 for (size_t I = 0; I < MaxChain; I++) { 4538 CumulativeNonZero += Count[I] * I; 4539 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4540 (Count[I] * 100.0) / NBucket, 4541 (CumulativeNonZero * 100.0) / TotalSyms); 4542 } 4543 } 4544 4545 template <class ELFT> 4546 void GNUELFDumper<ELFT>::printGnuHashHistogram( 4547 const Elf_GnuHash &GnuHashTable) { 4548 Expected<ArrayRef<Elf_Word>> ChainsOrErr = 4549 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable); 4550 if (!ChainsOrErr) { 4551 this->reportUniqueWarning("unable to print the GNU hash table histogram: " + 4552 toString(ChainsOrErr.takeError())); 4553 return; 4554 } 4555 4556 ArrayRef<Elf_Word> Chains = *ChainsOrErr; 4557 size_t Symndx = GnuHashTable.symndx; 4558 size_t TotalSyms = 0; 4559 size_t MaxChain = 1; 4560 size_t CumulativeNonZero = 0; 4561 4562 size_t NBucket = GnuHashTable.nbuckets; 4563 if (Chains.empty() || NBucket == 0) 4564 return; 4565 4566 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets(); 4567 std::vector<size_t> ChainLen(NBucket, 0); 4568 for (size_t B = 0; B < NBucket; B++) { 4569 if (!Buckets[B]) 4570 continue; 4571 size_t Len = 1; 4572 for (size_t C = Buckets[B] - Symndx; 4573 C < Chains.size() && (Chains[C] & 1) == 0; C++) 4574 if (MaxChain < ++Len) 4575 MaxChain++; 4576 ChainLen[B] = Len; 4577 TotalSyms += Len; 4578 } 4579 MaxChain++; 4580 4581 if (!TotalSyms) 4582 return; 4583 4584 std::vector<size_t> Count(MaxChain, 0); 4585 for (size_t B = 0; B < NBucket; B++) 4586 ++Count[ChainLen[B]]; 4587 // Print Number of buckets with each chain lengths and their cumulative 4588 // coverage of the symbols 4589 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket 4590 << " buckets)\n" 4591 << " Length Number % of total Coverage\n"; 4592 for (size_t I = 0; I < MaxChain; I++) { 4593 CumulativeNonZero += Count[I] * I; 4594 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I], 4595 (Count[I] * 100.0) / NBucket, 4596 (CumulativeNonZero * 100.0) / TotalSyms); 4597 } 4598 } 4599 4600 // Hash histogram shows statistics of how efficient the hash was for the 4601 // dynamic symbol table. The table shows the number of hash buckets for 4602 // different lengths of chains as an absolute number and percentage of the total 4603 // buckets, and the cumulative coverage of symbols for each set of buckets. 4604 template <class ELFT> void GNUELFDumper<ELFT>::printHashHistograms() { 4605 // Print histogram for the .hash section. 4606 if (this->HashTable) { 4607 if (Error E = checkHashTable<ELFT>(*this, this->HashTable)) 4608 this->reportUniqueWarning(std::move(E)); 4609 else 4610 printHashHistogram(*this->HashTable); 4611 } 4612 4613 // Print histogram for the .gnu.hash section. 4614 if (this->GnuHashTable) { 4615 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable)) 4616 this->reportUniqueWarning(std::move(E)); 4617 else 4618 printGnuHashHistogram(*this->GnuHashTable); 4619 } 4620 } 4621 4622 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() { 4623 OS << "GNUStyle::printCGProfile not implemented\n"; 4624 } 4625 4626 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) { 4627 std::vector<uint64_t> Ret; 4628 const uint8_t *Cur = Data.begin(); 4629 const uint8_t *End = Data.end(); 4630 while (Cur != End) { 4631 unsigned Size; 4632 const char *Err; 4633 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err)); 4634 if (Err) 4635 return createError(Err); 4636 Cur += Size; 4637 } 4638 return Ret; 4639 } 4640 4641 template <class ELFT> 4642 static Expected<std::vector<uint64_t>> 4643 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) { 4644 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec); 4645 if (!ContentsOrErr) 4646 return ContentsOrErr.takeError(); 4647 4648 if (Expected<std::vector<uint64_t>> SymsOrErr = 4649 toULEB128Array(*ContentsOrErr)) 4650 return *SymsOrErr; 4651 else 4652 return createError("unable to decode " + describe(Obj, Sec) + ": " + 4653 toString(SymsOrErr.takeError())); 4654 } 4655 4656 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() { 4657 if (!this->DotAddrsigSec) 4658 return; 4659 4660 Expected<std::vector<uint64_t>> SymsOrErr = 4661 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 4662 if (!SymsOrErr) { 4663 this->reportUniqueWarning(SymsOrErr.takeError()); 4664 return; 4665 } 4666 4667 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec); 4668 OS << "\nAddress-significant symbols section '" << Name << "'" 4669 << " contains " << SymsOrErr->size() << " entries:\n"; 4670 OS << " Num: Name\n"; 4671 4672 Field Fields[2] = {0, 8}; 4673 size_t SymIndex = 0; 4674 for (uint64_t Sym : *SymsOrErr) { 4675 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":"; 4676 Fields[1].Str = this->getStaticSymbolName(Sym); 4677 for (const Field &Entry : Fields) 4678 printField(Entry); 4679 OS << "\n"; 4680 } 4681 } 4682 4683 template <typename ELFT> 4684 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize, 4685 ArrayRef<uint8_t> Data) { 4686 std::string str; 4687 raw_string_ostream OS(str); 4688 uint32_t PrData; 4689 auto DumpBit = [&](uint32_t Flag, StringRef Name) { 4690 if (PrData & Flag) { 4691 PrData &= ~Flag; 4692 OS << Name; 4693 if (PrData) 4694 OS << ", "; 4695 } 4696 }; 4697 4698 switch (Type) { 4699 default: 4700 OS << format("<application-specific type 0x%x>", Type); 4701 return OS.str(); 4702 case GNU_PROPERTY_STACK_SIZE: { 4703 OS << "stack size: "; 4704 if (DataSize == sizeof(typename ELFT::uint)) 4705 OS << formatv("{0:x}", 4706 (uint64_t)(*(const typename ELFT::Addr *)Data.data())); 4707 else 4708 OS << format("<corrupt length: 0x%x>", DataSize); 4709 return OS.str(); 4710 } 4711 case GNU_PROPERTY_NO_COPY_ON_PROTECTED: 4712 OS << "no copy on protected"; 4713 if (DataSize) 4714 OS << format(" <corrupt length: 0x%x>", DataSize); 4715 return OS.str(); 4716 case GNU_PROPERTY_AARCH64_FEATURE_1_AND: 4717 case GNU_PROPERTY_X86_FEATURE_1_AND: 4718 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: " 4719 : "x86 feature: "); 4720 if (DataSize != 4) { 4721 OS << format("<corrupt length: 0x%x>", DataSize); 4722 return OS.str(); 4723 } 4724 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4725 if (PrData == 0) { 4726 OS << "<None>"; 4727 return OS.str(); 4728 } 4729 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 4730 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI"); 4731 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC"); 4732 } else { 4733 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT"); 4734 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK"); 4735 } 4736 if (PrData) 4737 OS << format("<unknown flags: 0x%x>", PrData); 4738 return OS.str(); 4739 case GNU_PROPERTY_X86_ISA_1_NEEDED: 4740 case GNU_PROPERTY_X86_ISA_1_USED: 4741 OS << "x86 ISA " 4742 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: "); 4743 if (DataSize != 4) { 4744 OS << format("<corrupt length: 0x%x>", DataSize); 4745 return OS.str(); 4746 } 4747 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4748 if (PrData == 0) { 4749 OS << "<None>"; 4750 return OS.str(); 4751 } 4752 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV"); 4753 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE"); 4754 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2"); 4755 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3"); 4756 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3"); 4757 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1"); 4758 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2"); 4759 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX"); 4760 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2"); 4761 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA"); 4762 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F"); 4763 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD"); 4764 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER"); 4765 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF"); 4766 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL"); 4767 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ"); 4768 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW"); 4769 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS"); 4770 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW"); 4771 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG"); 4772 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA"); 4773 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI"); 4774 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2"); 4775 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI"); 4776 if (PrData) 4777 OS << format("<unknown flags: 0x%x>", PrData); 4778 return OS.str(); 4779 break; 4780 case GNU_PROPERTY_X86_FEATURE_2_NEEDED: 4781 case GNU_PROPERTY_X86_FEATURE_2_USED: 4782 OS << "x86 feature " 4783 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: "); 4784 if (DataSize != 4) { 4785 OS << format("<corrupt length: 0x%x>", DataSize); 4786 return OS.str(); 4787 } 4788 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data()); 4789 if (PrData == 0) { 4790 OS << "<None>"; 4791 return OS.str(); 4792 } 4793 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86"); 4794 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87"); 4795 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX"); 4796 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM"); 4797 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM"); 4798 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM"); 4799 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR"); 4800 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE"); 4801 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT"); 4802 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC"); 4803 if (PrData) 4804 OS << format("<unknown flags: 0x%x>", PrData); 4805 return OS.str(); 4806 } 4807 } 4808 4809 template <typename ELFT> 4810 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) { 4811 using Elf_Word = typename ELFT::Word; 4812 4813 SmallVector<std::string, 4> Properties; 4814 while (Arr.size() >= 8) { 4815 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data()); 4816 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4); 4817 Arr = Arr.drop_front(8); 4818 4819 // Take padding size into account if present. 4820 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint)); 4821 std::string str; 4822 raw_string_ostream OS(str); 4823 if (Arr.size() < PaddedSize) { 4824 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize); 4825 Properties.push_back(OS.str()); 4826 break; 4827 } 4828 Properties.push_back( 4829 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize))); 4830 Arr = Arr.drop_front(PaddedSize); 4831 } 4832 4833 if (!Arr.empty()) 4834 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>"); 4835 4836 return Properties; 4837 } 4838 4839 struct GNUAbiTag { 4840 std::string OSName; 4841 std::string ABI; 4842 bool IsValid; 4843 }; 4844 4845 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) { 4846 typedef typename ELFT::Word Elf_Word; 4847 4848 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()), 4849 reinterpret_cast<const Elf_Word *>(Desc.end())); 4850 4851 if (Words.size() < 4) 4852 return {"", "", /*IsValid=*/false}; 4853 4854 static const char *OSNames[] = { 4855 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl", 4856 }; 4857 StringRef OSName = "Unknown"; 4858 if (Words[0] < array_lengthof(OSNames)) 4859 OSName = OSNames[Words[0]]; 4860 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3]; 4861 std::string str; 4862 raw_string_ostream ABI(str); 4863 ABI << Major << "." << Minor << "." << Patch; 4864 return {std::string(OSName), ABI.str(), /*IsValid=*/true}; 4865 } 4866 4867 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) { 4868 std::string str; 4869 raw_string_ostream OS(str); 4870 for (uint8_t B : Desc) 4871 OS << format_hex_no_prefix(B, 2); 4872 return OS.str(); 4873 } 4874 4875 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) { 4876 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 4877 } 4878 4879 template <typename ELFT> 4880 static void printGNUNote(raw_ostream &OS, uint32_t NoteType, 4881 ArrayRef<uint8_t> Desc) { 4882 switch (NoteType) { 4883 default: 4884 return; 4885 case ELF::NT_GNU_ABI_TAG: { 4886 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 4887 if (!AbiTag.IsValid) 4888 OS << " <corrupt GNU_ABI_TAG>"; 4889 else 4890 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI; 4891 break; 4892 } 4893 case ELF::NT_GNU_BUILD_ID: { 4894 OS << " Build ID: " << getGNUBuildId(Desc); 4895 break; 4896 } 4897 case ELF::NT_GNU_GOLD_VERSION: 4898 OS << " Version: " << getGNUGoldVersion(Desc); 4899 break; 4900 case ELF::NT_GNU_PROPERTY_TYPE_0: 4901 OS << " Properties:"; 4902 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 4903 OS << " " << Property << "\n"; 4904 break; 4905 } 4906 OS << '\n'; 4907 } 4908 4909 struct AMDNote { 4910 std::string Type; 4911 std::string Value; 4912 }; 4913 4914 template <typename ELFT> 4915 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 4916 switch (NoteType) { 4917 default: 4918 return {"", ""}; 4919 case ELF::NT_AMD_AMDGPU_HSA_METADATA: 4920 return { 4921 "HSA Metadata", 4922 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 4923 case ELF::NT_AMD_AMDGPU_ISA: 4924 return { 4925 "ISA Version", 4926 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())}; 4927 } 4928 } 4929 4930 struct AMDGPUNote { 4931 std::string Type; 4932 std::string Value; 4933 }; 4934 4935 template <typename ELFT> 4936 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) { 4937 switch (NoteType) { 4938 default: 4939 return {"", ""}; 4940 case ELF::NT_AMDGPU_METADATA: { 4941 StringRef MsgPackString = 4942 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size()); 4943 msgpack::Document MsgPackDoc; 4944 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false)) 4945 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"}; 4946 4947 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true); 4948 std::string HSAMetadataString; 4949 if (!Verifier.verify(MsgPackDoc.getRoot())) 4950 HSAMetadataString = "Invalid AMDGPU Metadata\n"; 4951 4952 raw_string_ostream StrOS(HSAMetadataString); 4953 MsgPackDoc.toYAML(StrOS); 4954 4955 return {"AMDGPU Metadata", StrOS.str()}; 4956 } 4957 } 4958 } 4959 4960 struct CoreFileMapping { 4961 uint64_t Start, End, Offset; 4962 StringRef Filename; 4963 }; 4964 4965 struct CoreNote { 4966 uint64_t PageSize; 4967 std::vector<CoreFileMapping> Mappings; 4968 }; 4969 4970 static Expected<CoreNote> readCoreNote(DataExtractor Desc) { 4971 // Expected format of the NT_FILE note description: 4972 // 1. # of file mappings (call it N) 4973 // 2. Page size 4974 // 3. N (start, end, offset) triples 4975 // 4. N packed filenames (null delimited) 4976 // Each field is an Elf_Addr, except for filenames which are char* strings. 4977 4978 CoreNote Ret; 4979 const int Bytes = Desc.getAddressSize(); 4980 4981 if (!Desc.isValidOffsetForAddress(2)) 4982 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) + 4983 " is too short, expected at least 0x" + 4984 Twine::utohexstr(Bytes * 2)); 4985 if (Desc.getData().back() != 0) 4986 return createError("the note is not NUL terminated"); 4987 4988 uint64_t DescOffset = 0; 4989 uint64_t FileCount = Desc.getAddress(&DescOffset); 4990 Ret.PageSize = Desc.getAddress(&DescOffset); 4991 4992 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes)) 4993 return createError("unable to read file mappings (found " + 4994 Twine(FileCount) + "): the note of size 0x" + 4995 Twine::utohexstr(Desc.size()) + " is too short"); 4996 4997 uint64_t FilenamesOffset = 0; 4998 DataExtractor Filenames( 4999 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes), 5000 Desc.isLittleEndian(), Desc.getAddressSize()); 5001 5002 Ret.Mappings.resize(FileCount); 5003 size_t I = 0; 5004 for (CoreFileMapping &Mapping : Ret.Mappings) { 5005 ++I; 5006 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1)) 5007 return createError( 5008 "unable to read the file name for the mapping with index " + 5009 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) + 5010 " is truncated"); 5011 Mapping.Start = Desc.getAddress(&DescOffset); 5012 Mapping.End = Desc.getAddress(&DescOffset); 5013 Mapping.Offset = Desc.getAddress(&DescOffset); 5014 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset); 5015 } 5016 5017 return Ret; 5018 } 5019 5020 template <typename ELFT> 5021 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) { 5022 // Length of "0x<address>" string. 5023 const int FieldWidth = ELFT::Is64Bits ? 18 : 10; 5024 5025 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n'; 5026 OS << " " << right_justify("Start", FieldWidth) << " " 5027 << right_justify("End", FieldWidth) << " " 5028 << right_justify("Page Offset", FieldWidth) << '\n'; 5029 for (const CoreFileMapping &Mapping : Note.Mappings) { 5030 OS << " " << format_hex(Mapping.Start, FieldWidth) << " " 5031 << format_hex(Mapping.End, FieldWidth) << " " 5032 << format_hex(Mapping.Offset, FieldWidth) << "\n " 5033 << Mapping.Filename << '\n'; 5034 } 5035 } 5036 5037 static const NoteType GenericNoteTypes[] = { 5038 {ELF::NT_VERSION, "NT_VERSION (version)"}, 5039 {ELF::NT_ARCH, "NT_ARCH (architecture)"}, 5040 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"}, 5041 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"}, 5042 }; 5043 5044 static const NoteType GNUNoteTypes[] = { 5045 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"}, 5046 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"}, 5047 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"}, 5048 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"}, 5049 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"}, 5050 }; 5051 5052 static const NoteType FreeBSDNoteTypes[] = { 5053 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"}, 5054 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"}, 5055 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"}, 5056 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"}, 5057 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"}, 5058 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"}, 5059 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"}, 5060 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"}, 5061 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS, 5062 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"}, 5063 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"}, 5064 }; 5065 5066 static const NoteType AMDNoteTypes[] = { 5067 {ELF::NT_AMD_AMDGPU_HSA_METADATA, 5068 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"}, 5069 {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"}, 5070 {ELF::NT_AMD_AMDGPU_PAL_METADATA, 5071 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}, 5072 }; 5073 5074 static const NoteType AMDGPUNoteTypes[] = { 5075 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"}, 5076 }; 5077 5078 static const NoteType CoreNoteTypes[] = { 5079 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"}, 5080 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"}, 5081 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"}, 5082 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"}, 5083 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"}, 5084 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"}, 5085 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"}, 5086 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"}, 5087 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"}, 5088 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"}, 5089 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"}, 5090 5091 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"}, 5092 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"}, 5093 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"}, 5094 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"}, 5095 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"}, 5096 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"}, 5097 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"}, 5098 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"}, 5099 {ELF::NT_PPC_TM_CFPR, 5100 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"}, 5101 {ELF::NT_PPC_TM_CVMX, 5102 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"}, 5103 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"}, 5104 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"}, 5105 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"}, 5106 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"}, 5107 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"}, 5108 5109 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"}, 5110 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"}, 5111 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"}, 5112 5113 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"}, 5114 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"}, 5115 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"}, 5116 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"}, 5117 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"}, 5118 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"}, 5119 {ELF::NT_S390_LAST_BREAK, 5120 "NT_S390_LAST_BREAK (s390 last breaking event address)"}, 5121 {ELF::NT_S390_SYSTEM_CALL, 5122 "NT_S390_SYSTEM_CALL (s390 system call restart data)"}, 5123 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"}, 5124 {ELF::NT_S390_VXRS_LOW, 5125 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"}, 5126 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"}, 5127 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"}, 5128 {ELF::NT_S390_GS_BC, 5129 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"}, 5130 5131 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"}, 5132 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"}, 5133 {ELF::NT_ARM_HW_BREAK, 5134 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"}, 5135 {ELF::NT_ARM_HW_WATCH, 5136 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"}, 5137 5138 {ELF::NT_FILE, "NT_FILE (mapped files)"}, 5139 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"}, 5140 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"}, 5141 }; 5142 5143 template <class ELFT> 5144 const StringRef getNoteTypeName(const typename ELFT::Note &Note, 5145 unsigned ELFType) { 5146 uint32_t Type = Note.getType(); 5147 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef { 5148 for (const NoteType &N : V) 5149 if (N.ID == Type) 5150 return N.Name; 5151 return ""; 5152 }; 5153 5154 StringRef Name = Note.getName(); 5155 if (Name == "GNU") 5156 return FindNote(GNUNoteTypes); 5157 if (Name == "FreeBSD") 5158 return FindNote(FreeBSDNoteTypes); 5159 if (Name == "AMD") 5160 return FindNote(AMDNoteTypes); 5161 if (Name == "AMDGPU") 5162 return FindNote(AMDGPUNoteTypes); 5163 5164 if (ELFType == ELF::ET_CORE) 5165 return FindNote(CoreNoteTypes); 5166 return FindNote(GenericNoteTypes); 5167 } 5168 5169 template <class ELFT> 5170 static void printNotesHelper( 5171 const ELFDumper<ELFT> &Dumper, 5172 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off, 5173 typename ELFT::Addr)> 5174 StartNotesFn, 5175 llvm::function_ref<Error(const typename ELFT::Note &)> ProcessNoteFn, 5176 llvm::function_ref<void()> FinishNotesFn) { 5177 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile(); 5178 5179 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections()); 5180 if (Obj.getHeader().e_type != ELF::ET_CORE && !Sections.empty()) { 5181 for (const typename ELFT::Shdr &S : Sections) { 5182 if (S.sh_type != SHT_NOTE) 5183 continue; 5184 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset, 5185 S.sh_size); 5186 Error Err = Error::success(); 5187 size_t I = 0; 5188 for (const typename ELFT::Note Note : Obj.notes(S, Err)) { 5189 if (Error E = ProcessNoteFn(Note)) 5190 Dumper.reportUniqueWarning( 5191 "unable to read note with index " + Twine(I) + " from the " + 5192 describe(Obj, S) + ": " + toString(std::move(E))); 5193 ++I; 5194 } 5195 if (Err) 5196 Dumper.reportUniqueWarning("unable to read notes from the " + 5197 describe(Obj, S) + ": " + 5198 toString(std::move(Err))); 5199 FinishNotesFn(); 5200 } 5201 return; 5202 } 5203 5204 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers(); 5205 if (!PhdrsOrErr) { 5206 Dumper.reportUniqueWarning( 5207 "unable to read program headers to locate the PT_NOTE segment: " + 5208 toString(PhdrsOrErr.takeError())); 5209 return; 5210 } 5211 5212 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) { 5213 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I]; 5214 if (P.p_type != PT_NOTE) 5215 continue; 5216 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz); 5217 Error Err = Error::success(); 5218 size_t Index = 0; 5219 for (const typename ELFT::Note Note : Obj.notes(P, Err)) { 5220 if (Error E = ProcessNoteFn(Note)) 5221 Dumper.reportUniqueWarning("unable to read note with index " + 5222 Twine(Index) + 5223 " from the PT_NOTE segment with index " + 5224 Twine(I) + ": " + toString(std::move(E))); 5225 ++Index; 5226 } 5227 if (Err) 5228 Dumper.reportUniqueWarning( 5229 "unable to read notes from the PT_NOTE segment with index " + 5230 Twine(I) + ": " + toString(std::move(Err))); 5231 FinishNotesFn(); 5232 } 5233 } 5234 5235 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() { 5236 auto PrintHeader = [&](Optional<StringRef> SecName, 5237 const typename ELFT::Off Offset, 5238 const typename ELFT::Addr Size) { 5239 OS << "Displaying notes found "; 5240 5241 if (SecName) 5242 OS << "in: " << *SecName << "\n"; 5243 else 5244 OS << "at file offset " << format_hex(Offset, 10) << " with length " 5245 << format_hex(Size, 10) << ":\n"; 5246 5247 OS << " Owner Data size \tDescription\n"; 5248 }; 5249 5250 auto ProcessNote = [&](const Elf_Note &Note) -> Error { 5251 StringRef Name = Note.getName(); 5252 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 5253 Elf_Word Type = Note.getType(); 5254 5255 // Print the note owner/type. 5256 OS << " " << left_justify(Name, 20) << ' ' 5257 << format_hex(Descriptor.size(), 10) << '\t'; 5258 5259 StringRef NoteType = 5260 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 5261 if (!NoteType.empty()) 5262 OS << NoteType << '\n'; 5263 else 5264 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n"; 5265 5266 // Print the description, or fallback to printing raw bytes for unknown 5267 // owners. 5268 if (Name == "GNU") { 5269 printGNUNote<ELFT>(OS, Type, Descriptor); 5270 } else if (Name == "AMD") { 5271 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 5272 if (!N.Type.empty()) 5273 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5274 } else if (Name == "AMDGPU") { 5275 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 5276 if (!N.Type.empty()) 5277 OS << " " << N.Type << ":\n " << N.Value << '\n'; 5278 } else if (Name == "CORE") { 5279 if (Type == ELF::NT_FILE) { 5280 DataExtractor DescExtractor(Descriptor, 5281 ELFT::TargetEndianness == support::little, 5282 sizeof(Elf_Addr)); 5283 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) 5284 printCoreNote<ELFT>(OS, *NoteOrErr); 5285 else 5286 return NoteOrErr.takeError(); 5287 } 5288 } else if (!Descriptor.empty()) { 5289 OS << " description data:"; 5290 for (uint8_t B : Descriptor) 5291 OS << " " << format("%02x", B); 5292 OS << '\n'; 5293 } 5294 return Error::success(); 5295 }; 5296 5297 printNotesHelper(*this, PrintHeader, ProcessNote, []() {}); 5298 } 5299 5300 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() { 5301 OS << "printELFLinkerOptions not implemented!\n"; 5302 } 5303 5304 template <class ELFT> 5305 void ELFDumper<ELFT>::printDependentLibsHelper( 5306 function_ref<void(const Elf_Shdr &)> OnSectionStart, 5307 function_ref<void(StringRef, uint64_t)> OnLibEntry) { 5308 auto Warn = [this](unsigned SecNdx, StringRef Msg) { 5309 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " + 5310 Twine(SecNdx) + " is broken: " + Msg); 5311 }; 5312 5313 unsigned I = -1; 5314 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) { 5315 ++I; 5316 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES) 5317 continue; 5318 5319 OnSectionStart(Shdr); 5320 5321 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr); 5322 if (!ContentsOrErr) { 5323 Warn(I, toString(ContentsOrErr.takeError())); 5324 continue; 5325 } 5326 5327 ArrayRef<uint8_t> Contents = *ContentsOrErr; 5328 if (!Contents.empty() && Contents.back() != 0) { 5329 Warn(I, "the content is not null-terminated"); 5330 continue; 5331 } 5332 5333 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) { 5334 StringRef Lib((const char *)I); 5335 OnLibEntry(Lib, I - Contents.begin()); 5336 I += Lib.size() + 1; 5337 } 5338 } 5339 } 5340 5341 template <class ELFT> 5342 void ELFDumper<ELFT>::forEachRelocationDo( 5343 const Elf_Shdr &Sec, bool RawRelr, 5344 llvm::function_ref<void(const Relocation<ELFT> &, unsigned, 5345 const Elf_Shdr &, const Elf_Shdr *)> 5346 RelRelaFn, 5347 llvm::function_ref<void(const Elf_Relr &)> RelrFn) { 5348 auto Warn = [&](Error &&E, 5349 const Twine &Prefix = "unable to read relocations from") { 5350 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " + 5351 toString(std::move(E))); 5352 }; 5353 5354 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table. 5355 // For them we should not treat the value of the sh_link field as an index of 5356 // a symbol table. 5357 const Elf_Shdr *SymTab; 5358 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) { 5359 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link); 5360 if (!SymTabOrErr) { 5361 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for"); 5362 return; 5363 } 5364 SymTab = *SymTabOrErr; 5365 } 5366 5367 unsigned RelNdx = 0; 5368 const bool IsMips64EL = this->Obj.isMips64EL(); 5369 switch (Sec.sh_type) { 5370 case ELF::SHT_REL: 5371 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) { 5372 for (const Elf_Rel &R : *RangeOrErr) 5373 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5374 } else { 5375 Warn(RangeOrErr.takeError()); 5376 } 5377 break; 5378 case ELF::SHT_RELA: 5379 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) { 5380 for (const Elf_Rela &R : *RangeOrErr) 5381 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5382 } else { 5383 Warn(RangeOrErr.takeError()); 5384 } 5385 break; 5386 case ELF::SHT_RELR: 5387 case ELF::SHT_ANDROID_RELR: { 5388 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec); 5389 if (!RangeOrErr) { 5390 Warn(RangeOrErr.takeError()); 5391 break; 5392 } 5393 if (RawRelr) { 5394 for (const Elf_Relr &R : *RangeOrErr) 5395 RelrFn(R); 5396 break; 5397 } 5398 5399 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr)) 5400 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, 5401 /*SymTab=*/nullptr); 5402 break; 5403 } 5404 case ELF::SHT_ANDROID_REL: 5405 case ELF::SHT_ANDROID_RELA: 5406 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) { 5407 for (const Elf_Rela &R : *RelasOrErr) 5408 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab); 5409 } else { 5410 Warn(RelasOrErr.takeError()); 5411 } 5412 break; 5413 } 5414 } 5415 5416 template <class ELFT> 5417 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const { 5418 StringRef Name = "<?>"; 5419 if (Expected<StringRef> SecNameOrErr = 5420 Obj.getSectionName(Sec, this->WarningHandler)) 5421 Name = *SecNameOrErr; 5422 else 5423 this->reportUniqueWarning("unable to get the name of " + describe(Sec) + 5424 ": " + toString(SecNameOrErr.takeError())); 5425 return Name; 5426 } 5427 5428 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() { 5429 bool SectionStarted = false; 5430 struct NameOffset { 5431 StringRef Name; 5432 uint64_t Offset; 5433 }; 5434 std::vector<NameOffset> SecEntries; 5435 NameOffset Current; 5436 auto PrintSection = [&]() { 5437 OS << "Dependent libraries section " << Current.Name << " at offset " 5438 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size() 5439 << " entries:\n"; 5440 for (NameOffset Entry : SecEntries) 5441 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name 5442 << "\n"; 5443 OS << "\n"; 5444 SecEntries.clear(); 5445 }; 5446 5447 auto OnSectionStart = [&](const Elf_Shdr &Shdr) { 5448 if (SectionStarted) 5449 PrintSection(); 5450 SectionStarted = true; 5451 Current.Offset = Shdr.sh_offset; 5452 Current.Name = this->getPrintableSectionName(Shdr); 5453 }; 5454 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) { 5455 SecEntries.push_back(NameOffset{Lib, Offset}); 5456 }; 5457 5458 this->printDependentLibsHelper(OnSectionStart, OnLibEntry); 5459 if (SectionStarted) 5460 PrintSection(); 5461 } 5462 5463 template <class ELFT> 5464 bool ELFDumper<ELFT>::printFunctionStackSize( 5465 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec, 5466 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) { 5467 uint32_t FuncSymIndex = 0; 5468 if (this->DotSymtabSec) { 5469 if (Expected<Elf_Sym_Range> SymsOrError = Obj.symbols(this->DotSymtabSec)) { 5470 uint32_t Index = (uint32_t)-1; 5471 for (const Elf_Sym &Sym : *SymsOrError) { 5472 ++Index; 5473 5474 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC) 5475 continue; 5476 5477 if (Expected<uint64_t> SymAddrOrErr = 5478 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress()) { 5479 if (SymValue != *SymAddrOrErr) 5480 continue; 5481 } else { 5482 std::string Name = this->getStaticSymbolName(Index); 5483 reportUniqueWarning("unable to get address of symbol '" + Name + 5484 "': " + toString(SymAddrOrErr.takeError())); 5485 break; 5486 } 5487 5488 // Check if the symbol is in the right section. FunctionSec == None 5489 // means "any section". 5490 if (FunctionSec) { 5491 if (Expected<const Elf_Shdr *> SecOrErr = 5492 Obj.getSection(Sym, this->DotSymtabSec, 5493 this->getShndxTable(this->DotSymtabSec))) { 5494 if (*FunctionSec != *SecOrErr) 5495 continue; 5496 } else { 5497 std::string Name = this->getStaticSymbolName(Index); 5498 // Note: it is impossible to trigger this error currently, it is 5499 // untested. 5500 reportUniqueWarning("unable to get section of symbol '" + Name + 5501 "': " + toString(SecOrErr.takeError())); 5502 break; 5503 } 5504 } 5505 5506 FuncSymIndex = Index; 5507 break; 5508 } 5509 } else { 5510 reportUniqueWarning("unable to read the symbol table: " + 5511 toString(SymsOrError.takeError())); 5512 } 5513 } 5514 5515 std::string FuncName = "?"; 5516 if (!FuncSymIndex) 5517 reportUniqueWarning( 5518 "could not identify function symbol for stack size entry in " + 5519 describe(StackSizeSec)); 5520 else 5521 FuncName = this->getStaticSymbolName(FuncSymIndex); 5522 5523 // Extract the size. The expectation is that Offset is pointing to the right 5524 // place, i.e. past the function address. 5525 Error Err = Error::success(); 5526 uint64_t StackSize = Data.getULEB128(Offset, &Err); 5527 if (Err) { 5528 reportUniqueWarning("could not extract a valid stack size from " + 5529 describe(StackSizeSec) + ": " + 5530 toString(std::move(Err))); 5531 return false; 5532 } 5533 printStackSizeEntry(StackSize, FuncName); 5534 return true; 5535 } 5536 5537 template <class ELFT> 5538 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, 5539 StringRef FuncName) { 5540 OS.PadToColumn(2); 5541 OS << format_decimal(Size, 11); 5542 OS.PadToColumn(18); 5543 OS << FuncName << "\n"; 5544 } 5545 5546 template <class ELFT> 5547 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R, 5548 const Elf_Shdr &RelocSec, unsigned Ndx, 5549 const Elf_Shdr *SymTab, 5550 const Elf_Shdr *FunctionSec, 5551 const Elf_Shdr &StackSizeSec, 5552 const RelocationResolver &Resolver, 5553 DataExtractor Data) { 5554 // This function ignores potentially erroneous input, unless it is directly 5555 // related to stack size reporting. 5556 const Elf_Sym *Sym = nullptr; 5557 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab); 5558 if (!TargetOrErr) 5559 reportUniqueWarning("unable to get the target of relocation with index " + 5560 Twine(Ndx) + " in " + describe(RelocSec) + ": " + 5561 toString(TargetOrErr.takeError())); 5562 else 5563 Sym = TargetOrErr->Sym; 5564 5565 uint64_t RelocSymValue = 0; 5566 if (Sym) { 5567 Expected<const Elf_Shdr *> SectionOrErr = 5568 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab)); 5569 if (!SectionOrErr) { 5570 reportUniqueWarning( 5571 "cannot identify the section for relocation symbol '" + 5572 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError())); 5573 } else if (*SectionOrErr != FunctionSec) { 5574 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name + 5575 "' is not in the expected section"); 5576 // Pretend that the symbol is in the correct section and report its 5577 // stack size anyway. 5578 FunctionSec = *SectionOrErr; 5579 } 5580 5581 RelocSymValue = Sym->st_value; 5582 } 5583 5584 uint64_t Offset = R.Offset; 5585 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 5586 reportUniqueWarning("found invalid relocation offset (0x" + 5587 Twine::utohexstr(Offset) + ") into " + 5588 describe(StackSizeSec) + 5589 " while trying to extract a stack size entry"); 5590 return; 5591 } 5592 5593 uint64_t SymValue = 5594 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset), 5595 R.Addend.getValueOr(0)); 5596 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data, 5597 &Offset); 5598 } 5599 5600 template <class ELFT> 5601 void ELFDumper<ELFT>::printNonRelocatableStackSizes( 5602 std::function<void()> PrintHeader) { 5603 // This function ignores potentially erroneous input, unless it is directly 5604 // related to stack size reporting. 5605 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 5606 if (this->getPrintableSectionName(Sec) != ".stack_sizes") 5607 continue; 5608 PrintHeader(); 5609 ArrayRef<uint8_t> Contents = 5610 unwrapOrError(this->FileName, Obj.getSectionContents(Sec)); 5611 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 5612 uint64_t Offset = 0; 5613 while (Offset < Contents.size()) { 5614 // The function address is followed by a ULEB representing the stack 5615 // size. Check for an extra byte before we try to process the entry. 5616 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) { 5617 reportUniqueWarning( 5618 describe(Sec) + 5619 " ended while trying to extract a stack size entry"); 5620 break; 5621 } 5622 uint64_t SymValue = Data.getAddress(&Offset); 5623 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data, 5624 &Offset)) 5625 break; 5626 } 5627 } 5628 } 5629 5630 template <class ELFT> 5631 void ELFDumper<ELFT>::printRelocatableStackSizes( 5632 std::function<void()> PrintHeader) { 5633 // Build a map between stack size sections and their corresponding relocation 5634 // sections. 5635 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap; 5636 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) { 5637 StringRef SectionName; 5638 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec)) 5639 SectionName = *NameOrErr; 5640 else 5641 consumeError(NameOrErr.takeError()); 5642 5643 // A stack size section that we haven't encountered yet is mapped to the 5644 // null section until we find its corresponding relocation section. 5645 if (SectionName == ".stack_sizes") 5646 if (StackSizeRelocMap 5647 .insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr)) 5648 .second) 5649 continue; 5650 5651 // Check relocation sections if they are relocating contents of a 5652 // stack sizes section. 5653 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL) 5654 continue; 5655 5656 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info); 5657 if (!RelSecOrErr) { 5658 reportUniqueWarning(describe(Sec) + 5659 ": failed to get a relocated section: " + 5660 toString(RelSecOrErr.takeError())); 5661 continue; 5662 } 5663 5664 const Elf_Shdr *ContentsSec = *RelSecOrErr; 5665 if (this->getPrintableSectionName(**RelSecOrErr) != ".stack_sizes") 5666 continue; 5667 5668 // Insert a mapping from the stack sizes section to its relocation section. 5669 StackSizeRelocMap[ContentsSec] = &Sec; 5670 } 5671 5672 for (const auto &StackSizeMapEntry : StackSizeRelocMap) { 5673 PrintHeader(); 5674 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first; 5675 const Elf_Shdr *RelocSec = StackSizeMapEntry.second; 5676 5677 // Warn about stack size sections without a relocation section. 5678 if (!RelocSec) { 5679 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) + 5680 ") does not have a corresponding " 5681 "relocation section"), 5682 FileName); 5683 continue; 5684 } 5685 5686 // A .stack_sizes section header's sh_link field is supposed to point 5687 // to the section that contains the functions whose stack sizes are 5688 // described in it. 5689 const Elf_Shdr *FunctionSec = unwrapOrError( 5690 this->FileName, Obj.getSection(StackSizesELFSec->sh_link)); 5691 5692 SupportsRelocation IsSupportedFn; 5693 RelocationResolver Resolver; 5694 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF); 5695 ArrayRef<uint8_t> Contents = 5696 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec)); 5697 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr)); 5698 5699 forEachRelocationDo( 5700 *RelocSec, /*RawRelr=*/false, 5701 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec, 5702 const Elf_Shdr *SymTab) { 5703 if (!IsSupportedFn || !IsSupportedFn(R.Type)) { 5704 reportUniqueWarning( 5705 describe(*RelocSec) + 5706 " contains an unsupported relocation with index " + Twine(Ndx) + 5707 ": " + Obj.getRelocationTypeName(R.Type)); 5708 return; 5709 } 5710 5711 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec, 5712 *StackSizesELFSec, Resolver, Data); 5713 }, 5714 [](const Elf_Relr &) { 5715 llvm_unreachable("can't get here, because we only support " 5716 "SHT_REL/SHT_RELA sections"); 5717 }); 5718 } 5719 } 5720 5721 template <class ELFT> 5722 void GNUELFDumper<ELFT>::printStackSizes() { 5723 bool HeaderHasBeenPrinted = false; 5724 auto PrintHeader = [&]() { 5725 if (HeaderHasBeenPrinted) 5726 return; 5727 OS << "\nStack Sizes:\n"; 5728 OS.PadToColumn(9); 5729 OS << "Size"; 5730 OS.PadToColumn(18); 5731 OS << "Function\n"; 5732 HeaderHasBeenPrinted = true; 5733 }; 5734 5735 // For non-relocatable objects, look directly for sections whose name starts 5736 // with .stack_sizes and process the contents. 5737 if (this->Obj.getHeader().e_type == ELF::ET_REL) 5738 this->printRelocatableStackSizes(PrintHeader); 5739 else 5740 this->printNonRelocatableStackSizes(PrintHeader); 5741 } 5742 5743 template <class ELFT> 5744 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 5745 size_t Bias = ELFT::Is64Bits ? 8 : 0; 5746 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 5747 OS.PadToColumn(2); 5748 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias); 5749 OS.PadToColumn(11 + Bias); 5750 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)"; 5751 OS.PadToColumn(22 + Bias); 5752 OS << format_hex_no_prefix(*E, 8 + Bias); 5753 OS.PadToColumn(31 + 2 * Bias); 5754 OS << Purpose << "\n"; 5755 }; 5756 5757 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n"); 5758 OS << " Canonical gp value: " 5759 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n"; 5760 5761 OS << " Reserved entries:\n"; 5762 if (ELFT::Is64Bits) 5763 OS << " Address Access Initial Purpose\n"; 5764 else 5765 OS << " Address Access Initial Purpose\n"; 5766 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver"); 5767 if (Parser.getGotModulePointer()) 5768 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)"); 5769 5770 if (!Parser.getLocalEntries().empty()) { 5771 OS << "\n"; 5772 OS << " Local entries:\n"; 5773 if (ELFT::Is64Bits) 5774 OS << " Address Access Initial\n"; 5775 else 5776 OS << " Address Access Initial\n"; 5777 for (auto &E : Parser.getLocalEntries()) 5778 PrintEntry(&E, ""); 5779 } 5780 5781 if (Parser.IsStatic) 5782 return; 5783 5784 if (!Parser.getGlobalEntries().empty()) { 5785 OS << "\n"; 5786 OS << " Global entries:\n"; 5787 if (ELFT::Is64Bits) 5788 OS << " Address Access Initial Sym.Val." 5789 << " Type Ndx Name\n"; 5790 else 5791 OS << " Address Access Initial Sym.Val. Type Ndx Name\n"; 5792 5793 DataRegion<Elf_Word> ShndxTable( 5794 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 5795 for (auto &E : Parser.getGlobalEntries()) { 5796 const Elf_Sym &Sym = *Parser.getGotSym(&E); 5797 const Elf_Sym &FirstSym = this->dynamic_symbols()[0]; 5798 std::string SymName = this->getFullSymbolName( 5799 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 5800 5801 OS.PadToColumn(2); 5802 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias)); 5803 OS.PadToColumn(11 + Bias); 5804 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)"; 5805 OS.PadToColumn(22 + Bias); 5806 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 5807 OS.PadToColumn(31 + 2 * Bias); 5808 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 5809 OS.PadToColumn(40 + 3 * Bias); 5810 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes)); 5811 OS.PadToColumn(48 + 3 * Bias); 5812 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 5813 ShndxTable); 5814 OS.PadToColumn(52 + 3 * Bias); 5815 OS << SymName << "\n"; 5816 } 5817 } 5818 5819 if (!Parser.getOtherEntries().empty()) 5820 OS << "\n Number of TLS and multi-GOT entries " 5821 << Parser.getOtherEntries().size() << "\n"; 5822 } 5823 5824 template <class ELFT> 5825 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 5826 size_t Bias = ELFT::Is64Bits ? 8 : 0; 5827 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) { 5828 OS.PadToColumn(2); 5829 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias); 5830 OS.PadToColumn(11 + Bias); 5831 OS << format_hex_no_prefix(*E, 8 + Bias); 5832 OS.PadToColumn(20 + 2 * Bias); 5833 OS << Purpose << "\n"; 5834 }; 5835 5836 OS << "PLT GOT:\n\n"; 5837 5838 OS << " Reserved entries:\n"; 5839 OS << " Address Initial Purpose\n"; 5840 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver"); 5841 if (Parser.getPltModulePointer()) 5842 PrintEntry(Parser.getPltModulePointer(), "Module pointer"); 5843 5844 if (!Parser.getPltEntries().empty()) { 5845 OS << "\n"; 5846 OS << " Entries:\n"; 5847 OS << " Address Initial Sym.Val. Type Ndx Name\n"; 5848 DataRegion<Elf_Word> ShndxTable( 5849 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 5850 for (auto &E : Parser.getPltEntries()) { 5851 const Elf_Sym &Sym = *Parser.getPltSym(&E); 5852 const Elf_Sym &FirstSym = *cantFail( 5853 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 5854 std::string SymName = this->getFullSymbolName( 5855 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false); 5856 5857 OS.PadToColumn(2); 5858 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias)); 5859 OS.PadToColumn(11 + Bias); 5860 OS << to_string(format_hex_no_prefix(E, 8 + Bias)); 5861 OS.PadToColumn(20 + 2 * Bias); 5862 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias)); 5863 OS.PadToColumn(29 + 3 * Bias); 5864 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes)); 5865 OS.PadToColumn(37 + 3 * Bias); 5866 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(), 5867 ShndxTable); 5868 OS.PadToColumn(41 + 3 * Bias); 5869 OS << SymName << "\n"; 5870 } 5871 } 5872 } 5873 5874 template <class ELFT> 5875 Expected<const Elf_Mips_ABIFlags<ELFT> *> 5876 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) { 5877 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags"); 5878 if (Sec == nullptr) 5879 return nullptr; 5880 5881 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: "; 5882 Expected<ArrayRef<uint8_t>> DataOrErr = 5883 Dumper.getElfObject().getELFFile().getSectionContents(*Sec); 5884 if (!DataOrErr) 5885 return createError(ErrPrefix + toString(DataOrErr.takeError())); 5886 5887 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) 5888 return createError(ErrPrefix + "it has a wrong size (" + 5889 Twine(DataOrErr->size()) + ")"); 5890 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data()); 5891 } 5892 5893 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() { 5894 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr; 5895 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 5896 getMipsAbiFlagsSection(*this)) 5897 Flags = *SecOrErr; 5898 else 5899 this->reportUniqueWarning(SecOrErr.takeError()); 5900 if (!Flags) 5901 return; 5902 5903 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n"; 5904 OS << "ISA: MIPS" << int(Flags->isa_level); 5905 if (Flags->isa_rev > 1) 5906 OS << "r" << int(Flags->isa_rev); 5907 OS << "\n"; 5908 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n"; 5909 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n"; 5910 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n"; 5911 OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)) 5912 << "\n"; 5913 OS << "ISA Extension: " 5914 << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n"; 5915 if (Flags->ases == 0) 5916 OS << "ASEs: None\n"; 5917 else 5918 // FIXME: Print each flag on a separate line. 5919 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags)) 5920 << "\n"; 5921 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n"; 5922 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n"; 5923 OS << "\n"; 5924 } 5925 5926 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() { 5927 const Elf_Ehdr &E = this->Obj.getHeader(); 5928 { 5929 DictScope D(W, "ElfHeader"); 5930 { 5931 DictScope D(W, "Ident"); 5932 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4)); 5933 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); 5934 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA], 5935 makeArrayRef(ElfDataEncoding)); 5936 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]); 5937 5938 auto OSABI = makeArrayRef(ElfOSABI); 5939 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH && 5940 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) { 5941 switch (E.e_machine) { 5942 case ELF::EM_AMDGPU: 5943 OSABI = makeArrayRef(AMDGPUElfOSABI); 5944 break; 5945 case ELF::EM_ARM: 5946 OSABI = makeArrayRef(ARMElfOSABI); 5947 break; 5948 case ELF::EM_TI_C6000: 5949 OSABI = makeArrayRef(C6000ElfOSABI); 5950 break; 5951 } 5952 } 5953 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI); 5954 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]); 5955 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD)); 5956 } 5957 5958 std::string TypeStr; 5959 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) { 5960 TypeStr = Ent->Name.str(); 5961 } else { 5962 if (E.e_type >= ET_LOPROC) 5963 TypeStr = "Processor Specific"; 5964 else if (E.e_type >= ET_LOOS) 5965 TypeStr = "OS Specific"; 5966 else 5967 TypeStr = "Unknown"; 5968 } 5969 W.printString("Type", TypeStr + " (0x" + to_hexString(E.e_type) + ")"); 5970 5971 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType)); 5972 W.printNumber("Version", E.e_version); 5973 W.printHex("Entry", E.e_entry); 5974 W.printHex("ProgramHeaderOffset", E.e_phoff); 5975 W.printHex("SectionHeaderOffset", E.e_shoff); 5976 if (E.e_machine == EM_MIPS) 5977 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags), 5978 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), 5979 unsigned(ELF::EF_MIPS_MACH)); 5980 else if (E.e_machine == EM_AMDGPU) 5981 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAMDGPUFlags), 5982 unsigned(ELF::EF_AMDGPU_MACH)); 5983 else if (E.e_machine == EM_RISCV) 5984 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags)); 5985 else 5986 W.printFlags("Flags", E.e_flags); 5987 W.printNumber("HeaderSize", E.e_ehsize); 5988 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize); 5989 W.printNumber("ProgramHeaderCount", E.e_phnum); 5990 W.printNumber("SectionHeaderEntrySize", E.e_shentsize); 5991 W.printString("SectionHeaderCount", 5992 getSectionHeadersNumString(this->Obj, this->FileName)); 5993 W.printString("StringTableSectionIndex", 5994 getSectionHeaderTableIndexString(this->Obj, this->FileName)); 5995 } 5996 } 5997 5998 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() { 5999 DictScope Lists(W, "Groups"); 6000 std::vector<GroupSection> V = this->getGroups(); 6001 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V); 6002 for (const GroupSection &G : V) { 6003 DictScope D(W, "Group"); 6004 W.printNumber("Name", G.Name, G.ShName); 6005 W.printNumber("Index", G.Index); 6006 W.printNumber("Link", G.Link); 6007 W.printNumber("Info", G.Info); 6008 W.printHex("Type", getGroupType(G.Type), G.Type); 6009 W.startLine() << "Signature: " << G.Signature << "\n"; 6010 6011 ListScope L(W, "Section(s) in group"); 6012 for (const GroupMember &GM : G.Members) { 6013 const GroupSection *MainGroup = Map[GM.Index]; 6014 if (MainGroup != &G) 6015 this->reportUniqueWarning( 6016 "section with index " + Twine(GM.Index) + 6017 ", included in the group section with index " + 6018 Twine(MainGroup->Index) + 6019 ", was also found in the group section with index " + 6020 Twine(G.Index)); 6021 W.startLine() << GM.Name << " (" << GM.Index << ")\n"; 6022 } 6023 } 6024 6025 if (V.empty()) 6026 W.startLine() << "There are no group sections in the file.\n"; 6027 } 6028 6029 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() { 6030 ListScope D(W, "Relocations"); 6031 6032 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6033 if (!isRelocationSec<ELFT>(Sec)) 6034 continue; 6035 6036 StringRef Name = this->getPrintableSectionName(Sec); 6037 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front(); 6038 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n"; 6039 W.indent(); 6040 this->printRelocationsHelper(Sec); 6041 W.unindent(); 6042 W.startLine() << "}\n"; 6043 } 6044 } 6045 6046 template <class ELFT> 6047 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) { 6048 W.startLine() << W.hex(R) << "\n"; 6049 } 6050 6051 template <class ELFT> 6052 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R, 6053 const RelSymbol<ELFT> &RelSym) { 6054 StringRef SymbolName = RelSym.Name; 6055 SmallString<32> RelocName; 6056 this->Obj.getRelocationTypeName(R.Type, RelocName); 6057 6058 if (opts::ExpandRelocs) { 6059 DictScope Group(W, "Relocation"); 6060 W.printHex("Offset", R.Offset); 6061 W.printNumber("Type", RelocName, R.Type); 6062 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol); 6063 if (R.Addend) 6064 W.printHex("Addend", (uintX_t)*R.Addend); 6065 } else { 6066 raw_ostream &OS = W.startLine(); 6067 OS << W.hex(R.Offset) << " " << RelocName << " " 6068 << (!SymbolName.empty() ? SymbolName : "-"); 6069 if (R.Addend) 6070 OS << " " << W.hex((uintX_t)*R.Addend); 6071 OS << "\n"; 6072 } 6073 } 6074 6075 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() { 6076 ListScope SectionsD(W, "Sections"); 6077 6078 int SectionIndex = -1; 6079 std::vector<EnumEntry<unsigned>> FlagsList = 6080 getSectionFlagsForTarget(this->Obj.getHeader().e_machine); 6081 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) { 6082 DictScope SectionD(W, "Section"); 6083 W.printNumber("Index", ++SectionIndex); 6084 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name); 6085 W.printHex("Type", 6086 object::getELFSectionTypeName(this->Obj.getHeader().e_machine, 6087 Sec.sh_type), 6088 Sec.sh_type); 6089 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList)); 6090 W.printHex("Address", Sec.sh_addr); 6091 W.printHex("Offset", Sec.sh_offset); 6092 W.printNumber("Size", Sec.sh_size); 6093 W.printNumber("Link", Sec.sh_link); 6094 W.printNumber("Info", Sec.sh_info); 6095 W.printNumber("AddressAlignment", Sec.sh_addralign); 6096 W.printNumber("EntrySize", Sec.sh_entsize); 6097 6098 if (opts::SectionRelocations) { 6099 ListScope D(W, "Relocations"); 6100 this->printRelocationsHelper(Sec); 6101 } 6102 6103 if (opts::SectionSymbols) { 6104 ListScope D(W, "Symbols"); 6105 if (this->DotSymtabSec) { 6106 StringRef StrTable = unwrapOrError( 6107 this->FileName, 6108 this->Obj.getStringTableForSymtab(*this->DotSymtabSec)); 6109 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec); 6110 6111 typename ELFT::SymRange Symbols = unwrapOrError( 6112 this->FileName, this->Obj.symbols(this->DotSymtabSec)); 6113 for (const Elf_Sym &Sym : Symbols) { 6114 const Elf_Shdr *SymSec = unwrapOrError( 6115 this->FileName, 6116 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable)); 6117 if (SymSec == &Sec) 6118 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false, 6119 false); 6120 } 6121 } 6122 } 6123 6124 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { 6125 ArrayRef<uint8_t> Data = 6126 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec)); 6127 W.printBinaryBlock( 6128 "SectionData", 6129 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size())); 6130 } 6131 } 6132 } 6133 6134 template <class ELFT> 6135 void LLVMELFDumper<ELFT>::printSymbolSection( 6136 const Elf_Sym &Symbol, unsigned SymIndex, 6137 DataRegion<Elf_Word> ShndxTable) const { 6138 auto GetSectionSpecialType = [&]() -> Optional<StringRef> { 6139 if (Symbol.isUndefined()) 6140 return StringRef("Undefined"); 6141 if (Symbol.isProcessorSpecific()) 6142 return StringRef("Processor Specific"); 6143 if (Symbol.isOSSpecific()) 6144 return StringRef("Operating System Specific"); 6145 if (Symbol.isAbsolute()) 6146 return StringRef("Absolute"); 6147 if (Symbol.isCommon()) 6148 return StringRef("Common"); 6149 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX) 6150 return StringRef("Reserved"); 6151 return None; 6152 }; 6153 6154 if (Optional<StringRef> Type = GetSectionSpecialType()) { 6155 W.printHex("Section", *Type, Symbol.st_shndx); 6156 return; 6157 } 6158 6159 Expected<unsigned> SectionIndex = 6160 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable); 6161 if (!SectionIndex) { 6162 assert(Symbol.st_shndx == SHN_XINDEX && 6163 "getSymbolSectionIndex should only fail due to an invalid " 6164 "SHT_SYMTAB_SHNDX table/reference"); 6165 this->reportUniqueWarning(SectionIndex.takeError()); 6166 W.printHex("Section", "Reserved", SHN_XINDEX); 6167 return; 6168 } 6169 6170 Expected<StringRef> SectionName = 6171 this->getSymbolSectionName(Symbol, *SectionIndex); 6172 if (!SectionName) { 6173 // Don't report an invalid section name if the section headers are missing. 6174 // In such situations, all sections will be "invalid". 6175 if (!this->ObjF.sections().empty()) 6176 this->reportUniqueWarning(SectionName.takeError()); 6177 else 6178 consumeError(SectionName.takeError()); 6179 W.printHex("Section", "<?>", *SectionIndex); 6180 } else { 6181 W.printHex("Section", *SectionName, *SectionIndex); 6182 } 6183 } 6184 6185 template <class ELFT> 6186 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex, 6187 DataRegion<Elf_Word> ShndxTable, 6188 Optional<StringRef> StrTable, 6189 bool IsDynamic, 6190 bool /*NonVisibilityBitsUsed*/) const { 6191 std::string FullSymbolName = this->getFullSymbolName( 6192 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic); 6193 unsigned char SymbolType = Symbol.getType(); 6194 6195 DictScope D(W, "Symbol"); 6196 W.printNumber("Name", FullSymbolName, Symbol.st_name); 6197 W.printHex("Value", Symbol.st_value); 6198 W.printNumber("Size", Symbol.st_size); 6199 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings)); 6200 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU && 6201 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) 6202 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); 6203 else 6204 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); 6205 if (Symbol.st_other == 0) 6206 // Usually st_other flag is zero. Do not pollute the output 6207 // by flags enumeration in that case. 6208 W.printNumber("Other", 0); 6209 else { 6210 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags), 6211 std::end(ElfSymOtherFlags)); 6212 if (this->Obj.getHeader().e_machine == EM_MIPS) { 6213 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16 6214 // flag overlapped with other ST_MIPS_xxx flags. So consider both 6215 // cases separately. 6216 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16) 6217 SymOtherFlags.insert(SymOtherFlags.end(), 6218 std::begin(ElfMips16SymOtherFlags), 6219 std::end(ElfMips16SymOtherFlags)); 6220 else 6221 SymOtherFlags.insert(SymOtherFlags.end(), 6222 std::begin(ElfMipsSymOtherFlags), 6223 std::end(ElfMipsSymOtherFlags)); 6224 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) { 6225 SymOtherFlags.insert(SymOtherFlags.end(), 6226 std::begin(ElfAArch64SymOtherFlags), 6227 std::end(ElfAArch64SymOtherFlags)); 6228 } 6229 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u); 6230 } 6231 printSymbolSection(Symbol, SymIndex, ShndxTable); 6232 } 6233 6234 template <class ELFT> 6235 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols, 6236 bool PrintDynamicSymbols) { 6237 if (PrintSymbols) { 6238 ListScope Group(W, "Symbols"); 6239 this->printSymbolsHelper(false); 6240 } 6241 if (PrintDynamicSymbols) { 6242 ListScope Group(W, "DynamicSymbols"); 6243 this->printSymbolsHelper(true); 6244 } 6245 } 6246 6247 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() { 6248 Elf_Dyn_Range Table = this->dynamic_table(); 6249 if (Table.empty()) 6250 return; 6251 6252 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n"; 6253 6254 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table); 6255 // The "Name/Value" column should be indented from the "Type" column by N 6256 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing 6257 // space (1) = -3. 6258 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ') 6259 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n"; 6260 6261 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s "; 6262 for (auto Entry : Table) { 6263 uintX_t Tag = Entry.getTag(); 6264 std::string Value = this->getDynamicEntry(Tag, Entry.getVal()); 6265 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true) 6266 << " " 6267 << format(ValueFmt.c_str(), 6268 this->Obj.getDynamicTagAsString(Tag).c_str()) 6269 << Value << "\n"; 6270 } 6271 W.startLine() << "]\n"; 6272 } 6273 6274 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() { 6275 W.startLine() << "Dynamic Relocations {\n"; 6276 W.indent(); 6277 this->printDynamicRelocationsHelper(); 6278 W.unindent(); 6279 W.startLine() << "}\n"; 6280 } 6281 6282 template <class ELFT> 6283 void LLVMELFDumper<ELFT>::printProgramHeaders( 6284 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) { 6285 if (PrintProgramHeaders) 6286 printProgramHeaders(); 6287 if (PrintSectionMapping == cl::BOU_TRUE) 6288 printSectionMapping(); 6289 } 6290 6291 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() { 6292 ListScope L(W, "ProgramHeaders"); 6293 6294 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers(); 6295 if (!PhdrsOrErr) { 6296 this->reportUniqueWarning("unable to dump program headers: " + 6297 toString(PhdrsOrErr.takeError())); 6298 return; 6299 } 6300 6301 for (const Elf_Phdr &Phdr : *PhdrsOrErr) { 6302 DictScope P(W, "ProgramHeader"); 6303 StringRef Type = 6304 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type); 6305 6306 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type); 6307 W.printHex("Offset", Phdr.p_offset); 6308 W.printHex("VirtualAddress", Phdr.p_vaddr); 6309 W.printHex("PhysicalAddress", Phdr.p_paddr); 6310 W.printNumber("FileSize", Phdr.p_filesz); 6311 W.printNumber("MemSize", Phdr.p_memsz); 6312 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); 6313 W.printNumber("Alignment", Phdr.p_align); 6314 } 6315 } 6316 6317 template <class ELFT> 6318 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) { 6319 ListScope SS(W, "VersionSymbols"); 6320 if (!Sec) 6321 return; 6322 6323 StringRef StrTable; 6324 ArrayRef<Elf_Sym> Syms; 6325 const Elf_Shdr *SymTabSec; 6326 Expected<ArrayRef<Elf_Versym>> VerTableOrErr = 6327 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec); 6328 if (!VerTableOrErr) { 6329 this->reportUniqueWarning(VerTableOrErr.takeError()); 6330 return; 6331 } 6332 6333 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size()) 6334 return; 6335 6336 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec); 6337 for (size_t I = 0, E = Syms.size(); I < E; ++I) { 6338 DictScope S(W, "Symbol"); 6339 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION); 6340 W.printString("Name", 6341 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable, 6342 /*IsDynamic=*/true)); 6343 } 6344 } 6345 6346 static const EnumEntry<unsigned> SymVersionFlags[] = { 6347 {"Base", "BASE", VER_FLG_BASE}, 6348 {"Weak", "WEAK", VER_FLG_WEAK}, 6349 {"Info", "INFO", VER_FLG_INFO}}; 6350 6351 template <class ELFT> 6352 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) { 6353 ListScope SD(W, "VersionDefinitions"); 6354 if (!Sec) 6355 return; 6356 6357 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec); 6358 if (!V) { 6359 this->reportUniqueWarning(V.takeError()); 6360 return; 6361 } 6362 6363 for (const VerDef &D : *V) { 6364 DictScope Def(W, "Definition"); 6365 W.printNumber("Version", D.Version); 6366 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags)); 6367 W.printNumber("Index", D.Ndx); 6368 W.printNumber("Hash", D.Hash); 6369 W.printString("Name", D.Name.c_str()); 6370 W.printList( 6371 "Predecessors", D.AuxV, 6372 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); }); 6373 } 6374 } 6375 6376 template <class ELFT> 6377 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) { 6378 ListScope SD(W, "VersionRequirements"); 6379 if (!Sec) 6380 return; 6381 6382 Expected<std::vector<VerNeed>> V = 6383 this->Obj.getVersionDependencies(*Sec, this->WarningHandler); 6384 if (!V) { 6385 this->reportUniqueWarning(V.takeError()); 6386 return; 6387 } 6388 6389 for (const VerNeed &VN : *V) { 6390 DictScope Entry(W, "Dependency"); 6391 W.printNumber("Version", VN.Version); 6392 W.printNumber("Count", VN.Cnt); 6393 W.printString("FileName", VN.File.c_str()); 6394 6395 ListScope L(W, "Entries"); 6396 for (const VernAux &Aux : VN.AuxV) { 6397 DictScope Entry(W, "Entry"); 6398 W.printNumber("Hash", Aux.Hash); 6399 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags)); 6400 W.printNumber("Index", Aux.Other); 6401 W.printString("Name", Aux.Name.c_str()); 6402 } 6403 } 6404 } 6405 6406 template <class ELFT> void LLVMELFDumper<ELFT>::printHashHistograms() { 6407 W.startLine() << "Hash Histogram not implemented!\n"; 6408 } 6409 6410 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() { 6411 ListScope L(W, "CGProfile"); 6412 if (!this->DotCGProfileSec) 6413 return; 6414 6415 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr = 6416 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>( 6417 *this->DotCGProfileSec); 6418 if (!CGProfileOrErr) { 6419 this->reportUniqueWarning( 6420 "unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " + 6421 toString(CGProfileOrErr.takeError())); 6422 return; 6423 } 6424 6425 for (const Elf_CGProfile &CGPE : *CGProfileOrErr) { 6426 DictScope D(W, "CGProfileEntry"); 6427 W.printNumber("From", this->getStaticSymbolName(CGPE.cgp_from), 6428 CGPE.cgp_from); 6429 W.printNumber("To", this->getStaticSymbolName(CGPE.cgp_to), 6430 CGPE.cgp_to); 6431 W.printNumber("Weight", CGPE.cgp_weight); 6432 } 6433 } 6434 6435 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() { 6436 ListScope L(W, "Addrsig"); 6437 if (!this->DotAddrsigSec) 6438 return; 6439 6440 Expected<std::vector<uint64_t>> SymsOrErr = 6441 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec); 6442 if (!SymsOrErr) { 6443 this->reportUniqueWarning(SymsOrErr.takeError()); 6444 return; 6445 } 6446 6447 for (uint64_t Sym : *SymsOrErr) 6448 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym); 6449 } 6450 6451 template <typename ELFT> 6452 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc, 6453 ScopedPrinter &W) { 6454 switch (NoteType) { 6455 default: 6456 return; 6457 case ELF::NT_GNU_ABI_TAG: { 6458 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc); 6459 if (!AbiTag.IsValid) { 6460 W.printString("ABI", "<corrupt GNU_ABI_TAG>"); 6461 } else { 6462 W.printString("OS", AbiTag.OSName); 6463 W.printString("ABI", AbiTag.ABI); 6464 } 6465 break; 6466 } 6467 case ELF::NT_GNU_BUILD_ID: { 6468 W.printString("Build ID", getGNUBuildId(Desc)); 6469 break; 6470 } 6471 case ELF::NT_GNU_GOLD_VERSION: 6472 W.printString("Version", getGNUGoldVersion(Desc)); 6473 break; 6474 case ELF::NT_GNU_PROPERTY_TYPE_0: 6475 ListScope D(W, "Property"); 6476 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc)) 6477 W.printString(Property); 6478 break; 6479 } 6480 } 6481 6482 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) { 6483 W.printNumber("Page Size", Note.PageSize); 6484 for (const CoreFileMapping &Mapping : Note.Mappings) { 6485 ListScope D(W, "Mapping"); 6486 W.printHex("Start", Mapping.Start); 6487 W.printHex("End", Mapping.End); 6488 W.printHex("Offset", Mapping.Offset); 6489 W.printString("Filename", Mapping.Filename); 6490 } 6491 } 6492 6493 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() { 6494 ListScope L(W, "Notes"); 6495 6496 std::unique_ptr<DictScope> NoteScope; 6497 auto StartNotes = [&](Optional<StringRef> SecName, 6498 const typename ELFT::Off Offset, 6499 const typename ELFT::Addr Size) { 6500 NoteScope = std::make_unique<DictScope>(W, "NoteSection"); 6501 W.printString("Name", SecName ? *SecName : "<?>"); 6502 W.printHex("Offset", Offset); 6503 W.printHex("Size", Size); 6504 }; 6505 6506 auto EndNotes = [&] { NoteScope.reset(); }; 6507 6508 auto ProcessNote = [&](const Elf_Note &Note) -> Error { 6509 DictScope D2(W, "Note"); 6510 StringRef Name = Note.getName(); 6511 ArrayRef<uint8_t> Descriptor = Note.getDesc(); 6512 Elf_Word Type = Note.getType(); 6513 6514 // Print the note owner/type. 6515 W.printString("Owner", Name); 6516 W.printHex("Data size", Descriptor.size()); 6517 6518 StringRef NoteType = 6519 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type); 6520 if (!NoteType.empty()) 6521 W.printString("Type", NoteType); 6522 else 6523 W.printString("Type", 6524 "Unknown (" + to_string(format_hex(Type, 10)) + ")"); 6525 6526 // Print the description, or fallback to printing raw bytes for unknown 6527 // owners. 6528 if (Name == "GNU") { 6529 printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W); 6530 } else if (Name == "AMD") { 6531 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor); 6532 if (!N.Type.empty()) 6533 W.printString(N.Type, N.Value); 6534 } else if (Name == "AMDGPU") { 6535 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor); 6536 if (!N.Type.empty()) 6537 W.printString(N.Type, N.Value); 6538 } else if (Name == "CORE") { 6539 if (Type == ELF::NT_FILE) { 6540 DataExtractor DescExtractor(Descriptor, 6541 ELFT::TargetEndianness == support::little, 6542 sizeof(Elf_Addr)); 6543 if (Expected<CoreNote> Note = readCoreNote(DescExtractor)) 6544 printCoreNoteLLVMStyle(*Note, W); 6545 else 6546 return Note.takeError(); 6547 } 6548 } else if (!Descriptor.empty()) { 6549 W.printBinaryBlock("Description data", Descriptor); 6550 } 6551 return Error::success(); 6552 }; 6553 6554 printNotesHelper(*this, StartNotes, ProcessNote, EndNotes); 6555 } 6556 6557 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() { 6558 ListScope L(W, "LinkerOptions"); 6559 6560 unsigned I = -1; 6561 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) { 6562 ++I; 6563 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS) 6564 continue; 6565 6566 Expected<ArrayRef<uint8_t>> ContentsOrErr = 6567 this->Obj.getSectionContents(Shdr); 6568 if (!ContentsOrErr) { 6569 this->reportUniqueWarning("unable to read the content of the " 6570 "SHT_LLVM_LINKER_OPTIONS section: " + 6571 toString(ContentsOrErr.takeError())); 6572 continue; 6573 } 6574 if (ContentsOrErr->empty()) 6575 continue; 6576 6577 if (ContentsOrErr->back() != 0) { 6578 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " + 6579 Twine(I) + 6580 " is broken: the " 6581 "content is not null-terminated"); 6582 continue; 6583 } 6584 6585 SmallVector<StringRef, 16> Strings; 6586 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0'); 6587 if (Strings.size() % 2 != 0) { 6588 this->reportUniqueWarning( 6589 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) + 6590 " is broken: an incomplete " 6591 "key-value pair was found. The last possible key was: \"" + 6592 Strings.back() + "\""); 6593 continue; 6594 } 6595 6596 for (size_t I = 0; I < Strings.size(); I += 2) 6597 W.printString(Strings[I], Strings[I + 1]); 6598 } 6599 } 6600 6601 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() { 6602 ListScope L(W, "DependentLibs"); 6603 this->printDependentLibsHelper( 6604 [](const Elf_Shdr &) {}, 6605 [this](StringRef Lib, uint64_t) { W.printString(Lib); }); 6606 } 6607 6608 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() { 6609 ListScope L(W, "StackSizes"); 6610 if (this->Obj.getHeader().e_type == ELF::ET_REL) 6611 this->printRelocatableStackSizes([]() {}); 6612 else 6613 this->printNonRelocatableStackSizes([]() {}); 6614 } 6615 6616 template <class ELFT> 6617 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) { 6618 DictScope D(W, "Entry"); 6619 W.printString("Function", FuncName); 6620 W.printHex("Size", Size); 6621 } 6622 6623 template <class ELFT> 6624 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) { 6625 auto PrintEntry = [&](const Elf_Addr *E) { 6626 W.printHex("Address", Parser.getGotAddress(E)); 6627 W.printNumber("Access", Parser.getGotOffset(E)); 6628 W.printHex("Initial", *E); 6629 }; 6630 6631 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT"); 6632 6633 W.printHex("Canonical gp value", Parser.getGp()); 6634 { 6635 ListScope RS(W, "Reserved entries"); 6636 { 6637 DictScope D(W, "Entry"); 6638 PrintEntry(Parser.getGotLazyResolver()); 6639 W.printString("Purpose", StringRef("Lazy resolver")); 6640 } 6641 6642 if (Parser.getGotModulePointer()) { 6643 DictScope D(W, "Entry"); 6644 PrintEntry(Parser.getGotModulePointer()); 6645 W.printString("Purpose", StringRef("Module pointer (GNU extension)")); 6646 } 6647 } 6648 { 6649 ListScope LS(W, "Local entries"); 6650 for (auto &E : Parser.getLocalEntries()) { 6651 DictScope D(W, "Entry"); 6652 PrintEntry(&E); 6653 } 6654 } 6655 6656 if (Parser.IsStatic) 6657 return; 6658 6659 { 6660 ListScope GS(W, "Global entries"); 6661 for (auto &E : Parser.getGlobalEntries()) { 6662 DictScope D(W, "Entry"); 6663 6664 PrintEntry(&E); 6665 6666 const Elf_Sym &Sym = *Parser.getGotSym(&E); 6667 W.printHex("Value", Sym.st_value); 6668 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); 6669 6670 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin(); 6671 DataRegion<Elf_Word> ShndxTable( 6672 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6673 printSymbolSection(Sym, SymIndex, ShndxTable); 6674 6675 std::string SymName = this->getFullSymbolName( 6676 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true); 6677 W.printNumber("Name", SymName, Sym.st_name); 6678 } 6679 } 6680 6681 W.printNumber("Number of TLS and multi-GOT entries", 6682 uint64_t(Parser.getOtherEntries().size())); 6683 } 6684 6685 template <class ELFT> 6686 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) { 6687 auto PrintEntry = [&](const Elf_Addr *E) { 6688 W.printHex("Address", Parser.getPltAddress(E)); 6689 W.printHex("Initial", *E); 6690 }; 6691 6692 DictScope GS(W, "PLT GOT"); 6693 6694 { 6695 ListScope RS(W, "Reserved entries"); 6696 { 6697 DictScope D(W, "Entry"); 6698 PrintEntry(Parser.getPltLazyResolver()); 6699 W.printString("Purpose", StringRef("PLT lazy resolver")); 6700 } 6701 6702 if (auto E = Parser.getPltModulePointer()) { 6703 DictScope D(W, "Entry"); 6704 PrintEntry(E); 6705 W.printString("Purpose", StringRef("Module pointer")); 6706 } 6707 } 6708 { 6709 ListScope LS(W, "Entries"); 6710 DataRegion<Elf_Word> ShndxTable( 6711 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end()); 6712 for (auto &E : Parser.getPltEntries()) { 6713 DictScope D(W, "Entry"); 6714 PrintEntry(&E); 6715 6716 const Elf_Sym &Sym = *Parser.getPltSym(&E); 6717 W.printHex("Value", Sym.st_value); 6718 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes)); 6719 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(), 6720 ShndxTable); 6721 6722 const Elf_Sym *FirstSym = cantFail( 6723 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0)); 6724 std::string SymName = this->getFullSymbolName( 6725 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true); 6726 W.printNumber("Name", SymName, Sym.st_name); 6727 } 6728 } 6729 } 6730 6731 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() { 6732 const Elf_Mips_ABIFlags<ELFT> *Flags; 6733 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr = 6734 getMipsAbiFlagsSection(*this)) { 6735 Flags = *SecOrErr; 6736 if (!Flags) { 6737 W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; 6738 return; 6739 } 6740 } else { 6741 this->reportUniqueWarning(SecOrErr.takeError()); 6742 return; 6743 } 6744 6745 raw_ostream &OS = W.getOStream(); 6746 DictScope GS(W, "MIPS ABI Flags"); 6747 6748 W.printNumber("Version", Flags->version); 6749 W.startLine() << "ISA: "; 6750 if (Flags->isa_rev <= 1) 6751 OS << format("MIPS%u", Flags->isa_level); 6752 else 6753 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); 6754 OS << "\n"; 6755 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); 6756 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); 6757 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); 6758 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); 6759 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); 6760 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); 6761 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); 6762 W.printHex("Flags 2", Flags->flags2); 6763 } 6764