xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp (revision 06e20d1babecec1f45ffda513f55a8db5f1c0f56)
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "Error.h"
17 #include "ObjDumper.h"
18 #include "StackMapPrinter.h"
19 #include "llvm-readobj.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PointerIntPair.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/ELF.h"
36 #include "llvm/Object/ELFObjectFile.h"
37 #include "llvm/Object/ELFTypes.h"
38 #include "llvm/Object/Error.h"
39 #include "llvm/Object/ObjectFile.h"
40 #include "llvm/Object/RelocationResolver.h"
41 #include "llvm/Object/StackMapParser.h"
42 #include "llvm/Support/AMDGPUMetadata.h"
43 #include "llvm/Support/ARMAttributeParser.h"
44 #include "llvm/Support/ARMBuildAttributes.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Endian.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/FormatVariadic.h"
51 #include "llvm/Support/FormattedStream.h"
52 #include "llvm/Support/LEB128.h"
53 #include "llvm/Support/MathExtras.h"
54 #include "llvm/Support/MipsABIFlags.h"
55 #include "llvm/Support/RISCVAttributeParser.h"
56 #include "llvm/Support/RISCVAttributes.h"
57 #include "llvm/Support/ScopedPrinter.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cinttypes>
61 #include <cstddef>
62 #include <cstdint>
63 #include <cstdlib>
64 #include <iterator>
65 #include <memory>
66 #include <string>
67 #include <system_error>
68 #include <unordered_set>
69 #include <vector>
70 
71 using namespace llvm;
72 using namespace llvm::object;
73 using namespace ELF;
74 
75 #define LLVM_READOBJ_ENUM_CASE(ns, enum)                                       \
76   case ns::enum:                                                               \
77     return #enum;
78 
79 #define ENUM_ENT(enum, altName)                                                \
80   { #enum, altName, ELF::enum }
81 
82 #define ENUM_ENT_1(enum)                                                       \
83   { #enum, #enum, ELF::enum }
84 
85 #define LLVM_READOBJ_PHDR_ENUM(ns, enum)                                       \
86   case ns::enum:                                                               \
87     return std::string(#enum).substr(3);
88 
89 #define TYPEDEF_ELF_TYPES(ELFT)                                                \
90   using ELFO = ELFFile<ELFT>;                                                  \
91   using Elf_Addr = typename ELFT::Addr;                                        \
92   using Elf_Shdr = typename ELFT::Shdr;                                        \
93   using Elf_Sym = typename ELFT::Sym;                                          \
94   using Elf_Dyn = typename ELFT::Dyn;                                          \
95   using Elf_Dyn_Range = typename ELFT::DynRange;                               \
96   using Elf_Rel = typename ELFT::Rel;                                          \
97   using Elf_Rela = typename ELFT::Rela;                                        \
98   using Elf_Relr = typename ELFT::Relr;                                        \
99   using Elf_Rel_Range = typename ELFT::RelRange;                               \
100   using Elf_Rela_Range = typename ELFT::RelaRange;                             \
101   using Elf_Relr_Range = typename ELFT::RelrRange;                             \
102   using Elf_Phdr = typename ELFT::Phdr;                                        \
103   using Elf_Half = typename ELFT::Half;                                        \
104   using Elf_Ehdr = typename ELFT::Ehdr;                                        \
105   using Elf_Word = typename ELFT::Word;                                        \
106   using Elf_Hash = typename ELFT::Hash;                                        \
107   using Elf_GnuHash = typename ELFT::GnuHash;                                  \
108   using Elf_Note  = typename ELFT::Note;                                       \
109   using Elf_Sym_Range = typename ELFT::SymRange;                               \
110   using Elf_Versym = typename ELFT::Versym;                                    \
111   using Elf_Verneed = typename ELFT::Verneed;                                  \
112   using Elf_Vernaux = typename ELFT::Vernaux;                                  \
113   using Elf_Verdef = typename ELFT::Verdef;                                    \
114   using Elf_Verdaux = typename ELFT::Verdaux;                                  \
115   using Elf_CGProfile = typename ELFT::CGProfile;                              \
116   using uintX_t = typename ELFT::uint;
117 
118 namespace {
119 
120 template <class ELFT> class DumpStyle;
121 
122 /// Represents a contiguous uniform range in the file. We cannot just create a
123 /// range directly because when creating one of these from the .dynamic table
124 /// the size, entity size and virtual address are different entries in arbitrary
125 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
126 struct DynRegionInfo {
127   DynRegionInfo(StringRef ObjName) : FileName(ObjName) {}
128   DynRegionInfo(const void *A, uint64_t S, uint64_t ES, StringRef ObjName)
129       : Addr(A), Size(S), EntSize(ES), FileName(ObjName) {}
130 
131   /// Address in current address space.
132   const void *Addr = nullptr;
133   /// Size in bytes of the region.
134   uint64_t Size = 0;
135   /// Size of each entity in the region.
136   uint64_t EntSize = 0;
137 
138   /// Name of the file. Used for error reporting.
139   StringRef FileName;
140   /// Error prefix. Used for error reporting to provide more information.
141   std::string Context;
142   /// Region size name. Used for error reporting.
143   StringRef SizePrintName = "size";
144   /// Entry size name. Used for error reporting. If this field is empty, errors
145   /// will not mention the entry size.
146   StringRef EntSizePrintName = "entry size";
147 
148   template <typename Type> ArrayRef<Type> getAsArrayRef() const {
149     const Type *Start = reinterpret_cast<const Type *>(Addr);
150     if (!Start)
151       return {Start, Start};
152     if (EntSize == sizeof(Type) && (Size % EntSize == 0))
153       return {Start, Start + (Size / EntSize)};
154 
155     std::string Msg;
156     if (!Context.empty())
157       Msg += Context + " has ";
158 
159     Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
160                .str();
161     if (!EntSizePrintName.empty())
162       Msg +=
163           (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
164               .str();
165 
166     reportWarning(createError(Msg.c_str()), FileName);
167     return {Start, Start};
168   }
169 };
170 
171 namespace {
172 struct VerdAux {
173   unsigned Offset;
174   std::string Name;
175 };
176 
177 struct VerDef {
178   unsigned Offset;
179   unsigned Version;
180   unsigned Flags;
181   unsigned Ndx;
182   unsigned Cnt;
183   unsigned Hash;
184   std::string Name;
185   std::vector<VerdAux> AuxV;
186 };
187 
188 struct VernAux {
189   unsigned Hash;
190   unsigned Flags;
191   unsigned Other;
192   unsigned Offset;
193   std::string Name;
194 };
195 
196 struct VerNeed {
197   unsigned Version;
198   unsigned Cnt;
199   unsigned Offset;
200   std::string File;
201   std::vector<VernAux> AuxV;
202 };
203 
204 } // namespace
205 
206 template <typename ELFT> class ELFDumper : public ObjDumper {
207 public:
208   ELFDumper(const object::ELFObjectFile<ELFT> *ObjF, ScopedPrinter &Writer);
209 
210   void printFileHeaders() override;
211   void printSectionHeaders() override;
212   void printRelocations() override;
213   void printDependentLibs() override;
214   void printDynamicRelocations() override;
215   void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
216   void printHashSymbols() override;
217   void printUnwindInfo() override;
218 
219   void printDynamicTable() override;
220   void printNeededLibraries() override;
221   void printProgramHeaders(bool PrintProgramHeaders,
222                            cl::boolOrDefault PrintSectionMapping) override;
223   void printHashTable() override;
224   void printGnuHashTable(const object::ObjectFile *Obj) override;
225   void printLoadName() override;
226   void printVersionInfo() override;
227   void printGroupSections() override;
228 
229   void printArchSpecificInfo() override;
230 
231   void printStackMap() const override;
232 
233   void printHashHistograms() override;
234 
235   void printCGProfile() override;
236   void printAddrsig() override;
237 
238   void printNotes() override;
239 
240   void printELFLinkerOptions() override;
241   void printStackSizes() override;
242 
243   const object::ELFObjectFile<ELFT> *getElfObject() const { return ObjF; };
244 
245 private:
246   std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
247 
248   TYPEDEF_ELF_TYPES(ELFT)
249 
250   DynRegionInfo checkDRI(DynRegionInfo DRI) {
251     const ELFFile<ELFT> *Obj = ObjF->getELFFile();
252     if (DRI.Addr < Obj->base() ||
253         reinterpret_cast<const uint8_t *>(DRI.Addr) + DRI.Size >
254             Obj->base() + Obj->getBufSize())
255       reportError(errorCodeToError(llvm::object::object_error::parse_failed),
256                   ObjF->getFileName());
257     return DRI;
258   }
259 
260   DynRegionInfo createDRIFrom(const Elf_Phdr *P, uintX_t EntSize) {
261     return checkDRI({ObjF->getELFFile()->base() + P->p_offset, P->p_filesz,
262                      EntSize, ObjF->getFileName()});
263   }
264 
265   DynRegionInfo createDRIFrom(const Elf_Shdr *S) {
266     return checkDRI({ObjF->getELFFile()->base() + S->sh_offset, S->sh_size,
267                      S->sh_entsize, ObjF->getFileName()});
268   }
269 
270   void printAttributes();
271   void printMipsReginfo();
272   void printMipsOptions();
273 
274   std::pair<const Elf_Phdr *, const Elf_Shdr *>
275   findDynamic(const ELFFile<ELFT> *Obj);
276   void loadDynamicTable(const ELFFile<ELFT> *Obj);
277   void parseDynamicTable(const ELFFile<ELFT> *Obj);
278 
279   Expected<StringRef> getSymbolVersion(const Elf_Sym *symb,
280                                        bool &IsDefault) const;
281   Error LoadVersionMap() const;
282 
283   const object::ELFObjectFile<ELFT> *ObjF;
284   DynRegionInfo DynRelRegion;
285   DynRegionInfo DynRelaRegion;
286   DynRegionInfo DynRelrRegion;
287   DynRegionInfo DynPLTRelRegion;
288   Optional<DynRegionInfo> DynSymRegion;
289   DynRegionInfo DynamicTable;
290   StringRef DynamicStringTable;
291   StringRef SOName = "<Not found>";
292   const Elf_Hash *HashTable = nullptr;
293   const Elf_GnuHash *GnuHashTable = nullptr;
294   const Elf_Shdr *DotSymtabSec = nullptr;
295   const Elf_Shdr *DotCGProfileSec = nullptr;
296   const Elf_Shdr *DotAddrsigSec = nullptr;
297   StringRef DynSymtabName;
298   ArrayRef<Elf_Word> ShndxTable;
299 
300   const Elf_Shdr *SymbolVersionSection = nullptr;   // .gnu.version
301   const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
302   const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
303 
304   struct VersionEntry {
305     std::string Name;
306     bool IsVerDef;
307   };
308   mutable SmallVector<Optional<VersionEntry>, 16> VersionMap;
309 
310   std::unordered_set<std::string> Warnings;
311 
312 public:
313   Elf_Dyn_Range dynamic_table() const {
314     // A valid .dynamic section contains an array of entries terminated
315     // with a DT_NULL entry. However, sometimes the section content may
316     // continue past the DT_NULL entry, so to dump the section correctly,
317     // we first find the end of the entries by iterating over them.
318     Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
319 
320     size_t Size = 0;
321     while (Size < Table.size())
322       if (Table[Size++].getTag() == DT_NULL)
323         break;
324 
325     return Table.slice(0, Size);
326   }
327 
328   Optional<DynRegionInfo> getDynSymRegion() const { return DynSymRegion; }
329 
330   Elf_Sym_Range dynamic_symbols() const {
331     if (!DynSymRegion)
332       return Elf_Sym_Range();
333     return DynSymRegion->getAsArrayRef<Elf_Sym>();
334   }
335 
336   Elf_Rel_Range dyn_rels() const;
337   Elf_Rela_Range dyn_relas() const;
338   Elf_Relr_Range dyn_relrs() const;
339   std::string getFullSymbolName(const Elf_Sym *Symbol,
340                                 Optional<StringRef> StrTable,
341                                 bool IsDynamic) const;
342   Expected<unsigned> getSymbolSectionIndex(const Elf_Sym *Symbol,
343                                            const Elf_Sym *FirstSym) const;
344   Expected<StringRef> getSymbolSectionName(const Elf_Sym *Symbol,
345                                            unsigned SectionIndex) const;
346   std::string getStaticSymbolName(uint32_t Index) const;
347   StringRef getDynamicString(uint64_t Value) const;
348   Expected<StringRef> getSymbolVersionByIndex(uint32_t VersionSymbolIndex,
349                                               bool &IsDefault) const;
350 
351   void printSymbolsHelper(bool IsDynamic) const;
352   std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
353 
354   const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
355   const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
356   const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
357   ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
358   StringRef getDynamicStringTable() const { return DynamicStringTable; }
359   const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
360   const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
361   const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
362   const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
363   const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
364   const Elf_Hash *getHashTable() const { return HashTable; }
365   const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
366 
367   Expected<ArrayRef<Elf_Versym>> getVersionTable(const Elf_Shdr *Sec,
368                                                  ArrayRef<Elf_Sym> *SymTab,
369                                                  StringRef *StrTab) const;
370   Expected<std::vector<VerDef>>
371   getVersionDefinitions(const Elf_Shdr *Sec) const;
372   Expected<std::vector<VerNeed>>
373   getVersionDependencies(const Elf_Shdr *Sec) const;
374 
375   Expected<std::pair<const Elf_Sym *, std::string>>
376   getRelocationTarget(const Elf_Shdr *SymTab, const Elf_Rela &R) const;
377 
378   std::function<Error(const Twine &Msg)> WarningHandler;
379   void reportUniqueWarning(Error Err) const;
380 };
381 
382 template <class ELFT>
383 static Expected<StringRef> getLinkAsStrtab(const ELFFile<ELFT> *Obj,
384                                            const typename ELFT::Shdr *Sec,
385                                            unsigned SecNdx) {
386   Expected<const typename ELFT::Shdr *> StrTabSecOrErr =
387       Obj->getSection(Sec->sh_link);
388   if (!StrTabSecOrErr)
389     return createError("invalid section linked to " +
390                        object::getELFSectionTypeName(
391                            Obj->getHeader()->e_machine, Sec->sh_type) +
392                        " section with index " + Twine(SecNdx) + ": " +
393                        toString(StrTabSecOrErr.takeError()));
394 
395   Expected<StringRef> StrTabOrErr = Obj->getStringTable(*StrTabSecOrErr);
396   if (!StrTabOrErr)
397     return createError("invalid string table linked to " +
398                        object::getELFSectionTypeName(
399                            Obj->getHeader()->e_machine, Sec->sh_type) +
400                        " section with index " + Twine(SecNdx) + ": " +
401                        toString(StrTabOrErr.takeError()));
402   return *StrTabOrErr;
403 }
404 
405 // Returns the linked symbol table and associated string table for a given section.
406 template <class ELFT>
407 static Expected<std::pair<typename ELFT::SymRange, StringRef>>
408 getLinkAsSymtab(const ELFFile<ELFT> *Obj, const typename ELFT::Shdr *Sec,
409                    unsigned SecNdx, unsigned ExpectedType) {
410   Expected<const typename ELFT::Shdr *> SymtabOrErr =
411       Obj->getSection(Sec->sh_link);
412   if (!SymtabOrErr)
413     return createError("invalid section linked to " +
414                        object::getELFSectionTypeName(
415                            Obj->getHeader()->e_machine, Sec->sh_type) +
416                        " section with index " + Twine(SecNdx) + ": " +
417                        toString(SymtabOrErr.takeError()));
418 
419   if ((*SymtabOrErr)->sh_type != ExpectedType)
420     return createError(
421         "invalid section linked to " +
422         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
423                                       Sec->sh_type) +
424         " section with index " + Twine(SecNdx) + ": expected " +
425         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
426                                       ExpectedType) +
427         ", but got " +
428         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
429                                       (*SymtabOrErr)->sh_type));
430 
431   Expected<StringRef> StrTabOrErr =
432       getLinkAsStrtab(Obj, *SymtabOrErr, Sec->sh_link);
433   if (!StrTabOrErr)
434     return createError(
435         "can't get a string table for the symbol table linked to " +
436         object::getELFSectionTypeName(Obj->getHeader()->e_machine,
437                                       Sec->sh_type) +
438         " section with index " + Twine(SecNdx) + ": " +
439         toString(StrTabOrErr.takeError()));
440 
441   Expected<typename ELFT::SymRange> SymsOrErr = Obj->symbols(*SymtabOrErr);
442   if (!SymsOrErr)
443     return createError(
444         "unable to read symbols from the symbol table with index " +
445         Twine(Sec->sh_link) + ": " + toString(SymsOrErr.takeError()));
446 
447   return std::make_pair(*SymsOrErr, *StrTabOrErr);
448 }
449 
450 template <class ELFT>
451 Expected<ArrayRef<typename ELFT::Versym>>
452 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr *Sec, ArrayRef<Elf_Sym> *SymTab,
453                                  StringRef *StrTab) const {
454   assert((!SymTab && !StrTab) || (SymTab && StrTab));
455   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
456   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
457 
458   if (uintptr_t(Obj->base() + Sec->sh_offset) % sizeof(uint16_t) != 0)
459     return createError("the SHT_GNU_versym section with index " +
460                        Twine(SecNdx) + " is misaligned");
461 
462   Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
463       Obj->template getSectionContentsAsArray<Elf_Versym>(Sec);
464   if (!VersionsOrErr)
465     return createError(
466         "cannot read content of SHT_GNU_versym section with index " +
467         Twine(SecNdx) + ": " + toString(VersionsOrErr.takeError()));
468 
469   Expected<std::pair<ArrayRef<Elf_Sym>, StringRef>> SymTabOrErr =
470       getLinkAsSymtab(Obj, Sec, SecNdx, SHT_DYNSYM);
471   if (!SymTabOrErr) {
472     reportUniqueWarning(SymTabOrErr.takeError());
473     return *VersionsOrErr;
474   }
475 
476   if (SymTabOrErr->first.size() != VersionsOrErr->size())
477     reportUniqueWarning(
478         createError("SHT_GNU_versym section with index " + Twine(SecNdx) +
479                     ": the number of entries (" + Twine(VersionsOrErr->size()) +
480                     ") does not match the number of symbols (" +
481                     Twine(SymTabOrErr->first.size()) +
482                     ") in the symbol table with index " + Twine(Sec->sh_link)));
483 
484   if (SymTab)
485     std::tie(*SymTab, *StrTab) = *SymTabOrErr;
486   return *VersionsOrErr;
487 }
488 
489 template <class ELFT>
490 Expected<std::vector<VerDef>>
491 ELFDumper<ELFT>::getVersionDefinitions(const Elf_Shdr *Sec) const {
492   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
493   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
494 
495   Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec, SecNdx);
496   if (!StrTabOrErr)
497     return StrTabOrErr.takeError();
498 
499   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(Sec);
500   if (!ContentsOrErr)
501     return createError(
502         "cannot read content of SHT_GNU_verdef section with index " +
503         Twine(SecNdx) + ": " + toString(ContentsOrErr.takeError()));
504 
505   const uint8_t *Start = ContentsOrErr->data();
506   const uint8_t *End = Start + ContentsOrErr->size();
507 
508   auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf,
509                             unsigned VerDefNdx) -> Expected<VerdAux> {
510     if (VerdauxBuf + sizeof(Elf_Verdaux) > End)
511       return createError("invalid SHT_GNU_verdef section with index " +
512                          Twine(SecNdx) + ": version definition " +
513                          Twine(VerDefNdx) +
514                          " refers to an auxiliary entry that goes past the end "
515                          "of the section");
516 
517     auto *Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
518     VerdauxBuf += Verdaux->vda_next;
519 
520     VerdAux Aux;
521     Aux.Offset = VerdauxBuf - Start;
522     if (Verdaux->vda_name <= StrTabOrErr->size())
523       Aux.Name = std::string(StrTabOrErr->drop_front(Verdaux->vda_name));
524     else
525       Aux.Name = "<invalid vda_name: " + to_string(Verdaux->vda_name) + ">";
526     return Aux;
527   };
528 
529   std::vector<VerDef> Ret;
530   const uint8_t *VerdefBuf = Start;
531   for (unsigned I = 1; I <= /*VerDefsNum=*/Sec->sh_info; ++I) {
532     if (VerdefBuf + sizeof(Elf_Verdef) > End)
533       return createError("invalid SHT_GNU_verdef section with index " +
534                          Twine(SecNdx) + ": version definition " + Twine(I) +
535                          " goes past the end of the section");
536 
537     if (uintptr_t(VerdefBuf) % sizeof(uint32_t) != 0)
538       return createError(
539           "invalid SHT_GNU_verdef section with index " + Twine(SecNdx) +
540           ": found a misaligned version definition entry at offset 0x" +
541           Twine::utohexstr(VerdefBuf - Start));
542 
543     unsigned Version = *reinterpret_cast<const Elf_Half *>(VerdefBuf);
544     if (Version != 1)
545       return createError("unable to dump SHT_GNU_verdef section with index " +
546                          Twine(SecNdx) + ": version " + Twine(Version) +
547                          " is not yet supported");
548 
549     const Elf_Verdef *D = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
550     VerDef &VD = *Ret.emplace(Ret.end());
551     VD.Offset = VerdefBuf - Start;
552     VD.Version = D->vd_version;
553     VD.Flags = D->vd_flags;
554     VD.Ndx = D->vd_ndx;
555     VD.Cnt = D->vd_cnt;
556     VD.Hash = D->vd_hash;
557 
558     const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux;
559     for (unsigned J = 0; J < D->vd_cnt; ++J) {
560       if (uintptr_t(VerdauxBuf) % sizeof(uint32_t) != 0)
561         return createError("invalid SHT_GNU_verdef section with index " +
562                            Twine(SecNdx) +
563                            ": found a misaligned auxiliary entry at offset 0x" +
564                            Twine::utohexstr(VerdauxBuf - Start));
565 
566       Expected<VerdAux> AuxOrErr = ExtractNextAux(VerdauxBuf, I);
567       if (!AuxOrErr)
568         return AuxOrErr.takeError();
569 
570       if (J == 0)
571         VD.Name = AuxOrErr->Name;
572       else
573         VD.AuxV.push_back(*AuxOrErr);
574     }
575 
576     VerdefBuf += D->vd_next;
577   }
578 
579   return Ret;
580 }
581 
582 template <class ELFT>
583 Expected<std::vector<VerNeed>>
584 ELFDumper<ELFT>::getVersionDependencies(const Elf_Shdr *Sec) const {
585   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
586   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
587 
588   StringRef StrTab;
589   Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec, SecNdx);
590   if (!StrTabOrErr)
591     reportUniqueWarning(StrTabOrErr.takeError());
592   else
593     StrTab = *StrTabOrErr;
594 
595   Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(Sec);
596   if (!ContentsOrErr)
597     return createError(
598         "cannot read content of SHT_GNU_verneed section with index " +
599         Twine(SecNdx) + ": " + toString(ContentsOrErr.takeError()));
600 
601   const uint8_t *Start = ContentsOrErr->data();
602   const uint8_t *End = Start + ContentsOrErr->size();
603   const uint8_t *VerneedBuf = Start;
604 
605   std::vector<VerNeed> Ret;
606   for (unsigned I = 1; I <= /*VerneedNum=*/Sec->sh_info; ++I) {
607     if (VerneedBuf + sizeof(Elf_Verdef) > End)
608       return createError("invalid SHT_GNU_verneed section with index " +
609                          Twine(SecNdx) + ": version dependency " + Twine(I) +
610                          " goes past the end of the section");
611 
612     if (uintptr_t(VerneedBuf) % sizeof(uint32_t) != 0)
613       return createError(
614           "invalid SHT_GNU_verneed section with index " + Twine(SecNdx) +
615           ": found a misaligned version dependency entry at offset 0x" +
616           Twine::utohexstr(VerneedBuf - Start));
617 
618     unsigned Version = *reinterpret_cast<const Elf_Half *>(VerneedBuf);
619     if (Version != 1)
620       return createError("unable to dump SHT_GNU_verneed section with index " +
621                          Twine(SecNdx) + ": version " + Twine(Version) +
622                          " is not yet supported");
623 
624     const Elf_Verneed *Verneed =
625         reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
626 
627     VerNeed &VN = *Ret.emplace(Ret.end());
628     VN.Version = Verneed->vn_version;
629     VN.Cnt = Verneed->vn_cnt;
630     VN.Offset = VerneedBuf - Start;
631 
632     if (Verneed->vn_file < StrTab.size())
633       VN.File = std::string(StrTab.drop_front(Verneed->vn_file));
634     else
635       VN.File = "<corrupt vn_file: " + to_string(Verneed->vn_file) + ">";
636 
637     const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
638     for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
639       if (uintptr_t(VernauxBuf) % sizeof(uint32_t) != 0)
640         return createError("invalid SHT_GNU_verneed section with index " +
641                            Twine(SecNdx) +
642                            ": found a misaligned auxiliary entry at offset 0x" +
643                            Twine::utohexstr(VernauxBuf - Start));
644 
645       if (VernauxBuf + sizeof(Elf_Vernaux) > End)
646         return createError(
647             "invalid SHT_GNU_verneed section with index " + Twine(SecNdx) +
648             ": version dependency " + Twine(I) +
649             " refers to an auxiliary entry that goes past the end "
650             "of the section");
651 
652       const Elf_Vernaux *Vernaux =
653           reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
654 
655       VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end());
656       Aux.Hash = Vernaux->vna_hash;
657       Aux.Flags = Vernaux->vna_flags;
658       Aux.Other = Vernaux->vna_other;
659       Aux.Offset = VernauxBuf - Start;
660       if (StrTab.size() <= Vernaux->vna_name)
661         Aux.Name = "<corrupt>";
662       else
663         Aux.Name = std::string(StrTab.drop_front(Vernaux->vna_name));
664 
665       VernauxBuf += Vernaux->vna_next;
666     }
667     VerneedBuf += Verneed->vn_next;
668   }
669   return Ret;
670 }
671 
672 template <class ELFT>
673 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
674   Optional<StringRef> StrTable;
675   StringRef SymtabName;
676   size_t Entries = 0;
677   Elf_Sym_Range Syms(nullptr, nullptr);
678   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
679   if (IsDynamic) {
680     StrTable = DynamicStringTable;
681     Syms = dynamic_symbols();
682     SymtabName = DynSymtabName;
683     Entries = Syms.size();
684   } else {
685     if (!DotSymtabSec)
686       return;
687 
688     if (Expected<StringRef> StrTableOrErr =
689             Obj->getStringTableForSymtab(*DotSymtabSec))
690       StrTable = *StrTableOrErr;
691     else
692       reportUniqueWarning(createError(
693           "unable to get the string table for the SHT_SYMTAB section: " +
694           toString(StrTableOrErr.takeError())));
695 
696     if (Expected<Elf_Sym_Range> SymsOrErr = Obj->symbols(DotSymtabSec))
697       Syms = *SymsOrErr;
698     else
699       reportUniqueWarning(
700           createError("unable to read symbols from the SHT_SYMTAB section: " +
701                       toString(SymsOrErr.takeError())));
702 
703     if (Expected<StringRef> SymtabNameOrErr =
704             Obj->getSectionName(DotSymtabSec)) {
705       SymtabName = *SymtabNameOrErr;
706     } else {
707       reportUniqueWarning(
708           createError("unable to get the name of the SHT_SYMTAB section: " +
709                       toString(SymtabNameOrErr.takeError())));
710       SymtabName = "<?>";
711     }
712 
713     Entries = DotSymtabSec->getEntityCount();
714   }
715   if (Syms.begin() == Syms.end())
716     return;
717 
718   // The st_other field has 2 logical parts. The first two bits hold the symbol
719   // visibility (STV_*) and the remainder hold other platform-specific values.
720   bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
721                                  return S.st_other & ~0x3;
722                                }) != Syms.end();
723 
724   ELFDumperStyle->printSymtabMessage(Obj, SymtabName, Entries,
725                                      NonVisibilityBitsUsed);
726   for (const auto &Sym : Syms)
727     ELFDumperStyle->printSymbol(Obj, &Sym, Syms.begin(), StrTable, IsDynamic,
728                                 NonVisibilityBitsUsed);
729 }
730 
731 template <class ELFT> class MipsGOTParser;
732 
733 template <typename ELFT> class DumpStyle {
734 public:
735   using Elf_Shdr = typename ELFT::Shdr;
736   using Elf_Sym = typename ELFT::Sym;
737   using Elf_Addr = typename ELFT::Addr;
738 
739   DumpStyle(ELFDumper<ELFT> *Dumper) : Dumper(Dumper) {
740     FileName = this->Dumper->getElfObject()->getFileName();
741   }
742 
743   virtual ~DumpStyle() = default;
744 
745   virtual void printFileHeaders(const ELFFile<ELFT> *Obj) = 0;
746   virtual void printGroupSections(const ELFFile<ELFT> *Obj) = 0;
747   virtual void printRelocations(const ELFFile<ELFT> *Obj) = 0;
748   virtual void printSectionHeaders(const ELFFile<ELFT> *Obj) = 0;
749   virtual void printSymbols(const ELFFile<ELFT> *Obj, bool PrintSymbols,
750                             bool PrintDynamicSymbols) = 0;
751   virtual void printHashSymbols(const ELFFile<ELFT> *Obj) {}
752   virtual void printDependentLibs(const ELFFile<ELFT> *Obj) = 0;
753   virtual void printDynamic(const ELFFile<ELFT> *Obj) {}
754   virtual void printDynamicRelocations(const ELFFile<ELFT> *Obj) = 0;
755   virtual void printSymtabMessage(const ELFFile<ELFT> *Obj, StringRef Name,
756                                   size_t Offset, bool NonVisibilityBitsUsed) {}
757   virtual void printSymbol(const ELFFile<ELFT> *Obj, const Elf_Sym *Symbol,
758                            const Elf_Sym *FirstSym,
759                            Optional<StringRef> StrTable, bool IsDynamic,
760                            bool NonVisibilityBitsUsed) = 0;
761   virtual void printProgramHeaders(const ELFFile<ELFT> *Obj,
762                                    bool PrintProgramHeaders,
763                                    cl::boolOrDefault PrintSectionMapping) = 0;
764   virtual void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
765                                          const Elf_Shdr *Sec) = 0;
766   virtual void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
767                                              const Elf_Shdr *Sec) = 0;
768   virtual void printVersionDependencySection(const ELFFile<ELFT> *Obj,
769                                              const Elf_Shdr *Sec) = 0;
770   virtual void printHashHistograms(const ELFFile<ELFT> *Obj) = 0;
771   virtual void printCGProfile(const ELFFile<ELFT> *Obj) = 0;
772   virtual void printAddrsig(const ELFFile<ELFT> *Obj) = 0;
773   virtual void printNotes(const ELFFile<ELFT> *Obj) = 0;
774   virtual void printELFLinkerOptions(const ELFFile<ELFT> *Obj) = 0;
775   virtual void printStackSizes(const ELFObjectFile<ELFT> *Obj) = 0;
776   void printNonRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
777                                      std::function<void()> PrintHeader);
778   void printRelocatableStackSizes(const ELFObjectFile<ELFT> *Obj,
779                                   std::function<void()> PrintHeader);
780   void printFunctionStackSize(const ELFObjectFile<ELFT> *Obj, uint64_t SymValue,
781                               Optional<SectionRef> FunctionSec,
782                               const StringRef SectionName, DataExtractor Data,
783                               uint64_t *Offset);
784   void printStackSize(const ELFObjectFile<ELFT> *Obj, RelocationRef Rel,
785                       SectionRef FunctionSec,
786                       const StringRef &StackSizeSectionName,
787                       const RelocationResolver &Resolver, DataExtractor Data);
788   virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
789   virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
790   virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
791   virtual void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) = 0;
792   const ELFDumper<ELFT> *dumper() const { return Dumper; }
793 
794 protected:
795   void printDependentLibsHelper(
796       const ELFFile<ELFT> *Obj,
797       function_ref<void(const Elf_Shdr &)> OnSectionStart,
798       function_ref<void(StringRef, uint64_t)> OnSectionEntry);
799 
800   void reportUniqueWarning(Error Err) const;
801   StringRef FileName;
802 
803 private:
804   const ELFDumper<ELFT> *Dumper;
805 };
806 
807 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
808   formatted_raw_ostream &OS;
809 
810 public:
811   TYPEDEF_ELF_TYPES(ELFT)
812 
813   GNUStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
814       : DumpStyle<ELFT>(Dumper),
815         OS(static_cast<formatted_raw_ostream&>(W.getOStream())) {
816     assert (&W.getOStream() == &llvm::fouts());
817   }
818 
819   void printFileHeaders(const ELFO *Obj) override;
820   void printGroupSections(const ELFFile<ELFT> *Obj) override;
821   void printRelocations(const ELFO *Obj) override;
822   void printSectionHeaders(const ELFO *Obj) override;
823   void printSymbols(const ELFO *Obj, bool PrintSymbols,
824                     bool PrintDynamicSymbols) override;
825   void printHashSymbols(const ELFO *Obj) override;
826   void printDependentLibs(const ELFFile<ELFT> *Obj) override;
827   void printDynamic(const ELFFile<ELFT> *Obj) override;
828   void printDynamicRelocations(const ELFO *Obj) override;
829   void printSymtabMessage(const ELFO *Obj, StringRef Name, size_t Offset,
830                           bool NonVisibilityBitsUsed) override;
831   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
832                            cl::boolOrDefault PrintSectionMapping) override;
833   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
834                                  const Elf_Shdr *Sec) override;
835   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
836                                      const Elf_Shdr *Sec) override;
837   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
838                                      const Elf_Shdr *Sec) override;
839   void printHashHistograms(const ELFFile<ELFT> *Obj) override;
840   void printCGProfile(const ELFFile<ELFT> *Obj) override;
841   void printAddrsig(const ELFFile<ELFT> *Obj) override;
842   void printNotes(const ELFFile<ELFT> *Obj) override;
843   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
844   void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
845   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
846   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
847   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
848   void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
849 
850 private:
851   void printHashHistogram(const Elf_Hash &HashTable);
852   void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
853 
854   void printHashTableSymbols(const ELFO *Obj, const Elf_Hash &HashTable);
855   void printGnuHashTableSymbols(const ELFO *Obj,
856                                 const Elf_GnuHash &GnuHashTable);
857 
858   struct Field {
859     std::string Str;
860     unsigned Column;
861 
862     Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
863     Field(unsigned Col) : Column(Col) {}
864   };
865 
866   template <typename T, typename TEnum>
867   std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
868     for (const auto &EnumItem : EnumValues)
869       if (EnumItem.Value == Value)
870         return std::string(EnumItem.AltName);
871     return to_hexString(Value, false);
872   }
873 
874   template <typename T, typename TEnum>
875   std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
876                          TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
877                          TEnum EnumMask3 = {}) {
878     std::string Str;
879     for (const auto &Flag : EnumValues) {
880       if (Flag.Value == 0)
881         continue;
882 
883       TEnum EnumMask{};
884       if (Flag.Value & EnumMask1)
885         EnumMask = EnumMask1;
886       else if (Flag.Value & EnumMask2)
887         EnumMask = EnumMask2;
888       else if (Flag.Value & EnumMask3)
889         EnumMask = EnumMask3;
890       bool IsEnum = (Flag.Value & EnumMask) != 0;
891       if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
892           (IsEnum && (Value & EnumMask) == Flag.Value)) {
893         if (!Str.empty())
894           Str += ", ";
895         Str += Flag.AltName;
896       }
897     }
898     return Str;
899   }
900 
901   formatted_raw_ostream &printField(struct Field F) {
902     if (F.Column != 0)
903       OS.PadToColumn(F.Column);
904     OS << F.Str;
905     OS.flush();
906     return OS;
907   }
908   void printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym, uint32_t Sym,
909                          StringRef StrTable, uint32_t Bucket);
910   void printRelocHeader(unsigned SType);
911   void printRelocation(const ELFO *Obj, unsigned SecIndex,
912                        const Elf_Shdr *SymTab, const Elf_Rela &R,
913                        unsigned RelIndex, bool IsRela);
914   void printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
915                        StringRef SymbolName, const Elf_Rela &R, bool IsRela);
916   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
917                    Optional<StringRef> StrTable, bool IsDynamic,
918                    bool NonVisibilityBitsUsed) override;
919   std::string getSymbolSectionNdx(const ELFO *Obj, const Elf_Sym *Symbol,
920                                   const Elf_Sym *FirstSym);
921   void printDynamicRelocation(const ELFO *Obj, Elf_Rela R, bool IsRela);
922   void printProgramHeaders(const ELFO *Obj);
923   void printSectionMapping(const ELFO *Obj);
924   void printGNUVersionSectionProlog(const ELFFile<ELFT> *Obj,
925                                     const typename ELFT::Shdr *Sec,
926                                     const Twine &Label, unsigned EntriesNum);
927 };
928 
929 template <class ELFT>
930 void ELFDumper<ELFT>::reportUniqueWarning(Error Err) const {
931   handleAllErrors(std::move(Err), [&](const ErrorInfoBase &EI) {
932     cantFail(WarningHandler(EI.message()),
933              "WarningHandler should always return ErrorSuccess");
934   });
935 }
936 
937 template <class ELFT>
938 void DumpStyle<ELFT>::reportUniqueWarning(Error Err) const {
939   this->dumper()->reportUniqueWarning(std::move(Err));
940 }
941 
942 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
943 public:
944   TYPEDEF_ELF_TYPES(ELFT)
945 
946   LLVMStyle(ScopedPrinter &W, ELFDumper<ELFT> *Dumper)
947       : DumpStyle<ELFT>(Dumper), W(W) {}
948 
949   void printFileHeaders(const ELFO *Obj) override;
950   void printGroupSections(const ELFFile<ELFT> *Obj) override;
951   void printRelocations(const ELFO *Obj) override;
952   void printRelocations(const Elf_Shdr *Sec, const ELFO *Obj);
953   void printSectionHeaders(const ELFO *Obj) override;
954   void printSymbols(const ELFO *Obj, bool PrintSymbols,
955                     bool PrintDynamicSymbols) override;
956   void printDependentLibs(const ELFFile<ELFT> *Obj) override;
957   void printDynamic(const ELFFile<ELFT> *Obj) override;
958   void printDynamicRelocations(const ELFO *Obj) override;
959   void printProgramHeaders(const ELFO *Obj, bool PrintProgramHeaders,
960                            cl::boolOrDefault PrintSectionMapping) override;
961   void printVersionSymbolSection(const ELFFile<ELFT> *Obj,
962                                  const Elf_Shdr *Sec) override;
963   void printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
964                                      const Elf_Shdr *Sec) override;
965   void printVersionDependencySection(const ELFFile<ELFT> *Obj,
966                                      const Elf_Shdr *Sec) override;
967   void printHashHistograms(const ELFFile<ELFT> *Obj) override;
968   void printCGProfile(const ELFFile<ELFT> *Obj) override;
969   void printAddrsig(const ELFFile<ELFT> *Obj) override;
970   void printNotes(const ELFFile<ELFT> *Obj) override;
971   void printELFLinkerOptions(const ELFFile<ELFT> *Obj) override;
972   void printStackSizes(const ELFObjectFile<ELFT> *Obj) override;
973   void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
974   void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
975   void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
976   void printMipsABIFlags(const ELFObjectFile<ELFT> *Obj) override;
977 
978 private:
979   void printRelocation(const ELFO *Obj, unsigned SecIndex, Elf_Rela Rel,
980                        unsigned RelIndex, const Elf_Shdr *SymTab);
981   void printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel);
982   void printSymbols(const ELFO *Obj);
983   void printDynamicSymbols(const ELFO *Obj);
984   void printSymbolSection(const Elf_Sym *Symbol, const Elf_Sym *First);
985   void printSymbol(const ELFO *Obj, const Elf_Sym *Symbol, const Elf_Sym *First,
986                    Optional<StringRef> StrTable, bool IsDynamic,
987                    bool /*NonVisibilityBitsUsed*/) override;
988   void printProgramHeaders(const ELFO *Obj);
989   void printSectionMapping(const ELFO *Obj) {}
990 
991   ScopedPrinter &W;
992 };
993 
994 } // end anonymous namespace
995 
996 namespace llvm {
997 
998 template <class ELFT>
999 static std::error_code createELFDumper(const ELFObjectFile<ELFT> *Obj,
1000                                        ScopedPrinter &Writer,
1001                                        std::unique_ptr<ObjDumper> &Result) {
1002   Result.reset(new ELFDumper<ELFT>(Obj, Writer));
1003   return readobj_error::success;
1004 }
1005 
1006 std::error_code createELFDumper(const object::ObjectFile *Obj,
1007                                 ScopedPrinter &Writer,
1008                                 std::unique_ptr<ObjDumper> &Result) {
1009   // Little-endian 32-bit
1010   if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
1011     return createELFDumper(ELFObj, Writer, Result);
1012 
1013   // Big-endian 32-bit
1014   if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
1015     return createELFDumper(ELFObj, Writer, Result);
1016 
1017   // Little-endian 64-bit
1018   if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
1019     return createELFDumper(ELFObj, Writer, Result);
1020 
1021   // Big-endian 64-bit
1022   if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
1023     return createELFDumper(ELFObj, Writer, Result);
1024 
1025   return readobj_error::unsupported_obj_file_format;
1026 }
1027 
1028 } // end namespace llvm
1029 
1030 template <class ELFT> Error ELFDumper<ELFT>::LoadVersionMap() const {
1031   // If there is no dynamic symtab or version table, there is nothing to do.
1032   if (!DynSymRegion || !SymbolVersionSection)
1033     return Error::success();
1034 
1035   // Has the VersionMap already been loaded?
1036   if (!VersionMap.empty())
1037     return Error::success();
1038 
1039   // The first two version indexes are reserved.
1040   // Index 0 is LOCAL, index 1 is GLOBAL.
1041   VersionMap.push_back(VersionEntry());
1042   VersionMap.push_back(VersionEntry());
1043 
1044   auto InsertEntry = [this](unsigned N, StringRef Version, bool IsVerdef) {
1045     if (N >= VersionMap.size())
1046       VersionMap.resize(N + 1);
1047     VersionMap[N] = {std::string(Version), IsVerdef};
1048   };
1049 
1050   if (SymbolVersionDefSection) {
1051     Expected<std::vector<VerDef>> Defs =
1052         this->getVersionDefinitions(SymbolVersionDefSection);
1053     if (!Defs)
1054       return Defs.takeError();
1055     for (const VerDef &Def : *Defs)
1056       InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true);
1057   }
1058 
1059   if (SymbolVersionNeedSection) {
1060     Expected<std::vector<VerNeed>> Deps =
1061         this->getVersionDependencies(SymbolVersionNeedSection);
1062     if (!Deps)
1063       return Deps.takeError();
1064     for (const VerNeed &Dep : *Deps)
1065       for (const VernAux &Aux : Dep.AuxV)
1066         InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false);
1067   }
1068 
1069   return Error::success();
1070 }
1071 
1072 template <typename ELFT>
1073 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym *Sym,
1074                                                       bool &IsDefault) const {
1075   // This is a dynamic symbol. Look in the GNU symbol version table.
1076   if (!SymbolVersionSection) {
1077     // No version table.
1078     IsDefault = false;
1079     return "";
1080   }
1081 
1082   assert(DynSymRegion && "DynSymRegion has not been initialised");
1083   // Determine the position in the symbol table of this entry.
1084   size_t EntryIndex = (reinterpret_cast<uintptr_t>(Sym) -
1085                        reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
1086                       sizeof(Elf_Sym);
1087 
1088   // Get the corresponding version index entry.
1089   if (Expected<const Elf_Versym *> EntryOrErr =
1090           ObjF->getELFFile()->template getEntry<Elf_Versym>(
1091               SymbolVersionSection, EntryIndex))
1092     return this->getSymbolVersionByIndex((*EntryOrErr)->vs_index, IsDefault);
1093   else
1094     return EntryOrErr.takeError();
1095 }
1096 
1097 template <typename ELFT>
1098 Expected<std::pair<const typename ELFT::Sym *, std::string>>
1099 ELFDumper<ELFT>::getRelocationTarget(const Elf_Shdr *SymTab,
1100                                      const Elf_Rela &R) const {
1101   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1102   Expected<const Elf_Sym *> SymOrErr = Obj->getRelocationSymbol(&R, SymTab);
1103   if (!SymOrErr)
1104     return SymOrErr.takeError();
1105   const Elf_Sym *Sym = *SymOrErr;
1106   if (!Sym)
1107     return std::make_pair(nullptr, "");
1108 
1109   // The st_name field of a STT_SECTION is usually 0 (empty string).
1110   // This code block returns the section name.
1111   if (Sym->getType() == ELF::STT_SECTION) {
1112     Expected<const Elf_Shdr *> SecOrErr =
1113         Obj->getSection(Sym, SymTab, ShndxTable);
1114     if (!SecOrErr)
1115       return SecOrErr.takeError();
1116     // A section symbol describes the section at index 0.
1117     if (*SecOrErr == nullptr)
1118       return std::make_pair(Sym, "");
1119 
1120     Expected<StringRef> NameOrErr = Obj->getSectionName(*SecOrErr);
1121     if (!NameOrErr)
1122       return NameOrErr.takeError();
1123     return std::make_pair(Sym, NameOrErr->str());
1124   }
1125 
1126   Expected<StringRef> StrTableOrErr = Obj->getStringTableForSymtab(*SymTab);
1127   if (!StrTableOrErr)
1128     return StrTableOrErr.takeError();
1129 
1130   std::string SymbolName =
1131       getFullSymbolName(Sym, *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
1132   return std::make_pair(Sym, SymbolName);
1133 }
1134 
1135 static std::string maybeDemangle(StringRef Name) {
1136   return opts::Demangle ? demangle(std::string(Name)) : Name.str();
1137 }
1138 
1139 template <typename ELFT>
1140 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
1141   auto Warn = [&](Error E) -> std::string {
1142     this->reportUniqueWarning(
1143         createError("unable to read the name of symbol with index " +
1144                     Twine(Index) + ": " + toString(std::move(E))));
1145     return "<?>";
1146   };
1147 
1148   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1149   Expected<const typename ELFT::Sym *> SymOrErr =
1150       Obj->getSymbol(DotSymtabSec, Index);
1151   if (!SymOrErr)
1152     return Warn(SymOrErr.takeError());
1153 
1154   Expected<StringRef> StrTabOrErr = Obj->getStringTableForSymtab(*DotSymtabSec);
1155   if (!StrTabOrErr)
1156     return Warn(StrTabOrErr.takeError());
1157 
1158   Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
1159   if (!NameOrErr)
1160     return Warn(NameOrErr.takeError());
1161   return maybeDemangle(*NameOrErr);
1162 }
1163 
1164 template <typename ELFT>
1165 Expected<StringRef>
1166 ELFDumper<ELFT>::getSymbolVersionByIndex(uint32_t SymbolVersionIndex,
1167                                          bool &IsDefault) const {
1168   size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
1169 
1170   // Special markers for unversioned symbols.
1171   if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
1172     IsDefault = false;
1173     return "";
1174   }
1175 
1176   // Lookup this symbol in the version table.
1177   if (Error E = LoadVersionMap())
1178     return std::move(E);
1179   if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex])
1180     return createError("SHT_GNU_versym section refers to a version index " +
1181                        Twine(VersionIndex) + " which is missing");
1182 
1183   const VersionEntry &Entry = *VersionMap[VersionIndex];
1184   if (Entry.IsVerDef)
1185     IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
1186   else
1187     IsDefault = false;
1188   return Entry.Name.c_str();
1189 }
1190 
1191 template <typename ELFT>
1192 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym *Symbol,
1193                                                Optional<StringRef> StrTable,
1194                                                bool IsDynamic) const {
1195   if (!StrTable)
1196     return "<?>";
1197 
1198   std::string SymbolName;
1199   if (Expected<StringRef> NameOrErr = Symbol->getName(*StrTable)) {
1200     SymbolName = maybeDemangle(*NameOrErr);
1201   } else {
1202     reportUniqueWarning(NameOrErr.takeError());
1203     return "<?>";
1204   }
1205 
1206   if (SymbolName.empty() && Symbol->getType() == ELF::STT_SECTION) {
1207     Elf_Sym_Range Syms = unwrapOrError(
1208         ObjF->getFileName(), ObjF->getELFFile()->symbols(DotSymtabSec));
1209     Expected<unsigned> SectionIndex =
1210         getSymbolSectionIndex(Symbol, Syms.begin());
1211     if (!SectionIndex) {
1212       reportUniqueWarning(SectionIndex.takeError());
1213       return "<?>";
1214     }
1215     Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
1216     if (!NameOrErr) {
1217       reportUniqueWarning(NameOrErr.takeError());
1218       return ("<section " + Twine(*SectionIndex) + ">").str();
1219     }
1220     return std::string(*NameOrErr);
1221   }
1222 
1223   if (!IsDynamic)
1224     return SymbolName;
1225 
1226   bool IsDefault;
1227   Expected<StringRef> VersionOrErr = getSymbolVersion(&*Symbol, IsDefault);
1228   if (!VersionOrErr) {
1229     reportUniqueWarning(VersionOrErr.takeError());
1230     return SymbolName + "@<corrupt>";
1231   }
1232 
1233   if (!VersionOrErr->empty()) {
1234     SymbolName += (IsDefault ? "@@" : "@");
1235     SymbolName += *VersionOrErr;
1236   }
1237   return SymbolName;
1238 }
1239 
1240 template <typename ELFT>
1241 Expected<unsigned>
1242 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym *Symbol,
1243                                        const Elf_Sym *FirstSym) const {
1244   return Symbol->st_shndx == SHN_XINDEX
1245              ? object::getExtendedSymbolTableIndex<ELFT>(Symbol, FirstSym,
1246                                                          ShndxTable)
1247              : Symbol->st_shndx;
1248 }
1249 
1250 // If the Symbol has a reserved st_shndx other than SHN_XINDEX, return a
1251 // descriptive interpretation of the st_shndx value. Otherwise, return the name
1252 // of the section with index SectionIndex. This function assumes that if the
1253 // Symbol has st_shndx == SHN_XINDEX the SectionIndex will be the value derived
1254 // from the SHT_SYMTAB_SHNDX section.
1255 template <typename ELFT>
1256 Expected<StringRef>
1257 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym *Symbol,
1258                                       unsigned SectionIndex) const {
1259   if (Symbol->isUndefined())
1260     return "Undefined";
1261   if (Symbol->isProcessorSpecific())
1262     return "Processor Specific";
1263   if (Symbol->isOSSpecific())
1264     return "Operating System Specific";
1265   if (Symbol->isAbsolute())
1266     return "Absolute";
1267   if (Symbol->isCommon())
1268     return "Common";
1269   if (Symbol->isReserved() && Symbol->st_shndx != SHN_XINDEX)
1270     return "Reserved";
1271 
1272   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
1273   Expected<const Elf_Shdr *> SecOrErr =
1274       Obj->getSection(SectionIndex);
1275   if (!SecOrErr)
1276     return SecOrErr.takeError();
1277   return Obj->getSectionName(*SecOrErr);
1278 }
1279 
1280 template <class ELFO>
1281 static const typename ELFO::Elf_Shdr *
1282 findNotEmptySectionByAddress(const ELFO *Obj, StringRef FileName,
1283                              uint64_t Addr) {
1284   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj->sections()))
1285     if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1286       return &Shdr;
1287   return nullptr;
1288 }
1289 
1290 template <class ELFO>
1291 static const typename ELFO::Elf_Shdr *
1292 findSectionByName(const ELFO &Obj, StringRef FileName, StringRef Name) {
1293   for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1294     if (Name == unwrapOrError(FileName, Obj.getSectionName(&Shdr)))
1295       return &Shdr;
1296   return nullptr;
1297 }
1298 
1299 static const EnumEntry<unsigned> ElfClass[] = {
1300   {"None",   "none",   ELF::ELFCLASSNONE},
1301   {"32-bit", "ELF32",  ELF::ELFCLASS32},
1302   {"64-bit", "ELF64",  ELF::ELFCLASS64},
1303 };
1304 
1305 static const EnumEntry<unsigned> ElfDataEncoding[] = {
1306   {"None",         "none",                          ELF::ELFDATANONE},
1307   {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1308   {"BigEndian",    "2's complement, big endian",    ELF::ELFDATA2MSB},
1309 };
1310 
1311 static const EnumEntry<unsigned> ElfObjectFileType[] = {
1312   {"None",         "NONE (none)",              ELF::ET_NONE},
1313   {"Relocatable",  "REL (Relocatable file)",   ELF::ET_REL},
1314   {"Executable",   "EXEC (Executable file)",   ELF::ET_EXEC},
1315   {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1316   {"Core",         "CORE (Core file)",         ELF::ET_CORE},
1317 };
1318 
1319 static const EnumEntry<unsigned> ElfOSABI[] = {
1320   {"SystemV",      "UNIX - System V",      ELF::ELFOSABI_NONE},
1321   {"HPUX",         "UNIX - HP-UX",         ELF::ELFOSABI_HPUX},
1322   {"NetBSD",       "UNIX - NetBSD",        ELF::ELFOSABI_NETBSD},
1323   {"GNU/Linux",    "UNIX - GNU",           ELF::ELFOSABI_LINUX},
1324   {"GNU/Hurd",     "GNU/Hurd",             ELF::ELFOSABI_HURD},
1325   {"Solaris",      "UNIX - Solaris",       ELF::ELFOSABI_SOLARIS},
1326   {"AIX",          "UNIX - AIX",           ELF::ELFOSABI_AIX},
1327   {"IRIX",         "UNIX - IRIX",          ELF::ELFOSABI_IRIX},
1328   {"FreeBSD",      "UNIX - FreeBSD",       ELF::ELFOSABI_FREEBSD},
1329   {"TRU64",        "UNIX - TRU64",         ELF::ELFOSABI_TRU64},
1330   {"Modesto",      "Novell - Modesto",     ELF::ELFOSABI_MODESTO},
1331   {"OpenBSD",      "UNIX - OpenBSD",       ELF::ELFOSABI_OPENBSD},
1332   {"OpenVMS",      "VMS - OpenVMS",        ELF::ELFOSABI_OPENVMS},
1333   {"NSK",          "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1334   {"AROS",         "AROS",                 ELF::ELFOSABI_AROS},
1335   {"FenixOS",      "FenixOS",              ELF::ELFOSABI_FENIXOS},
1336   {"CloudABI",     "CloudABI",             ELF::ELFOSABI_CLOUDABI},
1337   {"Standalone",   "Standalone App",       ELF::ELFOSABI_STANDALONE}
1338 };
1339 
1340 static const EnumEntry<unsigned> SymVersionFlags[] = {
1341     {"Base", "BASE", VER_FLG_BASE},
1342     {"Weak", "WEAK", VER_FLG_WEAK},
1343     {"Info", "INFO", VER_FLG_INFO}};
1344 
1345 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1346   {"AMDGPU_HSA",    "AMDGPU - HSA",    ELF::ELFOSABI_AMDGPU_HSA},
1347   {"AMDGPU_PAL",    "AMDGPU - PAL",    ELF::ELFOSABI_AMDGPU_PAL},
1348   {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1349 };
1350 
1351 static const EnumEntry<unsigned> ARMElfOSABI[] = {
1352   {"ARM", "ARM", ELF::ELFOSABI_ARM}
1353 };
1354 
1355 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
1356   {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1357   {"C6000_LINUX",  "Linux C6000",      ELF::ELFOSABI_C6000_LINUX}
1358 };
1359 
1360 static const EnumEntry<unsigned> ElfMachineType[] = {
1361   ENUM_ENT(EM_NONE,          "None"),
1362   ENUM_ENT(EM_M32,           "WE32100"),
1363   ENUM_ENT(EM_SPARC,         "Sparc"),
1364   ENUM_ENT(EM_386,           "Intel 80386"),
1365   ENUM_ENT(EM_68K,           "MC68000"),
1366   ENUM_ENT(EM_88K,           "MC88000"),
1367   ENUM_ENT(EM_IAMCU,         "EM_IAMCU"),
1368   ENUM_ENT(EM_860,           "Intel 80860"),
1369   ENUM_ENT(EM_MIPS,          "MIPS R3000"),
1370   ENUM_ENT(EM_S370,          "IBM System/370"),
1371   ENUM_ENT(EM_MIPS_RS3_LE,   "MIPS R3000 little-endian"),
1372   ENUM_ENT(EM_PARISC,        "HPPA"),
1373   ENUM_ENT(EM_VPP500,        "Fujitsu VPP500"),
1374   ENUM_ENT(EM_SPARC32PLUS,   "Sparc v8+"),
1375   ENUM_ENT(EM_960,           "Intel 80960"),
1376   ENUM_ENT(EM_PPC,           "PowerPC"),
1377   ENUM_ENT(EM_PPC64,         "PowerPC64"),
1378   ENUM_ENT(EM_S390,          "IBM S/390"),
1379   ENUM_ENT(EM_SPU,           "SPU"),
1380   ENUM_ENT(EM_V800,          "NEC V800 series"),
1381   ENUM_ENT(EM_FR20,          "Fujistsu FR20"),
1382   ENUM_ENT(EM_RH32,          "TRW RH-32"),
1383   ENUM_ENT(EM_RCE,           "Motorola RCE"),
1384   ENUM_ENT(EM_ARM,           "ARM"),
1385   ENUM_ENT(EM_ALPHA,         "EM_ALPHA"),
1386   ENUM_ENT(EM_SH,            "Hitachi SH"),
1387   ENUM_ENT(EM_SPARCV9,       "Sparc v9"),
1388   ENUM_ENT(EM_TRICORE,       "Siemens Tricore"),
1389   ENUM_ENT(EM_ARC,           "ARC"),
1390   ENUM_ENT(EM_H8_300,        "Hitachi H8/300"),
1391   ENUM_ENT(EM_H8_300H,       "Hitachi H8/300H"),
1392   ENUM_ENT(EM_H8S,           "Hitachi H8S"),
1393   ENUM_ENT(EM_H8_500,        "Hitachi H8/500"),
1394   ENUM_ENT(EM_IA_64,         "Intel IA-64"),
1395   ENUM_ENT(EM_MIPS_X,        "Stanford MIPS-X"),
1396   ENUM_ENT(EM_COLDFIRE,      "Motorola Coldfire"),
1397   ENUM_ENT(EM_68HC12,        "Motorola MC68HC12 Microcontroller"),
1398   ENUM_ENT(EM_MMA,           "Fujitsu Multimedia Accelerator"),
1399   ENUM_ENT(EM_PCP,           "Siemens PCP"),
1400   ENUM_ENT(EM_NCPU,          "Sony nCPU embedded RISC processor"),
1401   ENUM_ENT(EM_NDR1,          "Denso NDR1 microprocesspr"),
1402   ENUM_ENT(EM_STARCORE,      "Motorola Star*Core processor"),
1403   ENUM_ENT(EM_ME16,          "Toyota ME16 processor"),
1404   ENUM_ENT(EM_ST100,         "STMicroelectronics ST100 processor"),
1405   ENUM_ENT(EM_TINYJ,         "Advanced Logic Corp. TinyJ embedded processor"),
1406   ENUM_ENT(EM_X86_64,        "Advanced Micro Devices X86-64"),
1407   ENUM_ENT(EM_PDSP,          "Sony DSP processor"),
1408   ENUM_ENT(EM_PDP10,         "Digital Equipment Corp. PDP-10"),
1409   ENUM_ENT(EM_PDP11,         "Digital Equipment Corp. PDP-11"),
1410   ENUM_ENT(EM_FX66,          "Siemens FX66 microcontroller"),
1411   ENUM_ENT(EM_ST9PLUS,       "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1412   ENUM_ENT(EM_ST7,           "STMicroelectronics ST7 8-bit microcontroller"),
1413   ENUM_ENT(EM_68HC16,        "Motorola MC68HC16 Microcontroller"),
1414   ENUM_ENT(EM_68HC11,        "Motorola MC68HC11 Microcontroller"),
1415   ENUM_ENT(EM_68HC08,        "Motorola MC68HC08 Microcontroller"),
1416   ENUM_ENT(EM_68HC05,        "Motorola MC68HC05 Microcontroller"),
1417   ENUM_ENT(EM_SVX,           "Silicon Graphics SVx"),
1418   ENUM_ENT(EM_ST19,          "STMicroelectronics ST19 8-bit microcontroller"),
1419   ENUM_ENT(EM_VAX,           "Digital VAX"),
1420   ENUM_ENT(EM_CRIS,          "Axis Communications 32-bit embedded processor"),
1421   ENUM_ENT(EM_JAVELIN,       "Infineon Technologies 32-bit embedded cpu"),
1422   ENUM_ENT(EM_FIREPATH,      "Element 14 64-bit DSP processor"),
1423   ENUM_ENT(EM_ZSP,           "LSI Logic's 16-bit DSP processor"),
1424   ENUM_ENT(EM_MMIX,          "Donald Knuth's educational 64-bit processor"),
1425   ENUM_ENT(EM_HUANY,         "Harvard Universitys's machine-independent object format"),
1426   ENUM_ENT(EM_PRISM,         "Vitesse Prism"),
1427   ENUM_ENT(EM_AVR,           "Atmel AVR 8-bit microcontroller"),
1428   ENUM_ENT(EM_FR30,          "Fujitsu FR30"),
1429   ENUM_ENT(EM_D10V,          "Mitsubishi D10V"),
1430   ENUM_ENT(EM_D30V,          "Mitsubishi D30V"),
1431   ENUM_ENT(EM_V850,          "NEC v850"),
1432   ENUM_ENT(EM_M32R,          "Renesas M32R (formerly Mitsubishi M32r)"),
1433   ENUM_ENT(EM_MN10300,       "Matsushita MN10300"),
1434   ENUM_ENT(EM_MN10200,       "Matsushita MN10200"),
1435   ENUM_ENT(EM_PJ,            "picoJava"),
1436   ENUM_ENT(EM_OPENRISC,      "OpenRISC 32-bit embedded processor"),
1437   ENUM_ENT(EM_ARC_COMPACT,   "EM_ARC_COMPACT"),
1438   ENUM_ENT(EM_XTENSA,        "Tensilica Xtensa Processor"),
1439   ENUM_ENT(EM_VIDEOCORE,     "Alphamosaic VideoCore processor"),
1440   ENUM_ENT(EM_TMM_GPP,       "Thompson Multimedia General Purpose Processor"),
1441   ENUM_ENT(EM_NS32K,         "National Semiconductor 32000 series"),
1442   ENUM_ENT(EM_TPC,           "Tenor Network TPC processor"),
1443   ENUM_ENT(EM_SNP1K,         "EM_SNP1K"),
1444   ENUM_ENT(EM_ST200,         "STMicroelectronics ST200 microcontroller"),
1445   ENUM_ENT(EM_IP2K,          "Ubicom IP2xxx 8-bit microcontrollers"),
1446   ENUM_ENT(EM_MAX,           "MAX Processor"),
1447   ENUM_ENT(EM_CR,            "National Semiconductor CompactRISC"),
1448   ENUM_ENT(EM_F2MC16,        "Fujitsu F2MC16"),
1449   ENUM_ENT(EM_MSP430,        "Texas Instruments msp430 microcontroller"),
1450   ENUM_ENT(EM_BLACKFIN,      "Analog Devices Blackfin"),
1451   ENUM_ENT(EM_SE_C33,        "S1C33 Family of Seiko Epson processors"),
1452   ENUM_ENT(EM_SEP,           "Sharp embedded microprocessor"),
1453   ENUM_ENT(EM_ARCA,          "Arca RISC microprocessor"),
1454   ENUM_ENT(EM_UNICORE,       "Unicore"),
1455   ENUM_ENT(EM_EXCESS,        "eXcess 16/32/64-bit configurable embedded CPU"),
1456   ENUM_ENT(EM_DXP,           "Icera Semiconductor Inc. Deep Execution Processor"),
1457   ENUM_ENT(EM_ALTERA_NIOS2,  "Altera Nios"),
1458   ENUM_ENT(EM_CRX,           "National Semiconductor CRX microprocessor"),
1459   ENUM_ENT(EM_XGATE,         "Motorola XGATE embedded processor"),
1460   ENUM_ENT(EM_C166,          "Infineon Technologies xc16x"),
1461   ENUM_ENT(EM_M16C,          "Renesas M16C"),
1462   ENUM_ENT(EM_DSPIC30F,      "Microchip Technology dsPIC30F Digital Signal Controller"),
1463   ENUM_ENT(EM_CE,            "Freescale Communication Engine RISC core"),
1464   ENUM_ENT(EM_M32C,          "Renesas M32C"),
1465   ENUM_ENT(EM_TSK3000,       "Altium TSK3000 core"),
1466   ENUM_ENT(EM_RS08,          "Freescale RS08 embedded processor"),
1467   ENUM_ENT(EM_SHARC,         "EM_SHARC"),
1468   ENUM_ENT(EM_ECOG2,         "Cyan Technology eCOG2 microprocessor"),
1469   ENUM_ENT(EM_SCORE7,        "SUNPLUS S+Core"),
1470   ENUM_ENT(EM_DSP24,         "New Japan Radio (NJR) 24-bit DSP Processor"),
1471   ENUM_ENT(EM_VIDEOCORE3,    "Broadcom VideoCore III processor"),
1472   ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1473   ENUM_ENT(EM_SE_C17,        "Seiko Epson C17 family"),
1474   ENUM_ENT(EM_TI_C6000,      "Texas Instruments TMS320C6000 DSP family"),
1475   ENUM_ENT(EM_TI_C2000,      "Texas Instruments TMS320C2000 DSP family"),
1476   ENUM_ENT(EM_TI_C5500,      "Texas Instruments TMS320C55x DSP family"),
1477   ENUM_ENT(EM_MMDSP_PLUS,    "STMicroelectronics 64bit VLIW Data Signal Processor"),
1478   ENUM_ENT(EM_CYPRESS_M8C,   "Cypress M8C microprocessor"),
1479   ENUM_ENT(EM_R32C,          "Renesas R32C series microprocessors"),
1480   ENUM_ENT(EM_TRIMEDIA,      "NXP Semiconductors TriMedia architecture family"),
1481   ENUM_ENT(EM_HEXAGON,       "Qualcomm Hexagon"),
1482   ENUM_ENT(EM_8051,          "Intel 8051 and variants"),
1483   ENUM_ENT(EM_STXP7X,        "STMicroelectronics STxP7x family"),
1484   ENUM_ENT(EM_NDS32,         "Andes Technology compact code size embedded RISC processor family"),
1485   ENUM_ENT(EM_ECOG1,         "Cyan Technology eCOG1 microprocessor"),
1486   // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1487   //        an identical number to EM_ECOG1.
1488   ENUM_ENT(EM_ECOG1X,        "Cyan Technology eCOG1X family"),
1489   ENUM_ENT(EM_MAXQ30,        "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1490   ENUM_ENT(EM_XIMO16,        "New Japan Radio (NJR) 16-bit DSP Processor"),
1491   ENUM_ENT(EM_MANIK,         "M2000 Reconfigurable RISC Microprocessor"),
1492   ENUM_ENT(EM_CRAYNV2,       "Cray Inc. NV2 vector architecture"),
1493   ENUM_ENT(EM_RX,            "Renesas RX"),
1494   ENUM_ENT(EM_METAG,         "Imagination Technologies Meta processor architecture"),
1495   ENUM_ENT(EM_MCST_ELBRUS,   "MCST Elbrus general purpose hardware architecture"),
1496   ENUM_ENT(EM_ECOG16,        "Cyan Technology eCOG16 family"),
1497   ENUM_ENT(EM_CR16,          "Xilinx MicroBlaze"),
1498   ENUM_ENT(EM_ETPU,          "Freescale Extended Time Processing Unit"),
1499   ENUM_ENT(EM_SLE9X,         "Infineon Technologies SLE9X core"),
1500   ENUM_ENT(EM_L10M,          "EM_L10M"),
1501   ENUM_ENT(EM_K10M,          "EM_K10M"),
1502   ENUM_ENT(EM_AARCH64,       "AArch64"),
1503   ENUM_ENT(EM_AVR32,         "Atmel Corporation 32-bit microprocessor family"),
1504   ENUM_ENT(EM_STM8,          "STMicroeletronics STM8 8-bit microcontroller"),
1505   ENUM_ENT(EM_TILE64,        "Tilera TILE64 multicore architecture family"),
1506   ENUM_ENT(EM_TILEPRO,       "Tilera TILEPro multicore architecture family"),
1507   ENUM_ENT(EM_CUDA,          "NVIDIA CUDA architecture"),
1508   ENUM_ENT(EM_TILEGX,        "Tilera TILE-Gx multicore architecture family"),
1509   ENUM_ENT(EM_CLOUDSHIELD,   "EM_CLOUDSHIELD"),
1510   ENUM_ENT(EM_COREA_1ST,     "EM_COREA_1ST"),
1511   ENUM_ENT(EM_COREA_2ND,     "EM_COREA_2ND"),
1512   ENUM_ENT(EM_ARC_COMPACT2,  "EM_ARC_COMPACT2"),
1513   ENUM_ENT(EM_OPEN8,         "EM_OPEN8"),
1514   ENUM_ENT(EM_RL78,          "Renesas RL78"),
1515   ENUM_ENT(EM_VIDEOCORE5,    "Broadcom VideoCore V processor"),
1516   ENUM_ENT(EM_78KOR,         "EM_78KOR"),
1517   ENUM_ENT(EM_56800EX,       "EM_56800EX"),
1518   ENUM_ENT(EM_AMDGPU,        "EM_AMDGPU"),
1519   ENUM_ENT(EM_RISCV,         "RISC-V"),
1520   ENUM_ENT(EM_LANAI,         "EM_LANAI"),
1521   ENUM_ENT(EM_BPF,           "EM_BPF"),
1522   ENUM_ENT(EM_VE,            "NEC SX-Aurora Vector Engine"),
1523 };
1524 
1525 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1526     {"Local",  "LOCAL",  ELF::STB_LOCAL},
1527     {"Global", "GLOBAL", ELF::STB_GLOBAL},
1528     {"Weak",   "WEAK",   ELF::STB_WEAK},
1529     {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1530 
1531 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1532     {"DEFAULT",   "DEFAULT",   ELF::STV_DEFAULT},
1533     {"INTERNAL",  "INTERNAL",  ELF::STV_INTERNAL},
1534     {"HIDDEN",    "HIDDEN",    ELF::STV_HIDDEN},
1535     {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1536 
1537 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1538   { "AMDGPU_HSA_KERNEL",            ELF::STT_AMDGPU_HSA_KERNEL }
1539 };
1540 
1541 static const char *getGroupType(uint32_t Flag) {
1542   if (Flag & ELF::GRP_COMDAT)
1543     return "COMDAT";
1544   else
1545     return "(unknown)";
1546 }
1547 
1548 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1549   ENUM_ENT(SHF_WRITE,            "W"),
1550   ENUM_ENT(SHF_ALLOC,            "A"),
1551   ENUM_ENT(SHF_EXECINSTR,        "X"),
1552   ENUM_ENT(SHF_MERGE,            "M"),
1553   ENUM_ENT(SHF_STRINGS,          "S"),
1554   ENUM_ENT(SHF_INFO_LINK,        "I"),
1555   ENUM_ENT(SHF_LINK_ORDER,       "L"),
1556   ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1557   ENUM_ENT(SHF_GROUP,            "G"),
1558   ENUM_ENT(SHF_TLS,              "T"),
1559   ENUM_ENT(SHF_COMPRESSED,       "C"),
1560   ENUM_ENT(SHF_EXCLUDE,          "E"),
1561 };
1562 
1563 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1564   ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1565   ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1566 };
1567 
1568 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1569   ENUM_ENT(SHF_ARM_PURECODE, "y")
1570 };
1571 
1572 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1573   ENUM_ENT(SHF_HEX_GPREL, "")
1574 };
1575 
1576 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1577   ENUM_ENT(SHF_MIPS_NODUPES, ""),
1578   ENUM_ENT(SHF_MIPS_NAMES,   ""),
1579   ENUM_ENT(SHF_MIPS_LOCAL,   ""),
1580   ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1581   ENUM_ENT(SHF_MIPS_GPREL,   ""),
1582   ENUM_ENT(SHF_MIPS_MERGE,   ""),
1583   ENUM_ENT(SHF_MIPS_ADDR,    ""),
1584   ENUM_ENT(SHF_MIPS_STRING,  "")
1585 };
1586 
1587 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1588   ENUM_ENT(SHF_X86_64_LARGE, "l")
1589 };
1590 
1591 static std::vector<EnumEntry<unsigned>>
1592 getSectionFlagsForTarget(unsigned EMachine) {
1593   std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1594                                        std::end(ElfSectionFlags));
1595   switch (EMachine) {
1596   case EM_ARM:
1597     Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1598                std::end(ElfARMSectionFlags));
1599     break;
1600   case EM_HEXAGON:
1601     Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1602                std::end(ElfHexagonSectionFlags));
1603     break;
1604   case EM_MIPS:
1605     Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1606                std::end(ElfMipsSectionFlags));
1607     break;
1608   case EM_X86_64:
1609     Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1610                std::end(ElfX86_64SectionFlags));
1611     break;
1612   case EM_XCORE:
1613     Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1614                std::end(ElfXCoreSectionFlags));
1615     break;
1616   default:
1617     break;
1618   }
1619   return Ret;
1620 }
1621 
1622 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1623   // Here we are trying to build the flags string in the same way as GNU does.
1624   // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1625   // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1626   // GNU readelf will not print "E" or "Ep" in this case, but will print just
1627   // "p". It only will print "E" when no other processor flag is set.
1628   std::string Str;
1629   bool HasUnknownFlag = false;
1630   bool HasOSFlag = false;
1631   bool HasProcFlag = false;
1632   std::vector<EnumEntry<unsigned>> FlagsList =
1633       getSectionFlagsForTarget(EMachine);
1634   while (Flags) {
1635     // Take the least significant bit as a flag.
1636     uint64_t Flag = Flags & -Flags;
1637     Flags -= Flag;
1638 
1639     // Find the flag in the known flags list.
1640     auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1641       // Flags with empty names are not printed in GNU style output.
1642       return E.Value == Flag && !E.AltName.empty();
1643     });
1644     if (I != FlagsList.end()) {
1645       Str += I->AltName;
1646       continue;
1647     }
1648 
1649     // If we did not find a matching regular flag, then we deal with an OS
1650     // specific flag, processor specific flag or an unknown flag.
1651     if (Flag & ELF::SHF_MASKOS) {
1652       HasOSFlag = true;
1653       Flags &= ~ELF::SHF_MASKOS;
1654     } else if (Flag & ELF::SHF_MASKPROC) {
1655       HasProcFlag = true;
1656       // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1657       // bit if set so that it doesn't also get printed.
1658       Flags &= ~ELF::SHF_MASKPROC;
1659     } else {
1660       HasUnknownFlag = true;
1661     }
1662   }
1663 
1664   // "o", "p" and "x" are printed last.
1665   if (HasOSFlag)
1666     Str += "o";
1667   if (HasProcFlag)
1668     Str += "p";
1669   if (HasUnknownFlag)
1670     Str += "x";
1671   return Str;
1672 }
1673 
1674 static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
1675   // Check potentially overlapped processor-specific
1676   // program header type.
1677   switch (Arch) {
1678   case ELF::EM_ARM:
1679     switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1680     break;
1681   case ELF::EM_MIPS:
1682   case ELF::EM_MIPS_RS3_LE:
1683     switch (Type) {
1684       LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1685     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1686     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1687     LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1688     }
1689     break;
1690   }
1691 
1692   switch (Type) {
1693   LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL   );
1694   LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD   );
1695   LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1696   LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
1697   LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE   );
1698   LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB  );
1699   LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR   );
1700   LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS    );
1701 
1702   LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1703   LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1704 
1705     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1706     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1707     LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1708 
1709     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1710     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1711     LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1712 
1713   default:
1714     return "";
1715   }
1716 }
1717 
1718 static std::string getElfPtType(unsigned Arch, unsigned Type) {
1719   switch (Type) {
1720     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NULL)
1721     LLVM_READOBJ_PHDR_ENUM(ELF, PT_LOAD)
1722     LLVM_READOBJ_PHDR_ENUM(ELF, PT_DYNAMIC)
1723     LLVM_READOBJ_PHDR_ENUM(ELF, PT_INTERP)
1724     LLVM_READOBJ_PHDR_ENUM(ELF, PT_NOTE)
1725     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SHLIB)
1726     LLVM_READOBJ_PHDR_ENUM(ELF, PT_PHDR)
1727     LLVM_READOBJ_PHDR_ENUM(ELF, PT_TLS)
1728     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_EH_FRAME)
1729     LLVM_READOBJ_PHDR_ENUM(ELF, PT_SUNW_UNWIND)
1730     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_STACK)
1731     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_RELRO)
1732     LLVM_READOBJ_PHDR_ENUM(ELF, PT_GNU_PROPERTY)
1733   default:
1734     // All machine specific PT_* types
1735     switch (Arch) {
1736     case ELF::EM_ARM:
1737       if (Type == ELF::PT_ARM_EXIDX)
1738         return "EXIDX";
1739       break;
1740     case ELF::EM_MIPS:
1741     case ELF::EM_MIPS_RS3_LE:
1742       switch (Type) {
1743       case PT_MIPS_REGINFO:
1744         return "REGINFO";
1745       case PT_MIPS_RTPROC:
1746         return "RTPROC";
1747       case PT_MIPS_OPTIONS:
1748         return "OPTIONS";
1749       case PT_MIPS_ABIFLAGS:
1750         return "ABIFLAGS";
1751       }
1752       break;
1753     }
1754   }
1755   return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1756 }
1757 
1758 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1759   LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1760   LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1761   LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1762 };
1763 
1764 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1765   ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1766   ENUM_ENT(EF_MIPS_PIC, "pic"),
1767   ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1768   ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1769   ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1770   ENUM_ENT(EF_MIPS_FP64, "fp64"),
1771   ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1772   ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1773   ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1774   ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1775   ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1776   ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1777   ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1778   ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1779   ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1780   ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1781   ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1782   ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1783   ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1784   ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1785   ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1786   ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1787   ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1788   ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1789   ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1790   ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1791   ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1792   ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1793   ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1794   ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1795   ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1796   ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1797   ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1798   ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1799   ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1800   ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1801   ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1802   ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1803   ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1804   ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1805   ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1806   ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1807   ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1808 };
1809 
1810 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1811   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1812   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1813   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1814   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1815   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1816   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1817   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1818   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1819   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1820   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1821   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1822   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1823   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1824   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1825   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1826   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1827   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1828   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1829   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1830   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1831   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1832   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1833   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1834   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1835   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1836   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1837   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1838   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1839   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1840   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1841   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1842   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1843   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1844   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1845   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1846   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1847   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1848   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1849   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
1850   LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
1851 };
1852 
1853 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1854   ENUM_ENT(EF_RISCV_RVC, "RVC"),
1855   ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1856   ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1857   ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1858   ENUM_ENT(EF_RISCV_RVE, "RVE")
1859 };
1860 
1861 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1862   LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1863   LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1864   LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1865 };
1866 
1867 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1868   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1869   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1870   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1871   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1872 };
1873 
1874 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1875   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1876   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1877   LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1878 };
1879 
1880 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1881   switch (Odk) {
1882   LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1883   LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1884   LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1885   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1886   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1887   LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1888   LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1889   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1890   LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1891   LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1892   LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1893   LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1894   default:
1895     return "Unknown";
1896   }
1897 }
1898 
1899 template <typename ELFT>
1900 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1901 ELFDumper<ELFT>::findDynamic(const ELFFile<ELFT> *Obj) {
1902   // Try to locate the PT_DYNAMIC header.
1903   const Elf_Phdr *DynamicPhdr = nullptr;
1904   if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj->program_headers()) {
1905     for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1906       if (Phdr.p_type != ELF::PT_DYNAMIC)
1907         continue;
1908       DynamicPhdr = &Phdr;
1909       break;
1910     }
1911   } else {
1912     this->reportUniqueWarning(createError(
1913         "unable to read program headers to locate the PT_DYNAMIC segment: " +
1914         toString(PhdrsOrErr.takeError())));
1915   }
1916 
1917   // Try to locate the .dynamic section in the sections header table.
1918   const Elf_Shdr *DynamicSec = nullptr;
1919   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
1920     if (Sec.sh_type != ELF::SHT_DYNAMIC)
1921       continue;
1922     DynamicSec = &Sec;
1923     break;
1924   }
1925 
1926   if (DynamicPhdr && DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1927                          ObjF->getMemoryBufferRef().getBufferSize()) {
1928     reportWarning(
1929         createError(
1930             "PT_DYNAMIC segment offset + size exceeds the size of the file"),
1931         ObjF->getFileName());
1932     // Don't use the broken dynamic header.
1933     DynamicPhdr = nullptr;
1934   }
1935 
1936   if (DynamicPhdr && DynamicSec) {
1937     StringRef Name =
1938         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(DynamicSec));
1939     if (DynamicSec->sh_addr + DynamicSec->sh_size >
1940             DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1941         DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1942       reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1943                                 "' is not contained within the "
1944                                 "PT_DYNAMIC segment"),
1945                     ObjF->getFileName());
1946 
1947     if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1948       reportWarning(createError("The SHT_DYNAMIC section '" + Name +
1949                                 "' is not at the start of "
1950                                 "PT_DYNAMIC segment"),
1951                     ObjF->getFileName());
1952   }
1953 
1954   return std::make_pair(DynamicPhdr, DynamicSec);
1955 }
1956 
1957 template <typename ELFT>
1958 void ELFDumper<ELFT>::loadDynamicTable(const ELFFile<ELFT> *Obj) {
1959   const Elf_Phdr *DynamicPhdr;
1960   const Elf_Shdr *DynamicSec;
1961   std::tie(DynamicPhdr, DynamicSec) = findDynamic(Obj);
1962   if (!DynamicPhdr && !DynamicSec)
1963     return;
1964 
1965   DynRegionInfo FromPhdr(ObjF->getFileName());
1966   bool IsPhdrTableValid = false;
1967   if (DynamicPhdr) {
1968     FromPhdr = createDRIFrom(DynamicPhdr, sizeof(Elf_Dyn));
1969     FromPhdr.SizePrintName = "PT_DYNAMIC size";
1970     FromPhdr.EntSizePrintName = "";
1971 
1972     IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
1973   }
1974 
1975   // Locate the dynamic table described in a section header.
1976   // Ignore sh_entsize and use the expected value for entry size explicitly.
1977   // This allows us to dump dynamic sections with a broken sh_entsize
1978   // field.
1979   DynRegionInfo FromSec(ObjF->getFileName());
1980   bool IsSecTableValid = false;
1981   if (DynamicSec) {
1982     FromSec =
1983         checkDRI({ObjF->getELFFile()->base() + DynamicSec->sh_offset,
1984                   DynamicSec->sh_size, sizeof(Elf_Dyn), ObjF->getFileName()});
1985     FromSec.Context = ("section with index " +
1986                        Twine(DynamicSec - &cantFail(Obj->sections()).front()))
1987                           .str();
1988     FromSec.EntSizePrintName = "";
1989 
1990     IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
1991   }
1992 
1993   // When we only have information from one of the SHT_DYNAMIC section header or
1994   // PT_DYNAMIC program header, just use that.
1995   if (!DynamicPhdr || !DynamicSec) {
1996     if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1997       DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1998       parseDynamicTable(Obj);
1999     } else {
2000       reportWarning(createError("no valid dynamic table was found"),
2001                     ObjF->getFileName());
2002     }
2003     return;
2004   }
2005 
2006   // At this point we have tables found from the section header and from the
2007   // dynamic segment. Usually they match, but we have to do sanity checks to
2008   // verify that.
2009 
2010   if (FromPhdr.Addr != FromSec.Addr)
2011     reportWarning(createError("SHT_DYNAMIC section header and PT_DYNAMIC "
2012                               "program header disagree about "
2013                               "the location of the dynamic table"),
2014                   ObjF->getFileName());
2015 
2016   if (!IsPhdrTableValid && !IsSecTableValid) {
2017     reportWarning(createError("no valid dynamic table was found"),
2018                   ObjF->getFileName());
2019     return;
2020   }
2021 
2022   // Information in the PT_DYNAMIC program header has priority over the information
2023   // in a section header.
2024   if (IsPhdrTableValid) {
2025     if (!IsSecTableValid)
2026       reportWarning(
2027           createError(
2028               "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used"),
2029           ObjF->getFileName());
2030     DynamicTable = FromPhdr;
2031   } else {
2032     reportWarning(
2033         createError(
2034             "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used"),
2035         ObjF->getFileName());
2036     DynamicTable = FromSec;
2037   }
2038 
2039   parseDynamicTable(Obj);
2040 }
2041 
2042 template <typename ELFT>
2043 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> *ObjF,
2044                            ScopedPrinter &Writer)
2045     : ObjDumper(Writer), ObjF(ObjF), DynRelRegion(ObjF->getFileName()),
2046       DynRelaRegion(ObjF->getFileName()), DynRelrRegion(ObjF->getFileName()),
2047       DynPLTRelRegion(ObjF->getFileName()), DynamicTable(ObjF->getFileName()) {
2048   // Dumper reports all non-critical errors as warnings.
2049   // It does not print the same warning more than once.
2050   WarningHandler = [this](const Twine &Msg) {
2051     if (Warnings.insert(Msg.str()).second)
2052       reportWarning(createError(Msg), this->ObjF->getFileName());
2053     return Error::success();
2054   };
2055 
2056   if (opts::Output == opts::GNU)
2057     ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, this));
2058   else
2059     ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, this));
2060 
2061   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2062   typename ELFT::ShdrRange Sections = cantFail(Obj->sections());
2063   for (const Elf_Shdr &Sec : Sections) {
2064     switch (Sec.sh_type) {
2065     case ELF::SHT_SYMTAB:
2066       if (!DotSymtabSec)
2067         DotSymtabSec = &Sec;
2068       break;
2069     case ELF::SHT_DYNSYM:
2070       if (!DynSymRegion) {
2071         DynSymRegion = createDRIFrom(&Sec);
2072         DynSymRegion->Context =
2073             ("section with index " + Twine(&Sec - &Sections.front())).str();
2074         // This is only used (if Elf_Shdr present)for naming section in GNU
2075         // style
2076         DynSymtabName =
2077             unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
2078 
2079         if (Expected<StringRef> E = Obj->getStringTableForSymtab(Sec))
2080           DynamicStringTable = *E;
2081         else
2082           reportWarning(E.takeError(), ObjF->getFileName());
2083       }
2084       break;
2085     case ELF::SHT_SYMTAB_SHNDX:
2086       ShndxTable = unwrapOrError(ObjF->getFileName(), Obj->getSHNDXTable(Sec));
2087       break;
2088     case ELF::SHT_GNU_versym:
2089       if (!SymbolVersionSection)
2090         SymbolVersionSection = &Sec;
2091       break;
2092     case ELF::SHT_GNU_verdef:
2093       if (!SymbolVersionDefSection)
2094         SymbolVersionDefSection = &Sec;
2095       break;
2096     case ELF::SHT_GNU_verneed:
2097       if (!SymbolVersionNeedSection)
2098         SymbolVersionNeedSection = &Sec;
2099       break;
2100     case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
2101       if (!DotCGProfileSec)
2102         DotCGProfileSec = &Sec;
2103       break;
2104     case ELF::SHT_LLVM_ADDRSIG:
2105       if (!DotAddrsigSec)
2106         DotAddrsigSec = &Sec;
2107       break;
2108     }
2109   }
2110 
2111   loadDynamicTable(Obj);
2112 }
2113 
2114 template <typename ELFT>
2115 void ELFDumper<ELFT>::parseDynamicTable(const ELFFile<ELFT> *Obj) {
2116   auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2117     auto MappedAddrOrError = ObjF->getELFFile()->toMappedAddr(VAddr);
2118     if (!MappedAddrOrError) {
2119       Error Err =
2120           createError("Unable to parse DT_" + Obj->getDynamicTagAsString(Tag) +
2121                       ": " + llvm::toString(MappedAddrOrError.takeError()));
2122 
2123       reportWarning(std::move(Err), ObjF->getFileName());
2124       return nullptr;
2125     }
2126     return MappedAddrOrError.get();
2127   };
2128 
2129   uint64_t SONameOffset = 0;
2130   const char *StringTableBegin = nullptr;
2131   uint64_t StringTableSize = 0;
2132   Optional<DynRegionInfo> DynSymFromTable;
2133   for (const Elf_Dyn &Dyn : dynamic_table()) {
2134     switch (Dyn.d_tag) {
2135     case ELF::DT_HASH:
2136       HashTable = reinterpret_cast<const Elf_Hash *>(
2137           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2138       break;
2139     case ELF::DT_GNU_HASH:
2140       GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2141           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2142       break;
2143     case ELF::DT_STRTAB:
2144       StringTableBegin = reinterpret_cast<const char *>(
2145           toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2146       break;
2147     case ELF::DT_STRSZ:
2148       StringTableSize = Dyn.getVal();
2149       break;
2150     case ELF::DT_SYMTAB: {
2151       // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2152       // no program headers), we ignore its value.
2153       if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2154         DynSymFromTable.emplace(ObjF->getFileName());
2155         DynSymFromTable->Addr = VA;
2156         DynSymFromTable->EntSize = sizeof(Elf_Sym);
2157         DynSymFromTable->EntSizePrintName = "";
2158       }
2159       break;
2160     }
2161     case ELF::DT_SYMENT: {
2162       uint64_t Val = Dyn.getVal();
2163       if (Val != sizeof(Elf_Sym))
2164         reportWarning(createError("DT_SYMENT value of 0x" +
2165                                   Twine::utohexstr(Val) +
2166                                   " is not the size of a symbol (0x" +
2167                                   Twine::utohexstr(sizeof(Elf_Sym)) + ")"),
2168                       ObjF->getFileName());
2169       break;
2170     }
2171     case ELF::DT_RELA:
2172       DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2173       break;
2174     case ELF::DT_RELASZ:
2175       DynRelaRegion.Size = Dyn.getVal();
2176       DynRelaRegion.SizePrintName = "DT_RELASZ value";
2177       break;
2178     case ELF::DT_RELAENT:
2179       DynRelaRegion.EntSize = Dyn.getVal();
2180       DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2181       break;
2182     case ELF::DT_SONAME:
2183       SONameOffset = Dyn.getVal();
2184       break;
2185     case ELF::DT_REL:
2186       DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2187       break;
2188     case ELF::DT_RELSZ:
2189       DynRelRegion.Size = Dyn.getVal();
2190       DynRelRegion.SizePrintName = "DT_RELSZ value";
2191       break;
2192     case ELF::DT_RELENT:
2193       DynRelRegion.EntSize = Dyn.getVal();
2194       DynRelRegion.EntSizePrintName = "DT_RELENT value";
2195       break;
2196     case ELF::DT_RELR:
2197     case ELF::DT_ANDROID_RELR:
2198       DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2199       break;
2200     case ELF::DT_RELRSZ:
2201     case ELF::DT_ANDROID_RELRSZ:
2202       DynRelrRegion.Size = Dyn.getVal();
2203       DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2204                                         ? "DT_RELRSZ value"
2205                                         : "DT_ANDROID_RELRSZ value";
2206       break;
2207     case ELF::DT_RELRENT:
2208     case ELF::DT_ANDROID_RELRENT:
2209       DynRelrRegion.EntSize = Dyn.getVal();
2210       DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2211                                            ? "DT_RELRENT value"
2212                                            : "DT_ANDROID_RELRENT value";
2213       break;
2214     case ELF::DT_PLTREL:
2215       if (Dyn.getVal() == DT_REL)
2216         DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2217       else if (Dyn.getVal() == DT_RELA)
2218         DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2219       else
2220         reportError(createError(Twine("unknown DT_PLTREL value of ") +
2221                                 Twine((uint64_t)Dyn.getVal())),
2222                     ObjF->getFileName());
2223       DynPLTRelRegion.EntSizePrintName = "";
2224       break;
2225     case ELF::DT_JMPREL:
2226       DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2227       break;
2228     case ELF::DT_PLTRELSZ:
2229       DynPLTRelRegion.Size = Dyn.getVal();
2230       DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2231       break;
2232     }
2233   }
2234 
2235   if (StringTableBegin) {
2236     const uint64_t FileSize = ObjF->getELFFile()->getBufSize();
2237     const uint64_t Offset =
2238         (const uint8_t *)StringTableBegin - ObjF->getELFFile()->base();
2239     if (StringTableSize > FileSize - Offset)
2240       reportUniqueWarning(createError(
2241           "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2242           " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2243           ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize)));
2244     else
2245       DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2246   }
2247 
2248   SOName = getDynamicString(SONameOffset);
2249 
2250   if (DynSymRegion) {
2251     // Often we find the information about the dynamic symbol table
2252     // location in the SHT_DYNSYM section header. However, the value in
2253     // DT_SYMTAB has priority, because it is used by dynamic loaders to
2254     // locate .dynsym at runtime. The location we find in the section header
2255     // and the location we find here should match.
2256     if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2257       reportUniqueWarning(
2258           createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2259                       "the location of the dynamic symbol table"));
2260 
2261     // According to the ELF gABI: "The number of symbol table entries should
2262     // equal nchain". Check to see if the DT_HASH hash table nchain value
2263     // conflicts with the number of symbols in the dynamic symbol table
2264     // according to the section header.
2265     if (HashTable) {
2266       if (DynSymRegion->EntSize == 0)
2267         reportUniqueWarning(
2268             createError("SHT_DYNSYM section has sh_entsize == 0"));
2269       else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2270         reportUniqueWarning(createError(
2271             "hash table nchain (" + Twine(HashTable->nchain) +
2272             ") differs from symbol count derived from SHT_DYNSYM section "
2273             "header (" +
2274             Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")"));
2275     }
2276   }
2277 
2278   // Delay the creation of the actual dynamic symbol table until now, so that
2279   // checks can always be made against the section header-based properties,
2280   // without worrying about tag order.
2281   if (DynSymFromTable) {
2282     if (!DynSymRegion) {
2283       DynSymRegion = DynSymFromTable;
2284     } else {
2285       DynSymRegion->Addr = DynSymFromTable->Addr;
2286       DynSymRegion->EntSize = DynSymFromTable->EntSize;
2287       DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2288     }
2289   }
2290 
2291   // Derive the dynamic symbol table size from the DT_HASH hash table, if
2292   // present.
2293   if (HashTable && DynSymRegion)
2294     DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2295 }
2296 
2297 template <typename ELFT>
2298 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
2299   return DynRelRegion.getAsArrayRef<Elf_Rel>();
2300 }
2301 
2302 template <typename ELFT>
2303 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
2304   return DynRelaRegion.getAsArrayRef<Elf_Rela>();
2305 }
2306 
2307 template <typename ELFT>
2308 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
2309   return DynRelrRegion.getAsArrayRef<Elf_Relr>();
2310 }
2311 
2312 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
2313   ELFDumperStyle->printFileHeaders(ObjF->getELFFile());
2314 }
2315 
2316 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
2317   ELFDumperStyle->printSectionHeaders(ObjF->getELFFile());
2318 }
2319 
2320 template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
2321   ELFDumperStyle->printRelocations(ObjF->getELFFile());
2322 }
2323 
2324 template <class ELFT>
2325 void ELFDumper<ELFT>::printProgramHeaders(
2326     bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
2327   ELFDumperStyle->printProgramHeaders(ObjF->getELFFile(), PrintProgramHeaders,
2328                                       PrintSectionMapping);
2329 }
2330 
2331 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2332   // Dump version symbol section.
2333   ELFDumperStyle->printVersionSymbolSection(ObjF->getELFFile(),
2334                                             SymbolVersionSection);
2335 
2336   // Dump version definition section.
2337   ELFDumperStyle->printVersionDefinitionSection(ObjF->getELFFile(),
2338                                                 SymbolVersionDefSection);
2339 
2340   // Dump version dependency section.
2341   ELFDumperStyle->printVersionDependencySection(ObjF->getELFFile(),
2342                                                 SymbolVersionNeedSection);
2343 }
2344 
2345 template <class ELFT> void ELFDumper<ELFT>::printDependentLibs() {
2346   ELFDumperStyle->printDependentLibs(ObjF->getELFFile());
2347 }
2348 
2349 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
2350   ELFDumperStyle->printDynamicRelocations(ObjF->getELFFile());
2351 }
2352 
2353 template <class ELFT>
2354 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
2355                                    bool PrintDynamicSymbols) {
2356   ELFDumperStyle->printSymbols(ObjF->getELFFile(), PrintSymbols,
2357                                PrintDynamicSymbols);
2358 }
2359 
2360 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
2361   ELFDumperStyle->printHashSymbols(ObjF->getELFFile());
2362 }
2363 
2364 template <class ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2365   ELFDumperStyle->printHashHistograms(ObjF->getELFFile());
2366 }
2367 
2368 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
2369   ELFDumperStyle->printCGProfile(ObjF->getELFFile());
2370 }
2371 
2372 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
2373   ELFDumperStyle->printNotes(ObjF->getELFFile());
2374 }
2375 
2376 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
2377   ELFDumperStyle->printELFLinkerOptions(ObjF->getELFFile());
2378 }
2379 
2380 template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
2381   ELFDumperStyle->printStackSizes(ObjF);
2382 }
2383 
2384 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum)                                 \
2385   { #enum, prefix##_##enum }
2386 
2387 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2388   LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2389   LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2390   LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2391   LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2392   LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2393 };
2394 
2395 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2396   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2397   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2398   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2399   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2400   LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2401   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2402   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2403   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2404   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2405   LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2406   LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2407   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2408   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2409   LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2410   LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2411   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2412   LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2413   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2414   LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2415   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2416   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2417   LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2418   LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2419   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2420   LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2421   LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2422   LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2423 };
2424 
2425 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2426   LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2427   LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2428   LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2429   LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2430   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2431   LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2432   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2433   LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2434   LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2435   LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2436   LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2437   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2438   LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2439   LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2440   LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2441   LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2442 };
2443 
2444 #undef LLVM_READOBJ_DT_FLAG_ENT
2445 
2446 template <typename T, typename TFlag>
2447 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2448   using FlagEntry = EnumEntry<TFlag>;
2449   using FlagVector = SmallVector<FlagEntry, 10>;
2450   FlagVector SetFlags;
2451 
2452   for (const auto &Flag : Flags) {
2453     if (Flag.Value == 0)
2454       continue;
2455 
2456     if ((Value & Flag.Value) == Flag.Value)
2457       SetFlags.push_back(Flag);
2458   }
2459 
2460   for (const auto &Flag : SetFlags) {
2461     OS << Flag.Name << " ";
2462   }
2463 }
2464 
2465 template <class ELFT>
2466 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2467                                              uint64_t Value) const {
2468   auto FormatHexValue = [](uint64_t V) {
2469     std::string Str;
2470     raw_string_ostream OS(Str);
2471     const char *ConvChar =
2472         (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2473     OS << format(ConvChar, V);
2474     return OS.str();
2475   };
2476 
2477   auto FormatFlags = [](uint64_t V,
2478                         llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2479     std::string Str;
2480     raw_string_ostream OS(Str);
2481     printFlags(V, Array, OS);
2482     return OS.str();
2483   };
2484 
2485   // Handle custom printing of architecture specific tags
2486   switch (ObjF->getELFFile()->getHeader()->e_machine) {
2487   case EM_AARCH64:
2488     switch (Type) {
2489     case DT_AARCH64_BTI_PLT:
2490     case DT_AARCH64_PAC_PLT:
2491       return std::to_string(Value);
2492     default:
2493       break;
2494     }
2495     break;
2496   case EM_HEXAGON:
2497     switch (Type) {
2498     case DT_HEXAGON_VER:
2499       return std::to_string(Value);
2500     case DT_HEXAGON_SYMSZ:
2501     case DT_HEXAGON_PLT:
2502       return FormatHexValue(Value);
2503     default:
2504       break;
2505     }
2506     break;
2507   case EM_MIPS:
2508     switch (Type) {
2509     case DT_MIPS_RLD_VERSION:
2510     case DT_MIPS_LOCAL_GOTNO:
2511     case DT_MIPS_SYMTABNO:
2512     case DT_MIPS_UNREFEXTNO:
2513       return std::to_string(Value);
2514     case DT_MIPS_TIME_STAMP:
2515     case DT_MIPS_ICHECKSUM:
2516     case DT_MIPS_IVERSION:
2517     case DT_MIPS_BASE_ADDRESS:
2518     case DT_MIPS_MSYM:
2519     case DT_MIPS_CONFLICT:
2520     case DT_MIPS_LIBLIST:
2521     case DT_MIPS_CONFLICTNO:
2522     case DT_MIPS_LIBLISTNO:
2523     case DT_MIPS_GOTSYM:
2524     case DT_MIPS_HIPAGENO:
2525     case DT_MIPS_RLD_MAP:
2526     case DT_MIPS_DELTA_CLASS:
2527     case DT_MIPS_DELTA_CLASS_NO:
2528     case DT_MIPS_DELTA_INSTANCE:
2529     case DT_MIPS_DELTA_RELOC:
2530     case DT_MIPS_DELTA_RELOC_NO:
2531     case DT_MIPS_DELTA_SYM:
2532     case DT_MIPS_DELTA_SYM_NO:
2533     case DT_MIPS_DELTA_CLASSSYM:
2534     case DT_MIPS_DELTA_CLASSSYM_NO:
2535     case DT_MIPS_CXX_FLAGS:
2536     case DT_MIPS_PIXIE_INIT:
2537     case DT_MIPS_SYMBOL_LIB:
2538     case DT_MIPS_LOCALPAGE_GOTIDX:
2539     case DT_MIPS_LOCAL_GOTIDX:
2540     case DT_MIPS_HIDDEN_GOTIDX:
2541     case DT_MIPS_PROTECTED_GOTIDX:
2542     case DT_MIPS_OPTIONS:
2543     case DT_MIPS_INTERFACE:
2544     case DT_MIPS_DYNSTR_ALIGN:
2545     case DT_MIPS_INTERFACE_SIZE:
2546     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2547     case DT_MIPS_PERF_SUFFIX:
2548     case DT_MIPS_COMPACT_SIZE:
2549     case DT_MIPS_GP_VALUE:
2550     case DT_MIPS_AUX_DYNAMIC:
2551     case DT_MIPS_PLTGOT:
2552     case DT_MIPS_RWPLT:
2553     case DT_MIPS_RLD_MAP_REL:
2554       return FormatHexValue(Value);
2555     case DT_MIPS_FLAGS:
2556       return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2557     default:
2558       break;
2559     }
2560     break;
2561   default:
2562     break;
2563   }
2564 
2565   switch (Type) {
2566   case DT_PLTREL:
2567     if (Value == DT_REL)
2568       return "REL";
2569     if (Value == DT_RELA)
2570       return "RELA";
2571     LLVM_FALLTHROUGH;
2572   case DT_PLTGOT:
2573   case DT_HASH:
2574   case DT_STRTAB:
2575   case DT_SYMTAB:
2576   case DT_RELA:
2577   case DT_INIT:
2578   case DT_FINI:
2579   case DT_REL:
2580   case DT_JMPREL:
2581   case DT_INIT_ARRAY:
2582   case DT_FINI_ARRAY:
2583   case DT_PREINIT_ARRAY:
2584   case DT_DEBUG:
2585   case DT_VERDEF:
2586   case DT_VERNEED:
2587   case DT_VERSYM:
2588   case DT_GNU_HASH:
2589   case DT_NULL:
2590     return FormatHexValue(Value);
2591   case DT_RELACOUNT:
2592   case DT_RELCOUNT:
2593   case DT_VERDEFNUM:
2594   case DT_VERNEEDNUM:
2595     return std::to_string(Value);
2596   case DT_PLTRELSZ:
2597   case DT_RELASZ:
2598   case DT_RELAENT:
2599   case DT_STRSZ:
2600   case DT_SYMENT:
2601   case DT_RELSZ:
2602   case DT_RELENT:
2603   case DT_INIT_ARRAYSZ:
2604   case DT_FINI_ARRAYSZ:
2605   case DT_PREINIT_ARRAYSZ:
2606   case DT_ANDROID_RELSZ:
2607   case DT_ANDROID_RELASZ:
2608     return std::to_string(Value) + " (bytes)";
2609   case DT_NEEDED:
2610   case DT_SONAME:
2611   case DT_AUXILIARY:
2612   case DT_USED:
2613   case DT_FILTER:
2614   case DT_RPATH:
2615   case DT_RUNPATH: {
2616     const std::map<uint64_t, const char *> TagNames = {
2617         {DT_NEEDED, "Shared library"},       {DT_SONAME, "Library soname"},
2618         {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2619         {DT_FILTER, "Filter library"},       {DT_RPATH, "Library rpath"},
2620         {DT_RUNPATH, "Library runpath"},
2621     };
2622 
2623     return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2624         .str();
2625   }
2626   case DT_FLAGS:
2627     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2628   case DT_FLAGS_1:
2629     return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2630   default:
2631     return FormatHexValue(Value);
2632   }
2633 }
2634 
2635 template <class ELFT>
2636 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2637   if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2638     reportUniqueWarning(createError("string table was not found"));
2639     return "<?>";
2640   }
2641 
2642   auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2643     reportUniqueWarning(createError("string table at offset 0x" +
2644                                     Twine::utohexstr(Offset) + Msg));
2645     return "<?>";
2646   };
2647 
2648   const uint64_t FileSize = ObjF->getELFFile()->getBufSize();
2649   const uint64_t Offset =
2650       (const uint8_t *)DynamicStringTable.data() - ObjF->getELFFile()->base();
2651   if (DynamicStringTable.size() > FileSize - Offset)
2652     return WarnAndReturn(" with size 0x" +
2653                              Twine::utohexstr(DynamicStringTable.size()) +
2654                              " goes past the end of the file (0x" +
2655                              Twine::utohexstr(FileSize) + ")",
2656                          Offset);
2657 
2658   if (Value >= DynamicStringTable.size())
2659     return WarnAndReturn(
2660         ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2661             ": it goes past the end of the table (0x" +
2662             Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2663         Offset);
2664 
2665   if (DynamicStringTable.back() != '\0')
2666     return WarnAndReturn(": unable to read the string at 0x" +
2667                              Twine::utohexstr(Offset + Value) +
2668                              ": the string table is not null-terminated",
2669                          Offset);
2670 
2671   return DynamicStringTable.data() + Value;
2672 }
2673 
2674 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2675   DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2676   Ctx.printUnwindInformation();
2677 }
2678 
2679 namespace {
2680 
2681 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2682   const ELFFile<ELF32LE> *Obj = ObjF->getELFFile();
2683   const unsigned Machine = Obj->getHeader()->e_machine;
2684   if (Machine == EM_ARM) {
2685     ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF->getFileName(),
2686                                             DotSymtabSec);
2687     Ctx.PrintUnwindInformation();
2688   }
2689   DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2690   Ctx.printUnwindInformation();
2691 }
2692 
2693 } // end anonymous namespace
2694 
2695 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
2696   ELFDumperStyle->printDynamic(ObjF->getELFFile());
2697 }
2698 
2699 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2700   ListScope D(W, "NeededLibraries");
2701 
2702   std::vector<StringRef> Libs;
2703   for (const auto &Entry : dynamic_table())
2704     if (Entry.d_tag == ELF::DT_NEEDED)
2705       Libs.push_back(getDynamicString(Entry.d_un.d_val));
2706 
2707   llvm::sort(Libs);
2708 
2709   for (StringRef L : Libs)
2710     W.startLine() << L << "\n";
2711 }
2712 
2713 template <class ELFT>
2714 static Error checkHashTable(const ELFFile<ELFT> *Obj,
2715                             const typename ELFT::Hash *H,
2716                             bool *IsHeaderValid = nullptr) {
2717   auto MakeError = [&](uint64_t Off, const Twine &Msg = "") {
2718     return createError("the hash table at offset 0x" + Twine::utohexstr(Off) +
2719                        " goes past the end of the file (0x" +
2720                        Twine::utohexstr(Obj->getBufSize()) + ")" + Msg);
2721   };
2722 
2723   // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2724   const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2725   const uint64_t SecOffset = (const uint8_t *)H - Obj->base();
2726 
2727   if (IsHeaderValid)
2728     *IsHeaderValid = Obj->getBufSize() - SecOffset >= HeaderSize;
2729 
2730   if (Obj->getBufSize() - SecOffset < HeaderSize)
2731     return MakeError(SecOffset);
2732 
2733   if (Obj->getBufSize() - SecOffset - HeaderSize <
2734       ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2735     return MakeError(SecOffset, ", nbucket = " + Twine(H->nbucket) +
2736                                     ", nchain = " + Twine(H->nchain));
2737   return Error::success();
2738 }
2739 
2740 template <class ELFT>
2741 static Error checkGNUHashTable(const ELFFile<ELFT> *Obj,
2742                                const typename ELFT::GnuHash *GnuHashTable,
2743                                bool *IsHeaderValid = nullptr) {
2744   const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2745   assert(TableData >= Obj->base() &&
2746          TableData < Obj->base() + Obj->getBufSize() &&
2747          "GnuHashTable must always point to a location inside the file");
2748 
2749   uint64_t TableOffset = TableData - Obj->base();
2750   if (IsHeaderValid)
2751     *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj->getBufSize();
2752   if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2753           (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2754       Obj->getBufSize())
2755     return createError("unable to dump the SHT_GNU_HASH "
2756                        "section at 0x" +
2757                        Twine::utohexstr(TableOffset) +
2758                        ": it goes past the end of the file");
2759   return Error::success();
2760 }
2761 
2762 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2763   DictScope D(W, "HashTable");
2764   if (!HashTable)
2765     return;
2766 
2767   bool IsHeaderValid;
2768   Error Err = checkHashTable(ObjF->getELFFile(), HashTable, &IsHeaderValid);
2769   if (IsHeaderValid) {
2770     W.printNumber("Num Buckets", HashTable->nbucket);
2771     W.printNumber("Num Chains", HashTable->nchain);
2772   }
2773 
2774   if (Err) {
2775     reportUniqueWarning(std::move(Err));
2776     return;
2777   }
2778 
2779   W.printList("Buckets", HashTable->buckets());
2780   W.printList("Chains", HashTable->chains());
2781 }
2782 
2783 template <class ELFT>
2784 static Expected<ArrayRef<typename ELFT::Word>>
2785 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2786                       const typename ELFT::GnuHash *GnuHashTable) {
2787   if (!DynSymRegion)
2788     return createError("no dynamic symbol table found");
2789 
2790   ArrayRef<typename ELFT::Sym> DynSymTable =
2791       DynSymRegion->getAsArrayRef<typename ELFT::Sym>();
2792   size_t NumSyms = DynSymTable.size();
2793   if (!NumSyms)
2794     return createError("the dynamic symbol table is empty");
2795 
2796   if (GnuHashTable->symndx < NumSyms)
2797     return GnuHashTable->values(NumSyms);
2798 
2799   // A normal empty GNU hash table section produced by linker might have
2800   // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2801   // and have dummy null values in the Bloom filter and in the buckets
2802   // vector (or no values at all). It happens because the value of symndx is not
2803   // important for dynamic loaders when the GNU hash table is empty. They just
2804   // skip the whole object during symbol lookup. In such cases, the symndx value
2805   // is irrelevant and we should not report a warning.
2806   ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2807   if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2808     return createError("the first hashed symbol index (" +
2809                        Twine(GnuHashTable->symndx) +
2810                        ") is larger than the number of dynamic symbols (" +
2811                        Twine(NumSyms) + ")");
2812   // There is no way to represent an array of (dynamic symbols count - symndx)
2813   // length.
2814   return ArrayRef<typename ELFT::Word>();
2815 }
2816 
2817 template <typename ELFT>
2818 void ELFDumper<ELFT>::printGnuHashTable(const object::ObjectFile *Obj) {
2819   DictScope D(W, "GnuHashTable");
2820   if (!GnuHashTable)
2821     return;
2822 
2823   bool IsHeaderValid;
2824   Error Err =
2825       checkGNUHashTable<ELFT>(ObjF->getELFFile(), GnuHashTable, &IsHeaderValid);
2826   if (IsHeaderValid) {
2827     W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2828     W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2829     W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2830     W.printNumber("Shift Count", GnuHashTable->shift2);
2831   }
2832 
2833   if (Err) {
2834     reportUniqueWarning(std::move(Err));
2835     return;
2836   }
2837 
2838   ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2839   W.printHexList("Bloom Filter", BloomFilter);
2840 
2841   ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2842   W.printList("Buckets", Buckets);
2843 
2844   Expected<ArrayRef<Elf_Word>> Chains =
2845       getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2846   if (!Chains) {
2847     reportUniqueWarning(
2848         createError("unable to dump 'Values' for the SHT_GNU_HASH "
2849                     "section: " +
2850                     toString(Chains.takeError())));
2851     return;
2852   }
2853 
2854   W.printHexList("Values", *Chains);
2855 }
2856 
2857 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2858   W.printString("LoadName", SOName);
2859 }
2860 
2861 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2862   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2863   switch (Obj->getHeader()->e_machine) {
2864   case EM_ARM:
2865   case EM_RISCV:
2866     printAttributes();
2867     break;
2868   case EM_MIPS: {
2869     ELFDumperStyle->printMipsABIFlags(ObjF);
2870     printMipsOptions();
2871     printMipsReginfo();
2872 
2873     MipsGOTParser<ELFT> Parser(Obj, ObjF->getFileName(), dynamic_table(),
2874                                dynamic_symbols());
2875     if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2876       reportError(std::move(E), ObjF->getFileName());
2877     else if (!Parser.isGotEmpty())
2878       ELFDumperStyle->printMipsGOT(Parser);
2879 
2880     if (Error E = Parser.findPLT(dynamic_table()))
2881       reportError(std::move(E), ObjF->getFileName());
2882     else if (!Parser.isPltEmpty())
2883       ELFDumperStyle->printMipsPLT(Parser);
2884     break;
2885   }
2886   default:
2887     break;
2888   }
2889 }
2890 
2891 namespace {
2892 
2893 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2894   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
2895   if (!Obj->isLE()) {
2896     W.startLine() << "Attributes not implemented.\n";
2897     return;
2898   }
2899 
2900   const unsigned Machine = Obj->getHeader()->e_machine;
2901   assert((Machine == EM_ARM || Machine == EM_RISCV) &&
2902          "Attributes not implemented.");
2903 
2904   DictScope BA(W, "BuildAttributes");
2905   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
2906     if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
2907         Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
2908       continue;
2909 
2910     ArrayRef<uint8_t> Contents =
2911         unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(&Sec));
2912     if (Contents[0] != ELFAttrs::Format_Version) {
2913       reportWarning(createError(Twine("unrecognised FormatVersion: 0x") +
2914                                 Twine::utohexstr(Contents[0])),
2915                     ObjF->getFileName());
2916       continue;
2917     }
2918     W.printHex("FormatVersion", Contents[0]);
2919     if (Contents.size() == 1)
2920       continue;
2921 
2922     // TODO: Delete the redundant FormatVersion check above.
2923     if (Machine == EM_ARM) {
2924       if (Error E = ARMAttributeParser(&W).parse(Contents, support::little))
2925         reportWarning(std::move(E), ObjF->getFileName());
2926     } else if (Machine == EM_RISCV) {
2927       if (Error E = RISCVAttributeParser(&W).parse(Contents, support::little))
2928         reportWarning(std::move(E), ObjF->getFileName());
2929     }
2930   }
2931 }
2932 
2933 template <class ELFT> class MipsGOTParser {
2934 public:
2935   TYPEDEF_ELF_TYPES(ELFT)
2936   using Entry = typename ELFO::Elf_Addr;
2937   using Entries = ArrayRef<Entry>;
2938 
2939   const bool IsStatic;
2940   const ELFO * const Obj;
2941 
2942   MipsGOTParser(const ELFO *Obj, StringRef FileName, Elf_Dyn_Range DynTable,
2943                 Elf_Sym_Range DynSyms);
2944   Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2945   Error findPLT(Elf_Dyn_Range DynTable);
2946 
2947   bool isGotEmpty() const { return GotEntries.empty(); }
2948   bool isPltEmpty() const { return PltEntries.empty(); }
2949 
2950   uint64_t getGp() const;
2951 
2952   const Entry *getGotLazyResolver() const;
2953   const Entry *getGotModulePointer() const;
2954   const Entry *getPltLazyResolver() const;
2955   const Entry *getPltModulePointer() const;
2956 
2957   Entries getLocalEntries() const;
2958   Entries getGlobalEntries() const;
2959   Entries getOtherEntries() const;
2960   Entries getPltEntries() const;
2961 
2962   uint64_t getGotAddress(const Entry * E) const;
2963   int64_t getGotOffset(const Entry * E) const;
2964   const Elf_Sym *getGotSym(const Entry *E) const;
2965 
2966   uint64_t getPltAddress(const Entry * E) const;
2967   const Elf_Sym *getPltSym(const Entry *E) const;
2968 
2969   StringRef getPltStrTable() const { return PltStrTable; }
2970 
2971 private:
2972   const Elf_Shdr *GotSec;
2973   size_t LocalNum;
2974   size_t GlobalNum;
2975 
2976   const Elf_Shdr *PltSec;
2977   const Elf_Shdr *PltRelSec;
2978   const Elf_Shdr *PltSymTable;
2979   StringRef FileName;
2980 
2981   Elf_Sym_Range GotDynSyms;
2982   StringRef PltStrTable;
2983 
2984   Entries GotEntries;
2985   Entries PltEntries;
2986 };
2987 
2988 } // end anonymous namespace
2989 
2990 template <class ELFT>
2991 MipsGOTParser<ELFT>::MipsGOTParser(const ELFO *Obj, StringRef FileName,
2992                                    Elf_Dyn_Range DynTable,
2993                                    Elf_Sym_Range DynSyms)
2994     : IsStatic(DynTable.empty()), Obj(Obj), GotSec(nullptr), LocalNum(0),
2995       GlobalNum(0), PltSec(nullptr), PltRelSec(nullptr), PltSymTable(nullptr),
2996       FileName(FileName) {}
2997 
2998 template <class ELFT>
2999 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
3000                                    Elf_Sym_Range DynSyms) {
3001   // See "Global Offset Table" in Chapter 5 in the following document
3002   // for detailed GOT description.
3003   // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3004 
3005   // Find static GOT secton.
3006   if (IsStatic) {
3007     GotSec = findSectionByName(*Obj, FileName, ".got");
3008     if (!GotSec)
3009       return Error::success();
3010 
3011     ArrayRef<uint8_t> Content =
3012         unwrapOrError(FileName, Obj->getSectionContents(GotSec));
3013     GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3014                          Content.size() / sizeof(Entry));
3015     LocalNum = GotEntries.size();
3016     return Error::success();
3017   }
3018 
3019   // Lookup dynamic table tags which define the GOT layout.
3020   Optional<uint64_t> DtPltGot;
3021   Optional<uint64_t> DtLocalGotNum;
3022   Optional<uint64_t> DtGotSym;
3023   for (const auto &Entry : DynTable) {
3024     switch (Entry.getTag()) {
3025     case ELF::DT_PLTGOT:
3026       DtPltGot = Entry.getVal();
3027       break;
3028     case ELF::DT_MIPS_LOCAL_GOTNO:
3029       DtLocalGotNum = Entry.getVal();
3030       break;
3031     case ELF::DT_MIPS_GOTSYM:
3032       DtGotSym = Entry.getVal();
3033       break;
3034     }
3035   }
3036 
3037   if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3038     return Error::success();
3039 
3040   if (!DtPltGot)
3041     return createError("cannot find PLTGOT dynamic tag");
3042   if (!DtLocalGotNum)
3043     return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3044   if (!DtGotSym)
3045     return createError("cannot find MIPS_GOTSYM dynamic tag");
3046 
3047   size_t DynSymTotal = DynSyms.size();
3048   if (*DtGotSym > DynSymTotal)
3049     return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3050                        ") exceeds the number of dynamic symbols (" +
3051                        Twine(DynSymTotal) + ")");
3052 
3053   GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3054   if (!GotSec)
3055     return createError("there is no non-empty GOT section at 0x" +
3056                        Twine::utohexstr(*DtPltGot));
3057 
3058   LocalNum = *DtLocalGotNum;
3059   GlobalNum = DynSymTotal - *DtGotSym;
3060 
3061   ArrayRef<uint8_t> Content =
3062       unwrapOrError(FileName, Obj->getSectionContents(GotSec));
3063   GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3064                        Content.size() / sizeof(Entry));
3065   GotDynSyms = DynSyms.drop_front(*DtGotSym);
3066 
3067   return Error::success();
3068 }
3069 
3070 template <class ELFT>
3071 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3072   // Lookup dynamic table tags which define the PLT layout.
3073   Optional<uint64_t> DtMipsPltGot;
3074   Optional<uint64_t> DtJmpRel;
3075   for (const auto &Entry : DynTable) {
3076     switch (Entry.getTag()) {
3077     case ELF::DT_MIPS_PLTGOT:
3078       DtMipsPltGot = Entry.getVal();
3079       break;
3080     case ELF::DT_JMPREL:
3081       DtJmpRel = Entry.getVal();
3082       break;
3083     }
3084   }
3085 
3086   if (!DtMipsPltGot && !DtJmpRel)
3087     return Error::success();
3088 
3089   // Find PLT section.
3090   if (!DtMipsPltGot)
3091     return createError("cannot find MIPS_PLTGOT dynamic tag");
3092   if (!DtJmpRel)
3093     return createError("cannot find JMPREL dynamic tag");
3094 
3095   PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3096   if (!PltSec)
3097     return createError("there is no non-empty PLTGOT section at 0x" +
3098                        Twine::utohexstr(*DtMipsPltGot));
3099 
3100   PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3101   if (!PltRelSec)
3102     return createError("there is no non-empty RELPLT section at 0x" +
3103                        Twine::utohexstr(*DtJmpRel));
3104 
3105   if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3106           Obj->getSectionContents(PltSec))
3107     PltEntries =
3108         Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3109                 PltContentOrErr->size() / sizeof(Entry));
3110   else
3111     return createError("unable to read PLTGOT section content: " +
3112                        toString(PltContentOrErr.takeError()));
3113 
3114   if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3115           Obj->getSection(PltRelSec->sh_link)) {
3116     PltSymTable = *PltSymTableOrErr;
3117   } else {
3118     unsigned SecNdx = PltRelSec - &cantFail(Obj->sections()).front();
3119     return createError("unable to get a symbol table linked to the RELPLT "
3120                        "section with index " +
3121                        Twine(SecNdx) + ": " +
3122                        toString(PltSymTableOrErr.takeError()));
3123   }
3124 
3125   if (Expected<StringRef> StrTabOrErr =
3126           Obj->getStringTableForSymtab(*PltSymTable)) {
3127     PltStrTable = *StrTabOrErr;
3128   } else {
3129     unsigned SecNdx = PltSymTable - &cantFail(Obj->sections()).front();
3130     return createError(
3131         "unable to get a string table for the symbol table with index " +
3132         Twine(SecNdx) + ": " + toString(StrTabOrErr.takeError()));
3133   }
3134 
3135   return Error::success();
3136 }
3137 
3138 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3139   return GotSec->sh_addr + 0x7ff0;
3140 }
3141 
3142 template <class ELFT>
3143 const typename MipsGOTParser<ELFT>::Entry *
3144 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3145   return LocalNum > 0 ? &GotEntries[0] : nullptr;
3146 }
3147 
3148 template <class ELFT>
3149 const typename MipsGOTParser<ELFT>::Entry *
3150 MipsGOTParser<ELFT>::getGotModulePointer() const {
3151   if (LocalNum < 2)
3152     return nullptr;
3153   const Entry &E = GotEntries[1];
3154   if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3155     return nullptr;
3156   return &E;
3157 }
3158 
3159 template <class ELFT>
3160 typename MipsGOTParser<ELFT>::Entries
3161 MipsGOTParser<ELFT>::getLocalEntries() const {
3162   size_t Skip = getGotModulePointer() ? 2 : 1;
3163   if (LocalNum - Skip <= 0)
3164     return Entries();
3165   return GotEntries.slice(Skip, LocalNum - Skip);
3166 }
3167 
3168 template <class ELFT>
3169 typename MipsGOTParser<ELFT>::Entries
3170 MipsGOTParser<ELFT>::getGlobalEntries() const {
3171   if (GlobalNum == 0)
3172     return Entries();
3173   return GotEntries.slice(LocalNum, GlobalNum);
3174 }
3175 
3176 template <class ELFT>
3177 typename MipsGOTParser<ELFT>::Entries
3178 MipsGOTParser<ELFT>::getOtherEntries() const {
3179   size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3180   if (OtherNum == 0)
3181     return Entries();
3182   return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3183 }
3184 
3185 template <class ELFT>
3186 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3187   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3188   return GotSec->sh_addr + Offset;
3189 }
3190 
3191 template <class ELFT>
3192 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3193   int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3194   return Offset - 0x7ff0;
3195 }
3196 
3197 template <class ELFT>
3198 const typename MipsGOTParser<ELFT>::Elf_Sym *
3199 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3200   int64_t Offset = std::distance(GotEntries.data(), E);
3201   return &GotDynSyms[Offset - LocalNum];
3202 }
3203 
3204 template <class ELFT>
3205 const typename MipsGOTParser<ELFT>::Entry *
3206 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3207   return PltEntries.empty() ? nullptr : &PltEntries[0];
3208 }
3209 
3210 template <class ELFT>
3211 const typename MipsGOTParser<ELFT>::Entry *
3212 MipsGOTParser<ELFT>::getPltModulePointer() const {
3213   return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3214 }
3215 
3216 template <class ELFT>
3217 typename MipsGOTParser<ELFT>::Entries
3218 MipsGOTParser<ELFT>::getPltEntries() const {
3219   if (PltEntries.size() <= 2)
3220     return Entries();
3221   return PltEntries.slice(2, PltEntries.size() - 2);
3222 }
3223 
3224 template <class ELFT>
3225 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3226   int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3227   return PltSec->sh_addr + Offset;
3228 }
3229 
3230 template <class ELFT>
3231 const typename MipsGOTParser<ELFT>::Elf_Sym *
3232 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3233   int64_t Offset = std::distance(getPltEntries().data(), E);
3234   if (PltRelSec->sh_type == ELF::SHT_REL) {
3235     Elf_Rel_Range Rels = unwrapOrError(FileName, Obj->rels(PltRelSec));
3236     return unwrapOrError(FileName,
3237                          Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
3238   } else {
3239     Elf_Rela_Range Rels = unwrapOrError(FileName, Obj->relas(PltRelSec));
3240     return unwrapOrError(FileName,
3241                          Obj->getRelocationSymbol(&Rels[Offset], PltSymTable));
3242   }
3243 }
3244 
3245 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3246   {"None",                    Mips::AFL_EXT_NONE},
3247   {"Broadcom SB-1",           Mips::AFL_EXT_SB1},
3248   {"Cavium Networks Octeon",  Mips::AFL_EXT_OCTEON},
3249   {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3250   {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3251   {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3252   {"LSI R4010",               Mips::AFL_EXT_4010},
3253   {"Loongson 2E",             Mips::AFL_EXT_LOONGSON_2E},
3254   {"Loongson 2F",             Mips::AFL_EXT_LOONGSON_2F},
3255   {"Loongson 3A",             Mips::AFL_EXT_LOONGSON_3A},
3256   {"MIPS R4650",              Mips::AFL_EXT_4650},
3257   {"MIPS R5900",              Mips::AFL_EXT_5900},
3258   {"MIPS R10000",             Mips::AFL_EXT_10000},
3259   {"NEC VR4100",              Mips::AFL_EXT_4100},
3260   {"NEC VR4111/VR4181",       Mips::AFL_EXT_4111},
3261   {"NEC VR4120",              Mips::AFL_EXT_4120},
3262   {"NEC VR5400",              Mips::AFL_EXT_5400},
3263   {"NEC VR5500",              Mips::AFL_EXT_5500},
3264   {"RMI Xlr",                 Mips::AFL_EXT_XLR},
3265   {"Toshiba R3900",           Mips::AFL_EXT_3900}
3266 };
3267 
3268 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3269   {"DSP",                Mips::AFL_ASE_DSP},
3270   {"DSPR2",              Mips::AFL_ASE_DSPR2},
3271   {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3272   {"MCU",                Mips::AFL_ASE_MCU},
3273   {"MDMX",               Mips::AFL_ASE_MDMX},
3274   {"MIPS-3D",            Mips::AFL_ASE_MIPS3D},
3275   {"MT",                 Mips::AFL_ASE_MT},
3276   {"SmartMIPS",          Mips::AFL_ASE_SMARTMIPS},
3277   {"VZ",                 Mips::AFL_ASE_VIRT},
3278   {"MSA",                Mips::AFL_ASE_MSA},
3279   {"MIPS16",             Mips::AFL_ASE_MIPS16},
3280   {"microMIPS",          Mips::AFL_ASE_MICROMIPS},
3281   {"XPA",                Mips::AFL_ASE_XPA},
3282   {"CRC",                Mips::AFL_ASE_CRC},
3283   {"GINV",               Mips::AFL_ASE_GINV},
3284 };
3285 
3286 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3287   {"Hard or soft float",                  Mips::Val_GNU_MIPS_ABI_FP_ANY},
3288   {"Hard float (double precision)",       Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3289   {"Hard float (single precision)",       Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3290   {"Soft float",                          Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3291   {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3292    Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3293   {"Hard float (32-bit CPU, Any FPU)",    Mips::Val_GNU_MIPS_ABI_FP_XX},
3294   {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3295   {"Hard float compat (32-bit CPU, 64-bit FPU)",
3296    Mips::Val_GNU_MIPS_ABI_FP_64A}
3297 };
3298 
3299 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3300   {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3301 };
3302 
3303 static int getMipsRegisterSize(uint8_t Flag) {
3304   switch (Flag) {
3305   case Mips::AFL_REG_NONE:
3306     return 0;
3307   case Mips::AFL_REG_32:
3308     return 32;
3309   case Mips::AFL_REG_64:
3310     return 64;
3311   case Mips::AFL_REG_128:
3312     return 128;
3313   default:
3314     return -1;
3315   }
3316 }
3317 
3318 template <class ELFT>
3319 static void printMipsReginfoData(ScopedPrinter &W,
3320                                  const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3321   W.printHex("GP", Reginfo.ri_gp_value);
3322   W.printHex("General Mask", Reginfo.ri_gprmask);
3323   W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3324   W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3325   W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3326   W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3327 }
3328 
3329 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3330   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
3331   const Elf_Shdr *Shdr = findSectionByName(*Obj, ObjF->getFileName(), ".reginfo");
3332   if (!Shdr) {
3333     W.startLine() << "There is no .reginfo section in the file.\n";
3334     return;
3335   }
3336   ArrayRef<uint8_t> Sec =
3337       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
3338   if (Sec.size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
3339     W.startLine() << "The .reginfo section has a wrong size.\n";
3340     return;
3341   }
3342 
3343   DictScope GS(W, "MIPS RegInfo");
3344   auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec.data());
3345   printMipsReginfoData(W, *Reginfo);
3346 }
3347 
3348 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3349   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
3350   const Elf_Shdr *Shdr =
3351       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.options");
3352   if (!Shdr) {
3353     W.startLine() << "There is no .MIPS.options section in the file.\n";
3354     return;
3355   }
3356 
3357   DictScope GS(W, "MIPS Options");
3358 
3359   ArrayRef<uint8_t> Sec =
3360       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
3361   while (!Sec.empty()) {
3362     if (Sec.size() < sizeof(Elf_Mips_Options<ELFT>)) {
3363       W.startLine() << "The .MIPS.options section has a wrong size.\n";
3364       return;
3365     }
3366     auto *O = reinterpret_cast<const Elf_Mips_Options<ELFT> *>(Sec.data());
3367     DictScope GS(W, getElfMipsOptionsOdkType(O->kind));
3368     switch (O->kind) {
3369     case ODK_REGINFO:
3370       printMipsReginfoData(W, O->getRegInfo());
3371       break;
3372     default:
3373       W.startLine() << "Unsupported MIPS options tag.\n";
3374       break;
3375     }
3376     Sec = Sec.slice(O->size);
3377   }
3378 }
3379 
3380 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3381   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
3382   const Elf_Shdr *StackMapSection = nullptr;
3383   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
3384     StringRef Name =
3385         unwrapOrError(ObjF->getFileName(), Obj->getSectionName(&Sec));
3386     if (Name == ".llvm_stackmaps") {
3387       StackMapSection = &Sec;
3388       break;
3389     }
3390   }
3391 
3392   if (!StackMapSection)
3393     return;
3394 
3395   ArrayRef<uint8_t> StackMapContentsArray = unwrapOrError(
3396       ObjF->getFileName(), Obj->getSectionContents(StackMapSection));
3397 
3398   prettyPrintStackMap(
3399       W, StackMapParser<ELFT::TargetEndianness>(StackMapContentsArray));
3400 }
3401 
3402 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
3403   ELFDumperStyle->printGroupSections(ObjF->getELFFile());
3404 }
3405 
3406 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
3407   ELFDumperStyle->printAddrsig(ObjF->getELFFile());
3408 }
3409 
3410 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3411                                StringRef Str2) {
3412   OS.PadToColumn(2u);
3413   OS << Str1;
3414   OS.PadToColumn(37u);
3415   OS << Str2 << "\n";
3416   OS.flush();
3417 }
3418 
3419 template <class ELFT>
3420 static std::string getSectionHeadersNumString(const ELFFile<ELFT> *Obj,
3421                                               StringRef FileName) {
3422   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
3423   if (ElfHeader->e_shnum != 0)
3424     return to_string(ElfHeader->e_shnum);
3425 
3426   ArrayRef<typename ELFT::Shdr> Arr = cantFail(Obj->sections());
3427   if (Arr.empty())
3428     return "0";
3429   return "0 (" + to_string(Arr[0].sh_size) + ")";
3430 }
3431 
3432 template <class ELFT>
3433 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> *Obj,
3434                                                     StringRef FileName) {
3435   const typename ELFT::Ehdr *ElfHeader = Obj->getHeader();
3436   if (ElfHeader->e_shstrndx != SHN_XINDEX)
3437     return to_string(ElfHeader->e_shstrndx);
3438 
3439   ArrayRef<typename ELFT::Shdr> Arr = cantFail(Obj->sections());
3440   if (Arr.empty())
3441     return "65535 (corrupt: out of range)";
3442   return to_string(ElfHeader->e_shstrndx) + " (" + to_string(Arr[0].sh_link) +
3443          ")";
3444 }
3445 
3446 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
3447   const Elf_Ehdr *e = Obj->getHeader();
3448   OS << "ELF Header:\n";
3449   OS << "  Magic:  ";
3450   std::string Str;
3451   for (int i = 0; i < ELF::EI_NIDENT; i++)
3452     OS << format(" %02x", static_cast<int>(e->e_ident[i]));
3453   OS << "\n";
3454   Str = printEnum(e->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3455   printFields(OS, "Class:", Str);
3456   Str = printEnum(e->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3457   printFields(OS, "Data:", Str);
3458   OS.PadToColumn(2u);
3459   OS << "Version:";
3460   OS.PadToColumn(37u);
3461   OS << to_hexString(e->e_ident[ELF::EI_VERSION]);
3462   if (e->e_version == ELF::EV_CURRENT)
3463     OS << " (current)";
3464   OS << "\n";
3465   Str = printEnum(e->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3466   printFields(OS, "OS/ABI:", Str);
3467   printFields(OS,
3468               "ABI Version:", std::to_string(e->e_ident[ELF::EI_ABIVERSION]));
3469   Str = printEnum(e->e_type, makeArrayRef(ElfObjectFileType));
3470   printFields(OS, "Type:", Str);
3471   Str = printEnum(e->e_machine, makeArrayRef(ElfMachineType));
3472   printFields(OS, "Machine:", Str);
3473   Str = "0x" + to_hexString(e->e_version);
3474   printFields(OS, "Version:", Str);
3475   Str = "0x" + to_hexString(e->e_entry);
3476   printFields(OS, "Entry point address:", Str);
3477   Str = to_string(e->e_phoff) + " (bytes into file)";
3478   printFields(OS, "Start of program headers:", Str);
3479   Str = to_string(e->e_shoff) + " (bytes into file)";
3480   printFields(OS, "Start of section headers:", Str);
3481   std::string ElfFlags;
3482   if (e->e_machine == EM_MIPS)
3483     ElfFlags =
3484         printFlags(e->e_flags, makeArrayRef(ElfHeaderMipsFlags),
3485                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3486                    unsigned(ELF::EF_MIPS_MACH));
3487   else if (e->e_machine == EM_RISCV)
3488     ElfFlags = printFlags(e->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3489   Str = "0x" + to_hexString(e->e_flags);
3490   if (!ElfFlags.empty())
3491     Str = Str + ", " + ElfFlags;
3492   printFields(OS, "Flags:", Str);
3493   Str = to_string(e->e_ehsize) + " (bytes)";
3494   printFields(OS, "Size of this header:", Str);
3495   Str = to_string(e->e_phentsize) + " (bytes)";
3496   printFields(OS, "Size of program headers:", Str);
3497   Str = to_string(e->e_phnum);
3498   printFields(OS, "Number of program headers:", Str);
3499   Str = to_string(e->e_shentsize) + " (bytes)";
3500   printFields(OS, "Size of section headers:", Str);
3501   Str = getSectionHeadersNumString(Obj, this->FileName);
3502   printFields(OS, "Number of section headers:", Str);
3503   Str = getSectionHeaderTableIndexString(Obj, this->FileName);
3504   printFields(OS, "Section header string table index:", Str);
3505 }
3506 
3507 namespace {
3508 struct GroupMember {
3509   StringRef Name;
3510   uint64_t Index;
3511 };
3512 
3513 struct GroupSection {
3514   StringRef Name;
3515   std::string Signature;
3516   uint64_t ShName;
3517   uint64_t Index;
3518   uint32_t Link;
3519   uint32_t Info;
3520   uint32_t Type;
3521   std::vector<GroupMember> Members;
3522 };
3523 
3524 template <class ELFT>
3525 std::vector<GroupSection> getGroups(const ELFFile<ELFT> *Obj,
3526                                     StringRef FileName) {
3527   using Elf_Shdr = typename ELFT::Shdr;
3528   using Elf_Sym = typename ELFT::Sym;
3529   using Elf_Word = typename ELFT::Word;
3530 
3531   std::vector<GroupSection> Ret;
3532   uint64_t I = 0;
3533   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
3534     ++I;
3535     if (Sec.sh_type != ELF::SHT_GROUP)
3536       continue;
3537 
3538     const Elf_Shdr *Symtab =
3539         unwrapOrError(FileName, Obj->getSection(Sec.sh_link));
3540     StringRef StrTable =
3541         unwrapOrError(FileName, Obj->getStringTableForSymtab(*Symtab));
3542     const Elf_Sym *Sym = unwrapOrError(
3543         FileName, Obj->template getEntry<Elf_Sym>(Symtab, Sec.sh_info));
3544     auto Data = unwrapOrError(
3545         FileName, Obj->template getSectionContentsAsArray<Elf_Word>(&Sec));
3546 
3547     StringRef Name = unwrapOrError(FileName, Obj->getSectionName(&Sec));
3548     StringRef Signature = StrTable.data() + Sym->st_name;
3549     Ret.push_back({Name,
3550                    maybeDemangle(Signature),
3551                    Sec.sh_name,
3552                    I - 1,
3553                    Sec.sh_link,
3554                    Sec.sh_info,
3555                    Data[0],
3556                    {}});
3557 
3558     std::vector<GroupMember> &GM = Ret.back().Members;
3559     for (uint32_t Ndx : Data.slice(1)) {
3560       auto Sec = unwrapOrError(FileName, Obj->getSection(Ndx));
3561       const StringRef Name = unwrapOrError(FileName, Obj->getSectionName(Sec));
3562       GM.push_back({Name, Ndx});
3563     }
3564   }
3565   return Ret;
3566 }
3567 
3568 DenseMap<uint64_t, const GroupSection *>
3569 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3570   DenseMap<uint64_t, const GroupSection *> Ret;
3571   for (const GroupSection &G : Groups)
3572     for (const GroupMember &GM : G.Members)
3573       Ret.insert({GM.Index, &G});
3574   return Ret;
3575 }
3576 
3577 } // namespace
3578 
3579 template <class ELFT> void GNUStyle<ELFT>::printGroupSections(const ELFO *Obj) {
3580   std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
3581   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3582   for (const GroupSection &G : V) {
3583     OS << "\n"
3584        << getGroupType(G.Type) << " group section ["
3585        << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3586        << "] contains " << G.Members.size() << " sections:\n"
3587        << "   [Index]    Name\n";
3588     for (const GroupMember &GM : G.Members) {
3589       const GroupSection *MainGroup = Map[GM.Index];
3590       if (MainGroup != &G) {
3591         OS.flush();
3592         errs() << "Error: section [" << format_decimal(GM.Index, 5)
3593                << "] in group section [" << format_decimal(G.Index, 5)
3594                << "] already in group section ["
3595                << format_decimal(MainGroup->Index, 5) << "]";
3596         errs().flush();
3597         continue;
3598       }
3599       OS << "   [" << format_decimal(GM.Index, 5) << "]   " << GM.Name << "\n";
3600     }
3601   }
3602 
3603   if (V.empty())
3604     OS << "There are no section groups in this file.\n";
3605 }
3606 
3607 template <class ELFT>
3608 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, unsigned SecIndex,
3609                                      const Elf_Shdr *SymTab, const Elf_Rela &R,
3610                                      unsigned RelIndex, bool IsRela) {
3611   Expected<std::pair<const typename ELFT::Sym *, std::string>> Target =
3612       this->dumper()->getRelocationTarget(SymTab, R);
3613   if (!Target)
3614     this->reportUniqueWarning(createError(
3615         "unable to print relocation " + Twine(RelIndex) + " in section " +
3616         Twine(SecIndex) + ": " + toString(Target.takeError())));
3617   else
3618     printRelocation(Obj, /*Sym=*/Target->first, /*Name=*/Target->second, R,
3619                     IsRela);
3620 }
3621 
3622 template <class ELFT>
3623 void GNUStyle<ELFT>::printRelocation(const ELFO *Obj, const Elf_Sym *Sym,
3624                                      StringRef SymbolName, const Elf_Rela &R,
3625                                      bool IsRela) {
3626   // First two fields are bit width dependent. The rest of them are fixed width.
3627   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3628   Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3629   unsigned Width = ELFT::Is64Bits ? 16 : 8;
3630 
3631   Fields[0].Str = to_string(format_hex_no_prefix(R.r_offset, Width));
3632   Fields[1].Str = to_string(format_hex_no_prefix(R.r_info, Width));
3633 
3634   SmallString<32> RelocName;
3635   Obj->getRelocationTypeName(R.getType(Obj->isMips64EL()), RelocName);
3636   Fields[2].Str = RelocName.c_str();
3637 
3638   if (Sym)
3639     Fields[3].Str = to_string(format_hex_no_prefix(Sym->getValue(), Width));
3640 
3641   Fields[4].Str = std::string(SymbolName);
3642   for (const Field &F : Fields)
3643     printField(F);
3644 
3645   std::string Addend;
3646   if (IsRela) {
3647     int64_t RelAddend = R.r_addend;
3648     if (!SymbolName.empty()) {
3649       if (R.r_addend < 0) {
3650         Addend = " - ";
3651         RelAddend = std::abs(RelAddend);
3652       } else
3653         Addend = " + ";
3654     }
3655 
3656     Addend += to_hexString(RelAddend, false);
3657   }
3658   OS << Addend << "\n";
3659 }
3660 
3661 template <class ELFT> void GNUStyle<ELFT>::printRelocHeader(unsigned SType) {
3662   bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3663   bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3664   if (ELFT::Is64Bits)
3665     OS << "    ";
3666   else
3667     OS << " ";
3668   if (IsRelr && opts::RawRelr)
3669     OS << "Data  ";
3670   else
3671     OS << "Offset";
3672   if (ELFT::Is64Bits)
3673     OS << "             Info             Type"
3674        << "               Symbol's Value  Symbol's Name";
3675   else
3676     OS << "     Info    Type                Sym. Value  Symbol's Name";
3677   if (IsRela)
3678     OS << " + Addend";
3679   OS << "\n";
3680 }
3681 
3682 template <class ELFT> void GNUStyle<ELFT>::printRelocations(const ELFO *Obj) {
3683   bool HasRelocSections = false;
3684   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
3685     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
3686         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
3687         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
3688         Sec.sh_type != ELF::SHT_ANDROID_RELR)
3689       continue;
3690     HasRelocSections = true;
3691     StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
3692     unsigned Entries = Sec.getEntityCount();
3693     std::vector<Elf_Rela> AndroidRelas;
3694     if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3695         Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3696       // Android's packed relocation section needs to be unpacked first
3697       // to get the actual number of entries.
3698       AndroidRelas = unwrapOrError(this->FileName, Obj->android_relas(&Sec));
3699       Entries = AndroidRelas.size();
3700     }
3701     std::vector<Elf_Rela> RelrRelas;
3702     if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3703                            Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3704       // .relr.dyn relative relocation section needs to be unpacked first
3705       // to get the actual number of entries.
3706       Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(&Sec));
3707       RelrRelas = unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
3708       Entries = RelrRelas.size();
3709     }
3710     uintX_t Offset = Sec.sh_offset;
3711     OS << "\nRelocation section '" << Name << "' at offset 0x"
3712        << to_hexString(Offset, false) << " contains " << Entries
3713        << " entries:\n";
3714     printRelocHeader(Sec.sh_type);
3715     const Elf_Shdr *SymTab =
3716         unwrapOrError(this->FileName, Obj->getSection(Sec.sh_link));
3717     unsigned SecNdx = &Sec - &cantFail(Obj->sections()).front();
3718     unsigned RelNdx = 0;
3719 
3720     switch (Sec.sh_type) {
3721     case ELF::SHT_REL:
3722       for (const auto &R : unwrapOrError(this->FileName, Obj->rels(&Sec))) {
3723         Elf_Rela Rela;
3724         Rela.r_offset = R.r_offset;
3725         Rela.r_info = R.r_info;
3726         Rela.r_addend = 0;
3727         printRelocation(Obj, SecNdx, SymTab, Rela, ++RelNdx, false);
3728       }
3729       break;
3730     case ELF::SHT_RELA:
3731       for (const auto &R : unwrapOrError(this->FileName, Obj->relas(&Sec)))
3732         printRelocation(Obj, SecNdx, SymTab, R, ++RelNdx, true);
3733       break;
3734     case ELF::SHT_RELR:
3735     case ELF::SHT_ANDROID_RELR:
3736       if (opts::RawRelr)
3737         for (const auto &R : unwrapOrError(this->FileName, Obj->relrs(&Sec)))
3738           OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8))
3739              << "\n";
3740       else
3741         for (const auto &R : RelrRelas)
3742           printRelocation(Obj, SecNdx, SymTab, R, ++RelNdx, false);
3743       break;
3744     case ELF::SHT_ANDROID_REL:
3745     case ELF::SHT_ANDROID_RELA:
3746       for (const auto &R : AndroidRelas)
3747         printRelocation(Obj, SecNdx, SymTab, R, ++RelNdx,
3748                         Sec.sh_type == ELF::SHT_ANDROID_RELA);
3749       break;
3750     }
3751   }
3752   if (!HasRelocSections)
3753     OS << "\nThere are no relocations in this file.\n";
3754 }
3755 
3756 // Print the offset of a particular section from anyone of the ranges:
3757 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3758 // If 'Type' does not fall within any of those ranges, then a string is
3759 // returned as '<unknown>' followed by the type value.
3760 static std::string getSectionTypeOffsetString(unsigned Type) {
3761   if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3762     return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3763   else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3764     return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3765   else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3766     return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3767   return "0x" + to_hexString(Type) + ": <unknown>";
3768 }
3769 
3770 static std::string getSectionTypeString(unsigned Arch, unsigned Type) {
3771   using namespace ELF;
3772 
3773   switch (Arch) {
3774   case EM_ARM:
3775     switch (Type) {
3776     case SHT_ARM_EXIDX:
3777       return "ARM_EXIDX";
3778     case SHT_ARM_PREEMPTMAP:
3779       return "ARM_PREEMPTMAP";
3780     case SHT_ARM_ATTRIBUTES:
3781       return "ARM_ATTRIBUTES";
3782     case SHT_ARM_DEBUGOVERLAY:
3783       return "ARM_DEBUGOVERLAY";
3784     case SHT_ARM_OVERLAYSECTION:
3785       return "ARM_OVERLAYSECTION";
3786     }
3787     break;
3788   case EM_X86_64:
3789     switch (Type) {
3790     case SHT_X86_64_UNWIND:
3791       return "X86_64_UNWIND";
3792     }
3793     break;
3794   case EM_MIPS:
3795   case EM_MIPS_RS3_LE:
3796     switch (Type) {
3797     case SHT_MIPS_REGINFO:
3798       return "MIPS_REGINFO";
3799     case SHT_MIPS_OPTIONS:
3800       return "MIPS_OPTIONS";
3801     case SHT_MIPS_DWARF:
3802       return "MIPS_DWARF";
3803     case SHT_MIPS_ABIFLAGS:
3804       return "MIPS_ABIFLAGS";
3805     }
3806     break;
3807   case EM_RISCV:
3808     switch (Type) {
3809     case SHT_RISCV_ATTRIBUTES:
3810       return "RISCV_ATTRIBUTES";
3811     }
3812   }
3813   switch (Type) {
3814   case SHT_NULL:
3815     return "NULL";
3816   case SHT_PROGBITS:
3817     return "PROGBITS";
3818   case SHT_SYMTAB:
3819     return "SYMTAB";
3820   case SHT_STRTAB:
3821     return "STRTAB";
3822   case SHT_RELA:
3823     return "RELA";
3824   case SHT_HASH:
3825     return "HASH";
3826   case SHT_DYNAMIC:
3827     return "DYNAMIC";
3828   case SHT_NOTE:
3829     return "NOTE";
3830   case SHT_NOBITS:
3831     return "NOBITS";
3832   case SHT_REL:
3833     return "REL";
3834   case SHT_SHLIB:
3835     return "SHLIB";
3836   case SHT_DYNSYM:
3837     return "DYNSYM";
3838   case SHT_INIT_ARRAY:
3839     return "INIT_ARRAY";
3840   case SHT_FINI_ARRAY:
3841     return "FINI_ARRAY";
3842   case SHT_PREINIT_ARRAY:
3843     return "PREINIT_ARRAY";
3844   case SHT_GROUP:
3845     return "GROUP";
3846   case SHT_SYMTAB_SHNDX:
3847     return "SYMTAB SECTION INDICES";
3848   case SHT_ANDROID_REL:
3849     return "ANDROID_REL";
3850   case SHT_ANDROID_RELA:
3851     return "ANDROID_RELA";
3852   case SHT_RELR:
3853   case SHT_ANDROID_RELR:
3854     return "RELR";
3855   case SHT_LLVM_ODRTAB:
3856     return "LLVM_ODRTAB";
3857   case SHT_LLVM_LINKER_OPTIONS:
3858     return "LLVM_LINKER_OPTIONS";
3859   case SHT_LLVM_CALL_GRAPH_PROFILE:
3860     return "LLVM_CALL_GRAPH_PROFILE";
3861   case SHT_LLVM_ADDRSIG:
3862     return "LLVM_ADDRSIG";
3863   case SHT_LLVM_DEPENDENT_LIBRARIES:
3864     return "LLVM_DEPENDENT_LIBRARIES";
3865   case SHT_LLVM_SYMPART:
3866     return "LLVM_SYMPART";
3867   case SHT_LLVM_PART_EHDR:
3868     return "LLVM_PART_EHDR";
3869   case SHT_LLVM_PART_PHDR:
3870     return "LLVM_PART_PHDR";
3871   // FIXME: Parse processor specific GNU attributes
3872   case SHT_GNU_ATTRIBUTES:
3873     return "ATTRIBUTES";
3874   case SHT_GNU_HASH:
3875     return "GNU_HASH";
3876   case SHT_GNU_verdef:
3877     return "VERDEF";
3878   case SHT_GNU_verneed:
3879     return "VERNEED";
3880   case SHT_GNU_versym:
3881     return "VERSYM";
3882   default:
3883     return getSectionTypeOffsetString(Type);
3884   }
3885   return "";
3886 }
3887 
3888 static void printSectionDescription(formatted_raw_ostream &OS,
3889                                     unsigned EMachine) {
3890   OS << "Key to Flags:\n";
3891   OS << "  W (write), A (alloc), X (execute), M (merge), S (strings), I "
3892         "(info),\n";
3893   OS << "  L (link order), O (extra OS processing required), G (group), T "
3894         "(TLS),\n";
3895   OS << "  C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3896 
3897   if (EMachine == EM_X86_64)
3898     OS << "  l (large), ";
3899   else if (EMachine == EM_ARM)
3900     OS << "  y (purecode), ";
3901   else
3902     OS << "  ";
3903 
3904   OS << "p (processor specific)\n";
3905 }
3906 
3907 template <class ELFT>
3908 void GNUStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
3909   unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3910   ArrayRef<Elf_Shdr> Sections = cantFail(Obj->sections());
3911   OS << "There are " << to_string(Sections.size())
3912      << " section headers, starting at offset "
3913      << "0x" << to_hexString(Obj->getHeader()->e_shoff, false) << ":\n\n";
3914   OS << "Section Headers:\n";
3915   Field Fields[11] = {
3916       {"[Nr]", 2},        {"Name", 7},        {"Type", 25},
3917       {"Address", 41},    {"Off", 58 - Bias}, {"Size", 65 - Bias},
3918       {"ES", 72 - Bias},  {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3919       {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3920   for (auto &F : Fields)
3921     printField(F);
3922   OS << "\n";
3923 
3924   StringRef SecStrTable;
3925   if (Expected<StringRef> SecStrTableOrErr =
3926           Obj->getSectionStringTable(Sections, this->dumper()->WarningHandler))
3927     SecStrTable = *SecStrTableOrErr;
3928   else
3929     this->reportUniqueWarning(SecStrTableOrErr.takeError());
3930 
3931   size_t SectionIndex = 0;
3932   for (const Elf_Shdr &Sec : Sections) {
3933     Fields[0].Str = to_string(SectionIndex);
3934     if (SecStrTable.empty())
3935       Fields[1].Str = "<no-strings>";
3936     else
3937       Fields[1].Str = std::string(unwrapOrError<StringRef>(
3938           this->FileName, Obj->getSectionName(&Sec, SecStrTable)));
3939     Fields[2].Str =
3940         getSectionTypeString(Obj->getHeader()->e_machine, Sec.sh_type);
3941     Fields[3].Str =
3942         to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3943     Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3944     Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3945     Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3946     Fields[7].Str = getGNUFlags(Obj->getHeader()->e_machine, Sec.sh_flags);
3947     Fields[8].Str = to_string(Sec.sh_link);
3948     Fields[9].Str = to_string(Sec.sh_info);
3949     Fields[10].Str = to_string(Sec.sh_addralign);
3950 
3951     OS.PadToColumn(Fields[0].Column);
3952     OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3953     for (int i = 1; i < 7; i++)
3954       printField(Fields[i]);
3955     OS.PadToColumn(Fields[7].Column);
3956     OS << right_justify(Fields[7].Str, 3);
3957     OS.PadToColumn(Fields[8].Column);
3958     OS << right_justify(Fields[8].Str, 2);
3959     OS.PadToColumn(Fields[9].Column);
3960     OS << right_justify(Fields[9].Str, 3);
3961     OS.PadToColumn(Fields[10].Column);
3962     OS << right_justify(Fields[10].Str, 2);
3963     OS << "\n";
3964     ++SectionIndex;
3965   }
3966   printSectionDescription(OS, Obj->getHeader()->e_machine);
3967 }
3968 
3969 template <class ELFT>
3970 void GNUStyle<ELFT>::printSymtabMessage(const ELFO *Obj, StringRef Name,
3971                                         size_t Entries,
3972                                         bool NonVisibilityBitsUsed) {
3973   if (!Name.empty())
3974     OS << "\nSymbol table '" << Name << "'";
3975   else
3976     OS << "\nSymbol table for image";
3977   OS << " contains " << Entries << " entries:\n";
3978 
3979   if (ELFT::Is64Bits)
3980     OS << "   Num:    Value          Size Type    Bind   Vis";
3981   else
3982     OS << "   Num:    Value  Size Type    Bind   Vis";
3983 
3984   if (NonVisibilityBitsUsed)
3985     OS << "             ";
3986   OS << "       Ndx Name\n";
3987 }
3988 
3989 template <class ELFT>
3990 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const ELFO *Obj,
3991                                                 const Elf_Sym *Symbol,
3992                                                 const Elf_Sym *FirstSym) {
3993   unsigned SectionIndex = Symbol->st_shndx;
3994   switch (SectionIndex) {
3995   case ELF::SHN_UNDEF:
3996     return "UND";
3997   case ELF::SHN_ABS:
3998     return "ABS";
3999   case ELF::SHN_COMMON:
4000     return "COM";
4001   case ELF::SHN_XINDEX: {
4002     Expected<uint32_t> IndexOrErr = object::getExtendedSymbolTableIndex<ELFT>(
4003         Symbol, FirstSym, this->dumper()->getShndxTable());
4004     if (!IndexOrErr) {
4005       assert(Symbol->st_shndx == SHN_XINDEX &&
4006              "getSymbolSectionIndex should only fail due to an invalid "
4007              "SHT_SYMTAB_SHNDX table/reference");
4008       this->reportUniqueWarning(IndexOrErr.takeError());
4009       return "RSV[0xffff]";
4010     }
4011     return to_string(format_decimal(*IndexOrErr, 3));
4012   }
4013   default:
4014     // Find if:
4015     // Processor specific
4016     if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4017       return std::string("PRC[0x") +
4018              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4019     // OS specific
4020     if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4021       return std::string("OS[0x") +
4022              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4023     // Architecture reserved:
4024     if (SectionIndex >= ELF::SHN_LORESERVE &&
4025         SectionIndex <= ELF::SHN_HIRESERVE)
4026       return std::string("RSV[0x") +
4027              to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4028     // A normal section with an index
4029     return to_string(format_decimal(SectionIndex, 3));
4030   }
4031 }
4032 
4033 template <class ELFT>
4034 void GNUStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
4035                                  const Elf_Sym *FirstSym,
4036                                  Optional<StringRef> StrTable, bool IsDynamic,
4037                                  bool NonVisibilityBitsUsed) {
4038   static int Idx = 0;
4039   static bool Dynamic = true;
4040 
4041   // If this function was called with a different value from IsDynamic
4042   // from last call, happens when we move from dynamic to static symbol
4043   // table, "Num" field should be reset.
4044   if (!Dynamic != !IsDynamic) {
4045     Idx = 0;
4046     Dynamic = false;
4047   }
4048 
4049   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4050   Field Fields[8] = {0,         8,         17 + Bias, 23 + Bias,
4051                      31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4052   Fields[0].Str = to_string(format_decimal(Idx++, 6)) + ":";
4053   Fields[1].Str = to_string(
4054       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4055   Fields[2].Str = to_string(format_decimal(Symbol->st_size, 5));
4056 
4057   unsigned char SymbolType = Symbol->getType();
4058   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
4059       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4060     Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4061   else
4062     Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
4063 
4064   Fields[4].Str =
4065       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
4066   Fields[5].Str =
4067       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
4068   if (Symbol->st_other & ~0x3)
4069     Fields[5].Str +=
4070         " [<other: " + to_string(format_hex(Symbol->st_other, 2)) + ">]";
4071 
4072   Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4073   Fields[6].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
4074 
4075   Fields[7].Str =
4076       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
4077   for (auto &Entry : Fields)
4078     printField(Entry);
4079   OS << "\n";
4080 }
4081 
4082 template <class ELFT>
4083 void GNUStyle<ELFT>::printHashedSymbol(const ELFO *Obj, const Elf_Sym *FirstSym,
4084                                        uint32_t Sym, StringRef StrTable,
4085                                        uint32_t Bucket) {
4086   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4087   Field Fields[9] = {0,         6,         11,        20 + Bias, 25 + Bias,
4088                      34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4089   Fields[0].Str = to_string(format_decimal(Sym, 5));
4090   Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4091 
4092   const auto Symbol = FirstSym + Sym;
4093   Fields[2].Str = to_string(
4094       format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4095   Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4096 
4097   unsigned char SymbolType = Symbol->getType();
4098   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
4099       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4100     Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4101   else
4102     Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
4103 
4104   Fields[5].Str =
4105       printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
4106   Fields[6].Str =
4107       printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
4108   Fields[7].Str = getSymbolSectionNdx(Obj, Symbol, FirstSym);
4109   Fields[8].Str = this->dumper()->getFullSymbolName(Symbol, StrTable, true);
4110 
4111   for (auto &Entry : Fields)
4112     printField(Entry);
4113   OS << "\n";
4114 }
4115 
4116 template <class ELFT>
4117 void GNUStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
4118                                   bool PrintDynamicSymbols) {
4119   if (!PrintSymbols && !PrintDynamicSymbols)
4120     return;
4121   // GNU readelf prints both the .dynsym and .symtab with --symbols.
4122   this->dumper()->printSymbolsHelper(true);
4123   if (PrintSymbols)
4124     this->dumper()->printSymbolsHelper(false);
4125 }
4126 
4127 template <class ELFT>
4128 void GNUStyle<ELFT>::printHashTableSymbols(const ELFO *Obj,
4129                                            const Elf_Hash &SysVHash) {
4130   StringRef StringTable = this->dumper()->getDynamicStringTable();
4131   if (StringTable.empty())
4132     return;
4133 
4134   if (ELFT::Is64Bits)
4135     OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4136   else
4137     OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4138   OS << "\n";
4139 
4140   Elf_Sym_Range DynSyms = this->dumper()->dynamic_symbols();
4141   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4142   if (!FirstSym) {
4143     Optional<DynRegionInfo> DynSymRegion = this->dumper()->getDynSymRegion();
4144     this->reportUniqueWarning(
4145         createError(Twine("unable to print symbols for the .hash table: the "
4146                           "dynamic symbol table ") +
4147                     (DynSymRegion ? "is empty" : "was not found")));
4148     return;
4149   }
4150 
4151   auto Buckets = SysVHash.buckets();
4152   auto Chains = SysVHash.chains();
4153   for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4154     if (Buckets[Buc] == ELF::STN_UNDEF)
4155       continue;
4156     std::vector<bool> Visited(SysVHash.nchain);
4157     for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4158       if (Ch == ELF::STN_UNDEF)
4159         break;
4160 
4161       if (Visited[Ch]) {
4162         reportWarning(createError(".hash section is invalid: bucket " +
4163                                   Twine(Ch) +
4164                                   ": a cycle was detected in the linked chain"),
4165                       this->FileName);
4166         break;
4167       }
4168 
4169       printHashedSymbol(Obj, FirstSym, Ch, StringTable, Buc);
4170       Visited[Ch] = true;
4171     }
4172   }
4173 }
4174 
4175 template <class ELFT>
4176 void GNUStyle<ELFT>::printGnuHashTableSymbols(const ELFO *Obj,
4177                                               const Elf_GnuHash &GnuHash) {
4178   StringRef StringTable = this->dumper()->getDynamicStringTable();
4179   if (StringTable.empty())
4180     return;
4181 
4182   Elf_Sym_Range DynSyms = this->dumper()->dynamic_symbols();
4183   const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4184   if (!FirstSym) {
4185     Optional<DynRegionInfo> DynSymRegion = this->dumper()->getDynSymRegion();
4186     this->reportUniqueWarning(createError(
4187         Twine("unable to print symbols for the .gnu.hash table: the "
4188               "dynamic symbol table ") +
4189         (DynSymRegion ? "is empty" : "was not found")));
4190     return;
4191   }
4192 
4193   ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4194   for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4195     if (Buckets[Buc] == ELF::STN_UNDEF)
4196       continue;
4197     uint32_t Index = Buckets[Buc];
4198     uint32_t GnuHashable = Index - GnuHash.symndx;
4199     // Print whole chain
4200     while (true) {
4201       printHashedSymbol(Obj, FirstSym, Index++, StringTable, Buc);
4202       // Chain ends at symbol with stopper bit
4203       if ((GnuHash.values(DynSyms.size())[GnuHashable++] & 1) == 1)
4204         break;
4205     }
4206   }
4207 }
4208 
4209 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols(const ELFO *Obj) {
4210   if (const Elf_Hash *SysVHash = this->dumper()->getHashTable()) {
4211     OS << "\n Symbol table of .hash for image:\n";
4212     if (Error E = checkHashTable<ELFT>(Obj, SysVHash))
4213       this->reportUniqueWarning(std::move(E));
4214     else
4215       printHashTableSymbols(Obj, *SysVHash);
4216   }
4217 
4218   // Try printing the .gnu.hash table.
4219   if (const Elf_GnuHash *GnuHash = this->dumper()->getGnuHashTable()) {
4220     OS << "\n Symbol table of .gnu.hash for image:\n";
4221     if (ELFT::Is64Bits)
4222       OS << "  Num Buc:    Value          Size   Type   Bind Vis      Ndx Name";
4223     else
4224       OS << "  Num Buc:    Value  Size   Type   Bind Vis      Ndx Name";
4225     OS << "\n";
4226 
4227     if (Error E = checkGNUHashTable<ELFT>(Obj, GnuHash))
4228       this->reportUniqueWarning(std::move(E));
4229     else
4230       printGnuHashTableSymbols(Obj, *GnuHash);
4231   }
4232 }
4233 
4234 static inline std::string printPhdrFlags(unsigned Flag) {
4235   std::string Str;
4236   Str = (Flag & PF_R) ? "R" : " ";
4237   Str += (Flag & PF_W) ? "W" : " ";
4238   Str += (Flag & PF_X) ? "E" : " ";
4239   return Str;
4240 }
4241 
4242 template <class ELFT>
4243 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4244                              const typename ELFT::Shdr &Sec) {
4245   if (Sec.sh_flags & ELF::SHF_TLS) {
4246     // .tbss must only be shown in the PT_TLS segment.
4247     if (Sec.sh_type == ELF::SHT_NOBITS)
4248       return Phdr.p_type == ELF::PT_TLS;
4249 
4250     // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4251     // segments.
4252     return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4253            (Phdr.p_type == ELF::PT_GNU_RELRO);
4254   }
4255 
4256   // PT_TLS must only have SHF_TLS sections.
4257   return Phdr.p_type != ELF::PT_TLS;
4258 }
4259 
4260 template <class ELFT>
4261 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4262                          const typename ELFT::Shdr &Sec) {
4263   // SHT_NOBITS sections don't need to have an offset inside the segment.
4264   if (Sec.sh_type == ELF::SHT_NOBITS)
4265     return true;
4266 
4267   if (Sec.sh_offset < Phdr.p_offset)
4268     return false;
4269 
4270   // Only non-empty sections can be at the end of a segment.
4271   if (Sec.sh_size == 0)
4272     return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4273   return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4274 }
4275 
4276 // Check that an allocatable section belongs to a virtual address
4277 // space of a segment.
4278 template <class ELFT>
4279 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4280                      const typename ELFT::Shdr &Sec) {
4281   if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4282     return true;
4283 
4284   if (Sec.sh_addr < Phdr.p_vaddr)
4285     return false;
4286 
4287   bool IsTbss =
4288       (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4289   // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4290   bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4291   // Only non-empty sections can be at the end of a segment.
4292   if (Sec.sh_size == 0 || IsTbssInNonTLS)
4293     return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4294   return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4295 }
4296 
4297 template <class ELFT>
4298 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4299                            const typename ELFT::Shdr &Sec) {
4300   if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4301     return true;
4302 
4303   // We get here when we have an empty section. Only non-empty sections can be
4304   // at the start or at the end of PT_DYNAMIC.
4305   // Is section within the phdr both based on offset and VMA?
4306   bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4307                      (Sec.sh_offset > Phdr.p_offset &&
4308                       Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4309   bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4310                  (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4311   return CheckOffset && CheckVA;
4312 }
4313 
4314 template <class ELFT>
4315 void GNUStyle<ELFT>::printProgramHeaders(
4316     const ELFO *Obj, bool PrintProgramHeaders,
4317     cl::boolOrDefault PrintSectionMapping) {
4318   if (PrintProgramHeaders)
4319     printProgramHeaders(Obj);
4320 
4321   // Display the section mapping along with the program headers, unless
4322   // -section-mapping is explicitly set to false.
4323   if (PrintSectionMapping != cl::BOU_FALSE)
4324     printSectionMapping(Obj);
4325 }
4326 
4327 template <class ELFT>
4328 void GNUStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
4329   unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4330   const Elf_Ehdr *Header = Obj->getHeader();
4331   Field Fields[8] = {2,         17,        26,        37 + Bias,
4332                      48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4333   OS << "\nElf file type is "
4334      << printEnum(Header->e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4335      << "Entry point " << format_hex(Header->e_entry, 3) << "\n"
4336      << "There are " << Header->e_phnum << " program headers,"
4337      << " starting at offset " << Header->e_phoff << "\n\n"
4338      << "Program Headers:\n";
4339   if (ELFT::Is64Bits)
4340     OS << "  Type           Offset   VirtAddr           PhysAddr         "
4341        << "  FileSiz  MemSiz   Flg Align\n";
4342   else
4343     OS << "  Type           Offset   VirtAddr   PhysAddr   FileSiz "
4344        << "MemSiz  Flg Align\n";
4345 
4346   unsigned Width = ELFT::Is64Bits ? 18 : 10;
4347   unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4348 
4349   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj->program_headers();
4350   if (!PhdrsOrErr) {
4351     this->reportUniqueWarning(createError("unable to dump program headers: " +
4352                                           toString(PhdrsOrErr.takeError())));
4353     return;
4354   }
4355 
4356   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4357     Fields[0].Str = getElfPtType(Header->e_machine, Phdr.p_type);
4358     Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4359     Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4360     Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4361     Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4362     Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4363     Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4364     Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4365     for (auto Field : Fields)
4366       printField(Field);
4367     if (Phdr.p_type == ELF::PT_INTERP) {
4368       OS << "\n";
4369       auto ReportBadInterp = [&](const Twine &Msg) {
4370         reportWarning(
4371             createError("unable to read program interpreter name at offset 0x" +
4372                         Twine::utohexstr(Phdr.p_offset) + ": " + Msg),
4373             this->FileName);
4374       };
4375 
4376       if (Phdr.p_offset >= Obj->getBufSize()) {
4377         ReportBadInterp("it goes past the end of the file (0x" +
4378                         Twine::utohexstr(Obj->getBufSize()) + ")");
4379         continue;
4380       }
4381 
4382       const char *Data =
4383           reinterpret_cast<const char *>(Obj->base()) + Phdr.p_offset;
4384       size_t MaxSize = Obj->getBufSize() - Phdr.p_offset;
4385       size_t Len = strnlen(Data, MaxSize);
4386       if (Len == MaxSize) {
4387         ReportBadInterp("it is not null-terminated");
4388         continue;
4389       }
4390 
4391       OS << "      [Requesting program interpreter: ";
4392       OS << StringRef(Data, Len) << "]";
4393     }
4394     OS << "\n";
4395   }
4396 }
4397 
4398 template <class ELFT>
4399 void GNUStyle<ELFT>::printSectionMapping(const ELFO *Obj) {
4400   OS << "\n Section to Segment mapping:\n  Segment Sections...\n";
4401   DenseSet<const Elf_Shdr *> BelongsToSegment;
4402   int Phnum = 0;
4403 
4404   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj->program_headers();
4405   if (!PhdrsOrErr) {
4406     this->reportUniqueWarning(createError(
4407         "can't read program headers to build section to segment mapping: " +
4408         toString(PhdrsOrErr.takeError())));
4409     return;
4410   }
4411 
4412   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4413     std::string Sections;
4414     OS << format("   %2.2d     ", Phnum++);
4415     // Check if each section is in a segment and then print mapping.
4416     for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
4417       if (Sec.sh_type == ELF::SHT_NULL)
4418         continue;
4419 
4420       // readelf additionally makes sure it does not print zero sized sections
4421       // at end of segments and for PT_DYNAMIC both start and end of section
4422       // .tbss must only be shown in PT_TLS section.
4423       if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4424           checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4425         Sections +=
4426             unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() +
4427             " ";
4428         BelongsToSegment.insert(&Sec);
4429       }
4430     }
4431     OS << Sections << "\n";
4432     OS.flush();
4433   }
4434 
4435   // Display sections that do not belong to a segment.
4436   std::string Sections;
4437   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
4438     if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4439       Sections +=
4440           unwrapOrError(this->FileName, Obj->getSectionName(&Sec)).str() + ' ';
4441   }
4442   if (!Sections.empty()) {
4443     OS << "   None  " << Sections << '\n';
4444     OS.flush();
4445   }
4446 }
4447 
4448 namespace {
4449 template <class ELFT> struct RelSymbol {
4450   const typename ELFT::Sym *Sym;
4451   std::string Name;
4452 };
4453 
4454 template <class ELFT>
4455 RelSymbol<ELFT> getSymbolForReloc(const ELFFile<ELFT> *Obj, StringRef FileName,
4456                                   const ELFDumper<ELFT> *Dumper,
4457                                   const typename ELFT::Rela &Reloc) {
4458   uint32_t SymIndex = Reloc.getSymbol(Obj->isMips64EL());
4459   auto WarnAndReturn = [&](const typename ELFT::Sym *Sym,
4460                            const Twine &Reason) -> RelSymbol<ELFT> {
4461     reportWarning(
4462         createError("unable to get name of the dynamic symbol with index " +
4463                     Twine(SymIndex) + ": " + Reason),
4464         FileName);
4465     return {Sym, "<corrupt>"};
4466   };
4467 
4468   ArrayRef<typename ELFT::Sym> Symbols = Dumper->dynamic_symbols();
4469   const typename ELFT::Sym *FirstSym = Symbols.begin();
4470   if (!FirstSym)
4471     return WarnAndReturn(nullptr, "no dynamic symbol table found");
4472 
4473   // We might have an object without a section header. In this case the size of
4474   // Symbols is zero, because there is no way to know the size of the dynamic
4475   // table. We should allow this case and not print a warning.
4476   if (!Symbols.empty() && SymIndex >= Symbols.size())
4477     return WarnAndReturn(
4478         nullptr,
4479         "index is greater than or equal to the number of dynamic symbols (" +
4480             Twine(Symbols.size()) + ")");
4481 
4482   const typename ELFT::Sym *Sym = FirstSym + SymIndex;
4483   Expected<StringRef> ErrOrName = Sym->getName(Dumper->getDynamicStringTable());
4484   if (!ErrOrName)
4485     return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4486 
4487   return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4488 }
4489 } // namespace
4490 
4491 template <class ELFT>
4492 void GNUStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela R,
4493                                             bool IsRela) {
4494   RelSymbol<ELFT> S = getSymbolForReloc(Obj, this->FileName, this->dumper(), R);
4495   printRelocation(Obj, S.Sym, S.Name, R, IsRela);
4496 }
4497 
4498 template <class ELFT>
4499 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> *Obj,
4500                                    typename ELFT::DynRange Tags) {
4501   size_t Max = 0;
4502   for (const typename ELFT::Dyn &Dyn : Tags)
4503     Max = std::max(Max, Obj->getDynamicTagAsString(Dyn.d_tag).size());
4504   return Max;
4505 }
4506 
4507 template <class ELFT> void GNUStyle<ELFT>::printDynamic(const ELFO *Obj) {
4508   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
4509   if (Table.empty())
4510     return;
4511 
4512   const DynRegionInfo &DynamicTableRegion =
4513       this->dumper()->getDynamicTableRegion();
4514 
4515   OS << "Dynamic section at offset "
4516      << format_hex(reinterpret_cast<const uint8_t *>(DynamicTableRegion.Addr) -
4517                        Obj->base(),
4518                    1)
4519      << " contains " << Table.size() << " entries:\n";
4520 
4521   // The type name is surrounded with round brackets, hence add 2.
4522   size_t MaxTagSize = getMaxDynamicTagSize(Obj, Table) + 2;
4523   // The "Name/Value" column should be indented from the "Type" column by N
4524   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4525   // space (1) = 3.
4526   OS << "  Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4527      << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4528 
4529   std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4530   for (auto Entry : Table) {
4531     uintX_t Tag = Entry.getTag();
4532     std::string Type =
4533         std::string("(") + Obj->getDynamicTagAsString(Tag).c_str() + ")";
4534     std::string Value = this->dumper()->getDynamicEntry(Tag, Entry.getVal());
4535     OS << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4536        << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4537   }
4538 }
4539 
4540 template <class ELFT>
4541 void GNUStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
4542   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
4543   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
4544   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
4545   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
4546   if (DynRelaRegion.Size > 0) {
4547     OS << "\n'RELA' relocation section at offset "
4548        << format_hex(reinterpret_cast<const uint8_t *>(DynRelaRegion.Addr) -
4549                          Obj->base(),
4550                      1)
4551        << " contains " << DynRelaRegion.Size << " bytes:\n";
4552     printRelocHeader(ELF::SHT_RELA);
4553     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
4554       printDynamicRelocation(Obj, Rela, true);
4555   }
4556   if (DynRelRegion.Size > 0) {
4557     OS << "\n'REL' relocation section at offset "
4558        << format_hex(reinterpret_cast<const uint8_t *>(DynRelRegion.Addr) -
4559                          Obj->base(),
4560                      1)
4561        << " contains " << DynRelRegion.Size << " bytes:\n";
4562     printRelocHeader(ELF::SHT_REL);
4563     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
4564       Elf_Rela Rela;
4565       Rela.r_offset = Rel.r_offset;
4566       Rela.r_info = Rel.r_info;
4567       Rela.r_addend = 0;
4568       printDynamicRelocation(Obj, Rela, false);
4569     }
4570   }
4571   if (DynRelrRegion.Size > 0) {
4572     OS << "\n'RELR' relocation section at offset "
4573        << format_hex(reinterpret_cast<const uint8_t *>(DynRelrRegion.Addr) -
4574                          Obj->base(),
4575                      1)
4576        << " contains " << DynRelrRegion.Size << " bytes:\n";
4577     printRelocHeader(ELF::SHT_REL);
4578     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
4579     std::vector<Elf_Rela> RelrRelas =
4580         unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
4581     for (const Elf_Rela &Rela : RelrRelas) {
4582       printDynamicRelocation(Obj, Rela, false);
4583     }
4584   }
4585   if (DynPLTRelRegion.Size) {
4586     OS << "\n'PLT' relocation section at offset "
4587        << format_hex(reinterpret_cast<const uint8_t *>(DynPLTRelRegion.Addr) -
4588                          Obj->base(),
4589                      1)
4590        << " contains " << DynPLTRelRegion.Size << " bytes:\n";
4591 
4592     if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4593       printRelocHeader(ELF::SHT_RELA);
4594       for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4595         printDynamicRelocation(Obj, Rela, true);
4596     } else {
4597       printRelocHeader(ELF::SHT_REL);
4598       for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
4599         Elf_Rela Rela;
4600         Rela.r_offset = Rel.r_offset;
4601         Rela.r_info = Rel.r_info;
4602         Rela.r_addend = 0;
4603         printDynamicRelocation(Obj, Rela, false);
4604       }
4605     }
4606   }
4607 }
4608 
4609 template <class ELFT>
4610 void GNUStyle<ELFT>::printGNUVersionSectionProlog(
4611     const ELFFile<ELFT> *Obj, const typename ELFT::Shdr *Sec,
4612     const Twine &Label, unsigned EntriesNum) {
4613   StringRef SecName = unwrapOrError(this->FileName, Obj->getSectionName(Sec));
4614   OS << Label << " section '" << SecName << "' "
4615      << "contains " << EntriesNum << " entries:\n";
4616 
4617   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
4618   StringRef SymTabName = "<corrupt>";
4619 
4620   Expected<const typename ELFT::Shdr *> SymTabOrErr =
4621       Obj->getSection(Sec->sh_link);
4622   if (SymTabOrErr)
4623     SymTabName =
4624         unwrapOrError(this->FileName, Obj->getSectionName(*SymTabOrErr));
4625   else
4626     this->reportUniqueWarning(
4627         createError("invalid section linked to " +
4628                     object::getELFSectionTypeName(Obj->getHeader()->e_machine,
4629                                                   Sec->sh_type) +
4630                     " section with index " + Twine(SecNdx) + ": " +
4631                     toString(SymTabOrErr.takeError())));
4632 
4633   OS << " Addr: " << format_hex_no_prefix(Sec->sh_addr, 16)
4634      << "  Offset: " << format_hex(Sec->sh_offset, 8)
4635      << "  Link: " << Sec->sh_link << " (" << SymTabName << ")\n";
4636 }
4637 
4638 template <class ELFT>
4639 void GNUStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
4640                                                const Elf_Shdr *Sec) {
4641   if (!Sec)
4642     return;
4643 
4644   printGNUVersionSectionProlog(Obj, Sec, "Version symbols",
4645                                Sec->sh_size / sizeof(Elf_Versym));
4646   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4647       this->dumper()->getVersionTable(Sec, /*SymTab=*/nullptr,
4648                                       /*StrTab=*/nullptr);
4649   if (!VerTableOrErr) {
4650     this->reportUniqueWarning(VerTableOrErr.takeError());
4651     return;
4652   }
4653 
4654   ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4655   std::vector<StringRef> Versions;
4656   for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4657     unsigned Ndx = VerTable[I].vs_index;
4658     if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4659       Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4660       continue;
4661     }
4662 
4663     bool IsDefault;
4664     Expected<StringRef> NameOrErr =
4665         this->dumper()->getSymbolVersionByIndex(Ndx, IsDefault);
4666     if (!NameOrErr) {
4667       if (!NameOrErr) {
4668         unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
4669         this->reportUniqueWarning(createError(
4670             "unable to get a version for entry " + Twine(I) +
4671             " of SHT_GNU_versym section with index " + Twine(SecNdx) + ": " +
4672             toString(NameOrErr.takeError())));
4673       }
4674       Versions.emplace_back("<corrupt>");
4675       continue;
4676     }
4677     Versions.emplace_back(*NameOrErr);
4678   }
4679 
4680   // readelf prints 4 entries per line.
4681   uint64_t Entries = VerTable.size();
4682   for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4683     OS << "  " << format_hex_no_prefix(VersymRow, 3) << ":";
4684     for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4685       unsigned Ndx = VerTable[VersymRow + I].vs_index;
4686       OS << format("%4x%c", Ndx & VERSYM_VERSION,
4687                    Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4688       OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4689     }
4690     OS << '\n';
4691   }
4692   OS << '\n';
4693 }
4694 
4695 static std::string versionFlagToString(unsigned Flags) {
4696   if (Flags == 0)
4697     return "none";
4698 
4699   std::string Ret;
4700   auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4701     if (!(Flags & Flag))
4702       return;
4703     if (!Ret.empty())
4704       Ret += " | ";
4705     Ret += Name;
4706     Flags &= ~Flag;
4707   };
4708 
4709   AddFlag(VER_FLG_BASE, "BASE");
4710   AddFlag(VER_FLG_WEAK, "WEAK");
4711   AddFlag(VER_FLG_INFO, "INFO");
4712   AddFlag(~0, "<unknown>");
4713   return Ret;
4714 }
4715 
4716 template <class ELFT>
4717 void GNUStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
4718                                                    const Elf_Shdr *Sec) {
4719   if (!Sec)
4720     return;
4721 
4722   printGNUVersionSectionProlog(Obj, Sec, "Version definition", Sec->sh_info);
4723 
4724   Expected<std::vector<VerDef>> V = this->dumper()->getVersionDefinitions(Sec);
4725   if (!V) {
4726     this->reportUniqueWarning(V.takeError());
4727     return;
4728   }
4729 
4730   for (const VerDef &Def : *V) {
4731     OS << format("  0x%04x: Rev: %u  Flags: %s  Index: %u  Cnt: %u  Name: %s\n",
4732                  Def.Offset, Def.Version,
4733                  versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4734                  Def.Name.data());
4735     unsigned I = 0;
4736     for (const VerdAux &Aux : Def.AuxV)
4737       OS << format("  0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4738                    Aux.Name.data());
4739   }
4740 
4741   OS << '\n';
4742 }
4743 
4744 template <class ELFT>
4745 void GNUStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
4746                                                    const Elf_Shdr *Sec) {
4747   if (!Sec)
4748     return;
4749 
4750   unsigned VerneedNum = Sec->sh_info;
4751   printGNUVersionSectionProlog(Obj, Sec, "Version needs", VerneedNum);
4752 
4753   Expected<std::vector<VerNeed>> V =
4754       this->dumper()->getVersionDependencies(Sec);
4755   if (!V) {
4756     this->reportUniqueWarning(V.takeError());
4757     return;
4758   }
4759 
4760   for (const VerNeed &VN : *V) {
4761     OS << format("  0x%04x: Version: %u  File: %s  Cnt: %u\n", VN.Offset,
4762                  VN.Version, VN.File.data(), VN.Cnt);
4763     for (const VernAux &Aux : VN.AuxV)
4764       OS << format("  0x%04x:   Name: %s  Flags: %s  Version: %u\n", Aux.Offset,
4765                    Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4766                    Aux.Other);
4767   }
4768   OS << '\n';
4769 }
4770 
4771 template <class ELFT>
4772 void GNUStyle<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4773   size_t NBucket = HashTable.nbucket;
4774   size_t NChain = HashTable.nchain;
4775   ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4776   ArrayRef<Elf_Word> Chains = HashTable.chains();
4777   size_t TotalSyms = 0;
4778   // If hash table is correct, we have at least chains with 0 length
4779   size_t MaxChain = 1;
4780   size_t CumulativeNonZero = 0;
4781 
4782   if (NChain == 0 || NBucket == 0)
4783     return;
4784 
4785   std::vector<size_t> ChainLen(NBucket, 0);
4786   // Go over all buckets and and note chain lengths of each bucket (total
4787   // unique chain lengths).
4788   for (size_t B = 0; B < NBucket; B++) {
4789     std::vector<bool> Visited(NChain);
4790     for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4791       if (C == ELF::STN_UNDEF)
4792         break;
4793       if (Visited[C]) {
4794         reportWarning(createError(".hash section is invalid: bucket " +
4795                                   Twine(C) +
4796                                   ": a cycle was detected in the linked chain"),
4797                       this->FileName);
4798         break;
4799       }
4800       Visited[C] = true;
4801       if (MaxChain <= ++ChainLen[B])
4802         MaxChain++;
4803     }
4804     TotalSyms += ChainLen[B];
4805   }
4806 
4807   if (!TotalSyms)
4808     return;
4809 
4810   std::vector<size_t> Count(MaxChain, 0);
4811   // Count how long is the chain for each bucket
4812   for (size_t B = 0; B < NBucket; B++)
4813     ++Count[ChainLen[B]];
4814   // Print Number of buckets with each chain lengths and their cumulative
4815   // coverage of the symbols
4816   OS << "Histogram for bucket list length (total of " << NBucket
4817      << " buckets)\n"
4818      << " Length  Number     % of total  Coverage\n";
4819   for (size_t I = 0; I < MaxChain; I++) {
4820     CumulativeNonZero += Count[I] * I;
4821     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4822                  (Count[I] * 100.0) / NBucket,
4823                  (CumulativeNonZero * 100.0) / TotalSyms);
4824   }
4825 }
4826 
4827 template <class ELFT>
4828 void GNUStyle<ELFT>::printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) {
4829   Expected<ArrayRef<Elf_Word>> ChainsOrErr = getGnuHashTableChains<ELFT>(
4830       this->dumper()->getDynSymRegion(), &GnuHashTable);
4831   if (!ChainsOrErr) {
4832     this->reportUniqueWarning(
4833         createError("unable to print the GNU hash table histogram: " +
4834                     toString(ChainsOrErr.takeError())));
4835     return;
4836   }
4837 
4838   ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4839   size_t Symndx = GnuHashTable.symndx;
4840   size_t TotalSyms = 0;
4841   size_t MaxChain = 1;
4842   size_t CumulativeNonZero = 0;
4843 
4844   size_t NBucket = GnuHashTable.nbuckets;
4845   if (Chains.empty() || NBucket == 0)
4846     return;
4847 
4848   ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4849   std::vector<size_t> ChainLen(NBucket, 0);
4850   for (size_t B = 0; B < NBucket; B++) {
4851     if (!Buckets[B])
4852       continue;
4853     size_t Len = 1;
4854     for (size_t C = Buckets[B] - Symndx;
4855          C < Chains.size() && (Chains[C] & 1) == 0; C++)
4856       if (MaxChain < ++Len)
4857         MaxChain++;
4858     ChainLen[B] = Len;
4859     TotalSyms += Len;
4860   }
4861   MaxChain++;
4862 
4863   if (!TotalSyms)
4864     return;
4865 
4866   std::vector<size_t> Count(MaxChain, 0);
4867   for (size_t B = 0; B < NBucket; B++)
4868     ++Count[ChainLen[B]];
4869   // Print Number of buckets with each chain lengths and their cumulative
4870   // coverage of the symbols
4871   OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4872      << " buckets)\n"
4873      << " Length  Number     % of total  Coverage\n";
4874   for (size_t I = 0; I < MaxChain; I++) {
4875     CumulativeNonZero += Count[I] * I;
4876     OS << format("%7lu  %-10lu (%5.1f%%)     %5.1f%%\n", I, Count[I],
4877                  (Count[I] * 100.0) / NBucket,
4878                  (CumulativeNonZero * 100.0) / TotalSyms);
4879   }
4880 }
4881 
4882 // Hash histogram shows statistics of how efficient the hash was for the
4883 // dynamic symbol table. The table shows the number of hash buckets for
4884 // different lengths of chains as an absolute number and percentage of the total
4885 // buckets, and the cumulative coverage of symbols for each set of buckets.
4886 template <class ELFT>
4887 void GNUStyle<ELFT>::printHashHistograms(const ELFFile<ELFT> *Obj) {
4888   // Print histogram for the .hash section.
4889   if (const Elf_Hash *HashTable = this->dumper()->getHashTable()) {
4890     if (Error E = checkHashTable<ELFT>(Obj, HashTable))
4891       this->reportUniqueWarning(std::move(E));
4892     else
4893       printHashHistogram(*HashTable);
4894   }
4895 
4896   // Print histogram for the .gnu.hash section.
4897   if (const Elf_GnuHash *GnuHashTable = this->dumper()->getGnuHashTable()) {
4898     if (Error E = checkGNUHashTable<ELFT>(Obj, GnuHashTable))
4899       this->reportUniqueWarning(std::move(E));
4900     else
4901       printGnuHashHistogram(*GnuHashTable);
4902   }
4903 }
4904 
4905 template <class ELFT>
4906 void GNUStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
4907   OS << "GNUStyle::printCGProfile not implemented\n";
4908 }
4909 
4910 template <class ELFT>
4911 void GNUStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
4912   reportError(createError("--addrsig: not implemented"), this->FileName);
4913 }
4914 
4915 static StringRef getGenericNoteTypeName(const uint32_t NT) {
4916   static const struct {
4917     uint32_t ID;
4918     const char *Name;
4919   } Notes[] = {
4920       {ELF::NT_VERSION, "NT_VERSION (version)"},
4921       {ELF::NT_ARCH, "NT_ARCH (architecture)"},
4922       {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
4923       {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
4924   };
4925 
4926   for (const auto &Note : Notes)
4927     if (Note.ID == NT)
4928       return Note.Name;
4929 
4930   return "";
4931 }
4932 
4933 static StringRef getCoreNoteTypeName(const uint32_t NT) {
4934   static const struct {
4935     uint32_t ID;
4936     const char *Name;
4937   } Notes[] = {
4938       {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
4939       {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
4940       {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
4941       {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
4942       {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
4943       {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
4944       {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
4945       {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
4946       {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
4947       {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
4948       {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
4949 
4950       {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
4951       {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
4952       {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
4953       {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
4954       {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
4955       {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
4956       {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
4957       {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
4958       {ELF::NT_PPC_TM_CFPR,
4959        "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
4960       {ELF::NT_PPC_TM_CVMX,
4961        "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
4962       {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
4963       {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
4964       {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
4965       {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
4966       {ELF::NT_PPC_TM_CDSCR,
4967        "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
4968 
4969       {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
4970       {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
4971       {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
4972 
4973       {ELF::NT_S390_HIGH_GPRS,
4974        "NT_S390_HIGH_GPRS (s390 upper register halves)"},
4975       {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
4976       {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
4977       {ELF::NT_S390_TODPREG,
4978        "NT_S390_TODPREG (s390 TOD programmable register)"},
4979       {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
4980       {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
4981       {ELF::NT_S390_LAST_BREAK,
4982        "NT_S390_LAST_BREAK (s390 last breaking event address)"},
4983       {ELF::NT_S390_SYSTEM_CALL,
4984        "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
4985       {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
4986       {ELF::NT_S390_VXRS_LOW,
4987        "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
4988       {ELF::NT_S390_VXRS_HIGH,
4989        "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
4990       {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
4991       {ELF::NT_S390_GS_BC,
4992        "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
4993 
4994       {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
4995       {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
4996       {ELF::NT_ARM_HW_BREAK,
4997        "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
4998       {ELF::NT_ARM_HW_WATCH,
4999        "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5000 
5001       {ELF::NT_FILE, "NT_FILE (mapped files)"},
5002       {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5003       {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5004   };
5005 
5006   for (const auto &Note : Notes)
5007     if (Note.ID == NT)
5008       return Note.Name;
5009 
5010   return "";
5011 }
5012 
5013 static std::string getGNUNoteTypeName(const uint32_t NT) {
5014   static const struct {
5015     uint32_t ID;
5016     const char *Name;
5017   } Notes[] = {
5018       {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5019       {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5020       {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5021       {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5022       {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5023   };
5024 
5025   for (const auto &Note : Notes)
5026     if (Note.ID == NT)
5027       return std::string(Note.Name);
5028 
5029   std::string string;
5030   raw_string_ostream OS(string);
5031   OS << format("Unknown note type (0x%08x)", NT);
5032   return OS.str();
5033 }
5034 
5035 static std::string getFreeBSDNoteTypeName(const uint32_t NT) {
5036   static const struct {
5037     uint32_t ID;
5038     const char *Name;
5039   } Notes[] = {
5040       {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5041       {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5042       {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5043       {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5044       {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5045       {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5046       {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5047       {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5048       {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5049        "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5050       {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5051   };
5052 
5053   for (const auto &Note : Notes)
5054     if (Note.ID == NT)
5055       return std::string(Note.Name);
5056 
5057   std::string string;
5058   raw_string_ostream OS(string);
5059   OS << format("Unknown note type (0x%08x)", NT);
5060   return OS.str();
5061 }
5062 
5063 static std::string getAMDNoteTypeName(const uint32_t NT) {
5064   static const struct {
5065     uint32_t ID;
5066     const char *Name;
5067   } Notes[] = {{ELF::NT_AMD_AMDGPU_HSA_METADATA,
5068                 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
5069                {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
5070                {ELF::NT_AMD_AMDGPU_PAL_METADATA,
5071                 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"}};
5072 
5073   for (const auto &Note : Notes)
5074     if (Note.ID == NT)
5075       return std::string(Note.Name);
5076 
5077   std::string string;
5078   raw_string_ostream OS(string);
5079   OS << format("Unknown note type (0x%08x)", NT);
5080   return OS.str();
5081 }
5082 
5083 static std::string getAMDGPUNoteTypeName(const uint32_t NT) {
5084   if (NT == ELF::NT_AMDGPU_METADATA)
5085     return std::string("NT_AMDGPU_METADATA (AMDGPU Metadata)");
5086 
5087   std::string string;
5088   raw_string_ostream OS(string);
5089   OS << format("Unknown note type (0x%08x)", NT);
5090   return OS.str();
5091 }
5092 
5093 template <typename ELFT>
5094 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5095                                   ArrayRef<uint8_t> Data) {
5096   std::string str;
5097   raw_string_ostream OS(str);
5098   uint32_t PrData;
5099   auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5100     if (PrData & Flag) {
5101       PrData &= ~Flag;
5102       OS << Name;
5103       if (PrData)
5104         OS << ", ";
5105     }
5106   };
5107 
5108   switch (Type) {
5109   default:
5110     OS << format("<application-specific type 0x%x>", Type);
5111     return OS.str();
5112   case GNU_PROPERTY_STACK_SIZE: {
5113     OS << "stack size: ";
5114     if (DataSize == sizeof(typename ELFT::uint))
5115       OS << formatv("{0:x}",
5116                     (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5117     else
5118       OS << format("<corrupt length: 0x%x>", DataSize);
5119     return OS.str();
5120   }
5121   case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5122     OS << "no copy on protected";
5123     if (DataSize)
5124       OS << format(" <corrupt length: 0x%x>", DataSize);
5125     return OS.str();
5126   case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5127   case GNU_PROPERTY_X86_FEATURE_1_AND:
5128     OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5129                                                         : "x86 feature: ");
5130     if (DataSize != 4) {
5131       OS << format("<corrupt length: 0x%x>", DataSize);
5132       return OS.str();
5133     }
5134     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5135     if (PrData == 0) {
5136       OS << "<None>";
5137       return OS.str();
5138     }
5139     if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5140       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5141       DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5142     } else {
5143       DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5144       DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5145     }
5146     if (PrData)
5147       OS << format("<unknown flags: 0x%x>", PrData);
5148     return OS.str();
5149   case GNU_PROPERTY_X86_ISA_1_NEEDED:
5150   case GNU_PROPERTY_X86_ISA_1_USED:
5151     OS << "x86 ISA "
5152        << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5153     if (DataSize != 4) {
5154       OS << format("<corrupt length: 0x%x>", DataSize);
5155       return OS.str();
5156     }
5157     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5158     if (PrData == 0) {
5159       OS << "<None>";
5160       return OS.str();
5161     }
5162     DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
5163     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
5164     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
5165     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
5166     DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
5167     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
5168     DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
5169     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
5170     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
5171     DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
5172     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
5173     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
5174     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
5175     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
5176     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
5177     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
5178     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
5179     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
5180     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
5181     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
5182     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
5183     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
5184     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
5185     DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
5186     if (PrData)
5187       OS << format("<unknown flags: 0x%x>", PrData);
5188     return OS.str();
5189     break;
5190   case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5191   case GNU_PROPERTY_X86_FEATURE_2_USED:
5192     OS << "x86 feature "
5193        << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5194     if (DataSize != 4) {
5195       OS << format("<corrupt length: 0x%x>", DataSize);
5196       return OS.str();
5197     }
5198     PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5199     if (PrData == 0) {
5200       OS << "<None>";
5201       return OS.str();
5202     }
5203     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5204     DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5205     DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5206     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5207     DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5208     DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5209     DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5210     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5211     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5212     DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5213     if (PrData)
5214       OS << format("<unknown flags: 0x%x>", PrData);
5215     return OS.str();
5216   }
5217 }
5218 
5219 template <typename ELFT>
5220 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5221   using Elf_Word = typename ELFT::Word;
5222 
5223   SmallVector<std::string, 4> Properties;
5224   while (Arr.size() >= 8) {
5225     uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5226     uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5227     Arr = Arr.drop_front(8);
5228 
5229     // Take padding size into account if present.
5230     uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5231     std::string str;
5232     raw_string_ostream OS(str);
5233     if (Arr.size() < PaddedSize) {
5234       OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5235       Properties.push_back(OS.str());
5236       break;
5237     }
5238     Properties.push_back(
5239         getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5240     Arr = Arr.drop_front(PaddedSize);
5241   }
5242 
5243   if (!Arr.empty())
5244     Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5245 
5246   return Properties;
5247 }
5248 
5249 struct GNUAbiTag {
5250   std::string OSName;
5251   std::string ABI;
5252   bool IsValid;
5253 };
5254 
5255 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5256   typedef typename ELFT::Word Elf_Word;
5257 
5258   ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5259                            reinterpret_cast<const Elf_Word *>(Desc.end()));
5260 
5261   if (Words.size() < 4)
5262     return {"", "", /*IsValid=*/false};
5263 
5264   static const char *OSNames[] = {
5265       "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5266   };
5267   StringRef OSName = "Unknown";
5268   if (Words[0] < array_lengthof(OSNames))
5269     OSName = OSNames[Words[0]];
5270   uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5271   std::string str;
5272   raw_string_ostream ABI(str);
5273   ABI << Major << "." << Minor << "." << Patch;
5274   return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5275 }
5276 
5277 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5278   std::string str;
5279   raw_string_ostream OS(str);
5280   for (const auto &B : Desc)
5281     OS << format_hex_no_prefix(B, 2);
5282   return OS.str();
5283 }
5284 
5285 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
5286   return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5287 }
5288 
5289 template <typename ELFT>
5290 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
5291                          ArrayRef<uint8_t> Desc) {
5292   switch (NoteType) {
5293   default:
5294     return;
5295   case ELF::NT_GNU_ABI_TAG: {
5296     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5297     if (!AbiTag.IsValid)
5298       OS << "    <corrupt GNU_ABI_TAG>";
5299     else
5300       OS << "    OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5301     break;
5302   }
5303   case ELF::NT_GNU_BUILD_ID: {
5304     OS << "    Build ID: " << getGNUBuildId(Desc);
5305     break;
5306   }
5307   case ELF::NT_GNU_GOLD_VERSION:
5308     OS << "    Version: " << getGNUGoldVersion(Desc);
5309     break;
5310   case ELF::NT_GNU_PROPERTY_TYPE_0:
5311     OS << "    Properties:";
5312     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
5313       OS << "    " << Property << "\n";
5314     break;
5315   }
5316   OS << '\n';
5317 }
5318 
5319 struct AMDNote {
5320   std::string Type;
5321   std::string Value;
5322 };
5323 
5324 template <typename ELFT>
5325 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5326   switch (NoteType) {
5327   default:
5328     return {"", ""};
5329   case ELF::NT_AMD_AMDGPU_HSA_METADATA:
5330     return {
5331         "HSA Metadata",
5332         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5333   case ELF::NT_AMD_AMDGPU_ISA:
5334     return {
5335         "ISA Version",
5336         std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5337   }
5338 }
5339 
5340 struct AMDGPUNote {
5341   std::string Type;
5342   std::string Value;
5343 };
5344 
5345 template <typename ELFT>
5346 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5347   switch (NoteType) {
5348   default:
5349     return {"", ""};
5350   case ELF::NT_AMDGPU_METADATA: {
5351     auto MsgPackString =
5352         StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5353     msgpack::Document MsgPackDoc;
5354     if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5355       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
5356 
5357     AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5358     if (!Verifier.verify(MsgPackDoc.getRoot()))
5359       return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
5360 
5361     std::string HSAMetadataString;
5362     raw_string_ostream StrOS(HSAMetadataString);
5363     MsgPackDoc.toYAML(StrOS);
5364 
5365     return {"AMDGPU Metadata", StrOS.str()};
5366   }
5367   }
5368 }
5369 
5370 struct CoreFileMapping {
5371   uint64_t Start, End, Offset;
5372   StringRef Filename;
5373 };
5374 
5375 struct CoreNote {
5376   uint64_t PageSize;
5377   std::vector<CoreFileMapping> Mappings;
5378 };
5379 
5380 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5381   // Expected format of the NT_FILE note description:
5382   // 1. # of file mappings (call it N)
5383   // 2. Page size
5384   // 3. N (start, end, offset) triples
5385   // 4. N packed filenames (null delimited)
5386   // Each field is an Elf_Addr, except for filenames which are char* strings.
5387 
5388   CoreNote Ret;
5389   const int Bytes = Desc.getAddressSize();
5390 
5391   if (!Desc.isValidOffsetForAddress(2))
5392     return createStringError(object_error::parse_failed,
5393                              "malformed note: header too short");
5394   if (Desc.getData().back() != 0)
5395     return createStringError(object_error::parse_failed,
5396                              "malformed note: not NUL terminated");
5397 
5398   uint64_t DescOffset = 0;
5399   uint64_t FileCount = Desc.getAddress(&DescOffset);
5400   Ret.PageSize = Desc.getAddress(&DescOffset);
5401 
5402   if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5403     return createStringError(object_error::parse_failed,
5404                              "malformed note: too short for number of files");
5405 
5406   uint64_t FilenamesOffset = 0;
5407   DataExtractor Filenames(
5408       Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5409       Desc.isLittleEndian(), Desc.getAddressSize());
5410 
5411   Ret.Mappings.resize(FileCount);
5412   for (CoreFileMapping &Mapping : Ret.Mappings) {
5413     if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5414       return createStringError(object_error::parse_failed,
5415                                "malformed note: too few filenames");
5416     Mapping.Start = Desc.getAddress(&DescOffset);
5417     Mapping.End = Desc.getAddress(&DescOffset);
5418     Mapping.Offset = Desc.getAddress(&DescOffset);
5419     Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5420   }
5421 
5422   return Ret;
5423 }
5424 
5425 template <typename ELFT>
5426 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5427   // Length of "0x<address>" string.
5428   const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5429 
5430   OS << "    Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5431   OS << "    " << right_justify("Start", FieldWidth) << "  "
5432      << right_justify("End", FieldWidth) << "  "
5433      << right_justify("Page Offset", FieldWidth) << '\n';
5434   for (const CoreFileMapping &Mapping : Note.Mappings) {
5435     OS << "    " << format_hex(Mapping.Start, FieldWidth) << "  "
5436        << format_hex(Mapping.End, FieldWidth) << "  "
5437        << format_hex(Mapping.Offset, FieldWidth) << "\n        "
5438        << Mapping.Filename << '\n';
5439   }
5440 }
5441 
5442 template <class ELFT>
5443 void GNUStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
5444   auto PrintHeader = [&](Optional<StringRef> SecName,
5445                          const typename ELFT::Off Offset,
5446                          const typename ELFT::Addr Size) {
5447     OS << "Displaying notes found ";
5448 
5449     if (SecName)
5450       OS << "in: " << *SecName << "\n";
5451     else
5452       OS << "at file offset " << format_hex(Offset, 10) << " with length "
5453          << format_hex(Size, 10) << ":\n";
5454 
5455     OS << "  Owner                Data size \tDescription\n";
5456   };
5457 
5458   auto ProcessNote = [&](const Elf_Note &Note) {
5459     StringRef Name = Note.getName();
5460     ArrayRef<uint8_t> Descriptor = Note.getDesc();
5461     Elf_Word Type = Note.getType();
5462 
5463     // Print the note owner/type.
5464     OS << "  " << left_justify(Name, 20) << ' '
5465        << format_hex(Descriptor.size(), 10) << '\t';
5466     if (Name == "GNU") {
5467       OS << getGNUNoteTypeName(Type) << '\n';
5468     } else if (Name == "FreeBSD") {
5469       OS << getFreeBSDNoteTypeName(Type) << '\n';
5470     } else if (Name == "AMD") {
5471       OS << getAMDNoteTypeName(Type) << '\n';
5472     } else if (Name == "AMDGPU") {
5473       OS << getAMDGPUNoteTypeName(Type) << '\n';
5474     } else {
5475       StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
5476                                ? getCoreNoteTypeName(Type)
5477                                : getGenericNoteTypeName(Type);
5478       if (!NoteType.empty())
5479         OS << NoteType << '\n';
5480       else
5481         OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5482     }
5483 
5484     // Print the description, or fallback to printing raw bytes for unknown
5485     // owners.
5486     if (Name == "GNU") {
5487       printGNUNote<ELFT>(OS, Type, Descriptor);
5488     } else if (Name == "AMD") {
5489       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5490       if (!N.Type.empty())
5491         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5492     } else if (Name == "AMDGPU") {
5493       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5494       if (!N.Type.empty())
5495         OS << "    " << N.Type << ":\n        " << N.Value << '\n';
5496     } else if (Name == "CORE") {
5497       if (Type == ELF::NT_FILE) {
5498         DataExtractor DescExtractor(Descriptor,
5499                                     ELFT::TargetEndianness == support::little,
5500                                     sizeof(Elf_Addr));
5501         Expected<CoreNote> Note = readCoreNote(DescExtractor);
5502         if (Note)
5503           printCoreNote<ELFT>(OS, *Note);
5504         else
5505           reportWarning(Note.takeError(), this->FileName);
5506       }
5507     } else if (!Descriptor.empty()) {
5508       OS << "   description data:";
5509       for (uint8_t B : Descriptor)
5510         OS << " " << format("%02x", B);
5511       OS << '\n';
5512     }
5513   };
5514 
5515   ArrayRef<Elf_Shdr> Sections = cantFail(Obj->sections());
5516   if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
5517     for (const auto &S : Sections) {
5518       if (S.sh_type != SHT_NOTE)
5519         continue;
5520       PrintHeader(expectedToOptional(Obj->getSectionName(&S)), S.sh_offset,
5521                   S.sh_size);
5522       Error Err = Error::success();
5523       for (auto Note : Obj->notes(S, Err))
5524         ProcessNote(Note);
5525       if (Err)
5526         reportError(std::move(Err), this->FileName);
5527     }
5528   } else {
5529     Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj->program_headers();
5530     if (!PhdrsOrErr) {
5531       this->reportUniqueWarning(createError(
5532           "unable to read program headers to locate the PT_NOTE segment: " +
5533           toString(PhdrsOrErr.takeError())));
5534       return;
5535     }
5536 
5537     for (const Elf_Phdr &P : *PhdrsOrErr) {
5538       if (P.p_type != PT_NOTE)
5539         continue;
5540       PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz);
5541       Error Err = Error::success();
5542       for (auto Note : Obj->notes(P, Err))
5543         ProcessNote(Note);
5544       if (Err)
5545         reportError(std::move(Err), this->FileName);
5546     }
5547   }
5548 }
5549 
5550 template <class ELFT>
5551 void GNUStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
5552   OS << "printELFLinkerOptions not implemented!\n";
5553 }
5554 
5555 template <class ELFT>
5556 void DumpStyle<ELFT>::printDependentLibsHelper(
5557     const ELFFile<ELFT> *Obj,
5558     function_ref<void(const Elf_Shdr &)> OnSectionStart,
5559     function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5560   auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5561     this->reportUniqueWarning(
5562         createError("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5563                     Twine(SecNdx) + " is broken: " + Msg));
5564   };
5565 
5566   unsigned I = -1;
5567   for (const Elf_Shdr &Shdr : cantFail(Obj->sections())) {
5568     ++I;
5569     if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5570       continue;
5571 
5572     OnSectionStart(Shdr);
5573 
5574     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(&Shdr);
5575     if (!ContentsOrErr) {
5576       Warn(I, toString(ContentsOrErr.takeError()));
5577       continue;
5578     }
5579 
5580     ArrayRef<uint8_t> Contents = *ContentsOrErr;
5581     if (!Contents.empty() && Contents.back() != 0) {
5582       Warn(I, "the content is not null-terminated");
5583       continue;
5584     }
5585 
5586     for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5587       StringRef Lib((const char *)I);
5588       OnLibEntry(Lib, I - Contents.begin());
5589       I += Lib.size() + 1;
5590     }
5591   }
5592 }
5593 
5594 template <class ELFT>
5595 void GNUStyle<ELFT>::printDependentLibs(const ELFFile<ELFT> *Obj) {
5596   bool SectionStarted = false;
5597   struct NameOffset {
5598     StringRef Name;
5599     uint64_t Offset;
5600   };
5601   std::vector<NameOffset> SecEntries;
5602   NameOffset Current;
5603   auto PrintSection = [&]() {
5604     OS << "Dependent libraries section " << Current.Name << " at offset "
5605        << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5606        << " entries:\n";
5607     for (NameOffset Entry : SecEntries)
5608       OS << "  [" << format("%6tx", Entry.Offset) << "]  " << Entry.Name
5609          << "\n";
5610     OS << "\n";
5611     SecEntries.clear();
5612   };
5613 
5614   auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5615     if (SectionStarted)
5616       PrintSection();
5617     SectionStarted = true;
5618     Current.Offset = Shdr.sh_offset;
5619     Expected<StringRef> Name = Obj->getSectionName(&Shdr);
5620     if (!Name) {
5621       Current.Name = "<?>";
5622       this->reportUniqueWarning(
5623           createError("cannot get section name of "
5624                       "SHT_LLVM_DEPENDENT_LIBRARIES section: " +
5625                       toString(Name.takeError())));
5626     } else {
5627       Current.Name = *Name;
5628     }
5629   };
5630   auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5631     SecEntries.push_back(NameOffset{Lib, Offset});
5632   };
5633 
5634   this->printDependentLibsHelper(Obj, OnSectionStart, OnLibEntry);
5635   if (SectionStarted)
5636     PrintSection();
5637 }
5638 
5639 // Used for printing section names in places where possible errors can be
5640 // ignored.
5641 static StringRef getSectionName(const SectionRef &Sec) {
5642   Expected<StringRef> NameOrErr = Sec.getName();
5643   if (NameOrErr)
5644     return *NameOrErr;
5645   consumeError(NameOrErr.takeError());
5646   return "<?>";
5647 }
5648 
5649 // Used for printing symbol names in places where possible errors can be
5650 // ignored.
5651 static std::string getSymbolName(const ELFSymbolRef &Sym) {
5652   Expected<StringRef> NameOrErr = Sym.getName();
5653   if (NameOrErr)
5654     return maybeDemangle(*NameOrErr);
5655   consumeError(NameOrErr.takeError());
5656   return "<?>";
5657 }
5658 
5659 template <class ELFT>
5660 void DumpStyle<ELFT>::printFunctionStackSize(const ELFObjectFile<ELFT> *Obj,
5661                                              uint64_t SymValue,
5662                                              Optional<SectionRef> FunctionSec,
5663                                              const StringRef SectionName,
5664                                              DataExtractor Data,
5665                                              uint64_t *Offset) {
5666   // This function ignores potentially erroneous input, unless it is directly
5667   // related to stack size reporting.
5668   SymbolRef FuncSym;
5669   for (const ELFSymbolRef &Symbol : Obj->symbols()) {
5670     Expected<uint64_t> SymAddrOrErr = Symbol.getAddress();
5671     if (!SymAddrOrErr) {
5672       consumeError(SymAddrOrErr.takeError());
5673       continue;
5674     }
5675     if (Expected<uint32_t> SymFlags = Symbol.getFlags()) {
5676       if (*SymFlags & SymbolRef::SF_Undefined)
5677         continue;
5678     } else
5679       consumeError(SymFlags.takeError());
5680     if (Symbol.getELFType() == ELF::STT_FUNC && *SymAddrOrErr == SymValue) {
5681       // Check if the symbol is in the right section. FunctionSec == None means
5682       // "any section".
5683       if (!FunctionSec || FunctionSec->containsSymbol(Symbol)) {
5684         FuncSym = Symbol;
5685         break;
5686       }
5687     }
5688   }
5689 
5690   std::string FuncName = "?";
5691   // A valid SymbolRef has a non-null object file pointer.
5692   if (FuncSym.BasicSymbolRef::getObject())
5693     FuncName = getSymbolName(FuncSym);
5694   else
5695     reportWarning(
5696         createError("could not identify function symbol for stack size entry"),
5697         Obj->getFileName());
5698 
5699   // Extract the size. The expectation is that Offset is pointing to the right
5700   // place, i.e. past the function address.
5701   uint64_t PrevOffset = *Offset;
5702   uint64_t StackSize = Data.getULEB128(Offset);
5703   // getULEB128() does not advance Offset if it is not able to extract a valid
5704   // integer.
5705   if (*Offset == PrevOffset)
5706     reportError(
5707         createStringError(object_error::parse_failed,
5708                           "could not extract a valid stack size in section %s",
5709                           SectionName.data()),
5710         Obj->getFileName());
5711 
5712   printStackSizeEntry(StackSize, FuncName);
5713 }
5714 
5715 template <class ELFT>
5716 void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
5717   OS.PadToColumn(2);
5718   OS << format_decimal(Size, 11);
5719   OS.PadToColumn(18);
5720   OS << FuncName << "\n";
5721 }
5722 
5723 template <class ELFT>
5724 void DumpStyle<ELFT>::printStackSize(const ELFObjectFile<ELFT> *Obj,
5725                                      RelocationRef Reloc,
5726                                      SectionRef FunctionSec,
5727                                      const StringRef &StackSizeSectionName,
5728                                      const RelocationResolver &Resolver,
5729                                      DataExtractor Data) {
5730   // This function ignores potentially erroneous input, unless it is directly
5731   // related to stack size reporting.
5732   object::symbol_iterator RelocSym = Reloc.getSymbol();
5733   uint64_t RelocSymValue = 0;
5734   StringRef FileStr = Obj->getFileName();
5735   if (RelocSym != Obj->symbol_end()) {
5736     // Ensure that the relocation symbol is in the function section, i.e. the
5737     // section where the functions whose stack sizes we are reporting are
5738     // located.
5739     auto SectionOrErr = RelocSym->getSection();
5740     if (!SectionOrErr) {
5741       reportWarning(
5742           createError("cannot identify the section for relocation symbol '" +
5743                       getSymbolName(*RelocSym) + "'"),
5744           FileStr);
5745       consumeError(SectionOrErr.takeError());
5746     } else if (*SectionOrErr != FunctionSec) {
5747       reportWarning(createError("relocation symbol '" +
5748                                 getSymbolName(*RelocSym) +
5749                                 "' is not in the expected section"),
5750                     FileStr);
5751       // Pretend that the symbol is in the correct section and report its
5752       // stack size anyway.
5753       FunctionSec = **SectionOrErr;
5754     }
5755 
5756     Expected<uint64_t> RelocSymValueOrErr = RelocSym->getValue();
5757     if (RelocSymValueOrErr)
5758       RelocSymValue = *RelocSymValueOrErr;
5759     else
5760       consumeError(RelocSymValueOrErr.takeError());
5761   }
5762 
5763   uint64_t Offset = Reloc.getOffset();
5764   if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1))
5765     reportError(
5766         createStringError(object_error::parse_failed,
5767                           "found invalid relocation offset into section %s "
5768                           "while trying to extract a stack size entry",
5769                           StackSizeSectionName.data()),
5770         FileStr);
5771 
5772   uint64_t Addend = Data.getAddress(&Offset);
5773   uint64_t SymValue = Resolver(Reloc, RelocSymValue, Addend);
5774   this->printFunctionStackSize(Obj, SymValue, FunctionSec, StackSizeSectionName,
5775                                Data, &Offset);
5776 }
5777 
5778 template <class ELFT>
5779 void DumpStyle<ELFT>::printNonRelocatableStackSizes(
5780     const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
5781   // This function ignores potentially erroneous input, unless it is directly
5782   // related to stack size reporting.
5783   const ELFFile<ELFT> *EF = Obj->getELFFile();
5784   StringRef FileStr = Obj->getFileName();
5785   for (const SectionRef &Sec : Obj->sections()) {
5786     StringRef SectionName = getSectionName(Sec);
5787     if (SectionName != ".stack_sizes")
5788       continue;
5789     PrintHeader();
5790     const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
5791     ArrayRef<uint8_t> Contents =
5792         unwrapOrError(this->FileName, EF->getSectionContents(ElfSec));
5793     DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
5794     uint64_t Offset = 0;
5795     while (Offset < Contents.size()) {
5796       // The function address is followed by a ULEB representing the stack
5797       // size. Check for an extra byte before we try to process the entry.
5798       if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5799         reportError(
5800             createStringError(
5801                 object_error::parse_failed,
5802                 "section %s ended while trying to extract a stack size entry",
5803                 SectionName.data()),
5804             FileStr);
5805       }
5806       uint64_t SymValue = Data.getAddress(&Offset);
5807       printFunctionStackSize(Obj, SymValue, /*FunctionSec=*/None, SectionName,
5808                              Data, &Offset);
5809     }
5810   }
5811 }
5812 
5813 template <class ELFT>
5814 void DumpStyle<ELFT>::printRelocatableStackSizes(
5815     const ELFObjectFile<ELFT> *Obj, std::function<void()> PrintHeader) {
5816   const ELFFile<ELFT> *EF = Obj->getELFFile();
5817 
5818   // Build a map between stack size sections and their corresponding relocation
5819   // sections.
5820   llvm::MapVector<SectionRef, SectionRef> StackSizeRelocMap;
5821   const SectionRef NullSection{};
5822 
5823   for (const SectionRef &Sec : Obj->sections()) {
5824     StringRef SectionName;
5825     if (Expected<StringRef> NameOrErr = Sec.getName())
5826       SectionName = *NameOrErr;
5827     else
5828       consumeError(NameOrErr.takeError());
5829 
5830     // A stack size section that we haven't encountered yet is mapped to the
5831     // null section until we find its corresponding relocation section.
5832     if (SectionName == ".stack_sizes")
5833       if (StackSizeRelocMap.count(Sec) == 0) {
5834         StackSizeRelocMap[Sec] = NullSection;
5835         continue;
5836       }
5837 
5838     // Check relocation sections if they are relocating contents of a
5839     // stack sizes section.
5840     const Elf_Shdr *ElfSec = Obj->getSection(Sec.getRawDataRefImpl());
5841     uint32_t SectionType = ElfSec->sh_type;
5842     if (SectionType != ELF::SHT_RELA && SectionType != ELF::SHT_REL)
5843       continue;
5844 
5845     Expected<section_iterator> RelSecOrErr = Sec.getRelocatedSection();
5846     if (!RelSecOrErr)
5847       reportError(createStringError(object_error::parse_failed,
5848                                     "%s: failed to get a relocated section: %s",
5849                                     SectionName.data(),
5850                                     toString(RelSecOrErr.takeError()).c_str()),
5851                   Obj->getFileName());
5852 
5853     const Elf_Shdr *ContentsSec =
5854         Obj->getSection((*RelSecOrErr)->getRawDataRefImpl());
5855     Expected<StringRef> ContentsSectionNameOrErr =
5856         EF->getSectionName(ContentsSec);
5857     if (!ContentsSectionNameOrErr) {
5858       consumeError(ContentsSectionNameOrErr.takeError());
5859       continue;
5860     }
5861     if (*ContentsSectionNameOrErr != ".stack_sizes")
5862       continue;
5863     // Insert a mapping from the stack sizes section to its relocation section.
5864     StackSizeRelocMap[Obj->toSectionRef(ContentsSec)] = Sec;
5865   }
5866 
5867   for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
5868     PrintHeader();
5869     const SectionRef &StackSizesSec = StackSizeMapEntry.first;
5870     const SectionRef &RelocSec = StackSizeMapEntry.second;
5871 
5872     // Warn about stack size sections without a relocation section.
5873     StringRef StackSizeSectionName = getSectionName(StackSizesSec);
5874     if (RelocSec == NullSection) {
5875       reportWarning(createError("section " + StackSizeSectionName +
5876                                 " does not have a corresponding "
5877                                 "relocation section"),
5878                     Obj->getFileName());
5879       continue;
5880     }
5881 
5882     // A .stack_sizes section header's sh_link field is supposed to point
5883     // to the section that contains the functions whose stack sizes are
5884     // described in it.
5885     const Elf_Shdr *StackSizesELFSec =
5886         Obj->getSection(StackSizesSec.getRawDataRefImpl());
5887     const SectionRef FunctionSec = Obj->toSectionRef(unwrapOrError(
5888         this->FileName, EF->getSection(StackSizesELFSec->sh_link)));
5889 
5890     bool (*IsSupportedFn)(uint64_t);
5891     RelocationResolver Resolver;
5892     std::tie(IsSupportedFn, Resolver) = getRelocationResolver(*Obj);
5893     auto Contents = unwrapOrError(this->FileName, StackSizesSec.getContents());
5894     DataExtractor Data(Contents, Obj->isLittleEndian(), sizeof(Elf_Addr));
5895     for (const RelocationRef &Reloc : RelocSec.relocations()) {
5896       if (!IsSupportedFn || !IsSupportedFn(Reloc.getType()))
5897         reportError(createStringError(
5898                         object_error::parse_failed,
5899                         "unsupported relocation type in section %s: %s",
5900                         getSectionName(RelocSec).data(),
5901                         EF->getRelocationTypeName(Reloc.getType()).data()),
5902                     Obj->getFileName());
5903       this->printStackSize(Obj, Reloc, FunctionSec, StackSizeSectionName,
5904                            Resolver, Data);
5905     }
5906   }
5907 }
5908 
5909 template <class ELFT>
5910 void GNUStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
5911   bool HeaderHasBeenPrinted = false;
5912   auto PrintHeader = [&]() {
5913     if (HeaderHasBeenPrinted)
5914       return;
5915     OS << "\nStack Sizes:\n";
5916     OS.PadToColumn(9);
5917     OS << "Size";
5918     OS.PadToColumn(18);
5919     OS << "Function\n";
5920     HeaderHasBeenPrinted = true;
5921   };
5922 
5923   // For non-relocatable objects, look directly for sections whose name starts
5924   // with .stack_sizes and process the contents.
5925   if (Obj->isRelocatableObject())
5926     this->printRelocatableStackSizes(Obj, PrintHeader);
5927   else
5928     this->printNonRelocatableStackSizes(Obj, PrintHeader);
5929 }
5930 
5931 template <class ELFT>
5932 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
5933   size_t Bias = ELFT::Is64Bits ? 8 : 0;
5934   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
5935     OS.PadToColumn(2);
5936     OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
5937     OS.PadToColumn(11 + Bias);
5938     OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
5939     OS.PadToColumn(22 + Bias);
5940     OS << format_hex_no_prefix(*E, 8 + Bias);
5941     OS.PadToColumn(31 + 2 * Bias);
5942     OS << Purpose << "\n";
5943   };
5944 
5945   OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
5946   OS << " Canonical gp value: "
5947      << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
5948 
5949   OS << " Reserved entries:\n";
5950   if (ELFT::Is64Bits)
5951     OS << "           Address     Access          Initial Purpose\n";
5952   else
5953     OS << "   Address     Access  Initial Purpose\n";
5954   PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
5955   if (Parser.getGotModulePointer())
5956     PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
5957 
5958   if (!Parser.getLocalEntries().empty()) {
5959     OS << "\n";
5960     OS << " Local entries:\n";
5961     if (ELFT::Is64Bits)
5962       OS << "           Address     Access          Initial\n";
5963     else
5964       OS << "   Address     Access  Initial\n";
5965     for (auto &E : Parser.getLocalEntries())
5966       PrintEntry(&E, "");
5967   }
5968 
5969   if (Parser.IsStatic)
5970     return;
5971 
5972   if (!Parser.getGlobalEntries().empty()) {
5973     OS << "\n";
5974     OS << " Global entries:\n";
5975     if (ELFT::Is64Bits)
5976       OS << "           Address     Access          Initial         Sym.Val."
5977          << " Type    Ndx Name\n";
5978     else
5979       OS << "   Address     Access  Initial Sym.Val. Type    Ndx Name\n";
5980     for (auto &E : Parser.getGlobalEntries()) {
5981       const Elf_Sym *Sym = Parser.getGotSym(&E);
5982       std::string SymName = this->dumper()->getFullSymbolName(
5983           Sym, this->dumper()->getDynamicStringTable(), false);
5984 
5985       OS.PadToColumn(2);
5986       OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
5987       OS.PadToColumn(11 + Bias);
5988       OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
5989       OS.PadToColumn(22 + Bias);
5990       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
5991       OS.PadToColumn(31 + 2 * Bias);
5992       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
5993       OS.PadToColumn(40 + 3 * Bias);
5994       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
5995       OS.PadToColumn(48 + 3 * Bias);
5996       OS << getSymbolSectionNdx(Parser.Obj, Sym,
5997                                 this->dumper()->dynamic_symbols().begin());
5998       OS.PadToColumn(52 + 3 * Bias);
5999       OS << SymName << "\n";
6000     }
6001   }
6002 
6003   if (!Parser.getOtherEntries().empty())
6004     OS << "\n Number of TLS and multi-GOT entries "
6005        << Parser.getOtherEntries().size() << "\n";
6006 }
6007 
6008 template <class ELFT>
6009 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6010   size_t Bias = ELFT::Is64Bits ? 8 : 0;
6011   auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6012     OS.PadToColumn(2);
6013     OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6014     OS.PadToColumn(11 + Bias);
6015     OS << format_hex_no_prefix(*E, 8 + Bias);
6016     OS.PadToColumn(20 + 2 * Bias);
6017     OS << Purpose << "\n";
6018   };
6019 
6020   OS << "PLT GOT:\n\n";
6021 
6022   OS << " Reserved entries:\n";
6023   OS << "   Address  Initial Purpose\n";
6024   PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6025   if (Parser.getPltModulePointer())
6026     PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6027 
6028   if (!Parser.getPltEntries().empty()) {
6029     OS << "\n";
6030     OS << " Entries:\n";
6031     OS << "   Address  Initial Sym.Val. Type    Ndx Name\n";
6032     for (auto &E : Parser.getPltEntries()) {
6033       const Elf_Sym *Sym = Parser.getPltSym(&E);
6034       std::string SymName = this->dumper()->getFullSymbolName(
6035           Sym, this->dumper()->getDynamicStringTable(), false);
6036 
6037       OS.PadToColumn(2);
6038       OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6039       OS.PadToColumn(11 + Bias);
6040       OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6041       OS.PadToColumn(20 + 2 * Bias);
6042       OS << to_string(format_hex_no_prefix(Sym->st_value, 8 + Bias));
6043       OS.PadToColumn(29 + 3 * Bias);
6044       OS << printEnum(Sym->getType(), makeArrayRef(ElfSymbolTypes));
6045       OS.PadToColumn(37 + 3 * Bias);
6046       OS << getSymbolSectionNdx(Parser.Obj, Sym,
6047                                 this->dumper()->dynamic_symbols().begin());
6048       OS.PadToColumn(41 + 3 * Bias);
6049       OS << SymName << "\n";
6050     }
6051   }
6052 }
6053 
6054 template <class ELFT>
6055 void GNUStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
6056   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
6057   const Elf_Shdr *Shdr =
6058       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
6059   if (!Shdr)
6060     return;
6061 
6062   ArrayRef<uint8_t> Sec =
6063       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
6064   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6065     reportError(createError(".MIPS.abiflags section has a wrong size"),
6066                 ObjF->getFileName());
6067 
6068   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
6069 
6070   OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6071   OS << "ISA: MIPS" << int(Flags->isa_level);
6072   if (Flags->isa_rev > 1)
6073     OS << "r" << int(Flags->isa_rev);
6074   OS << "\n";
6075   OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6076   OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6077   OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6078   OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
6079      << "\n";
6080   OS << "ISA Extension: "
6081      << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6082   if (Flags->ases == 0)
6083     OS << "ASEs: None\n";
6084   else
6085     // FIXME: Print each flag on a separate line.
6086     OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6087        << "\n";
6088   OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6089   OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6090   OS << "\n";
6091 }
6092 
6093 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders(const ELFO *Obj) {
6094   const Elf_Ehdr *E = Obj->getHeader();
6095   {
6096     DictScope D(W, "ElfHeader");
6097     {
6098       DictScope D(W, "Ident");
6099       W.printBinary("Magic", makeArrayRef(E->e_ident).slice(ELF::EI_MAG0, 4));
6100       W.printEnum("Class", E->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6101       W.printEnum("DataEncoding", E->e_ident[ELF::EI_DATA],
6102                   makeArrayRef(ElfDataEncoding));
6103       W.printNumber("FileVersion", E->e_ident[ELF::EI_VERSION]);
6104 
6105       auto OSABI = makeArrayRef(ElfOSABI);
6106       if (E->e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6107           E->e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6108         switch (E->e_machine) {
6109         case ELF::EM_AMDGPU:
6110           OSABI = makeArrayRef(AMDGPUElfOSABI);
6111           break;
6112         case ELF::EM_ARM:
6113           OSABI = makeArrayRef(ARMElfOSABI);
6114           break;
6115         case ELF::EM_TI_C6000:
6116           OSABI = makeArrayRef(C6000ElfOSABI);
6117           break;
6118         }
6119       }
6120       W.printEnum("OS/ABI", E->e_ident[ELF::EI_OSABI], OSABI);
6121       W.printNumber("ABIVersion", E->e_ident[ELF::EI_ABIVERSION]);
6122       W.printBinary("Unused", makeArrayRef(E->e_ident).slice(ELF::EI_PAD));
6123     }
6124 
6125     W.printEnum("Type", E->e_type, makeArrayRef(ElfObjectFileType));
6126     W.printEnum("Machine", E->e_machine, makeArrayRef(ElfMachineType));
6127     W.printNumber("Version", E->e_version);
6128     W.printHex("Entry", E->e_entry);
6129     W.printHex("ProgramHeaderOffset", E->e_phoff);
6130     W.printHex("SectionHeaderOffset", E->e_shoff);
6131     if (E->e_machine == EM_MIPS)
6132       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderMipsFlags),
6133                    unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6134                    unsigned(ELF::EF_MIPS_MACH));
6135     else if (E->e_machine == EM_AMDGPU)
6136       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
6137                    unsigned(ELF::EF_AMDGPU_MACH));
6138     else if (E->e_machine == EM_RISCV)
6139       W.printFlags("Flags", E->e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6140     else
6141       W.printFlags("Flags", E->e_flags);
6142     W.printNumber("HeaderSize", E->e_ehsize);
6143     W.printNumber("ProgramHeaderEntrySize", E->e_phentsize);
6144     W.printNumber("ProgramHeaderCount", E->e_phnum);
6145     W.printNumber("SectionHeaderEntrySize", E->e_shentsize);
6146     W.printString("SectionHeaderCount",
6147                   getSectionHeadersNumString(Obj, this->FileName));
6148     W.printString("StringTableSectionIndex",
6149                   getSectionHeaderTableIndexString(Obj, this->FileName));
6150   }
6151 }
6152 
6153 template <class ELFT>
6154 void LLVMStyle<ELFT>::printGroupSections(const ELFO *Obj) {
6155   DictScope Lists(W, "Groups");
6156   std::vector<GroupSection> V = getGroups<ELFT>(Obj, this->FileName);
6157   DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6158   for (const GroupSection &G : V) {
6159     DictScope D(W, "Group");
6160     W.printNumber("Name", G.Name, G.ShName);
6161     W.printNumber("Index", G.Index);
6162     W.printNumber("Link", G.Link);
6163     W.printNumber("Info", G.Info);
6164     W.printHex("Type", getGroupType(G.Type), G.Type);
6165     W.startLine() << "Signature: " << G.Signature << "\n";
6166 
6167     ListScope L(W, "Section(s) in group");
6168     for (const GroupMember &GM : G.Members) {
6169       const GroupSection *MainGroup = Map[GM.Index];
6170       if (MainGroup != &G) {
6171         W.flush();
6172         errs() << "Error: " << GM.Name << " (" << GM.Index
6173                << ") in a group " + G.Name + " (" << G.Index
6174                << ") is already in a group " + MainGroup->Name + " ("
6175                << MainGroup->Index << ")\n";
6176         errs().flush();
6177         continue;
6178       }
6179       W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6180     }
6181   }
6182 
6183   if (V.empty())
6184     W.startLine() << "There are no group sections in the file.\n";
6185 }
6186 
6187 template <class ELFT> void LLVMStyle<ELFT>::printRelocations(const ELFO *Obj) {
6188   ListScope D(W, "Relocations");
6189 
6190   int SectionNumber = -1;
6191   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
6192     ++SectionNumber;
6193 
6194     if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA &&
6195         Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_REL &&
6196         Sec.sh_type != ELF::SHT_ANDROID_RELA &&
6197         Sec.sh_type != ELF::SHT_ANDROID_RELR)
6198       continue;
6199 
6200     StringRef Name = unwrapOrError(this->FileName, Obj->getSectionName(&Sec));
6201 
6202     W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
6203     W.indent();
6204 
6205     printRelocations(&Sec, Obj);
6206 
6207     W.unindent();
6208     W.startLine() << "}\n";
6209   }
6210 }
6211 
6212 template <class ELFT>
6213 void LLVMStyle<ELFT>::printRelocations(const Elf_Shdr *Sec, const ELFO *Obj) {
6214   const Elf_Shdr *SymTab =
6215       unwrapOrError(this->FileName, Obj->getSection(Sec->sh_link));
6216   unsigned SecNdx = Sec - &cantFail(Obj->sections()).front();
6217   unsigned RelNdx = 0;
6218 
6219   switch (Sec->sh_type) {
6220   case ELF::SHT_REL:
6221     for (const Elf_Rel &R : unwrapOrError(this->FileName, Obj->rels(Sec))) {
6222       Elf_Rela Rela;
6223       Rela.r_offset = R.r_offset;
6224       Rela.r_info = R.r_info;
6225       Rela.r_addend = 0;
6226       printRelocation(Obj, SecNdx, Rela, ++RelNdx, SymTab);
6227     }
6228     break;
6229   case ELF::SHT_RELA:
6230     for (const Elf_Rela &R : unwrapOrError(this->FileName, Obj->relas(Sec)))
6231       printRelocation(Obj, SecNdx, R, ++RelNdx, SymTab);
6232     break;
6233   case ELF::SHT_RELR:
6234   case ELF::SHT_ANDROID_RELR: {
6235     Elf_Relr_Range Relrs = unwrapOrError(this->FileName, Obj->relrs(Sec));
6236     if (opts::RawRelr) {
6237       for (const Elf_Relr &R : Relrs)
6238         W.startLine() << W.hex(R) << "\n";
6239     } else {
6240       std::vector<Elf_Rela> RelrRelas =
6241           unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
6242       for (const Elf_Rela &R : RelrRelas)
6243         printRelocation(Obj, SecNdx, R, ++RelNdx, SymTab);
6244     }
6245     break;
6246   }
6247   case ELF::SHT_ANDROID_REL:
6248   case ELF::SHT_ANDROID_RELA:
6249     for (const Elf_Rela &R :
6250          unwrapOrError(this->FileName, Obj->android_relas(Sec)))
6251       printRelocation(Obj, SecNdx, R, ++RelNdx, SymTab);
6252     break;
6253   }
6254 }
6255 
6256 template <class ELFT>
6257 void LLVMStyle<ELFT>::printRelocation(const ELFO *Obj, unsigned SecIndex,
6258                                       Elf_Rela Rel, unsigned RelIndex,
6259                                       const Elf_Shdr *SymTab) {
6260   Expected<std::pair<const typename ELFT::Sym *, std::string>> Target =
6261       this->dumper()->getRelocationTarget(SymTab, Rel);
6262   if (!Target) {
6263     this->reportUniqueWarning(createError(
6264         "unable to print relocation " + Twine(RelIndex) + " in section " +
6265         Twine(SecIndex) + ": " + toString(Target.takeError())));
6266     return;
6267   }
6268 
6269   std::string TargetName = Target->second;
6270   SmallString<32> RelocName;
6271   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
6272 
6273   if (opts::ExpandRelocs) {
6274     DictScope Group(W, "Relocation");
6275     W.printHex("Offset", Rel.r_offset);
6276     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
6277     W.printNumber("Symbol", !TargetName.empty() ? TargetName : "-",
6278                   Rel.getSymbol(Obj->isMips64EL()));
6279     W.printHex("Addend", Rel.r_addend);
6280   } else {
6281     raw_ostream &OS = W.startLine();
6282     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
6283        << (!TargetName.empty() ? TargetName : "-") << " " << W.hex(Rel.r_addend)
6284        << "\n";
6285   }
6286 }
6287 
6288 template <class ELFT>
6289 void LLVMStyle<ELFT>::printSectionHeaders(const ELFO *Obj) {
6290   ListScope SectionsD(W, "Sections");
6291 
6292   int SectionIndex = -1;
6293   std::vector<EnumEntry<unsigned>> FlagsList =
6294       getSectionFlagsForTarget(Obj->getHeader()->e_machine);
6295   for (const Elf_Shdr &Sec : cantFail(Obj->sections())) {
6296     StringRef Name = "<?>";
6297     if (Expected<StringRef> SecNameOrErr =
6298             Obj->getSectionName(&Sec, this->dumper()->WarningHandler))
6299       Name = *SecNameOrErr;
6300     else
6301       this->reportUniqueWarning(SecNameOrErr.takeError());
6302 
6303     DictScope SectionD(W, "Section");
6304     W.printNumber("Index", ++SectionIndex);
6305     W.printNumber("Name", Name, Sec.sh_name);
6306     W.printHex(
6307         "Type",
6308         object::getELFSectionTypeName(Obj->getHeader()->e_machine, Sec.sh_type),
6309         Sec.sh_type);
6310     W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6311     W.printHex("Address", Sec.sh_addr);
6312     W.printHex("Offset", Sec.sh_offset);
6313     W.printNumber("Size", Sec.sh_size);
6314     W.printNumber("Link", Sec.sh_link);
6315     W.printNumber("Info", Sec.sh_info);
6316     W.printNumber("AddressAlignment", Sec.sh_addralign);
6317     W.printNumber("EntrySize", Sec.sh_entsize);
6318 
6319     if (opts::SectionRelocations) {
6320       ListScope D(W, "Relocations");
6321       printRelocations(&Sec, Obj);
6322     }
6323 
6324     if (opts::SectionSymbols) {
6325       ListScope D(W, "Symbols");
6326       const Elf_Shdr *Symtab = this->dumper()->getDotSymtabSec();
6327       StringRef StrTable =
6328           unwrapOrError(this->FileName, Obj->getStringTableForSymtab(*Symtab));
6329 
6330       for (const Elf_Sym &Sym :
6331            unwrapOrError(this->FileName, Obj->symbols(Symtab))) {
6332         const Elf_Shdr *SymSec = unwrapOrError(
6333             this->FileName,
6334             Obj->getSection(&Sym, Symtab, this->dumper()->getShndxTable()));
6335         if (SymSec == &Sec)
6336           printSymbol(
6337               Obj, &Sym,
6338               unwrapOrError(this->FileName, Obj->symbols(Symtab)).begin(),
6339               StrTable, false, false);
6340       }
6341     }
6342 
6343     if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6344       ArrayRef<uint8_t> Data =
6345           unwrapOrError(this->FileName, Obj->getSectionContents(&Sec));
6346       W.printBinaryBlock(
6347           "SectionData",
6348           StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6349     }
6350   }
6351 }
6352 
6353 template <class ELFT>
6354 void LLVMStyle<ELFT>::printSymbolSection(const Elf_Sym *Symbol,
6355                                          const Elf_Sym *First) {
6356   Expected<unsigned> SectionIndex =
6357       this->dumper()->getSymbolSectionIndex(Symbol, First);
6358   if (!SectionIndex) {
6359     assert(Symbol->st_shndx == SHN_XINDEX &&
6360            "getSymbolSectionIndex should only fail due to an invalid "
6361            "SHT_SYMTAB_SHNDX table/reference");
6362     this->reportUniqueWarning(SectionIndex.takeError());
6363     W.printHex("Section", "Reserved", SHN_XINDEX);
6364     return;
6365   }
6366 
6367   Expected<StringRef> SectionName =
6368       this->dumper()->getSymbolSectionName(Symbol, *SectionIndex);
6369   if (!SectionName) {
6370     // Don't report an invalid section name if the section headers are missing.
6371     // In such situations, all sections will be "invalid".
6372     if (!this->dumper()->getElfObject()->sections().empty())
6373       this->reportUniqueWarning(SectionName.takeError());
6374     else
6375       consumeError(SectionName.takeError());
6376     W.printHex("Section", "<?>", *SectionIndex);
6377   } else {
6378     W.printHex("Section", *SectionName, *SectionIndex);
6379   }
6380 }
6381 
6382 template <class ELFT>
6383 void LLVMStyle<ELFT>::printSymbol(const ELFO *Obj, const Elf_Sym *Symbol,
6384                                   const Elf_Sym *First,
6385                                   Optional<StringRef> StrTable, bool IsDynamic,
6386                                   bool /*NonVisibilityBitsUsed*/) {
6387   std::string FullSymbolName =
6388       this->dumper()->getFullSymbolName(Symbol, StrTable, IsDynamic);
6389   unsigned char SymbolType = Symbol->getType();
6390 
6391   DictScope D(W, "Symbol");
6392   W.printNumber("Name", FullSymbolName, Symbol->st_name);
6393   W.printHex("Value", Symbol->st_value);
6394   W.printNumber("Size", Symbol->st_size);
6395   W.printEnum("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
6396   if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU &&
6397       SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6398     W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6399   else
6400     W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6401   if (Symbol->st_other == 0)
6402     // Usually st_other flag is zero. Do not pollute the output
6403     // by flags enumeration in that case.
6404     W.printNumber("Other", 0);
6405   else {
6406     std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6407                                                    std::end(ElfSymOtherFlags));
6408     if (Obj->getHeader()->e_machine == EM_MIPS) {
6409       // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6410       // flag overlapped with other ST_MIPS_xxx flags. So consider both
6411       // cases separately.
6412       if ((Symbol->st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6413         SymOtherFlags.insert(SymOtherFlags.end(),
6414                              std::begin(ElfMips16SymOtherFlags),
6415                              std::end(ElfMips16SymOtherFlags));
6416       else
6417         SymOtherFlags.insert(SymOtherFlags.end(),
6418                              std::begin(ElfMipsSymOtherFlags),
6419                              std::end(ElfMipsSymOtherFlags));
6420     }
6421     W.printFlags("Other", Symbol->st_other, makeArrayRef(SymOtherFlags), 0x3u);
6422   }
6423   printSymbolSection(Symbol, First);
6424 }
6425 
6426 template <class ELFT>
6427 void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj, bool PrintSymbols,
6428                                    bool PrintDynamicSymbols) {
6429   if (PrintSymbols)
6430     printSymbols(Obj);
6431   if (PrintDynamicSymbols)
6432     printDynamicSymbols(Obj);
6433 }
6434 
6435 template <class ELFT> void LLVMStyle<ELFT>::printSymbols(const ELFO *Obj) {
6436   ListScope Group(W, "Symbols");
6437   this->dumper()->printSymbolsHelper(false);
6438 }
6439 
6440 template <class ELFT>
6441 void LLVMStyle<ELFT>::printDynamicSymbols(const ELFO *Obj) {
6442   ListScope Group(W, "DynamicSymbols");
6443   this->dumper()->printSymbolsHelper(true);
6444 }
6445 
6446 template <class ELFT> void LLVMStyle<ELFT>::printDynamic(const ELFFile<ELFT> *Obj) {
6447   Elf_Dyn_Range Table = this->dumper()->dynamic_table();
6448   if (Table.empty())
6449     return;
6450 
6451   W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6452 
6453   size_t MaxTagSize = getMaxDynamicTagSize(Obj, Table);
6454   // The "Name/Value" column should be indented from the "Type" column by N
6455   // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6456   // space (1) = -3.
6457   W.startLine() << "  Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6458                 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6459 
6460   std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6461   for (auto Entry : Table) {
6462     uintX_t Tag = Entry.getTag();
6463     std::string Value = this->dumper()->getDynamicEntry(Tag, Entry.getVal());
6464     W.startLine() << "  " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6465                   << " "
6466                   << format(ValueFmt.c_str(),
6467                             Obj->getDynamicTagAsString(Tag).c_str())
6468                   << Value << "\n";
6469   }
6470   W.startLine() << "]\n";
6471 }
6472 
6473 template <class ELFT>
6474 void LLVMStyle<ELFT>::printDynamicRelocations(const ELFO *Obj) {
6475   const DynRegionInfo &DynRelRegion = this->dumper()->getDynRelRegion();
6476   const DynRegionInfo &DynRelaRegion = this->dumper()->getDynRelaRegion();
6477   const DynRegionInfo &DynRelrRegion = this->dumper()->getDynRelrRegion();
6478   const DynRegionInfo &DynPLTRelRegion = this->dumper()->getDynPLTRelRegion();
6479 
6480   W.startLine() << "Dynamic Relocations {\n";
6481   W.indent();
6482   if (DynRelaRegion.Size > 0) {
6483     for (const Elf_Rela &Rela : this->dumper()->dyn_relas())
6484       printDynamicRelocation(Obj, Rela);
6485   }
6486   if (DynRelRegion.Size > 0) {
6487     for (const Elf_Rel &Rel : this->dumper()->dyn_rels()) {
6488       Elf_Rela Rela;
6489       Rela.r_offset = Rel.r_offset;
6490       Rela.r_info = Rel.r_info;
6491       Rela.r_addend = 0;
6492       printDynamicRelocation(Obj, Rela);
6493     }
6494   }
6495 
6496   if (DynRelrRegion.Size > 0) {
6497     Elf_Relr_Range Relrs = this->dumper()->dyn_relrs();
6498     std::vector<Elf_Rela> RelrRelas =
6499         unwrapOrError(this->FileName, Obj->decode_relrs(Relrs));
6500     for (const Elf_Rela &Rela : RelrRelas)
6501       printDynamicRelocation(Obj, Rela);
6502   }
6503   if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela))
6504     for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
6505       printDynamicRelocation(Obj, Rela);
6506   else
6507     for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>()) {
6508       Elf_Rela Rela;
6509       Rela.r_offset = Rel.r_offset;
6510       Rela.r_info = Rel.r_info;
6511       Rela.r_addend = 0;
6512       printDynamicRelocation(Obj, Rela);
6513     }
6514   W.unindent();
6515   W.startLine() << "}\n";
6516 }
6517 
6518 template <class ELFT>
6519 void LLVMStyle<ELFT>::printDynamicRelocation(const ELFO *Obj, Elf_Rela Rel) {
6520   SmallString<32> RelocName;
6521   Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
6522   std::string SymbolName =
6523       getSymbolForReloc(Obj, this->FileName, this->dumper(), Rel).Name;
6524 
6525   if (opts::ExpandRelocs) {
6526     DictScope Group(W, "Relocation");
6527     W.printHex("Offset", Rel.r_offset);
6528     W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
6529     W.printString("Symbol", !SymbolName.empty() ? SymbolName : "-");
6530     W.printHex("Addend", Rel.r_addend);
6531   } else {
6532     raw_ostream &OS = W.startLine();
6533     OS << W.hex(Rel.r_offset) << " " << RelocName << " "
6534        << (!SymbolName.empty() ? SymbolName : "-") << " " << W.hex(Rel.r_addend)
6535        << "\n";
6536   }
6537 }
6538 
6539 template <class ELFT>
6540 void LLVMStyle<ELFT>::printProgramHeaders(
6541     const ELFO *Obj, bool PrintProgramHeaders,
6542     cl::boolOrDefault PrintSectionMapping) {
6543   if (PrintProgramHeaders)
6544     printProgramHeaders(Obj);
6545   if (PrintSectionMapping == cl::BOU_TRUE)
6546     printSectionMapping(Obj);
6547 }
6548 
6549 template <class ELFT>
6550 void LLVMStyle<ELFT>::printProgramHeaders(const ELFO *Obj) {
6551   ListScope L(W, "ProgramHeaders");
6552 
6553   Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj->program_headers();
6554   if (!PhdrsOrErr) {
6555     this->reportUniqueWarning(createError("unable to dump program headers: " +
6556                                           toString(PhdrsOrErr.takeError())));
6557     return;
6558   }
6559 
6560   for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6561     DictScope P(W, "ProgramHeader");
6562     W.printHex("Type",
6563                getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
6564                Phdr.p_type);
6565     W.printHex("Offset", Phdr.p_offset);
6566     W.printHex("VirtualAddress", Phdr.p_vaddr);
6567     W.printHex("PhysicalAddress", Phdr.p_paddr);
6568     W.printNumber("FileSize", Phdr.p_filesz);
6569     W.printNumber("MemSize", Phdr.p_memsz);
6570     W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6571     W.printNumber("Alignment", Phdr.p_align);
6572   }
6573 }
6574 
6575 template <class ELFT>
6576 void LLVMStyle<ELFT>::printVersionSymbolSection(const ELFFile<ELFT> *Obj,
6577                                                 const Elf_Shdr *Sec) {
6578   ListScope SS(W, "VersionSymbols");
6579   if (!Sec)
6580     return;
6581 
6582   StringRef StrTable;
6583   ArrayRef<Elf_Sym> Syms;
6584   Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6585       this->dumper()->getVersionTable(Sec, &Syms, &StrTable);
6586   if (!VerTableOrErr) {
6587     this->reportUniqueWarning(VerTableOrErr.takeError());
6588     return;
6589   }
6590 
6591   if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6592     return;
6593 
6594   for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6595     DictScope S(W, "Symbol");
6596     W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6597     W.printString("Name", this->dumper()->getFullSymbolName(
6598                               &Syms[I], StrTable, /*IsDynamic=*/true));
6599   }
6600 }
6601 
6602 template <class ELFT>
6603 void LLVMStyle<ELFT>::printVersionDefinitionSection(const ELFFile<ELFT> *Obj,
6604                                                     const Elf_Shdr *Sec) {
6605   ListScope SD(W, "VersionDefinitions");
6606   if (!Sec)
6607     return;
6608 
6609   Expected<std::vector<VerDef>> V = this->dumper()->getVersionDefinitions(Sec);
6610   if (!V) {
6611     this->reportUniqueWarning(V.takeError());
6612     return;
6613   }
6614 
6615   for (const VerDef &D : *V) {
6616     DictScope Def(W, "Definition");
6617     W.printNumber("Version", D.Version);
6618     W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6619     W.printNumber("Index", D.Ndx);
6620     W.printNumber("Hash", D.Hash);
6621     W.printString("Name", D.Name.c_str());
6622     W.printList(
6623         "Predecessors", D.AuxV,
6624         [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6625   }
6626 }
6627 
6628 template <class ELFT>
6629 void LLVMStyle<ELFT>::printVersionDependencySection(const ELFFile<ELFT> *Obj,
6630                                                     const Elf_Shdr *Sec) {
6631   ListScope SD(W, "VersionRequirements");
6632   if (!Sec)
6633     return;
6634 
6635   Expected<std::vector<VerNeed>> V =
6636       this->dumper()->getVersionDependencies(Sec);
6637   if (!V) {
6638     this->reportUniqueWarning(V.takeError());
6639     return;
6640   }
6641 
6642   for (const VerNeed &VN : *V) {
6643     DictScope Entry(W, "Dependency");
6644     W.printNumber("Version", VN.Version);
6645     W.printNumber("Count", VN.Cnt);
6646     W.printString("FileName", VN.File.c_str());
6647 
6648     ListScope L(W, "Entries");
6649     for (const VernAux &Aux : VN.AuxV) {
6650       DictScope Entry(W, "Entry");
6651       W.printNumber("Hash", Aux.Hash);
6652       W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6653       W.printNumber("Index", Aux.Other);
6654       W.printString("Name", Aux.Name.c_str());
6655     }
6656   }
6657 }
6658 
6659 template <class ELFT>
6660 void LLVMStyle<ELFT>::printHashHistograms(const ELFFile<ELFT> *Obj) {
6661   W.startLine() << "Hash Histogram not implemented!\n";
6662 }
6663 
6664 template <class ELFT>
6665 void LLVMStyle<ELFT>::printCGProfile(const ELFFile<ELFT> *Obj) {
6666   ListScope L(W, "CGProfile");
6667   if (!this->dumper()->getDotCGProfileSec())
6668     return;
6669 
6670   Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6671       Obj->template getSectionContentsAsArray<Elf_CGProfile>(
6672           this->dumper()->getDotCGProfileSec());
6673   if (!CGProfileOrErr) {
6674     this->reportUniqueWarning(
6675         createError("unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6676                     toString(CGProfileOrErr.takeError())));
6677     return;
6678   }
6679 
6680   for (const Elf_CGProfile &CGPE : *CGProfileOrErr) {
6681     DictScope D(W, "CGProfileEntry");
6682     W.printNumber("From", this->dumper()->getStaticSymbolName(CGPE.cgp_from),
6683                   CGPE.cgp_from);
6684     W.printNumber("To", this->dumper()->getStaticSymbolName(CGPE.cgp_to),
6685                   CGPE.cgp_to);
6686     W.printNumber("Weight", CGPE.cgp_weight);
6687   }
6688 }
6689 
6690 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
6691   std::vector<uint64_t> Ret;
6692   const uint8_t *Cur = Data.begin();
6693   const uint8_t *End = Data.end();
6694   while (Cur != End) {
6695     unsigned Size;
6696     const char *Err;
6697     Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
6698     if (Err)
6699       return createError(Err);
6700     Cur += Size;
6701   }
6702   return Ret;
6703 }
6704 
6705 template <class ELFT>
6706 void LLVMStyle<ELFT>::printAddrsig(const ELFFile<ELFT> *Obj) {
6707   ListScope L(W, "Addrsig");
6708   if (!this->dumper()->getDotAddrsigSec())
6709     return;
6710   ArrayRef<uint8_t> Contents = unwrapOrError(
6711       this->FileName,
6712       Obj->getSectionContents(this->dumper()->getDotAddrsigSec()));
6713   Expected<std::vector<uint64_t>> V = toULEB128Array(Contents);
6714   if (!V) {
6715     reportWarning(V.takeError(), this->FileName);
6716     return;
6717   }
6718 
6719   for (uint64_t Sym : *V) {
6720     Expected<std::string> NameOrErr = this->dumper()->getStaticSymbolName(Sym);
6721     if (NameOrErr) {
6722       W.printNumber("Sym", *NameOrErr, Sym);
6723       continue;
6724     }
6725     reportWarning(NameOrErr.takeError(), this->FileName);
6726     W.printNumber("Sym", "<?>", Sym);
6727   }
6728 }
6729 
6730 template <typename ELFT>
6731 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6732                                   ScopedPrinter &W) {
6733   switch (NoteType) {
6734   default:
6735     return;
6736   case ELF::NT_GNU_ABI_TAG: {
6737     const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
6738     if (!AbiTag.IsValid) {
6739       W.printString("ABI", "<corrupt GNU_ABI_TAG>");
6740     } else {
6741       W.printString("OS", AbiTag.OSName);
6742       W.printString("ABI", AbiTag.ABI);
6743     }
6744     break;
6745   }
6746   case ELF::NT_GNU_BUILD_ID: {
6747     W.printString("Build ID", getGNUBuildId(Desc));
6748     break;
6749   }
6750   case ELF::NT_GNU_GOLD_VERSION:
6751     W.printString("Version", getGNUGoldVersion(Desc));
6752     break;
6753   case ELF::NT_GNU_PROPERTY_TYPE_0:
6754     ListScope D(W, "Property");
6755     for (const auto &Property : getGNUPropertyList<ELFT>(Desc))
6756       W.printString(Property);
6757     break;
6758   }
6759 }
6760 
6761 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
6762   W.printNumber("Page Size", Note.PageSize);
6763   for (const CoreFileMapping &Mapping : Note.Mappings) {
6764     ListScope D(W, "Mapping");
6765     W.printHex("Start", Mapping.Start);
6766     W.printHex("End", Mapping.End);
6767     W.printHex("Offset", Mapping.Offset);
6768     W.printString("Filename", Mapping.Filename);
6769   }
6770 }
6771 
6772 template <class ELFT>
6773 void LLVMStyle<ELFT>::printNotes(const ELFFile<ELFT> *Obj) {
6774   ListScope L(W, "Notes");
6775 
6776   auto PrintHeader = [&](Optional<StringRef> SecName,
6777                          const typename ELFT::Off Offset,
6778                          const typename ELFT::Addr Size) {
6779     W.printString("Name", SecName ? *SecName : "<?>");
6780     W.printHex("Offset", Offset);
6781     W.printHex("Size", Size);
6782   };
6783 
6784   auto ProcessNote = [&](const Elf_Note &Note) {
6785     DictScope D2(W, "Note");
6786     StringRef Name = Note.getName();
6787     ArrayRef<uint8_t> Descriptor = Note.getDesc();
6788     Elf_Word Type = Note.getType();
6789 
6790     // Print the note owner/type.
6791     W.printString("Owner", Name);
6792     W.printHex("Data size", Descriptor.size());
6793     if (Name == "GNU") {
6794       W.printString("Type", getGNUNoteTypeName(Type));
6795     } else if (Name == "FreeBSD") {
6796       W.printString("Type", getFreeBSDNoteTypeName(Type));
6797     } else if (Name == "AMD") {
6798       W.printString("Type", getAMDNoteTypeName(Type));
6799     } else if (Name == "AMDGPU") {
6800       W.printString("Type", getAMDGPUNoteTypeName(Type));
6801     } else {
6802       StringRef NoteType = Obj->getHeader()->e_type == ELF::ET_CORE
6803                                ? getCoreNoteTypeName(Type)
6804                                : getGenericNoteTypeName(Type);
6805       if (!NoteType.empty())
6806         W.printString("Type", NoteType);
6807       else
6808         W.printString("Type",
6809                       "Unknown (" + to_string(format_hex(Type, 10)) + ")");
6810     }
6811 
6812     // Print the description, or fallback to printing raw bytes for unknown
6813     // owners.
6814     if (Name == "GNU") {
6815       printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
6816     } else if (Name == "AMD") {
6817       const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6818       if (!N.Type.empty())
6819         W.printString(N.Type, N.Value);
6820     } else if (Name == "AMDGPU") {
6821       const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6822       if (!N.Type.empty())
6823         W.printString(N.Type, N.Value);
6824     } else if (Name == "CORE") {
6825       if (Type == ELF::NT_FILE) {
6826         DataExtractor DescExtractor(Descriptor,
6827                                     ELFT::TargetEndianness == support::little,
6828                                     sizeof(Elf_Addr));
6829         Expected<CoreNote> Note = readCoreNote(DescExtractor);
6830         if (Note)
6831           printCoreNoteLLVMStyle(*Note, W);
6832         else
6833           reportWarning(Note.takeError(), this->FileName);
6834       }
6835     } else if (!Descriptor.empty()) {
6836       W.printBinaryBlock("Description data", Descriptor);
6837     }
6838   };
6839 
6840   ArrayRef<Elf_Shdr> Sections = cantFail(Obj->sections());
6841   if (Obj->getHeader()->e_type != ELF::ET_CORE && !Sections.empty()) {
6842     for (const auto &S : Sections) {
6843       if (S.sh_type != SHT_NOTE)
6844         continue;
6845       DictScope D(W, "NoteSection");
6846       PrintHeader(expectedToOptional(Obj->getSectionName(&S)), S.sh_offset,
6847                   S.sh_size);
6848       Error Err = Error::success();
6849       for (auto Note : Obj->notes(S, Err))
6850         ProcessNote(Note);
6851       if (Err)
6852         reportError(std::move(Err), this->FileName);
6853     }
6854   } else {
6855     Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj->program_headers();
6856     if (!PhdrsOrErr) {
6857       this->reportUniqueWarning(createError(
6858           "unable to read program headers to locate the PT_NOTE segment: " +
6859           toString(PhdrsOrErr.takeError())));
6860       return;
6861     }
6862 
6863     for (const Elf_Phdr &P : *PhdrsOrErr) {
6864       if (P.p_type != PT_NOTE)
6865         continue;
6866       DictScope D(W, "NoteSection");
6867       PrintHeader(/*SecName=*/None, P.p_offset, P.p_filesz);
6868       Error Err = Error::success();
6869       for (auto Note : Obj->notes(P, Err))
6870         ProcessNote(Note);
6871       if (Err)
6872         reportError(std::move(Err), this->FileName);
6873     }
6874   }
6875 }
6876 
6877 template <class ELFT>
6878 void LLVMStyle<ELFT>::printELFLinkerOptions(const ELFFile<ELFT> *Obj) {
6879   ListScope L(W, "LinkerOptions");
6880 
6881   unsigned I = -1;
6882   for (const Elf_Shdr &Shdr : cantFail(Obj->sections())) {
6883     ++I;
6884     if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
6885       continue;
6886 
6887     Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj->getSectionContents(&Shdr);
6888     if (!ContentsOrErr) {
6889       this->reportUniqueWarning(
6890           createError("unable to read the content of the "
6891                       "SHT_LLVM_LINKER_OPTIONS section: " +
6892                       toString(ContentsOrErr.takeError())));
6893       continue;
6894     }
6895     if (ContentsOrErr->empty())
6896       continue;
6897 
6898     if (ContentsOrErr->back() != 0) {
6899       this->reportUniqueWarning(
6900           createError("SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6901                       " is broken: the "
6902                       "content is not null-terminated"));
6903       continue;
6904     }
6905 
6906     SmallVector<StringRef, 16> Strings;
6907     toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
6908     if (Strings.size() % 2 != 0) {
6909       this->reportUniqueWarning(createError(
6910           "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6911           " is broken: an incomplete "
6912           "key-value pair was found. The last possible key was: \"" +
6913           Strings.back() + "\""));
6914       continue;
6915     }
6916 
6917     for (size_t I = 0; I < Strings.size(); I += 2)
6918       W.printString(Strings[I], Strings[I + 1]);
6919   }
6920 }
6921 
6922 template <class ELFT>
6923 void LLVMStyle<ELFT>::printDependentLibs(const ELFFile<ELFT> *Obj) {
6924   ListScope L(W, "DependentLibs");
6925   this->printDependentLibsHelper(
6926       Obj, [](const Elf_Shdr &) {},
6927       [this](StringRef Lib, uint64_t) { W.printString(Lib); });
6928 }
6929 
6930 template <class ELFT>
6931 void LLVMStyle<ELFT>::printStackSizes(const ELFObjectFile<ELFT> *Obj) {
6932   ListScope L(W, "StackSizes");
6933   if (Obj->isRelocatableObject())
6934     this->printRelocatableStackSizes(Obj, []() {});
6935   else
6936     this->printNonRelocatableStackSizes(Obj, []() {});
6937 }
6938 
6939 template <class ELFT>
6940 void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
6941   DictScope D(W, "Entry");
6942   W.printString("Function", FuncName);
6943   W.printHex("Size", Size);
6944 }
6945 
6946 template <class ELFT>
6947 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6948   auto PrintEntry = [&](const Elf_Addr *E) {
6949     W.printHex("Address", Parser.getGotAddress(E));
6950     W.printNumber("Access", Parser.getGotOffset(E));
6951     W.printHex("Initial", *E);
6952   };
6953 
6954   DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
6955 
6956   W.printHex("Canonical gp value", Parser.getGp());
6957   {
6958     ListScope RS(W, "Reserved entries");
6959     {
6960       DictScope D(W, "Entry");
6961       PrintEntry(Parser.getGotLazyResolver());
6962       W.printString("Purpose", StringRef("Lazy resolver"));
6963     }
6964 
6965     if (Parser.getGotModulePointer()) {
6966       DictScope D(W, "Entry");
6967       PrintEntry(Parser.getGotModulePointer());
6968       W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
6969     }
6970   }
6971   {
6972     ListScope LS(W, "Local entries");
6973     for (auto &E : Parser.getLocalEntries()) {
6974       DictScope D(W, "Entry");
6975       PrintEntry(&E);
6976     }
6977   }
6978 
6979   if (Parser.IsStatic)
6980     return;
6981 
6982   {
6983     ListScope GS(W, "Global entries");
6984     for (auto &E : Parser.getGlobalEntries()) {
6985       DictScope D(W, "Entry");
6986 
6987       PrintEntry(&E);
6988 
6989       const Elf_Sym *Sym = Parser.getGotSym(&E);
6990       W.printHex("Value", Sym->st_value);
6991       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
6992       printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
6993 
6994       std::string SymName = this->dumper()->getFullSymbolName(
6995           Sym, this->dumper()->getDynamicStringTable(), true);
6996       W.printNumber("Name", SymName, Sym->st_name);
6997     }
6998   }
6999 
7000   W.printNumber("Number of TLS and multi-GOT entries",
7001                 uint64_t(Parser.getOtherEntries().size()));
7002 }
7003 
7004 template <class ELFT>
7005 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7006   auto PrintEntry = [&](const Elf_Addr *E) {
7007     W.printHex("Address", Parser.getPltAddress(E));
7008     W.printHex("Initial", *E);
7009   };
7010 
7011   DictScope GS(W, "PLT GOT");
7012 
7013   {
7014     ListScope RS(W, "Reserved entries");
7015     {
7016       DictScope D(W, "Entry");
7017       PrintEntry(Parser.getPltLazyResolver());
7018       W.printString("Purpose", StringRef("PLT lazy resolver"));
7019     }
7020 
7021     if (auto E = Parser.getPltModulePointer()) {
7022       DictScope D(W, "Entry");
7023       PrintEntry(E);
7024       W.printString("Purpose", StringRef("Module pointer"));
7025     }
7026   }
7027   {
7028     ListScope LS(W, "Entries");
7029     for (auto &E : Parser.getPltEntries()) {
7030       DictScope D(W, "Entry");
7031       PrintEntry(&E);
7032 
7033       const Elf_Sym *Sym = Parser.getPltSym(&E);
7034       W.printHex("Value", Sym->st_value);
7035       W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
7036       printSymbolSection(Sym, this->dumper()->dynamic_symbols().begin());
7037 
7038       std::string SymName =
7039           this->dumper()->getFullSymbolName(Sym, Parser.getPltStrTable(), true);
7040       W.printNumber("Name", SymName, Sym->st_name);
7041     }
7042   }
7043 }
7044 
7045 template <class ELFT>
7046 void LLVMStyle<ELFT>::printMipsABIFlags(const ELFObjectFile<ELFT> *ObjF) {
7047   const ELFFile<ELFT> *Obj = ObjF->getELFFile();
7048   const Elf_Shdr *Shdr =
7049       findSectionByName(*Obj, ObjF->getFileName(), ".MIPS.abiflags");
7050   if (!Shdr) {
7051     W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7052     return;
7053   }
7054   ArrayRef<uint8_t> Sec =
7055       unwrapOrError(ObjF->getFileName(), Obj->getSectionContents(Shdr));
7056   if (Sec.size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
7057     W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
7058     return;
7059   }
7060 
7061   auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec.data());
7062 
7063   raw_ostream &OS = W.getOStream();
7064   DictScope GS(W, "MIPS ABI Flags");
7065 
7066   W.printNumber("Version", Flags->version);
7067   W.startLine() << "ISA: ";
7068   if (Flags->isa_rev <= 1)
7069     OS << format("MIPS%u", Flags->isa_level);
7070   else
7071     OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7072   OS << "\n";
7073   W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7074   W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7075   W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7076   W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7077   W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7078   W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7079   W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7080   W.printHex("Flags 2", Flags->flags2);
7081 }
7082