1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 17 #include "llvm/IR/LLVMContext.h" 18 #include "llvm/Object/Binary.h" 19 #include "llvm/ProfileData/InstrProfCorrelator.h" 20 #include "llvm/ProfileData/InstrProfReader.h" 21 #include "llvm/ProfileData/InstrProfWriter.h" 22 #include "llvm/ProfileData/MemProf.h" 23 #include "llvm/ProfileData/ProfileCommon.h" 24 #include "llvm/ProfileData/RawMemProfReader.h" 25 #include "llvm/ProfileData/SampleProfReader.h" 26 #include "llvm/ProfileData/SampleProfWriter.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/InitLLVM.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/Path.h" 36 #include "llvm/Support/ThreadPool.h" 37 #include "llvm/Support/Threading.h" 38 #include "llvm/Support/WithColor.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include <algorithm> 41 #include <queue> 42 43 using namespace llvm; 44 45 enum ProfileFormat { 46 PF_None = 0, 47 PF_Text, 48 PF_Compact_Binary, 49 PF_Ext_Binary, 50 PF_GCC, 51 PF_Binary 52 }; 53 54 static void warn(Twine Message, std::string Whence = "", 55 std::string Hint = "") { 56 WithColor::warning(); 57 if (!Whence.empty()) 58 errs() << Whence << ": "; 59 errs() << Message << "\n"; 60 if (!Hint.empty()) 61 WithColor::note() << Hint << "\n"; 62 } 63 64 static void warn(Error E, StringRef Whence = "") { 65 if (E.isA<InstrProfError>()) { 66 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 67 warn(IPE.message(), std::string(Whence), std::string("")); 68 }); 69 } 70 } 71 72 static void exitWithError(Twine Message, std::string Whence = "", 73 std::string Hint = "") { 74 WithColor::error(); 75 if (!Whence.empty()) 76 errs() << Whence << ": "; 77 errs() << Message << "\n"; 78 if (!Hint.empty()) 79 WithColor::note() << Hint << "\n"; 80 ::exit(1); 81 } 82 83 static void exitWithError(Error E, StringRef Whence = "") { 84 if (E.isA<InstrProfError>()) { 85 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 86 instrprof_error instrError = IPE.get(); 87 StringRef Hint = ""; 88 if (instrError == instrprof_error::unrecognized_format) { 89 // Hint in case user missed specifying the profile type. 90 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 91 } 92 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 93 }); 94 return; 95 } 96 97 exitWithError(toString(std::move(E)), std::string(Whence)); 98 } 99 100 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 101 exitWithError(EC.message(), std::string(Whence)); 102 } 103 104 namespace { 105 enum ProfileKinds { instr, sample, memory }; 106 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid }; 107 } 108 109 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 110 StringRef Whence = "") { 111 if (FailMode == failIfAnyAreInvalid) 112 exitWithErrorCode(EC, Whence); 113 else 114 warn(EC.message(), std::string(Whence)); 115 } 116 117 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 118 StringRef WhenceFunction = "", 119 bool ShowHint = true) { 120 if (!WhenceFile.empty()) 121 errs() << WhenceFile << ": "; 122 if (!WhenceFunction.empty()) 123 errs() << WhenceFunction << ": "; 124 125 auto IPE = instrprof_error::success; 126 E = handleErrors(std::move(E), 127 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 128 IPE = E->get(); 129 return Error(std::move(E)); 130 }); 131 errs() << toString(std::move(E)) << "\n"; 132 133 if (ShowHint) { 134 StringRef Hint = ""; 135 if (IPE != instrprof_error::success) { 136 switch (IPE) { 137 case instrprof_error::hash_mismatch: 138 case instrprof_error::count_mismatch: 139 case instrprof_error::value_site_count_mismatch: 140 Hint = "Make sure that all profile data to be merged is generated " 141 "from the same binary."; 142 break; 143 default: 144 break; 145 } 146 } 147 148 if (!Hint.empty()) 149 errs() << Hint << "\n"; 150 } 151 } 152 153 namespace { 154 /// A remapper from original symbol names to new symbol names based on a file 155 /// containing a list of mappings from old name to new name. 156 class SymbolRemapper { 157 std::unique_ptr<MemoryBuffer> File; 158 DenseMap<StringRef, StringRef> RemappingTable; 159 160 public: 161 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 162 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 163 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 164 if (!BufOrError) 165 exitWithErrorCode(BufOrError.getError(), InputFile); 166 167 auto Remapper = std::make_unique<SymbolRemapper>(); 168 Remapper->File = std::move(BufOrError.get()); 169 170 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 171 !LineIt.is_at_eof(); ++LineIt) { 172 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 173 if (Parts.first.empty() || Parts.second.empty() || 174 Parts.second.count(' ')) { 175 exitWithError("unexpected line in remapping file", 176 (InputFile + ":" + Twine(LineIt.line_number())).str(), 177 "expected 'old_symbol new_symbol'"); 178 } 179 Remapper->RemappingTable.insert(Parts); 180 } 181 return Remapper; 182 } 183 184 /// Attempt to map the given old symbol into a new symbol. 185 /// 186 /// \return The new symbol, or \p Name if no such symbol was found. 187 StringRef operator()(StringRef Name) { 188 StringRef New = RemappingTable.lookup(Name); 189 return New.empty() ? Name : New; 190 } 191 }; 192 } 193 194 struct WeightedFile { 195 std::string Filename; 196 uint64_t Weight; 197 }; 198 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 199 200 /// Keep track of merged data and reported errors. 201 struct WriterContext { 202 std::mutex Lock; 203 InstrProfWriter Writer; 204 std::vector<std::pair<Error, std::string>> Errors; 205 std::mutex &ErrLock; 206 SmallSet<instrprof_error, 4> &WriterErrorCodes; 207 208 WriterContext(bool IsSparse, std::mutex &ErrLock, 209 SmallSet<instrprof_error, 4> &WriterErrorCodes) 210 : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) { 211 } 212 }; 213 214 /// Computer the overlap b/w profile BaseFilename and TestFileName, 215 /// and store the program level result to Overlap. 216 static void overlapInput(const std::string &BaseFilename, 217 const std::string &TestFilename, WriterContext *WC, 218 OverlapStats &Overlap, 219 const OverlapFuncFilters &FuncFilter, 220 raw_fd_ostream &OS, bool IsCS) { 221 auto ReaderOrErr = InstrProfReader::create(TestFilename); 222 if (Error E = ReaderOrErr.takeError()) { 223 // Skip the empty profiles by returning sliently. 224 instrprof_error IPE = InstrProfError::take(std::move(E)); 225 if (IPE != instrprof_error::empty_raw_profile) 226 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename); 227 return; 228 } 229 230 auto Reader = std::move(ReaderOrErr.get()); 231 for (auto &I : *Reader) { 232 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 233 FuncOverlap.setFuncInfo(I.Name, I.Hash); 234 235 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 236 FuncOverlap.dump(OS); 237 } 238 } 239 240 /// Load an input into a writer context. 241 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 242 const InstrProfCorrelator *Correlator, 243 const StringRef ProfiledBinary, WriterContext *WC) { 244 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 245 246 // Copy the filename, because llvm::ThreadPool copied the input "const 247 // WeightedFile &" by value, making a reference to the filename within it 248 // invalid outside of this packaged task. 249 std::string Filename = Input.Filename; 250 251 using ::llvm::memprof::RawMemProfReader; 252 if (RawMemProfReader::hasFormat(Input.Filename)) { 253 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 254 if (!ReaderOrErr) { 255 exitWithError(ReaderOrErr.takeError(), Input.Filename); 256 } 257 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 258 // Check if the profile types can be merged, e.g. clang frontend profiles 259 // should not be merged with memprof profiles. 260 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 261 consumeError(std::move(E)); 262 WC->Errors.emplace_back( 263 make_error<StringError>( 264 "Cannot merge MemProf profile with Clang generated profile.", 265 std::error_code()), 266 Filename); 267 return; 268 } 269 270 auto MemProfError = [&](Error E) { 271 instrprof_error IPE = InstrProfError::take(std::move(E)); 272 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 273 }; 274 275 // Add the frame mappings into the writer context. 276 const auto &IdToFrame = Reader->getFrameMapping(); 277 for (const auto &I : IdToFrame) { 278 bool Succeeded = WC->Writer.addMemProfFrame( 279 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 280 // If we weren't able to add the frame mappings then it doesn't make sense 281 // to try to add the records from this profile. 282 if (!Succeeded) 283 return; 284 } 285 const auto &FunctionProfileData = Reader->getProfileData(); 286 // Add the memprof records into the writer context. 287 for (const auto &I : FunctionProfileData) { 288 WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second); 289 } 290 return; 291 } 292 293 auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator); 294 if (Error E = ReaderOrErr.takeError()) { 295 // Skip the empty profiles by returning sliently. 296 instrprof_error IPE = InstrProfError::take(std::move(E)); 297 if (IPE != instrprof_error::empty_raw_profile) 298 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename); 299 return; 300 } 301 302 auto Reader = std::move(ReaderOrErr.get()); 303 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 304 consumeError(std::move(E)); 305 WC->Errors.emplace_back( 306 make_error<StringError>( 307 "Merge IR generated profile with Clang generated profile.", 308 std::error_code()), 309 Filename); 310 return; 311 } 312 313 for (auto &I : *Reader) { 314 if (Remapper) 315 I.Name = (*Remapper)(I.Name); 316 const StringRef FuncName = I.Name; 317 bool Reported = false; 318 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 319 if (Reported) { 320 consumeError(std::move(E)); 321 return; 322 } 323 Reported = true; 324 // Only show hint the first time an error occurs. 325 instrprof_error IPE = InstrProfError::take(std::move(E)); 326 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 327 bool firstTime = WC->WriterErrorCodes.insert(IPE).second; 328 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename, 329 FuncName, firstTime); 330 }); 331 } 332 if (Reader->hasError()) 333 if (Error E = Reader->getError()) 334 WC->Errors.emplace_back(std::move(E), Filename); 335 } 336 337 /// Merge the \p Src writer context into \p Dst. 338 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 339 for (auto &ErrorPair : Src->Errors) 340 Dst->Errors.push_back(std::move(ErrorPair)); 341 Src->Errors.clear(); 342 343 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 344 instrprof_error IPE = InstrProfError::take(std::move(E)); 345 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 346 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second; 347 if (firstTime) 348 warn(toString(make_error<InstrProfError>(IPE))); 349 }); 350 } 351 352 static void writeInstrProfile(StringRef OutputFilename, 353 ProfileFormat OutputFormat, 354 InstrProfWriter &Writer) { 355 std::error_code EC; 356 raw_fd_ostream Output(OutputFilename.data(), EC, 357 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 358 : sys::fs::OF_None); 359 if (EC) 360 exitWithErrorCode(EC, OutputFilename); 361 362 if (OutputFormat == PF_Text) { 363 if (Error E = Writer.writeText(Output)) 364 warn(std::move(E)); 365 } else { 366 if (Output.is_displayed()) 367 exitWithError("cannot write a non-text format profile to the terminal"); 368 if (Error E = Writer.write(Output)) 369 warn(std::move(E)); 370 } 371 } 372 373 static void mergeInstrProfile(const WeightedFileVector &Inputs, 374 StringRef DebugInfoFilename, 375 SymbolRemapper *Remapper, 376 StringRef OutputFilename, 377 ProfileFormat OutputFormat, bool OutputSparse, 378 unsigned NumThreads, FailureMode FailMode, 379 const StringRef ProfiledBinary) { 380 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary && 381 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text) 382 exitWithError("unknown format is specified"); 383 384 std::unique_ptr<InstrProfCorrelator> Correlator; 385 if (!DebugInfoFilename.empty()) { 386 if (auto Err = 387 InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator)) 388 exitWithError(std::move(Err), DebugInfoFilename); 389 if (auto Err = Correlator->correlateProfileData()) 390 exitWithError(std::move(Err), DebugInfoFilename); 391 } 392 393 std::mutex ErrorLock; 394 SmallSet<instrprof_error, 4> WriterErrorCodes; 395 396 // If NumThreads is not specified, auto-detect a good default. 397 if (NumThreads == 0) 398 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 399 unsigned((Inputs.size() + 1) / 2)); 400 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails 401 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't 402 // merged, thus the emitted file ends up with a PF_Unknown kind. 403 404 // Initialize the writer contexts. 405 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 406 for (unsigned I = 0; I < NumThreads; ++I) 407 Contexts.emplace_back(std::make_unique<WriterContext>( 408 OutputSparse, ErrorLock, WriterErrorCodes)); 409 410 if (NumThreads == 1) { 411 for (const auto &Input : Inputs) 412 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 413 Contexts[0].get()); 414 } else { 415 ThreadPool Pool(hardware_concurrency(NumThreads)); 416 417 // Load the inputs in parallel (N/NumThreads serial steps). 418 unsigned Ctx = 0; 419 for (const auto &Input : Inputs) { 420 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 421 Contexts[Ctx].get()); 422 Ctx = (Ctx + 1) % NumThreads; 423 } 424 Pool.wait(); 425 426 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 427 unsigned Mid = Contexts.size() / 2; 428 unsigned End = Contexts.size(); 429 assert(Mid > 0 && "Expected more than one context"); 430 do { 431 for (unsigned I = 0; I < Mid; ++I) 432 Pool.async(mergeWriterContexts, Contexts[I].get(), 433 Contexts[I + Mid].get()); 434 Pool.wait(); 435 if (End & 1) { 436 Pool.async(mergeWriterContexts, Contexts[0].get(), 437 Contexts[End - 1].get()); 438 Pool.wait(); 439 } 440 End = Mid; 441 Mid /= 2; 442 } while (Mid > 0); 443 } 444 445 // Handle deferred errors encountered during merging. If the number of errors 446 // is equal to the number of inputs the merge failed. 447 unsigned NumErrors = 0; 448 for (std::unique_ptr<WriterContext> &WC : Contexts) { 449 for (auto &ErrorPair : WC->Errors) { 450 ++NumErrors; 451 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 452 } 453 } 454 if (NumErrors == Inputs.size() || 455 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 456 exitWithError("no profile can be merged"); 457 458 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 459 } 460 461 /// The profile entry for a function in instrumentation profile. 462 struct InstrProfileEntry { 463 uint64_t MaxCount = 0; 464 float ZeroCounterRatio = 0.0; 465 InstrProfRecord *ProfRecord; 466 InstrProfileEntry(InstrProfRecord *Record); 467 InstrProfileEntry() = default; 468 }; 469 470 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 471 ProfRecord = Record; 472 uint64_t CntNum = Record->Counts.size(); 473 uint64_t ZeroCntNum = 0; 474 for (size_t I = 0; I < CntNum; ++I) { 475 MaxCount = std::max(MaxCount, Record->Counts[I]); 476 ZeroCntNum += !Record->Counts[I]; 477 } 478 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 479 } 480 481 /// Either set all the counters in the instr profile entry \p IFE to -1 482 /// in order to drop the profile or scale up the counters in \p IFP to 483 /// be above hot threshold. We use the ratio of zero counters in the 484 /// profile of a function to decide the profile is helpful or harmful 485 /// for performance, and to choose whether to scale up or drop it. 486 static void updateInstrProfileEntry(InstrProfileEntry &IFE, 487 uint64_t HotInstrThreshold, 488 float ZeroCounterThreshold) { 489 InstrProfRecord *ProfRecord = IFE.ProfRecord; 490 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 491 // If all or most of the counters of the function are zero, the 492 // profile is unaccountable and shuld be dropped. Reset all the 493 // counters to be -1 and PGO profile-use will drop the profile. 494 // All counters being -1 also implies that the function is hot so 495 // PGO profile-use will also set the entry count metadata to be 496 // above hot threshold. 497 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I) 498 ProfRecord->Counts[I] = -1; 499 return; 500 } 501 502 // Scale up the MaxCount to be multiple times above hot threshold. 503 const unsigned MultiplyFactor = 3; 504 uint64_t Numerator = HotInstrThreshold * MultiplyFactor; 505 uint64_t Denominator = IFE.MaxCount; 506 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 507 warn(toString(make_error<InstrProfError>(E))); 508 }); 509 } 510 511 const uint64_t ColdPercentileIdx = 15; 512 const uint64_t HotPercentileIdx = 11; 513 514 using sampleprof::FSDiscriminatorPass; 515 516 // Internal options to set FSDiscriminatorPass. Used in merge and show 517 // commands. 518 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 519 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 520 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 521 "pass beyond this value. The enum values are defined in " 522 "Support/Discriminator.h"), 523 cl::values(clEnumVal(Base, "Use base discriminators only"), 524 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 525 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 526 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 527 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 528 529 static unsigned getDiscriminatorMask() { 530 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 531 } 532 533 /// Adjust the instr profile in \p WC based on the sample profile in 534 /// \p Reader. 535 static void 536 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 537 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 538 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 539 unsigned InstrProfColdThreshold) { 540 // Function to its entry in instr profile. 541 StringMap<InstrProfileEntry> InstrProfileMap; 542 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 543 for (auto &PD : WC->Writer.getProfileData()) { 544 // Populate IPBuilder. 545 for (const auto &PDV : PD.getValue()) { 546 InstrProfRecord Record = PDV.second; 547 IPBuilder.addRecord(Record); 548 } 549 550 // If a function has multiple entries in instr profile, skip it. 551 if (PD.getValue().size() != 1) 552 continue; 553 554 // Initialize InstrProfileMap. 555 InstrProfRecord *R = &PD.getValue().begin()->second; 556 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R); 557 } 558 559 ProfileSummary InstrPS = *IPBuilder.getSummary(); 560 ProfileSummary SamplePS = Reader->getSummary(); 561 562 // Compute cold thresholds for instr profile and sample profile. 563 uint64_t ColdSampleThreshold = 564 ProfileSummaryBuilder::getEntryForPercentile( 565 SamplePS.getDetailedSummary(), 566 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 567 .MinCount; 568 uint64_t HotInstrThreshold = 569 ProfileSummaryBuilder::getEntryForPercentile( 570 InstrPS.getDetailedSummary(), 571 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 572 .MinCount; 573 uint64_t ColdInstrThreshold = 574 InstrProfColdThreshold 575 ? InstrProfColdThreshold 576 : ProfileSummaryBuilder::getEntryForPercentile( 577 InstrPS.getDetailedSummary(), 578 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 579 .MinCount; 580 581 // Find hot/warm functions in sample profile which is cold in instr profile 582 // and adjust the profiles of those functions in the instr profile. 583 for (const auto &PD : Reader->getProfiles()) { 584 auto &FContext = PD.first; 585 const sampleprof::FunctionSamples &FS = PD.second; 586 auto It = InstrProfileMap.find(FContext.toString()); 587 if (FS.getHeadSamples() > ColdSampleThreshold && 588 It != InstrProfileMap.end() && 589 It->second.MaxCount <= ColdInstrThreshold && 590 FS.getBodySamples().size() >= SupplMinSizeThreshold) { 591 updateInstrProfileEntry(It->second, HotInstrThreshold, 592 ZeroCounterThreshold); 593 } 594 } 595 } 596 597 /// The main function to supplement instr profile with sample profile. 598 /// \Inputs contains the instr profile. \p SampleFilename specifies the 599 /// sample profile. \p OutputFilename specifies the output profile name. 600 /// \p OutputFormat specifies the output profile format. \p OutputSparse 601 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 602 /// specifies the minimal size for the functions whose profile will be 603 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 604 /// a function contains too many zero counters and whether its profile 605 /// should be dropped. \p InstrProfColdThreshold is the user specified 606 /// cold threshold which will override the cold threshold got from the 607 /// instr profile summary. 608 static void supplementInstrProfile( 609 const WeightedFileVector &Inputs, StringRef SampleFilename, 610 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse, 611 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 612 unsigned InstrProfColdThreshold) { 613 if (OutputFilename.compare("-") == 0) 614 exitWithError("cannot write indexed profdata format to stdout"); 615 if (Inputs.size() != 1) 616 exitWithError("expect one input to be an instr profile"); 617 if (Inputs[0].Weight != 1) 618 exitWithError("expect instr profile doesn't have weight"); 619 620 StringRef InstrFilename = Inputs[0].Filename; 621 622 // Read sample profile. 623 LLVMContext Context; 624 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 625 SampleFilename.str(), Context, FSDiscriminatorPassOption); 626 if (std::error_code EC = ReaderOrErr.getError()) 627 exitWithErrorCode(EC, SampleFilename); 628 auto Reader = std::move(ReaderOrErr.get()); 629 if (std::error_code EC = Reader->read()) 630 exitWithErrorCode(EC, SampleFilename); 631 632 // Read instr profile. 633 std::mutex ErrorLock; 634 SmallSet<instrprof_error, 4> WriterErrorCodes; 635 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 636 WriterErrorCodes); 637 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 638 if (WC->Errors.size() > 0) 639 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 640 641 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 642 InstrProfColdThreshold); 643 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 644 } 645 646 /// Make a copy of the given function samples with all symbol names remapped 647 /// by the provided symbol remapper. 648 static sampleprof::FunctionSamples 649 remapSamples(const sampleprof::FunctionSamples &Samples, 650 SymbolRemapper &Remapper, sampleprof_error &Error) { 651 sampleprof::FunctionSamples Result; 652 Result.setName(Remapper(Samples.getName())); 653 Result.addTotalSamples(Samples.getTotalSamples()); 654 Result.addHeadSamples(Samples.getHeadSamples()); 655 for (const auto &BodySample : Samples.getBodySamples()) { 656 uint32_t MaskedDiscriminator = 657 BodySample.first.Discriminator & getDiscriminatorMask(); 658 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 659 BodySample.second.getSamples()); 660 for (const auto &Target : BodySample.second.getCallTargets()) { 661 Result.addCalledTargetSamples(BodySample.first.LineOffset, 662 MaskedDiscriminator, 663 Remapper(Target.first()), Target.second); 664 } 665 } 666 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 667 sampleprof::FunctionSamplesMap &Target = 668 Result.functionSamplesAt(CallsiteSamples.first); 669 for (const auto &Callsite : CallsiteSamples.second) { 670 sampleprof::FunctionSamples Remapped = 671 remapSamples(Callsite.second, Remapper, Error); 672 MergeResult(Error, 673 Target[std::string(Remapped.getName())].merge(Remapped)); 674 } 675 } 676 return Result; 677 } 678 679 static sampleprof::SampleProfileFormat FormatMap[] = { 680 sampleprof::SPF_None, 681 sampleprof::SPF_Text, 682 sampleprof::SPF_Compact_Binary, 683 sampleprof::SPF_Ext_Binary, 684 sampleprof::SPF_GCC, 685 sampleprof::SPF_Binary}; 686 687 static std::unique_ptr<MemoryBuffer> 688 getInputFileBuf(const StringRef &InputFile) { 689 if (InputFile == "") 690 return {}; 691 692 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 693 if (!BufOrError) 694 exitWithErrorCode(BufOrError.getError(), InputFile); 695 696 return std::move(*BufOrError); 697 } 698 699 static void populateProfileSymbolList(MemoryBuffer *Buffer, 700 sampleprof::ProfileSymbolList &PSL) { 701 if (!Buffer) 702 return; 703 704 SmallVector<StringRef, 32> SymbolVec; 705 StringRef Data = Buffer->getBuffer(); 706 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 707 708 for (StringRef SymbolStr : SymbolVec) 709 PSL.add(SymbolStr.trim()); 710 } 711 712 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 713 ProfileFormat OutputFormat, 714 MemoryBuffer *Buffer, 715 sampleprof::ProfileSymbolList &WriterList, 716 bool CompressAllSections, bool UseMD5, 717 bool GenPartialProfile) { 718 populateProfileSymbolList(Buffer, WriterList); 719 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 720 warn("Profile Symbol list is not empty but the output format is not " 721 "ExtBinary format. The list will be lost in the output. "); 722 723 Writer.setProfileSymbolList(&WriterList); 724 725 if (CompressAllSections) { 726 if (OutputFormat != PF_Ext_Binary) 727 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 728 else 729 Writer.setToCompressAllSections(); 730 } 731 if (UseMD5) { 732 if (OutputFormat != PF_Ext_Binary) 733 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 734 else 735 Writer.setUseMD5(); 736 } 737 if (GenPartialProfile) { 738 if (OutputFormat != PF_Ext_Binary) 739 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 740 else 741 Writer.setPartialProfile(); 742 } 743 } 744 745 static void 746 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper, 747 StringRef OutputFilename, ProfileFormat OutputFormat, 748 StringRef ProfileSymbolListFile, bool CompressAllSections, 749 bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile, 750 bool SampleMergeColdContext, bool SampleTrimColdContext, 751 bool SampleColdContextFrameDepth, FailureMode FailMode) { 752 using namespace sampleprof; 753 SampleProfileMap ProfileMap; 754 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 755 LLVMContext Context; 756 sampleprof::ProfileSymbolList WriterList; 757 Optional<bool> ProfileIsProbeBased; 758 Optional<bool> ProfileIsCS; 759 for (const auto &Input : Inputs) { 760 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, 761 FSDiscriminatorPassOption); 762 if (std::error_code EC = ReaderOrErr.getError()) { 763 warnOrExitGivenError(FailMode, EC, Input.Filename); 764 continue; 765 } 766 767 // We need to keep the readers around until after all the files are 768 // read so that we do not lose the function names stored in each 769 // reader's memory. The function names are needed to write out the 770 // merged profile map. 771 Readers.push_back(std::move(ReaderOrErr.get())); 772 const auto Reader = Readers.back().get(); 773 if (std::error_code EC = Reader->read()) { 774 warnOrExitGivenError(FailMode, EC, Input.Filename); 775 Readers.pop_back(); 776 continue; 777 } 778 779 SampleProfileMap &Profiles = Reader->getProfiles(); 780 if (ProfileIsProbeBased && 781 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 782 exitWithError( 783 "cannot merge probe-based profile with non-probe-based profile"); 784 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 785 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 786 exitWithError("cannot merge CS profile with non-CS profile"); 787 ProfileIsCS = FunctionSamples::ProfileIsCS; 788 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 789 I != E; ++I) { 790 sampleprof_error Result = sampleprof_error::success; 791 FunctionSamples Remapped = 792 Remapper ? remapSamples(I->second, *Remapper, Result) 793 : FunctionSamples(); 794 FunctionSamples &Samples = Remapper ? Remapped : I->second; 795 SampleContext FContext = Samples.getContext(); 796 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 797 if (Result != sampleprof_error::success) { 798 std::error_code EC = make_error_code(Result); 799 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 800 FContext.toString()); 801 } 802 } 803 804 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 805 Reader->getProfileSymbolList(); 806 if (ReaderList) 807 WriterList.merge(*ReaderList); 808 } 809 810 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 811 // Use threshold calculated from profile summary unless specified. 812 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 813 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 814 uint64_t SampleProfColdThreshold = 815 ProfileSummaryBuilder::getColdCountThreshold( 816 (Summary->getDetailedSummary())); 817 818 // Trim and merge cold context profile using cold threshold above; 819 SampleContextTrimmer(ProfileMap) 820 .trimAndMergeColdContextProfiles( 821 SampleProfColdThreshold, SampleTrimColdContext, 822 SampleMergeColdContext, SampleColdContextFrameDepth, false); 823 } 824 825 if (ProfileIsCS && GenCSNestedProfile) { 826 CSProfileConverter CSConverter(ProfileMap); 827 CSConverter.convertProfiles(); 828 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 829 } 830 831 auto WriterOrErr = 832 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 833 if (std::error_code EC = WriterOrErr.getError()) 834 exitWithErrorCode(EC, OutputFilename); 835 836 auto Writer = std::move(WriterOrErr.get()); 837 // WriterList will have StringRef refering to string in Buffer. 838 // Make sure Buffer lives as long as WriterList. 839 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 840 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 841 CompressAllSections, UseMD5, GenPartialProfile); 842 if (std::error_code EC = Writer->write(ProfileMap)) 843 exitWithErrorCode(std::move(EC)); 844 } 845 846 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 847 StringRef WeightStr, FileName; 848 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 849 850 uint64_t Weight; 851 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 852 exitWithError("input weight must be a positive integer"); 853 854 return {std::string(FileName), Weight}; 855 } 856 857 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 858 StringRef Filename = WF.Filename; 859 uint64_t Weight = WF.Weight; 860 861 // If it's STDIN just pass it on. 862 if (Filename == "-") { 863 WNI.push_back({std::string(Filename), Weight}); 864 return; 865 } 866 867 llvm::sys::fs::file_status Status; 868 llvm::sys::fs::status(Filename, Status); 869 if (!llvm::sys::fs::exists(Status)) 870 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 871 Filename); 872 // If it's a source file, collect it. 873 if (llvm::sys::fs::is_regular_file(Status)) { 874 WNI.push_back({std::string(Filename), Weight}); 875 return; 876 } 877 878 if (llvm::sys::fs::is_directory(Status)) { 879 std::error_code EC; 880 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 881 F != E && !EC; F.increment(EC)) { 882 if (llvm::sys::fs::is_regular_file(F->path())) { 883 addWeightedInput(WNI, {F->path(), Weight}); 884 } 885 } 886 if (EC) 887 exitWithErrorCode(EC, Filename); 888 } 889 } 890 891 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 892 WeightedFileVector &WFV) { 893 if (!Buffer) 894 return; 895 896 SmallVector<StringRef, 8> Entries; 897 StringRef Data = Buffer->getBuffer(); 898 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 899 for (const StringRef &FileWeightEntry : Entries) { 900 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 901 // Skip comments. 902 if (SanitizedEntry.startswith("#")) 903 continue; 904 // If there's no comma, it's an unweighted profile. 905 else if (!SanitizedEntry.contains(',')) 906 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 907 else 908 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 909 } 910 } 911 912 static int merge_main(int argc, const char *argv[]) { 913 cl::list<std::string> InputFilenames(cl::Positional, 914 cl::desc("<filename...>")); 915 cl::list<std::string> WeightedInputFilenames("weighted-input", 916 cl::desc("<weight>,<filename>")); 917 cl::opt<std::string> InputFilenamesFile( 918 "input-files", cl::init(""), 919 cl::desc("Path to file containing newline-separated " 920 "[<weight>,]<filename> entries")); 921 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 922 cl::aliasopt(InputFilenamesFile)); 923 cl::opt<bool> DumpInputFileList( 924 "dump-input-file-list", cl::init(false), cl::Hidden, 925 cl::desc("Dump the list of input files and their weights, then exit")); 926 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 927 cl::desc("Symbol remapping file")); 928 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 929 cl::aliasopt(RemappingFile)); 930 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 931 cl::init("-"), cl::desc("Output file")); 932 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 933 cl::aliasopt(OutputFilename)); 934 cl::opt<ProfileKinds> ProfileKind( 935 cl::desc("Profile kind:"), cl::init(instr), 936 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 937 clEnumVal(sample, "Sample profile"))); 938 cl::opt<ProfileFormat> OutputFormat( 939 cl::desc("Format of output profile"), cl::init(PF_Binary), 940 cl::values( 941 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"), 942 clEnumValN(PF_Compact_Binary, "compbinary", 943 "Compact binary encoding"), 944 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"), 945 clEnumValN(PF_Text, "text", "Text encoding"), 946 clEnumValN(PF_GCC, "gcc", 947 "GCC encoding (only meaningful for -sample)"))); 948 cl::opt<FailureMode> FailureMode( 949 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"), 950 cl::values(clEnumValN(failIfAnyAreInvalid, "any", 951 "Fail if any profile is invalid."), 952 clEnumValN(failIfAllAreInvalid, "all", 953 "Fail only if all profiles are invalid."))); 954 cl::opt<bool> OutputSparse("sparse", cl::init(false), 955 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 956 cl::opt<unsigned> NumThreads( 957 "num-threads", cl::init(0), 958 cl::desc("Number of merge threads to use (default: autodetect)")); 959 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 960 cl::aliasopt(NumThreads)); 961 cl::opt<std::string> ProfileSymbolListFile( 962 "prof-sym-list", cl::init(""), 963 cl::desc("Path to file containing the list of function symbols " 964 "used to populate profile symbol list")); 965 cl::opt<bool> CompressAllSections( 966 "compress-all-sections", cl::init(false), cl::Hidden, 967 cl::desc("Compress all sections when writing the profile (only " 968 "meaningful for -extbinary)")); 969 cl::opt<bool> UseMD5( 970 "use-md5", cl::init(false), cl::Hidden, 971 cl::desc("Choose to use MD5 to represent string in name table (only " 972 "meaningful for -extbinary)")); 973 cl::opt<bool> SampleMergeColdContext( 974 "sample-merge-cold-context", cl::init(false), cl::Hidden, 975 cl::desc( 976 "Merge context sample profiles whose count is below cold threshold")); 977 cl::opt<bool> SampleTrimColdContext( 978 "sample-trim-cold-context", cl::init(false), cl::Hidden, 979 cl::desc( 980 "Trim context sample profiles whose count is below cold threshold")); 981 cl::opt<uint32_t> SampleColdContextFrameDepth( 982 "sample-frame-depth-for-cold-context", cl::init(1), 983 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 984 "context-less base profile")); 985 cl::opt<bool> GenPartialProfile( 986 "gen-partial-profile", cl::init(false), cl::Hidden, 987 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 988 cl::opt<std::string> SupplInstrWithSample( 989 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 990 cl::desc("Supplement an instr profile with sample profile, to correct " 991 "the profile unrepresentativeness issue. The sample " 992 "profile is the input of the flag. Output will be in instr " 993 "format (The flag only works with -instr)")); 994 cl::opt<float> ZeroCounterThreshold( 995 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 996 cl::desc("For the function which is cold in instr profile but hot in " 997 "sample profile, if the ratio of the number of zero counters " 998 "divided by the total number of counters is above the " 999 "threshold, the profile of the function will be regarded as " 1000 "being harmful for performance and will be dropped.")); 1001 cl::opt<unsigned> SupplMinSizeThreshold( 1002 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 1003 cl::desc("If the size of a function is smaller than the threshold, " 1004 "assume it can be inlined by PGO early inliner and it won't " 1005 "be adjusted based on sample profile.")); 1006 cl::opt<unsigned> InstrProfColdThreshold( 1007 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 1008 cl::desc("User specified cold threshold for instr profile which will " 1009 "override the cold threshold got from profile summary. ")); 1010 cl::opt<bool> GenCSNestedProfile( 1011 "gen-cs-nested-profile", cl::Hidden, cl::init(false), 1012 cl::desc("Generate nested function profiles for CSSPGO")); 1013 cl::opt<std::string> DebugInfoFilename( 1014 "debug-info", cl::init(""), 1015 cl::desc("Use the provided debug info to correlate the raw profile.")); 1016 cl::opt<std::string> ProfiledBinary( 1017 "profiled-binary", cl::init(""), 1018 cl::desc("Path to binary from which the profile was collected.")); 1019 1020 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n"); 1021 1022 WeightedFileVector WeightedInputs; 1023 for (StringRef Filename : InputFilenames) 1024 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1025 for (StringRef WeightedFilename : WeightedInputFilenames) 1026 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1027 1028 // Make sure that the file buffer stays alive for the duration of the 1029 // weighted input vector's lifetime. 1030 auto Buffer = getInputFileBuf(InputFilenamesFile); 1031 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1032 1033 if (WeightedInputs.empty()) 1034 exitWithError("no input files specified. See " + 1035 sys::path::filename(argv[0]) + " -help"); 1036 1037 if (DumpInputFileList) { 1038 for (auto &WF : WeightedInputs) 1039 outs() << WF.Weight << "," << WF.Filename << "\n"; 1040 return 0; 1041 } 1042 1043 std::unique_ptr<SymbolRemapper> Remapper; 1044 if (!RemappingFile.empty()) 1045 Remapper = SymbolRemapper::create(RemappingFile); 1046 1047 if (!SupplInstrWithSample.empty()) { 1048 if (ProfileKind != instr) 1049 exitWithError( 1050 "-supplement-instr-with-sample can only work with -instr. "); 1051 1052 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename, 1053 OutputFormat, OutputSparse, SupplMinSizeThreshold, 1054 ZeroCounterThreshold, InstrProfColdThreshold); 1055 return 0; 1056 } 1057 1058 if (ProfileKind == instr) 1059 mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(), 1060 OutputFilename, OutputFormat, OutputSparse, NumThreads, 1061 FailureMode, ProfiledBinary); 1062 else 1063 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename, 1064 OutputFormat, ProfileSymbolListFile, CompressAllSections, 1065 UseMD5, GenPartialProfile, GenCSNestedProfile, 1066 SampleMergeColdContext, SampleTrimColdContext, 1067 SampleColdContextFrameDepth, FailureMode); 1068 return 0; 1069 } 1070 1071 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1072 static void overlapInstrProfile(const std::string &BaseFilename, 1073 const std::string &TestFilename, 1074 const OverlapFuncFilters &FuncFilter, 1075 raw_fd_ostream &OS, bool IsCS) { 1076 std::mutex ErrorLock; 1077 SmallSet<instrprof_error, 4> WriterErrorCodes; 1078 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1079 WeightedFile WeightedInput{BaseFilename, 1}; 1080 OverlapStats Overlap; 1081 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1082 if (E) 1083 exitWithError(std::move(E), "error in getting profile count sums"); 1084 if (Overlap.Base.CountSum < 1.0f) { 1085 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1086 exit(0); 1087 } 1088 if (Overlap.Test.CountSum < 1.0f) { 1089 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1090 exit(0); 1091 } 1092 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1093 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1094 IsCS); 1095 Overlap.dump(OS); 1096 } 1097 1098 namespace { 1099 struct SampleOverlapStats { 1100 SampleContext BaseName; 1101 SampleContext TestName; 1102 // Number of overlap units 1103 uint64_t OverlapCount; 1104 // Total samples of overlap units 1105 uint64_t OverlapSample; 1106 // Number of and total samples of units that only present in base or test 1107 // profile 1108 uint64_t BaseUniqueCount; 1109 uint64_t BaseUniqueSample; 1110 uint64_t TestUniqueCount; 1111 uint64_t TestUniqueSample; 1112 // Number of units and total samples in base or test profile 1113 uint64_t BaseCount; 1114 uint64_t BaseSample; 1115 uint64_t TestCount; 1116 uint64_t TestSample; 1117 // Number of and total samples of units that present in at least one profile 1118 uint64_t UnionCount; 1119 uint64_t UnionSample; 1120 // Weighted similarity 1121 double Similarity; 1122 // For SampleOverlapStats instances representing functions, weights of the 1123 // function in base and test profiles 1124 double BaseWeight; 1125 double TestWeight; 1126 1127 SampleOverlapStats() 1128 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0), 1129 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0), 1130 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0), 1131 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {} 1132 }; 1133 } // end anonymous namespace 1134 1135 namespace { 1136 struct FuncSampleStats { 1137 uint64_t SampleSum; 1138 uint64_t MaxSample; 1139 uint64_t HotBlockCount; 1140 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {} 1141 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1142 uint64_t HotBlockCount) 1143 : SampleSum(SampleSum), MaxSample(MaxSample), 1144 HotBlockCount(HotBlockCount) {} 1145 }; 1146 } // end anonymous namespace 1147 1148 namespace { 1149 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1150 1151 // Class for updating merging steps for two sorted maps. The class should be 1152 // instantiated with a map iterator type. 1153 template <class T> class MatchStep { 1154 public: 1155 MatchStep() = delete; 1156 1157 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1158 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1159 SecondEnd(SecondEnd), Status(MS_None) {} 1160 1161 bool areBothFinished() const { 1162 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1163 } 1164 1165 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1166 1167 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1168 1169 /// Advance one step based on the previous match status unless the previous 1170 /// status is MS_None. Then update Status based on the comparison between two 1171 /// container iterators at the current step. If the previous status is 1172 /// MS_None, it means two iterators are at the beginning and no comparison has 1173 /// been made, so we simply update Status without advancing the iterators. 1174 void updateOneStep(); 1175 1176 T getFirstIter() const { return FirstIter; } 1177 1178 T getSecondIter() const { return SecondIter; } 1179 1180 MatchStatus getMatchStatus() const { return Status; } 1181 1182 private: 1183 // Current iterator and end iterator of the first container. 1184 T FirstIter; 1185 T FirstEnd; 1186 // Current iterator and end iterator of the second container. 1187 T SecondIter; 1188 T SecondEnd; 1189 // Match status of the current step. 1190 MatchStatus Status; 1191 }; 1192 } // end anonymous namespace 1193 1194 template <class T> void MatchStep<T>::updateOneStep() { 1195 switch (Status) { 1196 case MS_Match: 1197 ++FirstIter; 1198 ++SecondIter; 1199 break; 1200 case MS_FirstUnique: 1201 ++FirstIter; 1202 break; 1203 case MS_SecondUnique: 1204 ++SecondIter; 1205 break; 1206 case MS_None: 1207 break; 1208 } 1209 1210 // Update Status according to iterators at the current step. 1211 if (areBothFinished()) 1212 return; 1213 if (FirstIter != FirstEnd && 1214 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1215 Status = MS_FirstUnique; 1216 else if (SecondIter != SecondEnd && 1217 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1218 Status = MS_SecondUnique; 1219 else 1220 Status = MS_Match; 1221 } 1222 1223 // Return the sum of line/block samples, the max line/block sample, and the 1224 // number of line/block samples above the given threshold in a function 1225 // including its inlinees. 1226 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1227 FuncSampleStats &FuncStats, 1228 uint64_t HotThreshold) { 1229 for (const auto &L : Func.getBodySamples()) { 1230 uint64_t Sample = L.second.getSamples(); 1231 FuncStats.SampleSum += Sample; 1232 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1233 if (Sample >= HotThreshold) 1234 ++FuncStats.HotBlockCount; 1235 } 1236 1237 for (const auto &C : Func.getCallsiteSamples()) { 1238 for (const auto &F : C.second) 1239 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1240 } 1241 } 1242 1243 /// Predicate that determines if a function is hot with a given threshold. We 1244 /// keep it separate from its callsites for possible extension in the future. 1245 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1246 uint64_t HotThreshold) { 1247 // We intentionally compare the maximum sample count in a function with the 1248 // HotThreshold to get an approximate determination on hot functions. 1249 return (FuncStats.MaxSample >= HotThreshold); 1250 } 1251 1252 namespace { 1253 class SampleOverlapAggregator { 1254 public: 1255 SampleOverlapAggregator(const std::string &BaseFilename, 1256 const std::string &TestFilename, 1257 double LowSimilarityThreshold, double Epsilon, 1258 const OverlapFuncFilters &FuncFilter) 1259 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1260 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1261 FuncFilter(FuncFilter) {} 1262 1263 /// Detect 0-sample input profile and report to output stream. This interface 1264 /// should be called after loadProfiles(). 1265 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1266 1267 /// Write out function-level similarity statistics for functions specified by 1268 /// options --function, --value-cutoff, and --similarity-cutoff. 1269 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1270 1271 /// Write out program-level similarity and overlap statistics. 1272 void dumpProgramSummary(raw_fd_ostream &OS) const; 1273 1274 /// Write out hot-function and hot-block statistics for base_profile, 1275 /// test_profile, and their overlap. For both cases, the overlap HO is 1276 /// calculated as follows: 1277 /// Given the number of functions (or blocks) that are hot in both profiles 1278 /// HCommon and the number of functions (or blocks) that are hot in at 1279 /// least one profile HUnion, HO = HCommon / HUnion. 1280 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1281 1282 /// This function tries matching functions in base and test profiles. For each 1283 /// pair of matched functions, it aggregates the function-level 1284 /// similarity into a profile-level similarity. It also dump function-level 1285 /// similarity information of functions specified by --function, 1286 /// --value-cutoff, and --similarity-cutoff options. The program-level 1287 /// similarity PS is computed as follows: 1288 /// Given function-level similarity FS(A) for all function A, the 1289 /// weight of function A in base profile WB(A), and the weight of function 1290 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1291 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1292 /// meaning no-overlap. 1293 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1294 1295 /// Initialize ProfOverlap with the sum of samples in base and test 1296 /// profiles. This function also computes and keeps the sum of samples and 1297 /// max sample counts of each function in BaseStats and TestStats for later 1298 /// use to avoid re-computations. 1299 void initializeSampleProfileOverlap(); 1300 1301 /// Load profiles specified by BaseFilename and TestFilename. 1302 std::error_code loadProfiles(); 1303 1304 using FuncSampleStatsMap = 1305 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1306 1307 private: 1308 SampleOverlapStats ProfOverlap; 1309 SampleOverlapStats HotFuncOverlap; 1310 SampleOverlapStats HotBlockOverlap; 1311 std::string BaseFilename; 1312 std::string TestFilename; 1313 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1314 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1315 // BaseStats and TestStats hold FuncSampleStats for each function, with 1316 // function name as the key. 1317 FuncSampleStatsMap BaseStats; 1318 FuncSampleStatsMap TestStats; 1319 // Low similarity threshold in floating point number 1320 double LowSimilarityThreshold; 1321 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1322 // for tracking hot blocks. 1323 uint64_t BaseHotThreshold; 1324 uint64_t TestHotThreshold; 1325 // A small threshold used to round the results of floating point accumulations 1326 // to resolve imprecision. 1327 const double Epsilon; 1328 std::multimap<double, SampleOverlapStats, std::greater<double>> 1329 FuncSimilarityDump; 1330 // FuncFilter carries specifications in options --value-cutoff and 1331 // --function. 1332 OverlapFuncFilters FuncFilter; 1333 // Column offsets for printing the function-level details table. 1334 static const unsigned int TestWeightCol = 15; 1335 static const unsigned int SimilarityCol = 30; 1336 static const unsigned int OverlapCol = 43; 1337 static const unsigned int BaseUniqueCol = 53; 1338 static const unsigned int TestUniqueCol = 67; 1339 static const unsigned int BaseSampleCol = 81; 1340 static const unsigned int TestSampleCol = 96; 1341 static const unsigned int FuncNameCol = 111; 1342 1343 /// Return a similarity of two line/block sample counters in the same 1344 /// function in base and test profiles. The line/block-similarity BS(i) is 1345 /// computed as follows: 1346 /// For an offsets i, given the sample count at i in base profile BB(i), 1347 /// the sample count at i in test profile BT(i), the sum of sample counts 1348 /// in this function in base profile SB, and the sum of sample counts in 1349 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1350 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1351 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1352 const SampleOverlapStats &FuncOverlap) const; 1353 1354 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1355 uint64_t HotBlockCount); 1356 1357 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1358 FuncSampleStatsMap &HotFunc, 1359 uint64_t HotThreshold) const; 1360 1361 void computeHotFuncOverlap(); 1362 1363 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1364 /// Difference for two sample units in a matched function according to the 1365 /// given match status. 1366 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1367 uint64_t HotBlockCount, 1368 SampleOverlapStats &FuncOverlap, 1369 double &Difference, MatchStatus Status); 1370 1371 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1372 /// Difference for unmatched callees that only present in one profile in a 1373 /// matched caller function. 1374 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1375 SampleOverlapStats &FuncOverlap, 1376 double &Difference, MatchStatus Status); 1377 1378 /// This function updates sample overlap statistics of an overlap function in 1379 /// base and test profile. It also calculates a function-internal similarity 1380 /// FIS as follows: 1381 /// For offsets i that have samples in at least one profile in this 1382 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1383 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1384 /// 0.0 meaning no overlap. 1385 double computeSampleFunctionInternalOverlap( 1386 const sampleprof::FunctionSamples &BaseFunc, 1387 const sampleprof::FunctionSamples &TestFunc, 1388 SampleOverlapStats &FuncOverlap); 1389 1390 /// Function-level similarity (FS) is a weighted value over function internal 1391 /// similarity (FIS). This function computes a function's FS from its FIS by 1392 /// applying the weight. 1393 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1394 uint64_t TestFuncSample) const; 1395 1396 /// The function-level similarity FS(A) for a function A is computed as 1397 /// follows: 1398 /// Compute a function-internal similarity FIS(A) by 1399 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1400 /// function A in base profile WB(A), and the weight of function A in test 1401 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1402 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1403 double 1404 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1405 const sampleprof::FunctionSamples *TestFunc, 1406 SampleOverlapStats *FuncOverlap, 1407 uint64_t BaseFuncSample, 1408 uint64_t TestFuncSample); 1409 1410 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1411 /// similarities (FS). This method weights the FS value by the function 1412 /// weights in the base and test profiles for the aggregation. 1413 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1414 uint64_t TestFuncSample) const; 1415 }; 1416 } // end anonymous namespace 1417 1418 bool SampleOverlapAggregator::detectZeroSampleProfile( 1419 raw_fd_ostream &OS) const { 1420 bool HaveZeroSample = false; 1421 if (ProfOverlap.BaseSample == 0) { 1422 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1423 HaveZeroSample = true; 1424 } 1425 if (ProfOverlap.TestSample == 0) { 1426 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1427 HaveZeroSample = true; 1428 } 1429 return HaveZeroSample; 1430 } 1431 1432 double SampleOverlapAggregator::computeBlockSimilarity( 1433 uint64_t BaseSample, uint64_t TestSample, 1434 const SampleOverlapStats &FuncOverlap) const { 1435 double BaseFrac = 0.0; 1436 double TestFrac = 0.0; 1437 if (FuncOverlap.BaseSample > 0) 1438 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1439 if (FuncOverlap.TestSample > 0) 1440 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1441 return 1.0 - std::fabs(BaseFrac - TestFrac); 1442 } 1443 1444 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1445 uint64_t TestSample, 1446 uint64_t HotBlockCount) { 1447 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1448 bool IsTestHot = (TestSample >= TestHotThreshold); 1449 if (!IsBaseHot && !IsTestHot) 1450 return; 1451 1452 HotBlockOverlap.UnionCount += HotBlockCount; 1453 if (IsBaseHot) 1454 HotBlockOverlap.BaseCount += HotBlockCount; 1455 if (IsTestHot) 1456 HotBlockOverlap.TestCount += HotBlockCount; 1457 if (IsBaseHot && IsTestHot) 1458 HotBlockOverlap.OverlapCount += HotBlockCount; 1459 } 1460 1461 void SampleOverlapAggregator::getHotFunctions( 1462 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 1463 uint64_t HotThreshold) const { 1464 for (const auto &F : ProfStats) { 1465 if (isFunctionHot(F.second, HotThreshold)) 1466 HotFunc.emplace(F.first, F.second); 1467 } 1468 } 1469 1470 void SampleOverlapAggregator::computeHotFuncOverlap() { 1471 FuncSampleStatsMap BaseHotFunc; 1472 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1473 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1474 1475 FuncSampleStatsMap TestHotFunc; 1476 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1477 HotFuncOverlap.TestCount = TestHotFunc.size(); 1478 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1479 1480 for (const auto &F : BaseHotFunc) { 1481 if (TestHotFunc.count(F.first)) 1482 ++HotFuncOverlap.OverlapCount; 1483 else 1484 ++HotFuncOverlap.UnionCount; 1485 } 1486 } 1487 1488 void SampleOverlapAggregator::updateOverlapStatsForFunction( 1489 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 1490 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 1491 assert(Status != MS_None && 1492 "Match status should be updated before updating overlap statistics"); 1493 if (Status == MS_FirstUnique) { 1494 TestSample = 0; 1495 FuncOverlap.BaseUniqueSample += BaseSample; 1496 } else if (Status == MS_SecondUnique) { 1497 BaseSample = 0; 1498 FuncOverlap.TestUniqueSample += TestSample; 1499 } else { 1500 ++FuncOverlap.OverlapCount; 1501 } 1502 1503 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 1504 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 1505 Difference += 1506 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 1507 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 1508 } 1509 1510 void SampleOverlapAggregator::updateForUnmatchedCallee( 1511 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 1512 double &Difference, MatchStatus Status) { 1513 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 1514 "Status must be either of the two unmatched cases"); 1515 FuncSampleStats FuncStats; 1516 if (Status == MS_FirstUnique) { 1517 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 1518 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 1519 FuncStats.HotBlockCount, FuncOverlap, 1520 Difference, Status); 1521 } else { 1522 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 1523 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 1524 FuncStats.HotBlockCount, FuncOverlap, 1525 Difference, Status); 1526 } 1527 } 1528 1529 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 1530 const sampleprof::FunctionSamples &BaseFunc, 1531 const sampleprof::FunctionSamples &TestFunc, 1532 SampleOverlapStats &FuncOverlap) { 1533 1534 using namespace sampleprof; 1535 1536 double Difference = 0; 1537 1538 // Accumulate Difference for regular line/block samples in the function. 1539 // We match them through sort-merge join algorithm because 1540 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 1541 // by their offsets. 1542 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 1543 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 1544 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 1545 BlockIterStep.updateOneStep(); 1546 while (!BlockIterStep.areBothFinished()) { 1547 uint64_t BaseSample = 1548 BlockIterStep.isFirstFinished() 1549 ? 0 1550 : BlockIterStep.getFirstIter()->second.getSamples(); 1551 uint64_t TestSample = 1552 BlockIterStep.isSecondFinished() 1553 ? 0 1554 : BlockIterStep.getSecondIter()->second.getSamples(); 1555 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 1556 Difference, BlockIterStep.getMatchStatus()); 1557 1558 BlockIterStep.updateOneStep(); 1559 } 1560 1561 // Accumulate Difference for callsite lines in the function. We match 1562 // them through sort-merge algorithm because 1563 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 1564 // ordered by their offsets. 1565 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 1566 BaseFunc.getCallsiteSamples().cbegin(), 1567 BaseFunc.getCallsiteSamples().cend(), 1568 TestFunc.getCallsiteSamples().cbegin(), 1569 TestFunc.getCallsiteSamples().cend()); 1570 CallsiteIterStep.updateOneStep(); 1571 while (!CallsiteIterStep.areBothFinished()) { 1572 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 1573 assert(CallsiteStepStatus != MS_None && 1574 "Match status should be updated before entering loop body"); 1575 1576 if (CallsiteStepStatus != MS_Match) { 1577 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 1578 ? CallsiteIterStep.getFirstIter() 1579 : CallsiteIterStep.getSecondIter(); 1580 for (const auto &F : Callsite->second) 1581 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 1582 CallsiteStepStatus); 1583 } else { 1584 // There may be multiple inlinees at the same offset, so we need to try 1585 // matching all of them. This match is implemented through sort-merge 1586 // algorithm because callsite records at the same offset are ordered by 1587 // function names. 1588 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 1589 CallsiteIterStep.getFirstIter()->second.cbegin(), 1590 CallsiteIterStep.getFirstIter()->second.cend(), 1591 CallsiteIterStep.getSecondIter()->second.cbegin(), 1592 CallsiteIterStep.getSecondIter()->second.cend()); 1593 CalleeIterStep.updateOneStep(); 1594 while (!CalleeIterStep.areBothFinished()) { 1595 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 1596 if (CalleeStepStatus != MS_Match) { 1597 auto Callee = (CalleeStepStatus == MS_FirstUnique) 1598 ? CalleeIterStep.getFirstIter() 1599 : CalleeIterStep.getSecondIter(); 1600 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 1601 CalleeStepStatus); 1602 } else { 1603 // An inlined function can contain other inlinees inside, so compute 1604 // the Difference recursively. 1605 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 1606 CalleeIterStep.getFirstIter()->second, 1607 CalleeIterStep.getSecondIter()->second, 1608 FuncOverlap); 1609 } 1610 CalleeIterStep.updateOneStep(); 1611 } 1612 } 1613 CallsiteIterStep.updateOneStep(); 1614 } 1615 1616 // Difference reflects the total differences of line/block samples in this 1617 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 1618 // reflect the similarity between function profiles in [0.0f to 1.0f]. 1619 return (2.0 - Difference) / 2; 1620 } 1621 1622 double SampleOverlapAggregator::weightForFuncSimilarity( 1623 double FuncInternalSimilarity, uint64_t BaseFuncSample, 1624 uint64_t TestFuncSample) const { 1625 // Compute the weight as the distance between the function weights in two 1626 // profiles. 1627 double BaseFrac = 0.0; 1628 double TestFrac = 0.0; 1629 assert(ProfOverlap.BaseSample > 0 && 1630 "Total samples in base profile should be greater than 0"); 1631 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 1632 assert(ProfOverlap.TestSample > 0 && 1633 "Total samples in test profile should be greater than 0"); 1634 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 1635 double WeightDistance = std::fabs(BaseFrac - TestFrac); 1636 1637 // Take WeightDistance into the similarity. 1638 return FuncInternalSimilarity * (1 - WeightDistance); 1639 } 1640 1641 double 1642 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 1643 uint64_t BaseFuncSample, 1644 uint64_t TestFuncSample) const { 1645 1646 double BaseFrac = 0.0; 1647 double TestFrac = 0.0; 1648 assert(ProfOverlap.BaseSample > 0 && 1649 "Total samples in base profile should be greater than 0"); 1650 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 1651 assert(ProfOverlap.TestSample > 0 && 1652 "Total samples in test profile should be greater than 0"); 1653 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 1654 return FuncSimilarity * (BaseFrac + TestFrac); 1655 } 1656 1657 double SampleOverlapAggregator::computeSampleFunctionOverlap( 1658 const sampleprof::FunctionSamples *BaseFunc, 1659 const sampleprof::FunctionSamples *TestFunc, 1660 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 1661 uint64_t TestFuncSample) { 1662 // Default function internal similarity before weighted, meaning two functions 1663 // has no overlap. 1664 const double DefaultFuncInternalSimilarity = 0; 1665 double FuncSimilarity; 1666 double FuncInternalSimilarity; 1667 1668 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 1669 // In this case, we use DefaultFuncInternalSimilarity as the function internal 1670 // similarity. 1671 if (!BaseFunc || !TestFunc) { 1672 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 1673 } else { 1674 assert(FuncOverlap != nullptr && 1675 "FuncOverlap should be provided in this case"); 1676 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 1677 *BaseFunc, *TestFunc, *FuncOverlap); 1678 // Now, FuncInternalSimilarity may be a little less than 0 due to 1679 // imprecision of floating point accumulations. Make it zero if the 1680 // difference is below Epsilon. 1681 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 1682 ? 0 1683 : FuncInternalSimilarity; 1684 } 1685 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 1686 BaseFuncSample, TestFuncSample); 1687 return FuncSimilarity; 1688 } 1689 1690 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 1691 using namespace sampleprof; 1692 1693 std::unordered_map<SampleContext, const FunctionSamples *, 1694 SampleContext::Hash> 1695 BaseFuncProf; 1696 const auto &BaseProfiles = BaseReader->getProfiles(); 1697 for (const auto &BaseFunc : BaseProfiles) { 1698 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 1699 } 1700 ProfOverlap.UnionCount = BaseFuncProf.size(); 1701 1702 const auto &TestProfiles = TestReader->getProfiles(); 1703 for (const auto &TestFunc : TestProfiles) { 1704 SampleOverlapStats FuncOverlap; 1705 FuncOverlap.TestName = TestFunc.second.getContext(); 1706 assert(TestStats.count(FuncOverlap.TestName) && 1707 "TestStats should have records for all functions in test profile " 1708 "except inlinees"); 1709 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 1710 1711 bool Matched = false; 1712 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 1713 if (Match == BaseFuncProf.end()) { 1714 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 1715 ++ProfOverlap.TestUniqueCount; 1716 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 1717 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 1718 1719 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 1720 1721 double FuncSimilarity = computeSampleFunctionOverlap( 1722 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 1723 ProfOverlap.Similarity += 1724 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 1725 1726 ++ProfOverlap.UnionCount; 1727 ProfOverlap.UnionSample += FuncStats.SampleSum; 1728 } else { 1729 ++ProfOverlap.OverlapCount; 1730 1731 // Two functions match with each other. Compute function-level overlap and 1732 // aggregate them into profile-level overlap. 1733 FuncOverlap.BaseName = Match->second->getContext(); 1734 assert(BaseStats.count(FuncOverlap.BaseName) && 1735 "BaseStats should have records for all functions in base profile " 1736 "except inlinees"); 1737 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 1738 1739 FuncOverlap.Similarity = computeSampleFunctionOverlap( 1740 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 1741 FuncOverlap.TestSample); 1742 ProfOverlap.Similarity += 1743 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 1744 FuncOverlap.TestSample); 1745 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 1746 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 1747 1748 // Accumulate the percentage of base unique and test unique samples into 1749 // ProfOverlap. 1750 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 1751 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 1752 1753 // Remove matched base functions for later reporting functions not found 1754 // in test profile. 1755 BaseFuncProf.erase(Match); 1756 Matched = true; 1757 } 1758 1759 // Print function-level similarity information if specified by options. 1760 assert(TestStats.count(FuncOverlap.TestName) && 1761 "TestStats should have records for all functions in test profile " 1762 "except inlinees"); 1763 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 1764 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 1765 (Matched && !FuncFilter.NameFilter.empty() && 1766 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 1767 std::string::npos)) { 1768 assert(ProfOverlap.BaseSample > 0 && 1769 "Total samples in base profile should be greater than 0"); 1770 FuncOverlap.BaseWeight = 1771 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 1772 assert(ProfOverlap.TestSample > 0 && 1773 "Total samples in test profile should be greater than 0"); 1774 FuncOverlap.TestWeight = 1775 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 1776 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 1777 } 1778 } 1779 1780 // Traverse through functions in base profile but not in test profile. 1781 for (const auto &F : BaseFuncProf) { 1782 assert(BaseStats.count(F.second->getContext()) && 1783 "BaseStats should have records for all functions in base profile " 1784 "except inlinees"); 1785 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 1786 ++ProfOverlap.BaseUniqueCount; 1787 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 1788 1789 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 1790 1791 double FuncSimilarity = computeSampleFunctionOverlap( 1792 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 1793 ProfOverlap.Similarity += 1794 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 1795 1796 ProfOverlap.UnionSample += FuncStats.SampleSum; 1797 } 1798 1799 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 1800 // of floating point accumulations. Make it 1.0 if the difference is below 1801 // Epsilon. 1802 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 1803 ? 1 1804 : ProfOverlap.Similarity; 1805 1806 computeHotFuncOverlap(); 1807 } 1808 1809 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 1810 const auto &BaseProf = BaseReader->getProfiles(); 1811 for (const auto &I : BaseProf) { 1812 ++ProfOverlap.BaseCount; 1813 FuncSampleStats FuncStats; 1814 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 1815 ProfOverlap.BaseSample += FuncStats.SampleSum; 1816 BaseStats.emplace(I.second.getContext(), FuncStats); 1817 } 1818 1819 const auto &TestProf = TestReader->getProfiles(); 1820 for (const auto &I : TestProf) { 1821 ++ProfOverlap.TestCount; 1822 FuncSampleStats FuncStats; 1823 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 1824 ProfOverlap.TestSample += FuncStats.SampleSum; 1825 TestStats.emplace(I.second.getContext(), FuncStats); 1826 } 1827 1828 ProfOverlap.BaseName = StringRef(BaseFilename); 1829 ProfOverlap.TestName = StringRef(TestFilename); 1830 } 1831 1832 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 1833 using namespace sampleprof; 1834 1835 if (FuncSimilarityDump.empty()) 1836 return; 1837 1838 formatted_raw_ostream FOS(OS); 1839 FOS << "Function-level details:\n"; 1840 FOS << "Base weight"; 1841 FOS.PadToColumn(TestWeightCol); 1842 FOS << "Test weight"; 1843 FOS.PadToColumn(SimilarityCol); 1844 FOS << "Similarity"; 1845 FOS.PadToColumn(OverlapCol); 1846 FOS << "Overlap"; 1847 FOS.PadToColumn(BaseUniqueCol); 1848 FOS << "Base unique"; 1849 FOS.PadToColumn(TestUniqueCol); 1850 FOS << "Test unique"; 1851 FOS.PadToColumn(BaseSampleCol); 1852 FOS << "Base samples"; 1853 FOS.PadToColumn(TestSampleCol); 1854 FOS << "Test samples"; 1855 FOS.PadToColumn(FuncNameCol); 1856 FOS << "Function name\n"; 1857 for (const auto &F : FuncSimilarityDump) { 1858 double OverlapPercent = 1859 F.second.UnionSample > 0 1860 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 1861 : 0; 1862 double BaseUniquePercent = 1863 F.second.BaseSample > 0 1864 ? static_cast<double>(F.second.BaseUniqueSample) / 1865 F.second.BaseSample 1866 : 0; 1867 double TestUniquePercent = 1868 F.second.TestSample > 0 1869 ? static_cast<double>(F.second.TestUniqueSample) / 1870 F.second.TestSample 1871 : 0; 1872 1873 FOS << format("%.2f%%", F.second.BaseWeight * 100); 1874 FOS.PadToColumn(TestWeightCol); 1875 FOS << format("%.2f%%", F.second.TestWeight * 100); 1876 FOS.PadToColumn(SimilarityCol); 1877 FOS << format("%.2f%%", F.second.Similarity * 100); 1878 FOS.PadToColumn(OverlapCol); 1879 FOS << format("%.2f%%", OverlapPercent * 100); 1880 FOS.PadToColumn(BaseUniqueCol); 1881 FOS << format("%.2f%%", BaseUniquePercent * 100); 1882 FOS.PadToColumn(TestUniqueCol); 1883 FOS << format("%.2f%%", TestUniquePercent * 100); 1884 FOS.PadToColumn(BaseSampleCol); 1885 FOS << F.second.BaseSample; 1886 FOS.PadToColumn(TestSampleCol); 1887 FOS << F.second.TestSample; 1888 FOS.PadToColumn(FuncNameCol); 1889 FOS << F.second.TestName.toString() << "\n"; 1890 } 1891 } 1892 1893 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 1894 OS << "Profile overlap infomation for base_profile: " 1895 << ProfOverlap.BaseName.toString() 1896 << " and test_profile: " << ProfOverlap.TestName.toString() 1897 << "\nProgram level:\n"; 1898 1899 OS << " Whole program profile similarity: " 1900 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 1901 1902 assert(ProfOverlap.UnionSample > 0 && 1903 "Total samples in two profile should be greater than 0"); 1904 double OverlapPercent = 1905 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 1906 assert(ProfOverlap.BaseSample > 0 && 1907 "Total samples in base profile should be greater than 0"); 1908 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 1909 ProfOverlap.BaseSample; 1910 assert(ProfOverlap.TestSample > 0 && 1911 "Total samples in test profile should be greater than 0"); 1912 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 1913 ProfOverlap.TestSample; 1914 1915 OS << " Whole program sample overlap: " 1916 << format("%.3f%%", OverlapPercent * 100) << "\n"; 1917 OS << " percentage of samples unique in base profile: " 1918 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 1919 OS << " percentage of samples unique in test profile: " 1920 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 1921 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 1922 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 1923 1924 assert(ProfOverlap.UnionCount > 0 && 1925 "There should be at least one function in two input profiles"); 1926 double FuncOverlapPercent = 1927 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 1928 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 1929 << "\n"; 1930 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 1931 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 1932 << "\n"; 1933 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 1934 << "\n"; 1935 } 1936 1937 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 1938 raw_fd_ostream &OS) const { 1939 assert(HotFuncOverlap.UnionCount > 0 && 1940 "There should be at least one hot function in two input profiles"); 1941 OS << " Hot-function overlap: " 1942 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 1943 HotFuncOverlap.UnionCount * 100) 1944 << "\n"; 1945 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 1946 OS << " hot functions unique in base profile: " 1947 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 1948 OS << " hot functions unique in test profile: " 1949 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 1950 1951 assert(HotBlockOverlap.UnionCount > 0 && 1952 "There should be at least one hot block in two input profiles"); 1953 OS << " Hot-block overlap: " 1954 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 1955 HotBlockOverlap.UnionCount * 100) 1956 << "\n"; 1957 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 1958 OS << " hot blocks unique in base profile: " 1959 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 1960 OS << " hot blocks unique in test profile: " 1961 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 1962 } 1963 1964 std::error_code SampleOverlapAggregator::loadProfiles() { 1965 using namespace sampleprof; 1966 1967 LLVMContext Context; 1968 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, 1969 FSDiscriminatorPassOption); 1970 if (std::error_code EC = BaseReaderOrErr.getError()) 1971 exitWithErrorCode(EC, BaseFilename); 1972 1973 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, 1974 FSDiscriminatorPassOption); 1975 if (std::error_code EC = TestReaderOrErr.getError()) 1976 exitWithErrorCode(EC, TestFilename); 1977 1978 BaseReader = std::move(BaseReaderOrErr.get()); 1979 TestReader = std::move(TestReaderOrErr.get()); 1980 1981 if (std::error_code EC = BaseReader->read()) 1982 exitWithErrorCode(EC, BaseFilename); 1983 if (std::error_code EC = TestReader->read()) 1984 exitWithErrorCode(EC, TestFilename); 1985 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 1986 exitWithError( 1987 "cannot compare probe-based profile with non-probe-based profile"); 1988 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 1989 exitWithError("cannot compare CS profile with non-CS profile"); 1990 1991 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 1992 // profile summary. 1993 ProfileSummary &BasePS = BaseReader->getSummary(); 1994 ProfileSummary &TestPS = TestReader->getSummary(); 1995 BaseHotThreshold = 1996 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 1997 TestHotThreshold = 1998 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 1999 2000 return std::error_code(); 2001 } 2002 2003 void overlapSampleProfile(const std::string &BaseFilename, 2004 const std::string &TestFilename, 2005 const OverlapFuncFilters &FuncFilter, 2006 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2007 using namespace sampleprof; 2008 2009 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2010 // report 2--3 places after decimal point in percentage numbers. 2011 SampleOverlapAggregator OverlapAggr( 2012 BaseFilename, TestFilename, 2013 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2014 if (std::error_code EC = OverlapAggr.loadProfiles()) 2015 exitWithErrorCode(EC); 2016 2017 OverlapAggr.initializeSampleProfileOverlap(); 2018 if (OverlapAggr.detectZeroSampleProfile(OS)) 2019 return; 2020 2021 OverlapAggr.computeSampleProfileOverlap(OS); 2022 2023 OverlapAggr.dumpProgramSummary(OS); 2024 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2025 OverlapAggr.dumpFuncSimilarity(OS); 2026 } 2027 2028 static int overlap_main(int argc, const char *argv[]) { 2029 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 2030 cl::desc("<base profile file>")); 2031 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 2032 cl::desc("<test profile file>")); 2033 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"), 2034 cl::desc("Output file")); 2035 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output)); 2036 cl::opt<bool> IsCS( 2037 "cs", cl::init(false), 2038 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO.")); 2039 cl::opt<unsigned long long> ValueCutoff( 2040 "value-cutoff", cl::init(-1), 2041 cl::desc( 2042 "Function level overlap information for every function (with calling " 2043 "context for csspgo) in test " 2044 "profile with max count value greater then the parameter value")); 2045 cl::opt<std::string> FuncNameFilter( 2046 "function", 2047 cl::desc("Function level overlap information for matching functions. For " 2048 "CSSPGO this takes a a function name with calling context")); 2049 cl::opt<unsigned long long> SimilarityCutoff( 2050 "similarity-cutoff", cl::init(0), 2051 cl::desc("For sample profiles, list function names (with calling context " 2052 "for csspgo) for overlapped functions " 2053 "with similarities below the cutoff (percentage times 10000).")); 2054 cl::opt<ProfileKinds> ProfileKind( 2055 cl::desc("Profile kind:"), cl::init(instr), 2056 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2057 clEnumVal(sample, "Sample profile"))); 2058 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n"); 2059 2060 std::error_code EC; 2061 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF); 2062 if (EC) 2063 exitWithErrorCode(EC, Output); 2064 2065 if (ProfileKind == instr) 2066 overlapInstrProfile(BaseFilename, TestFilename, 2067 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS, 2068 IsCS); 2069 else 2070 overlapSampleProfile(BaseFilename, TestFilename, 2071 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, 2072 SimilarityCutoff, OS); 2073 2074 return 0; 2075 } 2076 2077 namespace { 2078 struct ValueSitesStats { 2079 ValueSitesStats() 2080 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0), 2081 TotalNumValues(0) {} 2082 uint64_t TotalNumValueSites; 2083 uint64_t TotalNumValueSitesWithValueProfile; 2084 uint64_t TotalNumValues; 2085 std::vector<unsigned> ValueSitesHistogram; 2086 }; 2087 } // namespace 2088 2089 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2090 ValueSitesStats &Stats, raw_fd_ostream &OS, 2091 InstrProfSymtab *Symtab) { 2092 uint32_t NS = Func.getNumValueSites(VK); 2093 Stats.TotalNumValueSites += NS; 2094 for (size_t I = 0; I < NS; ++I) { 2095 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2096 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2097 Stats.TotalNumValues += NV; 2098 if (NV) { 2099 Stats.TotalNumValueSitesWithValueProfile++; 2100 if (NV > Stats.ValueSitesHistogram.size()) 2101 Stats.ValueSitesHistogram.resize(NV, 0); 2102 Stats.ValueSitesHistogram[NV - 1]++; 2103 } 2104 2105 uint64_t SiteSum = 0; 2106 for (uint32_t V = 0; V < NV; V++) 2107 SiteSum += VD[V].Count; 2108 if (SiteSum == 0) 2109 SiteSum = 1; 2110 2111 for (uint32_t V = 0; V < NV; V++) { 2112 OS << "\t[ " << format("%2u", I) << ", "; 2113 if (Symtab == nullptr) 2114 OS << format("%4" PRIu64, VD[V].Value); 2115 else 2116 OS << Symtab->getFuncName(VD[V].Value); 2117 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2118 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2119 } 2120 } 2121 } 2122 2123 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2124 ValueSitesStats &Stats) { 2125 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2126 OS << " Total number of sites with values: " 2127 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2128 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2129 2130 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2131 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2132 if (Stats.ValueSitesHistogram[I] > 0) 2133 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2134 } 2135 } 2136 2137 static int showInstrProfile(const std::string &Filename, bool ShowCounts, 2138 uint32_t TopN, bool ShowIndirectCallTargets, 2139 bool ShowMemOPSizes, bool ShowDetailedSummary, 2140 std::vector<uint32_t> DetailedSummaryCutoffs, 2141 bool ShowAllFunctions, bool ShowCS, 2142 uint64_t ValueCutoff, bool OnlyListBelow, 2143 const std::string &ShowFunction, bool TextFormat, 2144 bool ShowBinaryIds, bool ShowCovered, 2145 raw_fd_ostream &OS) { 2146 auto ReaderOrErr = InstrProfReader::create(Filename); 2147 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2148 if (ShowDetailedSummary && Cutoffs.empty()) { 2149 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2150 } 2151 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2152 if (Error E = ReaderOrErr.takeError()) 2153 exitWithError(std::move(E), Filename); 2154 2155 auto Reader = std::move(ReaderOrErr.get()); 2156 bool IsIRInstr = Reader->isIRLevelProfile(); 2157 size_t ShownFunctions = 0; 2158 size_t BelowCutoffFunctions = 0; 2159 int NumVPKind = IPVK_Last - IPVK_First + 1; 2160 std::vector<ValueSitesStats> VPStats(NumVPKind); 2161 2162 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2163 const std::pair<std::string, uint64_t> &v2) { 2164 return v1.second > v2.second; 2165 }; 2166 2167 std::priority_queue<std::pair<std::string, uint64_t>, 2168 std::vector<std::pair<std::string, uint64_t>>, 2169 decltype(MinCmp)> 2170 HottestFuncs(MinCmp); 2171 2172 if (!TextFormat && OnlyListBelow) { 2173 OS << "The list of functions with the maximum counter less than " 2174 << ValueCutoff << ":\n"; 2175 } 2176 2177 // Add marker so that IR-level instrumentation round-trips properly. 2178 if (TextFormat && IsIRInstr) 2179 OS << ":ir\n"; 2180 2181 for (const auto &Func : *Reader) { 2182 if (Reader->isIRLevelProfile()) { 2183 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2184 if (FuncIsCS != ShowCS) 2185 continue; 2186 } 2187 bool Show = ShowAllFunctions || 2188 (!ShowFunction.empty() && Func.Name.contains(ShowFunction)); 2189 2190 bool doTextFormatDump = (Show && TextFormat); 2191 2192 if (doTextFormatDump) { 2193 InstrProfSymtab &Symtab = Reader->getSymtab(); 2194 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2195 OS); 2196 continue; 2197 } 2198 2199 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2200 Builder.addRecord(Func); 2201 2202 if (ShowCovered) { 2203 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2204 OS << Func.Name << "\n"; 2205 continue; 2206 } 2207 2208 uint64_t FuncMax = 0; 2209 uint64_t FuncSum = 0; 2210 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2211 if (Func.Counts[I] == (uint64_t)-1) 2212 continue; 2213 FuncMax = std::max(FuncMax, Func.Counts[I]); 2214 FuncSum += Func.Counts[I]; 2215 } 2216 2217 if (FuncMax < ValueCutoff) { 2218 ++BelowCutoffFunctions; 2219 if (OnlyListBelow) { 2220 OS << " " << Func.Name << ": (Max = " << FuncMax 2221 << " Sum = " << FuncSum << ")\n"; 2222 } 2223 continue; 2224 } else if (OnlyListBelow) 2225 continue; 2226 2227 if (TopN) { 2228 if (HottestFuncs.size() == TopN) { 2229 if (HottestFuncs.top().second < FuncMax) { 2230 HottestFuncs.pop(); 2231 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2232 } 2233 } else 2234 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2235 } 2236 2237 if (Show) { 2238 if (!ShownFunctions) 2239 OS << "Counters:\n"; 2240 2241 ++ShownFunctions; 2242 2243 OS << " " << Func.Name << ":\n" 2244 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2245 << " Counters: " << Func.Counts.size() << "\n"; 2246 if (!IsIRInstr) 2247 OS << " Function count: " << Func.Counts[0] << "\n"; 2248 2249 if (ShowIndirectCallTargets) 2250 OS << " Indirect Call Site Count: " 2251 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2252 2253 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2254 if (ShowMemOPSizes && NumMemOPCalls > 0) 2255 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2256 << "\n"; 2257 2258 if (ShowCounts) { 2259 OS << " Block counts: ["; 2260 size_t Start = (IsIRInstr ? 0 : 1); 2261 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2262 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2263 } 2264 OS << "]\n"; 2265 } 2266 2267 if (ShowIndirectCallTargets) { 2268 OS << " Indirect Target Results:\n"; 2269 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2270 VPStats[IPVK_IndirectCallTarget], OS, 2271 &(Reader->getSymtab())); 2272 } 2273 2274 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2275 OS << " Memory Intrinsic Size Results:\n"; 2276 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2277 nullptr); 2278 } 2279 } 2280 } 2281 if (Reader->hasError()) 2282 exitWithError(Reader->getError(), Filename); 2283 2284 if (TextFormat || ShowCovered) 2285 return 0; 2286 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2287 bool IsIR = Reader->isIRLevelProfile(); 2288 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2289 if (IsIR) 2290 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2291 OS << "\n"; 2292 if (ShowAllFunctions || !ShowFunction.empty()) 2293 OS << "Functions shown: " << ShownFunctions << "\n"; 2294 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2295 if (ValueCutoff > 0) { 2296 OS << "Number of functions with maximum count (< " << ValueCutoff 2297 << "): " << BelowCutoffFunctions << "\n"; 2298 OS << "Number of functions with maximum count (>= " << ValueCutoff 2299 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2300 } 2301 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2302 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2303 2304 if (TopN) { 2305 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2306 while (!HottestFuncs.empty()) { 2307 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2308 HottestFuncs.pop(); 2309 } 2310 OS << "Top " << TopN 2311 << " functions with the largest internal block counts: \n"; 2312 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2313 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2314 } 2315 2316 if (ShownFunctions && ShowIndirectCallTargets) { 2317 OS << "Statistics for indirect call sites profile:\n"; 2318 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2319 VPStats[IPVK_IndirectCallTarget]); 2320 } 2321 2322 if (ShownFunctions && ShowMemOPSizes) { 2323 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2324 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2325 } 2326 2327 if (ShowDetailedSummary) { 2328 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2329 OS << "Total count: " << PS->getTotalCount() << "\n"; 2330 PS->printDetailedSummary(OS); 2331 } 2332 2333 if (ShowBinaryIds) 2334 if (Error E = Reader->printBinaryIds(OS)) 2335 exitWithError(std::move(E), Filename); 2336 2337 return 0; 2338 } 2339 2340 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2341 raw_fd_ostream &OS) { 2342 if (!Reader->dumpSectionInfo(OS)) { 2343 WithColor::warning() << "-show-sec-info-only is only supported for " 2344 << "sample profile in extbinary format and is " 2345 << "ignored for other formats.\n"; 2346 return; 2347 } 2348 } 2349 2350 namespace { 2351 struct HotFuncInfo { 2352 std::string FuncName; 2353 uint64_t TotalCount; 2354 double TotalCountPercent; 2355 uint64_t MaxCount; 2356 uint64_t EntryCount; 2357 2358 HotFuncInfo() 2359 : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {} 2360 2361 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2362 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 2363 MaxCount(MS), EntryCount(ES) {} 2364 }; 2365 } // namespace 2366 2367 // Print out detailed information about hot functions in PrintValues vector. 2368 // Users specify titles and offset of every columns through ColumnTitle and 2369 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2370 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2371 // print out or let it be an empty string. 2372 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2373 const std::vector<int> &ColumnOffset, 2374 const std::vector<HotFuncInfo> &PrintValues, 2375 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2376 uint64_t HotProfCount, uint64_t TotalProfCount, 2377 const std::string &HotFuncMetric, 2378 uint32_t TopNFunctions, raw_fd_ostream &OS) { 2379 assert(ColumnOffset.size() == ColumnTitle.size() && 2380 "ColumnOffset and ColumnTitle should have the same size"); 2381 assert(ColumnTitle.size() >= 4 && 2382 "ColumnTitle should have at least 4 elements"); 2383 assert(TotalFuncCount > 0 && 2384 "There should be at least one function in the profile"); 2385 double TotalProfPercent = 0; 2386 if (TotalProfCount > 0) 2387 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2388 2389 formatted_raw_ostream FOS(OS); 2390 FOS << HotFuncCount << " out of " << TotalFuncCount 2391 << " functions with profile (" 2392 << format("%.2f%%", 2393 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2394 << ") are considered hot functions"; 2395 if (!HotFuncMetric.empty()) 2396 FOS << " (" << HotFuncMetric << ")"; 2397 FOS << ".\n"; 2398 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2399 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2400 2401 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2402 FOS.PadToColumn(ColumnOffset[I]); 2403 FOS << ColumnTitle[I]; 2404 } 2405 FOS << "\n"; 2406 2407 uint32_t Count = 0; 2408 for (const auto &R : PrintValues) { 2409 if (TopNFunctions && (Count++ == TopNFunctions)) 2410 break; 2411 FOS.PadToColumn(ColumnOffset[0]); 2412 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2413 FOS.PadToColumn(ColumnOffset[1]); 2414 FOS << R.MaxCount; 2415 FOS.PadToColumn(ColumnOffset[2]); 2416 FOS << R.EntryCount; 2417 FOS.PadToColumn(ColumnOffset[3]); 2418 FOS << R.FuncName << "\n"; 2419 } 2420 } 2421 2422 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 2423 ProfileSummary &PS, uint32_t TopN, 2424 raw_fd_ostream &OS) { 2425 using namespace sampleprof; 2426 2427 const uint32_t HotFuncCutoff = 990000; 2428 auto &SummaryVector = PS.getDetailedSummary(); 2429 uint64_t MinCountThreshold = 0; 2430 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2431 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2432 MinCountThreshold = SummaryEntry.MinCount; 2433 break; 2434 } 2435 } 2436 2437 // Traverse all functions in the profile and keep only hot functions. 2438 // The following loop also calculates the sum of total samples of all 2439 // functions. 2440 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2441 std::greater<uint64_t>> 2442 HotFunc; 2443 uint64_t ProfileTotalSample = 0; 2444 uint64_t HotFuncSample = 0; 2445 uint64_t HotFuncCount = 0; 2446 2447 for (const auto &I : Profiles) { 2448 FuncSampleStats FuncStats; 2449 const FunctionSamples &FuncProf = I.second; 2450 ProfileTotalSample += FuncProf.getTotalSamples(); 2451 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2452 2453 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2454 HotFunc.emplace(FuncProf.getTotalSamples(), 2455 std::make_pair(&(I.second), FuncStats.MaxSample)); 2456 HotFuncSample += FuncProf.getTotalSamples(); 2457 ++HotFuncCount; 2458 } 2459 } 2460 2461 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2462 "Entry sample", "Function name"}; 2463 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2464 std::string Metric = 2465 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2466 std::vector<HotFuncInfo> PrintValues; 2467 for (const auto &FuncPair : HotFunc) { 2468 const FunctionSamples &Func = *FuncPair.second.first; 2469 double TotalSamplePercent = 2470 (ProfileTotalSample > 0) 2471 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2472 : 0; 2473 PrintValues.emplace_back( 2474 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 2475 TotalSamplePercent, FuncPair.second.second, 2476 Func.getHeadSamplesEstimate())); 2477 } 2478 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2479 Profiles.size(), HotFuncSample, ProfileTotalSample, 2480 Metric, TopN, OS); 2481 2482 return 0; 2483 } 2484 2485 static int showSampleProfile(const std::string &Filename, bool ShowCounts, 2486 uint32_t TopN, bool ShowAllFunctions, 2487 bool ShowDetailedSummary, 2488 const std::string &ShowFunction, 2489 bool ShowProfileSymbolList, 2490 bool ShowSectionInfoOnly, bool ShowHotFuncList, 2491 raw_fd_ostream &OS) { 2492 using namespace sampleprof; 2493 LLVMContext Context; 2494 auto ReaderOrErr = 2495 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption); 2496 if (std::error_code EC = ReaderOrErr.getError()) 2497 exitWithErrorCode(EC, Filename); 2498 2499 auto Reader = std::move(ReaderOrErr.get()); 2500 if (ShowSectionInfoOnly) { 2501 showSectionInfo(Reader.get(), OS); 2502 return 0; 2503 } 2504 2505 if (std::error_code EC = Reader->read()) 2506 exitWithErrorCode(EC, Filename); 2507 2508 if (ShowAllFunctions || ShowFunction.empty()) 2509 Reader->dump(OS); 2510 else 2511 // TODO: parse context string to support filtering by contexts. 2512 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS); 2513 2514 if (ShowProfileSymbolList) { 2515 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 2516 Reader->getProfileSymbolList(); 2517 ReaderList->dump(OS); 2518 } 2519 2520 if (ShowDetailedSummary) { 2521 auto &PS = Reader->getSummary(); 2522 PS.printSummary(OS); 2523 PS.printDetailedSummary(OS); 2524 } 2525 2526 if (ShowHotFuncList || TopN) 2527 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS); 2528 2529 return 0; 2530 } 2531 2532 static int showMemProfProfile(const std::string &Filename, 2533 const std::string &ProfiledBinary, 2534 raw_fd_ostream &OS) { 2535 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 2536 Filename, ProfiledBinary, /*KeepNames=*/true); 2537 if (Error E = ReaderOr.takeError()) 2538 // Since the error can be related to the profile or the binary we do not 2539 // pass whence. Instead additional context is provided where necessary in 2540 // the error message. 2541 exitWithError(std::move(E), /*Whence*/ ""); 2542 2543 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 2544 ReaderOr.get().release()); 2545 2546 Reader->printYAML(OS); 2547 return 0; 2548 } 2549 2550 static int showDebugInfoCorrelation(const std::string &Filename, 2551 bool ShowDetailedSummary, 2552 bool ShowProfileSymbolList, 2553 raw_fd_ostream &OS) { 2554 std::unique_ptr<InstrProfCorrelator> Correlator; 2555 if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator)) 2556 exitWithError(std::move(Err), Filename); 2557 if (auto Err = Correlator->correlateProfileData()) 2558 exitWithError(std::move(Err), Filename); 2559 2560 InstrProfSymtab Symtab; 2561 if (auto Err = Symtab.create( 2562 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 2563 exitWithError(std::move(Err), Filename); 2564 2565 if (ShowProfileSymbolList) 2566 Symtab.dumpNames(OS); 2567 // TODO: Read "Profile Data Type" from debug info to compute and show how many 2568 // counters the section holds. 2569 if (ShowDetailedSummary) 2570 OS << "Counters section size: 0x" 2571 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 2572 OS << "Found " << Correlator->getDataSize() << " functions\n"; 2573 2574 return 0; 2575 } 2576 2577 static int show_main(int argc, const char *argv[]) { 2578 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>")); 2579 2580 cl::opt<bool> ShowCounts("counts", cl::init(false), 2581 cl::desc("Show counter values for shown functions")); 2582 cl::opt<bool> TextFormat( 2583 "text", cl::init(false), 2584 cl::desc("Show instr profile data in text dump format")); 2585 cl::opt<bool> ShowIndirectCallTargets( 2586 "ic-targets", cl::init(false), 2587 cl::desc("Show indirect call site target values for shown functions")); 2588 cl::opt<bool> ShowMemOPSizes( 2589 "memop-sizes", cl::init(false), 2590 cl::desc("Show the profiled sizes of the memory intrinsic calls " 2591 "for shown functions")); 2592 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 2593 cl::desc("Show detailed profile summary")); 2594 cl::list<uint32_t> DetailedSummaryCutoffs( 2595 cl::CommaSeparated, "detailed-summary-cutoffs", 2596 cl::desc( 2597 "Cutoff percentages (times 10000) for generating detailed summary"), 2598 cl::value_desc("800000,901000,999999")); 2599 cl::opt<bool> ShowHotFuncList( 2600 "hot-func-list", cl::init(false), 2601 cl::desc("Show profile summary of a list of hot functions")); 2602 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 2603 cl::desc("Details for every function")); 2604 cl::opt<bool> ShowCS("showcs", cl::init(false), 2605 cl::desc("Show context sensitive counts")); 2606 cl::opt<std::string> ShowFunction("function", 2607 cl::desc("Details for matching functions")); 2608 2609 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 2610 cl::init("-"), cl::desc("Output file")); 2611 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 2612 cl::aliasopt(OutputFilename)); 2613 cl::opt<ProfileKinds> ProfileKind( 2614 cl::desc("Profile kind:"), cl::init(instr), 2615 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 2616 clEnumVal(sample, "Sample profile"), 2617 clEnumVal(memory, "MemProf memory access profile"))); 2618 cl::opt<uint32_t> TopNFunctions( 2619 "topn", cl::init(0), 2620 cl::desc("Show the list of functions with the largest internal counts")); 2621 cl::opt<uint32_t> ValueCutoff( 2622 "value-cutoff", cl::init(0), 2623 cl::desc("Set the count value cutoff. Functions with the maximum count " 2624 "less than this value will not be printed out. (Default is 0)")); 2625 cl::opt<bool> OnlyListBelow( 2626 "list-below-cutoff", cl::init(false), 2627 cl::desc("Only output names of functions whose max count values are " 2628 "below the cutoff value")); 2629 cl::opt<bool> ShowProfileSymbolList( 2630 "show-prof-sym-list", cl::init(false), 2631 cl::desc("Show profile symbol list if it exists in the profile. ")); 2632 cl::opt<bool> ShowSectionInfoOnly( 2633 "show-sec-info-only", cl::init(false), 2634 cl::desc("Show the information of each section in the sample profile. " 2635 "The flag is only usable when the sample profile is in " 2636 "extbinary format")); 2637 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 2638 cl::desc("Show binary ids in the profile. ")); 2639 cl::opt<std::string> DebugInfoFilename( 2640 "debug-info", cl::init(""), 2641 cl::desc("Read and extract profile metadata from debug info and show " 2642 "the functions it found.")); 2643 cl::opt<bool> ShowCovered( 2644 "covered", cl::init(false), 2645 cl::desc("Show only the functions that have been executed.")); 2646 cl::opt<std::string> ProfiledBinary( 2647 "profiled-binary", cl::init(""), 2648 cl::desc("Path to binary from which the profile was collected.")); 2649 2650 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n"); 2651 2652 if (Filename.empty() && DebugInfoFilename.empty()) 2653 exitWithError( 2654 "the positional argument '<profdata-file>' is required unless '--" + 2655 DebugInfoFilename.ArgStr + "' is provided"); 2656 2657 if (Filename == OutputFilename) { 2658 errs() << sys::path::filename(argv[0]) 2659 << ": Input file name cannot be the same as the output file name!\n"; 2660 return 1; 2661 } 2662 2663 std::error_code EC; 2664 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2665 if (EC) 2666 exitWithErrorCode(EC, OutputFilename); 2667 2668 if (ShowAllFunctions && !ShowFunction.empty()) 2669 WithColor::warning() << "-function argument ignored: showing all functions\n"; 2670 2671 if (!DebugInfoFilename.empty()) 2672 return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary, 2673 ShowProfileSymbolList, OS); 2674 2675 if (ProfileKind == instr) 2676 return showInstrProfile( 2677 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets, 2678 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs, 2679 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction, 2680 TextFormat, ShowBinaryIds, ShowCovered, OS); 2681 if (ProfileKind == sample) 2682 return showSampleProfile(Filename, ShowCounts, TopNFunctions, 2683 ShowAllFunctions, ShowDetailedSummary, 2684 ShowFunction, ShowProfileSymbolList, 2685 ShowSectionInfoOnly, ShowHotFuncList, OS); 2686 return showMemProfProfile(Filename, ProfiledBinary, OS); 2687 } 2688 2689 int main(int argc, const char *argv[]) { 2690 InitLLVM X(argc, argv); 2691 2692 StringRef ProgName(sys::path::filename(argv[0])); 2693 if (argc > 1) { 2694 int (*func)(int, const char *[]) = nullptr; 2695 2696 if (strcmp(argv[1], "merge") == 0) 2697 func = merge_main; 2698 else if (strcmp(argv[1], "show") == 0) 2699 func = show_main; 2700 else if (strcmp(argv[1], "overlap") == 0) 2701 func = overlap_main; 2702 2703 if (func) { 2704 std::string Invocation(ProgName.str() + " " + argv[1]); 2705 argv[1] = Invocation.c_str(); 2706 return func(argc - 1, argv + 1); 2707 } 2708 2709 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 || 2710 strcmp(argv[1], "--help") == 0) { 2711 2712 errs() << "OVERVIEW: LLVM profile data tools\n\n" 2713 << "USAGE: " << ProgName << " <command> [args...]\n" 2714 << "USAGE: " << ProgName << " <command> -help\n\n" 2715 << "See each individual command --help for more details.\n" 2716 << "Available commands: merge, show, overlap\n"; 2717 return 0; 2718 } 2719 } 2720 2721 if (argc < 2) 2722 errs() << ProgName << ": No command specified!\n"; 2723 else 2724 errs() << ProgName << ": Unknown command!\n"; 2725 2726 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n"; 2727 return 1; 2728 } 2729