xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-objdump/llvm-objdump.cpp (revision f2530c80db7b29b95368fce956b3a778f096b368)
1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
11 // flags.
12 //
13 // The flags and output of this program should be near identical to those of
14 // binutils objdump.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm-objdump.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetOperations.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringSet.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/FaultMaps.h"
26 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
27 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
28 #include "llvm/Demangle/Demangle.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCContext.h"
31 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
32 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
33 #include "llvm/MC/MCInst.h"
34 #include "llvm/MC/MCInstPrinter.h"
35 #include "llvm/MC/MCInstrAnalysis.h"
36 #include "llvm/MC/MCInstrInfo.h"
37 #include "llvm/MC/MCObjectFileInfo.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/MC/MCSubtargetInfo.h"
40 #include "llvm/Object/Archive.h"
41 #include "llvm/Object/COFF.h"
42 #include "llvm/Object/COFFImportFile.h"
43 #include "llvm/Object/ELFObjectFile.h"
44 #include "llvm/Object/MachO.h"
45 #include "llvm/Object/MachOUniversal.h"
46 #include "llvm/Object/ObjectFile.h"
47 #include "llvm/Object/Wasm.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/Errc.h"
52 #include "llvm/Support/FileSystem.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/InitLLVM.h"
57 #include "llvm/Support/MemoryBuffer.h"
58 #include "llvm/Support/SourceMgr.h"
59 #include "llvm/Support/StringSaver.h"
60 #include "llvm/Support/TargetRegistry.h"
61 #include "llvm/Support/TargetSelect.h"
62 #include "llvm/Support/WithColor.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cctype>
66 #include <cstring>
67 #include <system_error>
68 #include <unordered_map>
69 #include <utility>
70 
71 using namespace llvm::object;
72 
73 namespace llvm {
74 
75 cl::OptionCategory ObjdumpCat("llvm-objdump Options");
76 
77 // MachO specific
78 extern cl::OptionCategory MachOCat;
79 extern cl::opt<bool> Bind;
80 extern cl::opt<bool> DataInCode;
81 extern cl::opt<bool> DylibsUsed;
82 extern cl::opt<bool> DylibId;
83 extern cl::opt<bool> ExportsTrie;
84 extern cl::opt<bool> FirstPrivateHeader;
85 extern cl::opt<bool> IndirectSymbols;
86 extern cl::opt<bool> InfoPlist;
87 extern cl::opt<bool> LazyBind;
88 extern cl::opt<bool> LinkOptHints;
89 extern cl::opt<bool> ObjcMetaData;
90 extern cl::opt<bool> Rebase;
91 extern cl::opt<bool> UniversalHeaders;
92 extern cl::opt<bool> WeakBind;
93 
94 static cl::opt<uint64_t> AdjustVMA(
95     "adjust-vma",
96     cl::desc("Increase the displayed address by the specified offset"),
97     cl::value_desc("offset"), cl::init(0), cl::cat(ObjdumpCat));
98 
99 static cl::opt<bool>
100     AllHeaders("all-headers",
101                cl::desc("Display all available header information"),
102                cl::cat(ObjdumpCat));
103 static cl::alias AllHeadersShort("x", cl::desc("Alias for --all-headers"),
104                                  cl::NotHidden, cl::Grouping,
105                                  cl::aliasopt(AllHeaders));
106 
107 static cl::opt<std::string>
108     ArchName("arch-name",
109              cl::desc("Target arch to disassemble for, "
110                       "see -version for available targets"),
111              cl::cat(ObjdumpCat));
112 
113 cl::opt<bool> ArchiveHeaders("archive-headers",
114                              cl::desc("Display archive header information"),
115                              cl::cat(ObjdumpCat));
116 static cl::alias ArchiveHeadersShort("a",
117                                      cl::desc("Alias for --archive-headers"),
118                                      cl::NotHidden, cl::Grouping,
119                                      cl::aliasopt(ArchiveHeaders));
120 
121 cl::opt<bool> Demangle("demangle", cl::desc("Demangle symbols names"),
122                        cl::init(false), cl::cat(ObjdumpCat));
123 static cl::alias DemangleShort("C", cl::desc("Alias for --demangle"),
124                                cl::NotHidden, cl::Grouping,
125                                cl::aliasopt(Demangle));
126 
127 cl::opt<bool> Disassemble(
128     "disassemble",
129     cl::desc("Display assembler mnemonics for the machine instructions"),
130     cl::cat(ObjdumpCat));
131 static cl::alias DisassembleShort("d", cl::desc("Alias for --disassemble"),
132                                   cl::NotHidden, cl::Grouping,
133                                   cl::aliasopt(Disassemble));
134 
135 cl::opt<bool> DisassembleAll(
136     "disassemble-all",
137     cl::desc("Display assembler mnemonics for the machine instructions"),
138     cl::cat(ObjdumpCat));
139 static cl::alias DisassembleAllShort("D",
140                                      cl::desc("Alias for --disassemble-all"),
141                                      cl::NotHidden, cl::Grouping,
142                                      cl::aliasopt(DisassembleAll));
143 
144 static cl::list<std::string>
145     DisassembleFunctions("disassemble-functions", cl::CommaSeparated,
146                          cl::desc("List of functions to disassemble. "
147                                   "Accept demangled names when --demangle is "
148                                   "specified, otherwise accept mangled names"),
149                          cl::cat(ObjdumpCat));
150 
151 static cl::opt<bool> DisassembleZeroes(
152     "disassemble-zeroes",
153     cl::desc("Do not skip blocks of zeroes when disassembling"),
154     cl::cat(ObjdumpCat));
155 static cl::alias
156     DisassembleZeroesShort("z", cl::desc("Alias for --disassemble-zeroes"),
157                            cl::NotHidden, cl::Grouping,
158                            cl::aliasopt(DisassembleZeroes));
159 
160 static cl::list<std::string>
161     DisassemblerOptions("disassembler-options",
162                         cl::desc("Pass target specific disassembler options"),
163                         cl::value_desc("options"), cl::CommaSeparated,
164                         cl::cat(ObjdumpCat));
165 static cl::alias
166     DisassemblerOptionsShort("M", cl::desc("Alias for --disassembler-options"),
167                              cl::NotHidden, cl::Grouping, cl::Prefix,
168                              cl::CommaSeparated,
169                              cl::aliasopt(DisassemblerOptions));
170 
171 cl::opt<DIDumpType> DwarfDumpType(
172     "dwarf", cl::init(DIDT_Null), cl::desc("Dump of dwarf debug sections:"),
173     cl::values(clEnumValN(DIDT_DebugFrame, "frames", ".debug_frame")),
174     cl::cat(ObjdumpCat));
175 
176 static cl::opt<bool> DynamicRelocations(
177     "dynamic-reloc",
178     cl::desc("Display the dynamic relocation entries in the file"),
179     cl::cat(ObjdumpCat));
180 static cl::alias DynamicRelocationShort("R",
181                                         cl::desc("Alias for --dynamic-reloc"),
182                                         cl::NotHidden, cl::Grouping,
183                                         cl::aliasopt(DynamicRelocations));
184 
185 static cl::opt<bool>
186     FaultMapSection("fault-map-section",
187                     cl::desc("Display contents of faultmap section"),
188                     cl::cat(ObjdumpCat));
189 
190 static cl::opt<bool>
191     FileHeaders("file-headers",
192                 cl::desc("Display the contents of the overall file header"),
193                 cl::cat(ObjdumpCat));
194 static cl::alias FileHeadersShort("f", cl::desc("Alias for --file-headers"),
195                                   cl::NotHidden, cl::Grouping,
196                                   cl::aliasopt(FileHeaders));
197 
198 cl::opt<bool> SectionContents("full-contents",
199                               cl::desc("Display the content of each section"),
200                               cl::cat(ObjdumpCat));
201 static cl::alias SectionContentsShort("s",
202                                       cl::desc("Alias for --full-contents"),
203                                       cl::NotHidden, cl::Grouping,
204                                       cl::aliasopt(SectionContents));
205 
206 static cl::list<std::string> InputFilenames(cl::Positional,
207                                             cl::desc("<input object files>"),
208                                             cl::ZeroOrMore,
209                                             cl::cat(ObjdumpCat));
210 
211 static cl::opt<bool>
212     PrintLines("line-numbers",
213                cl::desc("Display source line numbers with "
214                         "disassembly. Implies disassemble object"),
215                cl::cat(ObjdumpCat));
216 static cl::alias PrintLinesShort("l", cl::desc("Alias for --line-numbers"),
217                                  cl::NotHidden, cl::Grouping,
218                                  cl::aliasopt(PrintLines));
219 
220 static cl::opt<bool> MachOOpt("macho",
221                               cl::desc("Use MachO specific object file parser"),
222                               cl::cat(ObjdumpCat));
223 static cl::alias MachOm("m", cl::desc("Alias for --macho"), cl::NotHidden,
224                         cl::Grouping, cl::aliasopt(MachOOpt));
225 
226 cl::opt<std::string>
227     MCPU("mcpu",
228          cl::desc("Target a specific cpu type (-mcpu=help for details)"),
229          cl::value_desc("cpu-name"), cl::init(""), cl::cat(ObjdumpCat));
230 
231 cl::list<std::string> MAttrs("mattr", cl::CommaSeparated,
232                              cl::desc("Target specific attributes"),
233                              cl::value_desc("a1,+a2,-a3,..."),
234                              cl::cat(ObjdumpCat));
235 
236 cl::opt<bool> NoShowRawInsn("no-show-raw-insn",
237                             cl::desc("When disassembling "
238                                      "instructions, do not print "
239                                      "the instruction bytes."),
240                             cl::cat(ObjdumpCat));
241 cl::opt<bool> NoLeadingAddr("no-leading-addr",
242                             cl::desc("Print no leading address"),
243                             cl::cat(ObjdumpCat));
244 
245 static cl::opt<bool> RawClangAST(
246     "raw-clang-ast",
247     cl::desc("Dump the raw binary contents of the clang AST section"),
248     cl::cat(ObjdumpCat));
249 
250 cl::opt<bool>
251     Relocations("reloc", cl::desc("Display the relocation entries in the file"),
252                 cl::cat(ObjdumpCat));
253 static cl::alias RelocationsShort("r", cl::desc("Alias for --reloc"),
254                                   cl::NotHidden, cl::Grouping,
255                                   cl::aliasopt(Relocations));
256 
257 cl::opt<bool> PrintImmHex("print-imm-hex",
258                           cl::desc("Use hex format for immediate values"),
259                           cl::cat(ObjdumpCat));
260 
261 cl::opt<bool> PrivateHeaders("private-headers",
262                              cl::desc("Display format specific file headers"),
263                              cl::cat(ObjdumpCat));
264 static cl::alias PrivateHeadersShort("p",
265                                      cl::desc("Alias for --private-headers"),
266                                      cl::NotHidden, cl::Grouping,
267                                      cl::aliasopt(PrivateHeaders));
268 
269 cl::list<std::string>
270     FilterSections("section",
271                    cl::desc("Operate on the specified sections only. "
272                             "With -macho dump segment,section"),
273                    cl::cat(ObjdumpCat));
274 static cl::alias FilterSectionsj("j", cl::desc("Alias for --section"),
275                                  cl::NotHidden, cl::Grouping, cl::Prefix,
276                                  cl::aliasopt(FilterSections));
277 
278 cl::opt<bool> SectionHeaders("section-headers",
279                              cl::desc("Display summaries of the "
280                                       "headers for each section."),
281                              cl::cat(ObjdumpCat));
282 static cl::alias SectionHeadersShort("headers",
283                                      cl::desc("Alias for --section-headers"),
284                                      cl::NotHidden,
285                                      cl::aliasopt(SectionHeaders));
286 static cl::alias SectionHeadersShorter("h",
287                                        cl::desc("Alias for --section-headers"),
288                                        cl::NotHidden, cl::Grouping,
289                                        cl::aliasopt(SectionHeaders));
290 
291 static cl::opt<bool>
292     ShowLMA("show-lma",
293             cl::desc("Display LMA column when dumping ELF section headers"),
294             cl::cat(ObjdumpCat));
295 
296 static cl::opt<bool> PrintSource(
297     "source",
298     cl::desc(
299         "Display source inlined with disassembly. Implies disassemble object"),
300     cl::cat(ObjdumpCat));
301 static cl::alias PrintSourceShort("S", cl::desc("Alias for -source"),
302                                   cl::NotHidden, cl::Grouping,
303                                   cl::aliasopt(PrintSource));
304 
305 static cl::opt<uint64_t>
306     StartAddress("start-address", cl::desc("Disassemble beginning at address"),
307                  cl::value_desc("address"), cl::init(0), cl::cat(ObjdumpCat));
308 static cl::opt<uint64_t> StopAddress("stop-address",
309                                      cl::desc("Stop disassembly at address"),
310                                      cl::value_desc("address"),
311                                      cl::init(UINT64_MAX), cl::cat(ObjdumpCat));
312 
313 cl::opt<bool> SymbolTable("syms", cl::desc("Display the symbol table"),
314                           cl::cat(ObjdumpCat));
315 static cl::alias SymbolTableShort("t", cl::desc("Alias for --syms"),
316                                   cl::NotHidden, cl::Grouping,
317                                   cl::aliasopt(SymbolTable));
318 
319 cl::opt<std::string> TripleName("triple",
320                                 cl::desc("Target triple to disassemble for, "
321                                          "see -version for available targets"),
322                                 cl::cat(ObjdumpCat));
323 
324 cl::opt<bool> UnwindInfo("unwind-info", cl::desc("Display unwind information"),
325                          cl::cat(ObjdumpCat));
326 static cl::alias UnwindInfoShort("u", cl::desc("Alias for --unwind-info"),
327                                  cl::NotHidden, cl::Grouping,
328                                  cl::aliasopt(UnwindInfo));
329 
330 static cl::opt<bool>
331     Wide("wide", cl::desc("Ignored for compatibility with GNU objdump"),
332          cl::cat(ObjdumpCat));
333 static cl::alias WideShort("w", cl::Grouping, cl::aliasopt(Wide));
334 
335 static cl::extrahelp
336     HelpResponse("\nPass @FILE as argument to read options from FILE.\n");
337 
338 static StringSet<> DisasmFuncsSet;
339 static StringSet<> FoundSectionSet;
340 static StringRef ToolName;
341 
342 typedef std::vector<std::tuple<uint64_t, StringRef, uint8_t>> SectionSymbolsTy;
343 
344 static bool shouldKeep(object::SectionRef S) {
345   if (FilterSections.empty())
346     return true;
347   StringRef SecName;
348   std::error_code error = S.getName(SecName);
349   if (error)
350     return false;
351   // StringSet does not allow empty key so avoid adding sections with
352   // no name (such as the section with index 0) here.
353   if (!SecName.empty())
354     FoundSectionSet.insert(SecName);
355   return is_contained(FilterSections, SecName);
356 }
357 
358 SectionFilter ToolSectionFilter(object::ObjectFile const &O) {
359   return SectionFilter([](object::SectionRef S) { return shouldKeep(S); }, O);
360 }
361 
362 void error(std::error_code EC) {
363   if (!EC)
364     return;
365   WithColor::error(errs(), ToolName)
366       << "reading file: " << EC.message() << ".\n";
367   errs().flush();
368   exit(1);
369 }
370 
371 void error(Error E) {
372   if (!E)
373     return;
374   WithColor::error(errs(), ToolName) << toString(std::move(E));
375   exit(1);
376 }
377 
378 LLVM_ATTRIBUTE_NORETURN void error(Twine Message) {
379   WithColor::error(errs(), ToolName) << Message << ".\n";
380   errs().flush();
381   exit(1);
382 }
383 
384 void warn(StringRef Message) {
385   WithColor::warning(errs(), ToolName) << Message << ".\n";
386   errs().flush();
387 }
388 
389 static void warn(Twine Message) {
390   // Output order between errs() and outs() matters especially for archive
391   // files where the output is per member object.
392   outs().flush();
393   WithColor::warning(errs(), ToolName) << Message << "\n";
394   errs().flush();
395 }
396 
397 LLVM_ATTRIBUTE_NORETURN void report_error(StringRef File, Twine Message) {
398   WithColor::error(errs(), ToolName)
399       << "'" << File << "': " << Message << ".\n";
400   exit(1);
401 }
402 
403 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef File) {
404   assert(E);
405   std::string Buf;
406   raw_string_ostream OS(Buf);
407   logAllUnhandledErrors(std::move(E), OS);
408   OS.flush();
409   WithColor::error(errs(), ToolName) << "'" << File << "': " << Buf;
410   exit(1);
411 }
412 
413 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
414                                           StringRef FileName,
415                                           StringRef ArchitectureName) {
416   assert(E);
417   WithColor::error(errs(), ToolName);
418   if (ArchiveName != "")
419     errs() << ArchiveName << "(" << FileName << ")";
420   else
421     errs() << "'" << FileName << "'";
422   if (!ArchitectureName.empty())
423     errs() << " (for architecture " << ArchitectureName << ")";
424   std::string Buf;
425   raw_string_ostream OS(Buf);
426   logAllUnhandledErrors(std::move(E), OS);
427   OS.flush();
428   errs() << ": " << Buf;
429   exit(1);
430 }
431 
432 LLVM_ATTRIBUTE_NORETURN void report_error(Error E, StringRef ArchiveName,
433                                           const object::Archive::Child &C,
434                                           StringRef ArchitectureName) {
435   Expected<StringRef> NameOrErr = C.getName();
436   // TODO: if we have a error getting the name then it would be nice to print
437   // the index of which archive member this is and or its offset in the
438   // archive instead of "???" as the name.
439   if (!NameOrErr) {
440     consumeError(NameOrErr.takeError());
441     report_error(std::move(E), ArchiveName, "???", ArchitectureName);
442   } else
443     report_error(std::move(E), ArchiveName, NameOrErr.get(), ArchitectureName);
444 }
445 
446 static void warnOnNoMatchForSections() {
447   SetVector<StringRef> MissingSections;
448   for (StringRef S : FilterSections) {
449     if (FoundSectionSet.count(S))
450       return;
451     // User may specify a unnamed section. Don't warn for it.
452     if (!S.empty())
453       MissingSections.insert(S);
454   }
455 
456   // Warn only if no section in FilterSections is matched.
457   for (StringRef S : MissingSections)
458     warn("section '" + S + "' mentioned in a -j/--section option, but not "
459          "found in any input file");
460 }
461 
462 static const Target *getTarget(const ObjectFile *Obj = nullptr) {
463   // Figure out the target triple.
464   Triple TheTriple("unknown-unknown-unknown");
465   if (TripleName.empty()) {
466     if (Obj)
467       TheTriple = Obj->makeTriple();
468   } else {
469     TheTriple.setTriple(Triple::normalize(TripleName));
470 
471     // Use the triple, but also try to combine with ARM build attributes.
472     if (Obj) {
473       auto Arch = Obj->getArch();
474       if (Arch == Triple::arm || Arch == Triple::armeb)
475         Obj->setARMSubArch(TheTriple);
476     }
477   }
478 
479   // Get the target specific parser.
480   std::string Error;
481   const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple,
482                                                          Error);
483   if (!TheTarget) {
484     if (Obj)
485       report_error(Obj->getFileName(), "can't find target: " + Error);
486     else
487       error("can't find target: " + Error);
488   }
489 
490   // Update the triple name and return the found target.
491   TripleName = TheTriple.getTriple();
492   return TheTarget;
493 }
494 
495 bool isRelocAddressLess(RelocationRef A, RelocationRef B) {
496   return A.getOffset() < B.getOffset();
497 }
498 
499 static Error getRelocationValueString(const RelocationRef &Rel,
500                                       SmallVectorImpl<char> &Result) {
501   const ObjectFile *Obj = Rel.getObject();
502   if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj))
503     return getELFRelocationValueString(ELF, Rel, Result);
504   if (auto *COFF = dyn_cast<COFFObjectFile>(Obj))
505     return getCOFFRelocationValueString(COFF, Rel, Result);
506   if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj))
507     return getWasmRelocationValueString(Wasm, Rel, Result);
508   if (auto *MachO = dyn_cast<MachOObjectFile>(Obj))
509     return getMachORelocationValueString(MachO, Rel, Result);
510   llvm_unreachable("unknown object file format");
511 }
512 
513 /// Indicates whether this relocation should hidden when listing
514 /// relocations, usually because it is the trailing part of a multipart
515 /// relocation that will be printed as part of the leading relocation.
516 static bool getHidden(RelocationRef RelRef) {
517   auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject());
518   if (!MachO)
519     return false;
520 
521   unsigned Arch = MachO->getArch();
522   DataRefImpl Rel = RelRef.getRawDataRefImpl();
523   uint64_t Type = MachO->getRelocationType(Rel);
524 
525   // On arches that use the generic relocations, GENERIC_RELOC_PAIR
526   // is always hidden.
527   if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc)
528     return Type == MachO::GENERIC_RELOC_PAIR;
529 
530   if (Arch == Triple::x86_64) {
531     // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
532     // an X86_64_RELOC_SUBTRACTOR.
533     if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) {
534       DataRefImpl RelPrev = Rel;
535       RelPrev.d.a--;
536       uint64_t PrevType = MachO->getRelocationType(RelPrev);
537       if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR)
538         return true;
539     }
540   }
541 
542   return false;
543 }
544 
545 namespace {
546 class SourcePrinter {
547 protected:
548   DILineInfo OldLineInfo;
549   const ObjectFile *Obj = nullptr;
550   std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
551   // File name to file contents of source
552   std::unordered_map<std::string, std::unique_ptr<MemoryBuffer>> SourceCache;
553   // Mark the line endings of the cached source
554   std::unordered_map<std::string, std::vector<StringRef>> LineCache;
555 
556 private:
557   bool cacheSource(const DILineInfo& LineInfoFile);
558 
559 public:
560   SourcePrinter() = default;
561   SourcePrinter(const ObjectFile *Obj, StringRef DefaultArch) : Obj(Obj) {
562     symbolize::LLVMSymbolizer::Options SymbolizerOpts;
563     SymbolizerOpts.PrintFunctions = DILineInfoSpecifier::FunctionNameKind::None;
564     SymbolizerOpts.Demangle = false;
565     SymbolizerOpts.DefaultArch = DefaultArch;
566     Symbolizer.reset(new symbolize::LLVMSymbolizer(SymbolizerOpts));
567   }
568   virtual ~SourcePrinter() = default;
569   virtual void printSourceLine(raw_ostream &OS,
570                                object::SectionedAddress Address,
571                                StringRef Delimiter = "; ");
572 };
573 
574 bool SourcePrinter::cacheSource(const DILineInfo &LineInfo) {
575   std::unique_ptr<MemoryBuffer> Buffer;
576   if (LineInfo.Source) {
577     Buffer = MemoryBuffer::getMemBuffer(*LineInfo.Source);
578   } else {
579     auto BufferOrError = MemoryBuffer::getFile(LineInfo.FileName);
580     if (!BufferOrError)
581       return false;
582     Buffer = std::move(*BufferOrError);
583   }
584   // Chomp the file to get lines
585   const char *BufferStart = Buffer->getBufferStart(),
586              *BufferEnd = Buffer->getBufferEnd();
587   std::vector<StringRef> &Lines = LineCache[LineInfo.FileName];
588   const char *Start = BufferStart;
589   for (const char *I = BufferStart; I != BufferEnd; ++I)
590     if (*I == '\n') {
591       Lines.emplace_back(Start, I - Start - (BufferStart < I && I[-1] == '\r'));
592       Start = I + 1;
593     }
594   if (Start < BufferEnd)
595     Lines.emplace_back(Start, BufferEnd - Start);
596   SourceCache[LineInfo.FileName] = std::move(Buffer);
597   return true;
598 }
599 
600 void SourcePrinter::printSourceLine(raw_ostream &OS,
601                                     object::SectionedAddress Address,
602                                     StringRef Delimiter) {
603   if (!Symbolizer)
604     return;
605 
606   DILineInfo LineInfo = DILineInfo();
607   auto ExpectedLineInfo = Symbolizer->symbolizeCode(*Obj, Address);
608   if (!ExpectedLineInfo)
609     consumeError(ExpectedLineInfo.takeError());
610   else
611     LineInfo = *ExpectedLineInfo;
612 
613   if ((LineInfo.FileName == "<invalid>") || LineInfo.Line == 0 ||
614       ((OldLineInfo.Line == LineInfo.Line) &&
615        (OldLineInfo.FileName == LineInfo.FileName)))
616     return;
617 
618   if (PrintLines)
619     OS << Delimiter << LineInfo.FileName << ":" << LineInfo.Line << "\n";
620   if (PrintSource) {
621     if (SourceCache.find(LineInfo.FileName) == SourceCache.end())
622       if (!cacheSource(LineInfo))
623         return;
624     auto LineBuffer = LineCache.find(LineInfo.FileName);
625     if (LineBuffer != LineCache.end()) {
626       if (LineInfo.Line > LineBuffer->second.size())
627         return;
628       // Vector begins at 0, line numbers are non-zero
629       OS << Delimiter << LineBuffer->second[LineInfo.Line - 1] << '\n';
630     }
631   }
632   OldLineInfo = LineInfo;
633 }
634 
635 static bool isAArch64Elf(const ObjectFile *Obj) {
636   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
637   return Elf && Elf->getEMachine() == ELF::EM_AARCH64;
638 }
639 
640 static bool isArmElf(const ObjectFile *Obj) {
641   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
642   return Elf && Elf->getEMachine() == ELF::EM_ARM;
643 }
644 
645 static bool hasMappingSymbols(const ObjectFile *Obj) {
646   return isArmElf(Obj) || isAArch64Elf(Obj);
647 }
648 
649 static void printRelocation(const RelocationRef &Rel, uint64_t Address,
650                             bool Is64Bits) {
651   StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ":  " : "\t\t\t%08" PRIx64 ":  ";
652   SmallString<16> Name;
653   SmallString<32> Val;
654   Rel.getTypeName(Name);
655   error(getRelocationValueString(Rel, Val));
656   outs() << format(Fmt.data(), Address) << Name << "\t" << Val << "\n";
657 }
658 
659 class PrettyPrinter {
660 public:
661   virtual ~PrettyPrinter() = default;
662   virtual void printInst(MCInstPrinter &IP, const MCInst *MI,
663                          ArrayRef<uint8_t> Bytes,
664                          object::SectionedAddress Address, raw_ostream &OS,
665                          StringRef Annot, MCSubtargetInfo const &STI,
666                          SourcePrinter *SP,
667                          std::vector<RelocationRef> *Rels = nullptr) {
668     if (SP && (PrintSource || PrintLines))
669       SP->printSourceLine(OS, Address);
670 
671     {
672       formatted_raw_ostream FOS(OS);
673       if (!NoLeadingAddr)
674         FOS << format("%8" PRIx64 ":", Address.Address);
675       if (!NoShowRawInsn) {
676         FOS << ' ';
677         dumpBytes(Bytes, FOS);
678       }
679       FOS.flush();
680       // The output of printInst starts with a tab. Print some spaces so that
681       // the tab has 1 column and advances to the target tab stop.
682       unsigned TabStop = NoShowRawInsn ? 16 : 40;
683       unsigned Column = FOS.getColumn();
684       FOS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8);
685 
686       // The dtor calls flush() to ensure the indent comes before printInst().
687     }
688 
689     if (MI)
690       IP.printInst(MI, OS, "", STI);
691     else
692       OS << "\t<unknown>";
693   }
694 };
695 PrettyPrinter PrettyPrinterInst;
696 
697 class HexagonPrettyPrinter : public PrettyPrinter {
698 public:
699   void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address,
700                  raw_ostream &OS) {
701     uint32_t opcode =
702       (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0];
703     if (!NoLeadingAddr)
704       OS << format("%8" PRIx64 ":", Address);
705     if (!NoShowRawInsn) {
706       OS << "\t";
707       dumpBytes(Bytes.slice(0, 4), OS);
708       OS << format("\t%08" PRIx32, opcode);
709     }
710   }
711   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
712                  object::SectionedAddress Address, raw_ostream &OS,
713                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
714                  std::vector<RelocationRef> *Rels) override {
715     if (SP && (PrintSource || PrintLines))
716       SP->printSourceLine(OS, Address, "");
717     if (!MI) {
718       printLead(Bytes, Address.Address, OS);
719       OS << " <unknown>";
720       return;
721     }
722     std::string Buffer;
723     {
724       raw_string_ostream TempStream(Buffer);
725       IP.printInst(MI, TempStream, "", STI);
726     }
727     StringRef Contents(Buffer);
728     // Split off bundle attributes
729     auto PacketBundle = Contents.rsplit('\n');
730     // Split off first instruction from the rest
731     auto HeadTail = PacketBundle.first.split('\n');
732     auto Preamble = " { ";
733     auto Separator = "";
734 
735     // Hexagon's packets require relocations to be inline rather than
736     // clustered at the end of the packet.
737     std::vector<RelocationRef>::const_iterator RelCur = Rels->begin();
738     std::vector<RelocationRef>::const_iterator RelEnd = Rels->end();
739     auto PrintReloc = [&]() -> void {
740       while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) {
741         if (RelCur->getOffset() == Address.Address) {
742           printRelocation(*RelCur, Address.Address, false);
743           return;
744         }
745         ++RelCur;
746       }
747     };
748 
749     while (!HeadTail.first.empty()) {
750       OS << Separator;
751       Separator = "\n";
752       if (SP && (PrintSource || PrintLines))
753         SP->printSourceLine(OS, Address, "");
754       printLead(Bytes, Address.Address, OS);
755       OS << Preamble;
756       Preamble = "   ";
757       StringRef Inst;
758       auto Duplex = HeadTail.first.split('\v');
759       if (!Duplex.second.empty()) {
760         OS << Duplex.first;
761         OS << "; ";
762         Inst = Duplex.second;
763       }
764       else
765         Inst = HeadTail.first;
766       OS << Inst;
767       HeadTail = HeadTail.second.split('\n');
768       if (HeadTail.first.empty())
769         OS << " } " << PacketBundle.second;
770       PrintReloc();
771       Bytes = Bytes.slice(4);
772       Address.Address += 4;
773     }
774   }
775 };
776 HexagonPrettyPrinter HexagonPrettyPrinterInst;
777 
778 class AMDGCNPrettyPrinter : public PrettyPrinter {
779 public:
780   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
781                  object::SectionedAddress Address, raw_ostream &OS,
782                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
783                  std::vector<RelocationRef> *Rels) override {
784     if (SP && (PrintSource || PrintLines))
785       SP->printSourceLine(OS, Address);
786 
787     if (MI) {
788       SmallString<40> InstStr;
789       raw_svector_ostream IS(InstStr);
790 
791       IP.printInst(MI, IS, "", STI);
792 
793       OS << left_justify(IS.str(), 60);
794     } else {
795       // an unrecognized encoding - this is probably data so represent it
796       // using the .long directive, or .byte directive if fewer than 4 bytes
797       // remaining
798       if (Bytes.size() >= 4) {
799         OS << format("\t.long 0x%08" PRIx32 " ",
800                      support::endian::read32<support::little>(Bytes.data()));
801         OS.indent(42);
802       } else {
803           OS << format("\t.byte 0x%02" PRIx8, Bytes[0]);
804           for (unsigned int i = 1; i < Bytes.size(); i++)
805             OS << format(", 0x%02" PRIx8, Bytes[i]);
806           OS.indent(55 - (6 * Bytes.size()));
807       }
808     }
809 
810     OS << format("// %012" PRIX64 ":", Address.Address);
811     if (Bytes.size() >= 4) {
812       // D should be casted to uint32_t here as it is passed by format to
813       // snprintf as vararg.
814       for (uint32_t D : makeArrayRef(
815                reinterpret_cast<const support::little32_t *>(Bytes.data()),
816                Bytes.size() / 4))
817         OS << format(" %08" PRIX32, D);
818     } else {
819       for (unsigned char B : Bytes)
820         OS << format(" %02" PRIX8, B);
821     }
822 
823     if (!Annot.empty())
824       OS << " // " << Annot;
825   }
826 };
827 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst;
828 
829 class BPFPrettyPrinter : public PrettyPrinter {
830 public:
831   void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes,
832                  object::SectionedAddress Address, raw_ostream &OS,
833                  StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP,
834                  std::vector<RelocationRef> *Rels) override {
835     if (SP && (PrintSource || PrintLines))
836       SP->printSourceLine(OS, Address);
837     if (!NoLeadingAddr)
838       OS << format("%8" PRId64 ":", Address.Address / 8);
839     if (!NoShowRawInsn) {
840       OS << "\t";
841       dumpBytes(Bytes, OS);
842     }
843     if (MI)
844       IP.printInst(MI, OS, "", STI);
845     else
846       OS << "\t<unknown>";
847   }
848 };
849 BPFPrettyPrinter BPFPrettyPrinterInst;
850 
851 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) {
852   switch(Triple.getArch()) {
853   default:
854     return PrettyPrinterInst;
855   case Triple::hexagon:
856     return HexagonPrettyPrinterInst;
857   case Triple::amdgcn:
858     return AMDGCNPrettyPrinterInst;
859   case Triple::bpfel:
860   case Triple::bpfeb:
861     return BPFPrettyPrinterInst;
862   }
863 }
864 }
865 
866 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) {
867   assert(Obj->isELF());
868   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
869     return Elf32LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
870   if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
871     return Elf64LEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
872   if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
873     return Elf32BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
874   if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
875     return Elf64BEObj->getSymbol(Sym.getRawDataRefImpl())->getType();
876   llvm_unreachable("Unsupported binary format");
877 }
878 
879 template <class ELFT> static void
880 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj,
881                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
882   for (auto Symbol : Obj->getDynamicSymbolIterators()) {
883     uint8_t SymbolType = Symbol.getELFType();
884     if (SymbolType == ELF::STT_SECTION)
885       continue;
886 
887     uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName());
888     // ELFSymbolRef::getAddress() returns size instead of value for common
889     // symbols which is not desirable for disassembly output. Overriding.
890     if (SymbolType == ELF::STT_COMMON)
891       Address = Obj->getSymbol(Symbol.getRawDataRefImpl())->st_value;
892 
893     StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
894     if (Name.empty())
895       continue;
896 
897     section_iterator SecI =
898         unwrapOrError(Symbol.getSection(), Obj->getFileName());
899     if (SecI == Obj->section_end())
900       continue;
901 
902     AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
903   }
904 }
905 
906 static void
907 addDynamicElfSymbols(const ObjectFile *Obj,
908                      std::map<SectionRef, SectionSymbolsTy> &AllSymbols) {
909   assert(Obj->isELF());
910   if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj))
911     addDynamicElfSymbols(Elf32LEObj, AllSymbols);
912   else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj))
913     addDynamicElfSymbols(Elf64LEObj, AllSymbols);
914   else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj))
915     addDynamicElfSymbols(Elf32BEObj, AllSymbols);
916   else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj))
917     addDynamicElfSymbols(Elf64BEObj, AllSymbols);
918   else
919     llvm_unreachable("Unsupported binary format");
920 }
921 
922 static void addPltEntries(const ObjectFile *Obj,
923                           std::map<SectionRef, SectionSymbolsTy> &AllSymbols,
924                           StringSaver &Saver) {
925   Optional<SectionRef> Plt = None;
926   for (const SectionRef &Section : Obj->sections()) {
927     StringRef Name;
928     if (Section.getName(Name))
929       continue;
930     if (Name == ".plt")
931       Plt = Section;
932   }
933   if (!Plt)
934     return;
935   if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) {
936     for (auto PltEntry : ElfObj->getPltAddresses()) {
937       SymbolRef Symbol(PltEntry.first, ElfObj);
938       uint8_t SymbolType = getElfSymbolType(Obj, Symbol);
939 
940       StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName());
941       if (!Name.empty())
942         AllSymbols[*Plt].emplace_back(
943             PltEntry.second, Saver.save((Name + "@plt").str()), SymbolType);
944     }
945   }
946 }
947 
948 // Normally the disassembly output will skip blocks of zeroes. This function
949 // returns the number of zero bytes that can be skipped when dumping the
950 // disassembly of the instructions in Buf.
951 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) {
952   // Find the number of leading zeroes.
953   size_t N = 0;
954   while (N < Buf.size() && !Buf[N])
955     ++N;
956 
957   // We may want to skip blocks of zero bytes, but unless we see
958   // at least 8 of them in a row.
959   if (N < 8)
960     return 0;
961 
962   // We skip zeroes in multiples of 4 because do not want to truncate an
963   // instruction if it starts with a zero byte.
964   return N & ~0x3;
965 }
966 
967 // Returns a map from sections to their relocations.
968 static std::map<SectionRef, std::vector<RelocationRef>>
969 getRelocsMap(object::ObjectFile const &Obj) {
970   std::map<SectionRef, std::vector<RelocationRef>> Ret;
971   for (SectionRef Sec : Obj.sections()) {
972     section_iterator Relocated = Sec.getRelocatedSection();
973     if (Relocated == Obj.section_end() || !shouldKeep(*Relocated))
974       continue;
975     std::vector<RelocationRef> &V = Ret[*Relocated];
976     for (const RelocationRef &R : Sec.relocations())
977       V.push_back(R);
978     // Sort relocations by address.
979     llvm::stable_sort(V, isRelocAddressLess);
980   }
981   return Ret;
982 }
983 
984 // Used for --adjust-vma to check if address should be adjusted by the
985 // specified value for a given section.
986 // For ELF we do not adjust non-allocatable sections like debug ones,
987 // because they are not loadable.
988 // TODO: implement for other file formats.
989 static bool shouldAdjustVA(const SectionRef &Section) {
990   const ObjectFile *Obj = Section.getObject();
991   if (isa<object::ELFObjectFileBase>(Obj))
992     return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
993   return false;
994 }
995 
996 
997 typedef std::pair<uint64_t, char> MappingSymbolPair;
998 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols,
999                                  uint64_t Address) {
1000   auto It =
1001       partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) {
1002         return Val.first <= Address;
1003       });
1004   // Return zero for any address before the first mapping symbol; this means
1005   // we should use the default disassembly mode, depending on the target.
1006   if (It == MappingSymbols.begin())
1007     return '\x00';
1008   return (It - 1)->second;
1009 }
1010 
1011 static uint64_t
1012 dumpARMELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1013                const ObjectFile *Obj, ArrayRef<uint8_t> Bytes,
1014                ArrayRef<MappingSymbolPair> MappingSymbols) {
1015   support::endianness Endian =
1016       Obj->isLittleEndian() ? support::little : support::big;
1017   while (Index < End) {
1018     outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1019     outs() << "\t";
1020     if (Index + 4 <= End) {
1021       dumpBytes(Bytes.slice(Index, 4), outs());
1022       outs() << "\t.word\t"
1023              << format_hex(
1024                     support::endian::read32(Bytes.data() + Index, Endian), 10);
1025       Index += 4;
1026     } else if (Index + 2 <= End) {
1027       dumpBytes(Bytes.slice(Index, 2), outs());
1028       outs() << "\t\t.short\t"
1029              << format_hex(
1030                     support::endian::read16(Bytes.data() + Index, Endian), 6);
1031       Index += 2;
1032     } else {
1033       dumpBytes(Bytes.slice(Index, 1), outs());
1034       outs() << "\t\t.byte\t" << format_hex(Bytes[0], 4);
1035       ++Index;
1036     }
1037     outs() << "\n";
1038     if (getMappingSymbolKind(MappingSymbols, Index) != 'd')
1039       break;
1040   }
1041   return Index;
1042 }
1043 
1044 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End,
1045                         ArrayRef<uint8_t> Bytes) {
1046   // print out data up to 8 bytes at a time in hex and ascii
1047   uint8_t AsciiData[9] = {'\0'};
1048   uint8_t Byte;
1049   int NumBytes = 0;
1050 
1051   for (; Index < End; ++Index) {
1052     if (NumBytes == 0)
1053       outs() << format("%8" PRIx64 ":", SectionAddr + Index);
1054     Byte = Bytes.slice(Index)[0];
1055     outs() << format(" %02x", Byte);
1056     AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.';
1057 
1058     uint8_t IndentOffset = 0;
1059     NumBytes++;
1060     if (Index == End - 1 || NumBytes > 8) {
1061       // Indent the space for less than 8 bytes data.
1062       // 2 spaces for byte and one for space between bytes
1063       IndentOffset = 3 * (8 - NumBytes);
1064       for (int Excess = NumBytes; Excess < 8; Excess++)
1065         AsciiData[Excess] = '\0';
1066       NumBytes = 8;
1067     }
1068     if (NumBytes == 8) {
1069       AsciiData[8] = '\0';
1070       outs() << std::string(IndentOffset, ' ') << "         ";
1071       outs() << reinterpret_cast<char *>(AsciiData);
1072       outs() << '\n';
1073       NumBytes = 0;
1074     }
1075   }
1076 }
1077 
1078 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj,
1079                               MCContext &Ctx, MCDisassembler *PrimaryDisAsm,
1080                               MCDisassembler *SecondaryDisAsm,
1081                               const MCInstrAnalysis *MIA, MCInstPrinter *IP,
1082                               const MCSubtargetInfo *PrimarySTI,
1083                               const MCSubtargetInfo *SecondarySTI,
1084                               PrettyPrinter &PIP,
1085                               SourcePrinter &SP, bool InlineRelocs) {
1086   const MCSubtargetInfo *STI = PrimarySTI;
1087   MCDisassembler *DisAsm = PrimaryDisAsm;
1088   bool PrimaryIsThumb = false;
1089   if (isArmElf(Obj))
1090     PrimaryIsThumb = STI->checkFeatures("+thumb-mode");
1091 
1092   std::map<SectionRef, std::vector<RelocationRef>> RelocMap;
1093   if (InlineRelocs)
1094     RelocMap = getRelocsMap(*Obj);
1095   bool Is64Bits = Obj->getBytesInAddress() > 4;
1096 
1097   // Create a mapping from virtual address to symbol name.  This is used to
1098   // pretty print the symbols while disassembling.
1099   std::map<SectionRef, SectionSymbolsTy> AllSymbols;
1100   SectionSymbolsTy AbsoluteSymbols;
1101   const StringRef FileName = Obj->getFileName();
1102   for (const SymbolRef &Symbol : Obj->symbols()) {
1103     uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName);
1104 
1105     StringRef Name = unwrapOrError(Symbol.getName(), FileName);
1106     if (Name.empty())
1107       continue;
1108 
1109     uint8_t SymbolType = ELF::STT_NOTYPE;
1110     if (Obj->isELF()) {
1111       SymbolType = getElfSymbolType(Obj, Symbol);
1112       if (SymbolType == ELF::STT_SECTION)
1113         continue;
1114     }
1115 
1116     section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName);
1117     if (SecI != Obj->section_end())
1118       AllSymbols[*SecI].emplace_back(Address, Name, SymbolType);
1119     else
1120       AbsoluteSymbols.emplace_back(Address, Name, SymbolType);
1121   }
1122   if (AllSymbols.empty() && Obj->isELF())
1123     addDynamicElfSymbols(Obj, AllSymbols);
1124 
1125   BumpPtrAllocator A;
1126   StringSaver Saver(A);
1127   addPltEntries(Obj, AllSymbols, Saver);
1128 
1129   // Create a mapping from virtual address to section.
1130   std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses;
1131   for (SectionRef Sec : Obj->sections())
1132     SectionAddresses.emplace_back(Sec.getAddress(), Sec);
1133   array_pod_sort(SectionAddresses.begin(), SectionAddresses.end());
1134 
1135   // Linked executables (.exe and .dll files) typically don't include a real
1136   // symbol table but they might contain an export table.
1137   if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) {
1138     for (const auto &ExportEntry : COFFObj->export_directories()) {
1139       StringRef Name;
1140       error(ExportEntry.getSymbolName(Name));
1141       if (Name.empty())
1142         continue;
1143       uint32_t RVA;
1144       error(ExportEntry.getExportRVA(RVA));
1145 
1146       uint64_t VA = COFFObj->getImageBase() + RVA;
1147       auto Sec = partition_point(
1148           SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) {
1149             return O.first <= VA;
1150           });
1151       if (Sec != SectionAddresses.begin()) {
1152         --Sec;
1153         AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE);
1154       } else
1155         AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE);
1156     }
1157   }
1158 
1159   // Sort all the symbols, this allows us to use a simple binary search to find
1160   // a symbol near an address.
1161   StringSet<> FoundDisasmFuncsSet;
1162   for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols)
1163     array_pod_sort(SecSyms.second.begin(), SecSyms.second.end());
1164   array_pod_sort(AbsoluteSymbols.begin(), AbsoluteSymbols.end());
1165 
1166   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1167     if (FilterSections.empty() && !DisassembleAll &&
1168         (!Section.isText() || Section.isVirtual()))
1169       continue;
1170 
1171     uint64_t SectionAddr = Section.getAddress();
1172     uint64_t SectSize = Section.getSize();
1173     if (!SectSize)
1174       continue;
1175 
1176     // Get the list of all the symbols in this section.
1177     SectionSymbolsTy &Symbols = AllSymbols[Section];
1178     std::vector<MappingSymbolPair> MappingSymbols;
1179     if (hasMappingSymbols(Obj)) {
1180       for (const auto &Symb : Symbols) {
1181         uint64_t Address = std::get<0>(Symb);
1182         StringRef Name = std::get<1>(Symb);
1183         if (Name.startswith("$d"))
1184           MappingSymbols.emplace_back(Address - SectionAddr, 'd');
1185         if (Name.startswith("$x"))
1186           MappingSymbols.emplace_back(Address - SectionAddr, 'x');
1187         if (Name.startswith("$a"))
1188           MappingSymbols.emplace_back(Address - SectionAddr, 'a');
1189         if (Name.startswith("$t"))
1190           MappingSymbols.emplace_back(Address - SectionAddr, 't');
1191       }
1192     }
1193 
1194     llvm::sort(MappingSymbols);
1195 
1196     if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1197       // AMDGPU disassembler uses symbolizer for printing labels
1198       std::unique_ptr<MCRelocationInfo> RelInfo(
1199         TheTarget->createMCRelocationInfo(TripleName, Ctx));
1200       if (RelInfo) {
1201         std::unique_ptr<MCSymbolizer> Symbolizer(
1202           TheTarget->createMCSymbolizer(
1203             TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo)));
1204         DisAsm->setSymbolizer(std::move(Symbolizer));
1205       }
1206     }
1207 
1208     StringRef SegmentName = "";
1209     if (const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj)) {
1210       DataRefImpl DR = Section.getRawDataRefImpl();
1211       SegmentName = MachO->getSectionFinalSegmentName(DR);
1212     }
1213     StringRef SectionName;
1214     error(Section.getName(SectionName));
1215 
1216     // If the section has no symbol at the start, just insert a dummy one.
1217     if (Symbols.empty() || std::get<0>(Symbols[0]) != 0) {
1218       Symbols.insert(
1219           Symbols.begin(),
1220           std::make_tuple(SectionAddr, SectionName,
1221                           Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT));
1222     }
1223 
1224     SmallString<40> Comments;
1225     raw_svector_ostream CommentStream(Comments);
1226 
1227     ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(
1228         unwrapOrError(Section.getContents(), Obj->getFileName()));
1229 
1230     uint64_t VMAAdjustment = 0;
1231     if (shouldAdjustVA(Section))
1232       VMAAdjustment = AdjustVMA;
1233 
1234     uint64_t Size;
1235     uint64_t Index;
1236     bool PrintedSection = false;
1237     std::vector<RelocationRef> Rels = RelocMap[Section];
1238     std::vector<RelocationRef>::const_iterator RelCur = Rels.begin();
1239     std::vector<RelocationRef>::const_iterator RelEnd = Rels.end();
1240     // Disassemble symbol by symbol.
1241     for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) {
1242       std::string SymbolName = std::get<1>(Symbols[SI]).str();
1243       if (Demangle)
1244         SymbolName = demangle(SymbolName);
1245 
1246       // Skip if --disassemble-functions is not empty and the symbol is not in
1247       // the list.
1248       if (!DisasmFuncsSet.empty() && !DisasmFuncsSet.count(SymbolName))
1249         continue;
1250 
1251       uint64_t Start = std::get<0>(Symbols[SI]);
1252       if (Start < SectionAddr || StopAddress <= Start)
1253         continue;
1254       else
1255         FoundDisasmFuncsSet.insert(SymbolName);
1256 
1257       // The end is the section end, the beginning of the next symbol, or
1258       // --stop-address.
1259       uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress);
1260       if (SI + 1 < SE)
1261         End = std::min(End, std::get<0>(Symbols[SI + 1]));
1262       if (Start >= End || End <= StartAddress)
1263         continue;
1264       Start -= SectionAddr;
1265       End -= SectionAddr;
1266 
1267       if (!PrintedSection) {
1268         PrintedSection = true;
1269         outs() << "\nDisassembly of section ";
1270         if (!SegmentName.empty())
1271           outs() << SegmentName << ",";
1272         outs() << SectionName << ":\n";
1273       }
1274 
1275       if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) {
1276         if (std::get<2>(Symbols[SI]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1277           // skip amd_kernel_code_t at the begining of kernel symbol (256 bytes)
1278           Start += 256;
1279         }
1280         if (SI == SE - 1 ||
1281             std::get<2>(Symbols[SI + 1]) == ELF::STT_AMDGPU_HSA_KERNEL) {
1282           // cut trailing zeroes at the end of kernel
1283           // cut up to 256 bytes
1284           const uint64_t EndAlign = 256;
1285           const auto Limit = End - (std::min)(EndAlign, End - Start);
1286           while (End > Limit &&
1287             *reinterpret_cast<const support::ulittle32_t*>(&Bytes[End - 4]) == 0)
1288             End -= 4;
1289         }
1290       }
1291 
1292       outs() << '\n';
1293       if (!NoLeadingAddr)
1294         outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ",
1295                          SectionAddr + Start + VMAAdjustment);
1296 
1297       outs() << SymbolName << ":\n";
1298 
1299       // Don't print raw contents of a virtual section. A virtual section
1300       // doesn't have any contents in the file.
1301       if (Section.isVirtual()) {
1302         outs() << "...\n";
1303         continue;
1304       }
1305 
1306 #ifndef NDEBUG
1307       raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
1308 #else
1309       raw_ostream &DebugOut = nulls();
1310 #endif
1311 
1312       // Some targets (like WebAssembly) have a special prelude at the start
1313       // of each symbol.
1314       DisAsm->onSymbolStart(SymbolName, Size, Bytes.slice(Start, End - Start),
1315                             SectionAddr + Start, DebugOut, CommentStream);
1316       Start += Size;
1317 
1318       Index = Start;
1319       if (SectionAddr < StartAddress)
1320         Index = std::max<uint64_t>(Index, StartAddress - SectionAddr);
1321 
1322       // If there is a data/common symbol inside an ELF text section and we are
1323       // only disassembling text (applicable all architectures), we are in a
1324       // situation where we must print the data and not disassemble it.
1325       if (Obj->isELF() && !DisassembleAll && Section.isText()) {
1326         uint8_t SymTy = std::get<2>(Symbols[SI]);
1327         if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) {
1328           dumpELFData(SectionAddr, Index, End, Bytes);
1329           Index = End;
1330         }
1331       }
1332 
1333       bool CheckARMELFData = hasMappingSymbols(Obj) &&
1334                              std::get<2>(Symbols[SI]) != ELF::STT_OBJECT &&
1335                              !DisassembleAll;
1336       while (Index < End) {
1337         // ARM and AArch64 ELF binaries can interleave data and text in the
1338         // same section. We rely on the markers introduced to understand what
1339         // we need to dump. If the data marker is within a function, it is
1340         // denoted as a word/short etc.
1341         if (CheckARMELFData &&
1342             getMappingSymbolKind(MappingSymbols, Index) == 'd') {
1343           Index = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes,
1344                                  MappingSymbols);
1345           continue;
1346         }
1347 
1348         // When -z or --disassemble-zeroes are given we always dissasemble
1349         // them. Otherwise we might want to skip zero bytes we see.
1350         if (!DisassembleZeroes) {
1351           uint64_t MaxOffset = End - Index;
1352           // For -reloc: print zero blocks patched by relocations, so that
1353           // relocations can be shown in the dump.
1354           if (RelCur != RelEnd)
1355             MaxOffset = RelCur->getOffset() - Index;
1356 
1357           if (size_t N =
1358                   countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) {
1359             outs() << "\t\t..." << '\n';
1360             Index += N;
1361             continue;
1362           }
1363         }
1364 
1365         if (SecondarySTI) {
1366           if (getMappingSymbolKind(MappingSymbols, Index) == 'a') {
1367             STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI;
1368             DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm;
1369           } else if (getMappingSymbolKind(MappingSymbols, Index) == 't') {
1370             STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI;
1371             DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm;
1372           }
1373         }
1374 
1375         // Disassemble a real instruction or a data when disassemble all is
1376         // provided
1377         MCInst Inst;
1378         bool Disassembled = DisAsm->getInstruction(
1379             Inst, Size, Bytes.slice(Index), SectionAddr + Index, DebugOut,
1380             CommentStream);
1381         if (Size == 0)
1382           Size = 1;
1383 
1384         PIP.printInst(
1385             *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size),
1386             {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, outs(),
1387             "", *STI, &SP, &Rels);
1388         outs() << CommentStream.str();
1389         Comments.clear();
1390 
1391         // Try to resolve the target of a call, tail call, etc. to a specific
1392         // symbol.
1393         if (MIA && (MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) ||
1394                     MIA->isConditionalBranch(Inst))) {
1395           uint64_t Target;
1396           if (MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target)) {
1397             // In a relocatable object, the target's section must reside in
1398             // the same section as the call instruction or it is accessed
1399             // through a relocation.
1400             //
1401             // In a non-relocatable object, the target may be in any section.
1402             //
1403             // N.B. We don't walk the relocations in the relocatable case yet.
1404             auto *TargetSectionSymbols = &Symbols;
1405             if (!Obj->isRelocatableObject()) {
1406               auto It = partition_point(
1407                   SectionAddresses,
1408                   [=](const std::pair<uint64_t, SectionRef> &O) {
1409                     return O.first <= Target;
1410                   });
1411               if (It != SectionAddresses.begin()) {
1412                 --It;
1413                 TargetSectionSymbols = &AllSymbols[It->second];
1414               } else {
1415                 TargetSectionSymbols = &AbsoluteSymbols;
1416               }
1417             }
1418 
1419             // Find the last symbol in the section whose offset is less than
1420             // or equal to the target. If there isn't a section that contains
1421             // the target, find the nearest preceding absolute symbol.
1422             auto TargetSym = partition_point(
1423                 *TargetSectionSymbols,
1424                 [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1425                   return std::get<0>(O) <= Target;
1426                 });
1427             if (TargetSym == TargetSectionSymbols->begin()) {
1428               TargetSectionSymbols = &AbsoluteSymbols;
1429               TargetSym = partition_point(
1430                   AbsoluteSymbols,
1431                   [=](const std::tuple<uint64_t, StringRef, uint8_t> &O) {
1432                     return std::get<0>(O) <= Target;
1433                   });
1434             }
1435             if (TargetSym != TargetSectionSymbols->begin()) {
1436               --TargetSym;
1437               uint64_t TargetAddress = std::get<0>(*TargetSym);
1438               StringRef TargetName = std::get<1>(*TargetSym);
1439               outs() << " <" << TargetName;
1440               uint64_t Disp = Target - TargetAddress;
1441               if (Disp)
1442                 outs() << "+0x" << Twine::utohexstr(Disp);
1443               outs() << '>';
1444             }
1445           }
1446         }
1447         outs() << "\n";
1448 
1449         // Hexagon does this in pretty printer
1450         if (Obj->getArch() != Triple::hexagon) {
1451           // Print relocation for instruction.
1452           while (RelCur != RelEnd) {
1453             uint64_t Offset = RelCur->getOffset();
1454             // If this relocation is hidden, skip it.
1455             if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) {
1456               ++RelCur;
1457               continue;
1458             }
1459 
1460             // Stop when RelCur's offset is past the current instruction.
1461             if (Offset >= Index + Size)
1462               break;
1463 
1464             // When --adjust-vma is used, update the address printed.
1465             if (RelCur->getSymbol() != Obj->symbol_end()) {
1466               Expected<section_iterator> SymSI =
1467                   RelCur->getSymbol()->getSection();
1468               if (SymSI && *SymSI != Obj->section_end() &&
1469                   shouldAdjustVA(**SymSI))
1470                 Offset += AdjustVMA;
1471             }
1472 
1473             printRelocation(*RelCur, SectionAddr + Offset, Is64Bits);
1474             ++RelCur;
1475           }
1476         }
1477 
1478         Index += Size;
1479       }
1480     }
1481   }
1482   StringSet<> MissingDisasmFuncsSet =
1483       set_difference(DisasmFuncsSet, FoundDisasmFuncsSet);
1484   for (StringRef MissingDisasmFunc : MissingDisasmFuncsSet.keys())
1485     warn("failed to disassemble missing function " + MissingDisasmFunc);
1486 }
1487 
1488 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) {
1489   const Target *TheTarget = getTarget(Obj);
1490 
1491   // Package up features to be passed to target/subtarget
1492   SubtargetFeatures Features = Obj->getFeatures();
1493   if (!MAttrs.empty())
1494     for (unsigned I = 0; I != MAttrs.size(); ++I)
1495       Features.AddFeature(MAttrs[I]);
1496 
1497   std::unique_ptr<const MCRegisterInfo> MRI(
1498       TheTarget->createMCRegInfo(TripleName));
1499   if (!MRI)
1500     report_error(Obj->getFileName(),
1501                  "no register info for target " + TripleName);
1502 
1503   // Set up disassembler.
1504   std::unique_ptr<const MCAsmInfo> AsmInfo(
1505       TheTarget->createMCAsmInfo(*MRI, TripleName));
1506   if (!AsmInfo)
1507     report_error(Obj->getFileName(),
1508                  "no assembly info for target " + TripleName);
1509   std::unique_ptr<const MCSubtargetInfo> STI(
1510       TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString()));
1511   if (!STI)
1512     report_error(Obj->getFileName(),
1513                  "no subtarget info for target " + TripleName);
1514   std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo());
1515   if (!MII)
1516     report_error(Obj->getFileName(),
1517                  "no instruction info for target " + TripleName);
1518   MCObjectFileInfo MOFI;
1519   MCContext Ctx(AsmInfo.get(), MRI.get(), &MOFI);
1520   // FIXME: for now initialize MCObjectFileInfo with default values
1521   MOFI.InitMCObjectFileInfo(Triple(TripleName), false, Ctx);
1522 
1523   std::unique_ptr<MCDisassembler> DisAsm(
1524       TheTarget->createMCDisassembler(*STI, Ctx));
1525   if (!DisAsm)
1526     report_error(Obj->getFileName(),
1527                  "no disassembler for target " + TripleName);
1528 
1529   // If we have an ARM object file, we need a second disassembler, because
1530   // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
1531   // We use mapping symbols to switch between the two assemblers, where
1532   // appropriate.
1533   std::unique_ptr<MCDisassembler> SecondaryDisAsm;
1534   std::unique_ptr<const MCSubtargetInfo> SecondarySTI;
1535   if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) {
1536     if (STI->checkFeatures("+thumb-mode"))
1537       Features.AddFeature("-thumb-mode");
1538     else
1539       Features.AddFeature("+thumb-mode");
1540     SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU,
1541                                                         Features.getString()));
1542     SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx));
1543   }
1544 
1545   std::unique_ptr<const MCInstrAnalysis> MIA(
1546       TheTarget->createMCInstrAnalysis(MII.get()));
1547 
1548   int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
1549   std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
1550       Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
1551   if (!IP)
1552     report_error(Obj->getFileName(),
1553                  "no instruction printer for target " + TripleName);
1554   IP->setPrintImmHex(PrintImmHex);
1555 
1556   PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName));
1557   SourcePrinter SP(Obj, TheTarget->getName());
1558 
1559   for (StringRef Opt : DisassemblerOptions)
1560     if (!IP->applyTargetSpecificCLOption(Opt))
1561       error("Unrecognized disassembler option: " + Opt);
1562 
1563   disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(),
1564                     MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP,
1565                     SP, InlineRelocs);
1566 }
1567 
1568 void printRelocations(const ObjectFile *Obj) {
1569   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 :
1570                                                  "%08" PRIx64;
1571   // Regular objdump doesn't print relocations in non-relocatable object
1572   // files.
1573   if (!Obj->isRelocatableObject())
1574     return;
1575 
1576   // Build a mapping from relocation target to a vector of relocation
1577   // sections. Usually, there is an only one relocation section for
1578   // each relocated section.
1579   MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec;
1580   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1581     if (Section.relocation_begin() == Section.relocation_end())
1582       continue;
1583     const SectionRef TargetSec = *Section.getRelocatedSection();
1584     SecToRelSec[TargetSec].push_back(Section);
1585   }
1586 
1587   for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) {
1588     StringRef SecName;
1589     error(P.first.getName(SecName));
1590     outs() << "RELOCATION RECORDS FOR [" << SecName << "]:\n";
1591 
1592     for (SectionRef Section : P.second) {
1593       for (const RelocationRef &Reloc : Section.relocations()) {
1594         uint64_t Address = Reloc.getOffset();
1595         SmallString<32> RelocName;
1596         SmallString<32> ValueStr;
1597         if (Address < StartAddress || Address > StopAddress || getHidden(Reloc))
1598           continue;
1599         Reloc.getTypeName(RelocName);
1600         error(getRelocationValueString(Reloc, ValueStr));
1601         outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1602                << ValueStr << "\n";
1603       }
1604     }
1605     outs() << "\n";
1606   }
1607 }
1608 
1609 void printDynamicRelocations(const ObjectFile *Obj) {
1610   // For the moment, this option is for ELF only
1611   if (!Obj->isELF())
1612     return;
1613 
1614   const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj);
1615   if (!Elf || Elf->getEType() != ELF::ET_DYN) {
1616     error("not a dynamic object");
1617     return;
1618   }
1619 
1620   std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections();
1621   if (DynRelSec.empty())
1622     return;
1623 
1624   outs() << "DYNAMIC RELOCATION RECORDS\n";
1625   StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1626   for (const SectionRef &Section : DynRelSec)
1627     for (const RelocationRef &Reloc : Section.relocations()) {
1628       uint64_t Address = Reloc.getOffset();
1629       SmallString<32> RelocName;
1630       SmallString<32> ValueStr;
1631       Reloc.getTypeName(RelocName);
1632       error(getRelocationValueString(Reloc, ValueStr));
1633       outs() << format(Fmt.data(), Address) << " " << RelocName << " "
1634              << ValueStr << "\n";
1635     }
1636 }
1637 
1638 // Returns true if we need to show LMA column when dumping section headers. We
1639 // show it only when the platform is ELF and either we have at least one section
1640 // whose VMA and LMA are different and/or when --show-lma flag is used.
1641 static bool shouldDisplayLMA(const ObjectFile *Obj) {
1642   if (!Obj->isELF())
1643     return false;
1644   for (const SectionRef &S : ToolSectionFilter(*Obj))
1645     if (S.getAddress() != getELFSectionLMA(S))
1646       return true;
1647   return ShowLMA;
1648 }
1649 
1650 void printSectionHeaders(const ObjectFile *Obj) {
1651   bool HasLMAColumn = shouldDisplayLMA(Obj);
1652   if (HasLMAColumn)
1653     outs() << "Sections:\n"
1654               "Idx Name          Size     VMA              LMA              "
1655               "Type\n";
1656   else
1657     outs() << "Sections:\n"
1658               "Idx Name          Size     VMA          Type\n";
1659 
1660   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1661     StringRef Name;
1662     error(Section.getName(Name));
1663     uint64_t VMA = Section.getAddress();
1664     if (shouldAdjustVA(Section))
1665       VMA += AdjustVMA;
1666 
1667     uint64_t Size = Section.getSize();
1668     bool Text = Section.isText();
1669     bool Data = Section.isData();
1670     bool BSS = Section.isBSS();
1671     std::string Type = (std::string(Text ? "TEXT " : "") +
1672                         (Data ? "DATA " : "") + (BSS ? "BSS" : ""));
1673 
1674     if (HasLMAColumn)
1675       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %016" PRIx64
1676                        " %s\n",
1677                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1678                        VMA, getELFSectionLMA(Section), Type.c_str());
1679     else
1680       outs() << format("%3d %-13s %08" PRIx64 " %016" PRIx64 " %s\n",
1681                        (unsigned)Section.getIndex(), Name.str().c_str(), Size,
1682                        VMA, Type.c_str());
1683   }
1684   outs() << "\n";
1685 }
1686 
1687 void printSectionContents(const ObjectFile *Obj) {
1688   for (const SectionRef &Section : ToolSectionFilter(*Obj)) {
1689     StringRef Name;
1690     error(Section.getName(Name));
1691     uint64_t BaseAddr = Section.getAddress();
1692     uint64_t Size = Section.getSize();
1693     if (!Size)
1694       continue;
1695 
1696     outs() << "Contents of section " << Name << ":\n";
1697     if (Section.isBSS()) {
1698       outs() << format("<skipping contents of bss section at [%04" PRIx64
1699                        ", %04" PRIx64 ")>\n",
1700                        BaseAddr, BaseAddr + Size);
1701       continue;
1702     }
1703 
1704     StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName());
1705 
1706     // Dump out the content as hex and printable ascii characters.
1707     for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) {
1708       outs() << format(" %04" PRIx64 " ", BaseAddr + Addr);
1709       // Dump line of hex.
1710       for (std::size_t I = 0; I < 16; ++I) {
1711         if (I != 0 && I % 4 == 0)
1712           outs() << ' ';
1713         if (Addr + I < End)
1714           outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true)
1715                  << hexdigit(Contents[Addr + I] & 0xF, true);
1716         else
1717           outs() << "  ";
1718       }
1719       // Print ascii.
1720       outs() << "  ";
1721       for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) {
1722         if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF))
1723           outs() << Contents[Addr + I];
1724         else
1725           outs() << ".";
1726       }
1727       outs() << "\n";
1728     }
1729   }
1730 }
1731 
1732 void printSymbolTable(const ObjectFile *O, StringRef ArchiveName,
1733                       StringRef ArchitectureName) {
1734   outs() << "SYMBOL TABLE:\n";
1735 
1736   if (const COFFObjectFile *Coff = dyn_cast<const COFFObjectFile>(O)) {
1737     printCOFFSymbolTable(Coff);
1738     return;
1739   }
1740 
1741   const StringRef FileName = O->getFileName();
1742   for (auto I = O->symbol_begin(), E = O->symbol_end(); I != E; ++I) {
1743     const SymbolRef &Symbol = *I;
1744     uint64_t Address = unwrapOrError(Symbol.getAddress(), ArchiveName, FileName,
1745                                      ArchitectureName);
1746     if ((Address < StartAddress) || (Address > StopAddress))
1747       continue;
1748     SymbolRef::Type Type = unwrapOrError(Symbol.getType(), ArchiveName,
1749                                          FileName, ArchitectureName);
1750     uint32_t Flags = Symbol.getFlags();
1751     section_iterator Section = unwrapOrError(Symbol.getSection(), ArchiveName,
1752                                              FileName, ArchitectureName);
1753     StringRef Name;
1754     if (Type == SymbolRef::ST_Debug && Section != O->section_end())
1755       Section->getName(Name);
1756     else
1757       Name = unwrapOrError(Symbol.getName(), ArchiveName, FileName,
1758                            ArchitectureName);
1759 
1760     bool Global = Flags & SymbolRef::SF_Global;
1761     bool Weak = Flags & SymbolRef::SF_Weak;
1762     bool Absolute = Flags & SymbolRef::SF_Absolute;
1763     bool Common = Flags & SymbolRef::SF_Common;
1764     bool Hidden = Flags & SymbolRef::SF_Hidden;
1765 
1766     char GlobLoc = ' ';
1767     if (Type != SymbolRef::ST_Unknown)
1768       GlobLoc = Global ? 'g' : 'l';
1769     char Debug = (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File)
1770                  ? 'd' : ' ';
1771     char FileFunc = ' ';
1772     if (Type == SymbolRef::ST_File)
1773       FileFunc = 'f';
1774     else if (Type == SymbolRef::ST_Function)
1775       FileFunc = 'F';
1776     else if (Type == SymbolRef::ST_Data)
1777       FileFunc = 'O';
1778 
1779     const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 :
1780                                                    "%08" PRIx64;
1781 
1782     outs() << format(Fmt, Address) << " "
1783            << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' '
1784            << (Weak ? 'w' : ' ') // Weak?
1785            << ' ' // Constructor. Not supported yet.
1786            << ' ' // Warning. Not supported yet.
1787            << ' ' // Indirect reference to another symbol.
1788            << Debug // Debugging (d) or dynamic (D) symbol.
1789            << FileFunc // Name of function (F), file (f) or object (O).
1790            << ' ';
1791     if (Absolute) {
1792       outs() << "*ABS*";
1793     } else if (Common) {
1794       outs() << "*COM*";
1795     } else if (Section == O->section_end()) {
1796       outs() << "*UND*";
1797     } else {
1798       if (const MachOObjectFile *MachO =
1799           dyn_cast<const MachOObjectFile>(O)) {
1800         DataRefImpl DR = Section->getRawDataRefImpl();
1801         StringRef SegmentName = MachO->getSectionFinalSegmentName(DR);
1802         outs() << SegmentName << ",";
1803       }
1804       StringRef SectionName;
1805       error(Section->getName(SectionName));
1806       outs() << SectionName;
1807     }
1808 
1809     if (Common || isa<ELFObjectFileBase>(O)) {
1810       uint64_t Val =
1811           Common ? Symbol.getAlignment() : ELFSymbolRef(Symbol).getSize();
1812       outs() << format("\t%08" PRIx64, Val);
1813     }
1814 
1815     if (isa<ELFObjectFileBase>(O)) {
1816       uint8_t Other = ELFSymbolRef(Symbol).getOther();
1817       switch (Other) {
1818       case ELF::STV_DEFAULT:
1819         break;
1820       case ELF::STV_INTERNAL:
1821         outs() << " .internal";
1822         break;
1823       case ELF::STV_HIDDEN:
1824         outs() << " .hidden";
1825         break;
1826       case ELF::STV_PROTECTED:
1827         outs() << " .protected";
1828         break;
1829       default:
1830         outs() << format(" 0x%02x", Other);
1831         break;
1832       }
1833     } else if (Hidden) {
1834       outs() << " .hidden";
1835     }
1836 
1837     if (Demangle)
1838       outs() << ' ' << demangle(Name) << '\n';
1839     else
1840       outs() << ' ' << Name << '\n';
1841   }
1842 }
1843 
1844 static void printUnwindInfo(const ObjectFile *O) {
1845   outs() << "Unwind info:\n\n";
1846 
1847   if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O))
1848     printCOFFUnwindInfo(Coff);
1849   else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O))
1850     printMachOUnwindInfo(MachO);
1851   else
1852     // TODO: Extract DWARF dump tool to objdump.
1853     WithColor::error(errs(), ToolName)
1854         << "This operation is only currently supported "
1855            "for COFF and MachO object files.\n";
1856 }
1857 
1858 /// Dump the raw contents of the __clangast section so the output can be piped
1859 /// into llvm-bcanalyzer.
1860 void printRawClangAST(const ObjectFile *Obj) {
1861   if (outs().is_displayed()) {
1862     WithColor::error(errs(), ToolName)
1863         << "The -raw-clang-ast option will dump the raw binary contents of "
1864            "the clang ast section.\n"
1865            "Please redirect the output to a file or another program such as "
1866            "llvm-bcanalyzer.\n";
1867     return;
1868   }
1869 
1870   StringRef ClangASTSectionName("__clangast");
1871   if (isa<COFFObjectFile>(Obj)) {
1872     ClangASTSectionName = "clangast";
1873   }
1874 
1875   Optional<object::SectionRef> ClangASTSection;
1876   for (auto Sec : ToolSectionFilter(*Obj)) {
1877     StringRef Name;
1878     Sec.getName(Name);
1879     if (Name == ClangASTSectionName) {
1880       ClangASTSection = Sec;
1881       break;
1882     }
1883   }
1884   if (!ClangASTSection)
1885     return;
1886 
1887   StringRef ClangASTContents = unwrapOrError(
1888       ClangASTSection.getValue().getContents(), Obj->getFileName());
1889   outs().write(ClangASTContents.data(), ClangASTContents.size());
1890 }
1891 
1892 static void printFaultMaps(const ObjectFile *Obj) {
1893   StringRef FaultMapSectionName;
1894 
1895   if (isa<ELFObjectFileBase>(Obj)) {
1896     FaultMapSectionName = ".llvm_faultmaps";
1897   } else if (isa<MachOObjectFile>(Obj)) {
1898     FaultMapSectionName = "__llvm_faultmaps";
1899   } else {
1900     WithColor::error(errs(), ToolName)
1901         << "This operation is only currently supported "
1902            "for ELF and Mach-O executable files.\n";
1903     return;
1904   }
1905 
1906   Optional<object::SectionRef> FaultMapSection;
1907 
1908   for (auto Sec : ToolSectionFilter(*Obj)) {
1909     StringRef Name;
1910     Sec.getName(Name);
1911     if (Name == FaultMapSectionName) {
1912       FaultMapSection = Sec;
1913       break;
1914     }
1915   }
1916 
1917   outs() << "FaultMap table:\n";
1918 
1919   if (!FaultMapSection.hasValue()) {
1920     outs() << "<not found>\n";
1921     return;
1922   }
1923 
1924   StringRef FaultMapContents =
1925       unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName());
1926   FaultMapParser FMP(FaultMapContents.bytes_begin(),
1927                      FaultMapContents.bytes_end());
1928 
1929   outs() << FMP;
1930 }
1931 
1932 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) {
1933   if (O->isELF()) {
1934     printELFFileHeader(O);
1935     printELFDynamicSection(O);
1936     printELFSymbolVersionInfo(O);
1937     return;
1938   }
1939   if (O->isCOFF())
1940     return printCOFFFileHeader(O);
1941   if (O->isWasm())
1942     return printWasmFileHeader(O);
1943   if (O->isMachO()) {
1944     printMachOFileHeader(O);
1945     if (!OnlyFirst)
1946       printMachOLoadCommands(O);
1947     return;
1948   }
1949   report_error(O->getFileName(), "Invalid/Unsupported object file format");
1950 }
1951 
1952 static void printFileHeaders(const ObjectFile *O) {
1953   if (!O->isELF() && !O->isCOFF())
1954     report_error(O->getFileName(), "Invalid/Unsupported object file format");
1955 
1956   Triple::ArchType AT = O->getArch();
1957   outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n";
1958   uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName());
1959 
1960   StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64;
1961   outs() << "start address: "
1962          << "0x" << format(Fmt.data(), Address) << "\n\n";
1963 }
1964 
1965 static void printArchiveChild(StringRef Filename, const Archive::Child &C) {
1966   Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1967   if (!ModeOrErr) {
1968     WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n";
1969     consumeError(ModeOrErr.takeError());
1970     return;
1971   }
1972   sys::fs::perms Mode = ModeOrErr.get();
1973   outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1974   outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1975   outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1976   outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1977   outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1978   outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1979   outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1980   outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1981   outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1982 
1983   outs() << " ";
1984 
1985   outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename),
1986                    unwrapOrError(C.getGID(), Filename),
1987                    unwrapOrError(C.getRawSize(), Filename));
1988 
1989   StringRef RawLastModified = C.getRawLastModified();
1990   unsigned Seconds;
1991   if (RawLastModified.getAsInteger(10, Seconds))
1992     outs() << "(date: \"" << RawLastModified
1993            << "\" contains non-decimal chars) ";
1994   else {
1995     // Since ctime(3) returns a 26 character string of the form:
1996     // "Sun Sep 16 01:03:52 1973\n\0"
1997     // just print 24 characters.
1998     time_t t = Seconds;
1999     outs() << format("%.24s ", ctime(&t));
2000   }
2001 
2002   StringRef Name = "";
2003   Expected<StringRef> NameOrErr = C.getName();
2004   if (!NameOrErr) {
2005     consumeError(NameOrErr.takeError());
2006     Name = unwrapOrError(C.getRawName(), Filename);
2007   } else {
2008     Name = NameOrErr.get();
2009   }
2010   outs() << Name << "\n";
2011 }
2012 
2013 static void dumpObject(ObjectFile *O, const Archive *A = nullptr,
2014                        const Archive::Child *C = nullptr) {
2015   // Avoid other output when using a raw option.
2016   if (!RawClangAST) {
2017     outs() << '\n';
2018     if (A)
2019       outs() << A->getFileName() << "(" << O->getFileName() << ")";
2020     else
2021       outs() << O->getFileName();
2022     outs() << ":\tfile format " << O->getFileFormatName() << "\n\n";
2023   }
2024 
2025   StringRef ArchiveName = A ? A->getFileName() : "";
2026   if (FileHeaders)
2027     printFileHeaders(O);
2028   if (ArchiveHeaders && !MachOOpt && C)
2029     printArchiveChild(ArchiveName, *C);
2030   if (Disassemble)
2031     disassembleObject(O, Relocations);
2032   if (Relocations && !Disassemble)
2033     printRelocations(O);
2034   if (DynamicRelocations)
2035     printDynamicRelocations(O);
2036   if (SectionHeaders)
2037     printSectionHeaders(O);
2038   if (SectionContents)
2039     printSectionContents(O);
2040   if (SymbolTable)
2041     printSymbolTable(O, ArchiveName);
2042   if (UnwindInfo)
2043     printUnwindInfo(O);
2044   if (PrivateHeaders || FirstPrivateHeader)
2045     printPrivateFileHeaders(O, FirstPrivateHeader);
2046   if (ExportsTrie)
2047     printExportsTrie(O);
2048   if (Rebase)
2049     printRebaseTable(O);
2050   if (Bind)
2051     printBindTable(O);
2052   if (LazyBind)
2053     printLazyBindTable(O);
2054   if (WeakBind)
2055     printWeakBindTable(O);
2056   if (RawClangAST)
2057     printRawClangAST(O);
2058   if (FaultMapSection)
2059     printFaultMaps(O);
2060   if (DwarfDumpType != DIDT_Null) {
2061     std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O);
2062     // Dump the complete DWARF structure.
2063     DIDumpOptions DumpOpts;
2064     DumpOpts.DumpType = DwarfDumpType;
2065     DICtx->dump(outs(), DumpOpts);
2066   }
2067 }
2068 
2069 static void dumpObject(const COFFImportFile *I, const Archive *A,
2070                        const Archive::Child *C = nullptr) {
2071   StringRef ArchiveName = A ? A->getFileName() : "";
2072 
2073   // Avoid other output when using a raw option.
2074   if (!RawClangAST)
2075     outs() << '\n'
2076            << ArchiveName << "(" << I->getFileName() << ")"
2077            << ":\tfile format COFF-import-file"
2078            << "\n\n";
2079 
2080   if (ArchiveHeaders && !MachOOpt && C)
2081     printArchiveChild(ArchiveName, *C);
2082   if (SymbolTable)
2083     printCOFFSymbolTable(I);
2084 }
2085 
2086 /// Dump each object file in \a a;
2087 static void dumpArchive(const Archive *A) {
2088   Error Err = Error::success();
2089   for (auto &C : A->children(Err)) {
2090     Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
2091     if (!ChildOrErr) {
2092       if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
2093         report_error(std::move(E), A->getFileName(), C);
2094       continue;
2095     }
2096     if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get()))
2097       dumpObject(O, A, &C);
2098     else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get()))
2099       dumpObject(I, A, &C);
2100     else
2101       report_error(errorCodeToError(object_error::invalid_file_type),
2102                    A->getFileName());
2103   }
2104   if (Err)
2105     report_error(std::move(Err), A->getFileName());
2106 }
2107 
2108 /// Open file and figure out how to dump it.
2109 static void dumpInput(StringRef file) {
2110   // If we are using the Mach-O specific object file parser, then let it parse
2111   // the file and process the command line options.  So the -arch flags can
2112   // be used to select specific slices, etc.
2113   if (MachOOpt) {
2114     parseInputMachO(file);
2115     return;
2116   }
2117 
2118   // Attempt to open the binary.
2119   OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file);
2120   Binary &Binary = *OBinary.getBinary();
2121 
2122   if (Archive *A = dyn_cast<Archive>(&Binary))
2123     dumpArchive(A);
2124   else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary))
2125     dumpObject(O);
2126   else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary))
2127     parseInputMachO(UB);
2128   else
2129     report_error(errorCodeToError(object_error::invalid_file_type), file);
2130 }
2131 } // namespace llvm
2132 
2133 int main(int argc, char **argv) {
2134   using namespace llvm;
2135   InitLLVM X(argc, argv);
2136   const cl::OptionCategory *OptionFilters[] = {&ObjdumpCat, &MachOCat};
2137   cl::HideUnrelatedOptions(OptionFilters);
2138 
2139   // Initialize targets and assembly printers/parsers.
2140   InitializeAllTargetInfos();
2141   InitializeAllTargetMCs();
2142   InitializeAllDisassemblers();
2143 
2144   // Register the target printer for --version.
2145   cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
2146 
2147   cl::ParseCommandLineOptions(argc, argv, "llvm object file dumper\n");
2148 
2149   if (StartAddress >= StopAddress)
2150     error("start address should be less than stop address");
2151 
2152   ToolName = argv[0];
2153 
2154   // Defaults to a.out if no filenames specified.
2155   if (InputFilenames.empty())
2156     InputFilenames.push_back("a.out");
2157 
2158   if (AllHeaders)
2159     ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations =
2160         SectionHeaders = SymbolTable = true;
2161 
2162   if (DisassembleAll || PrintSource || PrintLines ||
2163       (!DisassembleFunctions.empty()))
2164     Disassemble = true;
2165 
2166   if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null &&
2167       !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST &&
2168       !Relocations && !SectionHeaders && !SectionContents && !SymbolTable &&
2169       !UnwindInfo && !FaultMapSection &&
2170       !(MachOOpt &&
2171         (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie ||
2172          FirstPrivateHeader || IndirectSymbols || InfoPlist || LazyBind ||
2173          LinkOptHints || ObjcMetaData || Rebase || UniversalHeaders ||
2174          WeakBind || !FilterSections.empty()))) {
2175     cl::PrintHelpMessage();
2176     return 2;
2177   }
2178 
2179   DisasmFuncsSet.insert(DisassembleFunctions.begin(),
2180                         DisassembleFunctions.end());
2181 
2182   llvm::for_each(InputFilenames, dumpInput);
2183 
2184   warnOnNoMatchForSections();
2185 
2186   return EXIT_SUCCESS;
2187 }
2188