xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-profdata/llvm-profdata.cpp (revision 152382e6613d7998fe6f5233767df54d3fdec329)
1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/IR/LLVMContext.h"
17 #include "llvm/Object/Binary.h"
18 #include "llvm/ProfileData/InstrProfCorrelator.h"
19 #include "llvm/ProfileData/InstrProfReader.h"
20 #include "llvm/ProfileData/InstrProfWriter.h"
21 #include "llvm/ProfileData/MemProf.h"
22 #include "llvm/ProfileData/MemProfReader.h"
23 #include "llvm/ProfileData/ProfileCommon.h"
24 #include "llvm/ProfileData/SampleProfReader.h"
25 #include "llvm/ProfileData/SampleProfWriter.h"
26 #include "llvm/Support/BalancedPartitioning.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Discriminator.h"
29 #include "llvm/Support/Errc.h"
30 #include "llvm/Support/FileSystem.h"
31 #include "llvm/Support/Format.h"
32 #include "llvm/Support/FormattedStream.h"
33 #include "llvm/Support/LLVMDriver.h"
34 #include "llvm/Support/MD5.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Support/Regex.h"
38 #include "llvm/Support/ThreadPool.h"
39 #include "llvm/Support/Threading.h"
40 #include "llvm/Support/VirtualFileSystem.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cmath>
45 #include <optional>
46 #include <queue>
47 
48 using namespace llvm;
49 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind;
50 
51 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations
52 // on each subcommand.
53 cl::SubCommand ShowSubcommand(
54     "show",
55     "Takes a profile data file and displays the profiles. See detailed "
56     "documentation in "
57     "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show");
58 cl::SubCommand OrderSubcommand(
59     "order",
60     "Reads temporal profiling traces from a profile and outputs a function "
61     "order that reduces the number of page faults for those traces. See "
62     "detailed documentation in "
63     "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order");
64 cl::SubCommand OverlapSubcommand(
65     "overlap",
66     "Computes and displays the overlap between two profiles. See detailed "
67     "documentation in "
68     "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap");
69 cl::SubCommand MergeSubcommand(
70     "merge",
71     "Takes several profiles and merge them together. See detailed "
72     "documentation in "
73     "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge");
74 
75 namespace {
76 enum ProfileKinds { instr, sample, memory };
77 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid };
78 
79 enum ProfileFormat {
80   PF_None = 0,
81   PF_Text,
82   PF_Compact_Binary, // Deprecated
83   PF_Ext_Binary,
84   PF_GCC,
85   PF_Binary
86 };
87 
88 enum class ShowFormat { Text, Json, Yaml };
89 } // namespace
90 
91 // Common options.
92 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
93                                     cl::init("-"), cl::desc("Output file"),
94                                     cl::sub(ShowSubcommand),
95                                     cl::sub(OrderSubcommand),
96                                     cl::sub(OverlapSubcommand),
97                                     cl::sub(MergeSubcommand));
98 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub()
99 // will be used. llvm::cl::alias::done() method asserts this condition.
100 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
101                           cl::aliasopt(OutputFilename));
102 
103 // Options common to at least two commands.
104 cl::opt<ProfileKinds> ProfileKind(
105     cl::desc("Profile kind:"), cl::sub(MergeSubcommand),
106     cl::sub(OverlapSubcommand), cl::init(instr),
107     cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
108                clEnumVal(sample, "Sample profile")));
109 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"),
110                               cl::sub(ShowSubcommand),
111                               cl::sub(OrderSubcommand));
112 cl::opt<unsigned> MaxDbgCorrelationWarnings(
113     "max-debug-info-correlation-warnings",
114     cl::desc("The maximum number of warnings to emit when correlating "
115              "profile from debug info (0 = no limit)"),
116     cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5));
117 cl::opt<std::string> ProfiledBinary(
118     "profiled-binary", cl::init(""),
119     cl::desc("Path to binary from which the profile was collected."),
120     cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
121 cl::opt<std::string> DebugInfoFilename(
122     "debug-info", cl::init(""),
123     cl::desc(
124         "For show, read and extract profile metadata from debug info and show "
125         "the functions it found. For merge, use the provided debug info to "
126         "correlate the raw profile."),
127     cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
128 cl::opt<std::string>
129     BinaryFilename("binary-file", cl::init(""),
130                    cl::desc("For merge, use the provided unstripped bianry to "
131                             "correlate the raw profile."),
132                    cl::sub(MergeSubcommand));
133 cl::opt<std::string> FuncNameFilter(
134     "function",
135     cl::desc("Only functions matching the filter are shown in the output. For "
136              "overlapping CSSPGO, this takes a function name with calling "
137              "context."),
138     cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand),
139     cl::sub(MergeSubcommand));
140 
141 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to
142 // factor out the common cl::sub in cl::opt constructor for subcommand-specific
143 // options.
144 
145 // Options specific to merge subcommand.
146 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand),
147                                      cl::desc("<filename...>"));
148 cl::list<std::string> WeightedInputFilenames("weighted-input",
149                                              cl::sub(MergeSubcommand),
150                                              cl::desc("<weight>,<filename>"));
151 cl::opt<ProfileFormat> OutputFormat(
152     cl::desc("Format of output profile"), cl::sub(MergeSubcommand),
153     cl::init(PF_Ext_Binary),
154     cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"),
155                clEnumValN(PF_Ext_Binary, "extbinary",
156                           "Extensible binary encoding "
157                           "(default)"),
158                clEnumValN(PF_Text, "text", "Text encoding"),
159                clEnumValN(PF_GCC, "gcc",
160                           "GCC encoding (only meaningful for -sample)")));
161 cl::opt<std::string>
162     InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand),
163                        cl::desc("Path to file containing newline-separated "
164                                 "[<weight>,]<filename> entries"));
165 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
166                               cl::aliasopt(InputFilenamesFile));
167 cl::opt<bool> DumpInputFileList(
168     "dump-input-file-list", cl::init(false), cl::Hidden,
169     cl::sub(MergeSubcommand),
170     cl::desc("Dump the list of input files and their weights, then exit"));
171 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
172                                    cl::sub(MergeSubcommand),
173                                    cl::desc("Symbol remapping file"));
174 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
175                          cl::aliasopt(RemappingFile));
176 cl::opt<bool>
177     UseMD5("use-md5", cl::init(false), cl::Hidden,
178            cl::desc("Choose to use MD5 to represent string in name table (only "
179                     "meaningful for -extbinary)"),
180            cl::sub(MergeSubcommand));
181 cl::opt<bool> CompressAllSections(
182     "compress-all-sections", cl::init(false), cl::Hidden,
183     cl::sub(MergeSubcommand),
184     cl::desc("Compress all sections when writing the profile (only "
185              "meaningful for -extbinary)"));
186 cl::opt<bool> SampleMergeColdContext(
187     "sample-merge-cold-context", cl::init(false), cl::Hidden,
188     cl::sub(MergeSubcommand),
189     cl::desc(
190         "Merge context sample profiles whose count is below cold threshold"));
191 cl::opt<bool> SampleTrimColdContext(
192     "sample-trim-cold-context", cl::init(false), cl::Hidden,
193     cl::sub(MergeSubcommand),
194     cl::desc(
195         "Trim context sample profiles whose count is below cold threshold"));
196 cl::opt<uint32_t> SampleColdContextFrameDepth(
197     "sample-frame-depth-for-cold-context", cl::init(1),
198     cl::sub(MergeSubcommand),
199     cl::desc("Keep the last K frames while merging cold profile. 1 means the "
200              "context-less base profile"));
201 cl::opt<size_t> OutputSizeLimit(
202     "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand),
203     cl::desc("Trim cold functions until profile size is below specified "
204              "limit in bytes. This uses a heursitic and functions may be "
205              "excessively trimmed"));
206 cl::opt<bool> GenPartialProfile(
207     "gen-partial-profile", cl::init(false), cl::Hidden,
208     cl::sub(MergeSubcommand),
209     cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
210 cl::opt<std::string> SupplInstrWithSample(
211     "supplement-instr-with-sample", cl::init(""), cl::Hidden,
212     cl::sub(MergeSubcommand),
213     cl::desc("Supplement an instr profile with sample profile, to correct "
214              "the profile unrepresentativeness issue. The sample "
215              "profile is the input of the flag. Output will be in instr "
216              "format (The flag only works with -instr)"));
217 cl::opt<float> ZeroCounterThreshold(
218     "zero-counter-threshold", cl::init(0.7), cl::Hidden,
219     cl::sub(MergeSubcommand),
220     cl::desc("For the function which is cold in instr profile but hot in "
221              "sample profile, if the ratio of the number of zero counters "
222              "divided by the total number of counters is above the "
223              "threshold, the profile of the function will be regarded as "
224              "being harmful for performance and will be dropped."));
225 cl::opt<unsigned> SupplMinSizeThreshold(
226     "suppl-min-size-threshold", cl::init(10), cl::Hidden,
227     cl::sub(MergeSubcommand),
228     cl::desc("If the size of a function is smaller than the threshold, "
229              "assume it can be inlined by PGO early inliner and it won't "
230              "be adjusted based on sample profile."));
231 cl::opt<unsigned> InstrProfColdThreshold(
232     "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
233     cl::sub(MergeSubcommand),
234     cl::desc("User specified cold threshold for instr profile which will "
235              "override the cold threshold got from profile summary. "));
236 // WARNING: This reservoir size value is propagated to any input indexed
237 // profiles for simplicity. Changing this value between invocations could
238 // result in sample bias.
239 cl::opt<uint64_t> TemporalProfTraceReservoirSize(
240     "temporal-profile-trace-reservoir-size", cl::init(100),
241     cl::sub(MergeSubcommand),
242     cl::desc("The maximum number of stored temporal profile traces (default: "
243              "100)"));
244 cl::opt<uint64_t> TemporalProfMaxTraceLength(
245     "temporal-profile-max-trace-length", cl::init(10000),
246     cl::sub(MergeSubcommand),
247     cl::desc("The maximum length of a single temporal profile trace "
248              "(default: 10000)"));
249 cl::opt<std::string> FuncNameNegativeFilter(
250     "no-function", cl::init(""),
251     cl::sub(MergeSubcommand),
252     cl::desc("Exclude functions matching the filter from the output."));
253 
254 cl::opt<FailureMode>
255     FailMode("failure-mode", cl::init(failIfAnyAreInvalid),
256              cl::desc("Failure mode:"), cl::sub(MergeSubcommand),
257              cl::values(clEnumValN(warnOnly, "warn",
258                                    "Do not fail and just print warnings."),
259                         clEnumValN(failIfAnyAreInvalid, "any",
260                                    "Fail if any profile is invalid."),
261                         clEnumValN(failIfAllAreInvalid, "all",
262                                    "Fail only if all profiles are invalid.")));
263 
264 cl::opt<bool> OutputSparse(
265     "sparse", cl::init(false), cl::sub(MergeSubcommand),
266     cl::desc("Generate a sparse profile (only meaningful for -instr)"));
267 cl::opt<unsigned> NumThreads(
268     "num-threads", cl::init(0), cl::sub(MergeSubcommand),
269     cl::desc("Number of merge threads to use (default: autodetect)"));
270 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
271                       cl::aliasopt(NumThreads));
272 
273 cl::opt<std::string> ProfileSymbolListFile(
274     "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand),
275     cl::desc("Path to file containing the list of function symbols "
276              "used to populate profile symbol list"));
277 
278 cl::opt<SampleProfileLayout> ProfileLayout(
279     "convert-sample-profile-layout",
280     cl::desc("Convert the generated profile to a profile with a new layout"),
281     cl::sub(MergeSubcommand), cl::init(SPL_None),
282     cl::values(
283         clEnumValN(SPL_Nest, "nest",
284                    "Nested profile, the input should be CS flat profile"),
285         clEnumValN(SPL_Flat, "flat",
286                    "Profile with nested inlinee flatten out")));
287 
288 cl::opt<bool> DropProfileSymbolList(
289     "drop-profile-symbol-list", cl::init(false), cl::Hidden,
290     cl::sub(MergeSubcommand),
291     cl::desc("Drop the profile symbol list when merging AutoFDO profiles "
292              "(only meaningful for -sample)"));
293 
294 cl::opt<bool> KeepVTableSymbols(
295     "keep-vtable-symbols", cl::init(false), cl::Hidden,
296     cl::sub(MergeSubcommand),
297     cl::desc("If true, keep the vtable symbols in indexed profiles"));
298 
299 // Temporary support for writing the previous version of the format, to enable
300 // some forward compatibility.
301 // TODO: Consider enabling this with future version changes as well, to ease
302 // deployment of newer versions of llvm-profdata.
303 cl::opt<bool> DoWritePrevVersion(
304     "write-prev-version", cl::init(false), cl::Hidden,
305     cl::desc("Write the previous version of indexed format, to enable "
306              "some forward compatibility."));
307 
308 cl::opt<memprof::IndexedVersion> MemProfVersionRequested(
309     "memprof-version", cl::Hidden, cl::sub(MergeSubcommand),
310     cl::desc("Specify the version of the memprof format to use"),
311     cl::init(memprof::Version0),
312     cl::values(clEnumValN(memprof::Version0, "0", "version 0"),
313                clEnumValN(memprof::Version1, "1", "version 1"),
314                clEnumValN(memprof::Version2, "2", "version 2"),
315                clEnumValN(memprof::Version3, "3", "version 3")));
316 
317 cl::opt<bool> MemProfFullSchema(
318     "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand),
319     cl::desc("Use the full schema for serialization"), cl::init(false));
320 
321 // Options specific to overlap subcommand.
322 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
323                                   cl::desc("<base profile file>"),
324                                   cl::sub(OverlapSubcommand));
325 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
326                                   cl::desc("<test profile file>"),
327                                   cl::sub(OverlapSubcommand));
328 
329 cl::opt<unsigned long long> SimilarityCutoff(
330     "similarity-cutoff", cl::init(0),
331     cl::desc("For sample profiles, list function names (with calling context "
332              "for csspgo) for overlapped functions "
333              "with similarities below the cutoff (percentage times 10000)."),
334     cl::sub(OverlapSubcommand));
335 
336 cl::opt<bool> IsCS(
337     "cs", cl::init(false),
338     cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."),
339     cl::sub(OverlapSubcommand));
340 
341 cl::opt<unsigned long long> OverlapValueCutoff(
342     "value-cutoff", cl::init(-1),
343     cl::desc(
344         "Function level overlap information for every function (with calling "
345         "context for csspgo) in test "
346         "profile with max count value greater then the parameter value"),
347     cl::sub(OverlapSubcommand));
348 
349 // Options specific to show subcommand.
350 cl::opt<bool> ShowCounts("counts", cl::init(false),
351                          cl::desc("Show counter values for shown functions"),
352                          cl::sub(ShowSubcommand));
353 cl::opt<ShowFormat>
354     SFormat("show-format", cl::init(ShowFormat::Text),
355             cl::desc("Emit output in the selected format if supported"),
356             cl::sub(ShowSubcommand),
357             cl::values(clEnumValN(ShowFormat::Text, "text",
358                                   "emit normal text output (default)"),
359                        clEnumValN(ShowFormat::Json, "json", "emit JSON"),
360                        clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML")));
361 // TODO: Consider replacing this with `--show-format=text-encoding`.
362 cl::opt<bool>
363     TextFormat("text", cl::init(false),
364                cl::desc("Show instr profile data in text dump format"),
365                cl::sub(ShowSubcommand));
366 cl::opt<bool>
367     JsonFormat("json",
368                cl::desc("Show sample profile data in the JSON format "
369                         "(deprecated, please use --show-format=json)"),
370                cl::sub(ShowSubcommand));
371 cl::opt<bool> ShowIndirectCallTargets(
372     "ic-targets", cl::init(false),
373     cl::desc("Show indirect call site target values for shown functions"),
374     cl::sub(ShowSubcommand));
375 cl::opt<bool> ShowVTables("show-vtables", cl::init(false),
376                           cl::desc("Show vtable names for shown functions"),
377                           cl::sub(ShowSubcommand));
378 cl::opt<bool> ShowMemOPSizes(
379     "memop-sizes", cl::init(false),
380     cl::desc("Show the profiled sizes of the memory intrinsic calls "
381              "for shown functions"),
382     cl::sub(ShowSubcommand));
383 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
384                                   cl::desc("Show detailed profile summary"),
385                                   cl::sub(ShowSubcommand));
386 cl::list<uint32_t> DetailedSummaryCutoffs(
387     cl::CommaSeparated, "detailed-summary-cutoffs",
388     cl::desc(
389         "Cutoff percentages (times 10000) for generating detailed summary"),
390     cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand));
391 cl::opt<bool>
392     ShowHotFuncList("hot-func-list", cl::init(false),
393                     cl::desc("Show profile summary of a list of hot functions"),
394                     cl::sub(ShowSubcommand));
395 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
396                                cl::desc("Details for each and every function"),
397                                cl::sub(ShowSubcommand));
398 cl::opt<bool> ShowCS("showcs", cl::init(false),
399                      cl::desc("Show context sensitive counts"),
400                      cl::sub(ShowSubcommand));
401 cl::opt<ProfileKinds> ShowProfileKind(
402     cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand),
403     cl::init(instr),
404     cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
405                clEnumVal(sample, "Sample profile"),
406                clEnumVal(memory, "MemProf memory access profile")));
407 cl::opt<uint32_t> TopNFunctions(
408     "topn", cl::init(0),
409     cl::desc("Show the list of functions with the largest internal counts"),
410     cl::sub(ShowSubcommand));
411 cl::opt<uint32_t> ShowValueCutoff(
412     "value-cutoff", cl::init(0),
413     cl::desc("Set the count value cutoff. Functions with the maximum count "
414              "less than this value will not be printed out. (Default is 0)"),
415     cl::sub(ShowSubcommand));
416 cl::opt<bool> OnlyListBelow(
417     "list-below-cutoff", cl::init(false),
418     cl::desc("Only output names of functions whose max count values are "
419              "below the cutoff value"),
420     cl::sub(ShowSubcommand));
421 cl::opt<bool> ShowProfileSymbolList(
422     "show-prof-sym-list", cl::init(false),
423     cl::desc("Show profile symbol list if it exists in the profile. "),
424     cl::sub(ShowSubcommand));
425 cl::opt<bool> ShowSectionInfoOnly(
426     "show-sec-info-only", cl::init(false),
427     cl::desc("Show the information of each section in the sample profile. "
428              "The flag is only usable when the sample profile is in "
429              "extbinary format"),
430     cl::sub(ShowSubcommand));
431 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
432                             cl::desc("Show binary ids in the profile. "),
433                             cl::sub(ShowSubcommand));
434 cl::opt<bool> ShowTemporalProfTraces(
435     "temporal-profile-traces",
436     cl::desc("Show temporal profile traces in the profile."),
437     cl::sub(ShowSubcommand));
438 
439 cl::opt<bool>
440     ShowCovered("covered", cl::init(false),
441                 cl::desc("Show only the functions that have been executed."),
442                 cl::sub(ShowSubcommand));
443 
444 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false),
445                                  cl::desc("Show profile version. "),
446                                  cl::sub(ShowSubcommand));
447 
448 // Options specific to order subcommand.
449 cl::opt<unsigned>
450     NumTestTraces("num-test-traces", cl::init(0),
451                   cl::desc("Keep aside the last <num-test-traces> traces in "
452                            "the profile when computing the function order and "
453                            "instead use them to evaluate that order"),
454                   cl::sub(OrderSubcommand));
455 
456 // We use this string to indicate that there are
457 // multiple static functions map to the same name.
458 const std::string DuplicateNameStr = "----";
459 
460 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") {
461   WithColor::warning();
462   if (!Whence.empty())
463     errs() << Whence << ": ";
464   errs() << Message << "\n";
465   if (!Hint.empty())
466     WithColor::note() << Hint << "\n";
467 }
468 
469 static void warn(Error E, StringRef Whence = "") {
470   if (E.isA<InstrProfError>()) {
471     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
472       warn(IPE.message(), Whence);
473     });
474   }
475 }
476 
477 static void exitWithError(Twine Message, StringRef Whence = "",
478                           StringRef Hint = "") {
479   WithColor::error();
480   if (!Whence.empty())
481     errs() << Whence << ": ";
482   errs() << Message << "\n";
483   if (!Hint.empty())
484     WithColor::note() << Hint << "\n";
485   ::exit(1);
486 }
487 
488 static void exitWithError(Error E, StringRef Whence = "") {
489   if (E.isA<InstrProfError>()) {
490     handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
491       instrprof_error instrError = IPE.get();
492       StringRef Hint = "";
493       if (instrError == instrprof_error::unrecognized_format) {
494         // Hint in case user missed specifying the profile type.
495         Hint = "Perhaps you forgot to use the --sample or --memory option?";
496       }
497       exitWithError(IPE.message(), Whence, Hint);
498     });
499     return;
500   }
501 
502   exitWithError(toString(std::move(E)), Whence);
503 }
504 
505 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
506   exitWithError(EC.message(), Whence);
507 }
508 
509 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
510                                  StringRef Whence = "") {
511   if (FailMode == failIfAnyAreInvalid)
512     exitWithErrorCode(EC, Whence);
513   else
514     warn(EC.message(), Whence);
515 }
516 
517 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
518                                    StringRef WhenceFunction = "",
519                                    bool ShowHint = true) {
520   if (!WhenceFile.empty())
521     errs() << WhenceFile << ": ";
522   if (!WhenceFunction.empty())
523     errs() << WhenceFunction << ": ";
524 
525   auto IPE = instrprof_error::success;
526   E = handleErrors(std::move(E),
527                    [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
528                      IPE = E->get();
529                      return Error(std::move(E));
530                    });
531   errs() << toString(std::move(E)) << "\n";
532 
533   if (ShowHint) {
534     StringRef Hint = "";
535     if (IPE != instrprof_error::success) {
536       switch (IPE) {
537       case instrprof_error::hash_mismatch:
538       case instrprof_error::count_mismatch:
539       case instrprof_error::value_site_count_mismatch:
540         Hint = "Make sure that all profile data to be merged is generated "
541                "from the same binary.";
542         break;
543       default:
544         break;
545       }
546     }
547 
548     if (!Hint.empty())
549       errs() << Hint << "\n";
550   }
551 }
552 
553 namespace {
554 /// A remapper from original symbol names to new symbol names based on a file
555 /// containing a list of mappings from old name to new name.
556 class SymbolRemapper {
557   std::unique_ptr<MemoryBuffer> File;
558   DenseMap<StringRef, StringRef> RemappingTable;
559 
560 public:
561   /// Build a SymbolRemapper from a file containing a list of old/new symbols.
562   static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
563     auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
564     if (!BufOrError)
565       exitWithErrorCode(BufOrError.getError(), InputFile);
566 
567     auto Remapper = std::make_unique<SymbolRemapper>();
568     Remapper->File = std::move(BufOrError.get());
569 
570     for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
571          !LineIt.is_at_eof(); ++LineIt) {
572       std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
573       if (Parts.first.empty() || Parts.second.empty() ||
574           Parts.second.count(' ')) {
575         exitWithError("unexpected line in remapping file",
576                       (InputFile + ":" + Twine(LineIt.line_number())).str(),
577                       "expected 'old_symbol new_symbol'");
578       }
579       Remapper->RemappingTable.insert(Parts);
580     }
581     return Remapper;
582   }
583 
584   /// Attempt to map the given old symbol into a new symbol.
585   ///
586   /// \return The new symbol, or \p Name if no such symbol was found.
587   StringRef operator()(StringRef Name) {
588     StringRef New = RemappingTable.lookup(Name);
589     return New.empty() ? Name : New;
590   }
591 
592   FunctionId operator()(FunctionId Name) {
593     // MD5 name cannot be remapped.
594     if (!Name.isStringRef())
595       return Name;
596     StringRef New = RemappingTable.lookup(Name.stringRef());
597     return New.empty() ? Name : FunctionId(New);
598   }
599 };
600 }
601 
602 struct WeightedFile {
603   std::string Filename;
604   uint64_t Weight;
605 };
606 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
607 
608 /// Keep track of merged data and reported errors.
609 struct WriterContext {
610   std::mutex Lock;
611   InstrProfWriter Writer;
612   std::vector<std::pair<Error, std::string>> Errors;
613   std::mutex &ErrLock;
614   SmallSet<instrprof_error, 4> &WriterErrorCodes;
615 
616   WriterContext(bool IsSparse, std::mutex &ErrLock,
617                 SmallSet<instrprof_error, 4> &WriterErrorCodes,
618                 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0)
619       : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion,
620                MemProfVersionRequested, MemProfFullSchema),
621         ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {}
622 };
623 
624 /// Computer the overlap b/w profile BaseFilename and TestFileName,
625 /// and store the program level result to Overlap.
626 static void overlapInput(const std::string &BaseFilename,
627                          const std::string &TestFilename, WriterContext *WC,
628                          OverlapStats &Overlap,
629                          const OverlapFuncFilters &FuncFilter,
630                          raw_fd_ostream &OS, bool IsCS) {
631   auto FS = vfs::getRealFileSystem();
632   auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS);
633   if (Error E = ReaderOrErr.takeError()) {
634     // Skip the empty profiles by returning sliently.
635     auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
636     if (ErrorCode != instrprof_error::empty_raw_profile)
637       WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
638                               TestFilename);
639     return;
640   }
641 
642   auto Reader = std::move(ReaderOrErr.get());
643   for (auto &I : *Reader) {
644     OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
645     FuncOverlap.setFuncInfo(I.Name, I.Hash);
646 
647     WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
648     FuncOverlap.dump(OS);
649   }
650 }
651 
652 /// Load an input into a writer context.
653 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
654                       const InstrProfCorrelator *Correlator,
655                       const StringRef ProfiledBinary, WriterContext *WC) {
656   std::unique_lock<std::mutex> CtxGuard{WC->Lock};
657 
658   // Copy the filename, because llvm::ThreadPool copied the input "const
659   // WeightedFile &" by value, making a reference to the filename within it
660   // invalid outside of this packaged task.
661   std::string Filename = Input.Filename;
662 
663   using ::llvm::memprof::RawMemProfReader;
664   if (RawMemProfReader::hasFormat(Input.Filename)) {
665     auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
666     if (!ReaderOrErr) {
667       exitWithError(ReaderOrErr.takeError(), Input.Filename);
668     }
669     std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
670     // Check if the profile types can be merged, e.g. clang frontend profiles
671     // should not be merged with memprof profiles.
672     if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
673       consumeError(std::move(E));
674       WC->Errors.emplace_back(
675           make_error<StringError>(
676               "Cannot merge MemProf profile with Clang generated profile.",
677               std::error_code()),
678           Filename);
679       return;
680     }
681 
682     auto MemProfError = [&](Error E) {
683       auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
684       WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
685                               Filename);
686     };
687 
688     // Add the frame mappings into the writer context.
689     const auto &IdToFrame = Reader->getFrameMapping();
690     for (const auto &I : IdToFrame) {
691       bool Succeeded = WC->Writer.addMemProfFrame(
692           /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
693       // If we weren't able to add the frame mappings then it doesn't make sense
694       // to try to add the records from this profile.
695       if (!Succeeded)
696         return;
697     }
698 
699     // Add the call stacks into the writer context.
700     const auto &CSIdToCallStacks = Reader->getCallStacks();
701     for (const auto &I : CSIdToCallStacks) {
702       bool Succeeded = WC->Writer.addMemProfCallStack(
703           /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
704       // If we weren't able to add the call stacks then it doesn't make sense
705       // to try to add the records from this profile.
706       if (!Succeeded)
707         return;
708     }
709 
710     const auto &FunctionProfileData = Reader->getProfileData();
711     // Add the memprof records into the writer context.
712     for (const auto &[GUID, Record] : FunctionProfileData) {
713       WC->Writer.addMemProfRecord(GUID, Record);
714     }
715     return;
716   }
717 
718   auto FS = vfs::getRealFileSystem();
719   // TODO: This only saves the first non-fatal error from InstrProfReader, and
720   // then added to WriterContext::Errors. However, this is not extensible, if
721   // we have more non-fatal errors from InstrProfReader in the future. How
722   // should this interact with different -failure-mode?
723   std::optional<std::pair<Error, std::string>> ReaderWarning;
724   auto Warn = [&](Error E) {
725     if (ReaderWarning) {
726       consumeError(std::move(E));
727       return;
728     }
729     // Only show the first time an error occurs in this file.
730     auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
731     ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename};
732   };
733   auto ReaderOrErr =
734       InstrProfReader::create(Input.Filename, *FS, Correlator, Warn);
735   if (Error E = ReaderOrErr.takeError()) {
736     // Skip the empty profiles by returning silently.
737     auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
738     if (ErrCode != instrprof_error::empty_raw_profile)
739       WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg),
740                               Filename);
741     return;
742   }
743 
744   auto Reader = std::move(ReaderOrErr.get());
745   if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
746     consumeError(std::move(E));
747     WC->Errors.emplace_back(
748         make_error<StringError>(
749             "Merge IR generated profile with Clang generated profile.",
750             std::error_code()),
751         Filename);
752     return;
753   }
754 
755   for (auto &I : *Reader) {
756     if (Remapper)
757       I.Name = (*Remapper)(I.Name);
758     const StringRef FuncName = I.Name;
759     bool Reported = false;
760     WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
761       if (Reported) {
762         consumeError(std::move(E));
763         return;
764       }
765       Reported = true;
766       // Only show hint the first time an error occurs.
767       auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
768       std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
769       bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second;
770       handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg),
771                              Input.Filename, FuncName, firstTime);
772     });
773   }
774 
775   if (KeepVTableSymbols) {
776     const InstrProfSymtab &symtab = Reader->getSymtab();
777     const auto &VTableNames = symtab.getVTableNames();
778 
779     for (const auto &kv : VTableNames)
780       WC->Writer.addVTableName(kv.getKey());
781   }
782 
783   if (Reader->hasTemporalProfile()) {
784     auto &Traces = Reader->getTemporalProfTraces(Input.Weight);
785     if (!Traces.empty())
786       WC->Writer.addTemporalProfileTraces(
787           Traces, Reader->getTemporalProfTraceStreamSize());
788   }
789   if (Reader->hasError()) {
790     if (Error E = Reader->getError()) {
791       WC->Errors.emplace_back(std::move(E), Filename);
792       return;
793     }
794   }
795 
796   std::vector<llvm::object::BuildID> BinaryIds;
797   if (Error E = Reader->readBinaryIds(BinaryIds)) {
798     WC->Errors.emplace_back(std::move(E), Filename);
799     return;
800   }
801   WC->Writer.addBinaryIds(BinaryIds);
802 
803   if (ReaderWarning) {
804     WC->Errors.emplace_back(std::move(ReaderWarning->first),
805                             ReaderWarning->second);
806   }
807 }
808 
809 /// Merge the \p Src writer context into \p Dst.
810 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
811   for (auto &ErrorPair : Src->Errors)
812     Dst->Errors.push_back(std::move(ErrorPair));
813   Src->Errors.clear();
814 
815   if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind()))
816     exitWithError(std::move(E));
817 
818   Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
819     auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
820     std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
821     bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second;
822     if (firstTime)
823       warn(toString(make_error<InstrProfError>(ErrorCode, Msg)));
824   });
825 }
826 
827 static StringRef
828 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) {
829   return Val.first();
830 }
831 
832 static std::string
833 getFuncName(const SampleProfileMap::value_type &Val) {
834   return Val.second.getContext().toString();
835 }
836 
837 template <typename T>
838 static void filterFunctions(T &ProfileMap) {
839   bool hasFilter = !FuncNameFilter.empty();
840   bool hasNegativeFilter = !FuncNameNegativeFilter.empty();
841   if (!hasFilter && !hasNegativeFilter)
842     return;
843 
844   // If filter starts with '?' it is MSVC mangled name, not a regex.
845   llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+");
846   if (hasFilter && FuncNameFilter[0] == '?' &&
847       ProbablyMSVCMangledName.match(FuncNameFilter))
848     FuncNameFilter = llvm::Regex::escape(FuncNameFilter);
849   if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' &&
850       ProbablyMSVCMangledName.match(FuncNameNegativeFilter))
851     FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter);
852 
853   size_t Count = ProfileMap.size();
854   llvm::Regex Pattern(FuncNameFilter);
855   llvm::Regex NegativePattern(FuncNameNegativeFilter);
856   std::string Error;
857   if (hasFilter && !Pattern.isValid(Error))
858     exitWithError(Error);
859   if (hasNegativeFilter && !NegativePattern.isValid(Error))
860     exitWithError(Error);
861 
862   // Handle MD5 profile, so it is still able to match using the original name.
863   std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter));
864   std::string NegativeMD5Name =
865       std::to_string(llvm::MD5Hash(FuncNameNegativeFilter));
866 
867   for (auto I = ProfileMap.begin(); I != ProfileMap.end();) {
868     auto Tmp = I++;
869     const auto &FuncName = getFuncName(*Tmp);
870     // Negative filter has higher precedence than positive filter.
871     if ((hasNegativeFilter &&
872          (NegativePattern.match(FuncName) ||
873           (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) ||
874         (hasFilter && !(Pattern.match(FuncName) ||
875                         (FunctionSamples::UseMD5 && MD5Name == FuncName))))
876       ProfileMap.erase(Tmp);
877   }
878 
879   llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions "
880                << "in the original profile are filtered.\n";
881 }
882 
883 static void writeInstrProfile(StringRef OutputFilename,
884                               ProfileFormat OutputFormat,
885                               InstrProfWriter &Writer) {
886   std::error_code EC;
887   raw_fd_ostream Output(OutputFilename.data(), EC,
888                         OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
889                                                 : sys::fs::OF_None);
890   if (EC)
891     exitWithErrorCode(EC, OutputFilename);
892 
893   if (OutputFormat == PF_Text) {
894     if (Error E = Writer.writeText(Output))
895       warn(std::move(E));
896   } else {
897     if (Output.is_displayed())
898       exitWithError("cannot write a non-text format profile to the terminal");
899     if (Error E = Writer.write(Output))
900       warn(std::move(E));
901   }
902 }
903 
904 static void mergeInstrProfile(const WeightedFileVector &Inputs,
905                               SymbolRemapper *Remapper,
906                               int MaxDbgCorrelationWarnings,
907                               const StringRef ProfiledBinary) {
908   const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue();
909   const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue();
910   if (OutputFormat == PF_Compact_Binary)
911     exitWithError("Compact Binary is deprecated");
912   if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary &&
913       OutputFormat != PF_Text)
914     exitWithError("unknown format is specified");
915 
916   // TODO: Maybe we should support correlation with mixture of different
917   // correlation modes(w/wo debug-info/object correlation).
918   if (!DebugInfoFilename.empty() && !BinaryFilename.empty())
919     exitWithError("Expected only one of -debug-info, -binary-file");
920   std::string CorrelateFilename;
921   ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE;
922   if (!DebugInfoFilename.empty()) {
923     CorrelateFilename = DebugInfoFilename;
924     CorrelateKind = ProfCorrelatorKind::DEBUG_INFO;
925   } else if (!BinaryFilename.empty()) {
926     CorrelateFilename = BinaryFilename;
927     CorrelateKind = ProfCorrelatorKind::BINARY;
928   }
929 
930   std::unique_ptr<InstrProfCorrelator> Correlator;
931   if (CorrelateKind != InstrProfCorrelator::NONE) {
932     if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind)
933                        .moveInto(Correlator))
934       exitWithError(std::move(Err), CorrelateFilename);
935     if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
936       exitWithError(std::move(Err), CorrelateFilename);
937   }
938 
939   std::mutex ErrorLock;
940   SmallSet<instrprof_error, 4> WriterErrorCodes;
941 
942   // If NumThreads is not specified, auto-detect a good default.
943   if (NumThreads == 0)
944     NumThreads = std::min(hardware_concurrency().compute_thread_count(),
945                           unsigned((Inputs.size() + 1) / 2));
946 
947   // Initialize the writer contexts.
948   SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
949   for (unsigned I = 0; I < NumThreads; ++I)
950     Contexts.emplace_back(std::make_unique<WriterContext>(
951         OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize,
952         MaxTraceLength));
953 
954   if (NumThreads == 1) {
955     for (const auto &Input : Inputs)
956       loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
957                 Contexts[0].get());
958   } else {
959     DefaultThreadPool Pool(hardware_concurrency(NumThreads));
960 
961     // Load the inputs in parallel (N/NumThreads serial steps).
962     unsigned Ctx = 0;
963     for (const auto &Input : Inputs) {
964       Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
965                  Contexts[Ctx].get());
966       Ctx = (Ctx + 1) % NumThreads;
967     }
968     Pool.wait();
969 
970     // Merge the writer contexts together (~ lg(NumThreads) serial steps).
971     unsigned Mid = Contexts.size() / 2;
972     unsigned End = Contexts.size();
973     assert(Mid > 0 && "Expected more than one context");
974     do {
975       for (unsigned I = 0; I < Mid; ++I)
976         Pool.async(mergeWriterContexts, Contexts[I].get(),
977                    Contexts[I + Mid].get());
978       Pool.wait();
979       if (End & 1) {
980         Pool.async(mergeWriterContexts, Contexts[0].get(),
981                    Contexts[End - 1].get());
982         Pool.wait();
983       }
984       End = Mid;
985       Mid /= 2;
986     } while (Mid > 0);
987   }
988 
989   // Handle deferred errors encountered during merging. If the number of errors
990   // is equal to the number of inputs the merge failed.
991   unsigned NumErrors = 0;
992   for (std::unique_ptr<WriterContext> &WC : Contexts) {
993     for (auto &ErrorPair : WC->Errors) {
994       ++NumErrors;
995       warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
996     }
997   }
998   if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) ||
999       (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
1000     exitWithError("no profile can be merged");
1001 
1002   filterFunctions(Contexts[0]->Writer.getProfileData());
1003 
1004   writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
1005 }
1006 
1007 /// The profile entry for a function in instrumentation profile.
1008 struct InstrProfileEntry {
1009   uint64_t MaxCount = 0;
1010   uint64_t NumEdgeCounters = 0;
1011   float ZeroCounterRatio = 0.0;
1012   InstrProfRecord *ProfRecord;
1013   InstrProfileEntry(InstrProfRecord *Record);
1014   InstrProfileEntry() = default;
1015 };
1016 
1017 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
1018   ProfRecord = Record;
1019   uint64_t CntNum = Record->Counts.size();
1020   uint64_t ZeroCntNum = 0;
1021   for (size_t I = 0; I < CntNum; ++I) {
1022     MaxCount = std::max(MaxCount, Record->Counts[I]);
1023     ZeroCntNum += !Record->Counts[I];
1024   }
1025   ZeroCounterRatio = (float)ZeroCntNum / CntNum;
1026   NumEdgeCounters = CntNum;
1027 }
1028 
1029 /// Either set all the counters in the instr profile entry \p IFE to
1030 /// -1 / -2 /in order to drop the profile or scale up the
1031 /// counters in \p IFP to be above hot / cold threshold. We use
1032 /// the ratio of zero counters in the profile of a function to
1033 /// decide the profile is helpful or harmful for performance,
1034 /// and to choose whether to scale up or drop it.
1035 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot,
1036                                     uint64_t HotInstrThreshold,
1037                                     uint64_t ColdInstrThreshold,
1038                                     float ZeroCounterThreshold) {
1039   InstrProfRecord *ProfRecord = IFE.ProfRecord;
1040   if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
1041     // If all or most of the counters of the function are zero, the
1042     // profile is unaccountable and should be dropped. Reset all the
1043     // counters to be -1 / -2 and PGO profile-use will drop the profile.
1044     // All counters being -1 also implies that the function is hot so
1045     // PGO profile-use will also set the entry count metadata to be
1046     // above hot threshold.
1047     // All counters being -2 implies that the function is warm so
1048     // PGO profile-use will also set the entry count metadata to be
1049     // above cold threshold.
1050     auto Kind =
1051         (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm);
1052     ProfRecord->setPseudoCount(Kind);
1053     return;
1054   }
1055 
1056   // Scale up the MaxCount to be multiple times above hot / cold threshold.
1057   const unsigned MultiplyFactor = 3;
1058   uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold);
1059   uint64_t Numerator = Threshold * MultiplyFactor;
1060 
1061   // Make sure Threshold for warm counters is below the HotInstrThreshold.
1062   if (!SetToHot && Threshold >= HotInstrThreshold) {
1063     Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2;
1064   }
1065 
1066   uint64_t Denominator = IFE.MaxCount;
1067   if (Numerator <= Denominator)
1068     return;
1069   ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
1070     warn(toString(make_error<InstrProfError>(E)));
1071   });
1072 }
1073 
1074 const uint64_t ColdPercentileIdx = 15;
1075 const uint64_t HotPercentileIdx = 11;
1076 
1077 using sampleprof::FSDiscriminatorPass;
1078 
1079 // Internal options to set FSDiscriminatorPass. Used in merge and show
1080 // commands.
1081 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
1082     "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
1083     cl::desc("Zero out the discriminator bits for the FS discrimiantor "
1084              "pass beyond this value. The enum values are defined in "
1085              "Support/Discriminator.h"),
1086     cl::values(clEnumVal(Base, "Use base discriminators only"),
1087                clEnumVal(Pass1, "Use base and pass 1 discriminators"),
1088                clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
1089                clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
1090                clEnumVal(PassLast, "Use all discriminator bits (default)")));
1091 
1092 static unsigned getDiscriminatorMask() {
1093   return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
1094 }
1095 
1096 /// Adjust the instr profile in \p WC based on the sample profile in
1097 /// \p Reader.
1098 static void
1099 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
1100                    std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
1101                    unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
1102                    unsigned InstrProfColdThreshold) {
1103   // Function to its entry in instr profile.
1104   StringMap<InstrProfileEntry> InstrProfileMap;
1105   StringMap<StringRef> StaticFuncMap;
1106   InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
1107 
1108   auto checkSampleProfileHasFUnique = [&Reader]() {
1109     for (const auto &PD : Reader->getProfiles()) {
1110       auto &FContext = PD.second.getContext();
1111       if (FContext.toString().find(FunctionSamples::UniqSuffix) !=
1112           std::string::npos) {
1113         return true;
1114       }
1115     }
1116     return false;
1117   };
1118 
1119   bool SampleProfileHasFUnique = checkSampleProfileHasFUnique();
1120 
1121   auto buildStaticFuncMap = [&StaticFuncMap,
1122                              SampleProfileHasFUnique](const StringRef Name) {
1123     std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"};
1124     size_t PrefixPos = StringRef::npos;
1125     for (auto &FilePrefix : FilePrefixes) {
1126       std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter;
1127       PrefixPos = Name.find_insensitive(NamePrefix);
1128       if (PrefixPos == StringRef::npos)
1129         continue;
1130       PrefixPos += NamePrefix.size();
1131       break;
1132     }
1133 
1134     if (PrefixPos == StringRef::npos) {
1135       return;
1136     }
1137 
1138     StringRef NewName = Name.drop_front(PrefixPos);
1139     StringRef FName = Name.substr(0, PrefixPos - 1);
1140     if (NewName.size() == 0) {
1141       return;
1142     }
1143 
1144     // This name should have a static linkage.
1145     size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix);
1146     bool ProfileHasFUnique = (PostfixPos != StringRef::npos);
1147 
1148     // If sample profile and instrumented profile do not agree on symbol
1149     // uniqification.
1150     if (SampleProfileHasFUnique != ProfileHasFUnique) {
1151       // If instrumented profile uses -funique-internal-linkage-symbols,
1152       // we need to trim the name.
1153       if (ProfileHasFUnique) {
1154         NewName = NewName.substr(0, PostfixPos);
1155       } else {
1156         // If sample profile uses -funique-internal-linkage-symbols,
1157         // we build the map.
1158         std::string NStr =
1159             NewName.str() + getUniqueInternalLinkagePostfix(FName);
1160         NewName = StringRef(NStr);
1161         StaticFuncMap[NewName] = Name;
1162         return;
1163       }
1164     }
1165 
1166     if (!StaticFuncMap.contains(NewName)) {
1167       StaticFuncMap[NewName] = Name;
1168     } else {
1169       StaticFuncMap[NewName] = DuplicateNameStr;
1170     }
1171   };
1172 
1173   // We need to flatten the SampleFDO profile as the InstrFDO
1174   // profile does not have inlined callsite profiles.
1175   // One caveat is the pre-inlined function -- their samples
1176   // should be collapsed into the caller function.
1177   // Here we do a DFS traversal to get the flatten profile
1178   // info: the sum of entrycount and the max of maxcount.
1179   // Here is the algorithm:
1180   //   recursive (FS, root_name) {
1181   //      name = FS->getName();
1182   //      get samples for FS;
1183   //      if (InstrProf.find(name) {
1184   //        root_name = name;
1185   //      } else {
1186   //        if (name is in static_func map) {
1187   //          root_name = static_name;
1188   //        }
1189   //      }
1190   //      update the Map entry for root_name;
1191   //      for (subfs: FS) {
1192   //        recursive(subfs, root_name);
1193   //      }
1194   //   }
1195   //
1196   // Here is an example.
1197   //
1198   // SampleProfile:
1199   // foo:12345:1000
1200   // 1: 1000
1201   // 2.1: 1000
1202   // 15: 5000
1203   // 4: bar:1000
1204   //  1: 1000
1205   //  2: goo:3000
1206   //   1: 3000
1207   // 8: bar:40000
1208   //  1: 10000
1209   //  2: goo:30000
1210   //   1: 30000
1211   //
1212   // InstrProfile has two entries:
1213   //  foo
1214   //  bar.cc;bar
1215   //
1216   // After BuildMaxSampleMap, we should have the following in FlattenSampleMap:
1217   // {"foo", {1000, 5000}}
1218   // {"bar.cc;bar", {11000, 30000}}
1219   //
1220   // foo's has an entry count of 1000, and max body count of 5000.
1221   // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and
1222   // 10000), and max count of 30000 (from the callsite in line 8).
1223   //
1224   // Note that goo's count will remain in bar.cc;bar() as it does not have an
1225   // entry in InstrProfile.
1226   llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap;
1227   auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap,
1228                             &InstrProfileMap](const FunctionSamples &FS,
1229                                               const StringRef &RootName) {
1230     auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS,
1231                                      const StringRef &RootName,
1232                                      auto &BuildImpl) -> void {
1233       std::string NameStr = FS.getFunction().str();
1234       const StringRef Name = NameStr;
1235       const StringRef *NewRootName = &RootName;
1236       uint64_t EntrySample = FS.getHeadSamplesEstimate();
1237       uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true);
1238 
1239       auto It = InstrProfileMap.find(Name);
1240       if (It != InstrProfileMap.end()) {
1241         NewRootName = &Name;
1242       } else {
1243         auto NewName = StaticFuncMap.find(Name);
1244         if (NewName != StaticFuncMap.end()) {
1245           It = InstrProfileMap.find(NewName->second.str());
1246           if (NewName->second != DuplicateNameStr) {
1247             NewRootName = &NewName->second;
1248           }
1249         } else {
1250           // Here the EntrySample is of an inlined function, so we should not
1251           // update the EntrySample in the map.
1252           EntrySample = 0;
1253         }
1254       }
1255       EntrySample += FlattenSampleMap[*NewRootName].first;
1256       MaxBodySample =
1257           std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample);
1258       FlattenSampleMap[*NewRootName] =
1259           std::make_pair(EntrySample, MaxBodySample);
1260 
1261       for (const auto &C : FS.getCallsiteSamples())
1262         for (const auto &F : C.second)
1263           BuildImpl(F.second, *NewRootName, BuildImpl);
1264     };
1265     BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl);
1266   };
1267 
1268   for (auto &PD : WC->Writer.getProfileData()) {
1269     // Populate IPBuilder.
1270     for (const auto &PDV : PD.getValue()) {
1271       InstrProfRecord Record = PDV.second;
1272       IPBuilder.addRecord(Record);
1273     }
1274 
1275     // If a function has multiple entries in instr profile, skip it.
1276     if (PD.getValue().size() != 1)
1277       continue;
1278 
1279     // Initialize InstrProfileMap.
1280     InstrProfRecord *R = &PD.getValue().begin()->second;
1281     StringRef FullName = PD.getKey();
1282     InstrProfileMap[FullName] = InstrProfileEntry(R);
1283     buildStaticFuncMap(FullName);
1284   }
1285 
1286   for (auto &PD : Reader->getProfiles()) {
1287     sampleprof::FunctionSamples &FS = PD.second;
1288     std::string Name = FS.getFunction().str();
1289     BuildMaxSampleMap(FS, Name);
1290   }
1291 
1292   ProfileSummary InstrPS = *IPBuilder.getSummary();
1293   ProfileSummary SamplePS = Reader->getSummary();
1294 
1295   // Compute cold thresholds for instr profile and sample profile.
1296   uint64_t HotSampleThreshold =
1297       ProfileSummaryBuilder::getEntryForPercentile(
1298           SamplePS.getDetailedSummary(),
1299           ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1300           .MinCount;
1301   uint64_t ColdSampleThreshold =
1302       ProfileSummaryBuilder::getEntryForPercentile(
1303           SamplePS.getDetailedSummary(),
1304           ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1305           .MinCount;
1306   uint64_t HotInstrThreshold =
1307       ProfileSummaryBuilder::getEntryForPercentile(
1308           InstrPS.getDetailedSummary(),
1309           ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1310           .MinCount;
1311   uint64_t ColdInstrThreshold =
1312       InstrProfColdThreshold
1313           ? InstrProfColdThreshold
1314           : ProfileSummaryBuilder::getEntryForPercentile(
1315                 InstrPS.getDetailedSummary(),
1316                 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1317                 .MinCount;
1318 
1319   // Find hot/warm functions in sample profile which is cold in instr profile
1320   // and adjust the profiles of those functions in the instr profile.
1321   for (const auto &E : FlattenSampleMap) {
1322     uint64_t SampleMaxCount = std::max(E.second.first, E.second.second);
1323     if (SampleMaxCount < ColdSampleThreshold)
1324       continue;
1325     StringRef Name = E.first();
1326     auto It = InstrProfileMap.find(Name);
1327     if (It == InstrProfileMap.end()) {
1328       auto NewName = StaticFuncMap.find(Name);
1329       if (NewName != StaticFuncMap.end()) {
1330         It = InstrProfileMap.find(NewName->second.str());
1331         if (NewName->second == DuplicateNameStr) {
1332           WithColor::warning()
1333               << "Static function " << Name
1334               << " has multiple promoted names, cannot adjust profile.\n";
1335         }
1336       }
1337     }
1338     if (It == InstrProfileMap.end() ||
1339         It->second.MaxCount > ColdInstrThreshold ||
1340         It->second.NumEdgeCounters < SupplMinSizeThreshold)
1341       continue;
1342     bool SetToHot = SampleMaxCount >= HotSampleThreshold;
1343     updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold,
1344                             ColdInstrThreshold, ZeroCounterThreshold);
1345   }
1346 }
1347 
1348 /// The main function to supplement instr profile with sample profile.
1349 /// \Inputs contains the instr profile. \p SampleFilename specifies the
1350 /// sample profile. \p OutputFilename specifies the output profile name.
1351 /// \p OutputFormat specifies the output profile format. \p OutputSparse
1352 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
1353 /// specifies the minimal size for the functions whose profile will be
1354 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
1355 /// a function contains too many zero counters and whether its profile
1356 /// should be dropped. \p InstrProfColdThreshold is the user specified
1357 /// cold threshold which will override the cold threshold got from the
1358 /// instr profile summary.
1359 static void supplementInstrProfile(const WeightedFileVector &Inputs,
1360                                    StringRef SampleFilename, bool OutputSparse,
1361                                    unsigned SupplMinSizeThreshold,
1362                                    float ZeroCounterThreshold,
1363                                    unsigned InstrProfColdThreshold) {
1364   if (OutputFilename == "-")
1365     exitWithError("cannot write indexed profdata format to stdout");
1366   if (Inputs.size() != 1)
1367     exitWithError("expect one input to be an instr profile");
1368   if (Inputs[0].Weight != 1)
1369     exitWithError("expect instr profile doesn't have weight");
1370 
1371   StringRef InstrFilename = Inputs[0].Filename;
1372 
1373   // Read sample profile.
1374   LLVMContext Context;
1375   auto FS = vfs::getRealFileSystem();
1376   auto ReaderOrErr = sampleprof::SampleProfileReader::create(
1377       SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption);
1378   if (std::error_code EC = ReaderOrErr.getError())
1379     exitWithErrorCode(EC, SampleFilename);
1380   auto Reader = std::move(ReaderOrErr.get());
1381   if (std::error_code EC = Reader->read())
1382     exitWithErrorCode(EC, SampleFilename);
1383 
1384   // Read instr profile.
1385   std::mutex ErrorLock;
1386   SmallSet<instrprof_error, 4> WriterErrorCodes;
1387   auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
1388                                             WriterErrorCodes);
1389   loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
1390   if (WC->Errors.size() > 0)
1391     exitWithError(std::move(WC->Errors[0].first), InstrFilename);
1392 
1393   adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
1394                      InstrProfColdThreshold);
1395   writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
1396 }
1397 
1398 /// Make a copy of the given function samples with all symbol names remapped
1399 /// by the provided symbol remapper.
1400 static sampleprof::FunctionSamples
1401 remapSamples(const sampleprof::FunctionSamples &Samples,
1402              SymbolRemapper &Remapper, sampleprof_error &Error) {
1403   sampleprof::FunctionSamples Result;
1404   Result.setFunction(Remapper(Samples.getFunction()));
1405   Result.addTotalSamples(Samples.getTotalSamples());
1406   Result.addHeadSamples(Samples.getHeadSamples());
1407   for (const auto &BodySample : Samples.getBodySamples()) {
1408     uint32_t MaskedDiscriminator =
1409         BodySample.first.Discriminator & getDiscriminatorMask();
1410     Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
1411                           BodySample.second.getSamples());
1412     for (const auto &Target : BodySample.second.getCallTargets()) {
1413       Result.addCalledTargetSamples(BodySample.first.LineOffset,
1414                                     MaskedDiscriminator,
1415                                     Remapper(Target.first), Target.second);
1416     }
1417   }
1418   for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
1419     sampleprof::FunctionSamplesMap &Target =
1420         Result.functionSamplesAt(CallsiteSamples.first);
1421     for (const auto &Callsite : CallsiteSamples.second) {
1422       sampleprof::FunctionSamples Remapped =
1423           remapSamples(Callsite.second, Remapper, Error);
1424       mergeSampleProfErrors(Error,
1425                             Target[Remapped.getFunction()].merge(Remapped));
1426     }
1427   }
1428   return Result;
1429 }
1430 
1431 static sampleprof::SampleProfileFormat FormatMap[] = {
1432     sampleprof::SPF_None,
1433     sampleprof::SPF_Text,
1434     sampleprof::SPF_None,
1435     sampleprof::SPF_Ext_Binary,
1436     sampleprof::SPF_GCC,
1437     sampleprof::SPF_Binary};
1438 
1439 static std::unique_ptr<MemoryBuffer>
1440 getInputFileBuf(const StringRef &InputFile) {
1441   if (InputFile == "")
1442     return {};
1443 
1444   auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
1445   if (!BufOrError)
1446     exitWithErrorCode(BufOrError.getError(), InputFile);
1447 
1448   return std::move(*BufOrError);
1449 }
1450 
1451 static void populateProfileSymbolList(MemoryBuffer *Buffer,
1452                                       sampleprof::ProfileSymbolList &PSL) {
1453   if (!Buffer)
1454     return;
1455 
1456   SmallVector<StringRef, 32> SymbolVec;
1457   StringRef Data = Buffer->getBuffer();
1458   Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1459 
1460   for (StringRef SymbolStr : SymbolVec)
1461     PSL.add(SymbolStr.trim());
1462 }
1463 
1464 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
1465                                   ProfileFormat OutputFormat,
1466                                   MemoryBuffer *Buffer,
1467                                   sampleprof::ProfileSymbolList &WriterList,
1468                                   bool CompressAllSections, bool UseMD5,
1469                                   bool GenPartialProfile) {
1470   populateProfileSymbolList(Buffer, WriterList);
1471   if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
1472     warn("Profile Symbol list is not empty but the output format is not "
1473          "ExtBinary format. The list will be lost in the output. ");
1474 
1475   Writer.setProfileSymbolList(&WriterList);
1476 
1477   if (CompressAllSections) {
1478     if (OutputFormat != PF_Ext_Binary)
1479       warn("-compress-all-section is ignored. Specify -extbinary to enable it");
1480     else
1481       Writer.setToCompressAllSections();
1482   }
1483   if (UseMD5) {
1484     if (OutputFormat != PF_Ext_Binary)
1485       warn("-use-md5 is ignored. Specify -extbinary to enable it");
1486     else
1487       Writer.setUseMD5();
1488   }
1489   if (GenPartialProfile) {
1490     if (OutputFormat != PF_Ext_Binary)
1491       warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
1492     else
1493       Writer.setPartialProfile();
1494   }
1495 }
1496 
1497 static void mergeSampleProfile(const WeightedFileVector &Inputs,
1498                                SymbolRemapper *Remapper,
1499                                StringRef ProfileSymbolListFile,
1500                                size_t OutputSizeLimit) {
1501   using namespace sampleprof;
1502   SampleProfileMap ProfileMap;
1503   SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
1504   LLVMContext Context;
1505   sampleprof::ProfileSymbolList WriterList;
1506   std::optional<bool> ProfileIsProbeBased;
1507   std::optional<bool> ProfileIsCS;
1508   for (const auto &Input : Inputs) {
1509     auto FS = vfs::getRealFileSystem();
1510     auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS,
1511                                                    FSDiscriminatorPassOption);
1512     if (std::error_code EC = ReaderOrErr.getError()) {
1513       warnOrExitGivenError(FailMode, EC, Input.Filename);
1514       continue;
1515     }
1516 
1517     // We need to keep the readers around until after all the files are
1518     // read so that we do not lose the function names stored in each
1519     // reader's memory. The function names are needed to write out the
1520     // merged profile map.
1521     Readers.push_back(std::move(ReaderOrErr.get()));
1522     const auto Reader = Readers.back().get();
1523     if (std::error_code EC = Reader->read()) {
1524       warnOrExitGivenError(FailMode, EC, Input.Filename);
1525       Readers.pop_back();
1526       continue;
1527     }
1528 
1529     SampleProfileMap &Profiles = Reader->getProfiles();
1530     if (ProfileIsProbeBased &&
1531         ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
1532       exitWithError(
1533           "cannot merge probe-based profile with non-probe-based profile");
1534     ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
1535     if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
1536       exitWithError("cannot merge CS profile with non-CS profile");
1537     ProfileIsCS = FunctionSamples::ProfileIsCS;
1538     for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
1539          I != E; ++I) {
1540       sampleprof_error Result = sampleprof_error::success;
1541       FunctionSamples Remapped =
1542           Remapper ? remapSamples(I->second, *Remapper, Result)
1543                    : FunctionSamples();
1544       FunctionSamples &Samples = Remapper ? Remapped : I->second;
1545       SampleContext FContext = Samples.getContext();
1546       mergeSampleProfErrors(Result,
1547                             ProfileMap[FContext].merge(Samples, Input.Weight));
1548       if (Result != sampleprof_error::success) {
1549         std::error_code EC = make_error_code(Result);
1550         handleMergeWriterError(errorCodeToError(EC), Input.Filename,
1551                                FContext.toString());
1552       }
1553     }
1554 
1555     if (!DropProfileSymbolList) {
1556       std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
1557           Reader->getProfileSymbolList();
1558       if (ReaderList)
1559         WriterList.merge(*ReaderList);
1560     }
1561   }
1562 
1563   if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
1564     // Use threshold calculated from profile summary unless specified.
1565     SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1566     auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
1567     uint64_t SampleProfColdThreshold =
1568         ProfileSummaryBuilder::getColdCountThreshold(
1569             (Summary->getDetailedSummary()));
1570 
1571     // Trim and merge cold context profile using cold threshold above;
1572     SampleContextTrimmer(ProfileMap)
1573         .trimAndMergeColdContextProfiles(
1574             SampleProfColdThreshold, SampleTrimColdContext,
1575             SampleMergeColdContext, SampleColdContextFrameDepth, false);
1576   }
1577 
1578   if (ProfileLayout == llvm::sampleprof::SPL_Flat) {
1579     ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS);
1580     ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1581   } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) {
1582     ProfileConverter CSConverter(ProfileMap);
1583     CSConverter.convertCSProfiles();
1584     ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1585   }
1586 
1587   filterFunctions(ProfileMap);
1588 
1589   auto WriterOrErr =
1590       SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
1591   if (std::error_code EC = WriterOrErr.getError())
1592     exitWithErrorCode(EC, OutputFilename);
1593 
1594   auto Writer = std::move(WriterOrErr.get());
1595   // WriterList will have StringRef refering to string in Buffer.
1596   // Make sure Buffer lives as long as WriterList.
1597   auto Buffer = getInputFileBuf(ProfileSymbolListFile);
1598   handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
1599                         CompressAllSections, UseMD5, GenPartialProfile);
1600 
1601   // If OutputSizeLimit is 0 (default), it is the same as write().
1602   if (std::error_code EC =
1603           Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit))
1604     exitWithErrorCode(EC);
1605 }
1606 
1607 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
1608   StringRef WeightStr, FileName;
1609   std::tie(WeightStr, FileName) = WeightedFilename.split(',');
1610 
1611   uint64_t Weight;
1612   if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
1613     exitWithError("input weight must be a positive integer");
1614 
1615   return {std::string(FileName), Weight};
1616 }
1617 
1618 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
1619   StringRef Filename = WF.Filename;
1620   uint64_t Weight = WF.Weight;
1621 
1622   // If it's STDIN just pass it on.
1623   if (Filename == "-") {
1624     WNI.push_back({std::string(Filename), Weight});
1625     return;
1626   }
1627 
1628   llvm::sys::fs::file_status Status;
1629   llvm::sys::fs::status(Filename, Status);
1630   if (!llvm::sys::fs::exists(Status))
1631     exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
1632                       Filename);
1633   // If it's a source file, collect it.
1634   if (llvm::sys::fs::is_regular_file(Status)) {
1635     WNI.push_back({std::string(Filename), Weight});
1636     return;
1637   }
1638 
1639   if (llvm::sys::fs::is_directory(Status)) {
1640     std::error_code EC;
1641     for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
1642          F != E && !EC; F.increment(EC)) {
1643       if (llvm::sys::fs::is_regular_file(F->path())) {
1644         addWeightedInput(WNI, {F->path(), Weight});
1645       }
1646     }
1647     if (EC)
1648       exitWithErrorCode(EC, Filename);
1649   }
1650 }
1651 
1652 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
1653                                     WeightedFileVector &WFV) {
1654   if (!Buffer)
1655     return;
1656 
1657   SmallVector<StringRef, 8> Entries;
1658   StringRef Data = Buffer->getBuffer();
1659   Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1660   for (const StringRef &FileWeightEntry : Entries) {
1661     StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
1662     // Skip comments.
1663     if (SanitizedEntry.starts_with("#"))
1664       continue;
1665     // If there's no comma, it's an unweighted profile.
1666     else if (!SanitizedEntry.contains(','))
1667       addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
1668     else
1669       addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
1670   }
1671 }
1672 
1673 static int merge_main(StringRef ProgName) {
1674   WeightedFileVector WeightedInputs;
1675   for (StringRef Filename : InputFilenames)
1676     addWeightedInput(WeightedInputs, {std::string(Filename), 1});
1677   for (StringRef WeightedFilename : WeightedInputFilenames)
1678     addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
1679 
1680   // Make sure that the file buffer stays alive for the duration of the
1681   // weighted input vector's lifetime.
1682   auto Buffer = getInputFileBuf(InputFilenamesFile);
1683   parseInputFilenamesFile(Buffer.get(), WeightedInputs);
1684 
1685   if (WeightedInputs.empty())
1686     exitWithError("no input files specified. See " + ProgName + " merge -help");
1687 
1688   if (DumpInputFileList) {
1689     for (auto &WF : WeightedInputs)
1690       outs() << WF.Weight << "," << WF.Filename << "\n";
1691     return 0;
1692   }
1693 
1694   std::unique_ptr<SymbolRemapper> Remapper;
1695   if (!RemappingFile.empty())
1696     Remapper = SymbolRemapper::create(RemappingFile);
1697 
1698   if (!SupplInstrWithSample.empty()) {
1699     if (ProfileKind != instr)
1700       exitWithError(
1701           "-supplement-instr-with-sample can only work with -instr. ");
1702 
1703     supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse,
1704                            SupplMinSizeThreshold, ZeroCounterThreshold,
1705                            InstrProfColdThreshold);
1706     return 0;
1707   }
1708 
1709   if (ProfileKind == instr)
1710     mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings,
1711                       ProfiledBinary);
1712   else
1713     mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile,
1714                        OutputSizeLimit);
1715   return 0;
1716 }
1717 
1718 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1719 static void overlapInstrProfile(const std::string &BaseFilename,
1720                                 const std::string &TestFilename,
1721                                 const OverlapFuncFilters &FuncFilter,
1722                                 raw_fd_ostream &OS, bool IsCS) {
1723   std::mutex ErrorLock;
1724   SmallSet<instrprof_error, 4> WriterErrorCodes;
1725   WriterContext Context(false, ErrorLock, WriterErrorCodes);
1726   WeightedFile WeightedInput{BaseFilename, 1};
1727   OverlapStats Overlap;
1728   Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1729   if (E)
1730     exitWithError(std::move(E), "error in getting profile count sums");
1731   if (Overlap.Base.CountSum < 1.0f) {
1732     OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1733     exit(0);
1734   }
1735   if (Overlap.Test.CountSum < 1.0f) {
1736     OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1737     exit(0);
1738   }
1739   loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
1740   overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1741                IsCS);
1742   Overlap.dump(OS);
1743 }
1744 
1745 namespace {
1746 struct SampleOverlapStats {
1747   SampleContext BaseName;
1748   SampleContext TestName;
1749   // Number of overlap units
1750   uint64_t OverlapCount = 0;
1751   // Total samples of overlap units
1752   uint64_t OverlapSample = 0;
1753   // Number of and total samples of units that only present in base or test
1754   // profile
1755   uint64_t BaseUniqueCount = 0;
1756   uint64_t BaseUniqueSample = 0;
1757   uint64_t TestUniqueCount = 0;
1758   uint64_t TestUniqueSample = 0;
1759   // Number of units and total samples in base or test profile
1760   uint64_t BaseCount = 0;
1761   uint64_t BaseSample = 0;
1762   uint64_t TestCount = 0;
1763   uint64_t TestSample = 0;
1764   // Number of and total samples of units that present in at least one profile
1765   uint64_t UnionCount = 0;
1766   uint64_t UnionSample = 0;
1767   // Weighted similarity
1768   double Similarity = 0.0;
1769   // For SampleOverlapStats instances representing functions, weights of the
1770   // function in base and test profiles
1771   double BaseWeight = 0.0;
1772   double TestWeight = 0.0;
1773 
1774   SampleOverlapStats() = default;
1775 };
1776 } // end anonymous namespace
1777 
1778 namespace {
1779 struct FuncSampleStats {
1780   uint64_t SampleSum = 0;
1781   uint64_t MaxSample = 0;
1782   uint64_t HotBlockCount = 0;
1783   FuncSampleStats() = default;
1784   FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1785                   uint64_t HotBlockCount)
1786       : SampleSum(SampleSum), MaxSample(MaxSample),
1787         HotBlockCount(HotBlockCount) {}
1788 };
1789 } // end anonymous namespace
1790 
1791 namespace {
1792 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1793 
1794 // Class for updating merging steps for two sorted maps. The class should be
1795 // instantiated with a map iterator type.
1796 template <class T> class MatchStep {
1797 public:
1798   MatchStep() = delete;
1799 
1800   MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1801       : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1802         SecondEnd(SecondEnd), Status(MS_None) {}
1803 
1804   bool areBothFinished() const {
1805     return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1806   }
1807 
1808   bool isFirstFinished() const { return FirstIter == FirstEnd; }
1809 
1810   bool isSecondFinished() const { return SecondIter == SecondEnd; }
1811 
1812   /// Advance one step based on the previous match status unless the previous
1813   /// status is MS_None. Then update Status based on the comparison between two
1814   /// container iterators at the current step. If the previous status is
1815   /// MS_None, it means two iterators are at the beginning and no comparison has
1816   /// been made, so we simply update Status without advancing the iterators.
1817   void updateOneStep();
1818 
1819   T getFirstIter() const { return FirstIter; }
1820 
1821   T getSecondIter() const { return SecondIter; }
1822 
1823   MatchStatus getMatchStatus() const { return Status; }
1824 
1825 private:
1826   // Current iterator and end iterator of the first container.
1827   T FirstIter;
1828   T FirstEnd;
1829   // Current iterator and end iterator of the second container.
1830   T SecondIter;
1831   T SecondEnd;
1832   // Match status of the current step.
1833   MatchStatus Status;
1834 };
1835 } // end anonymous namespace
1836 
1837 template <class T> void MatchStep<T>::updateOneStep() {
1838   switch (Status) {
1839   case MS_Match:
1840     ++FirstIter;
1841     ++SecondIter;
1842     break;
1843   case MS_FirstUnique:
1844     ++FirstIter;
1845     break;
1846   case MS_SecondUnique:
1847     ++SecondIter;
1848     break;
1849   case MS_None:
1850     break;
1851   }
1852 
1853   // Update Status according to iterators at the current step.
1854   if (areBothFinished())
1855     return;
1856   if (FirstIter != FirstEnd &&
1857       (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1858     Status = MS_FirstUnique;
1859   else if (SecondIter != SecondEnd &&
1860            (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1861     Status = MS_SecondUnique;
1862   else
1863     Status = MS_Match;
1864 }
1865 
1866 // Return the sum of line/block samples, the max line/block sample, and the
1867 // number of line/block samples above the given threshold in a function
1868 // including its inlinees.
1869 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1870                                FuncSampleStats &FuncStats,
1871                                uint64_t HotThreshold) {
1872   for (const auto &L : Func.getBodySamples()) {
1873     uint64_t Sample = L.second.getSamples();
1874     FuncStats.SampleSum += Sample;
1875     FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1876     if (Sample >= HotThreshold)
1877       ++FuncStats.HotBlockCount;
1878   }
1879 
1880   for (const auto &C : Func.getCallsiteSamples()) {
1881     for (const auto &F : C.second)
1882       getFuncSampleStats(F.second, FuncStats, HotThreshold);
1883   }
1884 }
1885 
1886 /// Predicate that determines if a function is hot with a given threshold. We
1887 /// keep it separate from its callsites for possible extension in the future.
1888 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1889                           uint64_t HotThreshold) {
1890   // We intentionally compare the maximum sample count in a function with the
1891   // HotThreshold to get an approximate determination on hot functions.
1892   return (FuncStats.MaxSample >= HotThreshold);
1893 }
1894 
1895 namespace {
1896 class SampleOverlapAggregator {
1897 public:
1898   SampleOverlapAggregator(const std::string &BaseFilename,
1899                           const std::string &TestFilename,
1900                           double LowSimilarityThreshold, double Epsilon,
1901                           const OverlapFuncFilters &FuncFilter)
1902       : BaseFilename(BaseFilename), TestFilename(TestFilename),
1903         LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1904         FuncFilter(FuncFilter) {}
1905 
1906   /// Detect 0-sample input profile and report to output stream. This interface
1907   /// should be called after loadProfiles().
1908   bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1909 
1910   /// Write out function-level similarity statistics for functions specified by
1911   /// options --function, --value-cutoff, and --similarity-cutoff.
1912   void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1913 
1914   /// Write out program-level similarity and overlap statistics.
1915   void dumpProgramSummary(raw_fd_ostream &OS) const;
1916 
1917   /// Write out hot-function and hot-block statistics for base_profile,
1918   /// test_profile, and their overlap. For both cases, the overlap HO is
1919   /// calculated as follows:
1920   ///    Given the number of functions (or blocks) that are hot in both profiles
1921   ///    HCommon and the number of functions (or blocks) that are hot in at
1922   ///    least one profile HUnion, HO = HCommon / HUnion.
1923   void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1924 
1925   /// This function tries matching functions in base and test profiles. For each
1926   /// pair of matched functions, it aggregates the function-level
1927   /// similarity into a profile-level similarity. It also dump function-level
1928   /// similarity information of functions specified by --function,
1929   /// --value-cutoff, and --similarity-cutoff options. The program-level
1930   /// similarity PS is computed as follows:
1931   ///     Given function-level similarity FS(A) for all function A, the
1932   ///     weight of function A in base profile WB(A), and the weight of function
1933   ///     A in test profile WT(A), compute PS(base_profile, test_profile) =
1934   ///     sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1935   ///     meaning no-overlap.
1936   void computeSampleProfileOverlap(raw_fd_ostream &OS);
1937 
1938   /// Initialize ProfOverlap with the sum of samples in base and test
1939   /// profiles. This function also computes and keeps the sum of samples and
1940   /// max sample counts of each function in BaseStats and TestStats for later
1941   /// use to avoid re-computations.
1942   void initializeSampleProfileOverlap();
1943 
1944   /// Load profiles specified by BaseFilename and TestFilename.
1945   std::error_code loadProfiles();
1946 
1947   using FuncSampleStatsMap =
1948       std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1949 
1950 private:
1951   SampleOverlapStats ProfOverlap;
1952   SampleOverlapStats HotFuncOverlap;
1953   SampleOverlapStats HotBlockOverlap;
1954   std::string BaseFilename;
1955   std::string TestFilename;
1956   std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1957   std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1958   // BaseStats and TestStats hold FuncSampleStats for each function, with
1959   // function name as the key.
1960   FuncSampleStatsMap BaseStats;
1961   FuncSampleStatsMap TestStats;
1962   // Low similarity threshold in floating point number
1963   double LowSimilarityThreshold;
1964   // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1965   // for tracking hot blocks.
1966   uint64_t BaseHotThreshold;
1967   uint64_t TestHotThreshold;
1968   // A small threshold used to round the results of floating point accumulations
1969   // to resolve imprecision.
1970   const double Epsilon;
1971   std::multimap<double, SampleOverlapStats, std::greater<double>>
1972       FuncSimilarityDump;
1973   // FuncFilter carries specifications in options --value-cutoff and
1974   // --function.
1975   OverlapFuncFilters FuncFilter;
1976   // Column offsets for printing the function-level details table.
1977   static const unsigned int TestWeightCol = 15;
1978   static const unsigned int SimilarityCol = 30;
1979   static const unsigned int OverlapCol = 43;
1980   static const unsigned int BaseUniqueCol = 53;
1981   static const unsigned int TestUniqueCol = 67;
1982   static const unsigned int BaseSampleCol = 81;
1983   static const unsigned int TestSampleCol = 96;
1984   static const unsigned int FuncNameCol = 111;
1985 
1986   /// Return a similarity of two line/block sample counters in the same
1987   /// function in base and test profiles. The line/block-similarity BS(i) is
1988   /// computed as follows:
1989   ///    For an offsets i, given the sample count at i in base profile BB(i),
1990   ///    the sample count at i in test profile BT(i), the sum of sample counts
1991   ///    in this function in base profile SB, and the sum of sample counts in
1992   ///    this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1993   ///    BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1994   double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1995                                 const SampleOverlapStats &FuncOverlap) const;
1996 
1997   void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1998                              uint64_t HotBlockCount);
1999 
2000   void getHotFunctions(const FuncSampleStatsMap &ProfStats,
2001                        FuncSampleStatsMap &HotFunc,
2002                        uint64_t HotThreshold) const;
2003 
2004   void computeHotFuncOverlap();
2005 
2006   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2007   /// Difference for two sample units in a matched function according to the
2008   /// given match status.
2009   void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
2010                                      uint64_t HotBlockCount,
2011                                      SampleOverlapStats &FuncOverlap,
2012                                      double &Difference, MatchStatus Status);
2013 
2014   /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2015   /// Difference for unmatched callees that only present in one profile in a
2016   /// matched caller function.
2017   void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
2018                                 SampleOverlapStats &FuncOverlap,
2019                                 double &Difference, MatchStatus Status);
2020 
2021   /// This function updates sample overlap statistics of an overlap function in
2022   /// base and test profile. It also calculates a function-internal similarity
2023   /// FIS as follows:
2024   ///    For offsets i that have samples in at least one profile in this
2025   ///    function A, given BS(i) returned by computeBlockSimilarity(), compute
2026   ///    FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
2027   ///    0.0 meaning no overlap.
2028   double computeSampleFunctionInternalOverlap(
2029       const sampleprof::FunctionSamples &BaseFunc,
2030       const sampleprof::FunctionSamples &TestFunc,
2031       SampleOverlapStats &FuncOverlap);
2032 
2033   /// Function-level similarity (FS) is a weighted value over function internal
2034   /// similarity (FIS). This function computes a function's FS from its FIS by
2035   /// applying the weight.
2036   double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
2037                                  uint64_t TestFuncSample) const;
2038 
2039   /// The function-level similarity FS(A) for a function A is computed as
2040   /// follows:
2041   ///     Compute a function-internal similarity FIS(A) by
2042   ///     computeSampleFunctionInternalOverlap(). Then, with the weight of
2043   ///     function A in base profile WB(A), and the weight of function A in test
2044   ///     profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
2045   ///     ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
2046   double
2047   computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
2048                                const sampleprof::FunctionSamples *TestFunc,
2049                                SampleOverlapStats *FuncOverlap,
2050                                uint64_t BaseFuncSample,
2051                                uint64_t TestFuncSample);
2052 
2053   /// Profile-level similarity (PS) is a weighted aggregate over function-level
2054   /// similarities (FS). This method weights the FS value by the function
2055   /// weights in the base and test profiles for the aggregation.
2056   double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
2057                             uint64_t TestFuncSample) const;
2058 };
2059 } // end anonymous namespace
2060 
2061 bool SampleOverlapAggregator::detectZeroSampleProfile(
2062     raw_fd_ostream &OS) const {
2063   bool HaveZeroSample = false;
2064   if (ProfOverlap.BaseSample == 0) {
2065     OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
2066     HaveZeroSample = true;
2067   }
2068   if (ProfOverlap.TestSample == 0) {
2069     OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
2070     HaveZeroSample = true;
2071   }
2072   return HaveZeroSample;
2073 }
2074 
2075 double SampleOverlapAggregator::computeBlockSimilarity(
2076     uint64_t BaseSample, uint64_t TestSample,
2077     const SampleOverlapStats &FuncOverlap) const {
2078   double BaseFrac = 0.0;
2079   double TestFrac = 0.0;
2080   if (FuncOverlap.BaseSample > 0)
2081     BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
2082   if (FuncOverlap.TestSample > 0)
2083     TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
2084   return 1.0 - std::fabs(BaseFrac - TestFrac);
2085 }
2086 
2087 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
2088                                                     uint64_t TestSample,
2089                                                     uint64_t HotBlockCount) {
2090   bool IsBaseHot = (BaseSample >= BaseHotThreshold);
2091   bool IsTestHot = (TestSample >= TestHotThreshold);
2092   if (!IsBaseHot && !IsTestHot)
2093     return;
2094 
2095   HotBlockOverlap.UnionCount += HotBlockCount;
2096   if (IsBaseHot)
2097     HotBlockOverlap.BaseCount += HotBlockCount;
2098   if (IsTestHot)
2099     HotBlockOverlap.TestCount += HotBlockCount;
2100   if (IsBaseHot && IsTestHot)
2101     HotBlockOverlap.OverlapCount += HotBlockCount;
2102 }
2103 
2104 void SampleOverlapAggregator::getHotFunctions(
2105     const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
2106     uint64_t HotThreshold) const {
2107   for (const auto &F : ProfStats) {
2108     if (isFunctionHot(F.second, HotThreshold))
2109       HotFunc.emplace(F.first, F.second);
2110   }
2111 }
2112 
2113 void SampleOverlapAggregator::computeHotFuncOverlap() {
2114   FuncSampleStatsMap BaseHotFunc;
2115   getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
2116   HotFuncOverlap.BaseCount = BaseHotFunc.size();
2117 
2118   FuncSampleStatsMap TestHotFunc;
2119   getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
2120   HotFuncOverlap.TestCount = TestHotFunc.size();
2121   HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
2122 
2123   for (const auto &F : BaseHotFunc) {
2124     if (TestHotFunc.count(F.first))
2125       ++HotFuncOverlap.OverlapCount;
2126     else
2127       ++HotFuncOverlap.UnionCount;
2128   }
2129 }
2130 
2131 void SampleOverlapAggregator::updateOverlapStatsForFunction(
2132     uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
2133     SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
2134   assert(Status != MS_None &&
2135          "Match status should be updated before updating overlap statistics");
2136   if (Status == MS_FirstUnique) {
2137     TestSample = 0;
2138     FuncOverlap.BaseUniqueSample += BaseSample;
2139   } else if (Status == MS_SecondUnique) {
2140     BaseSample = 0;
2141     FuncOverlap.TestUniqueSample += TestSample;
2142   } else {
2143     ++FuncOverlap.OverlapCount;
2144   }
2145 
2146   FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
2147   FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
2148   Difference +=
2149       1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
2150   updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
2151 }
2152 
2153 void SampleOverlapAggregator::updateForUnmatchedCallee(
2154     const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
2155     double &Difference, MatchStatus Status) {
2156   assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
2157          "Status must be either of the two unmatched cases");
2158   FuncSampleStats FuncStats;
2159   if (Status == MS_FirstUnique) {
2160     getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
2161     updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
2162                                   FuncStats.HotBlockCount, FuncOverlap,
2163                                   Difference, Status);
2164   } else {
2165     getFuncSampleStats(Func, FuncStats, TestHotThreshold);
2166     updateOverlapStatsForFunction(0, FuncStats.SampleSum,
2167                                   FuncStats.HotBlockCount, FuncOverlap,
2168                                   Difference, Status);
2169   }
2170 }
2171 
2172 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
2173     const sampleprof::FunctionSamples &BaseFunc,
2174     const sampleprof::FunctionSamples &TestFunc,
2175     SampleOverlapStats &FuncOverlap) {
2176 
2177   using namespace sampleprof;
2178 
2179   double Difference = 0;
2180 
2181   // Accumulate Difference for regular line/block samples in the function.
2182   // We match them through sort-merge join algorithm because
2183   // FunctionSamples::getBodySamples() returns a map of sample counters ordered
2184   // by their offsets.
2185   MatchStep<BodySampleMap::const_iterator> BlockIterStep(
2186       BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
2187       TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
2188   BlockIterStep.updateOneStep();
2189   while (!BlockIterStep.areBothFinished()) {
2190     uint64_t BaseSample =
2191         BlockIterStep.isFirstFinished()
2192             ? 0
2193             : BlockIterStep.getFirstIter()->second.getSamples();
2194     uint64_t TestSample =
2195         BlockIterStep.isSecondFinished()
2196             ? 0
2197             : BlockIterStep.getSecondIter()->second.getSamples();
2198     updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
2199                                   Difference, BlockIterStep.getMatchStatus());
2200 
2201     BlockIterStep.updateOneStep();
2202   }
2203 
2204   // Accumulate Difference for callsite lines in the function. We match
2205   // them through sort-merge algorithm because
2206   // FunctionSamples::getCallsiteSamples() returns a map of callsite records
2207   // ordered by their offsets.
2208   MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
2209       BaseFunc.getCallsiteSamples().cbegin(),
2210       BaseFunc.getCallsiteSamples().cend(),
2211       TestFunc.getCallsiteSamples().cbegin(),
2212       TestFunc.getCallsiteSamples().cend());
2213   CallsiteIterStep.updateOneStep();
2214   while (!CallsiteIterStep.areBothFinished()) {
2215     MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
2216     assert(CallsiteStepStatus != MS_None &&
2217            "Match status should be updated before entering loop body");
2218 
2219     if (CallsiteStepStatus != MS_Match) {
2220       auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
2221                           ? CallsiteIterStep.getFirstIter()
2222                           : CallsiteIterStep.getSecondIter();
2223       for (const auto &F : Callsite->second)
2224         updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
2225                                  CallsiteStepStatus);
2226     } else {
2227       // There may be multiple inlinees at the same offset, so we need to try
2228       // matching all of them. This match is implemented through sort-merge
2229       // algorithm because callsite records at the same offset are ordered by
2230       // function names.
2231       MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
2232           CallsiteIterStep.getFirstIter()->second.cbegin(),
2233           CallsiteIterStep.getFirstIter()->second.cend(),
2234           CallsiteIterStep.getSecondIter()->second.cbegin(),
2235           CallsiteIterStep.getSecondIter()->second.cend());
2236       CalleeIterStep.updateOneStep();
2237       while (!CalleeIterStep.areBothFinished()) {
2238         MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
2239         if (CalleeStepStatus != MS_Match) {
2240           auto Callee = (CalleeStepStatus == MS_FirstUnique)
2241                             ? CalleeIterStep.getFirstIter()
2242                             : CalleeIterStep.getSecondIter();
2243           updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
2244                                    CalleeStepStatus);
2245         } else {
2246           // An inlined function can contain other inlinees inside, so compute
2247           // the Difference recursively.
2248           Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
2249                                       CalleeIterStep.getFirstIter()->second,
2250                                       CalleeIterStep.getSecondIter()->second,
2251                                       FuncOverlap);
2252         }
2253         CalleeIterStep.updateOneStep();
2254       }
2255     }
2256     CallsiteIterStep.updateOneStep();
2257   }
2258 
2259   // Difference reflects the total differences of line/block samples in this
2260   // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
2261   // reflect the similarity between function profiles in [0.0f to 1.0f].
2262   return (2.0 - Difference) / 2;
2263 }
2264 
2265 double SampleOverlapAggregator::weightForFuncSimilarity(
2266     double FuncInternalSimilarity, uint64_t BaseFuncSample,
2267     uint64_t TestFuncSample) const {
2268   // Compute the weight as the distance between the function weights in two
2269   // profiles.
2270   double BaseFrac = 0.0;
2271   double TestFrac = 0.0;
2272   assert(ProfOverlap.BaseSample > 0 &&
2273          "Total samples in base profile should be greater than 0");
2274   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
2275   assert(ProfOverlap.TestSample > 0 &&
2276          "Total samples in test profile should be greater than 0");
2277   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
2278   double WeightDistance = std::fabs(BaseFrac - TestFrac);
2279 
2280   // Take WeightDistance into the similarity.
2281   return FuncInternalSimilarity * (1 - WeightDistance);
2282 }
2283 
2284 double
2285 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
2286                                             uint64_t BaseFuncSample,
2287                                             uint64_t TestFuncSample) const {
2288 
2289   double BaseFrac = 0.0;
2290   double TestFrac = 0.0;
2291   assert(ProfOverlap.BaseSample > 0 &&
2292          "Total samples in base profile should be greater than 0");
2293   BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
2294   assert(ProfOverlap.TestSample > 0 &&
2295          "Total samples in test profile should be greater than 0");
2296   TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
2297   return FuncSimilarity * (BaseFrac + TestFrac);
2298 }
2299 
2300 double SampleOverlapAggregator::computeSampleFunctionOverlap(
2301     const sampleprof::FunctionSamples *BaseFunc,
2302     const sampleprof::FunctionSamples *TestFunc,
2303     SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
2304     uint64_t TestFuncSample) {
2305   // Default function internal similarity before weighted, meaning two functions
2306   // has no overlap.
2307   const double DefaultFuncInternalSimilarity = 0;
2308   double FuncSimilarity;
2309   double FuncInternalSimilarity;
2310 
2311   // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
2312   // In this case, we use DefaultFuncInternalSimilarity as the function internal
2313   // similarity.
2314   if (!BaseFunc || !TestFunc) {
2315     FuncInternalSimilarity = DefaultFuncInternalSimilarity;
2316   } else {
2317     assert(FuncOverlap != nullptr &&
2318            "FuncOverlap should be provided in this case");
2319     FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
2320         *BaseFunc, *TestFunc, *FuncOverlap);
2321     // Now, FuncInternalSimilarity may be a little less than 0 due to
2322     // imprecision of floating point accumulations. Make it zero if the
2323     // difference is below Epsilon.
2324     FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
2325                                  ? 0
2326                                  : FuncInternalSimilarity;
2327   }
2328   FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
2329                                            BaseFuncSample, TestFuncSample);
2330   return FuncSimilarity;
2331 }
2332 
2333 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
2334   using namespace sampleprof;
2335 
2336   std::unordered_map<SampleContext, const FunctionSamples *,
2337                      SampleContext::Hash>
2338       BaseFuncProf;
2339   const auto &BaseProfiles = BaseReader->getProfiles();
2340   for (const auto &BaseFunc : BaseProfiles) {
2341     BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
2342   }
2343   ProfOverlap.UnionCount = BaseFuncProf.size();
2344 
2345   const auto &TestProfiles = TestReader->getProfiles();
2346   for (const auto &TestFunc : TestProfiles) {
2347     SampleOverlapStats FuncOverlap;
2348     FuncOverlap.TestName = TestFunc.second.getContext();
2349     assert(TestStats.count(FuncOverlap.TestName) &&
2350            "TestStats should have records for all functions in test profile "
2351            "except inlinees");
2352     FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
2353 
2354     bool Matched = false;
2355     const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
2356     if (Match == BaseFuncProf.end()) {
2357       const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
2358       ++ProfOverlap.TestUniqueCount;
2359       ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
2360       FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
2361 
2362       updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
2363 
2364       double FuncSimilarity = computeSampleFunctionOverlap(
2365           nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
2366       ProfOverlap.Similarity +=
2367           weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
2368 
2369       ++ProfOverlap.UnionCount;
2370       ProfOverlap.UnionSample += FuncStats.SampleSum;
2371     } else {
2372       ++ProfOverlap.OverlapCount;
2373 
2374       // Two functions match with each other. Compute function-level overlap and
2375       // aggregate them into profile-level overlap.
2376       FuncOverlap.BaseName = Match->second->getContext();
2377       assert(BaseStats.count(FuncOverlap.BaseName) &&
2378              "BaseStats should have records for all functions in base profile "
2379              "except inlinees");
2380       FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
2381 
2382       FuncOverlap.Similarity = computeSampleFunctionOverlap(
2383           Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
2384           FuncOverlap.TestSample);
2385       ProfOverlap.Similarity +=
2386           weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
2387                              FuncOverlap.TestSample);
2388       ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
2389       ProfOverlap.UnionSample += FuncOverlap.UnionSample;
2390 
2391       // Accumulate the percentage of base unique and test unique samples into
2392       // ProfOverlap.
2393       ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
2394       ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
2395 
2396       // Remove matched base functions for later reporting functions not found
2397       // in test profile.
2398       BaseFuncProf.erase(Match);
2399       Matched = true;
2400     }
2401 
2402     // Print function-level similarity information if specified by options.
2403     assert(TestStats.count(FuncOverlap.TestName) &&
2404            "TestStats should have records for all functions in test profile "
2405            "except inlinees");
2406     if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
2407         (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
2408         (Matched && !FuncFilter.NameFilter.empty() &&
2409          FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
2410              std::string::npos)) {
2411       assert(ProfOverlap.BaseSample > 0 &&
2412              "Total samples in base profile should be greater than 0");
2413       FuncOverlap.BaseWeight =
2414           static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
2415       assert(ProfOverlap.TestSample > 0 &&
2416              "Total samples in test profile should be greater than 0");
2417       FuncOverlap.TestWeight =
2418           static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
2419       FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
2420     }
2421   }
2422 
2423   // Traverse through functions in base profile but not in test profile.
2424   for (const auto &F : BaseFuncProf) {
2425     assert(BaseStats.count(F.second->getContext()) &&
2426            "BaseStats should have records for all functions in base profile "
2427            "except inlinees");
2428     const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
2429     ++ProfOverlap.BaseUniqueCount;
2430     ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
2431 
2432     updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
2433 
2434     double FuncSimilarity = computeSampleFunctionOverlap(
2435         nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
2436     ProfOverlap.Similarity +=
2437         weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
2438 
2439     ProfOverlap.UnionSample += FuncStats.SampleSum;
2440   }
2441 
2442   // Now, ProfSimilarity may be a little greater than 1 due to imprecision
2443   // of floating point accumulations. Make it 1.0 if the difference is below
2444   // Epsilon.
2445   ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
2446                                ? 1
2447                                : ProfOverlap.Similarity;
2448 
2449   computeHotFuncOverlap();
2450 }
2451 
2452 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
2453   const auto &BaseProf = BaseReader->getProfiles();
2454   for (const auto &I : BaseProf) {
2455     ++ProfOverlap.BaseCount;
2456     FuncSampleStats FuncStats;
2457     getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
2458     ProfOverlap.BaseSample += FuncStats.SampleSum;
2459     BaseStats.emplace(I.second.getContext(), FuncStats);
2460   }
2461 
2462   const auto &TestProf = TestReader->getProfiles();
2463   for (const auto &I : TestProf) {
2464     ++ProfOverlap.TestCount;
2465     FuncSampleStats FuncStats;
2466     getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
2467     ProfOverlap.TestSample += FuncStats.SampleSum;
2468     TestStats.emplace(I.second.getContext(), FuncStats);
2469   }
2470 
2471   ProfOverlap.BaseName = StringRef(BaseFilename);
2472   ProfOverlap.TestName = StringRef(TestFilename);
2473 }
2474 
2475 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
2476   using namespace sampleprof;
2477 
2478   if (FuncSimilarityDump.empty())
2479     return;
2480 
2481   formatted_raw_ostream FOS(OS);
2482   FOS << "Function-level details:\n";
2483   FOS << "Base weight";
2484   FOS.PadToColumn(TestWeightCol);
2485   FOS << "Test weight";
2486   FOS.PadToColumn(SimilarityCol);
2487   FOS << "Similarity";
2488   FOS.PadToColumn(OverlapCol);
2489   FOS << "Overlap";
2490   FOS.PadToColumn(BaseUniqueCol);
2491   FOS << "Base unique";
2492   FOS.PadToColumn(TestUniqueCol);
2493   FOS << "Test unique";
2494   FOS.PadToColumn(BaseSampleCol);
2495   FOS << "Base samples";
2496   FOS.PadToColumn(TestSampleCol);
2497   FOS << "Test samples";
2498   FOS.PadToColumn(FuncNameCol);
2499   FOS << "Function name\n";
2500   for (const auto &F : FuncSimilarityDump) {
2501     double OverlapPercent =
2502         F.second.UnionSample > 0
2503             ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
2504             : 0;
2505     double BaseUniquePercent =
2506         F.second.BaseSample > 0
2507             ? static_cast<double>(F.second.BaseUniqueSample) /
2508                   F.second.BaseSample
2509             : 0;
2510     double TestUniquePercent =
2511         F.second.TestSample > 0
2512             ? static_cast<double>(F.second.TestUniqueSample) /
2513                   F.second.TestSample
2514             : 0;
2515 
2516     FOS << format("%.2f%%", F.second.BaseWeight * 100);
2517     FOS.PadToColumn(TestWeightCol);
2518     FOS << format("%.2f%%", F.second.TestWeight * 100);
2519     FOS.PadToColumn(SimilarityCol);
2520     FOS << format("%.2f%%", F.second.Similarity * 100);
2521     FOS.PadToColumn(OverlapCol);
2522     FOS << format("%.2f%%", OverlapPercent * 100);
2523     FOS.PadToColumn(BaseUniqueCol);
2524     FOS << format("%.2f%%", BaseUniquePercent * 100);
2525     FOS.PadToColumn(TestUniqueCol);
2526     FOS << format("%.2f%%", TestUniquePercent * 100);
2527     FOS.PadToColumn(BaseSampleCol);
2528     FOS << F.second.BaseSample;
2529     FOS.PadToColumn(TestSampleCol);
2530     FOS << F.second.TestSample;
2531     FOS.PadToColumn(FuncNameCol);
2532     FOS << F.second.TestName.toString() << "\n";
2533   }
2534 }
2535 
2536 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
2537   OS << "Profile overlap infomation for base_profile: "
2538      << ProfOverlap.BaseName.toString()
2539      << " and test_profile: " << ProfOverlap.TestName.toString()
2540      << "\nProgram level:\n";
2541 
2542   OS << "  Whole program profile similarity: "
2543      << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
2544 
2545   assert(ProfOverlap.UnionSample > 0 &&
2546          "Total samples in two profile should be greater than 0");
2547   double OverlapPercent =
2548       static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
2549   assert(ProfOverlap.BaseSample > 0 &&
2550          "Total samples in base profile should be greater than 0");
2551   double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
2552                              ProfOverlap.BaseSample;
2553   assert(ProfOverlap.TestSample > 0 &&
2554          "Total samples in test profile should be greater than 0");
2555   double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
2556                              ProfOverlap.TestSample;
2557 
2558   OS << "  Whole program sample overlap: "
2559      << format("%.3f%%", OverlapPercent * 100) << "\n";
2560   OS << "    percentage of samples unique in base profile: "
2561      << format("%.3f%%", BaseUniquePercent * 100) << "\n";
2562   OS << "    percentage of samples unique in test profile: "
2563      << format("%.3f%%", TestUniquePercent * 100) << "\n";
2564   OS << "    total samples in base profile: " << ProfOverlap.BaseSample << "\n"
2565      << "    total samples in test profile: " << ProfOverlap.TestSample << "\n";
2566 
2567   assert(ProfOverlap.UnionCount > 0 &&
2568          "There should be at least one function in two input profiles");
2569   double FuncOverlapPercent =
2570       static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
2571   OS << "  Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
2572      << "\n";
2573   OS << "    overlap functions: " << ProfOverlap.OverlapCount << "\n";
2574   OS << "    functions unique in base profile: " << ProfOverlap.BaseUniqueCount
2575      << "\n";
2576   OS << "    functions unique in test profile: " << ProfOverlap.TestUniqueCount
2577      << "\n";
2578 }
2579 
2580 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
2581     raw_fd_ostream &OS) const {
2582   assert(HotFuncOverlap.UnionCount > 0 &&
2583          "There should be at least one hot function in two input profiles");
2584   OS << "  Hot-function overlap: "
2585      << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
2586                              HotFuncOverlap.UnionCount * 100)
2587      << "\n";
2588   OS << "    overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
2589   OS << "    hot functions unique in base profile: "
2590      << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
2591   OS << "    hot functions unique in test profile: "
2592      << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
2593 
2594   assert(HotBlockOverlap.UnionCount > 0 &&
2595          "There should be at least one hot block in two input profiles");
2596   OS << "  Hot-block overlap: "
2597      << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
2598                              HotBlockOverlap.UnionCount * 100)
2599      << "\n";
2600   OS << "    overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
2601   OS << "    hot blocks unique in base profile: "
2602      << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
2603   OS << "    hot blocks unique in test profile: "
2604      << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
2605 }
2606 
2607 std::error_code SampleOverlapAggregator::loadProfiles() {
2608   using namespace sampleprof;
2609 
2610   LLVMContext Context;
2611   auto FS = vfs::getRealFileSystem();
2612   auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS,
2613                                                      FSDiscriminatorPassOption);
2614   if (std::error_code EC = BaseReaderOrErr.getError())
2615     exitWithErrorCode(EC, BaseFilename);
2616 
2617   auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS,
2618                                                      FSDiscriminatorPassOption);
2619   if (std::error_code EC = TestReaderOrErr.getError())
2620     exitWithErrorCode(EC, TestFilename);
2621 
2622   BaseReader = std::move(BaseReaderOrErr.get());
2623   TestReader = std::move(TestReaderOrErr.get());
2624 
2625   if (std::error_code EC = BaseReader->read())
2626     exitWithErrorCode(EC, BaseFilename);
2627   if (std::error_code EC = TestReader->read())
2628     exitWithErrorCode(EC, TestFilename);
2629   if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
2630     exitWithError(
2631         "cannot compare probe-based profile with non-probe-based profile");
2632   if (BaseReader->profileIsCS() != TestReader->profileIsCS())
2633     exitWithError("cannot compare CS profile with non-CS profile");
2634 
2635   // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
2636   // profile summary.
2637   ProfileSummary &BasePS = BaseReader->getSummary();
2638   ProfileSummary &TestPS = TestReader->getSummary();
2639   BaseHotThreshold =
2640       ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
2641   TestHotThreshold =
2642       ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
2643 
2644   return std::error_code();
2645 }
2646 
2647 void overlapSampleProfile(const std::string &BaseFilename,
2648                           const std::string &TestFilename,
2649                           const OverlapFuncFilters &FuncFilter,
2650                           uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
2651   using namespace sampleprof;
2652 
2653   // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
2654   // report 2--3 places after decimal point in percentage numbers.
2655   SampleOverlapAggregator OverlapAggr(
2656       BaseFilename, TestFilename,
2657       static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
2658   if (std::error_code EC = OverlapAggr.loadProfiles())
2659     exitWithErrorCode(EC);
2660 
2661   OverlapAggr.initializeSampleProfileOverlap();
2662   if (OverlapAggr.detectZeroSampleProfile(OS))
2663     return;
2664 
2665   OverlapAggr.computeSampleProfileOverlap(OS);
2666 
2667   OverlapAggr.dumpProgramSummary(OS);
2668   OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
2669   OverlapAggr.dumpFuncSimilarity(OS);
2670 }
2671 
2672 static int overlap_main() {
2673   std::error_code EC;
2674   raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2675   if (EC)
2676     exitWithErrorCode(EC, OutputFilename);
2677 
2678   if (ProfileKind == instr)
2679     overlapInstrProfile(BaseFilename, TestFilename,
2680                         OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2681                         OS, IsCS);
2682   else
2683     overlapSampleProfile(BaseFilename, TestFilename,
2684                          OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2685                          SimilarityCutoff, OS);
2686 
2687   return 0;
2688 }
2689 
2690 namespace {
2691 struct ValueSitesStats {
2692   ValueSitesStats() = default;
2693   uint64_t TotalNumValueSites = 0;
2694   uint64_t TotalNumValueSitesWithValueProfile = 0;
2695   uint64_t TotalNumValues = 0;
2696   std::vector<unsigned> ValueSitesHistogram;
2697 };
2698 } // namespace
2699 
2700 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2701                                   ValueSitesStats &Stats, raw_fd_ostream &OS,
2702                                   InstrProfSymtab *Symtab) {
2703   uint32_t NS = Func.getNumValueSites(VK);
2704   Stats.TotalNumValueSites += NS;
2705   for (size_t I = 0; I < NS; ++I) {
2706     auto VD = Func.getValueArrayForSite(VK, I);
2707     uint32_t NV = VD.size();
2708     if (NV == 0)
2709       continue;
2710     Stats.TotalNumValues += NV;
2711     Stats.TotalNumValueSitesWithValueProfile++;
2712     if (NV > Stats.ValueSitesHistogram.size())
2713       Stats.ValueSitesHistogram.resize(NV, 0);
2714     Stats.ValueSitesHistogram[NV - 1]++;
2715 
2716     uint64_t SiteSum = 0;
2717     for (const auto &V : VD)
2718       SiteSum += V.Count;
2719     if (SiteSum == 0)
2720       SiteSum = 1;
2721 
2722     for (const auto &V : VD) {
2723       OS << "\t[ " << format("%2u", I) << ", ";
2724       if (Symtab == nullptr)
2725         OS << format("%4" PRIu64, V.Value);
2726       else
2727         OS << Symtab->getFuncOrVarName(V.Value);
2728       OS << ", " << format("%10" PRId64, V.Count) << " ] ("
2729          << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n";
2730     }
2731   }
2732 }
2733 
2734 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2735                                 ValueSitesStats &Stats) {
2736   OS << "  Total number of sites: " << Stats.TotalNumValueSites << "\n";
2737   OS << "  Total number of sites with values: "
2738      << Stats.TotalNumValueSitesWithValueProfile << "\n";
2739   OS << "  Total number of profiled values: " << Stats.TotalNumValues << "\n";
2740 
2741   OS << "  Value sites histogram:\n\tNumTargets, SiteCount\n";
2742   for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2743     if (Stats.ValueSitesHistogram[I] > 0)
2744       OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2745   }
2746 }
2747 
2748 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
2749   if (SFormat == ShowFormat::Json)
2750     exitWithError("JSON output is not supported for instr profiles");
2751   if (SFormat == ShowFormat::Yaml)
2752     exitWithError("YAML output is not supported for instr profiles");
2753   auto FS = vfs::getRealFileSystem();
2754   auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
2755   std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2756   if (ShowDetailedSummary && Cutoffs.empty()) {
2757     Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
2758   }
2759   InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2760   if (Error E = ReaderOrErr.takeError())
2761     exitWithError(std::move(E), Filename);
2762 
2763   auto Reader = std::move(ReaderOrErr.get());
2764   bool IsIRInstr = Reader->isIRLevelProfile();
2765   size_t ShownFunctions = 0;
2766   size_t BelowCutoffFunctions = 0;
2767   int NumVPKind = IPVK_Last - IPVK_First + 1;
2768   std::vector<ValueSitesStats> VPStats(NumVPKind);
2769 
2770   auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2771                    const std::pair<std::string, uint64_t> &v2) {
2772     return v1.second > v2.second;
2773   };
2774 
2775   std::priority_queue<std::pair<std::string, uint64_t>,
2776                       std::vector<std::pair<std::string, uint64_t>>,
2777                       decltype(MinCmp)>
2778       HottestFuncs(MinCmp);
2779 
2780   if (!TextFormat && OnlyListBelow) {
2781     OS << "The list of functions with the maximum counter less than "
2782        << ShowValueCutoff << ":\n";
2783   }
2784 
2785   // Add marker so that IR-level instrumentation round-trips properly.
2786   if (TextFormat && IsIRInstr)
2787     OS << ":ir\n";
2788 
2789   for (const auto &Func : *Reader) {
2790     if (Reader->isIRLevelProfile()) {
2791       bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2792       if (FuncIsCS != ShowCS)
2793         continue;
2794     }
2795     bool Show = ShowAllFunctions ||
2796                 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter));
2797 
2798     bool doTextFormatDump = (Show && TextFormat);
2799 
2800     if (doTextFormatDump) {
2801       InstrProfSymtab &Symtab = Reader->getSymtab();
2802       InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2803                                          OS);
2804       continue;
2805     }
2806 
2807     assert(Func.Counts.size() > 0 && "function missing entry counter");
2808     Builder.addRecord(Func);
2809 
2810     if (ShowCovered) {
2811       if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
2812         OS << Func.Name << "\n";
2813       continue;
2814     }
2815 
2816     uint64_t FuncMax = 0;
2817     uint64_t FuncSum = 0;
2818 
2819     auto PseudoKind = Func.getCountPseudoKind();
2820     if (PseudoKind != InstrProfRecord::NotPseudo) {
2821       if (Show) {
2822         if (!ShownFunctions)
2823           OS << "Counters:\n";
2824         ++ShownFunctions;
2825         OS << "  " << Func.Name << ":\n"
2826            << "    Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2827            << "    Counters: " << Func.Counts.size();
2828         if (PseudoKind == InstrProfRecord::PseudoHot)
2829           OS << "    <PseudoHot>\n";
2830         else if (PseudoKind == InstrProfRecord::PseudoWarm)
2831           OS << "    <PseudoWarm>\n";
2832         else
2833           llvm_unreachable("Unknown PseudoKind");
2834       }
2835       continue;
2836     }
2837 
2838     for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2839       FuncMax = std::max(FuncMax, Func.Counts[I]);
2840       FuncSum += Func.Counts[I];
2841     }
2842 
2843     if (FuncMax < ShowValueCutoff) {
2844       ++BelowCutoffFunctions;
2845       if (OnlyListBelow) {
2846         OS << "  " << Func.Name << ": (Max = " << FuncMax
2847            << " Sum = " << FuncSum << ")\n";
2848       }
2849       continue;
2850     } else if (OnlyListBelow)
2851       continue;
2852 
2853     if (TopNFunctions) {
2854       if (HottestFuncs.size() == TopNFunctions) {
2855         if (HottestFuncs.top().second < FuncMax) {
2856           HottestFuncs.pop();
2857           HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2858         }
2859       } else
2860         HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2861     }
2862 
2863     if (Show) {
2864       if (!ShownFunctions)
2865         OS << "Counters:\n";
2866 
2867       ++ShownFunctions;
2868 
2869       OS << "  " << Func.Name << ":\n"
2870          << "    Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2871          << "    Counters: " << Func.Counts.size() << "\n";
2872       if (!IsIRInstr)
2873         OS << "    Function count: " << Func.Counts[0] << "\n";
2874 
2875       if (ShowIndirectCallTargets)
2876         OS << "    Indirect Call Site Count: "
2877            << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2878 
2879       if (ShowVTables)
2880         OS << "    Number of instrumented vtables: "
2881            << Func.getNumValueSites(IPVK_VTableTarget) << "\n";
2882 
2883       uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2884       if (ShowMemOPSizes && NumMemOPCalls > 0)
2885         OS << "    Number of Memory Intrinsics Calls: " << NumMemOPCalls
2886            << "\n";
2887 
2888       if (ShowCounts) {
2889         OS << "    Block counts: [";
2890         size_t Start = (IsIRInstr ? 0 : 1);
2891         for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2892           OS << (I == Start ? "" : ", ") << Func.Counts[I];
2893         }
2894         OS << "]\n";
2895       }
2896 
2897       if (ShowIndirectCallTargets) {
2898         OS << "    Indirect Target Results:\n";
2899         traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2900                               VPStats[IPVK_IndirectCallTarget], OS,
2901                               &(Reader->getSymtab()));
2902       }
2903 
2904       if (ShowVTables) {
2905         OS << "    VTable Results:\n";
2906         traverseAllValueSites(Func, IPVK_VTableTarget,
2907                               VPStats[IPVK_VTableTarget], OS,
2908                               &(Reader->getSymtab()));
2909       }
2910 
2911       if (ShowMemOPSizes && NumMemOPCalls > 0) {
2912         OS << "    Memory Intrinsic Size Results:\n";
2913         traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2914                               nullptr);
2915       }
2916     }
2917   }
2918   if (Reader->hasError())
2919     exitWithError(Reader->getError(), Filename);
2920 
2921   if (TextFormat || ShowCovered)
2922     return 0;
2923   std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2924   bool IsIR = Reader->isIRLevelProfile();
2925   OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2926   if (IsIR)
2927     OS << "  entry_first = " << Reader->instrEntryBBEnabled();
2928   OS << "\n";
2929   if (ShowAllFunctions || !FuncNameFilter.empty())
2930     OS << "Functions shown: " << ShownFunctions << "\n";
2931   OS << "Total functions: " << PS->getNumFunctions() << "\n";
2932   if (ShowValueCutoff > 0) {
2933     OS << "Number of functions with maximum count (< " << ShowValueCutoff
2934        << "): " << BelowCutoffFunctions << "\n";
2935     OS << "Number of functions with maximum count (>= " << ShowValueCutoff
2936        << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2937   }
2938   OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2939   OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2940 
2941   if (TopNFunctions) {
2942     std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2943     while (!HottestFuncs.empty()) {
2944       SortedHottestFuncs.emplace_back(HottestFuncs.top());
2945       HottestFuncs.pop();
2946     }
2947     OS << "Top " << TopNFunctions
2948        << " functions with the largest internal block counts: \n";
2949     for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2950       OS << "  " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2951   }
2952 
2953   if (ShownFunctions && ShowIndirectCallTargets) {
2954     OS << "Statistics for indirect call sites profile:\n";
2955     showValueSitesStats(OS, IPVK_IndirectCallTarget,
2956                         VPStats[IPVK_IndirectCallTarget]);
2957   }
2958 
2959   if (ShownFunctions && ShowVTables) {
2960     OS << "Statistics for vtable profile:\n";
2961     showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]);
2962   }
2963 
2964   if (ShownFunctions && ShowMemOPSizes) {
2965     OS << "Statistics for memory intrinsic calls sizes profile:\n";
2966     showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2967   }
2968 
2969   if (ShowDetailedSummary) {
2970     OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2971     OS << "Total count: " << PS->getTotalCount() << "\n";
2972     PS->printDetailedSummary(OS);
2973   }
2974 
2975   if (ShowBinaryIds)
2976     if (Error E = Reader->printBinaryIds(OS))
2977       exitWithError(std::move(E), Filename);
2978 
2979   if (ShowProfileVersion)
2980     OS << "Profile version: " << Reader->getVersion() << "\n";
2981 
2982   if (ShowTemporalProfTraces) {
2983     auto &Traces = Reader->getTemporalProfTraces();
2984     OS << "Temporal Profile Traces (samples=" << Traces.size()
2985        << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n";
2986     for (unsigned i = 0; i < Traces.size(); i++) {
2987       OS << "  Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight
2988          << " count=" << Traces[i].FunctionNameRefs.size() << "):\n";
2989       for (auto &NameRef : Traces[i].FunctionNameRefs)
2990         OS << "    " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n";
2991     }
2992   }
2993 
2994   return 0;
2995 }
2996 
2997 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2998                             raw_fd_ostream &OS) {
2999   if (!Reader->dumpSectionInfo(OS)) {
3000     WithColor::warning() << "-show-sec-info-only is only supported for "
3001                          << "sample profile in extbinary format and is "
3002                          << "ignored for other formats.\n";
3003     return;
3004   }
3005 }
3006 
3007 namespace {
3008 struct HotFuncInfo {
3009   std::string FuncName;
3010   uint64_t TotalCount = 0;
3011   double TotalCountPercent = 0.0f;
3012   uint64_t MaxCount = 0;
3013   uint64_t EntryCount = 0;
3014 
3015   HotFuncInfo() = default;
3016 
3017   HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
3018       : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
3019         MaxCount(MS), EntryCount(ES) {}
3020 };
3021 } // namespace
3022 
3023 // Print out detailed information about hot functions in PrintValues vector.
3024 // Users specify titles and offset of every columns through ColumnTitle and
3025 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
3026 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
3027 // print out or let it be an empty string.
3028 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
3029                                 const std::vector<int> &ColumnOffset,
3030                                 const std::vector<HotFuncInfo> &PrintValues,
3031                                 uint64_t HotFuncCount, uint64_t TotalFuncCount,
3032                                 uint64_t HotProfCount, uint64_t TotalProfCount,
3033                                 const std::string &HotFuncMetric,
3034                                 uint32_t TopNFunctions, raw_fd_ostream &OS) {
3035   assert(ColumnOffset.size() == ColumnTitle.size() &&
3036          "ColumnOffset and ColumnTitle should have the same size");
3037   assert(ColumnTitle.size() >= 4 &&
3038          "ColumnTitle should have at least 4 elements");
3039   assert(TotalFuncCount > 0 &&
3040          "There should be at least one function in the profile");
3041   double TotalProfPercent = 0;
3042   if (TotalProfCount > 0)
3043     TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
3044 
3045   formatted_raw_ostream FOS(OS);
3046   FOS << HotFuncCount << " out of " << TotalFuncCount
3047       << " functions with profile ("
3048       << format("%.2f%%",
3049                 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
3050       << ") are considered hot functions";
3051   if (!HotFuncMetric.empty())
3052     FOS << " (" << HotFuncMetric << ")";
3053   FOS << ".\n";
3054   FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
3055       << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
3056 
3057   for (size_t I = 0; I < ColumnTitle.size(); ++I) {
3058     FOS.PadToColumn(ColumnOffset[I]);
3059     FOS << ColumnTitle[I];
3060   }
3061   FOS << "\n";
3062 
3063   uint32_t Count = 0;
3064   for (const auto &R : PrintValues) {
3065     if (TopNFunctions && (Count++ == TopNFunctions))
3066       break;
3067     FOS.PadToColumn(ColumnOffset[0]);
3068     FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
3069     FOS.PadToColumn(ColumnOffset[1]);
3070     FOS << R.MaxCount;
3071     FOS.PadToColumn(ColumnOffset[2]);
3072     FOS << R.EntryCount;
3073     FOS.PadToColumn(ColumnOffset[3]);
3074     FOS << R.FuncName << "\n";
3075   }
3076 }
3077 
3078 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
3079                                ProfileSummary &PS, uint32_t TopN,
3080                                raw_fd_ostream &OS) {
3081   using namespace sampleprof;
3082 
3083   const uint32_t HotFuncCutoff = 990000;
3084   auto &SummaryVector = PS.getDetailedSummary();
3085   uint64_t MinCountThreshold = 0;
3086   for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
3087     if (SummaryEntry.Cutoff == HotFuncCutoff) {
3088       MinCountThreshold = SummaryEntry.MinCount;
3089       break;
3090     }
3091   }
3092 
3093   // Traverse all functions in the profile and keep only hot functions.
3094   // The following loop also calculates the sum of total samples of all
3095   // functions.
3096   std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
3097                 std::greater<uint64_t>>
3098       HotFunc;
3099   uint64_t ProfileTotalSample = 0;
3100   uint64_t HotFuncSample = 0;
3101   uint64_t HotFuncCount = 0;
3102 
3103   for (const auto &I : Profiles) {
3104     FuncSampleStats FuncStats;
3105     const FunctionSamples &FuncProf = I.second;
3106     ProfileTotalSample += FuncProf.getTotalSamples();
3107     getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
3108 
3109     if (isFunctionHot(FuncStats, MinCountThreshold)) {
3110       HotFunc.emplace(FuncProf.getTotalSamples(),
3111                       std::make_pair(&(I.second), FuncStats.MaxSample));
3112       HotFuncSample += FuncProf.getTotalSamples();
3113       ++HotFuncCount;
3114     }
3115   }
3116 
3117   std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
3118                                        "Entry sample", "Function name"};
3119   std::vector<int> ColumnOffset{0, 24, 42, 58};
3120   std::string Metric =
3121       std::string("max sample >= ") + std::to_string(MinCountThreshold);
3122   std::vector<HotFuncInfo> PrintValues;
3123   for (const auto &FuncPair : HotFunc) {
3124     const FunctionSamples &Func = *FuncPair.second.first;
3125     double TotalSamplePercent =
3126         (ProfileTotalSample > 0)
3127             ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
3128             : 0;
3129     PrintValues.emplace_back(
3130         HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
3131                     TotalSamplePercent, FuncPair.second.second,
3132                     Func.getHeadSamplesEstimate()));
3133   }
3134   dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
3135                       Profiles.size(), HotFuncSample, ProfileTotalSample,
3136                       Metric, TopN, OS);
3137 
3138   return 0;
3139 }
3140 
3141 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3142   if (SFormat == ShowFormat::Yaml)
3143     exitWithError("YAML output is not supported for sample profiles");
3144   using namespace sampleprof;
3145   LLVMContext Context;
3146   auto FS = vfs::getRealFileSystem();
3147   auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS,
3148                                                  FSDiscriminatorPassOption);
3149   if (std::error_code EC = ReaderOrErr.getError())
3150     exitWithErrorCode(EC, Filename);
3151 
3152   auto Reader = std::move(ReaderOrErr.get());
3153   if (ShowSectionInfoOnly) {
3154     showSectionInfo(Reader.get(), OS);
3155     return 0;
3156   }
3157 
3158   if (std::error_code EC = Reader->read())
3159     exitWithErrorCode(EC, Filename);
3160 
3161   if (ShowAllFunctions || FuncNameFilter.empty()) {
3162     if (SFormat == ShowFormat::Json)
3163       Reader->dumpJson(OS);
3164     else
3165       Reader->dump(OS);
3166   } else {
3167     if (SFormat == ShowFormat::Json)
3168       exitWithError(
3169           "the JSON format is supported only when all functions are to "
3170           "be printed");
3171 
3172     // TODO: parse context string to support filtering by contexts.
3173     FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter));
3174     Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS);
3175   }
3176 
3177   if (ShowProfileSymbolList) {
3178     std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
3179         Reader->getProfileSymbolList();
3180     ReaderList->dump(OS);
3181   }
3182 
3183   if (ShowDetailedSummary) {
3184     auto &PS = Reader->getSummary();
3185     PS.printSummary(OS);
3186     PS.printDetailedSummary(OS);
3187   }
3188 
3189   if (ShowHotFuncList || TopNFunctions)
3190     showHotFunctionList(Reader->getProfiles(), Reader->getSummary(),
3191                         TopNFunctions, OS);
3192 
3193   return 0;
3194 }
3195 
3196 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3197   if (SFormat == ShowFormat::Json)
3198     exitWithError("JSON output is not supported for MemProf");
3199   auto ReaderOr = llvm::memprof::RawMemProfReader::create(
3200       Filename, ProfiledBinary, /*KeepNames=*/true);
3201   if (Error E = ReaderOr.takeError())
3202     // Since the error can be related to the profile or the binary we do not
3203     // pass whence. Instead additional context is provided where necessary in
3204     // the error message.
3205     exitWithError(std::move(E), /*Whence*/ "");
3206 
3207   std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
3208       ReaderOr.get().release());
3209 
3210   Reader->printYAML(OS);
3211   return 0;
3212 }
3213 
3214 static int showDebugInfoCorrelation(const std::string &Filename,
3215                                     ShowFormat SFormat, raw_fd_ostream &OS) {
3216   if (SFormat == ShowFormat::Json)
3217     exitWithError("JSON output is not supported for debug info correlation");
3218   std::unique_ptr<InstrProfCorrelator> Correlator;
3219   if (auto Err =
3220           InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO)
3221               .moveInto(Correlator))
3222     exitWithError(std::move(Err), Filename);
3223   if (SFormat == ShowFormat::Yaml) {
3224     if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS))
3225       exitWithError(std::move(Err), Filename);
3226     return 0;
3227   }
3228 
3229   if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
3230     exitWithError(std::move(Err), Filename);
3231 
3232   InstrProfSymtab Symtab;
3233   if (auto Err = Symtab.create(
3234           StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
3235     exitWithError(std::move(Err), Filename);
3236 
3237   if (ShowProfileSymbolList)
3238     Symtab.dumpNames(OS);
3239   // TODO: Read "Profile Data Type" from debug info to compute and show how many
3240   // counters the section holds.
3241   if (ShowDetailedSummary)
3242     OS << "Counters section size: 0x"
3243        << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
3244   OS << "Found " << Correlator->getDataSize() << " functions\n";
3245 
3246   return 0;
3247 }
3248 
3249 static int show_main(StringRef ProgName) {
3250   if (Filename.empty() && DebugInfoFilename.empty())
3251     exitWithError(
3252         "the positional argument '<profdata-file>' is required unless '--" +
3253         DebugInfoFilename.ArgStr + "' is provided");
3254 
3255   if (Filename == OutputFilename) {
3256     errs() << ProgName
3257            << " show: Input file name cannot be the same as the output file "
3258               "name!\n";
3259     return 1;
3260   }
3261   if (JsonFormat)
3262     SFormat = ShowFormat::Json;
3263 
3264   std::error_code EC;
3265   raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3266   if (EC)
3267     exitWithErrorCode(EC, OutputFilename);
3268 
3269   if (ShowAllFunctions && !FuncNameFilter.empty())
3270     WithColor::warning() << "-function argument ignored: showing all functions\n";
3271 
3272   if (!DebugInfoFilename.empty())
3273     return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS);
3274 
3275   if (ShowProfileKind == instr)
3276     return showInstrProfile(SFormat, OS);
3277   if (ShowProfileKind == sample)
3278     return showSampleProfile(SFormat, OS);
3279   return showMemProfProfile(SFormat, OS);
3280 }
3281 
3282 static int order_main() {
3283   std::error_code EC;
3284   raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3285   if (EC)
3286     exitWithErrorCode(EC, OutputFilename);
3287   auto FS = vfs::getRealFileSystem();
3288   auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
3289   if (Error E = ReaderOrErr.takeError())
3290     exitWithError(std::move(E), Filename);
3291 
3292   auto Reader = std::move(ReaderOrErr.get());
3293   for (auto &I : *Reader) {
3294     // Read all entries
3295     (void)I;
3296   }
3297   ArrayRef Traces = Reader->getTemporalProfTraces();
3298   if (NumTestTraces && NumTestTraces >= Traces.size())
3299     exitWithError(
3300         "--" + NumTestTraces.ArgStr +
3301         " must be smaller than the total number of traces: expected: < " +
3302         Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces));
3303   ArrayRef TestTraces = Traces.take_back(NumTestTraces);
3304   Traces = Traces.drop_back(NumTestTraces);
3305 
3306   std::vector<BPFunctionNode> Nodes;
3307   TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes);
3308   BalancedPartitioningConfig Config;
3309   BalancedPartitioning BP(Config);
3310   BP.run(Nodes);
3311 
3312   OS << "# Ordered " << Nodes.size() << " functions\n";
3313   if (!TestTraces.empty()) {
3314     // Since we don't know the symbol sizes, we assume 32 functions per page.
3315     DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber;
3316     for (auto &Node : Nodes)
3317       IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32;
3318 
3319     SmallSet<unsigned, 0> TouchedPages;
3320     unsigned Area = 0;
3321     for (auto &Trace : TestTraces) {
3322       for (auto Id : Trace.FunctionNameRefs) {
3323         auto It = IdToPageNumber.find(Id);
3324         if (It == IdToPageNumber.end())
3325           continue;
3326         TouchedPages.insert(It->getSecond());
3327         Area += TouchedPages.size();
3328       }
3329       TouchedPages.clear();
3330     }
3331     OS << "# Total area under the page fault curve: " << (float)Area << "\n";
3332   }
3333   OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the "
3334         "linkage and this output does not take that into account. Some "
3335         "post-processing may be required before passing to the linker via "
3336         "-order_file.\n";
3337   for (auto &N : Nodes) {
3338     auto [Filename, ParsedFuncName] =
3339         getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id));
3340     if (!Filename.empty())
3341       OS << "# " << Filename << "\n";
3342     OS << ParsedFuncName << "\n";
3343   }
3344   return 0;
3345 }
3346 
3347 int llvm_profdata_main(int argc, char **argvNonConst,
3348                        const llvm::ToolContext &) {
3349   const char **argv = const_cast<const char **>(argvNonConst);
3350 
3351   StringRef ProgName(sys::path::filename(argv[0]));
3352 
3353   if (argc < 2) {
3354     errs() << ProgName
3355            << ": No subcommand specified! Run llvm-profata --help for usage.\n";
3356     return 1;
3357   }
3358 
3359   cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n");
3360 
3361   if (ShowSubcommand)
3362     return show_main(ProgName);
3363 
3364   if (OrderSubcommand)
3365     return order_main();
3366 
3367   if (OverlapSubcommand)
3368     return overlap_main();
3369 
3370   if (MergeSubcommand)
3371     return merge_main(ProgName);
3372 
3373   errs() << ProgName
3374          << ": Unknown command. Run llvm-profdata --help for usage.\n";
3375   return 1;
3376 }
3377