1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/ProfileData/InstrProfCorrelator.h" 19 #include "llvm/ProfileData/InstrProfReader.h" 20 #include "llvm/ProfileData/InstrProfWriter.h" 21 #include "llvm/ProfileData/MemProf.h" 22 #include "llvm/ProfileData/ProfileCommon.h" 23 #include "llvm/ProfileData/RawMemProfReader.h" 24 #include "llvm/ProfileData/SampleProfReader.h" 25 #include "llvm/ProfileData/SampleProfWriter.h" 26 #include "llvm/Support/BalancedPartitioning.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/LLVMDriver.h" 34 #include "llvm/Support/MD5.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/Path.h" 37 #include "llvm/Support/Regex.h" 38 #include "llvm/Support/ThreadPool.h" 39 #include "llvm/Support/Threading.h" 40 #include "llvm/Support/VirtualFileSystem.h" 41 #include "llvm/Support/WithColor.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cmath> 45 #include <optional> 46 #include <queue> 47 48 using namespace llvm; 49 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 50 51 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 52 // on each subcommand. 53 cl::SubCommand ShowSubcommand( 54 "show", 55 "Takes a profile data file and displays the profiles. See detailed " 56 "documentation in " 57 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 58 cl::SubCommand OrderSubcommand( 59 "order", 60 "Reads temporal profiling traces from a profile and outputs a function " 61 "order that reduces the number of page faults for those traces. See " 62 "detailed documentation in " 63 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 64 cl::SubCommand OverlapSubcommand( 65 "overlap", 66 "Computes and displays the overlap between two profiles. See detailed " 67 "documentation in " 68 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 69 cl::SubCommand MergeSubcommand( 70 "merge", 71 "Takes several profiles and merge them together. See detailed " 72 "documentation in " 73 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 74 75 namespace { 76 enum ProfileKinds { instr, sample, memory }; 77 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 78 } // namespace 79 80 enum ProfileFormat { 81 PF_None = 0, 82 PF_Text, 83 PF_Compact_Binary, // Deprecated 84 PF_Ext_Binary, 85 PF_GCC, 86 PF_Binary 87 }; 88 89 enum class ShowFormat { Text, Json, Yaml }; 90 91 // Common options. 92 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 93 cl::init("-"), cl::desc("Output file"), 94 cl::sub(ShowSubcommand), 95 cl::sub(OrderSubcommand), 96 cl::sub(OverlapSubcommand), 97 cl::sub(MergeSubcommand)); 98 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 99 // will be used. llvm::cl::alias::done() method asserts this condition. 100 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 101 cl::aliasopt(OutputFilename)); 102 103 // Options common to at least two commands. 104 cl::opt<ProfileKinds> ProfileKind( 105 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 106 cl::sub(OverlapSubcommand), cl::init(instr), 107 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 108 clEnumVal(sample, "Sample profile"))); 109 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 110 cl::sub(ShowSubcommand), 111 cl::sub(OrderSubcommand)); 112 cl::opt<unsigned> MaxDbgCorrelationWarnings( 113 "max-debug-info-correlation-warnings", 114 cl::desc("The maximum number of warnings to emit when correlating " 115 "profile from debug info (0 = no limit)"), 116 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 117 cl::opt<std::string> ProfiledBinary( 118 "profiled-binary", cl::init(""), 119 cl::desc("Path to binary from which the profile was collected."), 120 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 121 cl::opt<std::string> DebugInfoFilename( 122 "debug-info", cl::init(""), 123 cl::desc( 124 "For show, read and extract profile metadata from debug info and show " 125 "the functions it found. For merge, use the provided debug info to " 126 "correlate the raw profile."), 127 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 128 cl::opt<std::string> 129 BinaryFilename("binary-file", cl::init(""), 130 cl::desc("For merge, use the provided unstripped bianry to " 131 "correlate the raw profile."), 132 cl::sub(MergeSubcommand)); 133 cl::opt<std::string> FuncNameFilter( 134 "function", 135 cl::desc("Only functions matching the filter are shown in the output. For " 136 "overlapping CSSPGO, this takes a function name with calling " 137 "context."), 138 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand), 139 cl::sub(MergeSubcommand)); 140 141 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 142 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 143 // options. 144 145 // Options specific to merge subcommand. 146 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 147 cl::desc("<filename...>")); 148 cl::list<std::string> WeightedInputFilenames("weighted-input", 149 cl::sub(MergeSubcommand), 150 cl::desc("<weight>,<filename>")); 151 cl::opt<ProfileFormat> OutputFormat( 152 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 153 cl::init(PF_Ext_Binary), 154 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 155 clEnumValN(PF_Ext_Binary, "extbinary", 156 "Extensible binary encoding " 157 "(default)"), 158 clEnumValN(PF_Text, "text", "Text encoding"), 159 clEnumValN(PF_GCC, "gcc", 160 "GCC encoding (only meaningful for -sample)"))); 161 cl::opt<std::string> 162 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 163 cl::desc("Path to file containing newline-separated " 164 "[<weight>,]<filename> entries")); 165 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 166 cl::aliasopt(InputFilenamesFile)); 167 cl::opt<bool> DumpInputFileList( 168 "dump-input-file-list", cl::init(false), cl::Hidden, 169 cl::sub(MergeSubcommand), 170 cl::desc("Dump the list of input files and their weights, then exit")); 171 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 172 cl::sub(MergeSubcommand), 173 cl::desc("Symbol remapping file")); 174 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 175 cl::aliasopt(RemappingFile)); 176 cl::opt<bool> 177 UseMD5("use-md5", cl::init(false), cl::Hidden, 178 cl::desc("Choose to use MD5 to represent string in name table (only " 179 "meaningful for -extbinary)"), 180 cl::sub(MergeSubcommand)); 181 cl::opt<bool> CompressAllSections( 182 "compress-all-sections", cl::init(false), cl::Hidden, 183 cl::sub(MergeSubcommand), 184 cl::desc("Compress all sections when writing the profile (only " 185 "meaningful for -extbinary)")); 186 cl::opt<bool> SampleMergeColdContext( 187 "sample-merge-cold-context", cl::init(false), cl::Hidden, 188 cl::sub(MergeSubcommand), 189 cl::desc( 190 "Merge context sample profiles whose count is below cold threshold")); 191 cl::opt<bool> SampleTrimColdContext( 192 "sample-trim-cold-context", cl::init(false), cl::Hidden, 193 cl::sub(MergeSubcommand), 194 cl::desc( 195 "Trim context sample profiles whose count is below cold threshold")); 196 cl::opt<uint32_t> SampleColdContextFrameDepth( 197 "sample-frame-depth-for-cold-context", cl::init(1), 198 cl::sub(MergeSubcommand), 199 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 200 "context-less base profile")); 201 cl::opt<size_t> OutputSizeLimit( 202 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 203 cl::desc("Trim cold functions until profile size is below specified " 204 "limit in bytes. This uses a heursitic and functions may be " 205 "excessively trimmed")); 206 cl::opt<bool> GenPartialProfile( 207 "gen-partial-profile", cl::init(false), cl::Hidden, 208 cl::sub(MergeSubcommand), 209 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 210 cl::opt<std::string> SupplInstrWithSample( 211 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 212 cl::sub(MergeSubcommand), 213 cl::desc("Supplement an instr profile with sample profile, to correct " 214 "the profile unrepresentativeness issue. The sample " 215 "profile is the input of the flag. Output will be in instr " 216 "format (The flag only works with -instr)")); 217 cl::opt<float> ZeroCounterThreshold( 218 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 219 cl::sub(MergeSubcommand), 220 cl::desc("For the function which is cold in instr profile but hot in " 221 "sample profile, if the ratio of the number of zero counters " 222 "divided by the total number of counters is above the " 223 "threshold, the profile of the function will be regarded as " 224 "being harmful for performance and will be dropped.")); 225 cl::opt<unsigned> SupplMinSizeThreshold( 226 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 227 cl::sub(MergeSubcommand), 228 cl::desc("If the size of a function is smaller than the threshold, " 229 "assume it can be inlined by PGO early inliner and it won't " 230 "be adjusted based on sample profile.")); 231 cl::opt<unsigned> InstrProfColdThreshold( 232 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 233 cl::sub(MergeSubcommand), 234 cl::desc("User specified cold threshold for instr profile which will " 235 "override the cold threshold got from profile summary. ")); 236 // WARNING: This reservoir size value is propagated to any input indexed 237 // profiles for simplicity. Changing this value between invocations could 238 // result in sample bias. 239 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 240 "temporal-profile-trace-reservoir-size", cl::init(100), 241 cl::sub(MergeSubcommand), 242 cl::desc("The maximum number of stored temporal profile traces (default: " 243 "100)")); 244 cl::opt<uint64_t> TemporalProfMaxTraceLength( 245 "temporal-profile-max-trace-length", cl::init(10000), 246 cl::sub(MergeSubcommand), 247 cl::desc("The maximum length of a single temporal profile trace " 248 "(default: 10000)")); 249 cl::opt<std::string> FuncNameNegativeFilter( 250 "no-function", cl::init(""), 251 cl::sub(MergeSubcommand), 252 cl::desc("Exclude functions matching the filter from the output.")); 253 254 cl::opt<FailureMode> 255 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 256 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 257 cl::values(clEnumValN(warnOnly, "warn", 258 "Do not fail and just print warnings."), 259 clEnumValN(failIfAnyAreInvalid, "any", 260 "Fail if any profile is invalid."), 261 clEnumValN(failIfAllAreInvalid, "all", 262 "Fail only if all profiles are invalid."))); 263 264 cl::opt<bool> OutputSparse( 265 "sparse", cl::init(false), cl::sub(MergeSubcommand), 266 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 267 cl::opt<unsigned> NumThreads( 268 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 269 cl::desc("Number of merge threads to use (default: autodetect)")); 270 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 271 cl::aliasopt(NumThreads)); 272 273 cl::opt<std::string> ProfileSymbolListFile( 274 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 275 cl::desc("Path to file containing the list of function symbols " 276 "used to populate profile symbol list")); 277 278 cl::opt<SampleProfileLayout> ProfileLayout( 279 "convert-sample-profile-layout", 280 cl::desc("Convert the generated profile to a profile with a new layout"), 281 cl::sub(MergeSubcommand), cl::init(SPL_None), 282 cl::values( 283 clEnumValN(SPL_Nest, "nest", 284 "Nested profile, the input should be CS flat profile"), 285 clEnumValN(SPL_Flat, "flat", 286 "Profile with nested inlinee flatten out"))); 287 288 cl::opt<bool> DropProfileSymbolList( 289 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 290 cl::sub(MergeSubcommand), 291 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 292 "(only meaningful for -sample)")); 293 294 // Options specific to overlap subcommand. 295 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 296 cl::desc("<base profile file>"), 297 cl::sub(OverlapSubcommand)); 298 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 299 cl::desc("<test profile file>"), 300 cl::sub(OverlapSubcommand)); 301 302 cl::opt<unsigned long long> SimilarityCutoff( 303 "similarity-cutoff", cl::init(0), 304 cl::desc("For sample profiles, list function names (with calling context " 305 "for csspgo) for overlapped functions " 306 "with similarities below the cutoff (percentage times 10000)."), 307 cl::sub(OverlapSubcommand)); 308 309 cl::opt<bool> IsCS( 310 "cs", cl::init(false), 311 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 312 cl::sub(OverlapSubcommand)); 313 314 cl::opt<unsigned long long> OverlapValueCutoff( 315 "value-cutoff", cl::init(-1), 316 cl::desc( 317 "Function level overlap information for every function (with calling " 318 "context for csspgo) in test " 319 "profile with max count value greater then the parameter value"), 320 cl::sub(OverlapSubcommand)); 321 322 // Options unique to show subcommand. 323 cl::opt<bool> ShowCounts("counts", cl::init(false), 324 cl::desc("Show counter values for shown functions"), 325 cl::sub(ShowSubcommand)); 326 cl::opt<ShowFormat> 327 SFormat("show-format", cl::init(ShowFormat::Text), 328 cl::desc("Emit output in the selected format if supported"), 329 cl::sub(ShowSubcommand), 330 cl::values(clEnumValN(ShowFormat::Text, "text", 331 "emit normal text output (default)"), 332 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 333 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 334 // TODO: Consider replacing this with `--show-format=text-encoding`. 335 cl::opt<bool> 336 TextFormat("text", cl::init(false), 337 cl::desc("Show instr profile data in text dump format"), 338 cl::sub(ShowSubcommand)); 339 cl::opt<bool> 340 JsonFormat("json", 341 cl::desc("Show sample profile data in the JSON format " 342 "(deprecated, please use --show-format=json)"), 343 cl::sub(ShowSubcommand)); 344 cl::opt<bool> ShowIndirectCallTargets( 345 "ic-targets", cl::init(false), 346 cl::desc("Show indirect call site target values for shown functions"), 347 cl::sub(ShowSubcommand)); 348 cl::opt<bool> ShowMemOPSizes( 349 "memop-sizes", cl::init(false), 350 cl::desc("Show the profiled sizes of the memory intrinsic calls " 351 "for shown functions"), 352 cl::sub(ShowSubcommand)); 353 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 354 cl::desc("Show detailed profile summary"), 355 cl::sub(ShowSubcommand)); 356 cl::list<uint32_t> DetailedSummaryCutoffs( 357 cl::CommaSeparated, "detailed-summary-cutoffs", 358 cl::desc( 359 "Cutoff percentages (times 10000) for generating detailed summary"), 360 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 361 cl::opt<bool> 362 ShowHotFuncList("hot-func-list", cl::init(false), 363 cl::desc("Show profile summary of a list of hot functions"), 364 cl::sub(ShowSubcommand)); 365 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 366 cl::desc("Details for each and every function"), 367 cl::sub(ShowSubcommand)); 368 cl::opt<bool> ShowCS("showcs", cl::init(false), 369 cl::desc("Show context sensitive counts"), 370 cl::sub(ShowSubcommand)); 371 cl::opt<ProfileKinds> ShowProfileKind( 372 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 373 cl::init(instr), 374 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 375 clEnumVal(sample, "Sample profile"), 376 clEnumVal(memory, "MemProf memory access profile"))); 377 cl::opt<uint32_t> TopNFunctions( 378 "topn", cl::init(0), 379 cl::desc("Show the list of functions with the largest internal counts"), 380 cl::sub(ShowSubcommand)); 381 cl::opt<uint32_t> ShowValueCutoff( 382 "value-cutoff", cl::init(0), 383 cl::desc("Set the count value cutoff. Functions with the maximum count " 384 "less than this value will not be printed out. (Default is 0)"), 385 cl::sub(ShowSubcommand)); 386 cl::opt<bool> OnlyListBelow( 387 "list-below-cutoff", cl::init(false), 388 cl::desc("Only output names of functions whose max count values are " 389 "below the cutoff value"), 390 cl::sub(ShowSubcommand)); 391 cl::opt<bool> ShowProfileSymbolList( 392 "show-prof-sym-list", cl::init(false), 393 cl::desc("Show profile symbol list if it exists in the profile. "), 394 cl::sub(ShowSubcommand)); 395 cl::opt<bool> ShowSectionInfoOnly( 396 "show-sec-info-only", cl::init(false), 397 cl::desc("Show the information of each section in the sample profile. " 398 "The flag is only usable when the sample profile is in " 399 "extbinary format"), 400 cl::sub(ShowSubcommand)); 401 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 402 cl::desc("Show binary ids in the profile. "), 403 cl::sub(ShowSubcommand)); 404 cl::opt<bool> ShowTemporalProfTraces( 405 "temporal-profile-traces", 406 cl::desc("Show temporal profile traces in the profile."), 407 cl::sub(ShowSubcommand)); 408 409 cl::opt<bool> 410 ShowCovered("covered", cl::init(false), 411 cl::desc("Show only the functions that have been executed."), 412 cl::sub(ShowSubcommand)); 413 414 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 415 cl::desc("Show profile version. "), 416 cl::sub(ShowSubcommand)); 417 418 // We use this string to indicate that there are 419 // multiple static functions map to the same name. 420 const std::string DuplicateNameStr = "----"; 421 422 static void warn(Twine Message, std::string Whence = "", 423 std::string Hint = "") { 424 WithColor::warning(); 425 if (!Whence.empty()) 426 errs() << Whence << ": "; 427 errs() << Message << "\n"; 428 if (!Hint.empty()) 429 WithColor::note() << Hint << "\n"; 430 } 431 432 static void warn(Error E, StringRef Whence = "") { 433 if (E.isA<InstrProfError>()) { 434 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 435 warn(IPE.message(), std::string(Whence), std::string("")); 436 }); 437 } 438 } 439 440 static void exitWithError(Twine Message, std::string Whence = "", 441 std::string Hint = "") { 442 WithColor::error(); 443 if (!Whence.empty()) 444 errs() << Whence << ": "; 445 errs() << Message << "\n"; 446 if (!Hint.empty()) 447 WithColor::note() << Hint << "\n"; 448 ::exit(1); 449 } 450 451 static void exitWithError(Error E, StringRef Whence = "") { 452 if (E.isA<InstrProfError>()) { 453 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 454 instrprof_error instrError = IPE.get(); 455 StringRef Hint = ""; 456 if (instrError == instrprof_error::unrecognized_format) { 457 // Hint in case user missed specifying the profile type. 458 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 459 } 460 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 461 }); 462 return; 463 } 464 465 exitWithError(toString(std::move(E)), std::string(Whence)); 466 } 467 468 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 469 exitWithError(EC.message(), std::string(Whence)); 470 } 471 472 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 473 StringRef Whence = "") { 474 if (FailMode == failIfAnyAreInvalid) 475 exitWithErrorCode(EC, Whence); 476 else 477 warn(EC.message(), std::string(Whence)); 478 } 479 480 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 481 StringRef WhenceFunction = "", 482 bool ShowHint = true) { 483 if (!WhenceFile.empty()) 484 errs() << WhenceFile << ": "; 485 if (!WhenceFunction.empty()) 486 errs() << WhenceFunction << ": "; 487 488 auto IPE = instrprof_error::success; 489 E = handleErrors(std::move(E), 490 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 491 IPE = E->get(); 492 return Error(std::move(E)); 493 }); 494 errs() << toString(std::move(E)) << "\n"; 495 496 if (ShowHint) { 497 StringRef Hint = ""; 498 if (IPE != instrprof_error::success) { 499 switch (IPE) { 500 case instrprof_error::hash_mismatch: 501 case instrprof_error::count_mismatch: 502 case instrprof_error::value_site_count_mismatch: 503 Hint = "Make sure that all profile data to be merged is generated " 504 "from the same binary."; 505 break; 506 default: 507 break; 508 } 509 } 510 511 if (!Hint.empty()) 512 errs() << Hint << "\n"; 513 } 514 } 515 516 namespace { 517 /// A remapper from original symbol names to new symbol names based on a file 518 /// containing a list of mappings from old name to new name. 519 class SymbolRemapper { 520 std::unique_ptr<MemoryBuffer> File; 521 DenseMap<StringRef, StringRef> RemappingTable; 522 523 public: 524 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 525 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 526 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 527 if (!BufOrError) 528 exitWithErrorCode(BufOrError.getError(), InputFile); 529 530 auto Remapper = std::make_unique<SymbolRemapper>(); 531 Remapper->File = std::move(BufOrError.get()); 532 533 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 534 !LineIt.is_at_eof(); ++LineIt) { 535 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 536 if (Parts.first.empty() || Parts.second.empty() || 537 Parts.second.count(' ')) { 538 exitWithError("unexpected line in remapping file", 539 (InputFile + ":" + Twine(LineIt.line_number())).str(), 540 "expected 'old_symbol new_symbol'"); 541 } 542 Remapper->RemappingTable.insert(Parts); 543 } 544 return Remapper; 545 } 546 547 /// Attempt to map the given old symbol into a new symbol. 548 /// 549 /// \return The new symbol, or \p Name if no such symbol was found. 550 StringRef operator()(StringRef Name) { 551 StringRef New = RemappingTable.lookup(Name); 552 return New.empty() ? Name : New; 553 } 554 555 FunctionId operator()(FunctionId Name) { 556 // MD5 name cannot be remapped. 557 if (!Name.isStringRef()) 558 return Name; 559 StringRef New = RemappingTable.lookup(Name.stringRef()); 560 return New.empty() ? Name : FunctionId(New); 561 } 562 }; 563 } 564 565 struct WeightedFile { 566 std::string Filename; 567 uint64_t Weight; 568 }; 569 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 570 571 /// Keep track of merged data and reported errors. 572 struct WriterContext { 573 std::mutex Lock; 574 InstrProfWriter Writer; 575 std::vector<std::pair<Error, std::string>> Errors; 576 std::mutex &ErrLock; 577 SmallSet<instrprof_error, 4> &WriterErrorCodes; 578 579 WriterContext(bool IsSparse, std::mutex &ErrLock, 580 SmallSet<instrprof_error, 4> &WriterErrorCodes, 581 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 582 : Writer(IsSparse, ReservoirSize, MaxTraceLength), ErrLock(ErrLock), 583 WriterErrorCodes(WriterErrorCodes) {} 584 }; 585 586 /// Computer the overlap b/w profile BaseFilename and TestFileName, 587 /// and store the program level result to Overlap. 588 static void overlapInput(const std::string &BaseFilename, 589 const std::string &TestFilename, WriterContext *WC, 590 OverlapStats &Overlap, 591 const OverlapFuncFilters &FuncFilter, 592 raw_fd_ostream &OS, bool IsCS) { 593 auto FS = vfs::getRealFileSystem(); 594 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 595 if (Error E = ReaderOrErr.takeError()) { 596 // Skip the empty profiles by returning sliently. 597 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 598 if (ErrorCode != instrprof_error::empty_raw_profile) 599 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 600 TestFilename); 601 return; 602 } 603 604 auto Reader = std::move(ReaderOrErr.get()); 605 for (auto &I : *Reader) { 606 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 607 FuncOverlap.setFuncInfo(I.Name, I.Hash); 608 609 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 610 FuncOverlap.dump(OS); 611 } 612 } 613 614 /// Load an input into a writer context. 615 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 616 const InstrProfCorrelator *Correlator, 617 const StringRef ProfiledBinary, WriterContext *WC) { 618 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 619 620 // Copy the filename, because llvm::ThreadPool copied the input "const 621 // WeightedFile &" by value, making a reference to the filename within it 622 // invalid outside of this packaged task. 623 std::string Filename = Input.Filename; 624 625 using ::llvm::memprof::RawMemProfReader; 626 if (RawMemProfReader::hasFormat(Input.Filename)) { 627 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 628 if (!ReaderOrErr) { 629 exitWithError(ReaderOrErr.takeError(), Input.Filename); 630 } 631 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 632 // Check if the profile types can be merged, e.g. clang frontend profiles 633 // should not be merged with memprof profiles. 634 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 635 consumeError(std::move(E)); 636 WC->Errors.emplace_back( 637 make_error<StringError>( 638 "Cannot merge MemProf profile with Clang generated profile.", 639 std::error_code()), 640 Filename); 641 return; 642 } 643 644 auto MemProfError = [&](Error E) { 645 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 646 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 647 Filename); 648 }; 649 650 // Add the frame mappings into the writer context. 651 const auto &IdToFrame = Reader->getFrameMapping(); 652 for (const auto &I : IdToFrame) { 653 bool Succeeded = WC->Writer.addMemProfFrame( 654 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 655 // If we weren't able to add the frame mappings then it doesn't make sense 656 // to try to add the records from this profile. 657 if (!Succeeded) 658 return; 659 } 660 const auto &FunctionProfileData = Reader->getProfileData(); 661 // Add the memprof records into the writer context. 662 for (const auto &I : FunctionProfileData) { 663 WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second); 664 } 665 return; 666 } 667 668 auto FS = vfs::getRealFileSystem(); 669 // TODO: This only saves the first non-fatal error from InstrProfReader, and 670 // then added to WriterContext::Errors. However, this is not extensible, if 671 // we have more non-fatal errors from InstrProfReader in the future. How 672 // should this interact with different -failure-mode? 673 std::optional<std::pair<Error, std::string>> ReaderWarning; 674 auto Warn = [&](Error E) { 675 if (ReaderWarning) { 676 consumeError(std::move(E)); 677 return; 678 } 679 // Only show the first time an error occurs in this file. 680 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 681 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 682 }; 683 auto ReaderOrErr = 684 InstrProfReader::create(Input.Filename, *FS, Correlator, Warn); 685 if (Error E = ReaderOrErr.takeError()) { 686 // Skip the empty profiles by returning silently. 687 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 688 if (ErrCode != instrprof_error::empty_raw_profile) 689 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 690 Filename); 691 return; 692 } 693 694 auto Reader = std::move(ReaderOrErr.get()); 695 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 696 consumeError(std::move(E)); 697 WC->Errors.emplace_back( 698 make_error<StringError>( 699 "Merge IR generated profile with Clang generated profile.", 700 std::error_code()), 701 Filename); 702 return; 703 } 704 705 for (auto &I : *Reader) { 706 if (Remapper) 707 I.Name = (*Remapper)(I.Name); 708 const StringRef FuncName = I.Name; 709 bool Reported = false; 710 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 711 if (Reported) { 712 consumeError(std::move(E)); 713 return; 714 } 715 Reported = true; 716 // Only show hint the first time an error occurs. 717 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 718 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 719 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 720 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 721 Input.Filename, FuncName, firstTime); 722 }); 723 } 724 725 if (Reader->hasTemporalProfile()) { 726 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 727 if (!Traces.empty()) 728 WC->Writer.addTemporalProfileTraces( 729 Traces, Reader->getTemporalProfTraceStreamSize()); 730 } 731 if (Reader->hasError()) { 732 if (Error E = Reader->getError()) { 733 WC->Errors.emplace_back(std::move(E), Filename); 734 return; 735 } 736 } 737 738 std::vector<llvm::object::BuildID> BinaryIds; 739 if (Error E = Reader->readBinaryIds(BinaryIds)) { 740 WC->Errors.emplace_back(std::move(E), Filename); 741 return; 742 } 743 WC->Writer.addBinaryIds(BinaryIds); 744 745 if (ReaderWarning) { 746 WC->Errors.emplace_back(std::move(ReaderWarning->first), 747 ReaderWarning->second); 748 } 749 } 750 751 /// Merge the \p Src writer context into \p Dst. 752 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 753 for (auto &ErrorPair : Src->Errors) 754 Dst->Errors.push_back(std::move(ErrorPair)); 755 Src->Errors.clear(); 756 757 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 758 exitWithError(std::move(E)); 759 760 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 761 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 762 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 763 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 764 if (firstTime) 765 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 766 }); 767 } 768 769 static StringRef 770 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) { 771 return Val.first(); 772 } 773 774 static std::string 775 getFuncName(const SampleProfileMap::value_type &Val) { 776 return Val.second.getContext().toString(); 777 } 778 779 template <typename T> 780 static void filterFunctions(T &ProfileMap) { 781 bool hasFilter = !FuncNameFilter.empty(); 782 bool hasNegativeFilter = !FuncNameNegativeFilter.empty(); 783 if (!hasFilter && !hasNegativeFilter) 784 return; 785 786 // If filter starts with '?' it is MSVC mangled name, not a regex. 787 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+"); 788 if (hasFilter && FuncNameFilter[0] == '?' && 789 ProbablyMSVCMangledName.match(FuncNameFilter)) 790 FuncNameFilter = llvm::Regex::escape(FuncNameFilter); 791 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' && 792 ProbablyMSVCMangledName.match(FuncNameNegativeFilter)) 793 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter); 794 795 size_t Count = ProfileMap.size(); 796 llvm::Regex Pattern(FuncNameFilter); 797 llvm::Regex NegativePattern(FuncNameNegativeFilter); 798 std::string Error; 799 if (hasFilter && !Pattern.isValid(Error)) 800 exitWithError(Error); 801 if (hasNegativeFilter && !NegativePattern.isValid(Error)) 802 exitWithError(Error); 803 804 // Handle MD5 profile, so it is still able to match using the original name. 805 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter)); 806 std::string NegativeMD5Name = 807 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter)); 808 809 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { 810 auto Tmp = I++; 811 const auto &FuncName = getFuncName(*Tmp); 812 // Negative filter has higher precedence than positive filter. 813 if ((hasNegativeFilter && 814 (NegativePattern.match(FuncName) || 815 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) || 816 (hasFilter && !(Pattern.match(FuncName) || 817 (FunctionSamples::UseMD5 && MD5Name == FuncName)))) 818 ProfileMap.erase(Tmp); 819 } 820 821 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions " 822 << "in the original profile are filtered.\n"; 823 } 824 825 static void writeInstrProfile(StringRef OutputFilename, 826 ProfileFormat OutputFormat, 827 InstrProfWriter &Writer) { 828 std::error_code EC; 829 raw_fd_ostream Output(OutputFilename.data(), EC, 830 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 831 : sys::fs::OF_None); 832 if (EC) 833 exitWithErrorCode(EC, OutputFilename); 834 835 if (OutputFormat == PF_Text) { 836 if (Error E = Writer.writeText(Output)) 837 warn(std::move(E)); 838 } else { 839 if (Output.is_displayed()) 840 exitWithError("cannot write a non-text format profile to the terminal"); 841 if (Error E = Writer.write(Output)) 842 warn(std::move(E)); 843 } 844 } 845 846 static void mergeInstrProfile(const WeightedFileVector &Inputs, 847 SymbolRemapper *Remapper, 848 int MaxDbgCorrelationWarnings, 849 const StringRef ProfiledBinary) { 850 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 851 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 852 if (OutputFormat == PF_Compact_Binary) 853 exitWithError("Compact Binary is deprecated"); 854 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 855 OutputFormat != PF_Text) 856 exitWithError("unknown format is specified"); 857 858 // TODO: Maybe we should support correlation with mixture of different 859 // correlation modes(w/wo debug-info/object correlation). 860 if (!DebugInfoFilename.empty() && !BinaryFilename.empty()) 861 exitWithError("Expected only one of -debug-info, -binary-file"); 862 std::string CorrelateFilename; 863 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 864 if (!DebugInfoFilename.empty()) { 865 CorrelateFilename = DebugInfoFilename; 866 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 867 } else if (!BinaryFilename.empty()) { 868 CorrelateFilename = BinaryFilename; 869 CorrelateKind = ProfCorrelatorKind::BINARY; 870 } 871 872 std::unique_ptr<InstrProfCorrelator> Correlator; 873 if (CorrelateKind != InstrProfCorrelator::NONE) { 874 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 875 .moveInto(Correlator)) 876 exitWithError(std::move(Err), CorrelateFilename); 877 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 878 exitWithError(std::move(Err), CorrelateFilename); 879 } 880 881 std::mutex ErrorLock; 882 SmallSet<instrprof_error, 4> WriterErrorCodes; 883 884 // If NumThreads is not specified, auto-detect a good default. 885 if (NumThreads == 0) 886 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 887 unsigned((Inputs.size() + 1) / 2)); 888 889 // Initialize the writer contexts. 890 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 891 for (unsigned I = 0; I < NumThreads; ++I) 892 Contexts.emplace_back(std::make_unique<WriterContext>( 893 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 894 MaxTraceLength)); 895 896 if (NumThreads == 1) { 897 for (const auto &Input : Inputs) 898 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 899 Contexts[0].get()); 900 } else { 901 ThreadPool Pool(hardware_concurrency(NumThreads)); 902 903 // Load the inputs in parallel (N/NumThreads serial steps). 904 unsigned Ctx = 0; 905 for (const auto &Input : Inputs) { 906 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 907 Contexts[Ctx].get()); 908 Ctx = (Ctx + 1) % NumThreads; 909 } 910 Pool.wait(); 911 912 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 913 unsigned Mid = Contexts.size() / 2; 914 unsigned End = Contexts.size(); 915 assert(Mid > 0 && "Expected more than one context"); 916 do { 917 for (unsigned I = 0; I < Mid; ++I) 918 Pool.async(mergeWriterContexts, Contexts[I].get(), 919 Contexts[I + Mid].get()); 920 Pool.wait(); 921 if (End & 1) { 922 Pool.async(mergeWriterContexts, Contexts[0].get(), 923 Contexts[End - 1].get()); 924 Pool.wait(); 925 } 926 End = Mid; 927 Mid /= 2; 928 } while (Mid > 0); 929 } 930 931 // Handle deferred errors encountered during merging. If the number of errors 932 // is equal to the number of inputs the merge failed. 933 unsigned NumErrors = 0; 934 for (std::unique_ptr<WriterContext> &WC : Contexts) { 935 for (auto &ErrorPair : WC->Errors) { 936 ++NumErrors; 937 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 938 } 939 } 940 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 941 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 942 exitWithError("no profile can be merged"); 943 944 filterFunctions(Contexts[0]->Writer.getProfileData()); 945 946 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 947 } 948 949 /// The profile entry for a function in instrumentation profile. 950 struct InstrProfileEntry { 951 uint64_t MaxCount = 0; 952 uint64_t NumEdgeCounters = 0; 953 float ZeroCounterRatio = 0.0; 954 InstrProfRecord *ProfRecord; 955 InstrProfileEntry(InstrProfRecord *Record); 956 InstrProfileEntry() = default; 957 }; 958 959 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 960 ProfRecord = Record; 961 uint64_t CntNum = Record->Counts.size(); 962 uint64_t ZeroCntNum = 0; 963 for (size_t I = 0; I < CntNum; ++I) { 964 MaxCount = std::max(MaxCount, Record->Counts[I]); 965 ZeroCntNum += !Record->Counts[I]; 966 } 967 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 968 NumEdgeCounters = CntNum; 969 } 970 971 /// Either set all the counters in the instr profile entry \p IFE to 972 /// -1 / -2 /in order to drop the profile or scale up the 973 /// counters in \p IFP to be above hot / cold threshold. We use 974 /// the ratio of zero counters in the profile of a function to 975 /// decide the profile is helpful or harmful for performance, 976 /// and to choose whether to scale up or drop it. 977 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 978 uint64_t HotInstrThreshold, 979 uint64_t ColdInstrThreshold, 980 float ZeroCounterThreshold) { 981 InstrProfRecord *ProfRecord = IFE.ProfRecord; 982 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 983 // If all or most of the counters of the function are zero, the 984 // profile is unaccountable and should be dropped. Reset all the 985 // counters to be -1 / -2 and PGO profile-use will drop the profile. 986 // All counters being -1 also implies that the function is hot so 987 // PGO profile-use will also set the entry count metadata to be 988 // above hot threshold. 989 // All counters being -2 implies that the function is warm so 990 // PGO profile-use will also set the entry count metadata to be 991 // above cold threshold. 992 auto Kind = 993 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 994 ProfRecord->setPseudoCount(Kind); 995 return; 996 } 997 998 // Scale up the MaxCount to be multiple times above hot / cold threshold. 999 const unsigned MultiplyFactor = 3; 1000 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 1001 uint64_t Numerator = Threshold * MultiplyFactor; 1002 1003 // Make sure Threshold for warm counters is below the HotInstrThreshold. 1004 if (!SetToHot && Threshold >= HotInstrThreshold) { 1005 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 1006 } 1007 1008 uint64_t Denominator = IFE.MaxCount; 1009 if (Numerator <= Denominator) 1010 return; 1011 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 1012 warn(toString(make_error<InstrProfError>(E))); 1013 }); 1014 } 1015 1016 const uint64_t ColdPercentileIdx = 15; 1017 const uint64_t HotPercentileIdx = 11; 1018 1019 using sampleprof::FSDiscriminatorPass; 1020 1021 // Internal options to set FSDiscriminatorPass. Used in merge and show 1022 // commands. 1023 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 1024 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 1025 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 1026 "pass beyond this value. The enum values are defined in " 1027 "Support/Discriminator.h"), 1028 cl::values(clEnumVal(Base, "Use base discriminators only"), 1029 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 1030 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 1031 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 1032 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 1033 1034 static unsigned getDiscriminatorMask() { 1035 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 1036 } 1037 1038 /// Adjust the instr profile in \p WC based on the sample profile in 1039 /// \p Reader. 1040 static void 1041 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 1042 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 1043 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 1044 unsigned InstrProfColdThreshold) { 1045 // Function to its entry in instr profile. 1046 StringMap<InstrProfileEntry> InstrProfileMap; 1047 StringMap<StringRef> StaticFuncMap; 1048 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 1049 1050 auto checkSampleProfileHasFUnique = [&Reader]() { 1051 for (const auto &PD : Reader->getProfiles()) { 1052 auto &FContext = PD.second.getContext(); 1053 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 1054 std::string::npos) { 1055 return true; 1056 } 1057 } 1058 return false; 1059 }; 1060 1061 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 1062 1063 auto buildStaticFuncMap = [&StaticFuncMap, 1064 SampleProfileHasFUnique](const StringRef Name) { 1065 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1066 size_t PrefixPos = StringRef::npos; 1067 for (auto &FilePrefix : FilePrefixes) { 1068 std::string NamePrefix = FilePrefix + kGlobalIdentifierDelimiter; 1069 PrefixPos = Name.find_insensitive(NamePrefix); 1070 if (PrefixPos == StringRef::npos) 1071 continue; 1072 PrefixPos += NamePrefix.size(); 1073 break; 1074 } 1075 1076 if (PrefixPos == StringRef::npos) { 1077 return; 1078 } 1079 1080 StringRef NewName = Name.drop_front(PrefixPos); 1081 StringRef FName = Name.substr(0, PrefixPos - 1); 1082 if (NewName.size() == 0) { 1083 return; 1084 } 1085 1086 // This name should have a static linkage. 1087 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1088 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1089 1090 // If sample profile and instrumented profile do not agree on symbol 1091 // uniqification. 1092 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1093 // If instrumented profile uses -funique-internal-linkage-symbols, 1094 // we need to trim the name. 1095 if (ProfileHasFUnique) { 1096 NewName = NewName.substr(0, PostfixPos); 1097 } else { 1098 // If sample profile uses -funique-internal-linkage-symbols, 1099 // we build the map. 1100 std::string NStr = 1101 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1102 NewName = StringRef(NStr); 1103 StaticFuncMap[NewName] = Name; 1104 return; 1105 } 1106 } 1107 1108 if (!StaticFuncMap.contains(NewName)) { 1109 StaticFuncMap[NewName] = Name; 1110 } else { 1111 StaticFuncMap[NewName] = DuplicateNameStr; 1112 } 1113 }; 1114 1115 // We need to flatten the SampleFDO profile as the InstrFDO 1116 // profile does not have inlined callsite profiles. 1117 // One caveat is the pre-inlined function -- their samples 1118 // should be collapsed into the caller function. 1119 // Here we do a DFS traversal to get the flatten profile 1120 // info: the sum of entrycount and the max of maxcount. 1121 // Here is the algorithm: 1122 // recursive (FS, root_name) { 1123 // name = FS->getName(); 1124 // get samples for FS; 1125 // if (InstrProf.find(name) { 1126 // root_name = name; 1127 // } else { 1128 // if (name is in static_func map) { 1129 // root_name = static_name; 1130 // } 1131 // } 1132 // update the Map entry for root_name; 1133 // for (subfs: FS) { 1134 // recursive(subfs, root_name); 1135 // } 1136 // } 1137 // 1138 // Here is an example. 1139 // 1140 // SampleProfile: 1141 // foo:12345:1000 1142 // 1: 1000 1143 // 2.1: 1000 1144 // 15: 5000 1145 // 4: bar:1000 1146 // 1: 1000 1147 // 2: goo:3000 1148 // 1: 3000 1149 // 8: bar:40000 1150 // 1: 10000 1151 // 2: goo:30000 1152 // 1: 30000 1153 // 1154 // InstrProfile has two entries: 1155 // foo 1156 // bar.cc;bar 1157 // 1158 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1159 // {"foo", {1000, 5000}} 1160 // {"bar.cc;bar", {11000, 30000}} 1161 // 1162 // foo's has an entry count of 1000, and max body count of 5000. 1163 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1164 // 10000), and max count of 30000 (from the callsite in line 8). 1165 // 1166 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1167 // entry in InstrProfile. 1168 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1169 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1170 &InstrProfileMap](const FunctionSamples &FS, 1171 const StringRef &RootName) { 1172 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1173 const StringRef &RootName, 1174 auto &BuildImpl) -> void { 1175 std::string NameStr = FS.getFunction().str(); 1176 const StringRef Name = NameStr; 1177 const StringRef *NewRootName = &RootName; 1178 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1179 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1180 1181 auto It = InstrProfileMap.find(Name); 1182 if (It != InstrProfileMap.end()) { 1183 NewRootName = &Name; 1184 } else { 1185 auto NewName = StaticFuncMap.find(Name); 1186 if (NewName != StaticFuncMap.end()) { 1187 It = InstrProfileMap.find(NewName->second.str()); 1188 if (NewName->second != DuplicateNameStr) { 1189 NewRootName = &NewName->second; 1190 } 1191 } else { 1192 // Here the EntrySample is of an inlined function, so we should not 1193 // update the EntrySample in the map. 1194 EntrySample = 0; 1195 } 1196 } 1197 EntrySample += FlattenSampleMap[*NewRootName].first; 1198 MaxBodySample = 1199 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1200 FlattenSampleMap[*NewRootName] = 1201 std::make_pair(EntrySample, MaxBodySample); 1202 1203 for (const auto &C : FS.getCallsiteSamples()) 1204 for (const auto &F : C.second) 1205 BuildImpl(F.second, *NewRootName, BuildImpl); 1206 }; 1207 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1208 }; 1209 1210 for (auto &PD : WC->Writer.getProfileData()) { 1211 // Populate IPBuilder. 1212 for (const auto &PDV : PD.getValue()) { 1213 InstrProfRecord Record = PDV.second; 1214 IPBuilder.addRecord(Record); 1215 } 1216 1217 // If a function has multiple entries in instr profile, skip it. 1218 if (PD.getValue().size() != 1) 1219 continue; 1220 1221 // Initialize InstrProfileMap. 1222 InstrProfRecord *R = &PD.getValue().begin()->second; 1223 StringRef FullName = PD.getKey(); 1224 InstrProfileMap[FullName] = InstrProfileEntry(R); 1225 buildStaticFuncMap(FullName); 1226 } 1227 1228 for (auto &PD : Reader->getProfiles()) { 1229 sampleprof::FunctionSamples &FS = PD.second; 1230 std::string Name = FS.getFunction().str(); 1231 BuildMaxSampleMap(FS, Name); 1232 } 1233 1234 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1235 ProfileSummary SamplePS = Reader->getSummary(); 1236 1237 // Compute cold thresholds for instr profile and sample profile. 1238 uint64_t HotSampleThreshold = 1239 ProfileSummaryBuilder::getEntryForPercentile( 1240 SamplePS.getDetailedSummary(), 1241 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1242 .MinCount; 1243 uint64_t ColdSampleThreshold = 1244 ProfileSummaryBuilder::getEntryForPercentile( 1245 SamplePS.getDetailedSummary(), 1246 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1247 .MinCount; 1248 uint64_t HotInstrThreshold = 1249 ProfileSummaryBuilder::getEntryForPercentile( 1250 InstrPS.getDetailedSummary(), 1251 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1252 .MinCount; 1253 uint64_t ColdInstrThreshold = 1254 InstrProfColdThreshold 1255 ? InstrProfColdThreshold 1256 : ProfileSummaryBuilder::getEntryForPercentile( 1257 InstrPS.getDetailedSummary(), 1258 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1259 .MinCount; 1260 1261 // Find hot/warm functions in sample profile which is cold in instr profile 1262 // and adjust the profiles of those functions in the instr profile. 1263 for (const auto &E : FlattenSampleMap) { 1264 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1265 if (SampleMaxCount < ColdSampleThreshold) 1266 continue; 1267 StringRef Name = E.first(); 1268 auto It = InstrProfileMap.find(Name); 1269 if (It == InstrProfileMap.end()) { 1270 auto NewName = StaticFuncMap.find(Name); 1271 if (NewName != StaticFuncMap.end()) { 1272 It = InstrProfileMap.find(NewName->second.str()); 1273 if (NewName->second == DuplicateNameStr) { 1274 WithColor::warning() 1275 << "Static function " << Name 1276 << " has multiple promoted names, cannot adjust profile.\n"; 1277 } 1278 } 1279 } 1280 if (It == InstrProfileMap.end() || 1281 It->second.MaxCount > ColdInstrThreshold || 1282 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1283 continue; 1284 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1285 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1286 ColdInstrThreshold, ZeroCounterThreshold); 1287 } 1288 } 1289 1290 /// The main function to supplement instr profile with sample profile. 1291 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1292 /// sample profile. \p OutputFilename specifies the output profile name. 1293 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1294 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1295 /// specifies the minimal size for the functions whose profile will be 1296 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1297 /// a function contains too many zero counters and whether its profile 1298 /// should be dropped. \p InstrProfColdThreshold is the user specified 1299 /// cold threshold which will override the cold threshold got from the 1300 /// instr profile summary. 1301 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1302 StringRef SampleFilename, bool OutputSparse, 1303 unsigned SupplMinSizeThreshold, 1304 float ZeroCounterThreshold, 1305 unsigned InstrProfColdThreshold) { 1306 if (OutputFilename.compare("-") == 0) 1307 exitWithError("cannot write indexed profdata format to stdout"); 1308 if (Inputs.size() != 1) 1309 exitWithError("expect one input to be an instr profile"); 1310 if (Inputs[0].Weight != 1) 1311 exitWithError("expect instr profile doesn't have weight"); 1312 1313 StringRef InstrFilename = Inputs[0].Filename; 1314 1315 // Read sample profile. 1316 LLVMContext Context; 1317 auto FS = vfs::getRealFileSystem(); 1318 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1319 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1320 if (std::error_code EC = ReaderOrErr.getError()) 1321 exitWithErrorCode(EC, SampleFilename); 1322 auto Reader = std::move(ReaderOrErr.get()); 1323 if (std::error_code EC = Reader->read()) 1324 exitWithErrorCode(EC, SampleFilename); 1325 1326 // Read instr profile. 1327 std::mutex ErrorLock; 1328 SmallSet<instrprof_error, 4> WriterErrorCodes; 1329 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1330 WriterErrorCodes); 1331 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1332 if (WC->Errors.size() > 0) 1333 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1334 1335 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1336 InstrProfColdThreshold); 1337 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1338 } 1339 1340 /// Make a copy of the given function samples with all symbol names remapped 1341 /// by the provided symbol remapper. 1342 static sampleprof::FunctionSamples 1343 remapSamples(const sampleprof::FunctionSamples &Samples, 1344 SymbolRemapper &Remapper, sampleprof_error &Error) { 1345 sampleprof::FunctionSamples Result; 1346 Result.setFunction(Remapper(Samples.getFunction())); 1347 Result.addTotalSamples(Samples.getTotalSamples()); 1348 Result.addHeadSamples(Samples.getHeadSamples()); 1349 for (const auto &BodySample : Samples.getBodySamples()) { 1350 uint32_t MaskedDiscriminator = 1351 BodySample.first.Discriminator & getDiscriminatorMask(); 1352 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1353 BodySample.second.getSamples()); 1354 for (const auto &Target : BodySample.second.getCallTargets()) { 1355 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1356 MaskedDiscriminator, 1357 Remapper(Target.first), Target.second); 1358 } 1359 } 1360 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1361 sampleprof::FunctionSamplesMap &Target = 1362 Result.functionSamplesAt(CallsiteSamples.first); 1363 for (const auto &Callsite : CallsiteSamples.second) { 1364 sampleprof::FunctionSamples Remapped = 1365 remapSamples(Callsite.second, Remapper, Error); 1366 MergeResult(Error, Target[Remapped.getFunction()].merge(Remapped)); 1367 } 1368 } 1369 return Result; 1370 } 1371 1372 static sampleprof::SampleProfileFormat FormatMap[] = { 1373 sampleprof::SPF_None, 1374 sampleprof::SPF_Text, 1375 sampleprof::SPF_None, 1376 sampleprof::SPF_Ext_Binary, 1377 sampleprof::SPF_GCC, 1378 sampleprof::SPF_Binary}; 1379 1380 static std::unique_ptr<MemoryBuffer> 1381 getInputFileBuf(const StringRef &InputFile) { 1382 if (InputFile == "") 1383 return {}; 1384 1385 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1386 if (!BufOrError) 1387 exitWithErrorCode(BufOrError.getError(), InputFile); 1388 1389 return std::move(*BufOrError); 1390 } 1391 1392 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1393 sampleprof::ProfileSymbolList &PSL) { 1394 if (!Buffer) 1395 return; 1396 1397 SmallVector<StringRef, 32> SymbolVec; 1398 StringRef Data = Buffer->getBuffer(); 1399 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1400 1401 for (StringRef SymbolStr : SymbolVec) 1402 PSL.add(SymbolStr.trim()); 1403 } 1404 1405 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1406 ProfileFormat OutputFormat, 1407 MemoryBuffer *Buffer, 1408 sampleprof::ProfileSymbolList &WriterList, 1409 bool CompressAllSections, bool UseMD5, 1410 bool GenPartialProfile) { 1411 populateProfileSymbolList(Buffer, WriterList); 1412 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1413 warn("Profile Symbol list is not empty but the output format is not " 1414 "ExtBinary format. The list will be lost in the output. "); 1415 1416 Writer.setProfileSymbolList(&WriterList); 1417 1418 if (CompressAllSections) { 1419 if (OutputFormat != PF_Ext_Binary) 1420 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1421 else 1422 Writer.setToCompressAllSections(); 1423 } 1424 if (UseMD5) { 1425 if (OutputFormat != PF_Ext_Binary) 1426 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1427 else 1428 Writer.setUseMD5(); 1429 } 1430 if (GenPartialProfile) { 1431 if (OutputFormat != PF_Ext_Binary) 1432 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1433 else 1434 Writer.setPartialProfile(); 1435 } 1436 } 1437 1438 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1439 SymbolRemapper *Remapper, 1440 StringRef ProfileSymbolListFile, 1441 size_t OutputSizeLimit) { 1442 using namespace sampleprof; 1443 SampleProfileMap ProfileMap; 1444 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1445 LLVMContext Context; 1446 sampleprof::ProfileSymbolList WriterList; 1447 std::optional<bool> ProfileIsProbeBased; 1448 std::optional<bool> ProfileIsCS; 1449 for (const auto &Input : Inputs) { 1450 auto FS = vfs::getRealFileSystem(); 1451 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1452 FSDiscriminatorPassOption); 1453 if (std::error_code EC = ReaderOrErr.getError()) { 1454 warnOrExitGivenError(FailMode, EC, Input.Filename); 1455 continue; 1456 } 1457 1458 // We need to keep the readers around until after all the files are 1459 // read so that we do not lose the function names stored in each 1460 // reader's memory. The function names are needed to write out the 1461 // merged profile map. 1462 Readers.push_back(std::move(ReaderOrErr.get())); 1463 const auto Reader = Readers.back().get(); 1464 if (std::error_code EC = Reader->read()) { 1465 warnOrExitGivenError(FailMode, EC, Input.Filename); 1466 Readers.pop_back(); 1467 continue; 1468 } 1469 1470 SampleProfileMap &Profiles = Reader->getProfiles(); 1471 if (ProfileIsProbeBased && 1472 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1473 exitWithError( 1474 "cannot merge probe-based profile with non-probe-based profile"); 1475 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1476 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1477 exitWithError("cannot merge CS profile with non-CS profile"); 1478 ProfileIsCS = FunctionSamples::ProfileIsCS; 1479 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1480 I != E; ++I) { 1481 sampleprof_error Result = sampleprof_error::success; 1482 FunctionSamples Remapped = 1483 Remapper ? remapSamples(I->second, *Remapper, Result) 1484 : FunctionSamples(); 1485 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1486 SampleContext FContext = Samples.getContext(); 1487 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 1488 if (Result != sampleprof_error::success) { 1489 std::error_code EC = make_error_code(Result); 1490 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1491 FContext.toString()); 1492 } 1493 } 1494 1495 if (!DropProfileSymbolList) { 1496 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1497 Reader->getProfileSymbolList(); 1498 if (ReaderList) 1499 WriterList.merge(*ReaderList); 1500 } 1501 } 1502 1503 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1504 // Use threshold calculated from profile summary unless specified. 1505 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1506 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1507 uint64_t SampleProfColdThreshold = 1508 ProfileSummaryBuilder::getColdCountThreshold( 1509 (Summary->getDetailedSummary())); 1510 1511 // Trim and merge cold context profile using cold threshold above; 1512 SampleContextTrimmer(ProfileMap) 1513 .trimAndMergeColdContextProfiles( 1514 SampleProfColdThreshold, SampleTrimColdContext, 1515 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1516 } 1517 1518 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1519 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1520 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1521 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1522 ProfileConverter CSConverter(ProfileMap); 1523 CSConverter.convertCSProfiles(); 1524 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1525 } 1526 1527 filterFunctions(ProfileMap); 1528 1529 auto WriterOrErr = 1530 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1531 if (std::error_code EC = WriterOrErr.getError()) 1532 exitWithErrorCode(EC, OutputFilename); 1533 1534 auto Writer = std::move(WriterOrErr.get()); 1535 // WriterList will have StringRef refering to string in Buffer. 1536 // Make sure Buffer lives as long as WriterList. 1537 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1538 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1539 CompressAllSections, UseMD5, GenPartialProfile); 1540 1541 // If OutputSizeLimit is 0 (default), it is the same as write(). 1542 if (std::error_code EC = 1543 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1544 exitWithErrorCode(std::move(EC)); 1545 } 1546 1547 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1548 StringRef WeightStr, FileName; 1549 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1550 1551 uint64_t Weight; 1552 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1553 exitWithError("input weight must be a positive integer"); 1554 1555 return {std::string(FileName), Weight}; 1556 } 1557 1558 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1559 StringRef Filename = WF.Filename; 1560 uint64_t Weight = WF.Weight; 1561 1562 // If it's STDIN just pass it on. 1563 if (Filename == "-") { 1564 WNI.push_back({std::string(Filename), Weight}); 1565 return; 1566 } 1567 1568 llvm::sys::fs::file_status Status; 1569 llvm::sys::fs::status(Filename, Status); 1570 if (!llvm::sys::fs::exists(Status)) 1571 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1572 Filename); 1573 // If it's a source file, collect it. 1574 if (llvm::sys::fs::is_regular_file(Status)) { 1575 WNI.push_back({std::string(Filename), Weight}); 1576 return; 1577 } 1578 1579 if (llvm::sys::fs::is_directory(Status)) { 1580 std::error_code EC; 1581 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1582 F != E && !EC; F.increment(EC)) { 1583 if (llvm::sys::fs::is_regular_file(F->path())) { 1584 addWeightedInput(WNI, {F->path(), Weight}); 1585 } 1586 } 1587 if (EC) 1588 exitWithErrorCode(EC, Filename); 1589 } 1590 } 1591 1592 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1593 WeightedFileVector &WFV) { 1594 if (!Buffer) 1595 return; 1596 1597 SmallVector<StringRef, 8> Entries; 1598 StringRef Data = Buffer->getBuffer(); 1599 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1600 for (const StringRef &FileWeightEntry : Entries) { 1601 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1602 // Skip comments. 1603 if (SanitizedEntry.starts_with("#")) 1604 continue; 1605 // If there's no comma, it's an unweighted profile. 1606 else if (!SanitizedEntry.contains(',')) 1607 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1608 else 1609 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1610 } 1611 } 1612 1613 static int merge_main(int argc, const char *argv[]) { 1614 WeightedFileVector WeightedInputs; 1615 for (StringRef Filename : InputFilenames) 1616 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1617 for (StringRef WeightedFilename : WeightedInputFilenames) 1618 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1619 1620 // Make sure that the file buffer stays alive for the duration of the 1621 // weighted input vector's lifetime. 1622 auto Buffer = getInputFileBuf(InputFilenamesFile); 1623 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1624 1625 if (WeightedInputs.empty()) 1626 exitWithError("no input files specified. See " + 1627 sys::path::filename(argv[0]) + " " + argv[1] + " -help"); 1628 1629 if (DumpInputFileList) { 1630 for (auto &WF : WeightedInputs) 1631 outs() << WF.Weight << "," << WF.Filename << "\n"; 1632 return 0; 1633 } 1634 1635 std::unique_ptr<SymbolRemapper> Remapper; 1636 if (!RemappingFile.empty()) 1637 Remapper = SymbolRemapper::create(RemappingFile); 1638 1639 if (!SupplInstrWithSample.empty()) { 1640 if (ProfileKind != instr) 1641 exitWithError( 1642 "-supplement-instr-with-sample can only work with -instr. "); 1643 1644 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1645 SupplMinSizeThreshold, ZeroCounterThreshold, 1646 InstrProfColdThreshold); 1647 return 0; 1648 } 1649 1650 if (ProfileKind == instr) 1651 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1652 ProfiledBinary); 1653 else 1654 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1655 OutputSizeLimit); 1656 return 0; 1657 } 1658 1659 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1660 static void overlapInstrProfile(const std::string &BaseFilename, 1661 const std::string &TestFilename, 1662 const OverlapFuncFilters &FuncFilter, 1663 raw_fd_ostream &OS, bool IsCS) { 1664 std::mutex ErrorLock; 1665 SmallSet<instrprof_error, 4> WriterErrorCodes; 1666 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1667 WeightedFile WeightedInput{BaseFilename, 1}; 1668 OverlapStats Overlap; 1669 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1670 if (E) 1671 exitWithError(std::move(E), "error in getting profile count sums"); 1672 if (Overlap.Base.CountSum < 1.0f) { 1673 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1674 exit(0); 1675 } 1676 if (Overlap.Test.CountSum < 1.0f) { 1677 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1678 exit(0); 1679 } 1680 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1681 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1682 IsCS); 1683 Overlap.dump(OS); 1684 } 1685 1686 namespace { 1687 struct SampleOverlapStats { 1688 SampleContext BaseName; 1689 SampleContext TestName; 1690 // Number of overlap units 1691 uint64_t OverlapCount = 0; 1692 // Total samples of overlap units 1693 uint64_t OverlapSample = 0; 1694 // Number of and total samples of units that only present in base or test 1695 // profile 1696 uint64_t BaseUniqueCount = 0; 1697 uint64_t BaseUniqueSample = 0; 1698 uint64_t TestUniqueCount = 0; 1699 uint64_t TestUniqueSample = 0; 1700 // Number of units and total samples in base or test profile 1701 uint64_t BaseCount = 0; 1702 uint64_t BaseSample = 0; 1703 uint64_t TestCount = 0; 1704 uint64_t TestSample = 0; 1705 // Number of and total samples of units that present in at least one profile 1706 uint64_t UnionCount = 0; 1707 uint64_t UnionSample = 0; 1708 // Weighted similarity 1709 double Similarity = 0.0; 1710 // For SampleOverlapStats instances representing functions, weights of the 1711 // function in base and test profiles 1712 double BaseWeight = 0.0; 1713 double TestWeight = 0.0; 1714 1715 SampleOverlapStats() = default; 1716 }; 1717 } // end anonymous namespace 1718 1719 namespace { 1720 struct FuncSampleStats { 1721 uint64_t SampleSum = 0; 1722 uint64_t MaxSample = 0; 1723 uint64_t HotBlockCount = 0; 1724 FuncSampleStats() = default; 1725 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1726 uint64_t HotBlockCount) 1727 : SampleSum(SampleSum), MaxSample(MaxSample), 1728 HotBlockCount(HotBlockCount) {} 1729 }; 1730 } // end anonymous namespace 1731 1732 namespace { 1733 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1734 1735 // Class for updating merging steps for two sorted maps. The class should be 1736 // instantiated with a map iterator type. 1737 template <class T> class MatchStep { 1738 public: 1739 MatchStep() = delete; 1740 1741 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1742 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1743 SecondEnd(SecondEnd), Status(MS_None) {} 1744 1745 bool areBothFinished() const { 1746 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1747 } 1748 1749 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1750 1751 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1752 1753 /// Advance one step based on the previous match status unless the previous 1754 /// status is MS_None. Then update Status based on the comparison between two 1755 /// container iterators at the current step. If the previous status is 1756 /// MS_None, it means two iterators are at the beginning and no comparison has 1757 /// been made, so we simply update Status without advancing the iterators. 1758 void updateOneStep(); 1759 1760 T getFirstIter() const { return FirstIter; } 1761 1762 T getSecondIter() const { return SecondIter; } 1763 1764 MatchStatus getMatchStatus() const { return Status; } 1765 1766 private: 1767 // Current iterator and end iterator of the first container. 1768 T FirstIter; 1769 T FirstEnd; 1770 // Current iterator and end iterator of the second container. 1771 T SecondIter; 1772 T SecondEnd; 1773 // Match status of the current step. 1774 MatchStatus Status; 1775 }; 1776 } // end anonymous namespace 1777 1778 template <class T> void MatchStep<T>::updateOneStep() { 1779 switch (Status) { 1780 case MS_Match: 1781 ++FirstIter; 1782 ++SecondIter; 1783 break; 1784 case MS_FirstUnique: 1785 ++FirstIter; 1786 break; 1787 case MS_SecondUnique: 1788 ++SecondIter; 1789 break; 1790 case MS_None: 1791 break; 1792 } 1793 1794 // Update Status according to iterators at the current step. 1795 if (areBothFinished()) 1796 return; 1797 if (FirstIter != FirstEnd && 1798 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1799 Status = MS_FirstUnique; 1800 else if (SecondIter != SecondEnd && 1801 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1802 Status = MS_SecondUnique; 1803 else 1804 Status = MS_Match; 1805 } 1806 1807 // Return the sum of line/block samples, the max line/block sample, and the 1808 // number of line/block samples above the given threshold in a function 1809 // including its inlinees. 1810 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1811 FuncSampleStats &FuncStats, 1812 uint64_t HotThreshold) { 1813 for (const auto &L : Func.getBodySamples()) { 1814 uint64_t Sample = L.second.getSamples(); 1815 FuncStats.SampleSum += Sample; 1816 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1817 if (Sample >= HotThreshold) 1818 ++FuncStats.HotBlockCount; 1819 } 1820 1821 for (const auto &C : Func.getCallsiteSamples()) { 1822 for (const auto &F : C.second) 1823 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1824 } 1825 } 1826 1827 /// Predicate that determines if a function is hot with a given threshold. We 1828 /// keep it separate from its callsites for possible extension in the future. 1829 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1830 uint64_t HotThreshold) { 1831 // We intentionally compare the maximum sample count in a function with the 1832 // HotThreshold to get an approximate determination on hot functions. 1833 return (FuncStats.MaxSample >= HotThreshold); 1834 } 1835 1836 namespace { 1837 class SampleOverlapAggregator { 1838 public: 1839 SampleOverlapAggregator(const std::string &BaseFilename, 1840 const std::string &TestFilename, 1841 double LowSimilarityThreshold, double Epsilon, 1842 const OverlapFuncFilters &FuncFilter) 1843 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1844 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1845 FuncFilter(FuncFilter) {} 1846 1847 /// Detect 0-sample input profile and report to output stream. This interface 1848 /// should be called after loadProfiles(). 1849 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1850 1851 /// Write out function-level similarity statistics for functions specified by 1852 /// options --function, --value-cutoff, and --similarity-cutoff. 1853 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1854 1855 /// Write out program-level similarity and overlap statistics. 1856 void dumpProgramSummary(raw_fd_ostream &OS) const; 1857 1858 /// Write out hot-function and hot-block statistics for base_profile, 1859 /// test_profile, and their overlap. For both cases, the overlap HO is 1860 /// calculated as follows: 1861 /// Given the number of functions (or blocks) that are hot in both profiles 1862 /// HCommon and the number of functions (or blocks) that are hot in at 1863 /// least one profile HUnion, HO = HCommon / HUnion. 1864 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1865 1866 /// This function tries matching functions in base and test profiles. For each 1867 /// pair of matched functions, it aggregates the function-level 1868 /// similarity into a profile-level similarity. It also dump function-level 1869 /// similarity information of functions specified by --function, 1870 /// --value-cutoff, and --similarity-cutoff options. The program-level 1871 /// similarity PS is computed as follows: 1872 /// Given function-level similarity FS(A) for all function A, the 1873 /// weight of function A in base profile WB(A), and the weight of function 1874 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1875 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1876 /// meaning no-overlap. 1877 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1878 1879 /// Initialize ProfOverlap with the sum of samples in base and test 1880 /// profiles. This function also computes and keeps the sum of samples and 1881 /// max sample counts of each function in BaseStats and TestStats for later 1882 /// use to avoid re-computations. 1883 void initializeSampleProfileOverlap(); 1884 1885 /// Load profiles specified by BaseFilename and TestFilename. 1886 std::error_code loadProfiles(); 1887 1888 using FuncSampleStatsMap = 1889 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1890 1891 private: 1892 SampleOverlapStats ProfOverlap; 1893 SampleOverlapStats HotFuncOverlap; 1894 SampleOverlapStats HotBlockOverlap; 1895 std::string BaseFilename; 1896 std::string TestFilename; 1897 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1898 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1899 // BaseStats and TestStats hold FuncSampleStats for each function, with 1900 // function name as the key. 1901 FuncSampleStatsMap BaseStats; 1902 FuncSampleStatsMap TestStats; 1903 // Low similarity threshold in floating point number 1904 double LowSimilarityThreshold; 1905 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1906 // for tracking hot blocks. 1907 uint64_t BaseHotThreshold; 1908 uint64_t TestHotThreshold; 1909 // A small threshold used to round the results of floating point accumulations 1910 // to resolve imprecision. 1911 const double Epsilon; 1912 std::multimap<double, SampleOverlapStats, std::greater<double>> 1913 FuncSimilarityDump; 1914 // FuncFilter carries specifications in options --value-cutoff and 1915 // --function. 1916 OverlapFuncFilters FuncFilter; 1917 // Column offsets for printing the function-level details table. 1918 static const unsigned int TestWeightCol = 15; 1919 static const unsigned int SimilarityCol = 30; 1920 static const unsigned int OverlapCol = 43; 1921 static const unsigned int BaseUniqueCol = 53; 1922 static const unsigned int TestUniqueCol = 67; 1923 static const unsigned int BaseSampleCol = 81; 1924 static const unsigned int TestSampleCol = 96; 1925 static const unsigned int FuncNameCol = 111; 1926 1927 /// Return a similarity of two line/block sample counters in the same 1928 /// function in base and test profiles. The line/block-similarity BS(i) is 1929 /// computed as follows: 1930 /// For an offsets i, given the sample count at i in base profile BB(i), 1931 /// the sample count at i in test profile BT(i), the sum of sample counts 1932 /// in this function in base profile SB, and the sum of sample counts in 1933 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1934 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1935 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1936 const SampleOverlapStats &FuncOverlap) const; 1937 1938 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1939 uint64_t HotBlockCount); 1940 1941 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1942 FuncSampleStatsMap &HotFunc, 1943 uint64_t HotThreshold) const; 1944 1945 void computeHotFuncOverlap(); 1946 1947 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1948 /// Difference for two sample units in a matched function according to the 1949 /// given match status. 1950 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1951 uint64_t HotBlockCount, 1952 SampleOverlapStats &FuncOverlap, 1953 double &Difference, MatchStatus Status); 1954 1955 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1956 /// Difference for unmatched callees that only present in one profile in a 1957 /// matched caller function. 1958 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1959 SampleOverlapStats &FuncOverlap, 1960 double &Difference, MatchStatus Status); 1961 1962 /// This function updates sample overlap statistics of an overlap function in 1963 /// base and test profile. It also calculates a function-internal similarity 1964 /// FIS as follows: 1965 /// For offsets i that have samples in at least one profile in this 1966 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1967 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1968 /// 0.0 meaning no overlap. 1969 double computeSampleFunctionInternalOverlap( 1970 const sampleprof::FunctionSamples &BaseFunc, 1971 const sampleprof::FunctionSamples &TestFunc, 1972 SampleOverlapStats &FuncOverlap); 1973 1974 /// Function-level similarity (FS) is a weighted value over function internal 1975 /// similarity (FIS). This function computes a function's FS from its FIS by 1976 /// applying the weight. 1977 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1978 uint64_t TestFuncSample) const; 1979 1980 /// The function-level similarity FS(A) for a function A is computed as 1981 /// follows: 1982 /// Compute a function-internal similarity FIS(A) by 1983 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1984 /// function A in base profile WB(A), and the weight of function A in test 1985 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1986 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1987 double 1988 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1989 const sampleprof::FunctionSamples *TestFunc, 1990 SampleOverlapStats *FuncOverlap, 1991 uint64_t BaseFuncSample, 1992 uint64_t TestFuncSample); 1993 1994 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1995 /// similarities (FS). This method weights the FS value by the function 1996 /// weights in the base and test profiles for the aggregation. 1997 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1998 uint64_t TestFuncSample) const; 1999 }; 2000 } // end anonymous namespace 2001 2002 bool SampleOverlapAggregator::detectZeroSampleProfile( 2003 raw_fd_ostream &OS) const { 2004 bool HaveZeroSample = false; 2005 if (ProfOverlap.BaseSample == 0) { 2006 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 2007 HaveZeroSample = true; 2008 } 2009 if (ProfOverlap.TestSample == 0) { 2010 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 2011 HaveZeroSample = true; 2012 } 2013 return HaveZeroSample; 2014 } 2015 2016 double SampleOverlapAggregator::computeBlockSimilarity( 2017 uint64_t BaseSample, uint64_t TestSample, 2018 const SampleOverlapStats &FuncOverlap) const { 2019 double BaseFrac = 0.0; 2020 double TestFrac = 0.0; 2021 if (FuncOverlap.BaseSample > 0) 2022 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 2023 if (FuncOverlap.TestSample > 0) 2024 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 2025 return 1.0 - std::fabs(BaseFrac - TestFrac); 2026 } 2027 2028 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 2029 uint64_t TestSample, 2030 uint64_t HotBlockCount) { 2031 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 2032 bool IsTestHot = (TestSample >= TestHotThreshold); 2033 if (!IsBaseHot && !IsTestHot) 2034 return; 2035 2036 HotBlockOverlap.UnionCount += HotBlockCount; 2037 if (IsBaseHot) 2038 HotBlockOverlap.BaseCount += HotBlockCount; 2039 if (IsTestHot) 2040 HotBlockOverlap.TestCount += HotBlockCount; 2041 if (IsBaseHot && IsTestHot) 2042 HotBlockOverlap.OverlapCount += HotBlockCount; 2043 } 2044 2045 void SampleOverlapAggregator::getHotFunctions( 2046 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 2047 uint64_t HotThreshold) const { 2048 for (const auto &F : ProfStats) { 2049 if (isFunctionHot(F.second, HotThreshold)) 2050 HotFunc.emplace(F.first, F.second); 2051 } 2052 } 2053 2054 void SampleOverlapAggregator::computeHotFuncOverlap() { 2055 FuncSampleStatsMap BaseHotFunc; 2056 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 2057 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 2058 2059 FuncSampleStatsMap TestHotFunc; 2060 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 2061 HotFuncOverlap.TestCount = TestHotFunc.size(); 2062 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 2063 2064 for (const auto &F : BaseHotFunc) { 2065 if (TestHotFunc.count(F.first)) 2066 ++HotFuncOverlap.OverlapCount; 2067 else 2068 ++HotFuncOverlap.UnionCount; 2069 } 2070 } 2071 2072 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2073 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2074 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2075 assert(Status != MS_None && 2076 "Match status should be updated before updating overlap statistics"); 2077 if (Status == MS_FirstUnique) { 2078 TestSample = 0; 2079 FuncOverlap.BaseUniqueSample += BaseSample; 2080 } else if (Status == MS_SecondUnique) { 2081 BaseSample = 0; 2082 FuncOverlap.TestUniqueSample += TestSample; 2083 } else { 2084 ++FuncOverlap.OverlapCount; 2085 } 2086 2087 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2088 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2089 Difference += 2090 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2091 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2092 } 2093 2094 void SampleOverlapAggregator::updateForUnmatchedCallee( 2095 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2096 double &Difference, MatchStatus Status) { 2097 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2098 "Status must be either of the two unmatched cases"); 2099 FuncSampleStats FuncStats; 2100 if (Status == MS_FirstUnique) { 2101 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2102 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2103 FuncStats.HotBlockCount, FuncOverlap, 2104 Difference, Status); 2105 } else { 2106 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2107 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2108 FuncStats.HotBlockCount, FuncOverlap, 2109 Difference, Status); 2110 } 2111 } 2112 2113 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2114 const sampleprof::FunctionSamples &BaseFunc, 2115 const sampleprof::FunctionSamples &TestFunc, 2116 SampleOverlapStats &FuncOverlap) { 2117 2118 using namespace sampleprof; 2119 2120 double Difference = 0; 2121 2122 // Accumulate Difference for regular line/block samples in the function. 2123 // We match them through sort-merge join algorithm because 2124 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2125 // by their offsets. 2126 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2127 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2128 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2129 BlockIterStep.updateOneStep(); 2130 while (!BlockIterStep.areBothFinished()) { 2131 uint64_t BaseSample = 2132 BlockIterStep.isFirstFinished() 2133 ? 0 2134 : BlockIterStep.getFirstIter()->second.getSamples(); 2135 uint64_t TestSample = 2136 BlockIterStep.isSecondFinished() 2137 ? 0 2138 : BlockIterStep.getSecondIter()->second.getSamples(); 2139 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2140 Difference, BlockIterStep.getMatchStatus()); 2141 2142 BlockIterStep.updateOneStep(); 2143 } 2144 2145 // Accumulate Difference for callsite lines in the function. We match 2146 // them through sort-merge algorithm because 2147 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2148 // ordered by their offsets. 2149 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2150 BaseFunc.getCallsiteSamples().cbegin(), 2151 BaseFunc.getCallsiteSamples().cend(), 2152 TestFunc.getCallsiteSamples().cbegin(), 2153 TestFunc.getCallsiteSamples().cend()); 2154 CallsiteIterStep.updateOneStep(); 2155 while (!CallsiteIterStep.areBothFinished()) { 2156 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2157 assert(CallsiteStepStatus != MS_None && 2158 "Match status should be updated before entering loop body"); 2159 2160 if (CallsiteStepStatus != MS_Match) { 2161 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2162 ? CallsiteIterStep.getFirstIter() 2163 : CallsiteIterStep.getSecondIter(); 2164 for (const auto &F : Callsite->second) 2165 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2166 CallsiteStepStatus); 2167 } else { 2168 // There may be multiple inlinees at the same offset, so we need to try 2169 // matching all of them. This match is implemented through sort-merge 2170 // algorithm because callsite records at the same offset are ordered by 2171 // function names. 2172 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2173 CallsiteIterStep.getFirstIter()->second.cbegin(), 2174 CallsiteIterStep.getFirstIter()->second.cend(), 2175 CallsiteIterStep.getSecondIter()->second.cbegin(), 2176 CallsiteIterStep.getSecondIter()->second.cend()); 2177 CalleeIterStep.updateOneStep(); 2178 while (!CalleeIterStep.areBothFinished()) { 2179 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2180 if (CalleeStepStatus != MS_Match) { 2181 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2182 ? CalleeIterStep.getFirstIter() 2183 : CalleeIterStep.getSecondIter(); 2184 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2185 CalleeStepStatus); 2186 } else { 2187 // An inlined function can contain other inlinees inside, so compute 2188 // the Difference recursively. 2189 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2190 CalleeIterStep.getFirstIter()->second, 2191 CalleeIterStep.getSecondIter()->second, 2192 FuncOverlap); 2193 } 2194 CalleeIterStep.updateOneStep(); 2195 } 2196 } 2197 CallsiteIterStep.updateOneStep(); 2198 } 2199 2200 // Difference reflects the total differences of line/block samples in this 2201 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2202 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2203 return (2.0 - Difference) / 2; 2204 } 2205 2206 double SampleOverlapAggregator::weightForFuncSimilarity( 2207 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2208 uint64_t TestFuncSample) const { 2209 // Compute the weight as the distance between the function weights in two 2210 // profiles. 2211 double BaseFrac = 0.0; 2212 double TestFrac = 0.0; 2213 assert(ProfOverlap.BaseSample > 0 && 2214 "Total samples in base profile should be greater than 0"); 2215 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2216 assert(ProfOverlap.TestSample > 0 && 2217 "Total samples in test profile should be greater than 0"); 2218 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2219 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2220 2221 // Take WeightDistance into the similarity. 2222 return FuncInternalSimilarity * (1 - WeightDistance); 2223 } 2224 2225 double 2226 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2227 uint64_t BaseFuncSample, 2228 uint64_t TestFuncSample) const { 2229 2230 double BaseFrac = 0.0; 2231 double TestFrac = 0.0; 2232 assert(ProfOverlap.BaseSample > 0 && 2233 "Total samples in base profile should be greater than 0"); 2234 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2235 assert(ProfOverlap.TestSample > 0 && 2236 "Total samples in test profile should be greater than 0"); 2237 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2238 return FuncSimilarity * (BaseFrac + TestFrac); 2239 } 2240 2241 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2242 const sampleprof::FunctionSamples *BaseFunc, 2243 const sampleprof::FunctionSamples *TestFunc, 2244 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2245 uint64_t TestFuncSample) { 2246 // Default function internal similarity before weighted, meaning two functions 2247 // has no overlap. 2248 const double DefaultFuncInternalSimilarity = 0; 2249 double FuncSimilarity; 2250 double FuncInternalSimilarity; 2251 2252 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2253 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2254 // similarity. 2255 if (!BaseFunc || !TestFunc) { 2256 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2257 } else { 2258 assert(FuncOverlap != nullptr && 2259 "FuncOverlap should be provided in this case"); 2260 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2261 *BaseFunc, *TestFunc, *FuncOverlap); 2262 // Now, FuncInternalSimilarity may be a little less than 0 due to 2263 // imprecision of floating point accumulations. Make it zero if the 2264 // difference is below Epsilon. 2265 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2266 ? 0 2267 : FuncInternalSimilarity; 2268 } 2269 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2270 BaseFuncSample, TestFuncSample); 2271 return FuncSimilarity; 2272 } 2273 2274 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2275 using namespace sampleprof; 2276 2277 std::unordered_map<SampleContext, const FunctionSamples *, 2278 SampleContext::Hash> 2279 BaseFuncProf; 2280 const auto &BaseProfiles = BaseReader->getProfiles(); 2281 for (const auto &BaseFunc : BaseProfiles) { 2282 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2283 } 2284 ProfOverlap.UnionCount = BaseFuncProf.size(); 2285 2286 const auto &TestProfiles = TestReader->getProfiles(); 2287 for (const auto &TestFunc : TestProfiles) { 2288 SampleOverlapStats FuncOverlap; 2289 FuncOverlap.TestName = TestFunc.second.getContext(); 2290 assert(TestStats.count(FuncOverlap.TestName) && 2291 "TestStats should have records for all functions in test profile " 2292 "except inlinees"); 2293 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2294 2295 bool Matched = false; 2296 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2297 if (Match == BaseFuncProf.end()) { 2298 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2299 ++ProfOverlap.TestUniqueCount; 2300 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2301 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2302 2303 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2304 2305 double FuncSimilarity = computeSampleFunctionOverlap( 2306 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2307 ProfOverlap.Similarity += 2308 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2309 2310 ++ProfOverlap.UnionCount; 2311 ProfOverlap.UnionSample += FuncStats.SampleSum; 2312 } else { 2313 ++ProfOverlap.OverlapCount; 2314 2315 // Two functions match with each other. Compute function-level overlap and 2316 // aggregate them into profile-level overlap. 2317 FuncOverlap.BaseName = Match->second->getContext(); 2318 assert(BaseStats.count(FuncOverlap.BaseName) && 2319 "BaseStats should have records for all functions in base profile " 2320 "except inlinees"); 2321 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2322 2323 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2324 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2325 FuncOverlap.TestSample); 2326 ProfOverlap.Similarity += 2327 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2328 FuncOverlap.TestSample); 2329 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2330 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2331 2332 // Accumulate the percentage of base unique and test unique samples into 2333 // ProfOverlap. 2334 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2335 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2336 2337 // Remove matched base functions for later reporting functions not found 2338 // in test profile. 2339 BaseFuncProf.erase(Match); 2340 Matched = true; 2341 } 2342 2343 // Print function-level similarity information if specified by options. 2344 assert(TestStats.count(FuncOverlap.TestName) && 2345 "TestStats should have records for all functions in test profile " 2346 "except inlinees"); 2347 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2348 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2349 (Matched && !FuncFilter.NameFilter.empty() && 2350 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2351 std::string::npos)) { 2352 assert(ProfOverlap.BaseSample > 0 && 2353 "Total samples in base profile should be greater than 0"); 2354 FuncOverlap.BaseWeight = 2355 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2356 assert(ProfOverlap.TestSample > 0 && 2357 "Total samples in test profile should be greater than 0"); 2358 FuncOverlap.TestWeight = 2359 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2360 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2361 } 2362 } 2363 2364 // Traverse through functions in base profile but not in test profile. 2365 for (const auto &F : BaseFuncProf) { 2366 assert(BaseStats.count(F.second->getContext()) && 2367 "BaseStats should have records for all functions in base profile " 2368 "except inlinees"); 2369 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2370 ++ProfOverlap.BaseUniqueCount; 2371 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2372 2373 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2374 2375 double FuncSimilarity = computeSampleFunctionOverlap( 2376 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2377 ProfOverlap.Similarity += 2378 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2379 2380 ProfOverlap.UnionSample += FuncStats.SampleSum; 2381 } 2382 2383 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2384 // of floating point accumulations. Make it 1.0 if the difference is below 2385 // Epsilon. 2386 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2387 ? 1 2388 : ProfOverlap.Similarity; 2389 2390 computeHotFuncOverlap(); 2391 } 2392 2393 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2394 const auto &BaseProf = BaseReader->getProfiles(); 2395 for (const auto &I : BaseProf) { 2396 ++ProfOverlap.BaseCount; 2397 FuncSampleStats FuncStats; 2398 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2399 ProfOverlap.BaseSample += FuncStats.SampleSum; 2400 BaseStats.emplace(I.second.getContext(), FuncStats); 2401 } 2402 2403 const auto &TestProf = TestReader->getProfiles(); 2404 for (const auto &I : TestProf) { 2405 ++ProfOverlap.TestCount; 2406 FuncSampleStats FuncStats; 2407 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2408 ProfOverlap.TestSample += FuncStats.SampleSum; 2409 TestStats.emplace(I.second.getContext(), FuncStats); 2410 } 2411 2412 ProfOverlap.BaseName = StringRef(BaseFilename); 2413 ProfOverlap.TestName = StringRef(TestFilename); 2414 } 2415 2416 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2417 using namespace sampleprof; 2418 2419 if (FuncSimilarityDump.empty()) 2420 return; 2421 2422 formatted_raw_ostream FOS(OS); 2423 FOS << "Function-level details:\n"; 2424 FOS << "Base weight"; 2425 FOS.PadToColumn(TestWeightCol); 2426 FOS << "Test weight"; 2427 FOS.PadToColumn(SimilarityCol); 2428 FOS << "Similarity"; 2429 FOS.PadToColumn(OverlapCol); 2430 FOS << "Overlap"; 2431 FOS.PadToColumn(BaseUniqueCol); 2432 FOS << "Base unique"; 2433 FOS.PadToColumn(TestUniqueCol); 2434 FOS << "Test unique"; 2435 FOS.PadToColumn(BaseSampleCol); 2436 FOS << "Base samples"; 2437 FOS.PadToColumn(TestSampleCol); 2438 FOS << "Test samples"; 2439 FOS.PadToColumn(FuncNameCol); 2440 FOS << "Function name\n"; 2441 for (const auto &F : FuncSimilarityDump) { 2442 double OverlapPercent = 2443 F.second.UnionSample > 0 2444 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2445 : 0; 2446 double BaseUniquePercent = 2447 F.second.BaseSample > 0 2448 ? static_cast<double>(F.second.BaseUniqueSample) / 2449 F.second.BaseSample 2450 : 0; 2451 double TestUniquePercent = 2452 F.second.TestSample > 0 2453 ? static_cast<double>(F.second.TestUniqueSample) / 2454 F.second.TestSample 2455 : 0; 2456 2457 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2458 FOS.PadToColumn(TestWeightCol); 2459 FOS << format("%.2f%%", F.second.TestWeight * 100); 2460 FOS.PadToColumn(SimilarityCol); 2461 FOS << format("%.2f%%", F.second.Similarity * 100); 2462 FOS.PadToColumn(OverlapCol); 2463 FOS << format("%.2f%%", OverlapPercent * 100); 2464 FOS.PadToColumn(BaseUniqueCol); 2465 FOS << format("%.2f%%", BaseUniquePercent * 100); 2466 FOS.PadToColumn(TestUniqueCol); 2467 FOS << format("%.2f%%", TestUniquePercent * 100); 2468 FOS.PadToColumn(BaseSampleCol); 2469 FOS << F.second.BaseSample; 2470 FOS.PadToColumn(TestSampleCol); 2471 FOS << F.second.TestSample; 2472 FOS.PadToColumn(FuncNameCol); 2473 FOS << F.second.TestName.toString() << "\n"; 2474 } 2475 } 2476 2477 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2478 OS << "Profile overlap infomation for base_profile: " 2479 << ProfOverlap.BaseName.toString() 2480 << " and test_profile: " << ProfOverlap.TestName.toString() 2481 << "\nProgram level:\n"; 2482 2483 OS << " Whole program profile similarity: " 2484 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2485 2486 assert(ProfOverlap.UnionSample > 0 && 2487 "Total samples in two profile should be greater than 0"); 2488 double OverlapPercent = 2489 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2490 assert(ProfOverlap.BaseSample > 0 && 2491 "Total samples in base profile should be greater than 0"); 2492 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2493 ProfOverlap.BaseSample; 2494 assert(ProfOverlap.TestSample > 0 && 2495 "Total samples in test profile should be greater than 0"); 2496 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2497 ProfOverlap.TestSample; 2498 2499 OS << " Whole program sample overlap: " 2500 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2501 OS << " percentage of samples unique in base profile: " 2502 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2503 OS << " percentage of samples unique in test profile: " 2504 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2505 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2506 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2507 2508 assert(ProfOverlap.UnionCount > 0 && 2509 "There should be at least one function in two input profiles"); 2510 double FuncOverlapPercent = 2511 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2512 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2513 << "\n"; 2514 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2515 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2516 << "\n"; 2517 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2518 << "\n"; 2519 } 2520 2521 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2522 raw_fd_ostream &OS) const { 2523 assert(HotFuncOverlap.UnionCount > 0 && 2524 "There should be at least one hot function in two input profiles"); 2525 OS << " Hot-function overlap: " 2526 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2527 HotFuncOverlap.UnionCount * 100) 2528 << "\n"; 2529 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2530 OS << " hot functions unique in base profile: " 2531 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2532 OS << " hot functions unique in test profile: " 2533 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2534 2535 assert(HotBlockOverlap.UnionCount > 0 && 2536 "There should be at least one hot block in two input profiles"); 2537 OS << " Hot-block overlap: " 2538 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2539 HotBlockOverlap.UnionCount * 100) 2540 << "\n"; 2541 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2542 OS << " hot blocks unique in base profile: " 2543 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2544 OS << " hot blocks unique in test profile: " 2545 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2546 } 2547 2548 std::error_code SampleOverlapAggregator::loadProfiles() { 2549 using namespace sampleprof; 2550 2551 LLVMContext Context; 2552 auto FS = vfs::getRealFileSystem(); 2553 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2554 FSDiscriminatorPassOption); 2555 if (std::error_code EC = BaseReaderOrErr.getError()) 2556 exitWithErrorCode(EC, BaseFilename); 2557 2558 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2559 FSDiscriminatorPassOption); 2560 if (std::error_code EC = TestReaderOrErr.getError()) 2561 exitWithErrorCode(EC, TestFilename); 2562 2563 BaseReader = std::move(BaseReaderOrErr.get()); 2564 TestReader = std::move(TestReaderOrErr.get()); 2565 2566 if (std::error_code EC = BaseReader->read()) 2567 exitWithErrorCode(EC, BaseFilename); 2568 if (std::error_code EC = TestReader->read()) 2569 exitWithErrorCode(EC, TestFilename); 2570 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2571 exitWithError( 2572 "cannot compare probe-based profile with non-probe-based profile"); 2573 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2574 exitWithError("cannot compare CS profile with non-CS profile"); 2575 2576 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2577 // profile summary. 2578 ProfileSummary &BasePS = BaseReader->getSummary(); 2579 ProfileSummary &TestPS = TestReader->getSummary(); 2580 BaseHotThreshold = 2581 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2582 TestHotThreshold = 2583 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2584 2585 return std::error_code(); 2586 } 2587 2588 void overlapSampleProfile(const std::string &BaseFilename, 2589 const std::string &TestFilename, 2590 const OverlapFuncFilters &FuncFilter, 2591 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2592 using namespace sampleprof; 2593 2594 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2595 // report 2--3 places after decimal point in percentage numbers. 2596 SampleOverlapAggregator OverlapAggr( 2597 BaseFilename, TestFilename, 2598 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2599 if (std::error_code EC = OverlapAggr.loadProfiles()) 2600 exitWithErrorCode(EC); 2601 2602 OverlapAggr.initializeSampleProfileOverlap(); 2603 if (OverlapAggr.detectZeroSampleProfile(OS)) 2604 return; 2605 2606 OverlapAggr.computeSampleProfileOverlap(OS); 2607 2608 OverlapAggr.dumpProgramSummary(OS); 2609 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2610 OverlapAggr.dumpFuncSimilarity(OS); 2611 } 2612 2613 static int overlap_main(int argc, const char *argv[]) { 2614 std::error_code EC; 2615 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2616 if (EC) 2617 exitWithErrorCode(EC, OutputFilename); 2618 2619 if (ProfileKind == instr) 2620 overlapInstrProfile(BaseFilename, TestFilename, 2621 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2622 OS, IsCS); 2623 else 2624 overlapSampleProfile(BaseFilename, TestFilename, 2625 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2626 SimilarityCutoff, OS); 2627 2628 return 0; 2629 } 2630 2631 namespace { 2632 struct ValueSitesStats { 2633 ValueSitesStats() = default; 2634 uint64_t TotalNumValueSites = 0; 2635 uint64_t TotalNumValueSitesWithValueProfile = 0; 2636 uint64_t TotalNumValues = 0; 2637 std::vector<unsigned> ValueSitesHistogram; 2638 }; 2639 } // namespace 2640 2641 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2642 ValueSitesStats &Stats, raw_fd_ostream &OS, 2643 InstrProfSymtab *Symtab) { 2644 uint32_t NS = Func.getNumValueSites(VK); 2645 Stats.TotalNumValueSites += NS; 2646 for (size_t I = 0; I < NS; ++I) { 2647 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2648 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2649 Stats.TotalNumValues += NV; 2650 if (NV) { 2651 Stats.TotalNumValueSitesWithValueProfile++; 2652 if (NV > Stats.ValueSitesHistogram.size()) 2653 Stats.ValueSitesHistogram.resize(NV, 0); 2654 Stats.ValueSitesHistogram[NV - 1]++; 2655 } 2656 2657 uint64_t SiteSum = 0; 2658 for (uint32_t V = 0; V < NV; V++) 2659 SiteSum += VD[V].Count; 2660 if (SiteSum == 0) 2661 SiteSum = 1; 2662 2663 for (uint32_t V = 0; V < NV; V++) { 2664 OS << "\t[ " << format("%2u", I) << ", "; 2665 if (Symtab == nullptr) 2666 OS << format("%4" PRIu64, VD[V].Value); 2667 else 2668 OS << Symtab->getFuncOrVarName(VD[V].Value); 2669 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2670 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2671 } 2672 } 2673 } 2674 2675 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2676 ValueSitesStats &Stats) { 2677 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2678 OS << " Total number of sites with values: " 2679 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2680 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2681 2682 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2683 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2684 if (Stats.ValueSitesHistogram[I] > 0) 2685 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2686 } 2687 } 2688 2689 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2690 if (SFormat == ShowFormat::Json) 2691 exitWithError("JSON output is not supported for instr profiles"); 2692 if (SFormat == ShowFormat::Yaml) 2693 exitWithError("YAML output is not supported for instr profiles"); 2694 auto FS = vfs::getRealFileSystem(); 2695 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2696 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2697 if (ShowDetailedSummary && Cutoffs.empty()) { 2698 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2699 } 2700 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2701 if (Error E = ReaderOrErr.takeError()) 2702 exitWithError(std::move(E), Filename); 2703 2704 auto Reader = std::move(ReaderOrErr.get()); 2705 bool IsIRInstr = Reader->isIRLevelProfile(); 2706 size_t ShownFunctions = 0; 2707 size_t BelowCutoffFunctions = 0; 2708 int NumVPKind = IPVK_Last - IPVK_First + 1; 2709 std::vector<ValueSitesStats> VPStats(NumVPKind); 2710 2711 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2712 const std::pair<std::string, uint64_t> &v2) { 2713 return v1.second > v2.second; 2714 }; 2715 2716 std::priority_queue<std::pair<std::string, uint64_t>, 2717 std::vector<std::pair<std::string, uint64_t>>, 2718 decltype(MinCmp)> 2719 HottestFuncs(MinCmp); 2720 2721 if (!TextFormat && OnlyListBelow) { 2722 OS << "The list of functions with the maximum counter less than " 2723 << ShowValueCutoff << ":\n"; 2724 } 2725 2726 // Add marker so that IR-level instrumentation round-trips properly. 2727 if (TextFormat && IsIRInstr) 2728 OS << ":ir\n"; 2729 2730 for (const auto &Func : *Reader) { 2731 if (Reader->isIRLevelProfile()) { 2732 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2733 if (FuncIsCS != ShowCS) 2734 continue; 2735 } 2736 bool Show = ShowAllFunctions || 2737 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2738 2739 bool doTextFormatDump = (Show && TextFormat); 2740 2741 if (doTextFormatDump) { 2742 InstrProfSymtab &Symtab = Reader->getSymtab(); 2743 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2744 OS); 2745 continue; 2746 } 2747 2748 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2749 Builder.addRecord(Func); 2750 2751 if (ShowCovered) { 2752 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2753 OS << Func.Name << "\n"; 2754 continue; 2755 } 2756 2757 uint64_t FuncMax = 0; 2758 uint64_t FuncSum = 0; 2759 2760 auto PseudoKind = Func.getCountPseudoKind(); 2761 if (PseudoKind != InstrProfRecord::NotPseudo) { 2762 if (Show) { 2763 if (!ShownFunctions) 2764 OS << "Counters:\n"; 2765 ++ShownFunctions; 2766 OS << " " << Func.Name << ":\n" 2767 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2768 << " Counters: " << Func.Counts.size(); 2769 if (PseudoKind == InstrProfRecord::PseudoHot) 2770 OS << " <PseudoHot>\n"; 2771 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2772 OS << " <PseudoWarm>\n"; 2773 else 2774 llvm_unreachable("Unknown PseudoKind"); 2775 } 2776 continue; 2777 } 2778 2779 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2780 FuncMax = std::max(FuncMax, Func.Counts[I]); 2781 FuncSum += Func.Counts[I]; 2782 } 2783 2784 if (FuncMax < ShowValueCutoff) { 2785 ++BelowCutoffFunctions; 2786 if (OnlyListBelow) { 2787 OS << " " << Func.Name << ": (Max = " << FuncMax 2788 << " Sum = " << FuncSum << ")\n"; 2789 } 2790 continue; 2791 } else if (OnlyListBelow) 2792 continue; 2793 2794 if (TopNFunctions) { 2795 if (HottestFuncs.size() == TopNFunctions) { 2796 if (HottestFuncs.top().second < FuncMax) { 2797 HottestFuncs.pop(); 2798 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2799 } 2800 } else 2801 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2802 } 2803 2804 if (Show) { 2805 if (!ShownFunctions) 2806 OS << "Counters:\n"; 2807 2808 ++ShownFunctions; 2809 2810 OS << " " << Func.Name << ":\n" 2811 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2812 << " Counters: " << Func.Counts.size() << "\n"; 2813 if (!IsIRInstr) 2814 OS << " Function count: " << Func.Counts[0] << "\n"; 2815 2816 if (ShowIndirectCallTargets) 2817 OS << " Indirect Call Site Count: " 2818 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2819 2820 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2821 if (ShowMemOPSizes && NumMemOPCalls > 0) 2822 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2823 << "\n"; 2824 2825 if (ShowCounts) { 2826 OS << " Block counts: ["; 2827 size_t Start = (IsIRInstr ? 0 : 1); 2828 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2829 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2830 } 2831 OS << "]\n"; 2832 } 2833 2834 if (ShowIndirectCallTargets) { 2835 OS << " Indirect Target Results:\n"; 2836 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2837 VPStats[IPVK_IndirectCallTarget], OS, 2838 &(Reader->getSymtab())); 2839 } 2840 2841 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2842 OS << " Memory Intrinsic Size Results:\n"; 2843 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2844 nullptr); 2845 } 2846 } 2847 } 2848 if (Reader->hasError()) 2849 exitWithError(Reader->getError(), Filename); 2850 2851 if (TextFormat || ShowCovered) 2852 return 0; 2853 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2854 bool IsIR = Reader->isIRLevelProfile(); 2855 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2856 if (IsIR) 2857 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2858 OS << "\n"; 2859 if (ShowAllFunctions || !FuncNameFilter.empty()) 2860 OS << "Functions shown: " << ShownFunctions << "\n"; 2861 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2862 if (ShowValueCutoff > 0) { 2863 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2864 << "): " << BelowCutoffFunctions << "\n"; 2865 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 2866 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2867 } 2868 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2869 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2870 2871 if (TopNFunctions) { 2872 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2873 while (!HottestFuncs.empty()) { 2874 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2875 HottestFuncs.pop(); 2876 } 2877 OS << "Top " << TopNFunctions 2878 << " functions with the largest internal block counts: \n"; 2879 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2880 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2881 } 2882 2883 if (ShownFunctions && ShowIndirectCallTargets) { 2884 OS << "Statistics for indirect call sites profile:\n"; 2885 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2886 VPStats[IPVK_IndirectCallTarget]); 2887 } 2888 2889 if (ShownFunctions && ShowMemOPSizes) { 2890 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2891 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2892 } 2893 2894 if (ShowDetailedSummary) { 2895 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2896 OS << "Total count: " << PS->getTotalCount() << "\n"; 2897 PS->printDetailedSummary(OS); 2898 } 2899 2900 if (ShowBinaryIds) 2901 if (Error E = Reader->printBinaryIds(OS)) 2902 exitWithError(std::move(E), Filename); 2903 2904 if (ShowProfileVersion) 2905 OS << "Profile version: " << Reader->getVersion() << "\n"; 2906 2907 if (ShowTemporalProfTraces) { 2908 auto &Traces = Reader->getTemporalProfTraces(); 2909 OS << "Temporal Profile Traces (samples=" << Traces.size() 2910 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 2911 for (unsigned i = 0; i < Traces.size(); i++) { 2912 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 2913 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 2914 for (auto &NameRef : Traces[i].FunctionNameRefs) 2915 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 2916 } 2917 } 2918 2919 return 0; 2920 } 2921 2922 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2923 raw_fd_ostream &OS) { 2924 if (!Reader->dumpSectionInfo(OS)) { 2925 WithColor::warning() << "-show-sec-info-only is only supported for " 2926 << "sample profile in extbinary format and is " 2927 << "ignored for other formats.\n"; 2928 return; 2929 } 2930 } 2931 2932 namespace { 2933 struct HotFuncInfo { 2934 std::string FuncName; 2935 uint64_t TotalCount = 0; 2936 double TotalCountPercent = 0.0f; 2937 uint64_t MaxCount = 0; 2938 uint64_t EntryCount = 0; 2939 2940 HotFuncInfo() = default; 2941 2942 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2943 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 2944 MaxCount(MS), EntryCount(ES) {} 2945 }; 2946 } // namespace 2947 2948 // Print out detailed information about hot functions in PrintValues vector. 2949 // Users specify titles and offset of every columns through ColumnTitle and 2950 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2951 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2952 // print out or let it be an empty string. 2953 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2954 const std::vector<int> &ColumnOffset, 2955 const std::vector<HotFuncInfo> &PrintValues, 2956 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2957 uint64_t HotProfCount, uint64_t TotalProfCount, 2958 const std::string &HotFuncMetric, 2959 uint32_t TopNFunctions, raw_fd_ostream &OS) { 2960 assert(ColumnOffset.size() == ColumnTitle.size() && 2961 "ColumnOffset and ColumnTitle should have the same size"); 2962 assert(ColumnTitle.size() >= 4 && 2963 "ColumnTitle should have at least 4 elements"); 2964 assert(TotalFuncCount > 0 && 2965 "There should be at least one function in the profile"); 2966 double TotalProfPercent = 0; 2967 if (TotalProfCount > 0) 2968 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2969 2970 formatted_raw_ostream FOS(OS); 2971 FOS << HotFuncCount << " out of " << TotalFuncCount 2972 << " functions with profile (" 2973 << format("%.2f%%", 2974 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2975 << ") are considered hot functions"; 2976 if (!HotFuncMetric.empty()) 2977 FOS << " (" << HotFuncMetric << ")"; 2978 FOS << ".\n"; 2979 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2980 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2981 2982 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2983 FOS.PadToColumn(ColumnOffset[I]); 2984 FOS << ColumnTitle[I]; 2985 } 2986 FOS << "\n"; 2987 2988 uint32_t Count = 0; 2989 for (const auto &R : PrintValues) { 2990 if (TopNFunctions && (Count++ == TopNFunctions)) 2991 break; 2992 FOS.PadToColumn(ColumnOffset[0]); 2993 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2994 FOS.PadToColumn(ColumnOffset[1]); 2995 FOS << R.MaxCount; 2996 FOS.PadToColumn(ColumnOffset[2]); 2997 FOS << R.EntryCount; 2998 FOS.PadToColumn(ColumnOffset[3]); 2999 FOS << R.FuncName << "\n"; 3000 } 3001 } 3002 3003 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 3004 ProfileSummary &PS, uint32_t TopN, 3005 raw_fd_ostream &OS) { 3006 using namespace sampleprof; 3007 3008 const uint32_t HotFuncCutoff = 990000; 3009 auto &SummaryVector = PS.getDetailedSummary(); 3010 uint64_t MinCountThreshold = 0; 3011 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 3012 if (SummaryEntry.Cutoff == HotFuncCutoff) { 3013 MinCountThreshold = SummaryEntry.MinCount; 3014 break; 3015 } 3016 } 3017 3018 // Traverse all functions in the profile and keep only hot functions. 3019 // The following loop also calculates the sum of total samples of all 3020 // functions. 3021 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 3022 std::greater<uint64_t>> 3023 HotFunc; 3024 uint64_t ProfileTotalSample = 0; 3025 uint64_t HotFuncSample = 0; 3026 uint64_t HotFuncCount = 0; 3027 3028 for (const auto &I : Profiles) { 3029 FuncSampleStats FuncStats; 3030 const FunctionSamples &FuncProf = I.second; 3031 ProfileTotalSample += FuncProf.getTotalSamples(); 3032 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 3033 3034 if (isFunctionHot(FuncStats, MinCountThreshold)) { 3035 HotFunc.emplace(FuncProf.getTotalSamples(), 3036 std::make_pair(&(I.second), FuncStats.MaxSample)); 3037 HotFuncSample += FuncProf.getTotalSamples(); 3038 ++HotFuncCount; 3039 } 3040 } 3041 3042 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 3043 "Entry sample", "Function name"}; 3044 std::vector<int> ColumnOffset{0, 24, 42, 58}; 3045 std::string Metric = 3046 std::string("max sample >= ") + std::to_string(MinCountThreshold); 3047 std::vector<HotFuncInfo> PrintValues; 3048 for (const auto &FuncPair : HotFunc) { 3049 const FunctionSamples &Func = *FuncPair.second.first; 3050 double TotalSamplePercent = 3051 (ProfileTotalSample > 0) 3052 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 3053 : 0; 3054 PrintValues.emplace_back( 3055 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 3056 TotalSamplePercent, FuncPair.second.second, 3057 Func.getHeadSamplesEstimate())); 3058 } 3059 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 3060 Profiles.size(), HotFuncSample, ProfileTotalSample, 3061 Metric, TopN, OS); 3062 3063 return 0; 3064 } 3065 3066 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3067 if (SFormat == ShowFormat::Yaml) 3068 exitWithError("YAML output is not supported for sample profiles"); 3069 using namespace sampleprof; 3070 LLVMContext Context; 3071 auto FS = vfs::getRealFileSystem(); 3072 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3073 FSDiscriminatorPassOption); 3074 if (std::error_code EC = ReaderOrErr.getError()) 3075 exitWithErrorCode(EC, Filename); 3076 3077 auto Reader = std::move(ReaderOrErr.get()); 3078 if (ShowSectionInfoOnly) { 3079 showSectionInfo(Reader.get(), OS); 3080 return 0; 3081 } 3082 3083 if (std::error_code EC = Reader->read()) 3084 exitWithErrorCode(EC, Filename); 3085 3086 if (ShowAllFunctions || FuncNameFilter.empty()) { 3087 if (SFormat == ShowFormat::Json) 3088 Reader->dumpJson(OS); 3089 else 3090 Reader->dump(OS); 3091 } else { 3092 if (SFormat == ShowFormat::Json) 3093 exitWithError( 3094 "the JSON format is supported only when all functions are to " 3095 "be printed"); 3096 3097 // TODO: parse context string to support filtering by contexts. 3098 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3099 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3100 } 3101 3102 if (ShowProfileSymbolList) { 3103 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3104 Reader->getProfileSymbolList(); 3105 ReaderList->dump(OS); 3106 } 3107 3108 if (ShowDetailedSummary) { 3109 auto &PS = Reader->getSummary(); 3110 PS.printSummary(OS); 3111 PS.printDetailedSummary(OS); 3112 } 3113 3114 if (ShowHotFuncList || TopNFunctions) 3115 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3116 TopNFunctions, OS); 3117 3118 return 0; 3119 } 3120 3121 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3122 if (SFormat == ShowFormat::Json) 3123 exitWithError("JSON output is not supported for MemProf"); 3124 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3125 Filename, ProfiledBinary, /*KeepNames=*/true); 3126 if (Error E = ReaderOr.takeError()) 3127 // Since the error can be related to the profile or the binary we do not 3128 // pass whence. Instead additional context is provided where necessary in 3129 // the error message. 3130 exitWithError(std::move(E), /*Whence*/ ""); 3131 3132 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3133 ReaderOr.get().release()); 3134 3135 Reader->printYAML(OS); 3136 return 0; 3137 } 3138 3139 static int showDebugInfoCorrelation(const std::string &Filename, 3140 ShowFormat SFormat, raw_fd_ostream &OS) { 3141 if (SFormat == ShowFormat::Json) 3142 exitWithError("JSON output is not supported for debug info correlation"); 3143 std::unique_ptr<InstrProfCorrelator> Correlator; 3144 if (auto Err = 3145 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3146 .moveInto(Correlator)) 3147 exitWithError(std::move(Err), Filename); 3148 if (SFormat == ShowFormat::Yaml) { 3149 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3150 exitWithError(std::move(Err), Filename); 3151 return 0; 3152 } 3153 3154 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3155 exitWithError(std::move(Err), Filename); 3156 3157 InstrProfSymtab Symtab; 3158 if (auto Err = Symtab.create( 3159 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3160 exitWithError(std::move(Err), Filename); 3161 3162 if (ShowProfileSymbolList) 3163 Symtab.dumpNames(OS); 3164 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3165 // counters the section holds. 3166 if (ShowDetailedSummary) 3167 OS << "Counters section size: 0x" 3168 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3169 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3170 3171 return 0; 3172 } 3173 3174 static int show_main(int argc, const char *argv[]) { 3175 if (Filename.empty() && DebugInfoFilename.empty()) 3176 exitWithError( 3177 "the positional argument '<profdata-file>' is required unless '--" + 3178 DebugInfoFilename.ArgStr + "' is provided"); 3179 3180 if (Filename == OutputFilename) { 3181 errs() << sys::path::filename(argv[0]) << " " << argv[1] 3182 << ": Input file name cannot be the same as the output file name!\n"; 3183 return 1; 3184 } 3185 if (JsonFormat) 3186 SFormat = ShowFormat::Json; 3187 3188 std::error_code EC; 3189 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3190 if (EC) 3191 exitWithErrorCode(EC, OutputFilename); 3192 3193 if (ShowAllFunctions && !FuncNameFilter.empty()) 3194 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3195 3196 if (!DebugInfoFilename.empty()) 3197 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3198 3199 if (ShowProfileKind == instr) 3200 return showInstrProfile(SFormat, OS); 3201 if (ShowProfileKind == sample) 3202 return showSampleProfile(SFormat, OS); 3203 return showMemProfProfile(SFormat, OS); 3204 } 3205 3206 static int order_main(int argc, const char *argv[]) { 3207 std::error_code EC; 3208 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3209 if (EC) 3210 exitWithErrorCode(EC, OutputFilename); 3211 auto FS = vfs::getRealFileSystem(); 3212 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3213 if (Error E = ReaderOrErr.takeError()) 3214 exitWithError(std::move(E), Filename); 3215 3216 auto Reader = std::move(ReaderOrErr.get()); 3217 for (auto &I : *Reader) { 3218 // Read all entries 3219 (void)I; 3220 } 3221 auto &Traces = Reader->getTemporalProfTraces(); 3222 auto Nodes = TemporalProfTraceTy::createBPFunctionNodes(Traces); 3223 BalancedPartitioningConfig Config; 3224 BalancedPartitioning BP(Config); 3225 BP.run(Nodes); 3226 3227 OS << "# Ordered " << Nodes.size() << " functions\n"; 3228 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3229 "linkage and this output does not take that into account. Some " 3230 "post-processing may be required before passing to the linker via " 3231 "-order_file.\n"; 3232 for (auto &N : Nodes) { 3233 auto [Filename, ParsedFuncName] = 3234 getParsedIRPGOFuncName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3235 if (!Filename.empty()) 3236 OS << "# " << Filename << "\n"; 3237 OS << ParsedFuncName << "\n"; 3238 } 3239 return 0; 3240 } 3241 3242 int llvm_profdata_main(int argc, char **argvNonConst, 3243 const llvm::ToolContext &) { 3244 const char **argv = const_cast<const char **>(argvNonConst); 3245 3246 StringRef ProgName(sys::path::filename(argv[0])); 3247 3248 if (argc < 2) { 3249 errs() << ProgName 3250 << ": No subcommand specified! Run llvm-profata --help for usage.\n"; 3251 return 1; 3252 } 3253 3254 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3255 3256 if (ShowSubcommand) 3257 return show_main(argc, argv); 3258 3259 if (OrderSubcommand) 3260 return order_main(argc, argv); 3261 3262 if (OverlapSubcommand) 3263 return overlap_main(argc, argv); 3264 3265 if (MergeSubcommand) 3266 return merge_main(argc, argv); 3267 3268 errs() << ProgName 3269 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3270 return 1; 3271 } 3272