xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-profdata/llvm-profdata.cpp (revision d4eeb02986980bf33dd56c41ceb9fc5f180c0d47)
1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/ProfileData/InstrProfCorrelator.h"
20 #include "llvm/ProfileData/InstrProfReader.h"
21 #include "llvm/ProfileData/InstrProfWriter.h"
22 #include "llvm/ProfileData/ProfileCommon.h"
23 #include "llvm/ProfileData/RawMemProfReader.h"
24 #include "llvm/ProfileData/SampleProfReader.h"
25 #include "llvm/ProfileData/SampleProfWriter.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Discriminator.h"
28 #include "llvm/Support/Errc.h"
29 #include "llvm/Support/FileSystem.h"
30 #include "llvm/Support/Format.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/InitLLVM.h"
33 #include "llvm/Support/MemoryBuffer.h"
34 #include "llvm/Support/Path.h"
35 #include "llvm/Support/ThreadPool.h"
36 #include "llvm/Support/Threading.h"
37 #include "llvm/Support/WithColor.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 
41 using namespace llvm;
42 
43 enum ProfileFormat {
44   PF_None = 0,
45   PF_Text,
46   PF_Compact_Binary,
47   PF_Ext_Binary,
48   PF_GCC,
49   PF_Binary
50 };
51 
52 static void warn(Twine Message, std::string Whence = "",
53                  std::string Hint = "") {
54   WithColor::warning();
55   if (!Whence.empty())
56     errs() << Whence << ": ";
57   errs() << Message << "\n";
58   if (!Hint.empty())
59     WithColor::note() << Hint << "\n";
60 }
61 
62 static void warn(Error E, StringRef Whence = "") {
63   if (E.isA<InstrProfError>()) {
64     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
65       warn(IPE.message(), std::string(Whence), std::string(""));
66     });
67   }
68 }
69 
70 static void exitWithError(Twine Message, std::string Whence = "",
71                           std::string Hint = "") {
72   WithColor::error();
73   if (!Whence.empty())
74     errs() << Whence << ": ";
75   errs() << Message << "\n";
76   if (!Hint.empty())
77     WithColor::note() << Hint << "\n";
78   ::exit(1);
79 }
80 
81 static void exitWithError(Error E, StringRef Whence = "") {
82   if (E.isA<InstrProfError>()) {
83     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
84       instrprof_error instrError = IPE.get();
85       StringRef Hint = "";
86       if (instrError == instrprof_error::unrecognized_format) {
87         // Hint in case user missed specifying the profile type.
88         Hint = "Perhaps you forgot to use the --sample or --memory option?";
89       }
90       exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
91     });
92   }
93 
94   exitWithError(toString(std::move(E)), std::string(Whence));
95 }
96 
97 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
98   exitWithError(EC.message(), std::string(Whence));
99 }
100 
101 namespace {
102 enum ProfileKinds { instr, sample, memory };
103 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
104 }
105 
106 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
107                                  StringRef Whence = "") {
108   if (FailMode == failIfAnyAreInvalid)
109     exitWithErrorCode(EC, Whence);
110   else
111     warn(EC.message(), std::string(Whence));
112 }
113 
114 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
115                                    StringRef WhenceFunction = "",
116                                    bool ShowHint = true) {
117   if (!WhenceFile.empty())
118     errs() << WhenceFile << ": ";
119   if (!WhenceFunction.empty())
120     errs() << WhenceFunction << ": ";
121 
122   auto IPE = instrprof_error::success;
123   E = handleErrors(std::move(E),
124                    [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
125                      IPE = E->get();
126                      return Error(std::move(E));
127                    });
128   errs() << toString(std::move(E)) << "\n";
129 
130   if (ShowHint) {
131     StringRef Hint = "";
132     if (IPE != instrprof_error::success) {
133       switch (IPE) {
134       case instrprof_error::hash_mismatch:
135       case instrprof_error::count_mismatch:
136       case instrprof_error::value_site_count_mismatch:
137         Hint = "Make sure that all profile data to be merged is generated "
138                "from the same binary.";
139         break;
140       default:
141         break;
142       }
143     }
144 
145     if (!Hint.empty())
146       errs() << Hint << "\n";
147   }
148 }
149 
150 namespace {
151 /// A remapper from original symbol names to new symbol names based on a file
152 /// containing a list of mappings from old name to new name.
153 class SymbolRemapper {
154   std::unique_ptr<MemoryBuffer> File;
155   DenseMap<StringRef, StringRef> RemappingTable;
156 
157 public:
158   /// Build a SymbolRemapper from a file containing a list of old/new symbols.
159   static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
160     auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
161     if (!BufOrError)
162       exitWithErrorCode(BufOrError.getError(), InputFile);
163 
164     auto Remapper = std::make_unique<SymbolRemapper>();
165     Remapper->File = std::move(BufOrError.get());
166 
167     for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
168          !LineIt.is_at_eof(); ++LineIt) {
169       std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
170       if (Parts.first.empty() || Parts.second.empty() ||
171           Parts.second.count(' ')) {
172         exitWithError("unexpected line in remapping file",
173                       (InputFile + ":" + Twine(LineIt.line_number())).str(),
174                       "expected 'old_symbol new_symbol'");
175       }
176       Remapper->RemappingTable.insert(Parts);
177     }
178     return Remapper;
179   }
180 
181   /// Attempt to map the given old symbol into a new symbol.
182   ///
183   /// \return The new symbol, or \p Name if no such symbol was found.
184   StringRef operator()(StringRef Name) {
185     StringRef New = RemappingTable.lookup(Name);
186     return New.empty() ? Name : New;
187   }
188 };
189 }
190 
191 struct WeightedFile {
192   std::string Filename;
193   uint64_t Weight;
194 };
195 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
196 
197 /// Keep track of merged data and reported errors.
198 struct WriterContext {
199   std::mutex Lock;
200   InstrProfWriter Writer;
201   std::vector<std::pair<Error, std::string>> Errors;
202   std::mutex &ErrLock;
203   SmallSet<instrprof_error, 4> &WriterErrorCodes;
204 
205   WriterContext(bool IsSparse, std::mutex &ErrLock,
206                 SmallSet<instrprof_error, 4> &WriterErrorCodes)
207       : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
208   }
209 };
210 
211 /// Computer the overlap b/w profile BaseFilename and TestFileName,
212 /// and store the program level result to Overlap.
213 static void overlapInput(const std::string &BaseFilename,
214                          const std::string &TestFilename, WriterContext *WC,
215                          OverlapStats &Overlap,
216                          const OverlapFuncFilters &FuncFilter,
217                          raw_fd_ostream &OS, bool IsCS) {
218   auto ReaderOrErr = InstrProfReader::create(TestFilename);
219   if (Error E = ReaderOrErr.takeError()) {
220     // Skip the empty profiles by returning sliently.
221     instrprof_error IPE = InstrProfError::take(std::move(E));
222     if (IPE != instrprof_error::empty_raw_profile)
223       WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
224     return;
225   }
226 
227   auto Reader = std::move(ReaderOrErr.get());
228   for (auto &I : *Reader) {
229     OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
230     FuncOverlap.setFuncInfo(I.Name, I.Hash);
231 
232     WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
233     FuncOverlap.dump(OS);
234   }
235 }
236 
237 /// Load an input into a writer context.
238 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
239                       const InstrProfCorrelator *Correlator,
240                       WriterContext *WC) {
241   std::unique_lock<std::mutex> CtxGuard{WC->Lock};
242 
243   // Copy the filename, because llvm::ThreadPool copied the input "const
244   // WeightedFile &" by value, making a reference to the filename within it
245   // invalid outside of this packaged task.
246   std::string Filename = Input.Filename;
247 
248   auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
249   if (Error E = ReaderOrErr.takeError()) {
250     // Skip the empty profiles by returning sliently.
251     instrprof_error IPE = InstrProfError::take(std::move(E));
252     if (IPE != instrprof_error::empty_raw_profile)
253       WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
254     return;
255   }
256 
257   auto Reader = std::move(ReaderOrErr.get());
258   if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
259     consumeError(std::move(E));
260     WC->Errors.emplace_back(
261         make_error<StringError>(
262             "Merge IR generated profile with Clang generated profile.",
263             std::error_code()),
264         Filename);
265     return;
266   }
267 
268   for (auto &I : *Reader) {
269     if (Remapper)
270       I.Name = (*Remapper)(I.Name);
271     const StringRef FuncName = I.Name;
272     bool Reported = false;
273     WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
274       if (Reported) {
275         consumeError(std::move(E));
276         return;
277       }
278       Reported = true;
279       // Only show hint the first time an error occurs.
280       instrprof_error IPE = InstrProfError::take(std::move(E));
281       std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
282       bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
283       handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
284                              FuncName, firstTime);
285     });
286   }
287   if (Reader->hasError())
288     if (Error E = Reader->getError())
289       WC->Errors.emplace_back(std::move(E), Filename);
290 }
291 
292 /// Merge the \p Src writer context into \p Dst.
293 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
294   for (auto &ErrorPair : Src->Errors)
295     Dst->Errors.push_back(std::move(ErrorPair));
296   Src->Errors.clear();
297 
298   Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
299     instrprof_error IPE = InstrProfError::take(std::move(E));
300     std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
301     bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
302     if (firstTime)
303       warn(toString(make_error<InstrProfError>(IPE)));
304   });
305 }
306 
307 static void writeInstrProfile(StringRef OutputFilename,
308                               ProfileFormat OutputFormat,
309                               InstrProfWriter &Writer) {
310   std::error_code EC;
311   raw_fd_ostream Output(OutputFilename.data(), EC,
312                         OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
313                                                 : sys::fs::OF_None);
314   if (EC)
315     exitWithErrorCode(EC, OutputFilename);
316 
317   if (OutputFormat == PF_Text) {
318     if (Error E = Writer.writeText(Output))
319       warn(std::move(E));
320   } else {
321     if (Output.is_displayed())
322       exitWithError("cannot write a non-text format profile to the terminal");
323     if (Error E = Writer.write(Output))
324       warn(std::move(E));
325   }
326 }
327 
328 static void mergeInstrProfile(const WeightedFileVector &Inputs,
329                               StringRef DebugInfoFilename,
330                               SymbolRemapper *Remapper,
331                               StringRef OutputFilename,
332                               ProfileFormat OutputFormat, bool OutputSparse,
333                               unsigned NumThreads, FailureMode FailMode) {
334   if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
335       OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
336     exitWithError("unknown format is specified");
337 
338   std::unique_ptr<InstrProfCorrelator> Correlator;
339   if (!DebugInfoFilename.empty()) {
340     if (auto Err =
341             InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
342       exitWithError(std::move(Err), DebugInfoFilename);
343     if (auto Err = Correlator->correlateProfileData())
344       exitWithError(std::move(Err), DebugInfoFilename);
345   }
346 
347   std::mutex ErrorLock;
348   SmallSet<instrprof_error, 4> WriterErrorCodes;
349 
350   // If NumThreads is not specified, auto-detect a good default.
351   if (NumThreads == 0)
352     NumThreads = std::min(hardware_concurrency().compute_thread_count(),
353                           unsigned((Inputs.size() + 1) / 2));
354   // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
355   // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
356   // merged, thus the emitted file ends up with a PF_Unknown kind.
357 
358   // Initialize the writer contexts.
359   SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
360   for (unsigned I = 0; I < NumThreads; ++I)
361     Contexts.emplace_back(std::make_unique<WriterContext>(
362         OutputSparse, ErrorLock, WriterErrorCodes));
363 
364   if (NumThreads == 1) {
365     for (const auto &Input : Inputs)
366       loadInput(Input, Remapper, Correlator.get(), Contexts[0].get());
367   } else {
368     ThreadPool Pool(hardware_concurrency(NumThreads));
369 
370     // Load the inputs in parallel (N/NumThreads serial steps).
371     unsigned Ctx = 0;
372     for (const auto &Input : Inputs) {
373       Pool.async(loadInput, Input, Remapper, Correlator.get(),
374                  Contexts[Ctx].get());
375       Ctx = (Ctx + 1) % NumThreads;
376     }
377     Pool.wait();
378 
379     // Merge the writer contexts together (~ lg(NumThreads) serial steps).
380     unsigned Mid = Contexts.size() / 2;
381     unsigned End = Contexts.size();
382     assert(Mid > 0 && "Expected more than one context");
383     do {
384       for (unsigned I = 0; I < Mid; ++I)
385         Pool.async(mergeWriterContexts, Contexts[I].get(),
386                    Contexts[I + Mid].get());
387       Pool.wait();
388       if (End & 1) {
389         Pool.async(mergeWriterContexts, Contexts[0].get(),
390                    Contexts[End - 1].get());
391         Pool.wait();
392       }
393       End = Mid;
394       Mid /= 2;
395     } while (Mid > 0);
396   }
397 
398   // Handle deferred errors encountered during merging. If the number of errors
399   // is equal to the number of inputs the merge failed.
400   unsigned NumErrors = 0;
401   for (std::unique_ptr<WriterContext> &WC : Contexts) {
402     for (auto &ErrorPair : WC->Errors) {
403       ++NumErrors;
404       warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
405     }
406   }
407   if (NumErrors == Inputs.size() ||
408       (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
409     exitWithError("no profile can be merged");
410 
411   writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
412 }
413 
414 /// The profile entry for a function in instrumentation profile.
415 struct InstrProfileEntry {
416   uint64_t MaxCount = 0;
417   float ZeroCounterRatio = 0.0;
418   InstrProfRecord *ProfRecord;
419   InstrProfileEntry(InstrProfRecord *Record);
420   InstrProfileEntry() = default;
421 };
422 
423 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
424   ProfRecord = Record;
425   uint64_t CntNum = Record->Counts.size();
426   uint64_t ZeroCntNum = 0;
427   for (size_t I = 0; I < CntNum; ++I) {
428     MaxCount = std::max(MaxCount, Record->Counts[I]);
429     ZeroCntNum += !Record->Counts[I];
430   }
431   ZeroCounterRatio = (float)ZeroCntNum / CntNum;
432 }
433 
434 /// Either set all the counters in the instr profile entry \p IFE to -1
435 /// in order to drop the profile or scale up the counters in \p IFP to
436 /// be above hot threshold. We use the ratio of zero counters in the
437 /// profile of a function to decide the profile is helpful or harmful
438 /// for performance, and to choose whether to scale up or drop it.
439 static void updateInstrProfileEntry(InstrProfileEntry &IFE,
440                                     uint64_t HotInstrThreshold,
441                                     float ZeroCounterThreshold) {
442   InstrProfRecord *ProfRecord = IFE.ProfRecord;
443   if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
444     // If all or most of the counters of the function are zero, the
445     // profile is unaccountable and shuld be dropped. Reset all the
446     // counters to be -1 and PGO profile-use will drop the profile.
447     // All counters being -1 also implies that the function is hot so
448     // PGO profile-use will also set the entry count metadata to be
449     // above hot threshold.
450     for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
451       ProfRecord->Counts[I] = -1;
452     return;
453   }
454 
455   // Scale up the MaxCount to be multiple times above hot threshold.
456   const unsigned MultiplyFactor = 3;
457   uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
458   uint64_t Denominator = IFE.MaxCount;
459   ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
460     warn(toString(make_error<InstrProfError>(E)));
461   });
462 }
463 
464 const uint64_t ColdPercentileIdx = 15;
465 const uint64_t HotPercentileIdx = 11;
466 
467 using sampleprof::FSDiscriminatorPass;
468 
469 // Internal options to set FSDiscriminatorPass. Used in merge and show
470 // commands.
471 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
472     "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
473     cl::desc("Zero out the discriminator bits for the FS discrimiantor "
474              "pass beyond this value. The enum values are defined in "
475              "Support/Discriminator.h"),
476     cl::values(clEnumVal(Base, "Use base discriminators only"),
477                clEnumVal(Pass1, "Use base and pass 1 discriminators"),
478                clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
479                clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
480                clEnumVal(PassLast, "Use all discriminator bits (default)")));
481 
482 static unsigned getDiscriminatorMask() {
483   return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
484 }
485 
486 /// Adjust the instr profile in \p WC based on the sample profile in
487 /// \p Reader.
488 static void
489 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
490                    std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
491                    unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
492                    unsigned InstrProfColdThreshold) {
493   // Function to its entry in instr profile.
494   StringMap<InstrProfileEntry> InstrProfileMap;
495   InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
496   for (auto &PD : WC->Writer.getProfileData()) {
497     // Populate IPBuilder.
498     for (const auto &PDV : PD.getValue()) {
499       InstrProfRecord Record = PDV.second;
500       IPBuilder.addRecord(Record);
501     }
502 
503     // If a function has multiple entries in instr profile, skip it.
504     if (PD.getValue().size() != 1)
505       continue;
506 
507     // Initialize InstrProfileMap.
508     InstrProfRecord *R = &PD.getValue().begin()->second;
509     InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
510   }
511 
512   ProfileSummary InstrPS = *IPBuilder.getSummary();
513   ProfileSummary SamplePS = Reader->getSummary();
514 
515   // Compute cold thresholds for instr profile and sample profile.
516   uint64_t ColdSampleThreshold =
517       ProfileSummaryBuilder::getEntryForPercentile(
518           SamplePS.getDetailedSummary(),
519           ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
520           .MinCount;
521   uint64_t HotInstrThreshold =
522       ProfileSummaryBuilder::getEntryForPercentile(
523           InstrPS.getDetailedSummary(),
524           ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
525           .MinCount;
526   uint64_t ColdInstrThreshold =
527       InstrProfColdThreshold
528           ? InstrProfColdThreshold
529           : ProfileSummaryBuilder::getEntryForPercentile(
530                 InstrPS.getDetailedSummary(),
531                 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
532                 .MinCount;
533 
534   // Find hot/warm functions in sample profile which is cold in instr profile
535   // and adjust the profiles of those functions in the instr profile.
536   for (const auto &PD : Reader->getProfiles()) {
537     auto &FContext = PD.first;
538     const sampleprof::FunctionSamples &FS = PD.second;
539     auto It = InstrProfileMap.find(FContext.toString());
540     if (FS.getHeadSamples() > ColdSampleThreshold &&
541         It != InstrProfileMap.end() &&
542         It->second.MaxCount <= ColdInstrThreshold &&
543         FS.getBodySamples().size() >= SupplMinSizeThreshold) {
544       updateInstrProfileEntry(It->second, HotInstrThreshold,
545                               ZeroCounterThreshold);
546     }
547   }
548 }
549 
550 /// The main function to supplement instr profile with sample profile.
551 /// \Inputs contains the instr profile. \p SampleFilename specifies the
552 /// sample profile. \p OutputFilename specifies the output profile name.
553 /// \p OutputFormat specifies the output profile format. \p OutputSparse
554 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
555 /// specifies the minimal size for the functions whose profile will be
556 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
557 /// a function contains too many zero counters and whether its profile
558 /// should be dropped. \p InstrProfColdThreshold is the user specified
559 /// cold threshold which will override the cold threshold got from the
560 /// instr profile summary.
561 static void supplementInstrProfile(
562     const WeightedFileVector &Inputs, StringRef SampleFilename,
563     StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
564     unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
565     unsigned InstrProfColdThreshold) {
566   if (OutputFilename.compare("-") == 0)
567     exitWithError("cannot write indexed profdata format to stdout");
568   if (Inputs.size() != 1)
569     exitWithError("expect one input to be an instr profile");
570   if (Inputs[0].Weight != 1)
571     exitWithError("expect instr profile doesn't have weight");
572 
573   StringRef InstrFilename = Inputs[0].Filename;
574 
575   // Read sample profile.
576   LLVMContext Context;
577   auto ReaderOrErr = sampleprof::SampleProfileReader::create(
578       SampleFilename.str(), Context, FSDiscriminatorPassOption);
579   if (std::error_code EC = ReaderOrErr.getError())
580     exitWithErrorCode(EC, SampleFilename);
581   auto Reader = std::move(ReaderOrErr.get());
582   if (std::error_code EC = Reader->read())
583     exitWithErrorCode(EC, SampleFilename);
584 
585   // Read instr profile.
586   std::mutex ErrorLock;
587   SmallSet<instrprof_error, 4> WriterErrorCodes;
588   auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
589                                             WriterErrorCodes);
590   loadInput(Inputs[0], nullptr, nullptr, WC.get());
591   if (WC->Errors.size() > 0)
592     exitWithError(std::move(WC->Errors[0].first), InstrFilename);
593 
594   adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
595                      InstrProfColdThreshold);
596   writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
597 }
598 
599 /// Make a copy of the given function samples with all symbol names remapped
600 /// by the provided symbol remapper.
601 static sampleprof::FunctionSamples
602 remapSamples(const sampleprof::FunctionSamples &Samples,
603              SymbolRemapper &Remapper, sampleprof_error &Error) {
604   sampleprof::FunctionSamples Result;
605   Result.setName(Remapper(Samples.getName()));
606   Result.addTotalSamples(Samples.getTotalSamples());
607   Result.addHeadSamples(Samples.getHeadSamples());
608   for (const auto &BodySample : Samples.getBodySamples()) {
609     uint32_t MaskedDiscriminator =
610         BodySample.first.Discriminator & getDiscriminatorMask();
611     Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
612                           BodySample.second.getSamples());
613     for (const auto &Target : BodySample.second.getCallTargets()) {
614       Result.addCalledTargetSamples(BodySample.first.LineOffset,
615                                     MaskedDiscriminator,
616                                     Remapper(Target.first()), Target.second);
617     }
618   }
619   for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
620     sampleprof::FunctionSamplesMap &Target =
621         Result.functionSamplesAt(CallsiteSamples.first);
622     for (const auto &Callsite : CallsiteSamples.second) {
623       sampleprof::FunctionSamples Remapped =
624           remapSamples(Callsite.second, Remapper, Error);
625       MergeResult(Error,
626                   Target[std::string(Remapped.getName())].merge(Remapped));
627     }
628   }
629   return Result;
630 }
631 
632 static sampleprof::SampleProfileFormat FormatMap[] = {
633     sampleprof::SPF_None,
634     sampleprof::SPF_Text,
635     sampleprof::SPF_Compact_Binary,
636     sampleprof::SPF_Ext_Binary,
637     sampleprof::SPF_GCC,
638     sampleprof::SPF_Binary};
639 
640 static std::unique_ptr<MemoryBuffer>
641 getInputFileBuf(const StringRef &InputFile) {
642   if (InputFile == "")
643     return {};
644 
645   auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
646   if (!BufOrError)
647     exitWithErrorCode(BufOrError.getError(), InputFile);
648 
649   return std::move(*BufOrError);
650 }
651 
652 static void populateProfileSymbolList(MemoryBuffer *Buffer,
653                                       sampleprof::ProfileSymbolList &PSL) {
654   if (!Buffer)
655     return;
656 
657   SmallVector<StringRef, 32> SymbolVec;
658   StringRef Data = Buffer->getBuffer();
659   Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
660 
661   for (StringRef SymbolStr : SymbolVec)
662     PSL.add(SymbolStr.trim());
663 }
664 
665 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
666                                   ProfileFormat OutputFormat,
667                                   MemoryBuffer *Buffer,
668                                   sampleprof::ProfileSymbolList &WriterList,
669                                   bool CompressAllSections, bool UseMD5,
670                                   bool GenPartialProfile) {
671   populateProfileSymbolList(Buffer, WriterList);
672   if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
673     warn("Profile Symbol list is not empty but the output format is not "
674          "ExtBinary format. The list will be lost in the output. ");
675 
676   Writer.setProfileSymbolList(&WriterList);
677 
678   if (CompressAllSections) {
679     if (OutputFormat != PF_Ext_Binary)
680       warn("-compress-all-section is ignored. Specify -extbinary to enable it");
681     else
682       Writer.setToCompressAllSections();
683   }
684   if (UseMD5) {
685     if (OutputFormat != PF_Ext_Binary)
686       warn("-use-md5 is ignored. Specify -extbinary to enable it");
687     else
688       Writer.setUseMD5();
689   }
690   if (GenPartialProfile) {
691     if (OutputFormat != PF_Ext_Binary)
692       warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
693     else
694       Writer.setPartialProfile();
695   }
696 }
697 
698 static void
699 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
700                    StringRef OutputFilename, ProfileFormat OutputFormat,
701                    StringRef ProfileSymbolListFile, bool CompressAllSections,
702                    bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
703                    bool SampleMergeColdContext, bool SampleTrimColdContext,
704                    bool SampleColdContextFrameDepth, FailureMode FailMode) {
705   using namespace sampleprof;
706   SampleProfileMap ProfileMap;
707   SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
708   LLVMContext Context;
709   sampleprof::ProfileSymbolList WriterList;
710   Optional<bool> ProfileIsProbeBased;
711   Optional<bool> ProfileIsCSFlat;
712   for (const auto &Input : Inputs) {
713     auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
714                                                    FSDiscriminatorPassOption);
715     if (std::error_code EC = ReaderOrErr.getError()) {
716       warnOrExitGivenError(FailMode, EC, Input.Filename);
717       continue;
718     }
719 
720     // We need to keep the readers around until after all the files are
721     // read so that we do not lose the function names stored in each
722     // reader's memory. The function names are needed to write out the
723     // merged profile map.
724     Readers.push_back(std::move(ReaderOrErr.get()));
725     const auto Reader = Readers.back().get();
726     if (std::error_code EC = Reader->read()) {
727       warnOrExitGivenError(FailMode, EC, Input.Filename);
728       Readers.pop_back();
729       continue;
730     }
731 
732     SampleProfileMap &Profiles = Reader->getProfiles();
733     if (ProfileIsProbeBased.hasValue() &&
734         ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
735       exitWithError(
736           "cannot merge probe-based profile with non-probe-based profile");
737     ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
738     if (ProfileIsCSFlat.hasValue() &&
739         ProfileIsCSFlat != FunctionSamples::ProfileIsCSFlat)
740       exitWithError("cannot merge CS profile with non-CS profile");
741     ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat;
742     for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
743          I != E; ++I) {
744       sampleprof_error Result = sampleprof_error::success;
745       FunctionSamples Remapped =
746           Remapper ? remapSamples(I->second, *Remapper, Result)
747                    : FunctionSamples();
748       FunctionSamples &Samples = Remapper ? Remapped : I->second;
749       SampleContext FContext = Samples.getContext();
750       MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
751       if (Result != sampleprof_error::success) {
752         std::error_code EC = make_error_code(Result);
753         handleMergeWriterError(errorCodeToError(EC), Input.Filename,
754                                FContext.toString());
755       }
756     }
757 
758     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
759         Reader->getProfileSymbolList();
760     if (ReaderList)
761       WriterList.merge(*ReaderList);
762   }
763 
764   if (ProfileIsCSFlat && (SampleMergeColdContext || SampleTrimColdContext)) {
765     // Use threshold calculated from profile summary unless specified.
766     SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
767     auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
768     uint64_t SampleProfColdThreshold =
769         ProfileSummaryBuilder::getColdCountThreshold(
770             (Summary->getDetailedSummary()));
771 
772     // Trim and merge cold context profile using cold threshold above;
773     SampleContextTrimmer(ProfileMap)
774         .trimAndMergeColdContextProfiles(
775             SampleProfColdThreshold, SampleTrimColdContext,
776             SampleMergeColdContext, SampleColdContextFrameDepth, false);
777   }
778 
779   if (ProfileIsCSFlat && GenCSNestedProfile) {
780     CSProfileConverter CSConverter(ProfileMap);
781     CSConverter.convertProfiles();
782     ProfileIsCSFlat = FunctionSamples::ProfileIsCSFlat = false;
783   }
784 
785   auto WriterOrErr =
786       SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
787   if (std::error_code EC = WriterOrErr.getError())
788     exitWithErrorCode(EC, OutputFilename);
789 
790   auto Writer = std::move(WriterOrErr.get());
791   // WriterList will have StringRef refering to string in Buffer.
792   // Make sure Buffer lives as long as WriterList.
793   auto Buffer = getInputFileBuf(ProfileSymbolListFile);
794   handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
795                         CompressAllSections, UseMD5, GenPartialProfile);
796   if (std::error_code EC = Writer->write(ProfileMap))
797     exitWithErrorCode(std::move(EC));
798 }
799 
800 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
801   StringRef WeightStr, FileName;
802   std::tie(WeightStr, FileName) = WeightedFilename.split(',');
803 
804   uint64_t Weight;
805   if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
806     exitWithError("input weight must be a positive integer");
807 
808   return {std::string(FileName), Weight};
809 }
810 
811 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
812   StringRef Filename = WF.Filename;
813   uint64_t Weight = WF.Weight;
814 
815   // If it's STDIN just pass it on.
816   if (Filename == "-") {
817     WNI.push_back({std::string(Filename), Weight});
818     return;
819   }
820 
821   llvm::sys::fs::file_status Status;
822   llvm::sys::fs::status(Filename, Status);
823   if (!llvm::sys::fs::exists(Status))
824     exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
825                       Filename);
826   // If it's a source file, collect it.
827   if (llvm::sys::fs::is_regular_file(Status)) {
828     WNI.push_back({std::string(Filename), Weight});
829     return;
830   }
831 
832   if (llvm::sys::fs::is_directory(Status)) {
833     std::error_code EC;
834     for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
835          F != E && !EC; F.increment(EC)) {
836       if (llvm::sys::fs::is_regular_file(F->path())) {
837         addWeightedInput(WNI, {F->path(), Weight});
838       }
839     }
840     if (EC)
841       exitWithErrorCode(EC, Filename);
842   }
843 }
844 
845 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
846                                     WeightedFileVector &WFV) {
847   if (!Buffer)
848     return;
849 
850   SmallVector<StringRef, 8> Entries;
851   StringRef Data = Buffer->getBuffer();
852   Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
853   for (const StringRef &FileWeightEntry : Entries) {
854     StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
855     // Skip comments.
856     if (SanitizedEntry.startswith("#"))
857       continue;
858     // If there's no comma, it's an unweighted profile.
859     else if (!SanitizedEntry.contains(','))
860       addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
861     else
862       addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
863   }
864 }
865 
866 static int merge_main(int argc, const char *argv[]) {
867   cl::list<std::string> InputFilenames(cl::Positional,
868                                        cl::desc("<filename...>"));
869   cl::list<std::string> WeightedInputFilenames("weighted-input",
870                                                cl::desc("<weight>,<filename>"));
871   cl::opt<std::string> InputFilenamesFile(
872       "input-files", cl::init(""),
873       cl::desc("Path to file containing newline-separated "
874                "[<weight>,]<filename> entries"));
875   cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
876                                 cl::aliasopt(InputFilenamesFile));
877   cl::opt<bool> DumpInputFileList(
878       "dump-input-file-list", cl::init(false), cl::Hidden,
879       cl::desc("Dump the list of input files and their weights, then exit"));
880   cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
881                                      cl::desc("Symbol remapping file"));
882   cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
883                            cl::aliasopt(RemappingFile));
884   cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
885                                       cl::init("-"), cl::desc("Output file"));
886   cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
887                             cl::aliasopt(OutputFilename));
888   cl::opt<ProfileKinds> ProfileKind(
889       cl::desc("Profile kind:"), cl::init(instr),
890       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
891                  clEnumVal(sample, "Sample profile")));
892   cl::opt<ProfileFormat> OutputFormat(
893       cl::desc("Format of output profile"), cl::init(PF_Binary),
894       cl::values(
895           clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
896           clEnumValN(PF_Compact_Binary, "compbinary",
897                      "Compact binary encoding"),
898           clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
899           clEnumValN(PF_Text, "text", "Text encoding"),
900           clEnumValN(PF_GCC, "gcc",
901                      "GCC encoding (only meaningful for -sample)")));
902   cl::opt<FailureMode> FailureMode(
903       "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
904       cl::values(clEnumValN(failIfAnyAreInvalid, "any",
905                             "Fail if any profile is invalid."),
906                  clEnumValN(failIfAllAreInvalid, "all",
907                             "Fail only if all profiles are invalid.")));
908   cl::opt<bool> OutputSparse("sparse", cl::init(false),
909       cl::desc("Generate a sparse profile (only meaningful for -instr)"));
910   cl::opt<unsigned> NumThreads(
911       "num-threads", cl::init(0),
912       cl::desc("Number of merge threads to use (default: autodetect)"));
913   cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
914                         cl::aliasopt(NumThreads));
915   cl::opt<std::string> ProfileSymbolListFile(
916       "prof-sym-list", cl::init(""),
917       cl::desc("Path to file containing the list of function symbols "
918                "used to populate profile symbol list"));
919   cl::opt<bool> CompressAllSections(
920       "compress-all-sections", cl::init(false), cl::Hidden,
921       cl::desc("Compress all sections when writing the profile (only "
922                "meaningful for -extbinary)"));
923   cl::opt<bool> UseMD5(
924       "use-md5", cl::init(false), cl::Hidden,
925       cl::desc("Choose to use MD5 to represent string in name table (only "
926                "meaningful for -extbinary)"));
927   cl::opt<bool> SampleMergeColdContext(
928       "sample-merge-cold-context", cl::init(false), cl::Hidden,
929       cl::desc(
930           "Merge context sample profiles whose count is below cold threshold"));
931   cl::opt<bool> SampleTrimColdContext(
932       "sample-trim-cold-context", cl::init(false), cl::Hidden,
933       cl::desc(
934           "Trim context sample profiles whose count is below cold threshold"));
935   cl::opt<uint32_t> SampleColdContextFrameDepth(
936       "sample-frame-depth-for-cold-context", cl::init(1), cl::ZeroOrMore,
937       cl::desc("Keep the last K frames while merging cold profile. 1 means the "
938                "context-less base profile"));
939   cl::opt<bool> GenPartialProfile(
940       "gen-partial-profile", cl::init(false), cl::Hidden,
941       cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
942   cl::opt<std::string> SupplInstrWithSample(
943       "supplement-instr-with-sample", cl::init(""), cl::Hidden,
944       cl::desc("Supplement an instr profile with sample profile, to correct "
945                "the profile unrepresentativeness issue. The sample "
946                "profile is the input of the flag. Output will be in instr "
947                "format (The flag only works with -instr)"));
948   cl::opt<float> ZeroCounterThreshold(
949       "zero-counter-threshold", cl::init(0.7), cl::Hidden,
950       cl::desc("For the function which is cold in instr profile but hot in "
951                "sample profile, if the ratio of the number of zero counters "
952                "divided by the the total number of counters is above the "
953                "threshold, the profile of the function will be regarded as "
954                "being harmful for performance and will be dropped."));
955   cl::opt<unsigned> SupplMinSizeThreshold(
956       "suppl-min-size-threshold", cl::init(10), cl::Hidden,
957       cl::desc("If the size of a function is smaller than the threshold, "
958                "assume it can be inlined by PGO early inliner and it won't "
959                "be adjusted based on sample profile."));
960   cl::opt<unsigned> InstrProfColdThreshold(
961       "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
962       cl::desc("User specified cold threshold for instr profile which will "
963                "override the cold threshold got from profile summary. "));
964   cl::opt<bool> GenCSNestedProfile(
965       "gen-cs-nested-profile", cl::Hidden, cl::init(false),
966       cl::desc("Generate nested function profiles for CSSPGO"));
967   cl::opt<std::string> DebugInfoFilename(
968       "debug-info", cl::init(""),
969       cl::desc("Use the provided debug info to correlate the raw profile."));
970 
971   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
972 
973   WeightedFileVector WeightedInputs;
974   for (StringRef Filename : InputFilenames)
975     addWeightedInput(WeightedInputs, {std::string(Filename), 1});
976   for (StringRef WeightedFilename : WeightedInputFilenames)
977     addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
978 
979   // Make sure that the file buffer stays alive for the duration of the
980   // weighted input vector's lifetime.
981   auto Buffer = getInputFileBuf(InputFilenamesFile);
982   parseInputFilenamesFile(Buffer.get(), WeightedInputs);
983 
984   if (WeightedInputs.empty())
985     exitWithError("no input files specified. See " +
986                   sys::path::filename(argv[0]) + " -help");
987 
988   if (DumpInputFileList) {
989     for (auto &WF : WeightedInputs)
990       outs() << WF.Weight << "," << WF.Filename << "\n";
991     return 0;
992   }
993 
994   std::unique_ptr<SymbolRemapper> Remapper;
995   if (!RemappingFile.empty())
996     Remapper = SymbolRemapper::create(RemappingFile);
997 
998   if (!SupplInstrWithSample.empty()) {
999     if (ProfileKind != instr)
1000       exitWithError(
1001           "-supplement-instr-with-sample can only work with -instr. ");
1002 
1003     supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
1004                            OutputFormat, OutputSparse, SupplMinSizeThreshold,
1005                            ZeroCounterThreshold, InstrProfColdThreshold);
1006     return 0;
1007   }
1008 
1009   if (ProfileKind == instr)
1010     mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
1011                       OutputFilename, OutputFormat, OutputSparse, NumThreads,
1012                       FailureMode);
1013   else
1014     mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
1015                        OutputFormat, ProfileSymbolListFile, CompressAllSections,
1016                        UseMD5, GenPartialProfile, GenCSNestedProfile,
1017                        SampleMergeColdContext, SampleTrimColdContext,
1018                        SampleColdContextFrameDepth, FailureMode);
1019   return 0;
1020 }
1021 
1022 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1023 static void overlapInstrProfile(const std::string &BaseFilename,
1024                                 const std::string &TestFilename,
1025                                 const OverlapFuncFilters &FuncFilter,
1026                                 raw_fd_ostream &OS, bool IsCS) {
1027   std::mutex ErrorLock;
1028   SmallSet<instrprof_error, 4> WriterErrorCodes;
1029   WriterContext Context(false, ErrorLock, WriterErrorCodes);
1030   WeightedFile WeightedInput{BaseFilename, 1};
1031   OverlapStats Overlap;
1032   Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1033   if (E)
1034     exitWithError(std::move(E), "error in getting profile count sums");
1035   if (Overlap.Base.CountSum < 1.0f) {
1036     OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1037     exit(0);
1038   }
1039   if (Overlap.Test.CountSum < 1.0f) {
1040     OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1041     exit(0);
1042   }
1043   loadInput(WeightedInput, nullptr, nullptr, &Context);
1044   overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1045                IsCS);
1046   Overlap.dump(OS);
1047 }
1048 
1049 namespace {
1050 struct SampleOverlapStats {
1051   SampleContext BaseName;
1052   SampleContext TestName;
1053   // Number of overlap units
1054   uint64_t OverlapCount;
1055   // Total samples of overlap units
1056   uint64_t OverlapSample;
1057   // Number of and total samples of units that only present in base or test
1058   // profile
1059   uint64_t BaseUniqueCount;
1060   uint64_t BaseUniqueSample;
1061   uint64_t TestUniqueCount;
1062   uint64_t TestUniqueSample;
1063   // Number of units and total samples in base or test profile
1064   uint64_t BaseCount;
1065   uint64_t BaseSample;
1066   uint64_t TestCount;
1067   uint64_t TestSample;
1068   // Number of and total samples of units that present in at least one profile
1069   uint64_t UnionCount;
1070   uint64_t UnionSample;
1071   // Weighted similarity
1072   double Similarity;
1073   // For SampleOverlapStats instances representing functions, weights of the
1074   // function in base and test profiles
1075   double BaseWeight;
1076   double TestWeight;
1077 
1078   SampleOverlapStats()
1079       : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1080         BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1081         BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1082         UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1083 };
1084 } // end anonymous namespace
1085 
1086 namespace {
1087 struct FuncSampleStats {
1088   uint64_t SampleSum;
1089   uint64_t MaxSample;
1090   uint64_t HotBlockCount;
1091   FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
1092   FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1093                   uint64_t HotBlockCount)
1094       : SampleSum(SampleSum), MaxSample(MaxSample),
1095         HotBlockCount(HotBlockCount) {}
1096 };
1097 } // end anonymous namespace
1098 
1099 namespace {
1100 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1101 
1102 // Class for updating merging steps for two sorted maps. The class should be
1103 // instantiated with a map iterator type.
1104 template <class T> class MatchStep {
1105 public:
1106   MatchStep() = delete;
1107 
1108   MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1109       : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1110         SecondEnd(SecondEnd), Status(MS_None) {}
1111 
1112   bool areBothFinished() const {
1113     return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1114   }
1115 
1116   bool isFirstFinished() const { return FirstIter == FirstEnd; }
1117 
1118   bool isSecondFinished() const { return SecondIter == SecondEnd; }
1119 
1120   /// Advance one step based on the previous match status unless the previous
1121   /// status is MS_None. Then update Status based on the comparison between two
1122   /// container iterators at the current step. If the previous status is
1123   /// MS_None, it means two iterators are at the beginning and no comparison has
1124   /// been made, so we simply update Status without advancing the iterators.
1125   void updateOneStep();
1126 
1127   T getFirstIter() const { return FirstIter; }
1128 
1129   T getSecondIter() const { return SecondIter; }
1130 
1131   MatchStatus getMatchStatus() const { return Status; }
1132 
1133 private:
1134   // Current iterator and end iterator of the first container.
1135   T FirstIter;
1136   T FirstEnd;
1137   // Current iterator and end iterator of the second container.
1138   T SecondIter;
1139   T SecondEnd;
1140   // Match status of the current step.
1141   MatchStatus Status;
1142 };
1143 } // end anonymous namespace
1144 
1145 template <class T> void MatchStep<T>::updateOneStep() {
1146   switch (Status) {
1147   case MS_Match:
1148     ++FirstIter;
1149     ++SecondIter;
1150     break;
1151   case MS_FirstUnique:
1152     ++FirstIter;
1153     break;
1154   case MS_SecondUnique:
1155     ++SecondIter;
1156     break;
1157   case MS_None:
1158     break;
1159   }
1160 
1161   // Update Status according to iterators at the current step.
1162   if (areBothFinished())
1163     return;
1164   if (FirstIter != FirstEnd &&
1165       (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1166     Status = MS_FirstUnique;
1167   else if (SecondIter != SecondEnd &&
1168            (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1169     Status = MS_SecondUnique;
1170   else
1171     Status = MS_Match;
1172 }
1173 
1174 // Return the sum of line/block samples, the max line/block sample, and the
1175 // number of line/block samples above the given threshold in a function
1176 // including its inlinees.
1177 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1178                                FuncSampleStats &FuncStats,
1179                                uint64_t HotThreshold) {
1180   for (const auto &L : Func.getBodySamples()) {
1181     uint64_t Sample = L.second.getSamples();
1182     FuncStats.SampleSum += Sample;
1183     FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1184     if (Sample >= HotThreshold)
1185       ++FuncStats.HotBlockCount;
1186   }
1187 
1188   for (const auto &C : Func.getCallsiteSamples()) {
1189     for (const auto &F : C.second)
1190       getFuncSampleStats(F.second, FuncStats, HotThreshold);
1191   }
1192 }
1193 
1194 /// Predicate that determines if a function is hot with a given threshold. We
1195 /// keep it separate from its callsites for possible extension in the future.
1196 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1197                           uint64_t HotThreshold) {
1198   // We intentionally compare the maximum sample count in a function with the
1199   // HotThreshold to get an approximate determination on hot functions.
1200   return (FuncStats.MaxSample >= HotThreshold);
1201 }
1202 
1203 namespace {
1204 class SampleOverlapAggregator {
1205 public:
1206   SampleOverlapAggregator(const std::string &BaseFilename,
1207                           const std::string &TestFilename,
1208                           double LowSimilarityThreshold, double Epsilon,
1209                           const OverlapFuncFilters &FuncFilter)
1210       : BaseFilename(BaseFilename), TestFilename(TestFilename),
1211         LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1212         FuncFilter(FuncFilter) {}
1213 
1214   /// Detect 0-sample input profile and report to output stream. This interface
1215   /// should be called after loadProfiles().
1216   bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1217 
1218   /// Write out function-level similarity statistics for functions specified by
1219   /// options --function, --value-cutoff, and --similarity-cutoff.
1220   void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1221 
1222   /// Write out program-level similarity and overlap statistics.
1223   void dumpProgramSummary(raw_fd_ostream &OS) const;
1224 
1225   /// Write out hot-function and hot-block statistics for base_profile,
1226   /// test_profile, and their overlap. For both cases, the overlap HO is
1227   /// calculated as follows:
1228   ///    Given the number of functions (or blocks) that are hot in both profiles
1229   ///    HCommon and the number of functions (or blocks) that are hot in at
1230   ///    least one profile HUnion, HO = HCommon / HUnion.
1231   void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1232 
1233   /// This function tries matching functions in base and test profiles. For each
1234   /// pair of matched functions, it aggregates the function-level
1235   /// similarity into a profile-level similarity. It also dump function-level
1236   /// similarity information of functions specified by --function,
1237   /// --value-cutoff, and --similarity-cutoff options. The program-level
1238   /// similarity PS is computed as follows:
1239   ///     Given function-level similarity FS(A) for all function A, the
1240   ///     weight of function A in base profile WB(A), and the weight of function
1241   ///     A in test profile WT(A), compute PS(base_profile, test_profile) =
1242   ///     sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1243   ///     meaning no-overlap.
1244   void computeSampleProfileOverlap(raw_fd_ostream &OS);
1245 
1246   /// Initialize ProfOverlap with the sum of samples in base and test
1247   /// profiles. This function also computes and keeps the sum of samples and
1248   /// max sample counts of each function in BaseStats and TestStats for later
1249   /// use to avoid re-computations.
1250   void initializeSampleProfileOverlap();
1251 
1252   /// Load profiles specified by BaseFilename and TestFilename.
1253   std::error_code loadProfiles();
1254 
1255   using FuncSampleStatsMap =
1256       std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1257 
1258 private:
1259   SampleOverlapStats ProfOverlap;
1260   SampleOverlapStats HotFuncOverlap;
1261   SampleOverlapStats HotBlockOverlap;
1262   std::string BaseFilename;
1263   std::string TestFilename;
1264   std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1265   std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1266   // BaseStats and TestStats hold FuncSampleStats for each function, with
1267   // function name as the key.
1268   FuncSampleStatsMap BaseStats;
1269   FuncSampleStatsMap TestStats;
1270   // Low similarity threshold in floating point number
1271   double LowSimilarityThreshold;
1272   // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1273   // for tracking hot blocks.
1274   uint64_t BaseHotThreshold;
1275   uint64_t TestHotThreshold;
1276   // A small threshold used to round the results of floating point accumulations
1277   // to resolve imprecision.
1278   const double Epsilon;
1279   std::multimap<double, SampleOverlapStats, std::greater<double>>
1280       FuncSimilarityDump;
1281   // FuncFilter carries specifications in options --value-cutoff and
1282   // --function.
1283   OverlapFuncFilters FuncFilter;
1284   // Column offsets for printing the function-level details table.
1285   static const unsigned int TestWeightCol = 15;
1286   static const unsigned int SimilarityCol = 30;
1287   static const unsigned int OverlapCol = 43;
1288   static const unsigned int BaseUniqueCol = 53;
1289   static const unsigned int TestUniqueCol = 67;
1290   static const unsigned int BaseSampleCol = 81;
1291   static const unsigned int TestSampleCol = 96;
1292   static const unsigned int FuncNameCol = 111;
1293 
1294   /// Return a similarity of two line/block sample counters in the same
1295   /// function in base and test profiles. The line/block-similarity BS(i) is
1296   /// computed as follows:
1297   ///    For an offsets i, given the sample count at i in base profile BB(i),
1298   ///    the sample count at i in test profile BT(i), the sum of sample counts
1299   ///    in this function in base profile SB, and the sum of sample counts in
1300   ///    this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1301   ///    BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1302   double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1303                                 const SampleOverlapStats &FuncOverlap) const;
1304 
1305   void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1306                              uint64_t HotBlockCount);
1307 
1308   void getHotFunctions(const FuncSampleStatsMap &ProfStats,
1309                        FuncSampleStatsMap &HotFunc,
1310                        uint64_t HotThreshold) const;
1311 
1312   void computeHotFuncOverlap();
1313 
1314   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1315   /// Difference for two sample units in a matched function according to the
1316   /// given match status.
1317   void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1318                                      uint64_t HotBlockCount,
1319                                      SampleOverlapStats &FuncOverlap,
1320                                      double &Difference, MatchStatus Status);
1321 
1322   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1323   /// Difference for unmatched callees that only present in one profile in a
1324   /// matched caller function.
1325   void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1326                                 SampleOverlapStats &FuncOverlap,
1327                                 double &Difference, MatchStatus Status);
1328 
1329   /// This function updates sample overlap statistics of an overlap function in
1330   /// base and test profile. It also calculates a function-internal similarity
1331   /// FIS as follows:
1332   ///    For offsets i that have samples in at least one profile in this
1333   ///    function A, given BS(i) returned by computeBlockSimilarity(), compute
1334   ///    FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1335   ///    0.0 meaning no overlap.
1336   double computeSampleFunctionInternalOverlap(
1337       const sampleprof::FunctionSamples &BaseFunc,
1338       const sampleprof::FunctionSamples &TestFunc,
1339       SampleOverlapStats &FuncOverlap);
1340 
1341   /// Function-level similarity (FS) is a weighted value over function internal
1342   /// similarity (FIS). This function computes a function's FS from its FIS by
1343   /// applying the weight.
1344   double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1345                                  uint64_t TestFuncSample) const;
1346 
1347   /// The function-level similarity FS(A) for a function A is computed as
1348   /// follows:
1349   ///     Compute a function-internal similarity FIS(A) by
1350   ///     computeSampleFunctionInternalOverlap(). Then, with the weight of
1351   ///     function A in base profile WB(A), and the weight of function A in test
1352   ///     profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1353   ///     ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1354   double
1355   computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1356                                const sampleprof::FunctionSamples *TestFunc,
1357                                SampleOverlapStats *FuncOverlap,
1358                                uint64_t BaseFuncSample,
1359                                uint64_t TestFuncSample);
1360 
1361   /// Profile-level similarity (PS) is a weighted aggregate over function-level
1362   /// similarities (FS). This method weights the FS value by the function
1363   /// weights in the base and test profiles for the aggregation.
1364   double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1365                             uint64_t TestFuncSample) const;
1366 };
1367 } // end anonymous namespace
1368 
1369 bool SampleOverlapAggregator::detectZeroSampleProfile(
1370     raw_fd_ostream &OS) const {
1371   bool HaveZeroSample = false;
1372   if (ProfOverlap.BaseSample == 0) {
1373     OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1374     HaveZeroSample = true;
1375   }
1376   if (ProfOverlap.TestSample == 0) {
1377     OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1378     HaveZeroSample = true;
1379   }
1380   return HaveZeroSample;
1381 }
1382 
1383 double SampleOverlapAggregator::computeBlockSimilarity(
1384     uint64_t BaseSample, uint64_t TestSample,
1385     const SampleOverlapStats &FuncOverlap) const {
1386   double BaseFrac = 0.0;
1387   double TestFrac = 0.0;
1388   if (FuncOverlap.BaseSample > 0)
1389     BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1390   if (FuncOverlap.TestSample > 0)
1391     TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1392   return 1.0 - std::fabs(BaseFrac - TestFrac);
1393 }
1394 
1395 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1396                                                     uint64_t TestSample,
1397                                                     uint64_t HotBlockCount) {
1398   bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1399   bool IsTestHot = (TestSample >= TestHotThreshold);
1400   if (!IsBaseHot && !IsTestHot)
1401     return;
1402 
1403   HotBlockOverlap.UnionCount += HotBlockCount;
1404   if (IsBaseHot)
1405     HotBlockOverlap.BaseCount += HotBlockCount;
1406   if (IsTestHot)
1407     HotBlockOverlap.TestCount += HotBlockCount;
1408   if (IsBaseHot && IsTestHot)
1409     HotBlockOverlap.OverlapCount += HotBlockCount;
1410 }
1411 
1412 void SampleOverlapAggregator::getHotFunctions(
1413     const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
1414     uint64_t HotThreshold) const {
1415   for (const auto &F : ProfStats) {
1416     if (isFunctionHot(F.second, HotThreshold))
1417       HotFunc.emplace(F.first, F.second);
1418   }
1419 }
1420 
1421 void SampleOverlapAggregator::computeHotFuncOverlap() {
1422   FuncSampleStatsMap BaseHotFunc;
1423   getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1424   HotFuncOverlap.BaseCount = BaseHotFunc.size();
1425 
1426   FuncSampleStatsMap TestHotFunc;
1427   getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1428   HotFuncOverlap.TestCount = TestHotFunc.size();
1429   HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1430 
1431   for (const auto &F : BaseHotFunc) {
1432     if (TestHotFunc.count(F.first))
1433       ++HotFuncOverlap.OverlapCount;
1434     else
1435       ++HotFuncOverlap.UnionCount;
1436   }
1437 }
1438 
1439 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1440     uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1441     SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1442   assert(Status != MS_None &&
1443          "Match status should be updated before updating overlap statistics");
1444   if (Status == MS_FirstUnique) {
1445     TestSample = 0;
1446     FuncOverlap.BaseUniqueSample += BaseSample;
1447   } else if (Status == MS_SecondUnique) {
1448     BaseSample = 0;
1449     FuncOverlap.TestUniqueSample += TestSample;
1450   } else {
1451     ++FuncOverlap.OverlapCount;
1452   }
1453 
1454   FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1455   FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1456   Difference +=
1457       1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1458   updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1459 }
1460 
1461 void SampleOverlapAggregator::updateForUnmatchedCallee(
1462     const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1463     double &Difference, MatchStatus Status) {
1464   assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1465          "Status must be either of the two unmatched cases");
1466   FuncSampleStats FuncStats;
1467   if (Status == MS_FirstUnique) {
1468     getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1469     updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1470                                   FuncStats.HotBlockCount, FuncOverlap,
1471                                   Difference, Status);
1472   } else {
1473     getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1474     updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1475                                   FuncStats.HotBlockCount, FuncOverlap,
1476                                   Difference, Status);
1477   }
1478 }
1479 
1480 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1481     const sampleprof::FunctionSamples &BaseFunc,
1482     const sampleprof::FunctionSamples &TestFunc,
1483     SampleOverlapStats &FuncOverlap) {
1484 
1485   using namespace sampleprof;
1486 
1487   double Difference = 0;
1488 
1489   // Accumulate Difference for regular line/block samples in the function.
1490   // We match them through sort-merge join algorithm because
1491   // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1492   // by their offsets.
1493   MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1494       BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1495       TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1496   BlockIterStep.updateOneStep();
1497   while (!BlockIterStep.areBothFinished()) {
1498     uint64_t BaseSample =
1499         BlockIterStep.isFirstFinished()
1500             ? 0
1501             : BlockIterStep.getFirstIter()->second.getSamples();
1502     uint64_t TestSample =
1503         BlockIterStep.isSecondFinished()
1504             ? 0
1505             : BlockIterStep.getSecondIter()->second.getSamples();
1506     updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1507                                   Difference, BlockIterStep.getMatchStatus());
1508 
1509     BlockIterStep.updateOneStep();
1510   }
1511 
1512   // Accumulate Difference for callsite lines in the function. We match
1513   // them through sort-merge algorithm because
1514   // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1515   // ordered by their offsets.
1516   MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1517       BaseFunc.getCallsiteSamples().cbegin(),
1518       BaseFunc.getCallsiteSamples().cend(),
1519       TestFunc.getCallsiteSamples().cbegin(),
1520       TestFunc.getCallsiteSamples().cend());
1521   CallsiteIterStep.updateOneStep();
1522   while (!CallsiteIterStep.areBothFinished()) {
1523     MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1524     assert(CallsiteStepStatus != MS_None &&
1525            "Match status should be updated before entering loop body");
1526 
1527     if (CallsiteStepStatus != MS_Match) {
1528       auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1529                           ? CallsiteIterStep.getFirstIter()
1530                           : CallsiteIterStep.getSecondIter();
1531       for (const auto &F : Callsite->second)
1532         updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1533                                  CallsiteStepStatus);
1534     } else {
1535       // There may be multiple inlinees at the same offset, so we need to try
1536       // matching all of them. This match is implemented through sort-merge
1537       // algorithm because callsite records at the same offset are ordered by
1538       // function names.
1539       MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1540           CallsiteIterStep.getFirstIter()->second.cbegin(),
1541           CallsiteIterStep.getFirstIter()->second.cend(),
1542           CallsiteIterStep.getSecondIter()->second.cbegin(),
1543           CallsiteIterStep.getSecondIter()->second.cend());
1544       CalleeIterStep.updateOneStep();
1545       while (!CalleeIterStep.areBothFinished()) {
1546         MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1547         if (CalleeStepStatus != MS_Match) {
1548           auto Callee = (CalleeStepStatus == MS_FirstUnique)
1549                             ? CalleeIterStep.getFirstIter()
1550                             : CalleeIterStep.getSecondIter();
1551           updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1552                                    CalleeStepStatus);
1553         } else {
1554           // An inlined function can contain other inlinees inside, so compute
1555           // the Difference recursively.
1556           Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1557                                       CalleeIterStep.getFirstIter()->second,
1558                                       CalleeIterStep.getSecondIter()->second,
1559                                       FuncOverlap);
1560         }
1561         CalleeIterStep.updateOneStep();
1562       }
1563     }
1564     CallsiteIterStep.updateOneStep();
1565   }
1566 
1567   // Difference reflects the total differences of line/block samples in this
1568   // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1569   // reflect the similarity between function profiles in [0.0f to 1.0f].
1570   return (2.0 - Difference) / 2;
1571 }
1572 
1573 double SampleOverlapAggregator::weightForFuncSimilarity(
1574     double FuncInternalSimilarity, uint64_t BaseFuncSample,
1575     uint64_t TestFuncSample) const {
1576   // Compute the weight as the distance between the function weights in two
1577   // profiles.
1578   double BaseFrac = 0.0;
1579   double TestFrac = 0.0;
1580   assert(ProfOverlap.BaseSample > 0 &&
1581          "Total samples in base profile should be greater than 0");
1582   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1583   assert(ProfOverlap.TestSample > 0 &&
1584          "Total samples in test profile should be greater than 0");
1585   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1586   double WeightDistance = std::fabs(BaseFrac - TestFrac);
1587 
1588   // Take WeightDistance into the similarity.
1589   return FuncInternalSimilarity * (1 - WeightDistance);
1590 }
1591 
1592 double
1593 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1594                                             uint64_t BaseFuncSample,
1595                                             uint64_t TestFuncSample) const {
1596 
1597   double BaseFrac = 0.0;
1598   double TestFrac = 0.0;
1599   assert(ProfOverlap.BaseSample > 0 &&
1600          "Total samples in base profile should be greater than 0");
1601   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1602   assert(ProfOverlap.TestSample > 0 &&
1603          "Total samples in test profile should be greater than 0");
1604   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1605   return FuncSimilarity * (BaseFrac + TestFrac);
1606 }
1607 
1608 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1609     const sampleprof::FunctionSamples *BaseFunc,
1610     const sampleprof::FunctionSamples *TestFunc,
1611     SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1612     uint64_t TestFuncSample) {
1613   // Default function internal similarity before weighted, meaning two functions
1614   // has no overlap.
1615   const double DefaultFuncInternalSimilarity = 0;
1616   double FuncSimilarity;
1617   double FuncInternalSimilarity;
1618 
1619   // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1620   // In this case, we use DefaultFuncInternalSimilarity as the function internal
1621   // similarity.
1622   if (!BaseFunc || !TestFunc) {
1623     FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1624   } else {
1625     assert(FuncOverlap != nullptr &&
1626            "FuncOverlap should be provided in this case");
1627     FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1628         *BaseFunc, *TestFunc, *FuncOverlap);
1629     // Now, FuncInternalSimilarity may be a little less than 0 due to
1630     // imprecision of floating point accumulations. Make it zero if the
1631     // difference is below Epsilon.
1632     FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1633                                  ? 0
1634                                  : FuncInternalSimilarity;
1635   }
1636   FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1637                                            BaseFuncSample, TestFuncSample);
1638   return FuncSimilarity;
1639 }
1640 
1641 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1642   using namespace sampleprof;
1643 
1644   std::unordered_map<SampleContext, const FunctionSamples *,
1645                      SampleContext::Hash>
1646       BaseFuncProf;
1647   const auto &BaseProfiles = BaseReader->getProfiles();
1648   for (const auto &BaseFunc : BaseProfiles) {
1649     BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
1650   }
1651   ProfOverlap.UnionCount = BaseFuncProf.size();
1652 
1653   const auto &TestProfiles = TestReader->getProfiles();
1654   for (const auto &TestFunc : TestProfiles) {
1655     SampleOverlapStats FuncOverlap;
1656     FuncOverlap.TestName = TestFunc.second.getContext();
1657     assert(TestStats.count(FuncOverlap.TestName) &&
1658            "TestStats should have records for all functions in test profile "
1659            "except inlinees");
1660     FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1661 
1662     bool Matched = false;
1663     const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1664     if (Match == BaseFuncProf.end()) {
1665       const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1666       ++ProfOverlap.TestUniqueCount;
1667       ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1668       FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1669 
1670       updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1671 
1672       double FuncSimilarity = computeSampleFunctionOverlap(
1673           nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1674       ProfOverlap.Similarity +=
1675           weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1676 
1677       ++ProfOverlap.UnionCount;
1678       ProfOverlap.UnionSample += FuncStats.SampleSum;
1679     } else {
1680       ++ProfOverlap.OverlapCount;
1681 
1682       // Two functions match with each other. Compute function-level overlap and
1683       // aggregate them into profile-level overlap.
1684       FuncOverlap.BaseName = Match->second->getContext();
1685       assert(BaseStats.count(FuncOverlap.BaseName) &&
1686              "BaseStats should have records for all functions in base profile "
1687              "except inlinees");
1688       FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1689 
1690       FuncOverlap.Similarity = computeSampleFunctionOverlap(
1691           Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1692           FuncOverlap.TestSample);
1693       ProfOverlap.Similarity +=
1694           weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1695                              FuncOverlap.TestSample);
1696       ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1697       ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1698 
1699       // Accumulate the percentage of base unique and test unique samples into
1700       // ProfOverlap.
1701       ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1702       ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1703 
1704       // Remove matched base functions for later reporting functions not found
1705       // in test profile.
1706       BaseFuncProf.erase(Match);
1707       Matched = true;
1708     }
1709 
1710     // Print function-level similarity information if specified by options.
1711     assert(TestStats.count(FuncOverlap.TestName) &&
1712            "TestStats should have records for all functions in test profile "
1713            "except inlinees");
1714     if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1715         (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
1716         (Matched && !FuncFilter.NameFilter.empty() &&
1717          FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
1718              std::string::npos)) {
1719       assert(ProfOverlap.BaseSample > 0 &&
1720              "Total samples in base profile should be greater than 0");
1721       FuncOverlap.BaseWeight =
1722           static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1723       assert(ProfOverlap.TestSample > 0 &&
1724              "Total samples in test profile should be greater than 0");
1725       FuncOverlap.TestWeight =
1726           static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1727       FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1728     }
1729   }
1730 
1731   // Traverse through functions in base profile but not in test profile.
1732   for (const auto &F : BaseFuncProf) {
1733     assert(BaseStats.count(F.second->getContext()) &&
1734            "BaseStats should have records for all functions in base profile "
1735            "except inlinees");
1736     const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
1737     ++ProfOverlap.BaseUniqueCount;
1738     ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1739 
1740     updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1741 
1742     double FuncSimilarity = computeSampleFunctionOverlap(
1743         nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1744     ProfOverlap.Similarity +=
1745         weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1746 
1747     ProfOverlap.UnionSample += FuncStats.SampleSum;
1748   }
1749 
1750   // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1751   // of floating point accumulations. Make it 1.0 if the difference is below
1752   // Epsilon.
1753   ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1754                                ? 1
1755                                : ProfOverlap.Similarity;
1756 
1757   computeHotFuncOverlap();
1758 }
1759 
1760 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1761   const auto &BaseProf = BaseReader->getProfiles();
1762   for (const auto &I : BaseProf) {
1763     ++ProfOverlap.BaseCount;
1764     FuncSampleStats FuncStats;
1765     getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1766     ProfOverlap.BaseSample += FuncStats.SampleSum;
1767     BaseStats.emplace(I.second.getContext(), FuncStats);
1768   }
1769 
1770   const auto &TestProf = TestReader->getProfiles();
1771   for (const auto &I : TestProf) {
1772     ++ProfOverlap.TestCount;
1773     FuncSampleStats FuncStats;
1774     getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1775     ProfOverlap.TestSample += FuncStats.SampleSum;
1776     TestStats.emplace(I.second.getContext(), FuncStats);
1777   }
1778 
1779   ProfOverlap.BaseName = StringRef(BaseFilename);
1780   ProfOverlap.TestName = StringRef(TestFilename);
1781 }
1782 
1783 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1784   using namespace sampleprof;
1785 
1786   if (FuncSimilarityDump.empty())
1787     return;
1788 
1789   formatted_raw_ostream FOS(OS);
1790   FOS << "Function-level details:\n";
1791   FOS << "Base weight";
1792   FOS.PadToColumn(TestWeightCol);
1793   FOS << "Test weight";
1794   FOS.PadToColumn(SimilarityCol);
1795   FOS << "Similarity";
1796   FOS.PadToColumn(OverlapCol);
1797   FOS << "Overlap";
1798   FOS.PadToColumn(BaseUniqueCol);
1799   FOS << "Base unique";
1800   FOS.PadToColumn(TestUniqueCol);
1801   FOS << "Test unique";
1802   FOS.PadToColumn(BaseSampleCol);
1803   FOS << "Base samples";
1804   FOS.PadToColumn(TestSampleCol);
1805   FOS << "Test samples";
1806   FOS.PadToColumn(FuncNameCol);
1807   FOS << "Function name\n";
1808   for (const auto &F : FuncSimilarityDump) {
1809     double OverlapPercent =
1810         F.second.UnionSample > 0
1811             ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1812             : 0;
1813     double BaseUniquePercent =
1814         F.second.BaseSample > 0
1815             ? static_cast<double>(F.second.BaseUniqueSample) /
1816                   F.second.BaseSample
1817             : 0;
1818     double TestUniquePercent =
1819         F.second.TestSample > 0
1820             ? static_cast<double>(F.second.TestUniqueSample) /
1821                   F.second.TestSample
1822             : 0;
1823 
1824     FOS << format("%.2f%%", F.second.BaseWeight * 100);
1825     FOS.PadToColumn(TestWeightCol);
1826     FOS << format("%.2f%%", F.second.TestWeight * 100);
1827     FOS.PadToColumn(SimilarityCol);
1828     FOS << format("%.2f%%", F.second.Similarity * 100);
1829     FOS.PadToColumn(OverlapCol);
1830     FOS << format("%.2f%%", OverlapPercent * 100);
1831     FOS.PadToColumn(BaseUniqueCol);
1832     FOS << format("%.2f%%", BaseUniquePercent * 100);
1833     FOS.PadToColumn(TestUniqueCol);
1834     FOS << format("%.2f%%", TestUniquePercent * 100);
1835     FOS.PadToColumn(BaseSampleCol);
1836     FOS << F.second.BaseSample;
1837     FOS.PadToColumn(TestSampleCol);
1838     FOS << F.second.TestSample;
1839     FOS.PadToColumn(FuncNameCol);
1840     FOS << F.second.TestName.toString() << "\n";
1841   }
1842 }
1843 
1844 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1845   OS << "Profile overlap infomation for base_profile: "
1846      << ProfOverlap.BaseName.toString()
1847      << " and test_profile: " << ProfOverlap.TestName.toString()
1848      << "\nProgram level:\n";
1849 
1850   OS << "  Whole program profile similarity: "
1851      << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1852 
1853   assert(ProfOverlap.UnionSample > 0 &&
1854          "Total samples in two profile should be greater than 0");
1855   double OverlapPercent =
1856       static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1857   assert(ProfOverlap.BaseSample > 0 &&
1858          "Total samples in base profile should be greater than 0");
1859   double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1860                              ProfOverlap.BaseSample;
1861   assert(ProfOverlap.TestSample > 0 &&
1862          "Total samples in test profile should be greater than 0");
1863   double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1864                              ProfOverlap.TestSample;
1865 
1866   OS << "  Whole program sample overlap: "
1867      << format("%.3f%%", OverlapPercent * 100) << "\n";
1868   OS << "    percentage of samples unique in base profile: "
1869      << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1870   OS << "    percentage of samples unique in test profile: "
1871      << format("%.3f%%", TestUniquePercent * 100) << "\n";
1872   OS << "    total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1873      << "    total samples in test profile: " << ProfOverlap.TestSample << "\n";
1874 
1875   assert(ProfOverlap.UnionCount > 0 &&
1876          "There should be at least one function in two input profiles");
1877   double FuncOverlapPercent =
1878       static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1879   OS << "  Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1880      << "\n";
1881   OS << "    overlap functions: " << ProfOverlap.OverlapCount << "\n";
1882   OS << "    functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1883      << "\n";
1884   OS << "    functions unique in test profile: " << ProfOverlap.TestUniqueCount
1885      << "\n";
1886 }
1887 
1888 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1889     raw_fd_ostream &OS) const {
1890   assert(HotFuncOverlap.UnionCount > 0 &&
1891          "There should be at least one hot function in two input profiles");
1892   OS << "  Hot-function overlap: "
1893      << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1894                              HotFuncOverlap.UnionCount * 100)
1895      << "\n";
1896   OS << "    overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1897   OS << "    hot functions unique in base profile: "
1898      << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1899   OS << "    hot functions unique in test profile: "
1900      << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1901 
1902   assert(HotBlockOverlap.UnionCount > 0 &&
1903          "There should be at least one hot block in two input profiles");
1904   OS << "  Hot-block overlap: "
1905      << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1906                              HotBlockOverlap.UnionCount * 100)
1907      << "\n";
1908   OS << "    overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1909   OS << "    hot blocks unique in base profile: "
1910      << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1911   OS << "    hot blocks unique in test profile: "
1912      << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1913 }
1914 
1915 std::error_code SampleOverlapAggregator::loadProfiles() {
1916   using namespace sampleprof;
1917 
1918   LLVMContext Context;
1919   auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
1920                                                      FSDiscriminatorPassOption);
1921   if (std::error_code EC = BaseReaderOrErr.getError())
1922     exitWithErrorCode(EC, BaseFilename);
1923 
1924   auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
1925                                                      FSDiscriminatorPassOption);
1926   if (std::error_code EC = TestReaderOrErr.getError())
1927     exitWithErrorCode(EC, TestFilename);
1928 
1929   BaseReader = std::move(BaseReaderOrErr.get());
1930   TestReader = std::move(TestReaderOrErr.get());
1931 
1932   if (std::error_code EC = BaseReader->read())
1933     exitWithErrorCode(EC, BaseFilename);
1934   if (std::error_code EC = TestReader->read())
1935     exitWithErrorCode(EC, TestFilename);
1936   if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1937     exitWithError(
1938         "cannot compare probe-based profile with non-probe-based profile");
1939   if (BaseReader->profileIsCSFlat() != TestReader->profileIsCSFlat())
1940     exitWithError("cannot compare CS profile with non-CS profile");
1941 
1942   // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1943   // profile summary.
1944   ProfileSummary &BasePS = BaseReader->getSummary();
1945   ProfileSummary &TestPS = TestReader->getSummary();
1946   BaseHotThreshold =
1947       ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
1948   TestHotThreshold =
1949       ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
1950 
1951   return std::error_code();
1952 }
1953 
1954 void overlapSampleProfile(const std::string &BaseFilename,
1955                           const std::string &TestFilename,
1956                           const OverlapFuncFilters &FuncFilter,
1957                           uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
1958   using namespace sampleprof;
1959 
1960   // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
1961   // report 2--3 places after decimal point in percentage numbers.
1962   SampleOverlapAggregator OverlapAggr(
1963       BaseFilename, TestFilename,
1964       static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
1965   if (std::error_code EC = OverlapAggr.loadProfiles())
1966     exitWithErrorCode(EC);
1967 
1968   OverlapAggr.initializeSampleProfileOverlap();
1969   if (OverlapAggr.detectZeroSampleProfile(OS))
1970     return;
1971 
1972   OverlapAggr.computeSampleProfileOverlap(OS);
1973 
1974   OverlapAggr.dumpProgramSummary(OS);
1975   OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
1976   OverlapAggr.dumpFuncSimilarity(OS);
1977 }
1978 
1979 static int overlap_main(int argc, const char *argv[]) {
1980   cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
1981                                     cl::desc("<base profile file>"));
1982   cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
1983                                     cl::desc("<test profile file>"));
1984   cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
1985                               cl::desc("Output file"));
1986   cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
1987   cl::opt<bool> IsCS(
1988       "cs", cl::init(false),
1989       cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
1990   cl::opt<unsigned long long> ValueCutoff(
1991       "value-cutoff", cl::init(-1),
1992       cl::desc(
1993           "Function level overlap information for every function (with calling "
1994           "context for csspgo) in test "
1995           "profile with max count value greater then the parameter value"));
1996   cl::opt<std::string> FuncNameFilter(
1997       "function",
1998       cl::desc("Function level overlap information for matching functions. For "
1999                "CSSPGO this takes a a function name with calling context"));
2000   cl::opt<unsigned long long> SimilarityCutoff(
2001       "similarity-cutoff", cl::init(0),
2002       cl::desc("For sample profiles, list function names (with calling context "
2003                "for csspgo) for overlapped functions "
2004                "with similarities below the cutoff (percentage times 10000)."));
2005   cl::opt<ProfileKinds> ProfileKind(
2006       cl::desc("Profile kind:"), cl::init(instr),
2007       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2008                  clEnumVal(sample, "Sample profile")));
2009   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
2010 
2011   std::error_code EC;
2012   raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
2013   if (EC)
2014     exitWithErrorCode(EC, Output);
2015 
2016   if (ProfileKind == instr)
2017     overlapInstrProfile(BaseFilename, TestFilename,
2018                         OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
2019                         IsCS);
2020   else
2021     overlapSampleProfile(BaseFilename, TestFilename,
2022                          OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2023                          SimilarityCutoff, OS);
2024 
2025   return 0;
2026 }
2027 
2028 namespace {
2029 struct ValueSitesStats {
2030   ValueSitesStats()
2031       : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2032         TotalNumValues(0) {}
2033   uint64_t TotalNumValueSites;
2034   uint64_t TotalNumValueSitesWithValueProfile;
2035   uint64_t TotalNumValues;
2036   std::vector<unsigned> ValueSitesHistogram;
2037 };
2038 } // namespace
2039 
2040 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2041                                   ValueSitesStats &Stats, raw_fd_ostream &OS,
2042                                   InstrProfSymtab *Symtab) {
2043   uint32_t NS = Func.getNumValueSites(VK);
2044   Stats.TotalNumValueSites += NS;
2045   for (size_t I = 0; I < NS; ++I) {
2046     uint32_t NV = Func.getNumValueDataForSite(VK, I);
2047     std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2048     Stats.TotalNumValues += NV;
2049     if (NV) {
2050       Stats.TotalNumValueSitesWithValueProfile++;
2051       if (NV > Stats.ValueSitesHistogram.size())
2052         Stats.ValueSitesHistogram.resize(NV, 0);
2053       Stats.ValueSitesHistogram[NV - 1]++;
2054     }
2055 
2056     uint64_t SiteSum = 0;
2057     for (uint32_t V = 0; V < NV; V++)
2058       SiteSum += VD[V].Count;
2059     if (SiteSum == 0)
2060       SiteSum = 1;
2061 
2062     for (uint32_t V = 0; V < NV; V++) {
2063       OS << "\t[ " << format("%2u", I) << ", ";
2064       if (Symtab == nullptr)
2065         OS << format("%4" PRIu64, VD[V].Value);
2066       else
2067         OS << Symtab->getFuncName(VD[V].Value);
2068       OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2069          << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2070     }
2071   }
2072 }
2073 
2074 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2075                                 ValueSitesStats &Stats) {
2076   OS << "  Total number of sites: " << Stats.TotalNumValueSites << "\n";
2077   OS << "  Total number of sites with values: "
2078      << Stats.TotalNumValueSitesWithValueProfile << "\n";
2079   OS << "  Total number of profiled values: " << Stats.TotalNumValues << "\n";
2080 
2081   OS << "  Value sites histogram:\n\tNumTargets, SiteCount\n";
2082   for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2083     if (Stats.ValueSitesHistogram[I] > 0)
2084       OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2085   }
2086 }
2087 
2088 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2089                             uint32_t TopN, bool ShowIndirectCallTargets,
2090                             bool ShowMemOPSizes, bool ShowDetailedSummary,
2091                             std::vector<uint32_t> DetailedSummaryCutoffs,
2092                             bool ShowAllFunctions, bool ShowCS,
2093                             uint64_t ValueCutoff, bool OnlyListBelow,
2094                             const std::string &ShowFunction, bool TextFormat,
2095                             bool ShowBinaryIds, bool ShowCovered,
2096                             raw_fd_ostream &OS) {
2097   auto ReaderOrErr = InstrProfReader::create(Filename);
2098   std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2099   if (ShowDetailedSummary && Cutoffs.empty()) {
2100     Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
2101   }
2102   InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2103   if (Error E = ReaderOrErr.takeError())
2104     exitWithError(std::move(E), Filename);
2105 
2106   auto Reader = std::move(ReaderOrErr.get());
2107   bool IsIRInstr = Reader->isIRLevelProfile();
2108   size_t ShownFunctions = 0;
2109   size_t BelowCutoffFunctions = 0;
2110   int NumVPKind = IPVK_Last - IPVK_First + 1;
2111   std::vector<ValueSitesStats> VPStats(NumVPKind);
2112 
2113   auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2114                    const std::pair<std::string, uint64_t> &v2) {
2115     return v1.second > v2.second;
2116   };
2117 
2118   std::priority_queue<std::pair<std::string, uint64_t>,
2119                       std::vector<std::pair<std::string, uint64_t>>,
2120                       decltype(MinCmp)>
2121       HottestFuncs(MinCmp);
2122 
2123   if (!TextFormat && OnlyListBelow) {
2124     OS << "The list of functions with the maximum counter less than "
2125        << ValueCutoff << ":\n";
2126   }
2127 
2128   // Add marker so that IR-level instrumentation round-trips properly.
2129   if (TextFormat && IsIRInstr)
2130     OS << ":ir\n";
2131 
2132   for (const auto &Func : *Reader) {
2133     if (Reader->isIRLevelProfile()) {
2134       bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2135       if (FuncIsCS != ShowCS)
2136         continue;
2137     }
2138     bool Show = ShowAllFunctions ||
2139                 (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
2140 
2141     bool doTextFormatDump = (Show && TextFormat);
2142 
2143     if (doTextFormatDump) {
2144       InstrProfSymtab &Symtab = Reader->getSymtab();
2145       InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2146                                          OS);
2147       continue;
2148     }
2149 
2150     assert(Func.Counts.size() > 0 && "function missing entry counter");
2151     Builder.addRecord(Func);
2152 
2153     if (ShowCovered) {
2154       if (std::any_of(Func.Counts.begin(), Func.Counts.end(),
2155                       [](uint64_t C) { return C; }))
2156         OS << Func.Name << "\n";
2157       continue;
2158     }
2159 
2160     uint64_t FuncMax = 0;
2161     uint64_t FuncSum = 0;
2162     for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2163       if (Func.Counts[I] == (uint64_t)-1)
2164         continue;
2165       FuncMax = std::max(FuncMax, Func.Counts[I]);
2166       FuncSum += Func.Counts[I];
2167     }
2168 
2169     if (FuncMax < ValueCutoff) {
2170       ++BelowCutoffFunctions;
2171       if (OnlyListBelow) {
2172         OS << "  " << Func.Name << ": (Max = " << FuncMax
2173            << " Sum = " << FuncSum << ")\n";
2174       }
2175       continue;
2176     } else if (OnlyListBelow)
2177       continue;
2178 
2179     if (TopN) {
2180       if (HottestFuncs.size() == TopN) {
2181         if (HottestFuncs.top().second < FuncMax) {
2182           HottestFuncs.pop();
2183           HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2184         }
2185       } else
2186         HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2187     }
2188 
2189     if (Show) {
2190       if (!ShownFunctions)
2191         OS << "Counters:\n";
2192 
2193       ++ShownFunctions;
2194 
2195       OS << "  " << Func.Name << ":\n"
2196          << "    Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2197          << "    Counters: " << Func.Counts.size() << "\n";
2198       if (!IsIRInstr)
2199         OS << "    Function count: " << Func.Counts[0] << "\n";
2200 
2201       if (ShowIndirectCallTargets)
2202         OS << "    Indirect Call Site Count: "
2203            << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2204 
2205       uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2206       if (ShowMemOPSizes && NumMemOPCalls > 0)
2207         OS << "    Number of Memory Intrinsics Calls: " << NumMemOPCalls
2208            << "\n";
2209 
2210       if (ShowCounts) {
2211         OS << "    Block counts: [";
2212         size_t Start = (IsIRInstr ? 0 : 1);
2213         for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2214           OS << (I == Start ? "" : ", ") << Func.Counts[I];
2215         }
2216         OS << "]\n";
2217       }
2218 
2219       if (ShowIndirectCallTargets) {
2220         OS << "    Indirect Target Results:\n";
2221         traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2222                               VPStats[IPVK_IndirectCallTarget], OS,
2223                               &(Reader->getSymtab()));
2224       }
2225 
2226       if (ShowMemOPSizes && NumMemOPCalls > 0) {
2227         OS << "    Memory Intrinsic Size Results:\n";
2228         traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2229                               nullptr);
2230       }
2231     }
2232   }
2233   if (Reader->hasError())
2234     exitWithError(Reader->getError(), Filename);
2235 
2236   if (TextFormat || ShowCovered)
2237     return 0;
2238   std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2239   bool IsIR = Reader->isIRLevelProfile();
2240   OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2241   if (IsIR)
2242     OS << "  entry_first = " << Reader->instrEntryBBEnabled();
2243   OS << "\n";
2244   if (ShowAllFunctions || !ShowFunction.empty())
2245     OS << "Functions shown: " << ShownFunctions << "\n";
2246   OS << "Total functions: " << PS->getNumFunctions() << "\n";
2247   if (ValueCutoff > 0) {
2248     OS << "Number of functions with maximum count (< " << ValueCutoff
2249        << "): " << BelowCutoffFunctions << "\n";
2250     OS << "Number of functions with maximum count (>= " << ValueCutoff
2251        << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2252   }
2253   OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2254   OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2255 
2256   if (TopN) {
2257     std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2258     while (!HottestFuncs.empty()) {
2259       SortedHottestFuncs.emplace_back(HottestFuncs.top());
2260       HottestFuncs.pop();
2261     }
2262     OS << "Top " << TopN
2263        << " functions with the largest internal block counts: \n";
2264     for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2265       OS << "  " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2266   }
2267 
2268   if (ShownFunctions && ShowIndirectCallTargets) {
2269     OS << "Statistics for indirect call sites profile:\n";
2270     showValueSitesStats(OS, IPVK_IndirectCallTarget,
2271                         VPStats[IPVK_IndirectCallTarget]);
2272   }
2273 
2274   if (ShownFunctions && ShowMemOPSizes) {
2275     OS << "Statistics for memory intrinsic calls sizes profile:\n";
2276     showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2277   }
2278 
2279   if (ShowDetailedSummary) {
2280     OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2281     OS << "Total count: " << PS->getTotalCount() << "\n";
2282     PS->printDetailedSummary(OS);
2283   }
2284 
2285   if (ShowBinaryIds)
2286     if (Error E = Reader->printBinaryIds(OS))
2287       exitWithError(std::move(E), Filename);
2288 
2289   return 0;
2290 }
2291 
2292 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2293                             raw_fd_ostream &OS) {
2294   if (!Reader->dumpSectionInfo(OS)) {
2295     WithColor::warning() << "-show-sec-info-only is only supported for "
2296                          << "sample profile in extbinary format and is "
2297                          << "ignored for other formats.\n";
2298     return;
2299   }
2300 }
2301 
2302 namespace {
2303 struct HotFuncInfo {
2304   std::string FuncName;
2305   uint64_t TotalCount;
2306   double TotalCountPercent;
2307   uint64_t MaxCount;
2308   uint64_t EntryCount;
2309 
2310   HotFuncInfo()
2311       : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
2312 
2313   HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2314       : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
2315         MaxCount(MS), EntryCount(ES) {}
2316 };
2317 } // namespace
2318 
2319 // Print out detailed information about hot functions in PrintValues vector.
2320 // Users specify titles and offset of every columns through ColumnTitle and
2321 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2322 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2323 // print out or let it be an empty string.
2324 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2325                                 const std::vector<int> &ColumnOffset,
2326                                 const std::vector<HotFuncInfo> &PrintValues,
2327                                 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2328                                 uint64_t HotProfCount, uint64_t TotalProfCount,
2329                                 const std::string &HotFuncMetric,
2330                                 uint32_t TopNFunctions, raw_fd_ostream &OS) {
2331   assert(ColumnOffset.size() == ColumnTitle.size() &&
2332          "ColumnOffset and ColumnTitle should have the same size");
2333   assert(ColumnTitle.size() >= 4 &&
2334          "ColumnTitle should have at least 4 elements");
2335   assert(TotalFuncCount > 0 &&
2336          "There should be at least one function in the profile");
2337   double TotalProfPercent = 0;
2338   if (TotalProfCount > 0)
2339     TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2340 
2341   formatted_raw_ostream FOS(OS);
2342   FOS << HotFuncCount << " out of " << TotalFuncCount
2343       << " functions with profile ("
2344       << format("%.2f%%",
2345                 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2346       << ") are considered hot functions";
2347   if (!HotFuncMetric.empty())
2348     FOS << " (" << HotFuncMetric << ")";
2349   FOS << ".\n";
2350   FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2351       << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2352 
2353   for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2354     FOS.PadToColumn(ColumnOffset[I]);
2355     FOS << ColumnTitle[I];
2356   }
2357   FOS << "\n";
2358 
2359   uint32_t Count = 0;
2360   for (const auto &R : PrintValues) {
2361     if (TopNFunctions && (Count++ == TopNFunctions))
2362       break;
2363     FOS.PadToColumn(ColumnOffset[0]);
2364     FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2365     FOS.PadToColumn(ColumnOffset[1]);
2366     FOS << R.MaxCount;
2367     FOS.PadToColumn(ColumnOffset[2]);
2368     FOS << R.EntryCount;
2369     FOS.PadToColumn(ColumnOffset[3]);
2370     FOS << R.FuncName << "\n";
2371   }
2372 }
2373 
2374 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
2375                                ProfileSummary &PS, uint32_t TopN,
2376                                raw_fd_ostream &OS) {
2377   using namespace sampleprof;
2378 
2379   const uint32_t HotFuncCutoff = 990000;
2380   auto &SummaryVector = PS.getDetailedSummary();
2381   uint64_t MinCountThreshold = 0;
2382   for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2383     if (SummaryEntry.Cutoff == HotFuncCutoff) {
2384       MinCountThreshold = SummaryEntry.MinCount;
2385       break;
2386     }
2387   }
2388 
2389   // Traverse all functions in the profile and keep only hot functions.
2390   // The following loop also calculates the sum of total samples of all
2391   // functions.
2392   std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2393                 std::greater<uint64_t>>
2394       HotFunc;
2395   uint64_t ProfileTotalSample = 0;
2396   uint64_t HotFuncSample = 0;
2397   uint64_t HotFuncCount = 0;
2398 
2399   for (const auto &I : Profiles) {
2400     FuncSampleStats FuncStats;
2401     const FunctionSamples &FuncProf = I.second;
2402     ProfileTotalSample += FuncProf.getTotalSamples();
2403     getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2404 
2405     if (isFunctionHot(FuncStats, MinCountThreshold)) {
2406       HotFunc.emplace(FuncProf.getTotalSamples(),
2407                       std::make_pair(&(I.second), FuncStats.MaxSample));
2408       HotFuncSample += FuncProf.getTotalSamples();
2409       ++HotFuncCount;
2410     }
2411   }
2412 
2413   std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2414                                        "Entry sample", "Function name"};
2415   std::vector<int> ColumnOffset{0, 24, 42, 58};
2416   std::string Metric =
2417       std::string("max sample >= ") + std::to_string(MinCountThreshold);
2418   std::vector<HotFuncInfo> PrintValues;
2419   for (const auto &FuncPair : HotFunc) {
2420     const FunctionSamples &Func = *FuncPair.second.first;
2421     double TotalSamplePercent =
2422         (ProfileTotalSample > 0)
2423             ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2424             : 0;
2425     PrintValues.emplace_back(HotFuncInfo(
2426         Func.getContext().toString(), Func.getTotalSamples(),
2427         TotalSamplePercent, FuncPair.second.second, Func.getEntrySamples()));
2428   }
2429   dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2430                       Profiles.size(), HotFuncSample, ProfileTotalSample,
2431                       Metric, TopN, OS);
2432 
2433   return 0;
2434 }
2435 
2436 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2437                              uint32_t TopN, bool ShowAllFunctions,
2438                              bool ShowDetailedSummary,
2439                              const std::string &ShowFunction,
2440                              bool ShowProfileSymbolList,
2441                              bool ShowSectionInfoOnly, bool ShowHotFuncList,
2442                              raw_fd_ostream &OS) {
2443   using namespace sampleprof;
2444   LLVMContext Context;
2445   auto ReaderOrErr =
2446       SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2447   if (std::error_code EC = ReaderOrErr.getError())
2448     exitWithErrorCode(EC, Filename);
2449 
2450   auto Reader = std::move(ReaderOrErr.get());
2451   if (ShowSectionInfoOnly) {
2452     showSectionInfo(Reader.get(), OS);
2453     return 0;
2454   }
2455 
2456   if (std::error_code EC = Reader->read())
2457     exitWithErrorCode(EC, Filename);
2458 
2459   if (ShowAllFunctions || ShowFunction.empty())
2460     Reader->dump(OS);
2461   else
2462     // TODO: parse context string to support filtering by contexts.
2463     Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
2464 
2465   if (ShowProfileSymbolList) {
2466     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2467         Reader->getProfileSymbolList();
2468     ReaderList->dump(OS);
2469   }
2470 
2471   if (ShowDetailedSummary) {
2472     auto &PS = Reader->getSummary();
2473     PS.printSummary(OS);
2474     PS.printDetailedSummary(OS);
2475   }
2476 
2477   if (ShowHotFuncList || TopN)
2478     showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
2479 
2480   return 0;
2481 }
2482 
2483 static int showMemProfProfile(const std::string &Filename, raw_fd_ostream &OS) {
2484   auto ReaderOr = llvm::memprof::RawMemProfReader::create(Filename);
2485   if (Error E = ReaderOr.takeError())
2486     exitWithError(std::move(E), Filename);
2487 
2488   std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
2489       ReaderOr.get().release());
2490   Reader->printSummaries(OS);
2491   return 0;
2492 }
2493 
2494 static int showDebugInfoCorrelation(const std::string &Filename,
2495                                     bool ShowDetailedSummary,
2496                                     bool ShowProfileSymbolList,
2497                                     raw_fd_ostream &OS) {
2498   std::unique_ptr<InstrProfCorrelator> Correlator;
2499   if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
2500     exitWithError(std::move(Err), Filename);
2501   if (auto Err = Correlator->correlateProfileData())
2502     exitWithError(std::move(Err), Filename);
2503 
2504   InstrProfSymtab Symtab;
2505   if (auto Err = Symtab.create(
2506           StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
2507     exitWithError(std::move(Err), Filename);
2508 
2509   if (ShowProfileSymbolList)
2510     Symtab.dumpNames(OS);
2511   // TODO: Read "Profile Data Type" from debug info to compute and show how many
2512   // counters the section holds.
2513   if (ShowDetailedSummary)
2514     OS << "Counters section size: 0x"
2515        << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
2516   OS << "Found " << Correlator->getDataSize() << " functions\n";
2517 
2518   return 0;
2519 }
2520 
2521 static int show_main(int argc, const char *argv[]) {
2522   cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
2523 
2524   cl::opt<bool> ShowCounts("counts", cl::init(false),
2525                            cl::desc("Show counter values for shown functions"));
2526   cl::opt<bool> TextFormat(
2527       "text", cl::init(false),
2528       cl::desc("Show instr profile data in text dump format"));
2529   cl::opt<bool> ShowIndirectCallTargets(
2530       "ic-targets", cl::init(false),
2531       cl::desc("Show indirect call site target values for shown functions"));
2532   cl::opt<bool> ShowMemOPSizes(
2533       "memop-sizes", cl::init(false),
2534       cl::desc("Show the profiled sizes of the memory intrinsic calls "
2535                "for shown functions"));
2536   cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2537                                     cl::desc("Show detailed profile summary"));
2538   cl::list<uint32_t> DetailedSummaryCutoffs(
2539       cl::CommaSeparated, "detailed-summary-cutoffs",
2540       cl::desc(
2541           "Cutoff percentages (times 10000) for generating detailed summary"),
2542       cl::value_desc("800000,901000,999999"));
2543   cl::opt<bool> ShowHotFuncList(
2544       "hot-func-list", cl::init(false),
2545       cl::desc("Show profile summary of a list of hot functions"));
2546   cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2547                                  cl::desc("Details for every function"));
2548   cl::opt<bool> ShowCS("showcs", cl::init(false),
2549                        cl::desc("Show context sensitive counts"));
2550   cl::opt<std::string> ShowFunction("function",
2551                                     cl::desc("Details for matching functions"));
2552 
2553   cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2554                                       cl::init("-"), cl::desc("Output file"));
2555   cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2556                             cl::aliasopt(OutputFilename));
2557   cl::opt<ProfileKinds> ProfileKind(
2558       cl::desc("Profile kind:"), cl::init(instr),
2559       cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2560                  clEnumVal(sample, "Sample profile"),
2561                  clEnumVal(memory, "MemProf memory access profile")));
2562   cl::opt<uint32_t> TopNFunctions(
2563       "topn", cl::init(0),
2564       cl::desc("Show the list of functions with the largest internal counts"));
2565   cl::opt<uint32_t> ValueCutoff(
2566       "value-cutoff", cl::init(0),
2567       cl::desc("Set the count value cutoff. Functions with the maximum count "
2568                "less than this value will not be printed out. (Default is 0)"));
2569   cl::opt<bool> OnlyListBelow(
2570       "list-below-cutoff", cl::init(false),
2571       cl::desc("Only output names of functions whose max count values are "
2572                "below the cutoff value"));
2573   cl::opt<bool> ShowProfileSymbolList(
2574       "show-prof-sym-list", cl::init(false),
2575       cl::desc("Show profile symbol list if it exists in the profile. "));
2576   cl::opt<bool> ShowSectionInfoOnly(
2577       "show-sec-info-only", cl::init(false),
2578       cl::desc("Show the information of each section in the sample profile. "
2579                "The flag is only usable when the sample profile is in "
2580                "extbinary format"));
2581   cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2582                               cl::desc("Show binary ids in the profile. "));
2583   cl::opt<std::string> DebugInfoFilename(
2584       "debug-info", cl::init(""),
2585       cl::desc("Read and extract profile metadata from debug info and show "
2586                "the functions it found."));
2587   cl::opt<bool> ShowCovered(
2588       "covered", cl::init(false),
2589       cl::desc("Show only the functions that have been executed."));
2590 
2591   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2592 
2593   if (Filename.empty() && DebugInfoFilename.empty())
2594     exitWithError(
2595         "the positional argument '<profdata-file>' is required unless '--" +
2596         DebugInfoFilename.ArgStr + "' is provided");
2597 
2598   if (Filename == OutputFilename) {
2599     errs() << sys::path::filename(argv[0])
2600            << ": Input file name cannot be the same as the output file name!\n";
2601     return 1;
2602   }
2603 
2604   std::error_code EC;
2605   raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2606   if (EC)
2607     exitWithErrorCode(EC, OutputFilename);
2608 
2609   if (ShowAllFunctions && !ShowFunction.empty())
2610     WithColor::warning() << "-function argument ignored: showing all functions\n";
2611 
2612   if (!DebugInfoFilename.empty())
2613     return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
2614                                     ShowProfileSymbolList, OS);
2615 
2616   if (ProfileKind == instr)
2617     return showInstrProfile(
2618         Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2619         ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2620         ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2621         TextFormat, ShowBinaryIds, ShowCovered, OS);
2622   if (ProfileKind == sample)
2623     return showSampleProfile(Filename, ShowCounts, TopNFunctions,
2624                              ShowAllFunctions, ShowDetailedSummary,
2625                              ShowFunction, ShowProfileSymbolList,
2626                              ShowSectionInfoOnly, ShowHotFuncList, OS);
2627   return showMemProfProfile(Filename, OS);
2628 }
2629 
2630 int main(int argc, const char *argv[]) {
2631   InitLLVM X(argc, argv);
2632 
2633   StringRef ProgName(sys::path::filename(argv[0]));
2634   if (argc > 1) {
2635     int (*func)(int, const char *[]) = nullptr;
2636 
2637     if (strcmp(argv[1], "merge") == 0)
2638       func = merge_main;
2639     else if (strcmp(argv[1], "show") == 0)
2640       func = show_main;
2641     else if (strcmp(argv[1], "overlap") == 0)
2642       func = overlap_main;
2643 
2644     if (func) {
2645       std::string Invocation(ProgName.str() + " " + argv[1]);
2646       argv[1] = Invocation.c_str();
2647       return func(argc - 1, argv + 1);
2648     }
2649 
2650     if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2651         strcmp(argv[1], "--help") == 0) {
2652 
2653       errs() << "OVERVIEW: LLVM profile data tools\n\n"
2654              << "USAGE: " << ProgName << " <command> [args...]\n"
2655              << "USAGE: " << ProgName << " <command> -help\n\n"
2656              << "See each individual command --help for more details.\n"
2657              << "Available commands: merge, show, overlap\n";
2658       return 0;
2659     }
2660   }
2661 
2662   if (argc < 2)
2663     errs() << ProgName << ": No command specified!\n";
2664   else
2665     errs() << ProgName << ": Unknown command!\n";
2666 
2667   errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2668   return 1;
2669 }
2670