xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-readobj/ARMEHABIPrinter.h (revision e1e636193db45630c7881246d25902e57c43d24e)
1 //===--- ARMEHABIPrinter.h - ARM EHABI Unwind Information Printer ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLVM_TOOLS_LLVM_READOBJ_ARMEHABIPRINTER_H
10 #define LLVM_TOOLS_LLVM_READOBJ_ARMEHABIPRINTER_H
11 
12 #include "llvm-readobj.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/Object/ELF.h"
15 #include "llvm/Object/ELFTypes.h"
16 #include "llvm/Support/ARMEHABI.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/Endian.h"
19 #include "llvm/Support/Format.h"
20 #include "llvm/Support/ScopedPrinter.h"
21 #include "llvm/Support/type_traits.h"
22 
23 namespace llvm {
24 namespace ARM {
25 namespace EHABI {
26 
27 class OpcodeDecoder {
28   ScopedPrinter &SW;
29   raw_ostream &OS;
30 
31   struct RingEntry {
32     uint8_t Mask;
33     uint8_t Value;
34     void (OpcodeDecoder::*Routine)(const uint8_t *Opcodes, unsigned &OI);
35   };
36   static ArrayRef<RingEntry> ring();
37 
38   void Decode_00xxxxxx(const uint8_t *Opcodes, unsigned &OI);
39   void Decode_01xxxxxx(const uint8_t *Opcodes, unsigned &OI);
40   void Decode_1000iiii_iiiiiiii(const uint8_t *Opcodes, unsigned &OI);
41   void Decode_10011101(const uint8_t *Opcodes, unsigned &OI);
42   void Decode_10011111(const uint8_t *Opcodes, unsigned &OI);
43   void Decode_1001nnnn(const uint8_t *Opcodes, unsigned &OI);
44   void Decode_10100nnn(const uint8_t *Opcodes, unsigned &OI);
45   void Decode_10101nnn(const uint8_t *Opcodes, unsigned &OI);
46   void Decode_10110000(const uint8_t *Opcodes, unsigned &OI);
47   void Decode_10110001_0000iiii(const uint8_t *Opcodes, unsigned &OI);
48   void Decode_10110010_uleb128(const uint8_t *Opcodes, unsigned &OI);
49   void Decode_10110011_sssscccc(const uint8_t *Opcodes, unsigned &OI);
50   void Decode_101101nn(const uint8_t *Opcodes, unsigned &OI);
51   void Decode_10111nnn(const uint8_t *Opcodes, unsigned &OI);
52   void Decode_11000110_sssscccc(const uint8_t *Opcodes, unsigned &OI);
53   void Decode_11000111_0000iiii(const uint8_t *Opcodes, unsigned &OI);
54   void Decode_11001000_sssscccc(const uint8_t *Opcodes, unsigned &OI);
55   void Decode_11001001_sssscccc(const uint8_t *Opcodes, unsigned &OI);
56   void Decode_11001yyy(const uint8_t *Opcodes, unsigned &OI);
57   void Decode_11000nnn(const uint8_t *Opcodes, unsigned &OI);
58   void Decode_11010nnn(const uint8_t *Opcodes, unsigned &OI);
59   void Decode_11xxxyyy(const uint8_t *Opcodes, unsigned &OI);
60 
61   void PrintGPR(uint16_t GPRMask);
62   void PrintRegisters(uint32_t Mask, StringRef Prefix);
63 
64 public:
65   OpcodeDecoder(ScopedPrinter &SW) : SW(SW), OS(SW.getOStream()) {}
66   void Decode(const uint8_t *Opcodes, off_t Offset, size_t Length);
67 };
68 
69 inline ArrayRef<OpcodeDecoder::RingEntry> OpcodeDecoder::ring() {
70   static const OpcodeDecoder::RingEntry Ring[] = {
71       {0xc0, 0x00, &OpcodeDecoder::Decode_00xxxxxx},
72       {0xc0, 0x40, &OpcodeDecoder::Decode_01xxxxxx},
73       {0xf0, 0x80, &OpcodeDecoder::Decode_1000iiii_iiiiiiii},
74       {0xff, 0x9d, &OpcodeDecoder::Decode_10011101},
75       {0xff, 0x9f, &OpcodeDecoder::Decode_10011111},
76       {0xf0, 0x90, &OpcodeDecoder::Decode_1001nnnn},
77       {0xf8, 0xa0, &OpcodeDecoder::Decode_10100nnn},
78       {0xf8, 0xa8, &OpcodeDecoder::Decode_10101nnn},
79       {0xff, 0xb0, &OpcodeDecoder::Decode_10110000},
80       {0xff, 0xb1, &OpcodeDecoder::Decode_10110001_0000iiii},
81       {0xff, 0xb2, &OpcodeDecoder::Decode_10110010_uleb128},
82       {0xff, 0xb3, &OpcodeDecoder::Decode_10110011_sssscccc},
83       {0xfc, 0xb4, &OpcodeDecoder::Decode_101101nn},
84       {0xf8, 0xb8, &OpcodeDecoder::Decode_10111nnn},
85       {0xff, 0xc6, &OpcodeDecoder::Decode_11000110_sssscccc},
86       {0xff, 0xc7, &OpcodeDecoder::Decode_11000111_0000iiii},
87       {0xff, 0xc8, &OpcodeDecoder::Decode_11001000_sssscccc},
88       {0xff, 0xc9, &OpcodeDecoder::Decode_11001001_sssscccc},
89       {0xc8, 0xc8, &OpcodeDecoder::Decode_11001yyy},
90       {0xf8, 0xc0, &OpcodeDecoder::Decode_11000nnn},
91       {0xf8, 0xd0, &OpcodeDecoder::Decode_11010nnn},
92       {0xc0, 0xc0, &OpcodeDecoder::Decode_11xxxyyy},
93   };
94   return ArrayRef(Ring);
95 }
96 
97 inline void OpcodeDecoder::Decode_00xxxxxx(const uint8_t *Opcodes,
98                                            unsigned &OI) {
99   uint8_t Opcode = Opcodes[OI++ ^ 3];
100   SW.startLine() << format("0x%02X      ; vsp = vsp + %u\n", Opcode,
101                            ((Opcode & 0x3f) << 2) + 4);
102 }
103 inline void OpcodeDecoder::Decode_01xxxxxx(const uint8_t *Opcodes,
104                                            unsigned &OI) {
105   uint8_t Opcode = Opcodes[OI++ ^ 3];
106   SW.startLine() << format("0x%02X      ; vsp = vsp - %u\n", Opcode,
107                            ((Opcode & 0x3f) << 2) + 4);
108 }
109 inline void OpcodeDecoder::Decode_1000iiii_iiiiiiii(const uint8_t *Opcodes,
110                                                     unsigned &OI) {
111   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
112   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
113 
114   uint16_t GPRMask = (Opcode1 << 4) | ((Opcode0 & 0x0f) << 12);
115   SW.startLine()
116     << format("0x%02X 0x%02X ; %s",
117               Opcode0, Opcode1, GPRMask ? "pop " : "refuse to unwind");
118   if (GPRMask)
119     PrintGPR(GPRMask);
120   OS << '\n';
121 }
122 inline void OpcodeDecoder::Decode_10011101(const uint8_t *Opcodes,
123                                            unsigned &OI) {
124   uint8_t Opcode = Opcodes[OI++ ^ 3];
125   SW.startLine() << format("0x%02X      ; reserved (ARM MOVrr)\n", Opcode);
126 }
127 inline void OpcodeDecoder::Decode_10011111(const uint8_t *Opcodes,
128                                            unsigned &OI) {
129   uint8_t Opcode = Opcodes[OI++ ^ 3];
130   SW.startLine() << format("0x%02X      ; reserved (WiMMX MOVrr)\n", Opcode);
131 }
132 inline void OpcodeDecoder::Decode_1001nnnn(const uint8_t *Opcodes,
133                                            unsigned &OI) {
134   uint8_t Opcode = Opcodes[OI++ ^ 3];
135   SW.startLine() << format("0x%02X      ; vsp = r%u\n", Opcode, (Opcode & 0x0f));
136 }
137 inline void OpcodeDecoder::Decode_10100nnn(const uint8_t *Opcodes,
138                                            unsigned &OI) {
139   uint8_t Opcode = Opcodes[OI++ ^ 3];
140   SW.startLine() << format("0x%02X      ; pop ", Opcode);
141   PrintGPR((((1 << ((Opcode & 0x7) + 1)) - 1) << 4));
142   OS << '\n';
143 }
144 inline void OpcodeDecoder::Decode_10101nnn(const uint8_t *Opcodes,
145                                            unsigned &OI) {
146   uint8_t Opcode = Opcodes[OI++ ^ 3];
147   SW.startLine() << format("0x%02X      ; pop ", Opcode);
148   PrintGPR((((1 << ((Opcode & 0x7) + 1)) - 1) << 4) | (1 << 14));
149   OS << '\n';
150 }
151 inline void OpcodeDecoder::Decode_10110000(const uint8_t *Opcodes,
152                                            unsigned &OI) {
153   uint8_t Opcode = Opcodes[OI++ ^ 3];
154   SW.startLine() << format("0x%02X      ; finish\n", Opcode);
155 }
156 inline void OpcodeDecoder::Decode_10110001_0000iiii(const uint8_t *Opcodes,
157                                                     unsigned &OI) {
158   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
159   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
160 
161   SW.startLine() << format("0x%02X 0x%02X ; %s", Opcode0, Opcode1,
162                            (Opcode1 & 0xf0) ? "spare" : "pop ");
163   if (((Opcode1 & 0xf0) == 0x00) && Opcode1)
164     PrintGPR((Opcode1 & 0x0f));
165   OS << '\n';
166 }
167 inline void OpcodeDecoder::Decode_10110010_uleb128(const uint8_t *Opcodes,
168                                                    unsigned &OI) {
169   uint8_t Opcode = Opcodes[OI++ ^ 3];
170   SW.startLine() << format("0x%02X ", Opcode);
171 
172   SmallVector<uint8_t, 4> ULEB;
173   do { ULEB.push_back(Opcodes[OI ^ 3]); } while (Opcodes[OI++ ^ 3] & 0x80);
174 
175   for (unsigned BI = 0, BE = ULEB.size(); BI != BE; ++BI)
176     OS << format("0x%02X ", ULEB[BI]);
177 
178   uint64_t Value = 0;
179   for (unsigned BI = 0, BE = ULEB.size(); BI != BE; ++BI)
180     Value = Value | ((ULEB[BI] & 0x7f) << (7 * BI));
181 
182   OS << format("; vsp = vsp + %" PRIu64 "\n", 0x204 + (Value << 2));
183 }
184 inline void OpcodeDecoder::Decode_10110011_sssscccc(const uint8_t *Opcodes,
185                                                     unsigned &OI) {
186   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
187   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
188   SW.startLine() << format("0x%02X 0x%02X ; pop ", Opcode0, Opcode1);
189   uint8_t Start = ((Opcode1 & 0xf0) >> 4);
190   uint8_t Count = ((Opcode1 & 0x0f) >> 0);
191   PrintRegisters((((1 << (Count + 1)) - 1) << Start), "d");
192   OS << '\n';
193 }
194 inline void OpcodeDecoder::Decode_101101nn(const uint8_t *Opcodes,
195                                            unsigned &OI) {
196   uint8_t Opcode = Opcodes[OI++ ^ 3];
197   SW.startLine() << format("0x%02X      ; %s\n", Opcode,
198                            (Opcode == 0xb4) ? "pop ra_auth_code" : "spare");
199 }
200 inline void OpcodeDecoder::Decode_10111nnn(const uint8_t *Opcodes,
201                                            unsigned &OI) {
202   uint8_t Opcode = Opcodes[OI++ ^ 3];
203   SW.startLine() << format("0x%02X      ; pop ", Opcode);
204   PrintRegisters((((1 << ((Opcode & 0x07) + 1)) - 1) << 8), "d");
205   OS << '\n';
206 }
207 inline void OpcodeDecoder::Decode_11000110_sssscccc(const uint8_t *Opcodes,
208                                                     unsigned &OI) {
209   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
210   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
211   SW.startLine() << format("0x%02X 0x%02X ; pop ", Opcode0, Opcode1);
212   uint8_t Start = ((Opcode1 & 0xf0) >> 4);
213   uint8_t Count = ((Opcode1 & 0x0f) >> 0);
214   PrintRegisters((((1 << (Count + 1)) - 1) << Start), "wR");
215   OS << '\n';
216 }
217 inline void OpcodeDecoder::Decode_11000111_0000iiii(const uint8_t *Opcodes,
218                                                     unsigned &OI) {
219   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
220   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
221   SW.startLine()
222     << format("0x%02X 0x%02X ; %s", Opcode0, Opcode1,
223               ((Opcode1 & 0xf0) || Opcode1 == 0x00) ? "spare" : "pop ");
224   if ((Opcode1 & 0xf0) == 0x00 && Opcode1)
225       PrintRegisters(Opcode1 & 0x0f, "wCGR");
226   OS << '\n';
227 }
228 inline void OpcodeDecoder::Decode_11001000_sssscccc(const uint8_t *Opcodes,
229                                                     unsigned &OI) {
230   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
231   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
232   SW.startLine() << format("0x%02X 0x%02X ; pop ", Opcode0, Opcode1);
233   uint8_t Start = 16 + ((Opcode1 & 0xf0) >> 4);
234   uint8_t Count = ((Opcode1 & 0x0f) >> 0);
235   PrintRegisters((((1 << (Count + 1)) - 1) << Start), "d");
236   OS << '\n';
237 }
238 inline void OpcodeDecoder::Decode_11001001_sssscccc(const uint8_t *Opcodes,
239                                                     unsigned &OI) {
240   uint8_t Opcode0 = Opcodes[OI++ ^ 3];
241   uint8_t Opcode1 = Opcodes[OI++ ^ 3];
242   SW.startLine() << format("0x%02X 0x%02X ; pop ", Opcode0, Opcode1);
243   uint8_t Start = ((Opcode1 & 0xf0) >> 4);
244   uint8_t Count = ((Opcode1 & 0x0f) >> 0);
245   PrintRegisters((((1 << (Count + 1)) - 1) << Start), "d");
246   OS << '\n';
247 }
248 inline void OpcodeDecoder::Decode_11001yyy(const uint8_t *Opcodes,
249                                            unsigned &OI) {
250   uint8_t Opcode = Opcodes[OI++ ^ 3];
251   SW.startLine() << format("0x%02X      ; spare\n", Opcode);
252 }
253 inline void OpcodeDecoder::Decode_11000nnn(const uint8_t *Opcodes,
254                                            unsigned &OI) {
255   uint8_t Opcode = Opcodes[OI++ ^ 3];
256   SW.startLine() << format("0x%02X      ; pop ", Opcode);
257   PrintRegisters((((1 << ((Opcode & 0x07) + 1)) - 1) << 10), "wR");
258   OS << '\n';
259 }
260 inline void OpcodeDecoder::Decode_11010nnn(const uint8_t *Opcodes,
261                                            unsigned &OI) {
262   uint8_t Opcode = Opcodes[OI++ ^ 3];
263   SW.startLine() << format("0x%02X      ; pop ", Opcode);
264   PrintRegisters((((1 << ((Opcode & 0x07) + 1)) - 1) << 8), "d");
265   OS << '\n';
266 }
267 inline void OpcodeDecoder::Decode_11xxxyyy(const uint8_t *Opcodes,
268                                            unsigned &OI) {
269   uint8_t Opcode = Opcodes[OI++ ^ 3];
270   SW.startLine() << format("0x%02X      ; spare\n", Opcode);
271 }
272 
273 inline void OpcodeDecoder::PrintGPR(uint16_t GPRMask) {
274   static const char *GPRRegisterNames[16] = {
275     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10",
276     "fp", "ip", "sp", "lr", "pc"
277   };
278 
279   OS << '{';
280   bool Comma = false;
281   for (unsigned RI = 0, RE = 17; RI < RE; ++RI) {
282     if (GPRMask & (1 << RI)) {
283       if (Comma)
284         OS << ", ";
285       OS << GPRRegisterNames[RI];
286       Comma = true;
287     }
288   }
289   OS << '}';
290 }
291 
292 inline void OpcodeDecoder::PrintRegisters(uint32_t VFPMask, StringRef Prefix) {
293   OS << '{';
294   bool Comma = false;
295   for (unsigned RI = 0, RE = 32; RI < RE; ++RI) {
296     if (VFPMask & (1 << RI)) {
297       if (Comma)
298         OS << ", ";
299       OS << Prefix << RI;
300       Comma = true;
301     }
302   }
303   OS << '}';
304 }
305 
306 inline void OpcodeDecoder::Decode(const uint8_t *Opcodes, off_t Offset,
307                                   size_t Length) {
308   for (unsigned OCI = Offset; OCI < Length + Offset; ) {
309     bool Decoded = false;
310     for (const auto &RE : ring()) {
311       if ((Opcodes[OCI ^ 3] & RE.Mask) == RE.Value) {
312         (this->*RE.Routine)(Opcodes, OCI);
313         Decoded = true;
314         break;
315       }
316     }
317     if (!Decoded)
318       SW.startLine() << format("0x%02X      ; reserved\n", Opcodes[OCI++ ^ 3]);
319   }
320 }
321 
322 template <typename ET>
323 class PrinterContext {
324   typedef typename ET::Sym Elf_Sym;
325   typedef typename ET::Shdr Elf_Shdr;
326   typedef typename ET::Rel Elf_Rel;
327   typedef typename ET::Word Elf_Word;
328 
329   ScopedPrinter &SW;
330   const object::ELFFile<ET> &ELF;
331   StringRef FileName;
332   const Elf_Shdr *Symtab;
333   ArrayRef<Elf_Word> ShndxTable;
334 
335   static const size_t IndexTableEntrySize;
336 
337   static uint64_t PREL31(uint32_t Address, uint32_t Place) {
338     uint64_t Location = Address & 0x7fffffff;
339     if (Location & 0x40000000)
340       Location |= (uint64_t) ~0x7fffffff;
341     return Location + Place;
342   }
343 
344   ErrorOr<StringRef>
345   FunctionAtAddress(uint64_t Address,
346                     std::optional<unsigned> SectionIndex) const;
347   const Elf_Shdr *FindExceptionTable(unsigned IndexTableIndex,
348                                      off_t IndexTableOffset) const;
349 
350   void PrintIndexTable(unsigned SectionIndex, const Elf_Shdr *IT) const;
351   void PrintExceptionTable(const Elf_Shdr &EHT,
352                            uint64_t TableEntryOffset) const;
353   void PrintOpcodes(const uint8_t *Entry, size_t Length, off_t Offset) const;
354 
355 public:
356   PrinterContext(ScopedPrinter &SW, const object::ELFFile<ET> &ELF,
357                  StringRef FileName, const Elf_Shdr *Symtab)
358       : SW(SW), ELF(ELF), FileName(FileName), Symtab(Symtab) {}
359 
360   void PrintUnwindInformation() const;
361 };
362 
363 template <typename ET>
364 const size_t PrinterContext<ET>::IndexTableEntrySize = 8;
365 
366 template <typename ET>
367 ErrorOr<StringRef> PrinterContext<ET>::FunctionAtAddress(
368     uint64_t Address, std::optional<unsigned> SectionIndex) const {
369   if (!Symtab)
370     return inconvertibleErrorCode();
371   auto StrTableOrErr = ELF.getStringTableForSymtab(*Symtab);
372   if (!StrTableOrErr)
373     reportError(StrTableOrErr.takeError(), FileName);
374   StringRef StrTable = *StrTableOrErr;
375 
376   for (const Elf_Sym &Sym : unwrapOrError(FileName, ELF.symbols(Symtab))) {
377     if (SectionIndex && *SectionIndex != Sym.st_shndx)
378       continue;
379 
380     if (Sym.st_value == Address && Sym.getType() == ELF::STT_FUNC) {
381       auto NameOrErr = Sym.getName(StrTable);
382       if (!NameOrErr) {
383         // TODO: Actually report errors helpfully.
384         consumeError(NameOrErr.takeError());
385         return inconvertibleErrorCode();
386       }
387       return *NameOrErr;
388     }
389   }
390 
391   return inconvertibleErrorCode();
392 }
393 
394 template <typename ET>
395 const typename ET::Shdr *
396 PrinterContext<ET>::FindExceptionTable(unsigned IndexSectionIndex,
397                                        off_t IndexTableOffset) const {
398   /// Iterate through the sections, searching for the relocation section
399   /// associated with the unwind index table section specified by
400   /// IndexSectionIndex.  Iterate the associated section searching for the
401   /// relocation associated with the index table entry specified by
402   /// IndexTableOffset.  The symbol is the section symbol for the exception
403   /// handling table.  Use this symbol to recover the actual exception handling
404   /// table.
405 
406   for (const Elf_Shdr &Sec : unwrapOrError(FileName, ELF.sections())) {
407     if (Sec.sh_type != ELF::SHT_REL || Sec.sh_info != IndexSectionIndex)
408       continue;
409 
410     auto SymTabOrErr = ELF.getSection(Sec.sh_link);
411     if (!SymTabOrErr)
412       reportError(SymTabOrErr.takeError(), FileName);
413     const Elf_Shdr *SymTab = *SymTabOrErr;
414 
415     for (const Elf_Rel &R : unwrapOrError(FileName, ELF.rels(Sec))) {
416       if (R.r_offset != static_cast<unsigned>(IndexTableOffset))
417         continue;
418 
419       typename ET::Rela RelA;
420       RelA.r_offset = R.r_offset;
421       RelA.r_info = R.r_info;
422       RelA.r_addend = 0;
423 
424       const Elf_Sym *Symbol =
425           unwrapOrError(FileName, ELF.getRelocationSymbol(RelA, SymTab));
426 
427       auto Ret = ELF.getSection(*Symbol, SymTab, ShndxTable);
428       if (!Ret)
429         report_fatal_error(Twine(errorToErrorCode(Ret.takeError()).message()));
430       return *Ret;
431     }
432   }
433   return nullptr;
434 }
435 
436 template <typename ET>
437 static const typename ET::Shdr *
438 findSectionContainingAddress(const object::ELFFile<ET> &Obj, StringRef FileName,
439                              uint64_t Address) {
440   for (const typename ET::Shdr &Sec : unwrapOrError(FileName, Obj.sections()))
441     if (Address >= Sec.sh_addr && Address < Sec.sh_addr + Sec.sh_size)
442       return &Sec;
443   return nullptr;
444 }
445 
446 template <typename ET>
447 void PrinterContext<ET>::PrintExceptionTable(const Elf_Shdr &EHT,
448                                              uint64_t TableEntryOffset) const {
449   // TODO: handle failure.
450   Expected<ArrayRef<uint8_t>> Contents = ELF.getSectionContents(EHT);
451   if (!Contents)
452     return;
453 
454   /// ARM EHABI Section 6.2 - The generic model
455   ///
456   /// An exception-handling table entry for the generic model is laid out as:
457   ///
458   ///  3 3
459   ///  1 0                            0
460   /// +-+------------------------------+
461   /// |0|  personality routine offset  |
462   /// +-+------------------------------+
463   /// |  personality routine data ...  |
464   ///
465   ///
466   /// ARM EHABI Section 6.3 - The ARM-defined compact model
467   ///
468   /// An exception-handling table entry for the compact model looks like:
469   ///
470   ///  3 3 2 2  2 2
471   ///  1 0 8 7  4 3                     0
472   /// +-+---+----+-----------------------+
473   /// |1| 0 | Ix | data for pers routine |
474   /// +-+---+----+-----------------------+
475   /// |  more personality routine data   |
476 
477   const support::ulittle32_t Word =
478     *reinterpret_cast<const support::ulittle32_t *>(Contents->data() + TableEntryOffset);
479 
480   if (Word & 0x80000000) {
481     SW.printString("Model", StringRef("Compact"));
482 
483     unsigned PersonalityIndex = (Word & 0x0f000000) >> 24;
484     SW.printNumber("PersonalityIndex", PersonalityIndex);
485 
486     switch (PersonalityIndex) {
487     case AEABI_UNWIND_CPP_PR0:
488       PrintOpcodes(Contents->data() + TableEntryOffset, 3, 1);
489       break;
490     case AEABI_UNWIND_CPP_PR1:
491     case AEABI_UNWIND_CPP_PR2:
492       unsigned AdditionalWords = (Word & 0x00ff0000) >> 16;
493       PrintOpcodes(Contents->data() + TableEntryOffset, 2 + 4 * AdditionalWords,
494                    2);
495       break;
496     }
497   } else {
498     SW.printString("Model", StringRef("Generic"));
499     const bool IsRelocatable = ELF.getHeader().e_type == ELF::ET_REL;
500     uint64_t Address = IsRelocatable
501                            ? PREL31(Word, EHT.sh_addr)
502                            : PREL31(Word, EHT.sh_addr + TableEntryOffset);
503     SW.printHex("PersonalityRoutineAddress", Address);
504     std::optional<unsigned> SecIndex =
505         IsRelocatable ? std::optional<unsigned>(EHT.sh_link) : std::nullopt;
506     if (ErrorOr<StringRef> Name = FunctionAtAddress(Address, SecIndex))
507       SW.printString("PersonalityRoutineName", *Name);
508   }
509 }
510 
511 template <typename ET>
512 void PrinterContext<ET>::PrintOpcodes(const uint8_t *Entry,
513                                       size_t Length, off_t Offset) const {
514   ListScope OCC(SW, "Opcodes");
515   OpcodeDecoder(SW).Decode(Entry, Offset, Length);
516 }
517 
518 template <typename ET>
519 void PrinterContext<ET>::PrintIndexTable(unsigned SectionIndex,
520                                          const Elf_Shdr *IT) const {
521   // TODO: handle failure.
522   Expected<ArrayRef<uint8_t>> Contents = ELF.getSectionContents(*IT);
523   if (!Contents)
524     return;
525 
526   /// ARM EHABI Section 5 - Index Table Entries
527   /// * The first word contains a PREL31 offset to the start of a function with
528   ///   bit 31 clear
529   /// * The second word contains one of:
530   ///   - The PREL31 offset of the start of the table entry for the function,
531   ///     with bit 31 clear
532   ///   - The exception-handling table entry itself with bit 31 set
533   ///   - The special bit pattern EXIDX_CANTUNWIND, indicating that associated
534   ///     frames cannot be unwound
535 
536   const support::ulittle32_t *Data =
537     reinterpret_cast<const support::ulittle32_t *>(Contents->data());
538   const unsigned Entries = IT->sh_size / IndexTableEntrySize;
539   const bool IsRelocatable = ELF.getHeader().e_type == ELF::ET_REL;
540 
541   ListScope E(SW, "Entries");
542   for (unsigned Entry = 0; Entry < Entries; ++Entry) {
543     DictScope E(SW, "Entry");
544 
545     const support::ulittle32_t Word0 =
546       Data[Entry * (IndexTableEntrySize / sizeof(*Data)) + 0];
547     const support::ulittle32_t Word1 =
548       Data[Entry * (IndexTableEntrySize / sizeof(*Data)) + 1];
549 
550     if (Word0 & 0x80000000) {
551       errs() << "corrupt unwind data in section " << SectionIndex << "\n";
552       continue;
553     }
554 
555     // FIXME: For a relocatable object ideally we might want to:
556     // 1) Find a relocation for the offset of Word0.
557     // 2) Verify this relocation is of an expected type (R_ARM_PREL31) and
558     //    verify the symbol index.
559     // 3) Resolve the relocation using it's symbol value, addend etc.
560     // Currently the code assumes that Word0 contains an addend of a
561     // R_ARM_PREL31 REL relocation that references a section symbol. RELA
562     // relocations are not supported and it works because addresses of sections
563     // are nulls in relocatable objects.
564     //
565     // For a non-relocatable object, Word0 contains a place-relative signed
566     // offset to the referenced entity.
567     const uint64_t Address =
568         IsRelocatable
569             ? PREL31(Word0, IT->sh_addr)
570             : PREL31(Word0, IT->sh_addr + Entry * IndexTableEntrySize);
571     SW.printHex("FunctionAddress", Address);
572 
573     // In a relocatable output we might have many .ARM.exidx sections linked to
574     // their code sections via the sh_link field. For a non-relocatable ELF file
575     // the sh_link field is not reliable, because we have one .ARM.exidx section
576     // normally, but might have many code sections.
577     std::optional<unsigned> SecIndex =
578         IsRelocatable ? std::optional<unsigned>(IT->sh_link) : std::nullopt;
579     if (ErrorOr<StringRef> Name = FunctionAtAddress(Address, SecIndex))
580       SW.printString("FunctionName", *Name);
581 
582     if (Word1 == EXIDX_CANTUNWIND) {
583       SW.printString("Model", StringRef("CantUnwind"));
584       continue;
585     }
586 
587     if (Word1 & 0x80000000) {
588       SW.printString("Model", StringRef("Compact (Inline)"));
589 
590       unsigned PersonalityIndex = (Word1 & 0x0f000000) >> 24;
591       SW.printNumber("PersonalityIndex", PersonalityIndex);
592 
593       PrintOpcodes(Contents->data() + Entry * IndexTableEntrySize + 4, 3, 1);
594     } else {
595       const Elf_Shdr *EHT;
596       uint64_t TableEntryAddress;
597       if (IsRelocatable) {
598         TableEntryAddress = PREL31(Word1, IT->sh_addr);
599         EHT = FindExceptionTable(SectionIndex, Entry * IndexTableEntrySize + 4);
600       } else {
601         TableEntryAddress =
602             PREL31(Word1, IT->sh_addr + Entry * IndexTableEntrySize + 4);
603         EHT = findSectionContainingAddress(ELF, FileName, TableEntryAddress);
604       }
605 
606       if (EHT)
607         // TODO: handle failure.
608         if (Expected<StringRef> Name = ELF.getSectionName(*EHT))
609           SW.printString("ExceptionHandlingTable", *Name);
610 
611       SW.printHex(IsRelocatable ? "TableEntryOffset" : "TableEntryAddress",
612                   TableEntryAddress);
613       if (EHT) {
614         if (IsRelocatable)
615           PrintExceptionTable(*EHT, TableEntryAddress);
616         else
617           PrintExceptionTable(*EHT, TableEntryAddress - EHT->sh_addr);
618       }
619     }
620   }
621 }
622 
623 template <typename ET>
624 void PrinterContext<ET>::PrintUnwindInformation() const {
625   DictScope UI(SW, "UnwindInformation");
626 
627   int SectionIndex = 0;
628   for (const Elf_Shdr &Sec : unwrapOrError(FileName, ELF.sections())) {
629     if (Sec.sh_type == ELF::SHT_ARM_EXIDX) {
630       DictScope UIT(SW, "UnwindIndexTable");
631 
632       SW.printNumber("SectionIndex", SectionIndex);
633       // TODO: handle failure.
634       if (Expected<StringRef> SectionName = ELF.getSectionName(Sec))
635         SW.printString("SectionName", *SectionName);
636       SW.printHex("SectionOffset", Sec.sh_offset);
637 
638       PrintIndexTable(SectionIndex, &Sec);
639     }
640     ++SectionIndex;
641   }
642 }
643 }
644 }
645 }
646 
647 #endif
648