1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // llvm-profdata merges .profdata files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/ADT/SmallSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/IR/LLVMContext.h" 17 #include "llvm/Object/Binary.h" 18 #include "llvm/ProfileData/InstrProfCorrelator.h" 19 #include "llvm/ProfileData/InstrProfReader.h" 20 #include "llvm/ProfileData/InstrProfWriter.h" 21 #include "llvm/ProfileData/MemProf.h" 22 #include "llvm/ProfileData/ProfileCommon.h" 23 #include "llvm/ProfileData/RawMemProfReader.h" 24 #include "llvm/ProfileData/SampleProfReader.h" 25 #include "llvm/ProfileData/SampleProfWriter.h" 26 #include "llvm/Support/BalancedPartitioning.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Discriminator.h" 29 #include "llvm/Support/Errc.h" 30 #include "llvm/Support/FileSystem.h" 31 #include "llvm/Support/Format.h" 32 #include "llvm/Support/FormattedStream.h" 33 #include "llvm/Support/InitLLVM.h" 34 #include "llvm/Support/LLVMDriver.h" 35 #include "llvm/Support/MD5.h" 36 #include "llvm/Support/MemoryBuffer.h" 37 #include "llvm/Support/Path.h" 38 #include "llvm/Support/ThreadPool.h" 39 #include "llvm/Support/Threading.h" 40 #include "llvm/Support/VirtualFileSystem.h" 41 #include "llvm/Support/WithColor.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <algorithm> 44 #include <cmath> 45 #include <optional> 46 #include <queue> 47 48 using namespace llvm; 49 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind; 50 51 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations 52 // on each subcommand. 53 cl::SubCommand ShowSubcommand( 54 "show", 55 "Takes a profile data file and displays the profiles. See detailed " 56 "documentation in " 57 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show"); 58 cl::SubCommand OrderSubcommand( 59 "order", 60 "Reads temporal profiling traces from a profile and outputs a function " 61 "order that reduces the number of page faults for those traces. See " 62 "detailed documentation in " 63 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order"); 64 cl::SubCommand OverlapSubcommand( 65 "overlap", 66 "Computes and displays the overlap between two profiles. See detailed " 67 "documentation in " 68 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap"); 69 cl::SubCommand MergeSubcommand( 70 "merge", 71 "Takes several profiles and merge them together. See detailed " 72 "documentation in " 73 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge"); 74 75 namespace { 76 enum ProfileKinds { instr, sample, memory }; 77 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid }; 78 } // namespace 79 80 enum ProfileFormat { 81 PF_None = 0, 82 PF_Text, 83 PF_Compact_Binary, // Deprecated 84 PF_Ext_Binary, 85 PF_GCC, 86 PF_Binary 87 }; 88 89 enum class ShowFormat { Text, Json, Yaml }; 90 91 // Common options. 92 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"), 93 cl::init("-"), cl::desc("Output file"), 94 cl::sub(ShowSubcommand), 95 cl::sub(OrderSubcommand), 96 cl::sub(OverlapSubcommand), 97 cl::sub(MergeSubcommand)); 98 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub() 99 // will be used. llvm::cl::alias::done() method asserts this condition. 100 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"), 101 cl::aliasopt(OutputFilename)); 102 103 // Options common to at least two commands. 104 cl::opt<ProfileKinds> ProfileKind( 105 cl::desc("Profile kind:"), cl::sub(MergeSubcommand), 106 cl::sub(OverlapSubcommand), cl::init(instr), 107 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 108 clEnumVal(sample, "Sample profile"))); 109 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"), 110 cl::sub(ShowSubcommand), 111 cl::sub(OrderSubcommand)); 112 cl::opt<unsigned> MaxDbgCorrelationWarnings( 113 "max-debug-info-correlation-warnings", 114 cl::desc("The maximum number of warnings to emit when correlating " 115 "profile from debug info (0 = no limit)"), 116 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5)); 117 cl::opt<std::string> ProfiledBinary( 118 "profiled-binary", cl::init(""), 119 cl::desc("Path to binary from which the profile was collected."), 120 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 121 cl::opt<std::string> DebugInfoFilename( 122 "debug-info", cl::init(""), 123 cl::desc( 124 "For show, read and extract profile metadata from debug info and show " 125 "the functions it found. For merge, use the provided debug info to " 126 "correlate the raw profile."), 127 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand)); 128 cl::opt<std::string> 129 BinaryFilename("binary-file", cl::init(""), 130 cl::desc("For merge, use the provided unstripped bianry to " 131 "correlate the raw profile."), 132 cl::sub(MergeSubcommand)); 133 cl::opt<std::string> FuncNameFilter( 134 "function", 135 cl::desc("Details for matching functions. For overlapping CSSPGO, this " 136 "takes a function name with calling context."), 137 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand)); 138 139 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to 140 // factor out the common cl::sub in cl::opt constructor for subcommand-specific 141 // options. 142 143 // Options specific to merge subcommand. 144 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand), 145 cl::desc("<filename...>")); 146 cl::list<std::string> WeightedInputFilenames("weighted-input", 147 cl::sub(MergeSubcommand), 148 cl::desc("<weight>,<filename>")); 149 cl::opt<ProfileFormat> OutputFormat( 150 cl::desc("Format of output profile"), cl::sub(MergeSubcommand), 151 cl::init(PF_Ext_Binary), 152 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"), 153 clEnumValN(PF_Ext_Binary, "extbinary", 154 "Extensible binary encoding " 155 "(default)"), 156 clEnumValN(PF_Text, "text", "Text encoding"), 157 clEnumValN(PF_GCC, "gcc", 158 "GCC encoding (only meaningful for -sample)"))); 159 cl::opt<std::string> 160 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand), 161 cl::desc("Path to file containing newline-separated " 162 "[<weight>,]<filename> entries")); 163 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"), 164 cl::aliasopt(InputFilenamesFile)); 165 cl::opt<bool> DumpInputFileList( 166 "dump-input-file-list", cl::init(false), cl::Hidden, 167 cl::sub(MergeSubcommand), 168 cl::desc("Dump the list of input files and their weights, then exit")); 169 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"), 170 cl::sub(MergeSubcommand), 171 cl::desc("Symbol remapping file")); 172 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"), 173 cl::aliasopt(RemappingFile)); 174 cl::opt<bool> 175 UseMD5("use-md5", cl::init(false), cl::Hidden, 176 cl::desc("Choose to use MD5 to represent string in name table (only " 177 "meaningful for -extbinary)"), 178 cl::sub(MergeSubcommand)); 179 cl::opt<bool> CompressAllSections( 180 "compress-all-sections", cl::init(false), cl::Hidden, 181 cl::sub(MergeSubcommand), 182 cl::desc("Compress all sections when writing the profile (only " 183 "meaningful for -extbinary)")); 184 cl::opt<bool> SampleMergeColdContext( 185 "sample-merge-cold-context", cl::init(false), cl::Hidden, 186 cl::sub(MergeSubcommand), 187 cl::desc( 188 "Merge context sample profiles whose count is below cold threshold")); 189 cl::opt<bool> SampleTrimColdContext( 190 "sample-trim-cold-context", cl::init(false), cl::Hidden, 191 cl::sub(MergeSubcommand), 192 cl::desc( 193 "Trim context sample profiles whose count is below cold threshold")); 194 cl::opt<uint32_t> SampleColdContextFrameDepth( 195 "sample-frame-depth-for-cold-context", cl::init(1), 196 cl::sub(MergeSubcommand), 197 cl::desc("Keep the last K frames while merging cold profile. 1 means the " 198 "context-less base profile")); 199 cl::opt<size_t> OutputSizeLimit( 200 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand), 201 cl::desc("Trim cold functions until profile size is below specified " 202 "limit in bytes. This uses a heursitic and functions may be " 203 "excessively trimmed")); 204 cl::opt<bool> GenPartialProfile( 205 "gen-partial-profile", cl::init(false), cl::Hidden, 206 cl::sub(MergeSubcommand), 207 cl::desc("Generate a partial profile (only meaningful for -extbinary)")); 208 cl::opt<std::string> SupplInstrWithSample( 209 "supplement-instr-with-sample", cl::init(""), cl::Hidden, 210 cl::sub(MergeSubcommand), 211 cl::desc("Supplement an instr profile with sample profile, to correct " 212 "the profile unrepresentativeness issue. The sample " 213 "profile is the input of the flag. Output will be in instr " 214 "format (The flag only works with -instr)")); 215 cl::opt<float> ZeroCounterThreshold( 216 "zero-counter-threshold", cl::init(0.7), cl::Hidden, 217 cl::sub(MergeSubcommand), 218 cl::desc("For the function which is cold in instr profile but hot in " 219 "sample profile, if the ratio of the number of zero counters " 220 "divided by the total number of counters is above the " 221 "threshold, the profile of the function will be regarded as " 222 "being harmful for performance and will be dropped.")); 223 cl::opt<unsigned> SupplMinSizeThreshold( 224 "suppl-min-size-threshold", cl::init(10), cl::Hidden, 225 cl::sub(MergeSubcommand), 226 cl::desc("If the size of a function is smaller than the threshold, " 227 "assume it can be inlined by PGO early inliner and it won't " 228 "be adjusted based on sample profile.")); 229 cl::opt<unsigned> InstrProfColdThreshold( 230 "instr-prof-cold-threshold", cl::init(0), cl::Hidden, 231 cl::sub(MergeSubcommand), 232 cl::desc("User specified cold threshold for instr profile which will " 233 "override the cold threshold got from profile summary. ")); 234 // WARNING: This reservoir size value is propagated to any input indexed 235 // profiles for simplicity. Changing this value between invocations could 236 // result in sample bias. 237 cl::opt<uint64_t> TemporalProfTraceReservoirSize( 238 "temporal-profile-trace-reservoir-size", cl::init(100), 239 cl::sub(MergeSubcommand), 240 cl::desc("The maximum number of stored temporal profile traces (default: " 241 "100)")); 242 cl::opt<uint64_t> TemporalProfMaxTraceLength( 243 "temporal-profile-max-trace-length", cl::init(10000), 244 cl::sub(MergeSubcommand), 245 cl::desc("The maximum length of a single temporal profile trace " 246 "(default: 10000)")); 247 248 cl::opt<FailureMode> 249 FailMode("failure-mode", cl::init(failIfAnyAreInvalid), 250 cl::desc("Failure mode:"), cl::sub(MergeSubcommand), 251 cl::values(clEnumValN(warnOnly, "warn", 252 "Do not fail and just print warnings."), 253 clEnumValN(failIfAnyAreInvalid, "any", 254 "Fail if any profile is invalid."), 255 clEnumValN(failIfAllAreInvalid, "all", 256 "Fail only if all profiles are invalid."))); 257 258 cl::opt<bool> OutputSparse( 259 "sparse", cl::init(false), cl::sub(MergeSubcommand), 260 cl::desc("Generate a sparse profile (only meaningful for -instr)")); 261 cl::opt<unsigned> NumThreads( 262 "num-threads", cl::init(0), cl::sub(MergeSubcommand), 263 cl::desc("Number of merge threads to use (default: autodetect)")); 264 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"), 265 cl::aliasopt(NumThreads)); 266 267 cl::opt<std::string> ProfileSymbolListFile( 268 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand), 269 cl::desc("Path to file containing the list of function symbols " 270 "used to populate profile symbol list")); 271 272 cl::opt<SampleProfileLayout> ProfileLayout( 273 "convert-sample-profile-layout", 274 cl::desc("Convert the generated profile to a profile with a new layout"), 275 cl::sub(MergeSubcommand), cl::init(SPL_None), 276 cl::values( 277 clEnumValN(SPL_Nest, "nest", 278 "Nested profile, the input should be CS flat profile"), 279 clEnumValN(SPL_Flat, "flat", 280 "Profile with nested inlinee flatten out"))); 281 282 cl::opt<bool> DropProfileSymbolList( 283 "drop-profile-symbol-list", cl::init(false), cl::Hidden, 284 cl::sub(MergeSubcommand), 285 cl::desc("Drop the profile symbol list when merging AutoFDO profiles " 286 "(only meaningful for -sample)")); 287 288 // Options specific to overlap subcommand. 289 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required, 290 cl::desc("<base profile file>"), 291 cl::sub(OverlapSubcommand)); 292 cl::opt<std::string> TestFilename(cl::Positional, cl::Required, 293 cl::desc("<test profile file>"), 294 cl::sub(OverlapSubcommand)); 295 296 cl::opt<unsigned long long> SimilarityCutoff( 297 "similarity-cutoff", cl::init(0), 298 cl::desc("For sample profiles, list function names (with calling context " 299 "for csspgo) for overlapped functions " 300 "with similarities below the cutoff (percentage times 10000)."), 301 cl::sub(OverlapSubcommand)); 302 303 cl::opt<bool> IsCS( 304 "cs", cl::init(false), 305 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."), 306 cl::sub(OverlapSubcommand)); 307 308 cl::opt<unsigned long long> OverlapValueCutoff( 309 "value-cutoff", cl::init(-1), 310 cl::desc( 311 "Function level overlap information for every function (with calling " 312 "context for csspgo) in test " 313 "profile with max count value greater then the parameter value"), 314 cl::sub(OverlapSubcommand)); 315 316 // Options unique to show subcommand. 317 cl::opt<bool> ShowCounts("counts", cl::init(false), 318 cl::desc("Show counter values for shown functions"), 319 cl::sub(ShowSubcommand)); 320 cl::opt<ShowFormat> 321 SFormat("show-format", cl::init(ShowFormat::Text), 322 cl::desc("Emit output in the selected format if supported"), 323 cl::sub(ShowSubcommand), 324 cl::values(clEnumValN(ShowFormat::Text, "text", 325 "emit normal text output (default)"), 326 clEnumValN(ShowFormat::Json, "json", "emit JSON"), 327 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML"))); 328 // TODO: Consider replacing this with `--show-format=text-encoding`. 329 cl::opt<bool> 330 TextFormat("text", cl::init(false), 331 cl::desc("Show instr profile data in text dump format"), 332 cl::sub(ShowSubcommand)); 333 cl::opt<bool> 334 JsonFormat("json", 335 cl::desc("Show sample profile data in the JSON format " 336 "(deprecated, please use --show-format=json)"), 337 cl::sub(ShowSubcommand)); 338 cl::opt<bool> ShowIndirectCallTargets( 339 "ic-targets", cl::init(false), 340 cl::desc("Show indirect call site target values for shown functions"), 341 cl::sub(ShowSubcommand)); 342 cl::opt<bool> ShowMemOPSizes( 343 "memop-sizes", cl::init(false), 344 cl::desc("Show the profiled sizes of the memory intrinsic calls " 345 "for shown functions"), 346 cl::sub(ShowSubcommand)); 347 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false), 348 cl::desc("Show detailed profile summary"), 349 cl::sub(ShowSubcommand)); 350 cl::list<uint32_t> DetailedSummaryCutoffs( 351 cl::CommaSeparated, "detailed-summary-cutoffs", 352 cl::desc( 353 "Cutoff percentages (times 10000) for generating detailed summary"), 354 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand)); 355 cl::opt<bool> 356 ShowHotFuncList("hot-func-list", cl::init(false), 357 cl::desc("Show profile summary of a list of hot functions"), 358 cl::sub(ShowSubcommand)); 359 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false), 360 cl::desc("Details for each and every function"), 361 cl::sub(ShowSubcommand)); 362 cl::opt<bool> ShowCS("showcs", cl::init(false), 363 cl::desc("Show context sensitive counts"), 364 cl::sub(ShowSubcommand)); 365 cl::opt<ProfileKinds> ShowProfileKind( 366 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand), 367 cl::init(instr), 368 cl::values(clEnumVal(instr, "Instrumentation profile (default)"), 369 clEnumVal(sample, "Sample profile"), 370 clEnumVal(memory, "MemProf memory access profile"))); 371 cl::opt<uint32_t> TopNFunctions( 372 "topn", cl::init(0), 373 cl::desc("Show the list of functions with the largest internal counts"), 374 cl::sub(ShowSubcommand)); 375 cl::opt<uint32_t> ShowValueCutoff( 376 "value-cutoff", cl::init(0), 377 cl::desc("Set the count value cutoff. Functions with the maximum count " 378 "less than this value will not be printed out. (Default is 0)"), 379 cl::sub(ShowSubcommand)); 380 cl::opt<bool> OnlyListBelow( 381 "list-below-cutoff", cl::init(false), 382 cl::desc("Only output names of functions whose max count values are " 383 "below the cutoff value"), 384 cl::sub(ShowSubcommand)); 385 cl::opt<bool> ShowProfileSymbolList( 386 "show-prof-sym-list", cl::init(false), 387 cl::desc("Show profile symbol list if it exists in the profile. "), 388 cl::sub(ShowSubcommand)); 389 cl::opt<bool> ShowSectionInfoOnly( 390 "show-sec-info-only", cl::init(false), 391 cl::desc("Show the information of each section in the sample profile. " 392 "The flag is only usable when the sample profile is in " 393 "extbinary format"), 394 cl::sub(ShowSubcommand)); 395 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false), 396 cl::desc("Show binary ids in the profile. "), 397 cl::sub(ShowSubcommand)); 398 cl::opt<bool> ShowTemporalProfTraces( 399 "temporal-profile-traces", 400 cl::desc("Show temporal profile traces in the profile."), 401 cl::sub(ShowSubcommand)); 402 403 cl::opt<bool> 404 ShowCovered("covered", cl::init(false), 405 cl::desc("Show only the functions that have been executed."), 406 cl::sub(ShowSubcommand)); 407 408 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false), 409 cl::desc("Show profile version. "), 410 cl::sub(ShowSubcommand)); 411 412 // We use this string to indicate that there are 413 // multiple static functions map to the same name. 414 const std::string DuplicateNameStr = "----"; 415 416 static void warn(Twine Message, std::string Whence = "", 417 std::string Hint = "") { 418 WithColor::warning(); 419 if (!Whence.empty()) 420 errs() << Whence << ": "; 421 errs() << Message << "\n"; 422 if (!Hint.empty()) 423 WithColor::note() << Hint << "\n"; 424 } 425 426 static void warn(Error E, StringRef Whence = "") { 427 if (E.isA<InstrProfError>()) { 428 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 429 warn(IPE.message(), std::string(Whence), std::string("")); 430 }); 431 } 432 } 433 434 static void exitWithError(Twine Message, std::string Whence = "", 435 std::string Hint = "") { 436 WithColor::error(); 437 if (!Whence.empty()) 438 errs() << Whence << ": "; 439 errs() << Message << "\n"; 440 if (!Hint.empty()) 441 WithColor::note() << Hint << "\n"; 442 ::exit(1); 443 } 444 445 static void exitWithError(Error E, StringRef Whence = "") { 446 if (E.isA<InstrProfError>()) { 447 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { 448 instrprof_error instrError = IPE.get(); 449 StringRef Hint = ""; 450 if (instrError == instrprof_error::unrecognized_format) { 451 // Hint in case user missed specifying the profile type. 452 Hint = "Perhaps you forgot to use the --sample or --memory option?"; 453 } 454 exitWithError(IPE.message(), std::string(Whence), std::string(Hint)); 455 }); 456 return; 457 } 458 459 exitWithError(toString(std::move(E)), std::string(Whence)); 460 } 461 462 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") { 463 exitWithError(EC.message(), std::string(Whence)); 464 } 465 466 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC, 467 StringRef Whence = "") { 468 if (FailMode == failIfAnyAreInvalid) 469 exitWithErrorCode(EC, Whence); 470 else 471 warn(EC.message(), std::string(Whence)); 472 } 473 474 static void handleMergeWriterError(Error E, StringRef WhenceFile = "", 475 StringRef WhenceFunction = "", 476 bool ShowHint = true) { 477 if (!WhenceFile.empty()) 478 errs() << WhenceFile << ": "; 479 if (!WhenceFunction.empty()) 480 errs() << WhenceFunction << ": "; 481 482 auto IPE = instrprof_error::success; 483 E = handleErrors(std::move(E), 484 [&IPE](std::unique_ptr<InstrProfError> E) -> Error { 485 IPE = E->get(); 486 return Error(std::move(E)); 487 }); 488 errs() << toString(std::move(E)) << "\n"; 489 490 if (ShowHint) { 491 StringRef Hint = ""; 492 if (IPE != instrprof_error::success) { 493 switch (IPE) { 494 case instrprof_error::hash_mismatch: 495 case instrprof_error::count_mismatch: 496 case instrprof_error::value_site_count_mismatch: 497 Hint = "Make sure that all profile data to be merged is generated " 498 "from the same binary."; 499 break; 500 default: 501 break; 502 } 503 } 504 505 if (!Hint.empty()) 506 errs() << Hint << "\n"; 507 } 508 } 509 510 namespace { 511 /// A remapper from original symbol names to new symbol names based on a file 512 /// containing a list of mappings from old name to new name. 513 class SymbolRemapper { 514 std::unique_ptr<MemoryBuffer> File; 515 DenseMap<StringRef, StringRef> RemappingTable; 516 517 public: 518 /// Build a SymbolRemapper from a file containing a list of old/new symbols. 519 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) { 520 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 521 if (!BufOrError) 522 exitWithErrorCode(BufOrError.getError(), InputFile); 523 524 auto Remapper = std::make_unique<SymbolRemapper>(); 525 Remapper->File = std::move(BufOrError.get()); 526 527 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#'); 528 !LineIt.is_at_eof(); ++LineIt) { 529 std::pair<StringRef, StringRef> Parts = LineIt->split(' '); 530 if (Parts.first.empty() || Parts.second.empty() || 531 Parts.second.count(' ')) { 532 exitWithError("unexpected line in remapping file", 533 (InputFile + ":" + Twine(LineIt.line_number())).str(), 534 "expected 'old_symbol new_symbol'"); 535 } 536 Remapper->RemappingTable.insert(Parts); 537 } 538 return Remapper; 539 } 540 541 /// Attempt to map the given old symbol into a new symbol. 542 /// 543 /// \return The new symbol, or \p Name if no such symbol was found. 544 StringRef operator()(StringRef Name) { 545 StringRef New = RemappingTable.lookup(Name); 546 return New.empty() ? Name : New; 547 } 548 549 FunctionId operator()(FunctionId Name) { 550 // MD5 name cannot be remapped. 551 if (!Name.isStringRef()) 552 return Name; 553 StringRef New = RemappingTable.lookup(Name.stringRef()); 554 return New.empty() ? Name : FunctionId(New); 555 } 556 }; 557 } 558 559 struct WeightedFile { 560 std::string Filename; 561 uint64_t Weight; 562 }; 563 typedef SmallVector<WeightedFile, 5> WeightedFileVector; 564 565 /// Keep track of merged data and reported errors. 566 struct WriterContext { 567 std::mutex Lock; 568 InstrProfWriter Writer; 569 std::vector<std::pair<Error, std::string>> Errors; 570 std::mutex &ErrLock; 571 SmallSet<instrprof_error, 4> &WriterErrorCodes; 572 573 WriterContext(bool IsSparse, std::mutex &ErrLock, 574 SmallSet<instrprof_error, 4> &WriterErrorCodes, 575 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0) 576 : Writer(IsSparse, ReservoirSize, MaxTraceLength), ErrLock(ErrLock), 577 WriterErrorCodes(WriterErrorCodes) {} 578 }; 579 580 /// Computer the overlap b/w profile BaseFilename and TestFileName, 581 /// and store the program level result to Overlap. 582 static void overlapInput(const std::string &BaseFilename, 583 const std::string &TestFilename, WriterContext *WC, 584 OverlapStats &Overlap, 585 const OverlapFuncFilters &FuncFilter, 586 raw_fd_ostream &OS, bool IsCS) { 587 auto FS = vfs::getRealFileSystem(); 588 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS); 589 if (Error E = ReaderOrErr.takeError()) { 590 // Skip the empty profiles by returning sliently. 591 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 592 if (ErrorCode != instrprof_error::empty_raw_profile) 593 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 594 TestFilename); 595 return; 596 } 597 598 auto Reader = std::move(ReaderOrErr.get()); 599 for (auto &I : *Reader) { 600 OverlapStats FuncOverlap(OverlapStats::FunctionLevel); 601 FuncOverlap.setFuncInfo(I.Name, I.Hash); 602 603 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter); 604 FuncOverlap.dump(OS); 605 } 606 } 607 608 /// Load an input into a writer context. 609 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper, 610 const InstrProfCorrelator *Correlator, 611 const StringRef ProfiledBinary, WriterContext *WC) { 612 std::unique_lock<std::mutex> CtxGuard{WC->Lock}; 613 614 // Copy the filename, because llvm::ThreadPool copied the input "const 615 // WeightedFile &" by value, making a reference to the filename within it 616 // invalid outside of this packaged task. 617 std::string Filename = Input.Filename; 618 619 using ::llvm::memprof::RawMemProfReader; 620 if (RawMemProfReader::hasFormat(Input.Filename)) { 621 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary); 622 if (!ReaderOrErr) { 623 exitWithError(ReaderOrErr.takeError(), Input.Filename); 624 } 625 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get()); 626 // Check if the profile types can be merged, e.g. clang frontend profiles 627 // should not be merged with memprof profiles. 628 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 629 consumeError(std::move(E)); 630 WC->Errors.emplace_back( 631 make_error<StringError>( 632 "Cannot merge MemProf profile with Clang generated profile.", 633 std::error_code()), 634 Filename); 635 return; 636 } 637 638 auto MemProfError = [&](Error E) { 639 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 640 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg), 641 Filename); 642 }; 643 644 // Add the frame mappings into the writer context. 645 const auto &IdToFrame = Reader->getFrameMapping(); 646 for (const auto &I : IdToFrame) { 647 bool Succeeded = WC->Writer.addMemProfFrame( 648 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError); 649 // If we weren't able to add the frame mappings then it doesn't make sense 650 // to try to add the records from this profile. 651 if (!Succeeded) 652 return; 653 } 654 const auto &FunctionProfileData = Reader->getProfileData(); 655 // Add the memprof records into the writer context. 656 for (const auto &I : FunctionProfileData) { 657 WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second); 658 } 659 return; 660 } 661 662 auto FS = vfs::getRealFileSystem(); 663 // TODO: This only saves the first non-fatal error from InstrProfReader, and 664 // then added to WriterContext::Errors. However, this is not extensible, if 665 // we have more non-fatal errors from InstrProfReader in the future. How 666 // should this interact with different -failure-mode? 667 std::optional<std::pair<Error, std::string>> ReaderWarning; 668 auto Warn = [&](Error E) { 669 if (ReaderWarning) { 670 consumeError(std::move(E)); 671 return; 672 } 673 // Only show the first time an error occurs in this file. 674 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 675 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename}; 676 }; 677 auto ReaderOrErr = 678 InstrProfReader::create(Input.Filename, *FS, Correlator, Warn); 679 if (Error E = ReaderOrErr.takeError()) { 680 // Skip the empty profiles by returning silently. 681 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 682 if (ErrCode != instrprof_error::empty_raw_profile) 683 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg), 684 Filename); 685 return; 686 } 687 688 auto Reader = std::move(ReaderOrErr.get()); 689 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) { 690 consumeError(std::move(E)); 691 WC->Errors.emplace_back( 692 make_error<StringError>( 693 "Merge IR generated profile with Clang generated profile.", 694 std::error_code()), 695 Filename); 696 return; 697 } 698 699 for (auto &I : *Reader) { 700 if (Remapper) 701 I.Name = (*Remapper)(I.Name); 702 const StringRef FuncName = I.Name; 703 bool Reported = false; 704 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) { 705 if (Reported) { 706 consumeError(std::move(E)); 707 return; 708 } 709 Reported = true; 710 // Only show hint the first time an error occurs. 711 auto [ErrCode, Msg] = InstrProfError::take(std::move(E)); 712 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock}; 713 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second; 714 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg), 715 Input.Filename, FuncName, firstTime); 716 }); 717 } 718 719 if (Reader->hasTemporalProfile()) { 720 auto &Traces = Reader->getTemporalProfTraces(Input.Weight); 721 if (!Traces.empty()) 722 WC->Writer.addTemporalProfileTraces( 723 Traces, Reader->getTemporalProfTraceStreamSize()); 724 } 725 if (Reader->hasError()) { 726 if (Error E = Reader->getError()) { 727 WC->Errors.emplace_back(std::move(E), Filename); 728 return; 729 } 730 } 731 732 std::vector<llvm::object::BuildID> BinaryIds; 733 if (Error E = Reader->readBinaryIds(BinaryIds)) { 734 WC->Errors.emplace_back(std::move(E), Filename); 735 return; 736 } 737 WC->Writer.addBinaryIds(BinaryIds); 738 739 if (ReaderWarning) { 740 WC->Errors.emplace_back(std::move(ReaderWarning->first), 741 ReaderWarning->second); 742 } 743 } 744 745 /// Merge the \p Src writer context into \p Dst. 746 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) { 747 for (auto &ErrorPair : Src->Errors) 748 Dst->Errors.push_back(std::move(ErrorPair)); 749 Src->Errors.clear(); 750 751 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind())) 752 exitWithError(std::move(E)); 753 754 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) { 755 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E)); 756 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock}; 757 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second; 758 if (firstTime) 759 warn(toString(make_error<InstrProfError>(ErrorCode, Msg))); 760 }); 761 } 762 763 static void writeInstrProfile(StringRef OutputFilename, 764 ProfileFormat OutputFormat, 765 InstrProfWriter &Writer) { 766 std::error_code EC; 767 raw_fd_ostream Output(OutputFilename.data(), EC, 768 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF 769 : sys::fs::OF_None); 770 if (EC) 771 exitWithErrorCode(EC, OutputFilename); 772 773 if (OutputFormat == PF_Text) { 774 if (Error E = Writer.writeText(Output)) 775 warn(std::move(E)); 776 } else { 777 if (Output.is_displayed()) 778 exitWithError("cannot write a non-text format profile to the terminal"); 779 if (Error E = Writer.write(Output)) 780 warn(std::move(E)); 781 } 782 } 783 784 static void mergeInstrProfile(const WeightedFileVector &Inputs, 785 SymbolRemapper *Remapper, 786 int MaxDbgCorrelationWarnings, 787 const StringRef ProfiledBinary) { 788 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue(); 789 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue(); 790 if (OutputFormat == PF_Compact_Binary) 791 exitWithError("Compact Binary is deprecated"); 792 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary && 793 OutputFormat != PF_Text) 794 exitWithError("unknown format is specified"); 795 796 // TODO: Maybe we should support correlation with mixture of different 797 // correlation modes(w/wo debug-info/object correlation). 798 if (!DebugInfoFilename.empty() && !BinaryFilename.empty()) 799 exitWithError("Expected only one of -debug-info, -binary-file"); 800 std::string CorrelateFilename; 801 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE; 802 if (!DebugInfoFilename.empty()) { 803 CorrelateFilename = DebugInfoFilename; 804 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO; 805 } else if (!BinaryFilename.empty()) { 806 CorrelateFilename = BinaryFilename; 807 CorrelateKind = ProfCorrelatorKind::BINARY; 808 } 809 810 std::unique_ptr<InstrProfCorrelator> Correlator; 811 if (CorrelateKind != InstrProfCorrelator::NONE) { 812 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind) 813 .moveInto(Correlator)) 814 exitWithError(std::move(Err), CorrelateFilename); 815 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 816 exitWithError(std::move(Err), CorrelateFilename); 817 } 818 819 std::mutex ErrorLock; 820 SmallSet<instrprof_error, 4> WriterErrorCodes; 821 822 // If NumThreads is not specified, auto-detect a good default. 823 if (NumThreads == 0) 824 NumThreads = std::min(hardware_concurrency().compute_thread_count(), 825 unsigned((Inputs.size() + 1) / 2)); 826 827 // Initialize the writer contexts. 828 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts; 829 for (unsigned I = 0; I < NumThreads; ++I) 830 Contexts.emplace_back(std::make_unique<WriterContext>( 831 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize, 832 MaxTraceLength)); 833 834 if (NumThreads == 1) { 835 for (const auto &Input : Inputs) 836 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary, 837 Contexts[0].get()); 838 } else { 839 ThreadPool Pool(hardware_concurrency(NumThreads)); 840 841 // Load the inputs in parallel (N/NumThreads serial steps). 842 unsigned Ctx = 0; 843 for (const auto &Input : Inputs) { 844 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary, 845 Contexts[Ctx].get()); 846 Ctx = (Ctx + 1) % NumThreads; 847 } 848 Pool.wait(); 849 850 // Merge the writer contexts together (~ lg(NumThreads) serial steps). 851 unsigned Mid = Contexts.size() / 2; 852 unsigned End = Contexts.size(); 853 assert(Mid > 0 && "Expected more than one context"); 854 do { 855 for (unsigned I = 0; I < Mid; ++I) 856 Pool.async(mergeWriterContexts, Contexts[I].get(), 857 Contexts[I + Mid].get()); 858 Pool.wait(); 859 if (End & 1) { 860 Pool.async(mergeWriterContexts, Contexts[0].get(), 861 Contexts[End - 1].get()); 862 Pool.wait(); 863 } 864 End = Mid; 865 Mid /= 2; 866 } while (Mid > 0); 867 } 868 869 // Handle deferred errors encountered during merging. If the number of errors 870 // is equal to the number of inputs the merge failed. 871 unsigned NumErrors = 0; 872 for (std::unique_ptr<WriterContext> &WC : Contexts) { 873 for (auto &ErrorPair : WC->Errors) { 874 ++NumErrors; 875 warn(toString(std::move(ErrorPair.first)), ErrorPair.second); 876 } 877 } 878 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) || 879 (NumErrors > 0 && FailMode == failIfAnyAreInvalid)) 880 exitWithError("no profile can be merged"); 881 882 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer); 883 } 884 885 /// The profile entry for a function in instrumentation profile. 886 struct InstrProfileEntry { 887 uint64_t MaxCount = 0; 888 uint64_t NumEdgeCounters = 0; 889 float ZeroCounterRatio = 0.0; 890 InstrProfRecord *ProfRecord; 891 InstrProfileEntry(InstrProfRecord *Record); 892 InstrProfileEntry() = default; 893 }; 894 895 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) { 896 ProfRecord = Record; 897 uint64_t CntNum = Record->Counts.size(); 898 uint64_t ZeroCntNum = 0; 899 for (size_t I = 0; I < CntNum; ++I) { 900 MaxCount = std::max(MaxCount, Record->Counts[I]); 901 ZeroCntNum += !Record->Counts[I]; 902 } 903 ZeroCounterRatio = (float)ZeroCntNum / CntNum; 904 NumEdgeCounters = CntNum; 905 } 906 907 /// Either set all the counters in the instr profile entry \p IFE to 908 /// -1 / -2 /in order to drop the profile or scale up the 909 /// counters in \p IFP to be above hot / cold threshold. We use 910 /// the ratio of zero counters in the profile of a function to 911 /// decide the profile is helpful or harmful for performance, 912 /// and to choose whether to scale up or drop it. 913 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot, 914 uint64_t HotInstrThreshold, 915 uint64_t ColdInstrThreshold, 916 float ZeroCounterThreshold) { 917 InstrProfRecord *ProfRecord = IFE.ProfRecord; 918 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) { 919 // If all or most of the counters of the function are zero, the 920 // profile is unaccountable and should be dropped. Reset all the 921 // counters to be -1 / -2 and PGO profile-use will drop the profile. 922 // All counters being -1 also implies that the function is hot so 923 // PGO profile-use will also set the entry count metadata to be 924 // above hot threshold. 925 // All counters being -2 implies that the function is warm so 926 // PGO profile-use will also set the entry count metadata to be 927 // above cold threshold. 928 auto Kind = 929 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm); 930 ProfRecord->setPseudoCount(Kind); 931 return; 932 } 933 934 // Scale up the MaxCount to be multiple times above hot / cold threshold. 935 const unsigned MultiplyFactor = 3; 936 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold); 937 uint64_t Numerator = Threshold * MultiplyFactor; 938 939 // Make sure Threshold for warm counters is below the HotInstrThreshold. 940 if (!SetToHot && Threshold >= HotInstrThreshold) { 941 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2; 942 } 943 944 uint64_t Denominator = IFE.MaxCount; 945 if (Numerator <= Denominator) 946 return; 947 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) { 948 warn(toString(make_error<InstrProfError>(E))); 949 }); 950 } 951 952 const uint64_t ColdPercentileIdx = 15; 953 const uint64_t HotPercentileIdx = 11; 954 955 using sampleprof::FSDiscriminatorPass; 956 957 // Internal options to set FSDiscriminatorPass. Used in merge and show 958 // commands. 959 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption( 960 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden, 961 cl::desc("Zero out the discriminator bits for the FS discrimiantor " 962 "pass beyond this value. The enum values are defined in " 963 "Support/Discriminator.h"), 964 cl::values(clEnumVal(Base, "Use base discriminators only"), 965 clEnumVal(Pass1, "Use base and pass 1 discriminators"), 966 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"), 967 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"), 968 clEnumVal(PassLast, "Use all discriminator bits (default)"))); 969 970 static unsigned getDiscriminatorMask() { 971 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue())); 972 } 973 974 /// Adjust the instr profile in \p WC based on the sample profile in 975 /// \p Reader. 976 static void 977 adjustInstrProfile(std::unique_ptr<WriterContext> &WC, 978 std::unique_ptr<sampleprof::SampleProfileReader> &Reader, 979 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold, 980 unsigned InstrProfColdThreshold) { 981 // Function to its entry in instr profile. 982 StringMap<InstrProfileEntry> InstrProfileMap; 983 StringMap<StringRef> StaticFuncMap; 984 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs); 985 986 auto checkSampleProfileHasFUnique = [&Reader]() { 987 for (const auto &PD : Reader->getProfiles()) { 988 auto &FContext = PD.second.getContext(); 989 if (FContext.toString().find(FunctionSamples::UniqSuffix) != 990 std::string::npos) { 991 return true; 992 } 993 } 994 return false; 995 }; 996 997 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique(); 998 999 auto buildStaticFuncMap = [&StaticFuncMap, 1000 SampleProfileHasFUnique](const StringRef Name) { 1001 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"}; 1002 size_t PrefixPos = StringRef::npos; 1003 for (auto &FilePrefix : FilePrefixes) { 1004 std::string NamePrefix = FilePrefix + kGlobalIdentifierDelimiter; 1005 PrefixPos = Name.find_insensitive(NamePrefix); 1006 if (PrefixPos == StringRef::npos) 1007 continue; 1008 PrefixPos += NamePrefix.size(); 1009 break; 1010 } 1011 1012 if (PrefixPos == StringRef::npos) { 1013 return; 1014 } 1015 1016 StringRef NewName = Name.drop_front(PrefixPos); 1017 StringRef FName = Name.substr(0, PrefixPos - 1); 1018 if (NewName.size() == 0) { 1019 return; 1020 } 1021 1022 // This name should have a static linkage. 1023 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix); 1024 bool ProfileHasFUnique = (PostfixPos != StringRef::npos); 1025 1026 // If sample profile and instrumented profile do not agree on symbol 1027 // uniqification. 1028 if (SampleProfileHasFUnique != ProfileHasFUnique) { 1029 // If instrumented profile uses -funique-internal-linkage-symbols, 1030 // we need to trim the name. 1031 if (ProfileHasFUnique) { 1032 NewName = NewName.substr(0, PostfixPos); 1033 } else { 1034 // If sample profile uses -funique-internal-linkage-symbols, 1035 // we build the map. 1036 std::string NStr = 1037 NewName.str() + getUniqueInternalLinkagePostfix(FName); 1038 NewName = StringRef(NStr); 1039 StaticFuncMap[NewName] = Name; 1040 return; 1041 } 1042 } 1043 1044 if (!StaticFuncMap.contains(NewName)) { 1045 StaticFuncMap[NewName] = Name; 1046 } else { 1047 StaticFuncMap[NewName] = DuplicateNameStr; 1048 } 1049 }; 1050 1051 // We need to flatten the SampleFDO profile as the InstrFDO 1052 // profile does not have inlined callsite profiles. 1053 // One caveat is the pre-inlined function -- their samples 1054 // should be collapsed into the caller function. 1055 // Here we do a DFS traversal to get the flatten profile 1056 // info: the sum of entrycount and the max of maxcount. 1057 // Here is the algorithm: 1058 // recursive (FS, root_name) { 1059 // name = FS->getName(); 1060 // get samples for FS; 1061 // if (InstrProf.find(name) { 1062 // root_name = name; 1063 // } else { 1064 // if (name is in static_func map) { 1065 // root_name = static_name; 1066 // } 1067 // } 1068 // update the Map entry for root_name; 1069 // for (subfs: FS) { 1070 // recursive(subfs, root_name); 1071 // } 1072 // } 1073 // 1074 // Here is an example. 1075 // 1076 // SampleProfile: 1077 // foo:12345:1000 1078 // 1: 1000 1079 // 2.1: 1000 1080 // 15: 5000 1081 // 4: bar:1000 1082 // 1: 1000 1083 // 2: goo:3000 1084 // 1: 3000 1085 // 8: bar:40000 1086 // 1: 10000 1087 // 2: goo:30000 1088 // 1: 30000 1089 // 1090 // InstrProfile has two entries: 1091 // foo 1092 // bar.cc;bar 1093 // 1094 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap: 1095 // {"foo", {1000, 5000}} 1096 // {"bar.cc;bar", {11000, 30000}} 1097 // 1098 // foo's has an entry count of 1000, and max body count of 5000. 1099 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and 1100 // 10000), and max count of 30000 (from the callsite in line 8). 1101 // 1102 // Note that goo's count will remain in bar.cc;bar() as it does not have an 1103 // entry in InstrProfile. 1104 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap; 1105 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap, 1106 &InstrProfileMap](const FunctionSamples &FS, 1107 const StringRef &RootName) { 1108 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS, 1109 const StringRef &RootName, 1110 auto &BuildImpl) -> void { 1111 std::string NameStr = FS.getFunction().str(); 1112 const StringRef Name = NameStr; 1113 const StringRef *NewRootName = &RootName; 1114 uint64_t EntrySample = FS.getHeadSamplesEstimate(); 1115 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true); 1116 1117 auto It = InstrProfileMap.find(Name); 1118 if (It != InstrProfileMap.end()) { 1119 NewRootName = &Name; 1120 } else { 1121 auto NewName = StaticFuncMap.find(Name); 1122 if (NewName != StaticFuncMap.end()) { 1123 It = InstrProfileMap.find(NewName->second.str()); 1124 if (NewName->second != DuplicateNameStr) { 1125 NewRootName = &NewName->second; 1126 } 1127 } else { 1128 // Here the EntrySample is of an inlined function, so we should not 1129 // update the EntrySample in the map. 1130 EntrySample = 0; 1131 } 1132 } 1133 EntrySample += FlattenSampleMap[*NewRootName].first; 1134 MaxBodySample = 1135 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample); 1136 FlattenSampleMap[*NewRootName] = 1137 std::make_pair(EntrySample, MaxBodySample); 1138 1139 for (const auto &C : FS.getCallsiteSamples()) 1140 for (const auto &F : C.second) 1141 BuildImpl(F.second, *NewRootName, BuildImpl); 1142 }; 1143 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl); 1144 }; 1145 1146 for (auto &PD : WC->Writer.getProfileData()) { 1147 // Populate IPBuilder. 1148 for (const auto &PDV : PD.getValue()) { 1149 InstrProfRecord Record = PDV.second; 1150 IPBuilder.addRecord(Record); 1151 } 1152 1153 // If a function has multiple entries in instr profile, skip it. 1154 if (PD.getValue().size() != 1) 1155 continue; 1156 1157 // Initialize InstrProfileMap. 1158 InstrProfRecord *R = &PD.getValue().begin()->second; 1159 StringRef FullName = PD.getKey(); 1160 InstrProfileMap[FullName] = InstrProfileEntry(R); 1161 buildStaticFuncMap(FullName); 1162 } 1163 1164 for (auto &PD : Reader->getProfiles()) { 1165 sampleprof::FunctionSamples &FS = PD.second; 1166 std::string Name = FS.getFunction().str(); 1167 BuildMaxSampleMap(FS, Name); 1168 } 1169 1170 ProfileSummary InstrPS = *IPBuilder.getSummary(); 1171 ProfileSummary SamplePS = Reader->getSummary(); 1172 1173 // Compute cold thresholds for instr profile and sample profile. 1174 uint64_t HotSampleThreshold = 1175 ProfileSummaryBuilder::getEntryForPercentile( 1176 SamplePS.getDetailedSummary(), 1177 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1178 .MinCount; 1179 uint64_t ColdSampleThreshold = 1180 ProfileSummaryBuilder::getEntryForPercentile( 1181 SamplePS.getDetailedSummary(), 1182 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1183 .MinCount; 1184 uint64_t HotInstrThreshold = 1185 ProfileSummaryBuilder::getEntryForPercentile( 1186 InstrPS.getDetailedSummary(), 1187 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx]) 1188 .MinCount; 1189 uint64_t ColdInstrThreshold = 1190 InstrProfColdThreshold 1191 ? InstrProfColdThreshold 1192 : ProfileSummaryBuilder::getEntryForPercentile( 1193 InstrPS.getDetailedSummary(), 1194 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx]) 1195 .MinCount; 1196 1197 // Find hot/warm functions in sample profile which is cold in instr profile 1198 // and adjust the profiles of those functions in the instr profile. 1199 for (const auto &E : FlattenSampleMap) { 1200 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second); 1201 if (SampleMaxCount < ColdSampleThreshold) 1202 continue; 1203 StringRef Name = E.first(); 1204 auto It = InstrProfileMap.find(Name); 1205 if (It == InstrProfileMap.end()) { 1206 auto NewName = StaticFuncMap.find(Name); 1207 if (NewName != StaticFuncMap.end()) { 1208 It = InstrProfileMap.find(NewName->second.str()); 1209 if (NewName->second == DuplicateNameStr) { 1210 WithColor::warning() 1211 << "Static function " << Name 1212 << " has multiple promoted names, cannot adjust profile.\n"; 1213 } 1214 } 1215 } 1216 if (It == InstrProfileMap.end() || 1217 It->second.MaxCount > ColdInstrThreshold || 1218 It->second.NumEdgeCounters < SupplMinSizeThreshold) 1219 continue; 1220 bool SetToHot = SampleMaxCount >= HotSampleThreshold; 1221 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold, 1222 ColdInstrThreshold, ZeroCounterThreshold); 1223 } 1224 } 1225 1226 /// The main function to supplement instr profile with sample profile. 1227 /// \Inputs contains the instr profile. \p SampleFilename specifies the 1228 /// sample profile. \p OutputFilename specifies the output profile name. 1229 /// \p OutputFormat specifies the output profile format. \p OutputSparse 1230 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold 1231 /// specifies the minimal size for the functions whose profile will be 1232 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether 1233 /// a function contains too many zero counters and whether its profile 1234 /// should be dropped. \p InstrProfColdThreshold is the user specified 1235 /// cold threshold which will override the cold threshold got from the 1236 /// instr profile summary. 1237 static void supplementInstrProfile(const WeightedFileVector &Inputs, 1238 StringRef SampleFilename, bool OutputSparse, 1239 unsigned SupplMinSizeThreshold, 1240 float ZeroCounterThreshold, 1241 unsigned InstrProfColdThreshold) { 1242 if (OutputFilename.compare("-") == 0) 1243 exitWithError("cannot write indexed profdata format to stdout"); 1244 if (Inputs.size() != 1) 1245 exitWithError("expect one input to be an instr profile"); 1246 if (Inputs[0].Weight != 1) 1247 exitWithError("expect instr profile doesn't have weight"); 1248 1249 StringRef InstrFilename = Inputs[0].Filename; 1250 1251 // Read sample profile. 1252 LLVMContext Context; 1253 auto FS = vfs::getRealFileSystem(); 1254 auto ReaderOrErr = sampleprof::SampleProfileReader::create( 1255 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption); 1256 if (std::error_code EC = ReaderOrErr.getError()) 1257 exitWithErrorCode(EC, SampleFilename); 1258 auto Reader = std::move(ReaderOrErr.get()); 1259 if (std::error_code EC = Reader->read()) 1260 exitWithErrorCode(EC, SampleFilename); 1261 1262 // Read instr profile. 1263 std::mutex ErrorLock; 1264 SmallSet<instrprof_error, 4> WriterErrorCodes; 1265 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock, 1266 WriterErrorCodes); 1267 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get()); 1268 if (WC->Errors.size() > 0) 1269 exitWithError(std::move(WC->Errors[0].first), InstrFilename); 1270 1271 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold, 1272 InstrProfColdThreshold); 1273 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer); 1274 } 1275 1276 /// Make a copy of the given function samples with all symbol names remapped 1277 /// by the provided symbol remapper. 1278 static sampleprof::FunctionSamples 1279 remapSamples(const sampleprof::FunctionSamples &Samples, 1280 SymbolRemapper &Remapper, sampleprof_error &Error) { 1281 sampleprof::FunctionSamples Result; 1282 Result.setFunction(Remapper(Samples.getFunction())); 1283 Result.addTotalSamples(Samples.getTotalSamples()); 1284 Result.addHeadSamples(Samples.getHeadSamples()); 1285 for (const auto &BodySample : Samples.getBodySamples()) { 1286 uint32_t MaskedDiscriminator = 1287 BodySample.first.Discriminator & getDiscriminatorMask(); 1288 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator, 1289 BodySample.second.getSamples()); 1290 for (const auto &Target : BodySample.second.getCallTargets()) { 1291 Result.addCalledTargetSamples(BodySample.first.LineOffset, 1292 MaskedDiscriminator, 1293 Remapper(Target.first), Target.second); 1294 } 1295 } 1296 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { 1297 sampleprof::FunctionSamplesMap &Target = 1298 Result.functionSamplesAt(CallsiteSamples.first); 1299 for (const auto &Callsite : CallsiteSamples.second) { 1300 sampleprof::FunctionSamples Remapped = 1301 remapSamples(Callsite.second, Remapper, Error); 1302 MergeResult(Error, Target[Remapped.getFunction()].merge(Remapped)); 1303 } 1304 } 1305 return Result; 1306 } 1307 1308 static sampleprof::SampleProfileFormat FormatMap[] = { 1309 sampleprof::SPF_None, 1310 sampleprof::SPF_Text, 1311 sampleprof::SPF_None, 1312 sampleprof::SPF_Ext_Binary, 1313 sampleprof::SPF_GCC, 1314 sampleprof::SPF_Binary}; 1315 1316 static std::unique_ptr<MemoryBuffer> 1317 getInputFileBuf(const StringRef &InputFile) { 1318 if (InputFile == "") 1319 return {}; 1320 1321 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile); 1322 if (!BufOrError) 1323 exitWithErrorCode(BufOrError.getError(), InputFile); 1324 1325 return std::move(*BufOrError); 1326 } 1327 1328 static void populateProfileSymbolList(MemoryBuffer *Buffer, 1329 sampleprof::ProfileSymbolList &PSL) { 1330 if (!Buffer) 1331 return; 1332 1333 SmallVector<StringRef, 32> SymbolVec; 1334 StringRef Data = Buffer->getBuffer(); 1335 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1336 1337 for (StringRef SymbolStr : SymbolVec) 1338 PSL.add(SymbolStr.trim()); 1339 } 1340 1341 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer, 1342 ProfileFormat OutputFormat, 1343 MemoryBuffer *Buffer, 1344 sampleprof::ProfileSymbolList &WriterList, 1345 bool CompressAllSections, bool UseMD5, 1346 bool GenPartialProfile) { 1347 populateProfileSymbolList(Buffer, WriterList); 1348 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary) 1349 warn("Profile Symbol list is not empty but the output format is not " 1350 "ExtBinary format. The list will be lost in the output. "); 1351 1352 Writer.setProfileSymbolList(&WriterList); 1353 1354 if (CompressAllSections) { 1355 if (OutputFormat != PF_Ext_Binary) 1356 warn("-compress-all-section is ignored. Specify -extbinary to enable it"); 1357 else 1358 Writer.setToCompressAllSections(); 1359 } 1360 if (UseMD5) { 1361 if (OutputFormat != PF_Ext_Binary) 1362 warn("-use-md5 is ignored. Specify -extbinary to enable it"); 1363 else 1364 Writer.setUseMD5(); 1365 } 1366 if (GenPartialProfile) { 1367 if (OutputFormat != PF_Ext_Binary) 1368 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it"); 1369 else 1370 Writer.setPartialProfile(); 1371 } 1372 } 1373 1374 static void mergeSampleProfile(const WeightedFileVector &Inputs, 1375 SymbolRemapper *Remapper, 1376 StringRef ProfileSymbolListFile, 1377 size_t OutputSizeLimit) { 1378 using namespace sampleprof; 1379 SampleProfileMap ProfileMap; 1380 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers; 1381 LLVMContext Context; 1382 sampleprof::ProfileSymbolList WriterList; 1383 std::optional<bool> ProfileIsProbeBased; 1384 std::optional<bool> ProfileIsCS; 1385 for (const auto &Input : Inputs) { 1386 auto FS = vfs::getRealFileSystem(); 1387 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS, 1388 FSDiscriminatorPassOption); 1389 if (std::error_code EC = ReaderOrErr.getError()) { 1390 warnOrExitGivenError(FailMode, EC, Input.Filename); 1391 continue; 1392 } 1393 1394 // We need to keep the readers around until after all the files are 1395 // read so that we do not lose the function names stored in each 1396 // reader's memory. The function names are needed to write out the 1397 // merged profile map. 1398 Readers.push_back(std::move(ReaderOrErr.get())); 1399 const auto Reader = Readers.back().get(); 1400 if (std::error_code EC = Reader->read()) { 1401 warnOrExitGivenError(FailMode, EC, Input.Filename); 1402 Readers.pop_back(); 1403 continue; 1404 } 1405 1406 SampleProfileMap &Profiles = Reader->getProfiles(); 1407 if (ProfileIsProbeBased && 1408 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased) 1409 exitWithError( 1410 "cannot merge probe-based profile with non-probe-based profile"); 1411 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased; 1412 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS) 1413 exitWithError("cannot merge CS profile with non-CS profile"); 1414 ProfileIsCS = FunctionSamples::ProfileIsCS; 1415 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end(); 1416 I != E; ++I) { 1417 sampleprof_error Result = sampleprof_error::success; 1418 FunctionSamples Remapped = 1419 Remapper ? remapSamples(I->second, *Remapper, Result) 1420 : FunctionSamples(); 1421 FunctionSamples &Samples = Remapper ? Remapped : I->second; 1422 SampleContext FContext = Samples.getContext(); 1423 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight)); 1424 if (Result != sampleprof_error::success) { 1425 std::error_code EC = make_error_code(Result); 1426 handleMergeWriterError(errorCodeToError(EC), Input.Filename, 1427 FContext.toString()); 1428 } 1429 } 1430 1431 if (!DropProfileSymbolList) { 1432 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 1433 Reader->getProfileSymbolList(); 1434 if (ReaderList) 1435 WriterList.merge(*ReaderList); 1436 } 1437 } 1438 1439 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) { 1440 // Use threshold calculated from profile summary unless specified. 1441 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); 1442 auto Summary = Builder.computeSummaryForProfiles(ProfileMap); 1443 uint64_t SampleProfColdThreshold = 1444 ProfileSummaryBuilder::getColdCountThreshold( 1445 (Summary->getDetailedSummary())); 1446 1447 // Trim and merge cold context profile using cold threshold above; 1448 SampleContextTrimmer(ProfileMap) 1449 .trimAndMergeColdContextProfiles( 1450 SampleProfColdThreshold, SampleTrimColdContext, 1451 SampleMergeColdContext, SampleColdContextFrameDepth, false); 1452 } 1453 1454 if (ProfileLayout == llvm::sampleprof::SPL_Flat) { 1455 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS); 1456 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1457 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) { 1458 ProfileConverter CSConverter(ProfileMap); 1459 CSConverter.convertCSProfiles(); 1460 ProfileIsCS = FunctionSamples::ProfileIsCS = false; 1461 } 1462 1463 auto WriterOrErr = 1464 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]); 1465 if (std::error_code EC = WriterOrErr.getError()) 1466 exitWithErrorCode(EC, OutputFilename); 1467 1468 auto Writer = std::move(WriterOrErr.get()); 1469 // WriterList will have StringRef refering to string in Buffer. 1470 // Make sure Buffer lives as long as WriterList. 1471 auto Buffer = getInputFileBuf(ProfileSymbolListFile); 1472 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList, 1473 CompressAllSections, UseMD5, GenPartialProfile); 1474 1475 // If OutputSizeLimit is 0 (default), it is the same as write(). 1476 if (std::error_code EC = 1477 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit)) 1478 exitWithErrorCode(std::move(EC)); 1479 } 1480 1481 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) { 1482 StringRef WeightStr, FileName; 1483 std::tie(WeightStr, FileName) = WeightedFilename.split(','); 1484 1485 uint64_t Weight; 1486 if (WeightStr.getAsInteger(10, Weight) || Weight < 1) 1487 exitWithError("input weight must be a positive integer"); 1488 1489 return {std::string(FileName), Weight}; 1490 } 1491 1492 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) { 1493 StringRef Filename = WF.Filename; 1494 uint64_t Weight = WF.Weight; 1495 1496 // If it's STDIN just pass it on. 1497 if (Filename == "-") { 1498 WNI.push_back({std::string(Filename), Weight}); 1499 return; 1500 } 1501 1502 llvm::sys::fs::file_status Status; 1503 llvm::sys::fs::status(Filename, Status); 1504 if (!llvm::sys::fs::exists(Status)) 1505 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory), 1506 Filename); 1507 // If it's a source file, collect it. 1508 if (llvm::sys::fs::is_regular_file(Status)) { 1509 WNI.push_back({std::string(Filename), Weight}); 1510 return; 1511 } 1512 1513 if (llvm::sys::fs::is_directory(Status)) { 1514 std::error_code EC; 1515 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E; 1516 F != E && !EC; F.increment(EC)) { 1517 if (llvm::sys::fs::is_regular_file(F->path())) { 1518 addWeightedInput(WNI, {F->path(), Weight}); 1519 } 1520 } 1521 if (EC) 1522 exitWithErrorCode(EC, Filename); 1523 } 1524 } 1525 1526 static void parseInputFilenamesFile(MemoryBuffer *Buffer, 1527 WeightedFileVector &WFV) { 1528 if (!Buffer) 1529 return; 1530 1531 SmallVector<StringRef, 8> Entries; 1532 StringRef Data = Buffer->getBuffer(); 1533 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false); 1534 for (const StringRef &FileWeightEntry : Entries) { 1535 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r"); 1536 // Skip comments. 1537 if (SanitizedEntry.starts_with("#")) 1538 continue; 1539 // If there's no comma, it's an unweighted profile. 1540 else if (!SanitizedEntry.contains(',')) 1541 addWeightedInput(WFV, {std::string(SanitizedEntry), 1}); 1542 else 1543 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry)); 1544 } 1545 } 1546 1547 static int merge_main(int argc, const char *argv[]) { 1548 WeightedFileVector WeightedInputs; 1549 for (StringRef Filename : InputFilenames) 1550 addWeightedInput(WeightedInputs, {std::string(Filename), 1}); 1551 for (StringRef WeightedFilename : WeightedInputFilenames) 1552 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename)); 1553 1554 // Make sure that the file buffer stays alive for the duration of the 1555 // weighted input vector's lifetime. 1556 auto Buffer = getInputFileBuf(InputFilenamesFile); 1557 parseInputFilenamesFile(Buffer.get(), WeightedInputs); 1558 1559 if (WeightedInputs.empty()) 1560 exitWithError("no input files specified. See " + 1561 sys::path::filename(argv[0]) + " " + argv[1] + " -help"); 1562 1563 if (DumpInputFileList) { 1564 for (auto &WF : WeightedInputs) 1565 outs() << WF.Weight << "," << WF.Filename << "\n"; 1566 return 0; 1567 } 1568 1569 std::unique_ptr<SymbolRemapper> Remapper; 1570 if (!RemappingFile.empty()) 1571 Remapper = SymbolRemapper::create(RemappingFile); 1572 1573 if (!SupplInstrWithSample.empty()) { 1574 if (ProfileKind != instr) 1575 exitWithError( 1576 "-supplement-instr-with-sample can only work with -instr. "); 1577 1578 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse, 1579 SupplMinSizeThreshold, ZeroCounterThreshold, 1580 InstrProfColdThreshold); 1581 return 0; 1582 } 1583 1584 if (ProfileKind == instr) 1585 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings, 1586 ProfiledBinary); 1587 else 1588 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile, 1589 OutputSizeLimit); 1590 return 0; 1591 } 1592 1593 /// Computer the overlap b/w profile BaseFilename and profile TestFilename. 1594 static void overlapInstrProfile(const std::string &BaseFilename, 1595 const std::string &TestFilename, 1596 const OverlapFuncFilters &FuncFilter, 1597 raw_fd_ostream &OS, bool IsCS) { 1598 std::mutex ErrorLock; 1599 SmallSet<instrprof_error, 4> WriterErrorCodes; 1600 WriterContext Context(false, ErrorLock, WriterErrorCodes); 1601 WeightedFile WeightedInput{BaseFilename, 1}; 1602 OverlapStats Overlap; 1603 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS); 1604 if (E) 1605 exitWithError(std::move(E), "error in getting profile count sums"); 1606 if (Overlap.Base.CountSum < 1.0f) { 1607 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n"; 1608 exit(0); 1609 } 1610 if (Overlap.Test.CountSum < 1.0f) { 1611 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n"; 1612 exit(0); 1613 } 1614 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context); 1615 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS, 1616 IsCS); 1617 Overlap.dump(OS); 1618 } 1619 1620 namespace { 1621 struct SampleOverlapStats { 1622 SampleContext BaseName; 1623 SampleContext TestName; 1624 // Number of overlap units 1625 uint64_t OverlapCount = 0; 1626 // Total samples of overlap units 1627 uint64_t OverlapSample = 0; 1628 // Number of and total samples of units that only present in base or test 1629 // profile 1630 uint64_t BaseUniqueCount = 0; 1631 uint64_t BaseUniqueSample = 0; 1632 uint64_t TestUniqueCount = 0; 1633 uint64_t TestUniqueSample = 0; 1634 // Number of units and total samples in base or test profile 1635 uint64_t BaseCount = 0; 1636 uint64_t BaseSample = 0; 1637 uint64_t TestCount = 0; 1638 uint64_t TestSample = 0; 1639 // Number of and total samples of units that present in at least one profile 1640 uint64_t UnionCount = 0; 1641 uint64_t UnionSample = 0; 1642 // Weighted similarity 1643 double Similarity = 0.0; 1644 // For SampleOverlapStats instances representing functions, weights of the 1645 // function in base and test profiles 1646 double BaseWeight = 0.0; 1647 double TestWeight = 0.0; 1648 1649 SampleOverlapStats() = default; 1650 }; 1651 } // end anonymous namespace 1652 1653 namespace { 1654 struct FuncSampleStats { 1655 uint64_t SampleSum = 0; 1656 uint64_t MaxSample = 0; 1657 uint64_t HotBlockCount = 0; 1658 FuncSampleStats() = default; 1659 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample, 1660 uint64_t HotBlockCount) 1661 : SampleSum(SampleSum), MaxSample(MaxSample), 1662 HotBlockCount(HotBlockCount) {} 1663 }; 1664 } // end anonymous namespace 1665 1666 namespace { 1667 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None }; 1668 1669 // Class for updating merging steps for two sorted maps. The class should be 1670 // instantiated with a map iterator type. 1671 template <class T> class MatchStep { 1672 public: 1673 MatchStep() = delete; 1674 1675 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd) 1676 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter), 1677 SecondEnd(SecondEnd), Status(MS_None) {} 1678 1679 bool areBothFinished() const { 1680 return (FirstIter == FirstEnd && SecondIter == SecondEnd); 1681 } 1682 1683 bool isFirstFinished() const { return FirstIter == FirstEnd; } 1684 1685 bool isSecondFinished() const { return SecondIter == SecondEnd; } 1686 1687 /// Advance one step based on the previous match status unless the previous 1688 /// status is MS_None. Then update Status based on the comparison between two 1689 /// container iterators at the current step. If the previous status is 1690 /// MS_None, it means two iterators are at the beginning and no comparison has 1691 /// been made, so we simply update Status without advancing the iterators. 1692 void updateOneStep(); 1693 1694 T getFirstIter() const { return FirstIter; } 1695 1696 T getSecondIter() const { return SecondIter; } 1697 1698 MatchStatus getMatchStatus() const { return Status; } 1699 1700 private: 1701 // Current iterator and end iterator of the first container. 1702 T FirstIter; 1703 T FirstEnd; 1704 // Current iterator and end iterator of the second container. 1705 T SecondIter; 1706 T SecondEnd; 1707 // Match status of the current step. 1708 MatchStatus Status; 1709 }; 1710 } // end anonymous namespace 1711 1712 template <class T> void MatchStep<T>::updateOneStep() { 1713 switch (Status) { 1714 case MS_Match: 1715 ++FirstIter; 1716 ++SecondIter; 1717 break; 1718 case MS_FirstUnique: 1719 ++FirstIter; 1720 break; 1721 case MS_SecondUnique: 1722 ++SecondIter; 1723 break; 1724 case MS_None: 1725 break; 1726 } 1727 1728 // Update Status according to iterators at the current step. 1729 if (areBothFinished()) 1730 return; 1731 if (FirstIter != FirstEnd && 1732 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first)) 1733 Status = MS_FirstUnique; 1734 else if (SecondIter != SecondEnd && 1735 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first)) 1736 Status = MS_SecondUnique; 1737 else 1738 Status = MS_Match; 1739 } 1740 1741 // Return the sum of line/block samples, the max line/block sample, and the 1742 // number of line/block samples above the given threshold in a function 1743 // including its inlinees. 1744 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func, 1745 FuncSampleStats &FuncStats, 1746 uint64_t HotThreshold) { 1747 for (const auto &L : Func.getBodySamples()) { 1748 uint64_t Sample = L.second.getSamples(); 1749 FuncStats.SampleSum += Sample; 1750 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample); 1751 if (Sample >= HotThreshold) 1752 ++FuncStats.HotBlockCount; 1753 } 1754 1755 for (const auto &C : Func.getCallsiteSamples()) { 1756 for (const auto &F : C.second) 1757 getFuncSampleStats(F.second, FuncStats, HotThreshold); 1758 } 1759 } 1760 1761 /// Predicate that determines if a function is hot with a given threshold. We 1762 /// keep it separate from its callsites for possible extension in the future. 1763 static bool isFunctionHot(const FuncSampleStats &FuncStats, 1764 uint64_t HotThreshold) { 1765 // We intentionally compare the maximum sample count in a function with the 1766 // HotThreshold to get an approximate determination on hot functions. 1767 return (FuncStats.MaxSample >= HotThreshold); 1768 } 1769 1770 namespace { 1771 class SampleOverlapAggregator { 1772 public: 1773 SampleOverlapAggregator(const std::string &BaseFilename, 1774 const std::string &TestFilename, 1775 double LowSimilarityThreshold, double Epsilon, 1776 const OverlapFuncFilters &FuncFilter) 1777 : BaseFilename(BaseFilename), TestFilename(TestFilename), 1778 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon), 1779 FuncFilter(FuncFilter) {} 1780 1781 /// Detect 0-sample input profile and report to output stream. This interface 1782 /// should be called after loadProfiles(). 1783 bool detectZeroSampleProfile(raw_fd_ostream &OS) const; 1784 1785 /// Write out function-level similarity statistics for functions specified by 1786 /// options --function, --value-cutoff, and --similarity-cutoff. 1787 void dumpFuncSimilarity(raw_fd_ostream &OS) const; 1788 1789 /// Write out program-level similarity and overlap statistics. 1790 void dumpProgramSummary(raw_fd_ostream &OS) const; 1791 1792 /// Write out hot-function and hot-block statistics for base_profile, 1793 /// test_profile, and their overlap. For both cases, the overlap HO is 1794 /// calculated as follows: 1795 /// Given the number of functions (or blocks) that are hot in both profiles 1796 /// HCommon and the number of functions (or blocks) that are hot in at 1797 /// least one profile HUnion, HO = HCommon / HUnion. 1798 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const; 1799 1800 /// This function tries matching functions in base and test profiles. For each 1801 /// pair of matched functions, it aggregates the function-level 1802 /// similarity into a profile-level similarity. It also dump function-level 1803 /// similarity information of functions specified by --function, 1804 /// --value-cutoff, and --similarity-cutoff options. The program-level 1805 /// similarity PS is computed as follows: 1806 /// Given function-level similarity FS(A) for all function A, the 1807 /// weight of function A in base profile WB(A), and the weight of function 1808 /// A in test profile WT(A), compute PS(base_profile, test_profile) = 1809 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0 1810 /// meaning no-overlap. 1811 void computeSampleProfileOverlap(raw_fd_ostream &OS); 1812 1813 /// Initialize ProfOverlap with the sum of samples in base and test 1814 /// profiles. This function also computes and keeps the sum of samples and 1815 /// max sample counts of each function in BaseStats and TestStats for later 1816 /// use to avoid re-computations. 1817 void initializeSampleProfileOverlap(); 1818 1819 /// Load profiles specified by BaseFilename and TestFilename. 1820 std::error_code loadProfiles(); 1821 1822 using FuncSampleStatsMap = 1823 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>; 1824 1825 private: 1826 SampleOverlapStats ProfOverlap; 1827 SampleOverlapStats HotFuncOverlap; 1828 SampleOverlapStats HotBlockOverlap; 1829 std::string BaseFilename; 1830 std::string TestFilename; 1831 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader; 1832 std::unique_ptr<sampleprof::SampleProfileReader> TestReader; 1833 // BaseStats and TestStats hold FuncSampleStats for each function, with 1834 // function name as the key. 1835 FuncSampleStatsMap BaseStats; 1836 FuncSampleStatsMap TestStats; 1837 // Low similarity threshold in floating point number 1838 double LowSimilarityThreshold; 1839 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot 1840 // for tracking hot blocks. 1841 uint64_t BaseHotThreshold; 1842 uint64_t TestHotThreshold; 1843 // A small threshold used to round the results of floating point accumulations 1844 // to resolve imprecision. 1845 const double Epsilon; 1846 std::multimap<double, SampleOverlapStats, std::greater<double>> 1847 FuncSimilarityDump; 1848 // FuncFilter carries specifications in options --value-cutoff and 1849 // --function. 1850 OverlapFuncFilters FuncFilter; 1851 // Column offsets for printing the function-level details table. 1852 static const unsigned int TestWeightCol = 15; 1853 static const unsigned int SimilarityCol = 30; 1854 static const unsigned int OverlapCol = 43; 1855 static const unsigned int BaseUniqueCol = 53; 1856 static const unsigned int TestUniqueCol = 67; 1857 static const unsigned int BaseSampleCol = 81; 1858 static const unsigned int TestSampleCol = 96; 1859 static const unsigned int FuncNameCol = 111; 1860 1861 /// Return a similarity of two line/block sample counters in the same 1862 /// function in base and test profiles. The line/block-similarity BS(i) is 1863 /// computed as follows: 1864 /// For an offsets i, given the sample count at i in base profile BB(i), 1865 /// the sample count at i in test profile BT(i), the sum of sample counts 1866 /// in this function in base profile SB, and the sum of sample counts in 1867 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB - 1868 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap. 1869 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample, 1870 const SampleOverlapStats &FuncOverlap) const; 1871 1872 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample, 1873 uint64_t HotBlockCount); 1874 1875 void getHotFunctions(const FuncSampleStatsMap &ProfStats, 1876 FuncSampleStatsMap &HotFunc, 1877 uint64_t HotThreshold) const; 1878 1879 void computeHotFuncOverlap(); 1880 1881 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1882 /// Difference for two sample units in a matched function according to the 1883 /// given match status. 1884 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample, 1885 uint64_t HotBlockCount, 1886 SampleOverlapStats &FuncOverlap, 1887 double &Difference, MatchStatus Status); 1888 1889 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and 1890 /// Difference for unmatched callees that only present in one profile in a 1891 /// matched caller function. 1892 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func, 1893 SampleOverlapStats &FuncOverlap, 1894 double &Difference, MatchStatus Status); 1895 1896 /// This function updates sample overlap statistics of an overlap function in 1897 /// base and test profile. It also calculates a function-internal similarity 1898 /// FIS as follows: 1899 /// For offsets i that have samples in at least one profile in this 1900 /// function A, given BS(i) returned by computeBlockSimilarity(), compute 1901 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with 1902 /// 0.0 meaning no overlap. 1903 double computeSampleFunctionInternalOverlap( 1904 const sampleprof::FunctionSamples &BaseFunc, 1905 const sampleprof::FunctionSamples &TestFunc, 1906 SampleOverlapStats &FuncOverlap); 1907 1908 /// Function-level similarity (FS) is a weighted value over function internal 1909 /// similarity (FIS). This function computes a function's FS from its FIS by 1910 /// applying the weight. 1911 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample, 1912 uint64_t TestFuncSample) const; 1913 1914 /// The function-level similarity FS(A) for a function A is computed as 1915 /// follows: 1916 /// Compute a function-internal similarity FIS(A) by 1917 /// computeSampleFunctionInternalOverlap(). Then, with the weight of 1918 /// function A in base profile WB(A), and the weight of function A in test 1919 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A))) 1920 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap. 1921 double 1922 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc, 1923 const sampleprof::FunctionSamples *TestFunc, 1924 SampleOverlapStats *FuncOverlap, 1925 uint64_t BaseFuncSample, 1926 uint64_t TestFuncSample); 1927 1928 /// Profile-level similarity (PS) is a weighted aggregate over function-level 1929 /// similarities (FS). This method weights the FS value by the function 1930 /// weights in the base and test profiles for the aggregation. 1931 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample, 1932 uint64_t TestFuncSample) const; 1933 }; 1934 } // end anonymous namespace 1935 1936 bool SampleOverlapAggregator::detectZeroSampleProfile( 1937 raw_fd_ostream &OS) const { 1938 bool HaveZeroSample = false; 1939 if (ProfOverlap.BaseSample == 0) { 1940 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n"; 1941 HaveZeroSample = true; 1942 } 1943 if (ProfOverlap.TestSample == 0) { 1944 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n"; 1945 HaveZeroSample = true; 1946 } 1947 return HaveZeroSample; 1948 } 1949 1950 double SampleOverlapAggregator::computeBlockSimilarity( 1951 uint64_t BaseSample, uint64_t TestSample, 1952 const SampleOverlapStats &FuncOverlap) const { 1953 double BaseFrac = 0.0; 1954 double TestFrac = 0.0; 1955 if (FuncOverlap.BaseSample > 0) 1956 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample; 1957 if (FuncOverlap.TestSample > 0) 1958 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample; 1959 return 1.0 - std::fabs(BaseFrac - TestFrac); 1960 } 1961 1962 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample, 1963 uint64_t TestSample, 1964 uint64_t HotBlockCount) { 1965 bool IsBaseHot = (BaseSample >= BaseHotThreshold); 1966 bool IsTestHot = (TestSample >= TestHotThreshold); 1967 if (!IsBaseHot && !IsTestHot) 1968 return; 1969 1970 HotBlockOverlap.UnionCount += HotBlockCount; 1971 if (IsBaseHot) 1972 HotBlockOverlap.BaseCount += HotBlockCount; 1973 if (IsTestHot) 1974 HotBlockOverlap.TestCount += HotBlockCount; 1975 if (IsBaseHot && IsTestHot) 1976 HotBlockOverlap.OverlapCount += HotBlockCount; 1977 } 1978 1979 void SampleOverlapAggregator::getHotFunctions( 1980 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc, 1981 uint64_t HotThreshold) const { 1982 for (const auto &F : ProfStats) { 1983 if (isFunctionHot(F.second, HotThreshold)) 1984 HotFunc.emplace(F.first, F.second); 1985 } 1986 } 1987 1988 void SampleOverlapAggregator::computeHotFuncOverlap() { 1989 FuncSampleStatsMap BaseHotFunc; 1990 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold); 1991 HotFuncOverlap.BaseCount = BaseHotFunc.size(); 1992 1993 FuncSampleStatsMap TestHotFunc; 1994 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold); 1995 HotFuncOverlap.TestCount = TestHotFunc.size(); 1996 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount; 1997 1998 for (const auto &F : BaseHotFunc) { 1999 if (TestHotFunc.count(F.first)) 2000 ++HotFuncOverlap.OverlapCount; 2001 else 2002 ++HotFuncOverlap.UnionCount; 2003 } 2004 } 2005 2006 void SampleOverlapAggregator::updateOverlapStatsForFunction( 2007 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount, 2008 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) { 2009 assert(Status != MS_None && 2010 "Match status should be updated before updating overlap statistics"); 2011 if (Status == MS_FirstUnique) { 2012 TestSample = 0; 2013 FuncOverlap.BaseUniqueSample += BaseSample; 2014 } else if (Status == MS_SecondUnique) { 2015 BaseSample = 0; 2016 FuncOverlap.TestUniqueSample += TestSample; 2017 } else { 2018 ++FuncOverlap.OverlapCount; 2019 } 2020 2021 FuncOverlap.UnionSample += std::max(BaseSample, TestSample); 2022 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample); 2023 Difference += 2024 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap); 2025 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount); 2026 } 2027 2028 void SampleOverlapAggregator::updateForUnmatchedCallee( 2029 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap, 2030 double &Difference, MatchStatus Status) { 2031 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) && 2032 "Status must be either of the two unmatched cases"); 2033 FuncSampleStats FuncStats; 2034 if (Status == MS_FirstUnique) { 2035 getFuncSampleStats(Func, FuncStats, BaseHotThreshold); 2036 updateOverlapStatsForFunction(FuncStats.SampleSum, 0, 2037 FuncStats.HotBlockCount, FuncOverlap, 2038 Difference, Status); 2039 } else { 2040 getFuncSampleStats(Func, FuncStats, TestHotThreshold); 2041 updateOverlapStatsForFunction(0, FuncStats.SampleSum, 2042 FuncStats.HotBlockCount, FuncOverlap, 2043 Difference, Status); 2044 } 2045 } 2046 2047 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap( 2048 const sampleprof::FunctionSamples &BaseFunc, 2049 const sampleprof::FunctionSamples &TestFunc, 2050 SampleOverlapStats &FuncOverlap) { 2051 2052 using namespace sampleprof; 2053 2054 double Difference = 0; 2055 2056 // Accumulate Difference for regular line/block samples in the function. 2057 // We match them through sort-merge join algorithm because 2058 // FunctionSamples::getBodySamples() returns a map of sample counters ordered 2059 // by their offsets. 2060 MatchStep<BodySampleMap::const_iterator> BlockIterStep( 2061 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(), 2062 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend()); 2063 BlockIterStep.updateOneStep(); 2064 while (!BlockIterStep.areBothFinished()) { 2065 uint64_t BaseSample = 2066 BlockIterStep.isFirstFinished() 2067 ? 0 2068 : BlockIterStep.getFirstIter()->second.getSamples(); 2069 uint64_t TestSample = 2070 BlockIterStep.isSecondFinished() 2071 ? 0 2072 : BlockIterStep.getSecondIter()->second.getSamples(); 2073 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap, 2074 Difference, BlockIterStep.getMatchStatus()); 2075 2076 BlockIterStep.updateOneStep(); 2077 } 2078 2079 // Accumulate Difference for callsite lines in the function. We match 2080 // them through sort-merge algorithm because 2081 // FunctionSamples::getCallsiteSamples() returns a map of callsite records 2082 // ordered by their offsets. 2083 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep( 2084 BaseFunc.getCallsiteSamples().cbegin(), 2085 BaseFunc.getCallsiteSamples().cend(), 2086 TestFunc.getCallsiteSamples().cbegin(), 2087 TestFunc.getCallsiteSamples().cend()); 2088 CallsiteIterStep.updateOneStep(); 2089 while (!CallsiteIterStep.areBothFinished()) { 2090 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus(); 2091 assert(CallsiteStepStatus != MS_None && 2092 "Match status should be updated before entering loop body"); 2093 2094 if (CallsiteStepStatus != MS_Match) { 2095 auto Callsite = (CallsiteStepStatus == MS_FirstUnique) 2096 ? CallsiteIterStep.getFirstIter() 2097 : CallsiteIterStep.getSecondIter(); 2098 for (const auto &F : Callsite->second) 2099 updateForUnmatchedCallee(F.second, FuncOverlap, Difference, 2100 CallsiteStepStatus); 2101 } else { 2102 // There may be multiple inlinees at the same offset, so we need to try 2103 // matching all of them. This match is implemented through sort-merge 2104 // algorithm because callsite records at the same offset are ordered by 2105 // function names. 2106 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep( 2107 CallsiteIterStep.getFirstIter()->second.cbegin(), 2108 CallsiteIterStep.getFirstIter()->second.cend(), 2109 CallsiteIterStep.getSecondIter()->second.cbegin(), 2110 CallsiteIterStep.getSecondIter()->second.cend()); 2111 CalleeIterStep.updateOneStep(); 2112 while (!CalleeIterStep.areBothFinished()) { 2113 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus(); 2114 if (CalleeStepStatus != MS_Match) { 2115 auto Callee = (CalleeStepStatus == MS_FirstUnique) 2116 ? CalleeIterStep.getFirstIter() 2117 : CalleeIterStep.getSecondIter(); 2118 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference, 2119 CalleeStepStatus); 2120 } else { 2121 // An inlined function can contain other inlinees inside, so compute 2122 // the Difference recursively. 2123 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap( 2124 CalleeIterStep.getFirstIter()->second, 2125 CalleeIterStep.getSecondIter()->second, 2126 FuncOverlap); 2127 } 2128 CalleeIterStep.updateOneStep(); 2129 } 2130 } 2131 CallsiteIterStep.updateOneStep(); 2132 } 2133 2134 // Difference reflects the total differences of line/block samples in this 2135 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to 2136 // reflect the similarity between function profiles in [0.0f to 1.0f]. 2137 return (2.0 - Difference) / 2; 2138 } 2139 2140 double SampleOverlapAggregator::weightForFuncSimilarity( 2141 double FuncInternalSimilarity, uint64_t BaseFuncSample, 2142 uint64_t TestFuncSample) const { 2143 // Compute the weight as the distance between the function weights in two 2144 // profiles. 2145 double BaseFrac = 0.0; 2146 double TestFrac = 0.0; 2147 assert(ProfOverlap.BaseSample > 0 && 2148 "Total samples in base profile should be greater than 0"); 2149 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample; 2150 assert(ProfOverlap.TestSample > 0 && 2151 "Total samples in test profile should be greater than 0"); 2152 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample; 2153 double WeightDistance = std::fabs(BaseFrac - TestFrac); 2154 2155 // Take WeightDistance into the similarity. 2156 return FuncInternalSimilarity * (1 - WeightDistance); 2157 } 2158 2159 double 2160 SampleOverlapAggregator::weightByImportance(double FuncSimilarity, 2161 uint64_t BaseFuncSample, 2162 uint64_t TestFuncSample) const { 2163 2164 double BaseFrac = 0.0; 2165 double TestFrac = 0.0; 2166 assert(ProfOverlap.BaseSample > 0 && 2167 "Total samples in base profile should be greater than 0"); 2168 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0; 2169 assert(ProfOverlap.TestSample > 0 && 2170 "Total samples in test profile should be greater than 0"); 2171 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0; 2172 return FuncSimilarity * (BaseFrac + TestFrac); 2173 } 2174 2175 double SampleOverlapAggregator::computeSampleFunctionOverlap( 2176 const sampleprof::FunctionSamples *BaseFunc, 2177 const sampleprof::FunctionSamples *TestFunc, 2178 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample, 2179 uint64_t TestFuncSample) { 2180 // Default function internal similarity before weighted, meaning two functions 2181 // has no overlap. 2182 const double DefaultFuncInternalSimilarity = 0; 2183 double FuncSimilarity; 2184 double FuncInternalSimilarity; 2185 2186 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap. 2187 // In this case, we use DefaultFuncInternalSimilarity as the function internal 2188 // similarity. 2189 if (!BaseFunc || !TestFunc) { 2190 FuncInternalSimilarity = DefaultFuncInternalSimilarity; 2191 } else { 2192 assert(FuncOverlap != nullptr && 2193 "FuncOverlap should be provided in this case"); 2194 FuncInternalSimilarity = computeSampleFunctionInternalOverlap( 2195 *BaseFunc, *TestFunc, *FuncOverlap); 2196 // Now, FuncInternalSimilarity may be a little less than 0 due to 2197 // imprecision of floating point accumulations. Make it zero if the 2198 // difference is below Epsilon. 2199 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon) 2200 ? 0 2201 : FuncInternalSimilarity; 2202 } 2203 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity, 2204 BaseFuncSample, TestFuncSample); 2205 return FuncSimilarity; 2206 } 2207 2208 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) { 2209 using namespace sampleprof; 2210 2211 std::unordered_map<SampleContext, const FunctionSamples *, 2212 SampleContext::Hash> 2213 BaseFuncProf; 2214 const auto &BaseProfiles = BaseReader->getProfiles(); 2215 for (const auto &BaseFunc : BaseProfiles) { 2216 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second)); 2217 } 2218 ProfOverlap.UnionCount = BaseFuncProf.size(); 2219 2220 const auto &TestProfiles = TestReader->getProfiles(); 2221 for (const auto &TestFunc : TestProfiles) { 2222 SampleOverlapStats FuncOverlap; 2223 FuncOverlap.TestName = TestFunc.second.getContext(); 2224 assert(TestStats.count(FuncOverlap.TestName) && 2225 "TestStats should have records for all functions in test profile " 2226 "except inlinees"); 2227 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum; 2228 2229 bool Matched = false; 2230 const auto Match = BaseFuncProf.find(FuncOverlap.TestName); 2231 if (Match == BaseFuncProf.end()) { 2232 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName]; 2233 ++ProfOverlap.TestUniqueCount; 2234 ProfOverlap.TestUniqueSample += FuncStats.SampleSum; 2235 FuncOverlap.TestUniqueSample = FuncStats.SampleSum; 2236 2237 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount); 2238 2239 double FuncSimilarity = computeSampleFunctionOverlap( 2240 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum); 2241 ProfOverlap.Similarity += 2242 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum); 2243 2244 ++ProfOverlap.UnionCount; 2245 ProfOverlap.UnionSample += FuncStats.SampleSum; 2246 } else { 2247 ++ProfOverlap.OverlapCount; 2248 2249 // Two functions match with each other. Compute function-level overlap and 2250 // aggregate them into profile-level overlap. 2251 FuncOverlap.BaseName = Match->second->getContext(); 2252 assert(BaseStats.count(FuncOverlap.BaseName) && 2253 "BaseStats should have records for all functions in base profile " 2254 "except inlinees"); 2255 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum; 2256 2257 FuncOverlap.Similarity = computeSampleFunctionOverlap( 2258 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample, 2259 FuncOverlap.TestSample); 2260 ProfOverlap.Similarity += 2261 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample, 2262 FuncOverlap.TestSample); 2263 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample; 2264 ProfOverlap.UnionSample += FuncOverlap.UnionSample; 2265 2266 // Accumulate the percentage of base unique and test unique samples into 2267 // ProfOverlap. 2268 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample; 2269 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample; 2270 2271 // Remove matched base functions for later reporting functions not found 2272 // in test profile. 2273 BaseFuncProf.erase(Match); 2274 Matched = true; 2275 } 2276 2277 // Print function-level similarity information if specified by options. 2278 assert(TestStats.count(FuncOverlap.TestName) && 2279 "TestStats should have records for all functions in test profile " 2280 "except inlinees"); 2281 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff || 2282 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) || 2283 (Matched && !FuncFilter.NameFilter.empty() && 2284 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) != 2285 std::string::npos)) { 2286 assert(ProfOverlap.BaseSample > 0 && 2287 "Total samples in base profile should be greater than 0"); 2288 FuncOverlap.BaseWeight = 2289 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample; 2290 assert(ProfOverlap.TestSample > 0 && 2291 "Total samples in test profile should be greater than 0"); 2292 FuncOverlap.TestWeight = 2293 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample; 2294 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap); 2295 } 2296 } 2297 2298 // Traverse through functions in base profile but not in test profile. 2299 for (const auto &F : BaseFuncProf) { 2300 assert(BaseStats.count(F.second->getContext()) && 2301 "BaseStats should have records for all functions in base profile " 2302 "except inlinees"); 2303 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()]; 2304 ++ProfOverlap.BaseUniqueCount; 2305 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum; 2306 2307 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount); 2308 2309 double FuncSimilarity = computeSampleFunctionOverlap( 2310 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0); 2311 ProfOverlap.Similarity += 2312 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0); 2313 2314 ProfOverlap.UnionSample += FuncStats.SampleSum; 2315 } 2316 2317 // Now, ProfSimilarity may be a little greater than 1 due to imprecision 2318 // of floating point accumulations. Make it 1.0 if the difference is below 2319 // Epsilon. 2320 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon) 2321 ? 1 2322 : ProfOverlap.Similarity; 2323 2324 computeHotFuncOverlap(); 2325 } 2326 2327 void SampleOverlapAggregator::initializeSampleProfileOverlap() { 2328 const auto &BaseProf = BaseReader->getProfiles(); 2329 for (const auto &I : BaseProf) { 2330 ++ProfOverlap.BaseCount; 2331 FuncSampleStats FuncStats; 2332 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold); 2333 ProfOverlap.BaseSample += FuncStats.SampleSum; 2334 BaseStats.emplace(I.second.getContext(), FuncStats); 2335 } 2336 2337 const auto &TestProf = TestReader->getProfiles(); 2338 for (const auto &I : TestProf) { 2339 ++ProfOverlap.TestCount; 2340 FuncSampleStats FuncStats; 2341 getFuncSampleStats(I.second, FuncStats, TestHotThreshold); 2342 ProfOverlap.TestSample += FuncStats.SampleSum; 2343 TestStats.emplace(I.second.getContext(), FuncStats); 2344 } 2345 2346 ProfOverlap.BaseName = StringRef(BaseFilename); 2347 ProfOverlap.TestName = StringRef(TestFilename); 2348 } 2349 2350 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const { 2351 using namespace sampleprof; 2352 2353 if (FuncSimilarityDump.empty()) 2354 return; 2355 2356 formatted_raw_ostream FOS(OS); 2357 FOS << "Function-level details:\n"; 2358 FOS << "Base weight"; 2359 FOS.PadToColumn(TestWeightCol); 2360 FOS << "Test weight"; 2361 FOS.PadToColumn(SimilarityCol); 2362 FOS << "Similarity"; 2363 FOS.PadToColumn(OverlapCol); 2364 FOS << "Overlap"; 2365 FOS.PadToColumn(BaseUniqueCol); 2366 FOS << "Base unique"; 2367 FOS.PadToColumn(TestUniqueCol); 2368 FOS << "Test unique"; 2369 FOS.PadToColumn(BaseSampleCol); 2370 FOS << "Base samples"; 2371 FOS.PadToColumn(TestSampleCol); 2372 FOS << "Test samples"; 2373 FOS.PadToColumn(FuncNameCol); 2374 FOS << "Function name\n"; 2375 for (const auto &F : FuncSimilarityDump) { 2376 double OverlapPercent = 2377 F.second.UnionSample > 0 2378 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample 2379 : 0; 2380 double BaseUniquePercent = 2381 F.second.BaseSample > 0 2382 ? static_cast<double>(F.second.BaseUniqueSample) / 2383 F.second.BaseSample 2384 : 0; 2385 double TestUniquePercent = 2386 F.second.TestSample > 0 2387 ? static_cast<double>(F.second.TestUniqueSample) / 2388 F.second.TestSample 2389 : 0; 2390 2391 FOS << format("%.2f%%", F.second.BaseWeight * 100); 2392 FOS.PadToColumn(TestWeightCol); 2393 FOS << format("%.2f%%", F.second.TestWeight * 100); 2394 FOS.PadToColumn(SimilarityCol); 2395 FOS << format("%.2f%%", F.second.Similarity * 100); 2396 FOS.PadToColumn(OverlapCol); 2397 FOS << format("%.2f%%", OverlapPercent * 100); 2398 FOS.PadToColumn(BaseUniqueCol); 2399 FOS << format("%.2f%%", BaseUniquePercent * 100); 2400 FOS.PadToColumn(TestUniqueCol); 2401 FOS << format("%.2f%%", TestUniquePercent * 100); 2402 FOS.PadToColumn(BaseSampleCol); 2403 FOS << F.second.BaseSample; 2404 FOS.PadToColumn(TestSampleCol); 2405 FOS << F.second.TestSample; 2406 FOS.PadToColumn(FuncNameCol); 2407 FOS << F.second.TestName.toString() << "\n"; 2408 } 2409 } 2410 2411 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const { 2412 OS << "Profile overlap infomation for base_profile: " 2413 << ProfOverlap.BaseName.toString() 2414 << " and test_profile: " << ProfOverlap.TestName.toString() 2415 << "\nProgram level:\n"; 2416 2417 OS << " Whole program profile similarity: " 2418 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n"; 2419 2420 assert(ProfOverlap.UnionSample > 0 && 2421 "Total samples in two profile should be greater than 0"); 2422 double OverlapPercent = 2423 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample; 2424 assert(ProfOverlap.BaseSample > 0 && 2425 "Total samples in base profile should be greater than 0"); 2426 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) / 2427 ProfOverlap.BaseSample; 2428 assert(ProfOverlap.TestSample > 0 && 2429 "Total samples in test profile should be greater than 0"); 2430 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) / 2431 ProfOverlap.TestSample; 2432 2433 OS << " Whole program sample overlap: " 2434 << format("%.3f%%", OverlapPercent * 100) << "\n"; 2435 OS << " percentage of samples unique in base profile: " 2436 << format("%.3f%%", BaseUniquePercent * 100) << "\n"; 2437 OS << " percentage of samples unique in test profile: " 2438 << format("%.3f%%", TestUniquePercent * 100) << "\n"; 2439 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n" 2440 << " total samples in test profile: " << ProfOverlap.TestSample << "\n"; 2441 2442 assert(ProfOverlap.UnionCount > 0 && 2443 "There should be at least one function in two input profiles"); 2444 double FuncOverlapPercent = 2445 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount; 2446 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100) 2447 << "\n"; 2448 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n"; 2449 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount 2450 << "\n"; 2451 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount 2452 << "\n"; 2453 } 2454 2455 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap( 2456 raw_fd_ostream &OS) const { 2457 assert(HotFuncOverlap.UnionCount > 0 && 2458 "There should be at least one hot function in two input profiles"); 2459 OS << " Hot-function overlap: " 2460 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) / 2461 HotFuncOverlap.UnionCount * 100) 2462 << "\n"; 2463 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n"; 2464 OS << " hot functions unique in base profile: " 2465 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n"; 2466 OS << " hot functions unique in test profile: " 2467 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n"; 2468 2469 assert(HotBlockOverlap.UnionCount > 0 && 2470 "There should be at least one hot block in two input profiles"); 2471 OS << " Hot-block overlap: " 2472 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) / 2473 HotBlockOverlap.UnionCount * 100) 2474 << "\n"; 2475 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n"; 2476 OS << " hot blocks unique in base profile: " 2477 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n"; 2478 OS << " hot blocks unique in test profile: " 2479 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n"; 2480 } 2481 2482 std::error_code SampleOverlapAggregator::loadProfiles() { 2483 using namespace sampleprof; 2484 2485 LLVMContext Context; 2486 auto FS = vfs::getRealFileSystem(); 2487 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS, 2488 FSDiscriminatorPassOption); 2489 if (std::error_code EC = BaseReaderOrErr.getError()) 2490 exitWithErrorCode(EC, BaseFilename); 2491 2492 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS, 2493 FSDiscriminatorPassOption); 2494 if (std::error_code EC = TestReaderOrErr.getError()) 2495 exitWithErrorCode(EC, TestFilename); 2496 2497 BaseReader = std::move(BaseReaderOrErr.get()); 2498 TestReader = std::move(TestReaderOrErr.get()); 2499 2500 if (std::error_code EC = BaseReader->read()) 2501 exitWithErrorCode(EC, BaseFilename); 2502 if (std::error_code EC = TestReader->read()) 2503 exitWithErrorCode(EC, TestFilename); 2504 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased()) 2505 exitWithError( 2506 "cannot compare probe-based profile with non-probe-based profile"); 2507 if (BaseReader->profileIsCS() != TestReader->profileIsCS()) 2508 exitWithError("cannot compare CS profile with non-CS profile"); 2509 2510 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in 2511 // profile summary. 2512 ProfileSummary &BasePS = BaseReader->getSummary(); 2513 ProfileSummary &TestPS = TestReader->getSummary(); 2514 BaseHotThreshold = 2515 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary()); 2516 TestHotThreshold = 2517 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary()); 2518 2519 return std::error_code(); 2520 } 2521 2522 void overlapSampleProfile(const std::string &BaseFilename, 2523 const std::string &TestFilename, 2524 const OverlapFuncFilters &FuncFilter, 2525 uint64_t SimilarityCutoff, raw_fd_ostream &OS) { 2526 using namespace sampleprof; 2527 2528 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics 2529 // report 2--3 places after decimal point in percentage numbers. 2530 SampleOverlapAggregator OverlapAggr( 2531 BaseFilename, TestFilename, 2532 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter); 2533 if (std::error_code EC = OverlapAggr.loadProfiles()) 2534 exitWithErrorCode(EC); 2535 2536 OverlapAggr.initializeSampleProfileOverlap(); 2537 if (OverlapAggr.detectZeroSampleProfile(OS)) 2538 return; 2539 2540 OverlapAggr.computeSampleProfileOverlap(OS); 2541 2542 OverlapAggr.dumpProgramSummary(OS); 2543 OverlapAggr.dumpHotFuncAndBlockOverlap(OS); 2544 OverlapAggr.dumpFuncSimilarity(OS); 2545 } 2546 2547 static int overlap_main(int argc, const char *argv[]) { 2548 std::error_code EC; 2549 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 2550 if (EC) 2551 exitWithErrorCode(EC, OutputFilename); 2552 2553 if (ProfileKind == instr) 2554 overlapInstrProfile(BaseFilename, TestFilename, 2555 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2556 OS, IsCS); 2557 else 2558 overlapSampleProfile(BaseFilename, TestFilename, 2559 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter}, 2560 SimilarityCutoff, OS); 2561 2562 return 0; 2563 } 2564 2565 namespace { 2566 struct ValueSitesStats { 2567 ValueSitesStats() = default; 2568 uint64_t TotalNumValueSites = 0; 2569 uint64_t TotalNumValueSitesWithValueProfile = 0; 2570 uint64_t TotalNumValues = 0; 2571 std::vector<unsigned> ValueSitesHistogram; 2572 }; 2573 } // namespace 2574 2575 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK, 2576 ValueSitesStats &Stats, raw_fd_ostream &OS, 2577 InstrProfSymtab *Symtab) { 2578 uint32_t NS = Func.getNumValueSites(VK); 2579 Stats.TotalNumValueSites += NS; 2580 for (size_t I = 0; I < NS; ++I) { 2581 uint32_t NV = Func.getNumValueDataForSite(VK, I); 2582 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I); 2583 Stats.TotalNumValues += NV; 2584 if (NV) { 2585 Stats.TotalNumValueSitesWithValueProfile++; 2586 if (NV > Stats.ValueSitesHistogram.size()) 2587 Stats.ValueSitesHistogram.resize(NV, 0); 2588 Stats.ValueSitesHistogram[NV - 1]++; 2589 } 2590 2591 uint64_t SiteSum = 0; 2592 for (uint32_t V = 0; V < NV; V++) 2593 SiteSum += VD[V].Count; 2594 if (SiteSum == 0) 2595 SiteSum = 1; 2596 2597 for (uint32_t V = 0; V < NV; V++) { 2598 OS << "\t[ " << format("%2u", I) << ", "; 2599 if (Symtab == nullptr) 2600 OS << format("%4" PRIu64, VD[V].Value); 2601 else 2602 OS << Symtab->getFuncOrVarName(VD[V].Value); 2603 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] (" 2604 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n"; 2605 } 2606 } 2607 } 2608 2609 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK, 2610 ValueSitesStats &Stats) { 2611 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n"; 2612 OS << " Total number of sites with values: " 2613 << Stats.TotalNumValueSitesWithValueProfile << "\n"; 2614 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n"; 2615 2616 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n"; 2617 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) { 2618 if (Stats.ValueSitesHistogram[I] > 0) 2619 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n"; 2620 } 2621 } 2622 2623 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 2624 if (SFormat == ShowFormat::Json) 2625 exitWithError("JSON output is not supported for instr profiles"); 2626 if (SFormat == ShowFormat::Yaml) 2627 exitWithError("YAML output is not supported for instr profiles"); 2628 auto FS = vfs::getRealFileSystem(); 2629 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 2630 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs); 2631 if (ShowDetailedSummary && Cutoffs.empty()) { 2632 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs; 2633 } 2634 InstrProfSummaryBuilder Builder(std::move(Cutoffs)); 2635 if (Error E = ReaderOrErr.takeError()) 2636 exitWithError(std::move(E), Filename); 2637 2638 auto Reader = std::move(ReaderOrErr.get()); 2639 bool IsIRInstr = Reader->isIRLevelProfile(); 2640 size_t ShownFunctions = 0; 2641 size_t BelowCutoffFunctions = 0; 2642 int NumVPKind = IPVK_Last - IPVK_First + 1; 2643 std::vector<ValueSitesStats> VPStats(NumVPKind); 2644 2645 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1, 2646 const std::pair<std::string, uint64_t> &v2) { 2647 return v1.second > v2.second; 2648 }; 2649 2650 std::priority_queue<std::pair<std::string, uint64_t>, 2651 std::vector<std::pair<std::string, uint64_t>>, 2652 decltype(MinCmp)> 2653 HottestFuncs(MinCmp); 2654 2655 if (!TextFormat && OnlyListBelow) { 2656 OS << "The list of functions with the maximum counter less than " 2657 << ShowValueCutoff << ":\n"; 2658 } 2659 2660 // Add marker so that IR-level instrumentation round-trips properly. 2661 if (TextFormat && IsIRInstr) 2662 OS << ":ir\n"; 2663 2664 for (const auto &Func : *Reader) { 2665 if (Reader->isIRLevelProfile()) { 2666 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash); 2667 if (FuncIsCS != ShowCS) 2668 continue; 2669 } 2670 bool Show = ShowAllFunctions || 2671 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter)); 2672 2673 bool doTextFormatDump = (Show && TextFormat); 2674 2675 if (doTextFormatDump) { 2676 InstrProfSymtab &Symtab = Reader->getSymtab(); 2677 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab, 2678 OS); 2679 continue; 2680 } 2681 2682 assert(Func.Counts.size() > 0 && "function missing entry counter"); 2683 Builder.addRecord(Func); 2684 2685 if (ShowCovered) { 2686 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; })) 2687 OS << Func.Name << "\n"; 2688 continue; 2689 } 2690 2691 uint64_t FuncMax = 0; 2692 uint64_t FuncSum = 0; 2693 2694 auto PseudoKind = Func.getCountPseudoKind(); 2695 if (PseudoKind != InstrProfRecord::NotPseudo) { 2696 if (Show) { 2697 if (!ShownFunctions) 2698 OS << "Counters:\n"; 2699 ++ShownFunctions; 2700 OS << " " << Func.Name << ":\n" 2701 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2702 << " Counters: " << Func.Counts.size(); 2703 if (PseudoKind == InstrProfRecord::PseudoHot) 2704 OS << " <PseudoHot>\n"; 2705 else if (PseudoKind == InstrProfRecord::PseudoWarm) 2706 OS << " <PseudoWarm>\n"; 2707 else 2708 llvm_unreachable("Unknown PseudoKind"); 2709 } 2710 continue; 2711 } 2712 2713 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) { 2714 FuncMax = std::max(FuncMax, Func.Counts[I]); 2715 FuncSum += Func.Counts[I]; 2716 } 2717 2718 if (FuncMax < ShowValueCutoff) { 2719 ++BelowCutoffFunctions; 2720 if (OnlyListBelow) { 2721 OS << " " << Func.Name << ": (Max = " << FuncMax 2722 << " Sum = " << FuncSum << ")\n"; 2723 } 2724 continue; 2725 } else if (OnlyListBelow) 2726 continue; 2727 2728 if (TopNFunctions) { 2729 if (HottestFuncs.size() == TopNFunctions) { 2730 if (HottestFuncs.top().second < FuncMax) { 2731 HottestFuncs.pop(); 2732 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2733 } 2734 } else 2735 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax)); 2736 } 2737 2738 if (Show) { 2739 if (!ShownFunctions) 2740 OS << "Counters:\n"; 2741 2742 ++ShownFunctions; 2743 2744 OS << " " << Func.Name << ":\n" 2745 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n" 2746 << " Counters: " << Func.Counts.size() << "\n"; 2747 if (!IsIRInstr) 2748 OS << " Function count: " << Func.Counts[0] << "\n"; 2749 2750 if (ShowIndirectCallTargets) 2751 OS << " Indirect Call Site Count: " 2752 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n"; 2753 2754 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize); 2755 if (ShowMemOPSizes && NumMemOPCalls > 0) 2756 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls 2757 << "\n"; 2758 2759 if (ShowCounts) { 2760 OS << " Block counts: ["; 2761 size_t Start = (IsIRInstr ? 0 : 1); 2762 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) { 2763 OS << (I == Start ? "" : ", ") << Func.Counts[I]; 2764 } 2765 OS << "]\n"; 2766 } 2767 2768 if (ShowIndirectCallTargets) { 2769 OS << " Indirect Target Results:\n"; 2770 traverseAllValueSites(Func, IPVK_IndirectCallTarget, 2771 VPStats[IPVK_IndirectCallTarget], OS, 2772 &(Reader->getSymtab())); 2773 } 2774 2775 if (ShowMemOPSizes && NumMemOPCalls > 0) { 2776 OS << " Memory Intrinsic Size Results:\n"; 2777 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS, 2778 nullptr); 2779 } 2780 } 2781 } 2782 if (Reader->hasError()) 2783 exitWithError(Reader->getError(), Filename); 2784 2785 if (TextFormat || ShowCovered) 2786 return 0; 2787 std::unique_ptr<ProfileSummary> PS(Builder.getSummary()); 2788 bool IsIR = Reader->isIRLevelProfile(); 2789 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end"); 2790 if (IsIR) 2791 OS << " entry_first = " << Reader->instrEntryBBEnabled(); 2792 OS << "\n"; 2793 if (ShowAllFunctions || !FuncNameFilter.empty()) 2794 OS << "Functions shown: " << ShownFunctions << "\n"; 2795 OS << "Total functions: " << PS->getNumFunctions() << "\n"; 2796 if (ShowValueCutoff > 0) { 2797 OS << "Number of functions with maximum count (< " << ShowValueCutoff 2798 << "): " << BelowCutoffFunctions << "\n"; 2799 OS << "Number of functions with maximum count (>= " << ShowValueCutoff 2800 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n"; 2801 } 2802 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n"; 2803 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n"; 2804 2805 if (TopNFunctions) { 2806 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs; 2807 while (!HottestFuncs.empty()) { 2808 SortedHottestFuncs.emplace_back(HottestFuncs.top()); 2809 HottestFuncs.pop(); 2810 } 2811 OS << "Top " << TopNFunctions 2812 << " functions with the largest internal block counts: \n"; 2813 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs)) 2814 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n"; 2815 } 2816 2817 if (ShownFunctions && ShowIndirectCallTargets) { 2818 OS << "Statistics for indirect call sites profile:\n"; 2819 showValueSitesStats(OS, IPVK_IndirectCallTarget, 2820 VPStats[IPVK_IndirectCallTarget]); 2821 } 2822 2823 if (ShownFunctions && ShowMemOPSizes) { 2824 OS << "Statistics for memory intrinsic calls sizes profile:\n"; 2825 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]); 2826 } 2827 2828 if (ShowDetailedSummary) { 2829 OS << "Total number of blocks: " << PS->getNumCounts() << "\n"; 2830 OS << "Total count: " << PS->getTotalCount() << "\n"; 2831 PS->printDetailedSummary(OS); 2832 } 2833 2834 if (ShowBinaryIds) 2835 if (Error E = Reader->printBinaryIds(OS)) 2836 exitWithError(std::move(E), Filename); 2837 2838 if (ShowProfileVersion) 2839 OS << "Profile version: " << Reader->getVersion() << "\n"; 2840 2841 if (ShowTemporalProfTraces) { 2842 auto &Traces = Reader->getTemporalProfTraces(); 2843 OS << "Temporal Profile Traces (samples=" << Traces.size() 2844 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n"; 2845 for (unsigned i = 0; i < Traces.size(); i++) { 2846 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight 2847 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n"; 2848 for (auto &NameRef : Traces[i].FunctionNameRefs) 2849 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n"; 2850 } 2851 } 2852 2853 return 0; 2854 } 2855 2856 static void showSectionInfo(sampleprof::SampleProfileReader *Reader, 2857 raw_fd_ostream &OS) { 2858 if (!Reader->dumpSectionInfo(OS)) { 2859 WithColor::warning() << "-show-sec-info-only is only supported for " 2860 << "sample profile in extbinary format and is " 2861 << "ignored for other formats.\n"; 2862 return; 2863 } 2864 } 2865 2866 namespace { 2867 struct HotFuncInfo { 2868 std::string FuncName; 2869 uint64_t TotalCount = 0; 2870 double TotalCountPercent = 0.0f; 2871 uint64_t MaxCount = 0; 2872 uint64_t EntryCount = 0; 2873 2874 HotFuncInfo() = default; 2875 2876 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES) 2877 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP), 2878 MaxCount(MS), EntryCount(ES) {} 2879 }; 2880 } // namespace 2881 2882 // Print out detailed information about hot functions in PrintValues vector. 2883 // Users specify titles and offset of every columns through ColumnTitle and 2884 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same 2885 // and at least 4. Besides, users can optionally give a HotFuncMetric string to 2886 // print out or let it be an empty string. 2887 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle, 2888 const std::vector<int> &ColumnOffset, 2889 const std::vector<HotFuncInfo> &PrintValues, 2890 uint64_t HotFuncCount, uint64_t TotalFuncCount, 2891 uint64_t HotProfCount, uint64_t TotalProfCount, 2892 const std::string &HotFuncMetric, 2893 uint32_t TopNFunctions, raw_fd_ostream &OS) { 2894 assert(ColumnOffset.size() == ColumnTitle.size() && 2895 "ColumnOffset and ColumnTitle should have the same size"); 2896 assert(ColumnTitle.size() >= 4 && 2897 "ColumnTitle should have at least 4 elements"); 2898 assert(TotalFuncCount > 0 && 2899 "There should be at least one function in the profile"); 2900 double TotalProfPercent = 0; 2901 if (TotalProfCount > 0) 2902 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100; 2903 2904 formatted_raw_ostream FOS(OS); 2905 FOS << HotFuncCount << " out of " << TotalFuncCount 2906 << " functions with profile (" 2907 << format("%.2f%%", 2908 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100)) 2909 << ") are considered hot functions"; 2910 if (!HotFuncMetric.empty()) 2911 FOS << " (" << HotFuncMetric << ")"; 2912 FOS << ".\n"; 2913 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts (" 2914 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n"; 2915 2916 for (size_t I = 0; I < ColumnTitle.size(); ++I) { 2917 FOS.PadToColumn(ColumnOffset[I]); 2918 FOS << ColumnTitle[I]; 2919 } 2920 FOS << "\n"; 2921 2922 uint32_t Count = 0; 2923 for (const auto &R : PrintValues) { 2924 if (TopNFunctions && (Count++ == TopNFunctions)) 2925 break; 2926 FOS.PadToColumn(ColumnOffset[0]); 2927 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")"; 2928 FOS.PadToColumn(ColumnOffset[1]); 2929 FOS << R.MaxCount; 2930 FOS.PadToColumn(ColumnOffset[2]); 2931 FOS << R.EntryCount; 2932 FOS.PadToColumn(ColumnOffset[3]); 2933 FOS << R.FuncName << "\n"; 2934 } 2935 } 2936 2937 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles, 2938 ProfileSummary &PS, uint32_t TopN, 2939 raw_fd_ostream &OS) { 2940 using namespace sampleprof; 2941 2942 const uint32_t HotFuncCutoff = 990000; 2943 auto &SummaryVector = PS.getDetailedSummary(); 2944 uint64_t MinCountThreshold = 0; 2945 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) { 2946 if (SummaryEntry.Cutoff == HotFuncCutoff) { 2947 MinCountThreshold = SummaryEntry.MinCount; 2948 break; 2949 } 2950 } 2951 2952 // Traverse all functions in the profile and keep only hot functions. 2953 // The following loop also calculates the sum of total samples of all 2954 // functions. 2955 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>, 2956 std::greater<uint64_t>> 2957 HotFunc; 2958 uint64_t ProfileTotalSample = 0; 2959 uint64_t HotFuncSample = 0; 2960 uint64_t HotFuncCount = 0; 2961 2962 for (const auto &I : Profiles) { 2963 FuncSampleStats FuncStats; 2964 const FunctionSamples &FuncProf = I.second; 2965 ProfileTotalSample += FuncProf.getTotalSamples(); 2966 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold); 2967 2968 if (isFunctionHot(FuncStats, MinCountThreshold)) { 2969 HotFunc.emplace(FuncProf.getTotalSamples(), 2970 std::make_pair(&(I.second), FuncStats.MaxSample)); 2971 HotFuncSample += FuncProf.getTotalSamples(); 2972 ++HotFuncCount; 2973 } 2974 } 2975 2976 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample", 2977 "Entry sample", "Function name"}; 2978 std::vector<int> ColumnOffset{0, 24, 42, 58}; 2979 std::string Metric = 2980 std::string("max sample >= ") + std::to_string(MinCountThreshold); 2981 std::vector<HotFuncInfo> PrintValues; 2982 for (const auto &FuncPair : HotFunc) { 2983 const FunctionSamples &Func = *FuncPair.second.first; 2984 double TotalSamplePercent = 2985 (ProfileTotalSample > 0) 2986 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample 2987 : 0; 2988 PrintValues.emplace_back( 2989 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(), 2990 TotalSamplePercent, FuncPair.second.second, 2991 Func.getHeadSamplesEstimate())); 2992 } 2993 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount, 2994 Profiles.size(), HotFuncSample, ProfileTotalSample, 2995 Metric, TopN, OS); 2996 2997 return 0; 2998 } 2999 3000 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3001 if (SFormat == ShowFormat::Yaml) 3002 exitWithError("YAML output is not supported for sample profiles"); 3003 using namespace sampleprof; 3004 LLVMContext Context; 3005 auto FS = vfs::getRealFileSystem(); 3006 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS, 3007 FSDiscriminatorPassOption); 3008 if (std::error_code EC = ReaderOrErr.getError()) 3009 exitWithErrorCode(EC, Filename); 3010 3011 auto Reader = std::move(ReaderOrErr.get()); 3012 if (ShowSectionInfoOnly) { 3013 showSectionInfo(Reader.get(), OS); 3014 return 0; 3015 } 3016 3017 if (std::error_code EC = Reader->read()) 3018 exitWithErrorCode(EC, Filename); 3019 3020 if (ShowAllFunctions || FuncNameFilter.empty()) { 3021 if (SFormat == ShowFormat::Json) 3022 Reader->dumpJson(OS); 3023 else 3024 Reader->dump(OS); 3025 } else { 3026 if (SFormat == ShowFormat::Json) 3027 exitWithError( 3028 "the JSON format is supported only when all functions are to " 3029 "be printed"); 3030 3031 // TODO: parse context string to support filtering by contexts. 3032 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter)); 3033 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS); 3034 } 3035 3036 if (ShowProfileSymbolList) { 3037 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList = 3038 Reader->getProfileSymbolList(); 3039 ReaderList->dump(OS); 3040 } 3041 3042 if (ShowDetailedSummary) { 3043 auto &PS = Reader->getSummary(); 3044 PS.printSummary(OS); 3045 PS.printDetailedSummary(OS); 3046 } 3047 3048 if (ShowHotFuncList || TopNFunctions) 3049 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), 3050 TopNFunctions, OS); 3051 3052 return 0; 3053 } 3054 3055 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) { 3056 if (SFormat == ShowFormat::Json) 3057 exitWithError("JSON output is not supported for MemProf"); 3058 auto ReaderOr = llvm::memprof::RawMemProfReader::create( 3059 Filename, ProfiledBinary, /*KeepNames=*/true); 3060 if (Error E = ReaderOr.takeError()) 3061 // Since the error can be related to the profile or the binary we do not 3062 // pass whence. Instead additional context is provided where necessary in 3063 // the error message. 3064 exitWithError(std::move(E), /*Whence*/ ""); 3065 3066 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader( 3067 ReaderOr.get().release()); 3068 3069 Reader->printYAML(OS); 3070 return 0; 3071 } 3072 3073 static int showDebugInfoCorrelation(const std::string &Filename, 3074 ShowFormat SFormat, raw_fd_ostream &OS) { 3075 if (SFormat == ShowFormat::Json) 3076 exitWithError("JSON output is not supported for debug info correlation"); 3077 std::unique_ptr<InstrProfCorrelator> Correlator; 3078 if (auto Err = 3079 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO) 3080 .moveInto(Correlator)) 3081 exitWithError(std::move(Err), Filename); 3082 if (SFormat == ShowFormat::Yaml) { 3083 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS)) 3084 exitWithError(std::move(Err), Filename); 3085 return 0; 3086 } 3087 3088 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings)) 3089 exitWithError(std::move(Err), Filename); 3090 3091 InstrProfSymtab Symtab; 3092 if (auto Err = Symtab.create( 3093 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize()))) 3094 exitWithError(std::move(Err), Filename); 3095 3096 if (ShowProfileSymbolList) 3097 Symtab.dumpNames(OS); 3098 // TODO: Read "Profile Data Type" from debug info to compute and show how many 3099 // counters the section holds. 3100 if (ShowDetailedSummary) 3101 OS << "Counters section size: 0x" 3102 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n"; 3103 OS << "Found " << Correlator->getDataSize() << " functions\n"; 3104 3105 return 0; 3106 } 3107 3108 static int show_main(int argc, const char *argv[]) { 3109 if (Filename.empty() && DebugInfoFilename.empty()) 3110 exitWithError( 3111 "the positional argument '<profdata-file>' is required unless '--" + 3112 DebugInfoFilename.ArgStr + "' is provided"); 3113 3114 if (Filename == OutputFilename) { 3115 errs() << sys::path::filename(argv[0]) << " " << argv[1] 3116 << ": Input file name cannot be the same as the output file name!\n"; 3117 return 1; 3118 } 3119 if (JsonFormat) 3120 SFormat = ShowFormat::Json; 3121 3122 std::error_code EC; 3123 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3124 if (EC) 3125 exitWithErrorCode(EC, OutputFilename); 3126 3127 if (ShowAllFunctions && !FuncNameFilter.empty()) 3128 WithColor::warning() << "-function argument ignored: showing all functions\n"; 3129 3130 if (!DebugInfoFilename.empty()) 3131 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS); 3132 3133 if (ShowProfileKind == instr) 3134 return showInstrProfile(SFormat, OS); 3135 if (ShowProfileKind == sample) 3136 return showSampleProfile(SFormat, OS); 3137 return showMemProfProfile(SFormat, OS); 3138 } 3139 3140 static int order_main(int argc, const char *argv[]) { 3141 std::error_code EC; 3142 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF); 3143 if (EC) 3144 exitWithErrorCode(EC, OutputFilename); 3145 auto FS = vfs::getRealFileSystem(); 3146 auto ReaderOrErr = InstrProfReader::create(Filename, *FS); 3147 if (Error E = ReaderOrErr.takeError()) 3148 exitWithError(std::move(E), Filename); 3149 3150 auto Reader = std::move(ReaderOrErr.get()); 3151 for (auto &I : *Reader) { 3152 // Read all entries 3153 (void)I; 3154 } 3155 auto &Traces = Reader->getTemporalProfTraces(); 3156 auto Nodes = TemporalProfTraceTy::createBPFunctionNodes(Traces); 3157 BalancedPartitioningConfig Config; 3158 BalancedPartitioning BP(Config); 3159 BP.run(Nodes); 3160 3161 OS << "# Ordered " << Nodes.size() << " functions\n"; 3162 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the " 3163 "linkage and this output does not take that into account. Some " 3164 "post-processing may be required before passing to the linker via " 3165 "-order_file.\n"; 3166 for (auto &N : Nodes) { 3167 auto [Filename, ParsedFuncName] = 3168 getParsedIRPGOFuncName(Reader->getSymtab().getFuncOrVarName(N.Id)); 3169 if (!Filename.empty()) 3170 OS << "# " << Filename << "\n"; 3171 OS << ParsedFuncName << "\n"; 3172 } 3173 return 0; 3174 } 3175 3176 int llvm_profdata_main(int argc, char **argvNonConst, 3177 const llvm::ToolContext &) { 3178 const char **argv = const_cast<const char **>(argvNonConst); 3179 InitLLVM X(argc, argv); 3180 3181 StringRef ProgName(sys::path::filename(argv[0])); 3182 3183 if (argc < 2) { 3184 errs() << ProgName 3185 << ": No subcommand specified! Run llvm-profata --help for usage.\n"; 3186 return 1; 3187 } 3188 3189 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n"); 3190 3191 if (ShowSubcommand) 3192 return show_main(argc, argv); 3193 3194 if (OrderSubcommand) 3195 return order_main(argc, argv); 3196 3197 if (OverlapSubcommand) 3198 return overlap_main(argc, argv); 3199 3200 if (MergeSubcommand) 3201 return merge_main(argc, argv); 3202 3203 errs() << ProgName 3204 << ": Unknown command. Run llvm-profdata --help for usage.\n"; 3205 return 1; 3206 } 3207