1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "SourcePrinter.h" 24 #include "WasmDump.h" 25 #include "XCOFFDump.h" 26 #include "llvm/ADT/IndexedMap.h" 27 #include "llvm/ADT/Optional.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Triple.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Demangle/Demangle.h" 38 #include "llvm/MC/MCAsmInfo.h" 39 #include "llvm/MC/MCContext.h" 40 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 41 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 42 #include "llvm/MC/MCInst.h" 43 #include "llvm/MC/MCInstPrinter.h" 44 #include "llvm/MC/MCInstrAnalysis.h" 45 #include "llvm/MC/MCInstrInfo.h" 46 #include "llvm/MC/MCObjectFileInfo.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/MC/MCSubtargetInfo.h" 49 #include "llvm/MC/MCTargetOptions.h" 50 #include "llvm/MC/TargetRegistry.h" 51 #include "llvm/Object/Archive.h" 52 #include "llvm/Object/COFF.h" 53 #include "llvm/Object/COFFImportFile.h" 54 #include "llvm/Object/ELFObjectFile.h" 55 #include "llvm/Object/FaultMapParser.h" 56 #include "llvm/Object/MachO.h" 57 #include "llvm/Object/MachOUniversal.h" 58 #include "llvm/Object/ObjectFile.h" 59 #include "llvm/Object/Wasm.h" 60 #include "llvm/Option/Arg.h" 61 #include "llvm/Option/ArgList.h" 62 #include "llvm/Option/Option.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Errc.h" 66 #include "llvm/Support/FileSystem.h" 67 #include "llvm/Support/Format.h" 68 #include "llvm/Support/FormatVariadic.h" 69 #include "llvm/Support/GraphWriter.h" 70 #include "llvm/Support/Host.h" 71 #include "llvm/Support/InitLLVM.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/SourceMgr.h" 74 #include "llvm/Support/StringSaver.h" 75 #include "llvm/Support/TargetSelect.h" 76 #include "llvm/Support/WithColor.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include <algorithm> 79 #include <cctype> 80 #include <cstring> 81 #include <system_error> 82 #include <unordered_map> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace llvm::object; 87 using namespace llvm::objdump; 88 using namespace llvm::opt; 89 90 namespace { 91 92 class CommonOptTable : public opt::OptTable { 93 public: 94 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 95 const char *Description) 96 : OptTable(OptionInfos), Usage(Usage), Description(Description) { 97 setGroupedShortOptions(true); 98 } 99 100 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 101 Argv0 = sys::path::filename(Argv0); 102 opt::OptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), Description, 103 ShowHidden, ShowHidden); 104 // TODO Replace this with OptTable API once it adds extrahelp support. 105 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 106 } 107 108 private: 109 const char *Usage; 110 const char *Description; 111 }; 112 113 // ObjdumpOptID is in ObjdumpOptID.h 114 115 #define PREFIX(NAME, VALUE) const char *const OBJDUMP_##NAME[] = VALUE; 116 #include "ObjdumpOpts.inc" 117 #undef PREFIX 118 119 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 120 #define OBJDUMP_nullptr nullptr 121 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 122 HELPTEXT, METAVAR, VALUES) \ 123 {OBJDUMP_##PREFIX, NAME, HELPTEXT, \ 124 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 125 PARAM, FLAGS, OBJDUMP_##GROUP, \ 126 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 127 #include "ObjdumpOpts.inc" 128 #undef OPTION 129 #undef OBJDUMP_nullptr 130 }; 131 132 class ObjdumpOptTable : public CommonOptTable { 133 public: 134 ObjdumpOptTable() 135 : CommonOptTable(ObjdumpInfoTable, " [options] <input object files>", 136 "llvm object file dumper") {} 137 }; 138 139 enum OtoolOptID { 140 OTOOL_INVALID = 0, // This is not an option ID. 141 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 142 HELPTEXT, METAVAR, VALUES) \ 143 OTOOL_##ID, 144 #include "OtoolOpts.inc" 145 #undef OPTION 146 }; 147 148 #define PREFIX(NAME, VALUE) const char *const OTOOL_##NAME[] = VALUE; 149 #include "OtoolOpts.inc" 150 #undef PREFIX 151 152 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 153 #define OTOOL_nullptr nullptr 154 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 155 HELPTEXT, METAVAR, VALUES) \ 156 {OTOOL_##PREFIX, NAME, HELPTEXT, \ 157 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 158 PARAM, FLAGS, OTOOL_##GROUP, \ 159 OTOOL_##ALIAS, ALIASARGS, VALUES}, 160 #include "OtoolOpts.inc" 161 #undef OPTION 162 #undef OTOOL_nullptr 163 }; 164 165 class OtoolOptTable : public CommonOptTable { 166 public: 167 OtoolOptTable() 168 : CommonOptTable(OtoolInfoTable, " [option...] [file...]", 169 "Mach-O object file displaying tool") {} 170 }; 171 172 } // namespace 173 174 #define DEBUG_TYPE "objdump" 175 176 static uint64_t AdjustVMA; 177 static bool AllHeaders; 178 static std::string ArchName; 179 bool objdump::ArchiveHeaders; 180 bool objdump::Demangle; 181 bool objdump::Disassemble; 182 bool objdump::DisassembleAll; 183 bool objdump::SymbolDescription; 184 static std::vector<std::string> DisassembleSymbols; 185 static bool DisassembleZeroes; 186 static std::vector<std::string> DisassemblerOptions; 187 DIDumpType objdump::DwarfDumpType; 188 static bool DynamicRelocations; 189 static bool FaultMapSection; 190 static bool FileHeaders; 191 bool objdump::SectionContents; 192 static std::vector<std::string> InputFilenames; 193 bool objdump::PrintLines; 194 static bool MachOOpt; 195 std::string objdump::MCPU; 196 std::vector<std::string> objdump::MAttrs; 197 bool objdump::ShowRawInsn; 198 bool objdump::LeadingAddr; 199 static bool RawClangAST; 200 bool objdump::Relocations; 201 bool objdump::PrintImmHex; 202 bool objdump::PrivateHeaders; 203 std::vector<std::string> objdump::FilterSections; 204 bool objdump::SectionHeaders; 205 static bool ShowLMA; 206 bool objdump::PrintSource; 207 208 static uint64_t StartAddress; 209 static bool HasStartAddressFlag; 210 static uint64_t StopAddress = UINT64_MAX; 211 static bool HasStopAddressFlag; 212 213 bool objdump::SymbolTable; 214 static bool SymbolizeOperands; 215 static bool DynamicSymbolTable; 216 std::string objdump::TripleName; 217 bool objdump::UnwindInfo; 218 static bool Wide; 219 std::string objdump::Prefix; 220 uint32_t objdump::PrefixStrip; 221 222 DebugVarsFormat objdump::DbgVariables = DVDisabled; 223 224 int objdump::DbgIndent = 52; 225 226 static StringSet<> DisasmSymbolSet; 227 StringSet<> objdump::FoundSectionSet; 228 static StringRef ToolName; 229 230 namespace { 231 struct FilterResult { 232 // True if the section should not be skipped. 233 bool Keep; 234 235 // True if the index counter should be incremented, even if the section should 236 // be skipped. For example, sections may be skipped if they are not included 237 // in the --section flag, but we still want those to count toward the section 238 // count. 239 bool IncrementIndex; 240 }; 241 } // namespace 242 243 static FilterResult checkSectionFilter(object::SectionRef S) { 244 if (FilterSections.empty()) 245 return {/*Keep=*/true, /*IncrementIndex=*/true}; 246 247 Expected<StringRef> SecNameOrErr = S.getName(); 248 if (!SecNameOrErr) { 249 consumeError(SecNameOrErr.takeError()); 250 return {/*Keep=*/false, /*IncrementIndex=*/false}; 251 } 252 StringRef SecName = *SecNameOrErr; 253 254 // StringSet does not allow empty key so avoid adding sections with 255 // no name (such as the section with index 0) here. 256 if (!SecName.empty()) 257 FoundSectionSet.insert(SecName); 258 259 // Only show the section if it's in the FilterSections list, but always 260 // increment so the indexing is stable. 261 return {/*Keep=*/is_contained(FilterSections, SecName), 262 /*IncrementIndex=*/true}; 263 } 264 265 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 266 uint64_t *Idx) { 267 // Start at UINT64_MAX so that the first index returned after an increment is 268 // zero (after the unsigned wrap). 269 if (Idx) 270 *Idx = UINT64_MAX; 271 return SectionFilter( 272 [Idx](object::SectionRef S) { 273 FilterResult Result = checkSectionFilter(S); 274 if (Idx != nullptr && Result.IncrementIndex) 275 *Idx += 1; 276 return Result.Keep; 277 }, 278 O); 279 } 280 281 std::string objdump::getFileNameForError(const object::Archive::Child &C, 282 unsigned Index) { 283 Expected<StringRef> NameOrErr = C.getName(); 284 if (NameOrErr) 285 return std::string(NameOrErr.get()); 286 // If we have an error getting the name then we print the index of the archive 287 // member. Since we are already in an error state, we just ignore this error. 288 consumeError(NameOrErr.takeError()); 289 return "<file index: " + std::to_string(Index) + ">"; 290 } 291 292 void objdump::reportWarning(const Twine &Message, StringRef File) { 293 // Output order between errs() and outs() matters especially for archive 294 // files where the output is per member object. 295 outs().flush(); 296 WithColor::warning(errs(), ToolName) 297 << "'" << File << "': " << Message << "\n"; 298 } 299 300 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 301 outs().flush(); 302 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 303 exit(1); 304 } 305 306 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 307 StringRef ArchiveName, 308 StringRef ArchitectureName) { 309 assert(E); 310 outs().flush(); 311 WithColor::error(errs(), ToolName); 312 if (ArchiveName != "") 313 errs() << ArchiveName << "(" << FileName << ")"; 314 else 315 errs() << "'" << FileName << "'"; 316 if (!ArchitectureName.empty()) 317 errs() << " (for architecture " << ArchitectureName << ")"; 318 errs() << ": "; 319 logAllUnhandledErrors(std::move(E), errs()); 320 exit(1); 321 } 322 323 static void reportCmdLineWarning(const Twine &Message) { 324 WithColor::warning(errs(), ToolName) << Message << "\n"; 325 } 326 327 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 328 WithColor::error(errs(), ToolName) << Message << "\n"; 329 exit(1); 330 } 331 332 static void warnOnNoMatchForSections() { 333 SetVector<StringRef> MissingSections; 334 for (StringRef S : FilterSections) { 335 if (FoundSectionSet.count(S)) 336 return; 337 // User may specify a unnamed section. Don't warn for it. 338 if (!S.empty()) 339 MissingSections.insert(S); 340 } 341 342 // Warn only if no section in FilterSections is matched. 343 for (StringRef S : MissingSections) 344 reportCmdLineWarning("section '" + S + 345 "' mentioned in a -j/--section option, but not " 346 "found in any input file"); 347 } 348 349 static const Target *getTarget(const ObjectFile *Obj) { 350 // Figure out the target triple. 351 Triple TheTriple("unknown-unknown-unknown"); 352 if (TripleName.empty()) { 353 TheTriple = Obj->makeTriple(); 354 } else { 355 TheTriple.setTriple(Triple::normalize(TripleName)); 356 auto Arch = Obj->getArch(); 357 if (Arch == Triple::arm || Arch == Triple::armeb) 358 Obj->setARMSubArch(TheTriple); 359 } 360 361 // Get the target specific parser. 362 std::string Error; 363 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 364 Error); 365 if (!TheTarget) 366 reportError(Obj->getFileName(), "can't find target: " + Error); 367 368 // Update the triple name and return the found target. 369 TripleName = TheTriple.getTriple(); 370 return TheTarget; 371 } 372 373 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 374 return A.getOffset() < B.getOffset(); 375 } 376 377 static Error getRelocationValueString(const RelocationRef &Rel, 378 SmallVectorImpl<char> &Result) { 379 const ObjectFile *Obj = Rel.getObject(); 380 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 381 return getELFRelocationValueString(ELF, Rel, Result); 382 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 383 return getCOFFRelocationValueString(COFF, Rel, Result); 384 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 385 return getWasmRelocationValueString(Wasm, Rel, Result); 386 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 387 return getMachORelocationValueString(MachO, Rel, Result); 388 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 389 return getXCOFFRelocationValueString(XCOFF, Rel, Result); 390 llvm_unreachable("unknown object file format"); 391 } 392 393 /// Indicates whether this relocation should hidden when listing 394 /// relocations, usually because it is the trailing part of a multipart 395 /// relocation that will be printed as part of the leading relocation. 396 static bool getHidden(RelocationRef RelRef) { 397 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 398 if (!MachO) 399 return false; 400 401 unsigned Arch = MachO->getArch(); 402 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 403 uint64_t Type = MachO->getRelocationType(Rel); 404 405 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 406 // is always hidden. 407 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 408 return Type == MachO::GENERIC_RELOC_PAIR; 409 410 if (Arch == Triple::x86_64) { 411 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 412 // an X86_64_RELOC_SUBTRACTOR. 413 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 414 DataRefImpl RelPrev = Rel; 415 RelPrev.d.a--; 416 uint64_t PrevType = MachO->getRelocationType(RelPrev); 417 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 418 return true; 419 } 420 } 421 422 return false; 423 } 424 425 namespace { 426 427 /// Get the column at which we want to start printing the instruction 428 /// disassembly, taking into account anything which appears to the left of it. 429 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 430 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 431 } 432 433 static bool isAArch64Elf(const ObjectFile *Obj) { 434 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 435 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 436 } 437 438 static bool isArmElf(const ObjectFile *Obj) { 439 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 440 return Elf && Elf->getEMachine() == ELF::EM_ARM; 441 } 442 443 static bool hasMappingSymbols(const ObjectFile *Obj) { 444 return isArmElf(Obj) || isAArch64Elf(Obj); 445 } 446 447 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 448 const RelocationRef &Rel, uint64_t Address, 449 bool Is64Bits) { 450 StringRef Fmt = Is64Bits ? "\t\t%016" PRIx64 ": " : "\t\t\t%08" PRIx64 ": "; 451 SmallString<16> Name; 452 SmallString<32> Val; 453 Rel.getTypeName(Name); 454 if (Error E = getRelocationValueString(Rel, Val)) 455 reportError(std::move(E), FileName); 456 OS << format(Fmt.data(), Address) << Name << "\t" << Val; 457 } 458 459 class PrettyPrinter { 460 public: 461 virtual ~PrettyPrinter() = default; 462 virtual void 463 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 464 object::SectionedAddress Address, formatted_raw_ostream &OS, 465 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 466 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 467 LiveVariablePrinter &LVP) { 468 if (SP && (PrintSource || PrintLines)) 469 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 470 LVP.printBetweenInsts(OS, false); 471 472 size_t Start = OS.tell(); 473 if (LeadingAddr) 474 OS << format("%8" PRIx64 ":", Address.Address); 475 if (ShowRawInsn) { 476 OS << ' '; 477 dumpBytes(Bytes, OS); 478 } 479 480 // The output of printInst starts with a tab. Print some spaces so that 481 // the tab has 1 column and advances to the target tab stop. 482 unsigned TabStop = getInstStartColumn(STI); 483 unsigned Column = OS.tell() - Start; 484 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 485 486 if (MI) { 487 // See MCInstPrinter::printInst. On targets where a PC relative immediate 488 // is relative to the next instruction and the length of a MCInst is 489 // difficult to measure (x86), this is the address of the next 490 // instruction. 491 uint64_t Addr = 492 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 493 IP.printInst(MI, Addr, "", STI, OS); 494 } else 495 OS << "\t<unknown>"; 496 } 497 }; 498 PrettyPrinter PrettyPrinterInst; 499 500 class HexagonPrettyPrinter : public PrettyPrinter { 501 public: 502 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 503 formatted_raw_ostream &OS) { 504 uint32_t opcode = 505 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 506 if (LeadingAddr) 507 OS << format("%8" PRIx64 ":", Address); 508 if (ShowRawInsn) { 509 OS << "\t"; 510 dumpBytes(Bytes.slice(0, 4), OS); 511 OS << format("\t%08" PRIx32, opcode); 512 } 513 } 514 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 515 object::SectionedAddress Address, formatted_raw_ostream &OS, 516 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 517 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 518 LiveVariablePrinter &LVP) override { 519 if (SP && (PrintSource || PrintLines)) 520 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 521 if (!MI) { 522 printLead(Bytes, Address.Address, OS); 523 OS << " <unknown>"; 524 return; 525 } 526 std::string Buffer; 527 { 528 raw_string_ostream TempStream(Buffer); 529 IP.printInst(MI, Address.Address, "", STI, TempStream); 530 } 531 StringRef Contents(Buffer); 532 // Split off bundle attributes 533 auto PacketBundle = Contents.rsplit('\n'); 534 // Split off first instruction from the rest 535 auto HeadTail = PacketBundle.first.split('\n'); 536 auto Preamble = " { "; 537 auto Separator = ""; 538 539 // Hexagon's packets require relocations to be inline rather than 540 // clustered at the end of the packet. 541 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 542 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 543 auto PrintReloc = [&]() -> void { 544 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 545 if (RelCur->getOffset() == Address.Address) { 546 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 547 return; 548 } 549 ++RelCur; 550 } 551 }; 552 553 while (!HeadTail.first.empty()) { 554 OS << Separator; 555 Separator = "\n"; 556 if (SP && (PrintSource || PrintLines)) 557 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 558 printLead(Bytes, Address.Address, OS); 559 OS << Preamble; 560 Preamble = " "; 561 StringRef Inst; 562 auto Duplex = HeadTail.first.split('\v'); 563 if (!Duplex.second.empty()) { 564 OS << Duplex.first; 565 OS << "; "; 566 Inst = Duplex.second; 567 } 568 else 569 Inst = HeadTail.first; 570 OS << Inst; 571 HeadTail = HeadTail.second.split('\n'); 572 if (HeadTail.first.empty()) 573 OS << " } " << PacketBundle.second; 574 PrintReloc(); 575 Bytes = Bytes.slice(4); 576 Address.Address += 4; 577 } 578 } 579 }; 580 HexagonPrettyPrinter HexagonPrettyPrinterInst; 581 582 class AMDGCNPrettyPrinter : public PrettyPrinter { 583 public: 584 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 585 object::SectionedAddress Address, formatted_raw_ostream &OS, 586 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 587 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 588 LiveVariablePrinter &LVP) override { 589 if (SP && (PrintSource || PrintLines)) 590 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 591 592 if (MI) { 593 SmallString<40> InstStr; 594 raw_svector_ostream IS(InstStr); 595 596 IP.printInst(MI, Address.Address, "", STI, IS); 597 598 OS << left_justify(IS.str(), 60); 599 } else { 600 // an unrecognized encoding - this is probably data so represent it 601 // using the .long directive, or .byte directive if fewer than 4 bytes 602 // remaining 603 if (Bytes.size() >= 4) { 604 OS << format("\t.long 0x%08" PRIx32 " ", 605 support::endian::read32<support::little>(Bytes.data())); 606 OS.indent(42); 607 } else { 608 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 609 for (unsigned int i = 1; i < Bytes.size(); i++) 610 OS << format(", 0x%02" PRIx8, Bytes[i]); 611 OS.indent(55 - (6 * Bytes.size())); 612 } 613 } 614 615 OS << format("// %012" PRIX64 ":", Address.Address); 616 if (Bytes.size() >= 4) { 617 // D should be casted to uint32_t here as it is passed by format to 618 // snprintf as vararg. 619 for (uint32_t D : makeArrayRef( 620 reinterpret_cast<const support::little32_t *>(Bytes.data()), 621 Bytes.size() / 4)) 622 OS << format(" %08" PRIX32, D); 623 } else { 624 for (unsigned char B : Bytes) 625 OS << format(" %02" PRIX8, B); 626 } 627 628 if (!Annot.empty()) 629 OS << " // " << Annot; 630 } 631 }; 632 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 633 634 class BPFPrettyPrinter : public PrettyPrinter { 635 public: 636 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 637 object::SectionedAddress Address, formatted_raw_ostream &OS, 638 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 639 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 640 LiveVariablePrinter &LVP) override { 641 if (SP && (PrintSource || PrintLines)) 642 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 643 if (LeadingAddr) 644 OS << format("%8" PRId64 ":", Address.Address / 8); 645 if (ShowRawInsn) { 646 OS << "\t"; 647 dumpBytes(Bytes, OS); 648 } 649 if (MI) 650 IP.printInst(MI, Address.Address, "", STI, OS); 651 else 652 OS << "\t<unknown>"; 653 } 654 }; 655 BPFPrettyPrinter BPFPrettyPrinterInst; 656 657 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 658 switch(Triple.getArch()) { 659 default: 660 return PrettyPrinterInst; 661 case Triple::hexagon: 662 return HexagonPrettyPrinterInst; 663 case Triple::amdgcn: 664 return AMDGCNPrettyPrinterInst; 665 case Triple::bpfel: 666 case Triple::bpfeb: 667 return BPFPrettyPrinterInst; 668 } 669 } 670 } 671 672 static uint8_t getElfSymbolType(const ObjectFile *Obj, const SymbolRef &Sym) { 673 assert(Obj->isELF()); 674 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 675 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 676 Obj->getFileName()) 677 ->getType(); 678 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 679 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 680 Obj->getFileName()) 681 ->getType(); 682 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 683 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 684 Obj->getFileName()) 685 ->getType(); 686 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 687 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 688 Obj->getFileName()) 689 ->getType(); 690 llvm_unreachable("Unsupported binary format"); 691 } 692 693 template <class ELFT> static void 694 addDynamicElfSymbols(const ELFObjectFile<ELFT> *Obj, 695 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 696 for (auto Symbol : Obj->getDynamicSymbolIterators()) { 697 uint8_t SymbolType = Symbol.getELFType(); 698 if (SymbolType == ELF::STT_SECTION) 699 continue; 700 701 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj->getFileName()); 702 // ELFSymbolRef::getAddress() returns size instead of value for common 703 // symbols which is not desirable for disassembly output. Overriding. 704 if (SymbolType == ELF::STT_COMMON) 705 Address = unwrapOrError(Obj->getSymbol(Symbol.getRawDataRefImpl()), 706 Obj->getFileName()) 707 ->st_value; 708 709 StringRef Name = unwrapOrError(Symbol.getName(), Obj->getFileName()); 710 if (Name.empty()) 711 continue; 712 713 section_iterator SecI = 714 unwrapOrError(Symbol.getSection(), Obj->getFileName()); 715 if (SecI == Obj->section_end()) 716 continue; 717 718 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 719 } 720 } 721 722 static void 723 addDynamicElfSymbols(const ObjectFile *Obj, 724 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 725 assert(Obj->isELF()); 726 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(Obj)) 727 addDynamicElfSymbols(Elf32LEObj, AllSymbols); 728 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(Obj)) 729 addDynamicElfSymbols(Elf64LEObj, AllSymbols); 730 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(Obj)) 731 addDynamicElfSymbols(Elf32BEObj, AllSymbols); 732 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(Obj)) 733 addDynamicElfSymbols(Elf64BEObj, AllSymbols); 734 else 735 llvm_unreachable("Unsupported binary format"); 736 } 737 738 static Optional<SectionRef> getWasmCodeSection(const WasmObjectFile *Obj) { 739 for (auto SecI : Obj->sections()) { 740 const WasmSection &Section = Obj->getWasmSection(SecI); 741 if (Section.Type == wasm::WASM_SEC_CODE) 742 return SecI; 743 } 744 return None; 745 } 746 747 static void 748 addMissingWasmCodeSymbols(const WasmObjectFile *Obj, 749 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 750 Optional<SectionRef> Section = getWasmCodeSection(Obj); 751 if (!Section) 752 return; 753 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 754 755 std::set<uint64_t> SymbolAddresses; 756 for (const auto &Sym : Symbols) 757 SymbolAddresses.insert(Sym.Addr); 758 759 for (const wasm::WasmFunction &Function : Obj->functions()) { 760 uint64_t Address = Function.CodeSectionOffset; 761 // Only add fallback symbols for functions not already present in the symbol 762 // table. 763 if (SymbolAddresses.count(Address)) 764 continue; 765 // This function has no symbol, so it should have no SymbolName. 766 assert(Function.SymbolName.empty()); 767 // We use DebugName for the name, though it may be empty if there is no 768 // "name" custom section, or that section is missing a name for this 769 // function. 770 StringRef Name = Function.DebugName; 771 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 772 } 773 } 774 775 static void addPltEntries(const ObjectFile *Obj, 776 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 777 StringSaver &Saver) { 778 Optional<SectionRef> Plt = None; 779 for (const SectionRef &Section : Obj->sections()) { 780 Expected<StringRef> SecNameOrErr = Section.getName(); 781 if (!SecNameOrErr) { 782 consumeError(SecNameOrErr.takeError()); 783 continue; 784 } 785 if (*SecNameOrErr == ".plt") 786 Plt = Section; 787 } 788 if (!Plt) 789 return; 790 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(Obj)) { 791 for (auto PltEntry : ElfObj->getPltAddresses()) { 792 if (PltEntry.first) { 793 SymbolRef Symbol(*PltEntry.first, ElfObj); 794 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 795 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 796 if (!NameOrErr->empty()) 797 AllSymbols[*Plt].emplace_back( 798 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 799 SymbolType); 800 continue; 801 } else { 802 // The warning has been reported in disassembleObject(). 803 consumeError(NameOrErr.takeError()); 804 } 805 } 806 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 807 " references an invalid symbol", 808 Obj->getFileName()); 809 } 810 } 811 } 812 813 // Normally the disassembly output will skip blocks of zeroes. This function 814 // returns the number of zero bytes that can be skipped when dumping the 815 // disassembly of the instructions in Buf. 816 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 817 // Find the number of leading zeroes. 818 size_t N = 0; 819 while (N < Buf.size() && !Buf[N]) 820 ++N; 821 822 // We may want to skip blocks of zero bytes, but unless we see 823 // at least 8 of them in a row. 824 if (N < 8) 825 return 0; 826 827 // We skip zeroes in multiples of 4 because do not want to truncate an 828 // instruction if it starts with a zero byte. 829 return N & ~0x3; 830 } 831 832 // Returns a map from sections to their relocations. 833 static std::map<SectionRef, std::vector<RelocationRef>> 834 getRelocsMap(object::ObjectFile const &Obj) { 835 std::map<SectionRef, std::vector<RelocationRef>> Ret; 836 uint64_t I = (uint64_t)-1; 837 for (SectionRef Sec : Obj.sections()) { 838 ++I; 839 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 840 if (!RelocatedOrErr) 841 reportError(Obj.getFileName(), 842 "section (" + Twine(I) + 843 "): failed to get a relocated section: " + 844 toString(RelocatedOrErr.takeError())); 845 846 section_iterator Relocated = *RelocatedOrErr; 847 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 848 continue; 849 std::vector<RelocationRef> &V = Ret[*Relocated]; 850 append_range(V, Sec.relocations()); 851 // Sort relocations by address. 852 llvm::stable_sort(V, isRelocAddressLess); 853 } 854 return Ret; 855 } 856 857 // Used for --adjust-vma to check if address should be adjusted by the 858 // specified value for a given section. 859 // For ELF we do not adjust non-allocatable sections like debug ones, 860 // because they are not loadable. 861 // TODO: implement for other file formats. 862 static bool shouldAdjustVA(const SectionRef &Section) { 863 const ObjectFile *Obj = Section.getObject(); 864 if (Obj->isELF()) 865 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 866 return false; 867 } 868 869 870 typedef std::pair<uint64_t, char> MappingSymbolPair; 871 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 872 uint64_t Address) { 873 auto It = 874 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 875 return Val.first <= Address; 876 }); 877 // Return zero for any address before the first mapping symbol; this means 878 // we should use the default disassembly mode, depending on the target. 879 if (It == MappingSymbols.begin()) 880 return '\x00'; 881 return (It - 1)->second; 882 } 883 884 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 885 uint64_t End, const ObjectFile *Obj, 886 ArrayRef<uint8_t> Bytes, 887 ArrayRef<MappingSymbolPair> MappingSymbols, 888 raw_ostream &OS) { 889 support::endianness Endian = 890 Obj->isLittleEndian() ? support::little : support::big; 891 OS << format("%8" PRIx64 ":\t", SectionAddr + Index); 892 if (Index + 4 <= End) { 893 dumpBytes(Bytes.slice(Index, 4), OS); 894 OS << "\t.word\t" 895 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 896 10); 897 return 4; 898 } 899 if (Index + 2 <= End) { 900 dumpBytes(Bytes.slice(Index, 2), OS); 901 OS << "\t\t.short\t" 902 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 903 6); 904 return 2; 905 } 906 dumpBytes(Bytes.slice(Index, 1), OS); 907 OS << "\t\t.byte\t" << format_hex(Bytes[0], 4); 908 return 1; 909 } 910 911 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 912 ArrayRef<uint8_t> Bytes) { 913 // print out data up to 8 bytes at a time in hex and ascii 914 uint8_t AsciiData[9] = {'\0'}; 915 uint8_t Byte; 916 int NumBytes = 0; 917 918 for (; Index < End; ++Index) { 919 if (NumBytes == 0) 920 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 921 Byte = Bytes.slice(Index)[0]; 922 outs() << format(" %02x", Byte); 923 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 924 925 uint8_t IndentOffset = 0; 926 NumBytes++; 927 if (Index == End - 1 || NumBytes > 8) { 928 // Indent the space for less than 8 bytes data. 929 // 2 spaces for byte and one for space between bytes 930 IndentOffset = 3 * (8 - NumBytes); 931 for (int Excess = NumBytes; Excess < 8; Excess++) 932 AsciiData[Excess] = '\0'; 933 NumBytes = 8; 934 } 935 if (NumBytes == 8) { 936 AsciiData[8] = '\0'; 937 outs() << std::string(IndentOffset, ' ') << " "; 938 outs() << reinterpret_cast<char *>(AsciiData); 939 outs() << '\n'; 940 NumBytes = 0; 941 } 942 } 943 } 944 945 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile *Obj, 946 const SymbolRef &Symbol) { 947 const StringRef FileName = Obj->getFileName(); 948 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 949 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 950 951 if (Obj->isXCOFF() && SymbolDescription) { 952 const auto *XCOFFObj = cast<XCOFFObjectFile>(Obj); 953 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 954 955 const uint32_t SymbolIndex = XCOFFObj->getSymbolIndex(SymbolDRI.p); 956 Optional<XCOFF::StorageMappingClass> Smc = 957 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 958 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 959 isLabel(XCOFFObj, Symbol)); 960 } else 961 return SymbolInfoTy(Addr, Name, 962 Obj->isELF() ? getElfSymbolType(Obj, Symbol) 963 : (uint8_t)ELF::STT_NOTYPE); 964 } 965 966 static SymbolInfoTy createDummySymbolInfo(const ObjectFile *Obj, 967 const uint64_t Addr, StringRef &Name, 968 uint8_t Type) { 969 if (Obj->isXCOFF() && SymbolDescription) 970 return SymbolInfoTy(Addr, Name, None, None, false); 971 else 972 return SymbolInfoTy(Addr, Name, Type); 973 } 974 975 static void 976 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, 977 MCDisassembler *DisAsm, MCInstPrinter *IP, 978 const MCSubtargetInfo *STI, uint64_t SectionAddr, 979 uint64_t Start, uint64_t End, 980 std::unordered_map<uint64_t, std::string> &Labels) { 981 // So far only supports PowerPC and X86. 982 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 983 return; 984 985 Labels.clear(); 986 unsigned LabelCount = 0; 987 Start += SectionAddr; 988 End += SectionAddr; 989 uint64_t Index = Start; 990 while (Index < End) { 991 // Disassemble a real instruction and record function-local branch labels. 992 MCInst Inst; 993 uint64_t Size; 994 bool Disassembled = DisAsm->getInstruction( 995 Inst, Size, Bytes.slice(Index - SectionAddr), Index, nulls()); 996 if (Size == 0) 997 Size = 1; 998 999 if (Disassembled && MIA) { 1000 uint64_t Target; 1001 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1002 // On PowerPC, if the address of a branch is the same as the target, it 1003 // means that it's a function call. Do not mark the label for this case. 1004 if (TargetKnown && (Target >= Start && Target < End) && 1005 !Labels.count(Target) && 1006 !(STI->getTargetTriple().isPPC() && Target == Index)) 1007 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1008 } 1009 1010 Index += Size; 1011 } 1012 } 1013 1014 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1015 // This is currently only used on AMDGPU, and assumes the format of the 1016 // void * argument passed to AMDGPU's createMCSymbolizer. 1017 static void addSymbolizer( 1018 MCContext &Ctx, const Target *Target, StringRef TripleName, 1019 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1020 SectionSymbolsTy &Symbols, 1021 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1022 1023 std::unique_ptr<MCRelocationInfo> RelInfo( 1024 Target->createMCRelocationInfo(TripleName, Ctx)); 1025 if (!RelInfo) 1026 return; 1027 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1028 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1029 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1030 DisAsm->setSymbolizer(std::move(Symbolizer)); 1031 1032 if (!SymbolizeOperands) 1033 return; 1034 1035 // Synthesize labels referenced by branch instructions by 1036 // disassembling, discarding the output, and collecting the referenced 1037 // addresses from the symbolizer. 1038 for (size_t Index = 0; Index != Bytes.size();) { 1039 MCInst Inst; 1040 uint64_t Size; 1041 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), SectionAddr + Index, 1042 nulls()); 1043 if (Size == 0) 1044 Size = 1; 1045 Index += Size; 1046 } 1047 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1048 // Copy and sort to remove duplicates. 1049 std::vector<uint64_t> LabelAddrs; 1050 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1051 LabelAddrsRef.end()); 1052 llvm::sort(LabelAddrs); 1053 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1054 LabelAddrs.begin()); 1055 // Add the labels. 1056 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1057 auto Name = std::make_unique<std::string>(); 1058 *Name = (Twine("L") + Twine(LabelNum)).str(); 1059 SynthesizedLabelNames.push_back(std::move(Name)); 1060 Symbols.push_back(SymbolInfoTy( 1061 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1062 } 1063 llvm::stable_sort(Symbols); 1064 // Recreate the symbolizer with the new symbols list. 1065 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1066 Symbolizer.reset(Target->createMCSymbolizer( 1067 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1068 DisAsm->setSymbolizer(std::move(Symbolizer)); 1069 } 1070 1071 static StringRef getSegmentName(const MachOObjectFile *MachO, 1072 const SectionRef &Section) { 1073 if (MachO) { 1074 DataRefImpl DR = Section.getRawDataRefImpl(); 1075 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1076 return SegmentName; 1077 } 1078 return ""; 1079 } 1080 1081 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1082 const MCAsmInfo &MAI, 1083 const MCSubtargetInfo &STI, 1084 StringRef Comments, 1085 LiveVariablePrinter &LVP) { 1086 do { 1087 if (!Comments.empty()) { 1088 // Emit a line of comments. 1089 StringRef Comment; 1090 std::tie(Comment, Comments) = Comments.split('\n'); 1091 // MAI.getCommentColumn() assumes that instructions are printed at the 1092 // position of 8, while getInstStartColumn() returns the actual position. 1093 unsigned CommentColumn = 1094 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1095 FOS.PadToColumn(CommentColumn); 1096 FOS << MAI.getCommentString() << ' ' << Comment; 1097 } 1098 LVP.printAfterInst(FOS); 1099 FOS << '\n'; 1100 } while (!Comments.empty()); 1101 FOS.flush(); 1102 } 1103 1104 static void disassembleObject(const Target *TheTarget, const ObjectFile *Obj, 1105 MCContext &Ctx, MCDisassembler *PrimaryDisAsm, 1106 MCDisassembler *SecondaryDisAsm, 1107 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1108 const MCSubtargetInfo *PrimarySTI, 1109 const MCSubtargetInfo *SecondarySTI, 1110 PrettyPrinter &PIP, 1111 SourcePrinter &SP, bool InlineRelocs) { 1112 const MCSubtargetInfo *STI = PrimarySTI; 1113 MCDisassembler *DisAsm = PrimaryDisAsm; 1114 bool PrimaryIsThumb = false; 1115 if (isArmElf(Obj)) 1116 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1117 1118 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1119 if (InlineRelocs) 1120 RelocMap = getRelocsMap(*Obj); 1121 bool Is64Bits = Obj->getBytesInAddress() > 4; 1122 1123 // Create a mapping from virtual address to symbol name. This is used to 1124 // pretty print the symbols while disassembling. 1125 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1126 SectionSymbolsTy AbsoluteSymbols; 1127 const StringRef FileName = Obj->getFileName(); 1128 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1129 for (const SymbolRef &Symbol : Obj->symbols()) { 1130 Expected<StringRef> NameOrErr = Symbol.getName(); 1131 if (!NameOrErr) { 1132 reportWarning(toString(NameOrErr.takeError()), FileName); 1133 continue; 1134 } 1135 if (NameOrErr->empty() && !(Obj->isXCOFF() && SymbolDescription)) 1136 continue; 1137 1138 if (Obj->isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1139 continue; 1140 1141 if (MachO) { 1142 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1143 // symbols that support MachO header introspection. They do not bind to 1144 // code locations and are irrelevant for disassembly. 1145 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1146 continue; 1147 // Don't ask a Mach-O STAB symbol for its section unless you know that 1148 // STAB symbol's section field refers to a valid section index. Otherwise 1149 // the symbol may error trying to load a section that does not exist. 1150 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1151 uint8_t NType = (MachO->is64Bit() ? 1152 MachO->getSymbol64TableEntry(SymDRI).n_type: 1153 MachO->getSymbolTableEntry(SymDRI).n_type); 1154 if (NType & MachO::N_STAB) 1155 continue; 1156 } 1157 1158 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1159 if (SecI != Obj->section_end()) 1160 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1161 else 1162 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1163 } 1164 1165 if (AllSymbols.empty() && Obj->isELF()) 1166 addDynamicElfSymbols(Obj, AllSymbols); 1167 1168 if (Obj->isWasm()) 1169 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1170 1171 BumpPtrAllocator A; 1172 StringSaver Saver(A); 1173 addPltEntries(Obj, AllSymbols, Saver); 1174 1175 // Create a mapping from virtual address to section. An empty section can 1176 // cause more than one section at the same address. Sort such sections to be 1177 // before same-addressed non-empty sections so that symbol lookups prefer the 1178 // non-empty section. 1179 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1180 for (SectionRef Sec : Obj->sections()) 1181 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1182 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1183 if (LHS.first != RHS.first) 1184 return LHS.first < RHS.first; 1185 return LHS.second.getSize() < RHS.second.getSize(); 1186 }); 1187 1188 // Linked executables (.exe and .dll files) typically don't include a real 1189 // symbol table but they might contain an export table. 1190 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 1191 for (const auto &ExportEntry : COFFObj->export_directories()) { 1192 StringRef Name; 1193 if (Error E = ExportEntry.getSymbolName(Name)) 1194 reportError(std::move(E), Obj->getFileName()); 1195 if (Name.empty()) 1196 continue; 1197 1198 uint32_t RVA; 1199 if (Error E = ExportEntry.getExportRVA(RVA)) 1200 reportError(std::move(E), Obj->getFileName()); 1201 1202 uint64_t VA = COFFObj->getImageBase() + RVA; 1203 auto Sec = partition_point( 1204 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1205 return O.first <= VA; 1206 }); 1207 if (Sec != SectionAddresses.begin()) { 1208 --Sec; 1209 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1210 } else 1211 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1212 } 1213 } 1214 1215 // Sort all the symbols, this allows us to use a simple binary search to find 1216 // Multiple symbols can have the same address. Use a stable sort to stabilize 1217 // the output. 1218 StringSet<> FoundDisasmSymbolSet; 1219 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1220 llvm::stable_sort(SecSyms.second); 1221 llvm::stable_sort(AbsoluteSymbols); 1222 1223 std::unique_ptr<DWARFContext> DICtx; 1224 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1225 1226 if (DbgVariables != DVDisabled) { 1227 DICtx = DWARFContext::create(*Obj); 1228 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1229 LVP.addCompileUnit(CU->getUnitDIE(false)); 1230 } 1231 1232 LLVM_DEBUG(LVP.dump()); 1233 1234 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1235 if (FilterSections.empty() && !DisassembleAll && 1236 (!Section.isText() || Section.isVirtual())) 1237 continue; 1238 1239 uint64_t SectionAddr = Section.getAddress(); 1240 uint64_t SectSize = Section.getSize(); 1241 if (!SectSize) 1242 continue; 1243 1244 // Get the list of all the symbols in this section. 1245 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1246 std::vector<MappingSymbolPair> MappingSymbols; 1247 if (hasMappingSymbols(Obj)) { 1248 for (const auto &Symb : Symbols) { 1249 uint64_t Address = Symb.Addr; 1250 StringRef Name = Symb.Name; 1251 if (Name.startswith("$d")) 1252 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1253 if (Name.startswith("$x")) 1254 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1255 if (Name.startswith("$a")) 1256 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1257 if (Name.startswith("$t")) 1258 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1259 } 1260 } 1261 1262 llvm::sort(MappingSymbols); 1263 1264 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1265 unwrapOrError(Section.getContents(), Obj->getFileName())); 1266 1267 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1268 if (Obj->isELF() && Obj->getArch() == Triple::amdgcn) { 1269 // AMDGPU disassembler uses symbolizer for printing labels 1270 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1271 Symbols, SynthesizedLabelNames); 1272 } 1273 1274 StringRef SegmentName = getSegmentName(MachO, Section); 1275 StringRef SectionName = unwrapOrError(Section.getName(), Obj->getFileName()); 1276 // If the section has no symbol at the start, just insert a dummy one. 1277 if (Symbols.empty() || Symbols[0].Addr != 0) { 1278 Symbols.insert(Symbols.begin(), 1279 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1280 Section.isText() ? ELF::STT_FUNC 1281 : ELF::STT_OBJECT)); 1282 } 1283 1284 SmallString<40> Comments; 1285 raw_svector_ostream CommentStream(Comments); 1286 1287 uint64_t VMAAdjustment = 0; 1288 if (shouldAdjustVA(Section)) 1289 VMAAdjustment = AdjustVMA; 1290 1291 // In executable and shared objects, r_offset holds a virtual address. 1292 // Subtract SectionAddr from the r_offset field of a relocation to get 1293 // the section offset. 1294 uint64_t RelAdjustment = Obj->isRelocatableObject() ? 0 : SectionAddr; 1295 uint64_t Size; 1296 uint64_t Index; 1297 bool PrintedSection = false; 1298 std::vector<RelocationRef> Rels = RelocMap[Section]; 1299 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1300 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1301 // Disassemble symbol by symbol. 1302 for (unsigned SI = 0, SE = Symbols.size(); SI != SE; ++SI) { 1303 std::string SymbolName = Symbols[SI].Name.str(); 1304 if (Demangle) 1305 SymbolName = demangle(SymbolName); 1306 1307 // Skip if --disassemble-symbols is not empty and the symbol is not in 1308 // the list. 1309 if (!DisasmSymbolSet.empty() && !DisasmSymbolSet.count(SymbolName)) 1310 continue; 1311 1312 uint64_t Start = Symbols[SI].Addr; 1313 if (Start < SectionAddr || StopAddress <= Start) 1314 continue; 1315 else 1316 FoundDisasmSymbolSet.insert(SymbolName); 1317 1318 // The end is the section end, the beginning of the next symbol, or 1319 // --stop-address. 1320 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1321 if (SI + 1 < SE) 1322 End = std::min(End, Symbols[SI + 1].Addr); 1323 if (Start >= End || End <= StartAddress) 1324 continue; 1325 Start -= SectionAddr; 1326 End -= SectionAddr; 1327 1328 if (!PrintedSection) { 1329 PrintedSection = true; 1330 outs() << "\nDisassembly of section "; 1331 if (!SegmentName.empty()) 1332 outs() << SegmentName << ","; 1333 outs() << SectionName << ":\n"; 1334 } 1335 1336 outs() << '\n'; 1337 if (LeadingAddr) 1338 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1339 SectionAddr + Start + VMAAdjustment); 1340 if (Obj->isXCOFF() && SymbolDescription) { 1341 outs() << getXCOFFSymbolDescription(Symbols[SI], SymbolName) << ":\n"; 1342 } else 1343 outs() << '<' << SymbolName << ">:\n"; 1344 1345 // Don't print raw contents of a virtual section. A virtual section 1346 // doesn't have any contents in the file. 1347 if (Section.isVirtual()) { 1348 outs() << "...\n"; 1349 continue; 1350 } 1351 1352 auto Status = DisAsm->onSymbolStart(Symbols[SI], Size, 1353 Bytes.slice(Start, End - Start), 1354 SectionAddr + Start, CommentStream); 1355 // To have round trippable disassembly, we fall back to decoding the 1356 // remaining bytes as instructions. 1357 // 1358 // If there is a failure, we disassemble the failed region as bytes before 1359 // falling back. The target is expected to print nothing in this case. 1360 // 1361 // If there is Success or SoftFail i.e no 'real' failure, we go ahead by 1362 // Size bytes before falling back. 1363 // So if the entire symbol is 'eaten' by the target: 1364 // Start += Size // Now Start = End and we will never decode as 1365 // // instructions 1366 // 1367 // Right now, most targets return None i.e ignore to treat a symbol 1368 // separately. But WebAssembly decodes preludes for some symbols. 1369 // 1370 if (Status.hasValue()) { 1371 if (Status.getValue() == MCDisassembler::Fail) { 1372 outs() << "// Error in decoding " << SymbolName 1373 << " : Decoding failed region as bytes.\n"; 1374 for (uint64_t I = 0; I < Size; ++I) { 1375 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1376 << "\n"; 1377 } 1378 } 1379 } else { 1380 Size = 0; 1381 } 1382 1383 Start += Size; 1384 1385 Index = Start; 1386 if (SectionAddr < StartAddress) 1387 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1388 1389 // If there is a data/common symbol inside an ELF text section and we are 1390 // only disassembling text (applicable all architectures), we are in a 1391 // situation where we must print the data and not disassemble it. 1392 if (Obj->isELF() && !DisassembleAll && Section.isText()) { 1393 uint8_t SymTy = Symbols[SI].Type; 1394 if (SymTy == ELF::STT_OBJECT || SymTy == ELF::STT_COMMON) { 1395 dumpELFData(SectionAddr, Index, End, Bytes); 1396 Index = End; 1397 } 1398 } 1399 1400 bool CheckARMELFData = hasMappingSymbols(Obj) && 1401 Symbols[SI].Type != ELF::STT_OBJECT && 1402 !DisassembleAll; 1403 bool DumpARMELFData = false; 1404 formatted_raw_ostream FOS(outs()); 1405 1406 std::unordered_map<uint64_t, std::string> AllLabels; 1407 if (SymbolizeOperands) 1408 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1409 SectionAddr, Index, End, AllLabels); 1410 1411 while (Index < End) { 1412 // ARM and AArch64 ELF binaries can interleave data and text in the 1413 // same section. We rely on the markers introduced to understand what 1414 // we need to dump. If the data marker is within a function, it is 1415 // denoted as a word/short etc. 1416 if (CheckARMELFData) { 1417 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1418 DumpARMELFData = Kind == 'd'; 1419 if (SecondarySTI) { 1420 if (Kind == 'a') { 1421 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1422 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1423 } else if (Kind == 't') { 1424 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1425 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1426 } 1427 } 1428 } 1429 1430 if (DumpARMELFData) { 1431 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1432 MappingSymbols, FOS); 1433 } else { 1434 // When -z or --disassemble-zeroes are given we always dissasemble 1435 // them. Otherwise we might want to skip zero bytes we see. 1436 if (!DisassembleZeroes) { 1437 uint64_t MaxOffset = End - Index; 1438 // For --reloc: print zero blocks patched by relocations, so that 1439 // relocations can be shown in the dump. 1440 if (RelCur != RelEnd) 1441 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1442 MaxOffset); 1443 1444 if (size_t N = 1445 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1446 FOS << "\t\t..." << '\n'; 1447 Index += N; 1448 continue; 1449 } 1450 } 1451 1452 // Print local label if there's any. 1453 auto Iter = AllLabels.find(SectionAddr + Index); 1454 if (Iter != AllLabels.end()) 1455 FOS << "<" << Iter->second << ">:\n"; 1456 1457 // Disassemble a real instruction or a data when disassemble all is 1458 // provided 1459 MCInst Inst; 1460 bool Disassembled = 1461 DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), 1462 SectionAddr + Index, CommentStream); 1463 if (Size == 0) 1464 Size = 1; 1465 1466 LVP.update({Index, Section.getIndex()}, 1467 {Index + Size, Section.getIndex()}, Index + Size != End); 1468 1469 IP->setCommentStream(CommentStream); 1470 1471 PIP.printInst( 1472 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1473 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1474 "", *STI, &SP, Obj->getFileName(), &Rels, LVP); 1475 1476 IP->setCommentStream(llvm::nulls()); 1477 1478 // If disassembly has failed, avoid analysing invalid/incomplete 1479 // instruction information. Otherwise, try to resolve the target 1480 // address (jump target or memory operand address) and print it on the 1481 // right of the instruction. 1482 if (Disassembled && MIA) { 1483 // Branch targets are printed just after the instructions. 1484 llvm::raw_ostream *TargetOS = &FOS; 1485 uint64_t Target; 1486 bool PrintTarget = 1487 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1488 if (!PrintTarget) 1489 if (Optional<uint64_t> MaybeTarget = 1490 MIA->evaluateMemoryOperandAddress( 1491 Inst, STI, SectionAddr + Index, Size)) { 1492 Target = *MaybeTarget; 1493 PrintTarget = true; 1494 // Do not print real address when symbolizing. 1495 if (!SymbolizeOperands) { 1496 // Memory operand addresses are printed as comments. 1497 TargetOS = &CommentStream; 1498 *TargetOS << "0x" << Twine::utohexstr(Target); 1499 } 1500 } 1501 if (PrintTarget) { 1502 // In a relocatable object, the target's section must reside in 1503 // the same section as the call instruction or it is accessed 1504 // through a relocation. 1505 // 1506 // In a non-relocatable object, the target may be in any section. 1507 // In that case, locate the section(s) containing the target 1508 // address and find the symbol in one of those, if possible. 1509 // 1510 // N.B. We don't walk the relocations in the relocatable case yet. 1511 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1512 if (!Obj->isRelocatableObject()) { 1513 auto It = llvm::partition_point( 1514 SectionAddresses, 1515 [=](const std::pair<uint64_t, SectionRef> &O) { 1516 return O.first <= Target; 1517 }); 1518 uint64_t TargetSecAddr = 0; 1519 while (It != SectionAddresses.begin()) { 1520 --It; 1521 if (TargetSecAddr == 0) 1522 TargetSecAddr = It->first; 1523 if (It->first != TargetSecAddr) 1524 break; 1525 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1526 } 1527 } else { 1528 TargetSectionSymbols.push_back(&Symbols); 1529 } 1530 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1531 1532 // Find the last symbol in the first candidate section whose 1533 // offset is less than or equal to the target. If there are no 1534 // such symbols, try in the next section and so on, before finally 1535 // using the nearest preceding absolute symbol (if any), if there 1536 // are no other valid symbols. 1537 const SymbolInfoTy *TargetSym = nullptr; 1538 for (const SectionSymbolsTy *TargetSymbols : 1539 TargetSectionSymbols) { 1540 auto It = llvm::partition_point( 1541 *TargetSymbols, 1542 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1543 if (It != TargetSymbols->begin()) { 1544 TargetSym = &*(It - 1); 1545 break; 1546 } 1547 } 1548 1549 // Print the labels corresponding to the target if there's any. 1550 bool LabelAvailable = AllLabels.count(Target); 1551 if (TargetSym != nullptr) { 1552 uint64_t TargetAddress = TargetSym->Addr; 1553 uint64_t Disp = Target - TargetAddress; 1554 std::string TargetName = TargetSym->Name.str(); 1555 if (Demangle) 1556 TargetName = demangle(TargetName); 1557 1558 *TargetOS << " <"; 1559 if (!Disp) { 1560 // Always Print the binary symbol precisely corresponding to 1561 // the target address. 1562 *TargetOS << TargetName; 1563 } else if (!LabelAvailable) { 1564 // Always Print the binary symbol plus an offset if there's no 1565 // local label corresponding to the target address. 1566 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1567 } else { 1568 *TargetOS << AllLabels[Target]; 1569 } 1570 *TargetOS << ">"; 1571 } else if (LabelAvailable) { 1572 *TargetOS << " <" << AllLabels[Target] << ">"; 1573 } 1574 // By convention, each record in the comment stream should be 1575 // terminated. 1576 if (TargetOS == &CommentStream) 1577 *TargetOS << "\n"; 1578 } 1579 } 1580 } 1581 1582 assert(Ctx.getAsmInfo()); 1583 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1584 CommentStream.str(), LVP); 1585 Comments.clear(); 1586 1587 // Hexagon does this in pretty printer 1588 if (Obj->getArch() != Triple::hexagon) { 1589 // Print relocation for instruction and data. 1590 while (RelCur != RelEnd) { 1591 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1592 // If this relocation is hidden, skip it. 1593 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1594 ++RelCur; 1595 continue; 1596 } 1597 1598 // Stop when RelCur's offset is past the disassembled 1599 // instruction/data. Note that it's possible the disassembled data 1600 // is not the complete data: we might see the relocation printed in 1601 // the middle of the data, but this matches the binutils objdump 1602 // output. 1603 if (Offset >= Index + Size) 1604 break; 1605 1606 // When --adjust-vma is used, update the address printed. 1607 if (RelCur->getSymbol() != Obj->symbol_end()) { 1608 Expected<section_iterator> SymSI = 1609 RelCur->getSymbol()->getSection(); 1610 if (SymSI && *SymSI != Obj->section_end() && 1611 shouldAdjustVA(**SymSI)) 1612 Offset += AdjustVMA; 1613 } 1614 1615 printRelocation(FOS, Obj->getFileName(), *RelCur, 1616 SectionAddr + Offset, Is64Bits); 1617 LVP.printAfterOtherLine(FOS, true); 1618 ++RelCur; 1619 } 1620 } 1621 1622 Index += Size; 1623 } 1624 } 1625 } 1626 StringSet<> MissingDisasmSymbolSet = 1627 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1628 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1629 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1630 } 1631 1632 static void disassembleObject(const ObjectFile *Obj, bool InlineRelocs) { 1633 const Target *TheTarget = getTarget(Obj); 1634 1635 // Package up features to be passed to target/subtarget 1636 SubtargetFeatures Features = Obj->getFeatures(); 1637 if (!MAttrs.empty()) 1638 for (unsigned I = 0; I != MAttrs.size(); ++I) 1639 Features.AddFeature(MAttrs[I]); 1640 1641 std::unique_ptr<const MCRegisterInfo> MRI( 1642 TheTarget->createMCRegInfo(TripleName)); 1643 if (!MRI) 1644 reportError(Obj->getFileName(), 1645 "no register info for target " + TripleName); 1646 1647 // Set up disassembler. 1648 MCTargetOptions MCOptions; 1649 std::unique_ptr<const MCAsmInfo> AsmInfo( 1650 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 1651 if (!AsmInfo) 1652 reportError(Obj->getFileName(), 1653 "no assembly info for target " + TripleName); 1654 1655 if (MCPU.empty()) 1656 MCPU = Obj->tryGetCPUName().getValueOr("").str(); 1657 1658 std::unique_ptr<const MCSubtargetInfo> STI( 1659 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1660 if (!STI) 1661 reportError(Obj->getFileName(), 1662 "no subtarget info for target " + TripleName); 1663 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 1664 if (!MII) 1665 reportError(Obj->getFileName(), 1666 "no instruction info for target " + TripleName); 1667 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 1668 // FIXME: for now initialize MCObjectFileInfo with default values 1669 std::unique_ptr<MCObjectFileInfo> MOFI( 1670 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 1671 Ctx.setObjectFileInfo(MOFI.get()); 1672 1673 std::unique_ptr<MCDisassembler> DisAsm( 1674 TheTarget->createMCDisassembler(*STI, Ctx)); 1675 if (!DisAsm) 1676 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 1677 1678 // If we have an ARM object file, we need a second disassembler, because 1679 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 1680 // We use mapping symbols to switch between the two assemblers, where 1681 // appropriate. 1682 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 1683 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 1684 if (isArmElf(Obj) && !STI->checkFeatures("+mclass")) { 1685 if (STI->checkFeatures("+thumb-mode")) 1686 Features.AddFeature("-thumb-mode"); 1687 else 1688 Features.AddFeature("+thumb-mode"); 1689 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1690 Features.getString())); 1691 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 1692 } 1693 1694 std::unique_ptr<const MCInstrAnalysis> MIA( 1695 TheTarget->createMCInstrAnalysis(MII.get())); 1696 1697 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1698 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 1699 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 1700 if (!IP) 1701 reportError(Obj->getFileName(), 1702 "no instruction printer for target " + TripleName); 1703 IP->setPrintImmHex(PrintImmHex); 1704 IP->setPrintBranchImmAsAddress(true); 1705 IP->setSymbolizeOperands(SymbolizeOperands); 1706 IP->setMCInstrAnalysis(MIA.get()); 1707 1708 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 1709 SourcePrinter SP(Obj, TheTarget->getName()); 1710 1711 for (StringRef Opt : DisassemblerOptions) 1712 if (!IP->applyTargetSpecificCLOption(Opt)) 1713 reportError(Obj->getFileName(), 1714 "Unrecognized disassembler option: " + Opt); 1715 1716 disassembleObject(TheTarget, Obj, Ctx, DisAsm.get(), SecondaryDisAsm.get(), 1717 MIA.get(), IP.get(), STI.get(), SecondarySTI.get(), PIP, 1718 SP, InlineRelocs); 1719 } 1720 1721 void objdump::printRelocations(const ObjectFile *Obj) { 1722 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 1723 "%08" PRIx64; 1724 // Regular objdump doesn't print relocations in non-relocatable object 1725 // files. 1726 if (!Obj->isRelocatableObject()) 1727 return; 1728 1729 // Build a mapping from relocation target to a vector of relocation 1730 // sections. Usually, there is an only one relocation section for 1731 // each relocated section. 1732 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 1733 uint64_t Ndx; 1734 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 1735 if (Section.relocation_begin() == Section.relocation_end()) 1736 continue; 1737 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 1738 if (!SecOrErr) 1739 reportError(Obj->getFileName(), 1740 "section (" + Twine(Ndx) + 1741 "): unable to get a relocation target: " + 1742 toString(SecOrErr.takeError())); 1743 SecToRelSec[**SecOrErr].push_back(Section); 1744 } 1745 1746 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 1747 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 1748 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 1749 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1750 uint32_t TypePadding = 24; 1751 outs() << left_justify("OFFSET", OffsetPadding) << " " 1752 << left_justify("TYPE", TypePadding) << " " 1753 << "VALUE\n"; 1754 1755 for (SectionRef Section : P.second) { 1756 for (const RelocationRef &Reloc : Section.relocations()) { 1757 uint64_t Address = Reloc.getOffset(); 1758 SmallString<32> RelocName; 1759 SmallString<32> ValueStr; 1760 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 1761 continue; 1762 Reloc.getTypeName(RelocName); 1763 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1764 reportError(std::move(E), Obj->getFileName()); 1765 1766 outs() << format(Fmt.data(), Address) << " " 1767 << left_justify(RelocName, TypePadding) << " " << ValueStr 1768 << "\n"; 1769 } 1770 } 1771 } 1772 } 1773 1774 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 1775 // For the moment, this option is for ELF only 1776 if (!Obj->isELF()) 1777 return; 1778 1779 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 1780 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 1781 return Sec.getType() == ELF::SHT_DYNAMIC; 1782 })) { 1783 reportError(Obj->getFileName(), "not a dynamic object"); 1784 return; 1785 } 1786 1787 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 1788 if (DynRelSec.empty()) 1789 return; 1790 1791 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 1792 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 1793 const uint32_t TypePadding = 24; 1794 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 1795 << left_justify("TYPE", TypePadding) << " VALUE\n"; 1796 1797 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 1798 for (const SectionRef &Section : DynRelSec) 1799 for (const RelocationRef &Reloc : Section.relocations()) { 1800 uint64_t Address = Reloc.getOffset(); 1801 SmallString<32> RelocName; 1802 SmallString<32> ValueStr; 1803 Reloc.getTypeName(RelocName); 1804 if (Error E = getRelocationValueString(Reloc, ValueStr)) 1805 reportError(std::move(E), Obj->getFileName()); 1806 outs() << format(Fmt.data(), Address) << ' ' 1807 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 1808 } 1809 } 1810 1811 // Returns true if we need to show LMA column when dumping section headers. We 1812 // show it only when the platform is ELF and either we have at least one section 1813 // whose VMA and LMA are different and/or when --show-lma flag is used. 1814 static bool shouldDisplayLMA(const ObjectFile *Obj) { 1815 if (!Obj->isELF()) 1816 return false; 1817 for (const SectionRef &S : ToolSectionFilter(*Obj)) 1818 if (S.getAddress() != getELFSectionLMA(S)) 1819 return true; 1820 return ShowLMA; 1821 } 1822 1823 static size_t getMaxSectionNameWidth(const ObjectFile *Obj) { 1824 // Default column width for names is 13 even if no names are that long. 1825 size_t MaxWidth = 13; 1826 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1827 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1828 MaxWidth = std::max(MaxWidth, Name.size()); 1829 } 1830 return MaxWidth; 1831 } 1832 1833 void objdump::printSectionHeaders(const ObjectFile *Obj) { 1834 size_t NameWidth = getMaxSectionNameWidth(Obj); 1835 size_t AddressWidth = 2 * Obj->getBytesInAddress(); 1836 bool HasLMAColumn = shouldDisplayLMA(Obj); 1837 outs() << "\nSections:\n"; 1838 if (HasLMAColumn) 1839 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1840 << left_justify("VMA", AddressWidth) << " " 1841 << left_justify("LMA", AddressWidth) << " Type\n"; 1842 else 1843 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 1844 << left_justify("VMA", AddressWidth) << " Type\n"; 1845 1846 uint64_t Idx; 1847 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Idx)) { 1848 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1849 uint64_t VMA = Section.getAddress(); 1850 if (shouldAdjustVA(Section)) 1851 VMA += AdjustVMA; 1852 1853 uint64_t Size = Section.getSize(); 1854 1855 std::string Type = Section.isText() ? "TEXT" : ""; 1856 if (Section.isData()) 1857 Type += Type.empty() ? "DATA" : ", DATA"; 1858 if (Section.isBSS()) 1859 Type += Type.empty() ? "BSS" : ", BSS"; 1860 if (Section.isDebugSection()) 1861 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 1862 1863 if (HasLMAColumn) 1864 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1865 Name.str().c_str(), Size) 1866 << format_hex_no_prefix(VMA, AddressWidth) << " " 1867 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 1868 << " " << Type << "\n"; 1869 else 1870 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 1871 Name.str().c_str(), Size) 1872 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 1873 } 1874 } 1875 1876 void objdump::printSectionContents(const ObjectFile *Obj) { 1877 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 1878 1879 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 1880 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 1881 uint64_t BaseAddr = Section.getAddress(); 1882 uint64_t Size = Section.getSize(); 1883 if (!Size) 1884 continue; 1885 1886 outs() << "Contents of section "; 1887 StringRef SegmentName = getSegmentName(MachO, Section); 1888 if (!SegmentName.empty()) 1889 outs() << SegmentName << ","; 1890 outs() << Name << ":\n"; 1891 if (Section.isBSS()) { 1892 outs() << format("<skipping contents of bss section at [%04" PRIx64 1893 ", %04" PRIx64 ")>\n", 1894 BaseAddr, BaseAddr + Size); 1895 continue; 1896 } 1897 1898 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 1899 1900 // Dump out the content as hex and printable ascii characters. 1901 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 1902 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 1903 // Dump line of hex. 1904 for (std::size_t I = 0; I < 16; ++I) { 1905 if (I != 0 && I % 4 == 0) 1906 outs() << ' '; 1907 if (Addr + I < End) 1908 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 1909 << hexdigit(Contents[Addr + I] & 0xF, true); 1910 else 1911 outs() << " "; 1912 } 1913 // Print ascii. 1914 outs() << " "; 1915 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 1916 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 1917 outs() << Contents[Addr + I]; 1918 else 1919 outs() << "."; 1920 } 1921 outs() << "\n"; 1922 } 1923 } 1924 } 1925 1926 void objdump::printSymbolTable(const ObjectFile *O, StringRef ArchiveName, 1927 StringRef ArchitectureName, bool DumpDynamic) { 1928 if (O->isCOFF() && !DumpDynamic) { 1929 outs() << "\nSYMBOL TABLE:\n"; 1930 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 1931 return; 1932 } 1933 1934 const StringRef FileName = O->getFileName(); 1935 1936 if (!DumpDynamic) { 1937 outs() << "\nSYMBOL TABLE:\n"; 1938 for (auto I = O->symbol_begin(); I != O->symbol_end(); ++I) 1939 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 1940 DumpDynamic); 1941 return; 1942 } 1943 1944 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 1945 if (!O->isELF()) { 1946 reportWarning( 1947 "this operation is not currently supported for this file format", 1948 FileName); 1949 return; 1950 } 1951 1952 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(O); 1953 auto Symbols = ELF->getDynamicSymbolIterators(); 1954 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 1955 ELF->readDynsymVersions(); 1956 if (!SymbolVersionsOrErr) { 1957 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 1958 SymbolVersionsOrErr = std::vector<VersionEntry>(); 1959 (void)!SymbolVersionsOrErr; 1960 } 1961 for (auto &Sym : Symbols) 1962 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 1963 ArchitectureName, DumpDynamic); 1964 } 1965 1966 void objdump::printSymbol(const ObjectFile *O, const SymbolRef &Symbol, 1967 ArrayRef<VersionEntry> SymbolVersions, 1968 StringRef FileName, StringRef ArchiveName, 1969 StringRef ArchitectureName, bool DumpDynamic) { 1970 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(O); 1971 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 1972 ArchitectureName); 1973 if ((Address < StartAddress) || (Address > StopAddress)) 1974 return; 1975 SymbolRef::Type Type = 1976 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 1977 uint32_t Flags = 1978 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 1979 1980 // Don't ask a Mach-O STAB symbol for its section unless you know that 1981 // STAB symbol's section field refers to a valid section index. Otherwise 1982 // the symbol may error trying to load a section that does not exist. 1983 bool IsSTAB = false; 1984 if (MachO) { 1985 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1986 uint8_t NType = 1987 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 1988 : MachO->getSymbolTableEntry(SymDRI).n_type); 1989 if (NType & MachO::N_STAB) 1990 IsSTAB = true; 1991 } 1992 section_iterator Section = IsSTAB 1993 ? O->section_end() 1994 : unwrapOrError(Symbol.getSection(), FileName, 1995 ArchiveName, ArchitectureName); 1996 1997 StringRef Name; 1998 if (Type == SymbolRef::ST_Debug && Section != O->section_end()) { 1999 if (Expected<StringRef> NameOrErr = Section->getName()) 2000 Name = *NameOrErr; 2001 else 2002 consumeError(NameOrErr.takeError()); 2003 2004 } else { 2005 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2006 ArchitectureName); 2007 } 2008 2009 bool Global = Flags & SymbolRef::SF_Global; 2010 bool Weak = Flags & SymbolRef::SF_Weak; 2011 bool Absolute = Flags & SymbolRef::SF_Absolute; 2012 bool Common = Flags & SymbolRef::SF_Common; 2013 bool Hidden = Flags & SymbolRef::SF_Hidden; 2014 2015 char GlobLoc = ' '; 2016 if ((Section != O->section_end() || Absolute) && !Weak) 2017 GlobLoc = Global ? 'g' : 'l'; 2018 char IFunc = ' '; 2019 if (O->isELF()) { 2020 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2021 IFunc = 'i'; 2022 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2023 GlobLoc = 'u'; 2024 } 2025 2026 char Debug = ' '; 2027 if (DumpDynamic) 2028 Debug = 'D'; 2029 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2030 Debug = 'd'; 2031 2032 char FileFunc = ' '; 2033 if (Type == SymbolRef::ST_File) 2034 FileFunc = 'f'; 2035 else if (Type == SymbolRef::ST_Function) 2036 FileFunc = 'F'; 2037 else if (Type == SymbolRef::ST_Data) 2038 FileFunc = 'O'; 2039 2040 const char *Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2041 2042 outs() << format(Fmt, Address) << " " 2043 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2044 << (Weak ? 'w' : ' ') // Weak? 2045 << ' ' // Constructor. Not supported yet. 2046 << ' ' // Warning. Not supported yet. 2047 << IFunc // Indirect reference to another symbol. 2048 << Debug // Debugging (d) or dynamic (D) symbol. 2049 << FileFunc // Name of function (F), file (f) or object (O). 2050 << ' '; 2051 if (Absolute) { 2052 outs() << "*ABS*"; 2053 } else if (Common) { 2054 outs() << "*COM*"; 2055 } else if (Section == O->section_end()) { 2056 if (O->isXCOFF()) { 2057 XCOFFSymbolRef XCOFFSym = dyn_cast<const XCOFFObjectFile>(O)->toSymbolRef( 2058 Symbol.getRawDataRefImpl()); 2059 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2060 outs() << "*DEBUG*"; 2061 else 2062 outs() << "*UND*"; 2063 } else 2064 outs() << "*UND*"; 2065 } else { 2066 StringRef SegmentName = getSegmentName(MachO, *Section); 2067 if (!SegmentName.empty()) 2068 outs() << SegmentName << ","; 2069 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2070 outs() << SectionName; 2071 if (O->isXCOFF()) { 2072 Optional<SymbolRef> SymRef = getXCOFFSymbolContainingSymbolRef( 2073 dyn_cast<const XCOFFObjectFile>(O), Symbol); 2074 if (SymRef) { 2075 2076 Expected<StringRef> NameOrErr = SymRef.getValue().getName(); 2077 2078 if (NameOrErr) { 2079 outs() << " (csect:"; 2080 std::string SymName(NameOrErr.get()); 2081 2082 if (Demangle) 2083 SymName = demangle(SymName); 2084 2085 if (SymbolDescription) 2086 SymName = getXCOFFSymbolDescription( 2087 createSymbolInfo(O, SymRef.getValue()), SymName); 2088 2089 outs() << ' ' << SymName; 2090 outs() << ") "; 2091 } else 2092 reportWarning(toString(NameOrErr.takeError()), FileName); 2093 } 2094 } 2095 } 2096 2097 if (Common) 2098 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2099 else if (O->isXCOFF()) 2100 outs() << '\t' 2101 << format(Fmt, dyn_cast<const XCOFFObjectFile>(O)->getSymbolSize( 2102 Symbol.getRawDataRefImpl())); 2103 else if (O->isELF()) 2104 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2105 2106 if (O->isELF()) { 2107 if (!SymbolVersions.empty()) { 2108 const VersionEntry &Ver = 2109 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2110 std::string Str; 2111 if (!Ver.Name.empty()) 2112 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2113 outs() << ' ' << left_justify(Str, 12); 2114 } 2115 2116 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2117 switch (Other) { 2118 case ELF::STV_DEFAULT: 2119 break; 2120 case ELF::STV_INTERNAL: 2121 outs() << " .internal"; 2122 break; 2123 case ELF::STV_HIDDEN: 2124 outs() << " .hidden"; 2125 break; 2126 case ELF::STV_PROTECTED: 2127 outs() << " .protected"; 2128 break; 2129 default: 2130 outs() << format(" 0x%02x", Other); 2131 break; 2132 } 2133 } else if (Hidden) { 2134 outs() << " .hidden"; 2135 } 2136 2137 std::string SymName(Name); 2138 if (Demangle) 2139 SymName = demangle(SymName); 2140 2141 if (O->isXCOFF() && SymbolDescription) 2142 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2143 2144 outs() << ' ' << SymName << '\n'; 2145 } 2146 2147 static void printUnwindInfo(const ObjectFile *O) { 2148 outs() << "Unwind info:\n\n"; 2149 2150 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2151 printCOFFUnwindInfo(Coff); 2152 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2153 printMachOUnwindInfo(MachO); 2154 else 2155 // TODO: Extract DWARF dump tool to objdump. 2156 WithColor::error(errs(), ToolName) 2157 << "This operation is only currently supported " 2158 "for COFF and MachO object files.\n"; 2159 } 2160 2161 /// Dump the raw contents of the __clangast section so the output can be piped 2162 /// into llvm-bcanalyzer. 2163 static void printRawClangAST(const ObjectFile *Obj) { 2164 if (outs().is_displayed()) { 2165 WithColor::error(errs(), ToolName) 2166 << "The -raw-clang-ast option will dump the raw binary contents of " 2167 "the clang ast section.\n" 2168 "Please redirect the output to a file or another program such as " 2169 "llvm-bcanalyzer.\n"; 2170 return; 2171 } 2172 2173 StringRef ClangASTSectionName("__clangast"); 2174 if (Obj->isCOFF()) { 2175 ClangASTSectionName = "clangast"; 2176 } 2177 2178 Optional<object::SectionRef> ClangASTSection; 2179 for (auto Sec : ToolSectionFilter(*Obj)) { 2180 StringRef Name; 2181 if (Expected<StringRef> NameOrErr = Sec.getName()) 2182 Name = *NameOrErr; 2183 else 2184 consumeError(NameOrErr.takeError()); 2185 2186 if (Name == ClangASTSectionName) { 2187 ClangASTSection = Sec; 2188 break; 2189 } 2190 } 2191 if (!ClangASTSection) 2192 return; 2193 2194 StringRef ClangASTContents = unwrapOrError( 2195 ClangASTSection.getValue().getContents(), Obj->getFileName()); 2196 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2197 } 2198 2199 static void printFaultMaps(const ObjectFile *Obj) { 2200 StringRef FaultMapSectionName; 2201 2202 if (Obj->isELF()) { 2203 FaultMapSectionName = ".llvm_faultmaps"; 2204 } else if (Obj->isMachO()) { 2205 FaultMapSectionName = "__llvm_faultmaps"; 2206 } else { 2207 WithColor::error(errs(), ToolName) 2208 << "This operation is only currently supported " 2209 "for ELF and Mach-O executable files.\n"; 2210 return; 2211 } 2212 2213 Optional<object::SectionRef> FaultMapSection; 2214 2215 for (auto Sec : ToolSectionFilter(*Obj)) { 2216 StringRef Name; 2217 if (Expected<StringRef> NameOrErr = Sec.getName()) 2218 Name = *NameOrErr; 2219 else 2220 consumeError(NameOrErr.takeError()); 2221 2222 if (Name == FaultMapSectionName) { 2223 FaultMapSection = Sec; 2224 break; 2225 } 2226 } 2227 2228 outs() << "FaultMap table:\n"; 2229 2230 if (!FaultMapSection.hasValue()) { 2231 outs() << "<not found>\n"; 2232 return; 2233 } 2234 2235 StringRef FaultMapContents = 2236 unwrapOrError(FaultMapSection.getValue().getContents(), Obj->getFileName()); 2237 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2238 FaultMapContents.bytes_end()); 2239 2240 outs() << FMP; 2241 } 2242 2243 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2244 if (O->isELF()) { 2245 printELFFileHeader(O); 2246 printELFDynamicSection(O); 2247 printELFSymbolVersionInfo(O); 2248 return; 2249 } 2250 if (O->isCOFF()) 2251 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2252 if (O->isWasm()) 2253 return printWasmFileHeader(O); 2254 if (O->isMachO()) { 2255 printMachOFileHeader(O); 2256 if (!OnlyFirst) 2257 printMachOLoadCommands(O); 2258 return; 2259 } 2260 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2261 } 2262 2263 static void printFileHeaders(const ObjectFile *O) { 2264 if (!O->isELF() && !O->isCOFF()) 2265 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2266 2267 Triple::ArchType AT = O->getArch(); 2268 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2269 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2270 2271 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2272 outs() << "start address: " 2273 << "0x" << format(Fmt.data(), Address) << "\n"; 2274 } 2275 2276 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2277 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2278 if (!ModeOrErr) { 2279 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2280 consumeError(ModeOrErr.takeError()); 2281 return; 2282 } 2283 sys::fs::perms Mode = ModeOrErr.get(); 2284 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2285 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2286 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2287 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2288 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2289 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2290 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2291 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2292 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2293 2294 outs() << " "; 2295 2296 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2297 unwrapOrError(C.getGID(), Filename), 2298 unwrapOrError(C.getRawSize(), Filename)); 2299 2300 StringRef RawLastModified = C.getRawLastModified(); 2301 unsigned Seconds; 2302 if (RawLastModified.getAsInteger(10, Seconds)) 2303 outs() << "(date: \"" << RawLastModified 2304 << "\" contains non-decimal chars) "; 2305 else { 2306 // Since ctime(3) returns a 26 character string of the form: 2307 // "Sun Sep 16 01:03:52 1973\n\0" 2308 // just print 24 characters. 2309 time_t t = Seconds; 2310 outs() << format("%.24s ", ctime(&t)); 2311 } 2312 2313 StringRef Name = ""; 2314 Expected<StringRef> NameOrErr = C.getName(); 2315 if (!NameOrErr) { 2316 consumeError(NameOrErr.takeError()); 2317 Name = unwrapOrError(C.getRawName(), Filename); 2318 } else { 2319 Name = NameOrErr.get(); 2320 } 2321 outs() << Name << "\n"; 2322 } 2323 2324 // For ELF only now. 2325 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2326 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2327 if (Elf->getEType() != ELF::ET_REL) 2328 return true; 2329 } 2330 return false; 2331 } 2332 2333 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2334 uint64_t Start, uint64_t Stop) { 2335 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2336 return; 2337 2338 for (const SectionRef &Section : Obj->sections()) 2339 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2340 uint64_t BaseAddr = Section.getAddress(); 2341 uint64_t Size = Section.getSize(); 2342 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2343 return; 2344 } 2345 2346 if (!HasStartAddressFlag) 2347 reportWarning("no section has address less than 0x" + 2348 Twine::utohexstr(Stop) + " specified by --stop-address", 2349 Obj->getFileName()); 2350 else if (!HasStopAddressFlag) 2351 reportWarning("no section has address greater than or equal to 0x" + 2352 Twine::utohexstr(Start) + " specified by --start-address", 2353 Obj->getFileName()); 2354 else 2355 reportWarning("no section overlaps the range [0x" + 2356 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2357 ") specified by --start-address/--stop-address", 2358 Obj->getFileName()); 2359 } 2360 2361 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2362 const Archive::Child *C = nullptr) { 2363 // Avoid other output when using a raw option. 2364 if (!RawClangAST) { 2365 outs() << '\n'; 2366 if (A) 2367 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2368 else 2369 outs() << O->getFileName(); 2370 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2371 } 2372 2373 if (HasStartAddressFlag || HasStopAddressFlag) 2374 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2375 2376 // Note: the order here matches GNU objdump for compatability. 2377 StringRef ArchiveName = A ? A->getFileName() : ""; 2378 if (ArchiveHeaders && !MachOOpt && C) 2379 printArchiveChild(ArchiveName, *C); 2380 if (FileHeaders) 2381 printFileHeaders(O); 2382 if (PrivateHeaders || FirstPrivateHeader) 2383 printPrivateFileHeaders(O, FirstPrivateHeader); 2384 if (SectionHeaders) 2385 printSectionHeaders(O); 2386 if (SymbolTable) 2387 printSymbolTable(O, ArchiveName); 2388 if (DynamicSymbolTable) 2389 printSymbolTable(O, ArchiveName, /*ArchitectureName=*/"", 2390 /*DumpDynamic=*/true); 2391 if (DwarfDumpType != DIDT_Null) { 2392 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2393 // Dump the complete DWARF structure. 2394 DIDumpOptions DumpOpts; 2395 DumpOpts.DumpType = DwarfDumpType; 2396 DICtx->dump(outs(), DumpOpts); 2397 } 2398 if (Relocations && !Disassemble) 2399 printRelocations(O); 2400 if (DynamicRelocations) 2401 printDynamicRelocations(O); 2402 if (SectionContents) 2403 printSectionContents(O); 2404 if (Disassemble) 2405 disassembleObject(O, Relocations); 2406 if (UnwindInfo) 2407 printUnwindInfo(O); 2408 2409 // Mach-O specific options: 2410 if (ExportsTrie) 2411 printExportsTrie(O); 2412 if (Rebase) 2413 printRebaseTable(O); 2414 if (Bind) 2415 printBindTable(O); 2416 if (LazyBind) 2417 printLazyBindTable(O); 2418 if (WeakBind) 2419 printWeakBindTable(O); 2420 2421 // Other special sections: 2422 if (RawClangAST) 2423 printRawClangAST(O); 2424 if (FaultMapSection) 2425 printFaultMaps(O); 2426 } 2427 2428 static void dumpObject(const COFFImportFile *I, const Archive *A, 2429 const Archive::Child *C = nullptr) { 2430 StringRef ArchiveName = A ? A->getFileName() : ""; 2431 2432 // Avoid other output when using a raw option. 2433 if (!RawClangAST) 2434 outs() << '\n' 2435 << ArchiveName << "(" << I->getFileName() << ")" 2436 << ":\tfile format COFF-import-file" 2437 << "\n\n"; 2438 2439 if (ArchiveHeaders && !MachOOpt && C) 2440 printArchiveChild(ArchiveName, *C); 2441 if (SymbolTable) 2442 printCOFFSymbolTable(I); 2443 } 2444 2445 /// Dump each object file in \a a; 2446 static void dumpArchive(const Archive *A) { 2447 Error Err = Error::success(); 2448 unsigned I = -1; 2449 for (auto &C : A->children(Err)) { 2450 ++I; 2451 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2452 if (!ChildOrErr) { 2453 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2454 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2455 continue; 2456 } 2457 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2458 dumpObject(O, A, &C); 2459 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2460 dumpObject(I, A, &C); 2461 else 2462 reportError(errorCodeToError(object_error::invalid_file_type), 2463 A->getFileName()); 2464 } 2465 if (Err) 2466 reportError(std::move(Err), A->getFileName()); 2467 } 2468 2469 /// Open file and figure out how to dump it. 2470 static void dumpInput(StringRef file) { 2471 // If we are using the Mach-O specific object file parser, then let it parse 2472 // the file and process the command line options. So the -arch flags can 2473 // be used to select specific slices, etc. 2474 if (MachOOpt) { 2475 parseInputMachO(file); 2476 return; 2477 } 2478 2479 // Attempt to open the binary. 2480 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2481 Binary &Binary = *OBinary.getBinary(); 2482 2483 if (Archive *A = dyn_cast<Archive>(&Binary)) 2484 dumpArchive(A); 2485 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2486 dumpObject(O); 2487 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2488 parseInputMachO(UB); 2489 else 2490 reportError(errorCodeToError(object_error::invalid_file_type), file); 2491 } 2492 2493 template <typename T> 2494 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2495 T &Value) { 2496 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2497 StringRef V(A->getValue()); 2498 if (!llvm::to_integer(V, Value, 0)) { 2499 reportCmdLineError(A->getSpelling() + 2500 ": expected a non-negative integer, but got '" + V + 2501 "'"); 2502 } 2503 } 2504 } 2505 2506 static void invalidArgValue(const opt::Arg *A) { 2507 reportCmdLineError("'" + StringRef(A->getValue()) + 2508 "' is not a valid value for '" + A->getSpelling() + "'"); 2509 } 2510 2511 static std::vector<std::string> 2512 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2513 std::vector<std::string> Values; 2514 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2515 llvm::SmallVector<StringRef, 2> SplitValues; 2516 llvm::SplitString(Value, SplitValues, ","); 2517 for (StringRef SplitValue : SplitValues) 2518 Values.push_back(SplitValue.str()); 2519 } 2520 return Values; 2521 } 2522 2523 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2524 MachOOpt = true; 2525 FullLeadingAddr = true; 2526 PrintImmHex = true; 2527 2528 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2529 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2530 if (InputArgs.hasArg(OTOOL_d)) 2531 FilterSections.push_back("__DATA,__data"); 2532 DylibId = InputArgs.hasArg(OTOOL_D); 2533 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2534 DataInCode = InputArgs.hasArg(OTOOL_G); 2535 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2536 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2537 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2538 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2539 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2540 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2541 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2542 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2543 InfoPlist = InputArgs.hasArg(OTOOL_P); 2544 Relocations = InputArgs.hasArg(OTOOL_r); 2545 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2546 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2547 FilterSections.push_back(Filter); 2548 } 2549 if (InputArgs.hasArg(OTOOL_t)) 2550 FilterSections.push_back("__TEXT,__text"); 2551 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2552 InputArgs.hasArg(OTOOL_o); 2553 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 2554 if (InputArgs.hasArg(OTOOL_x)) 2555 FilterSections.push_back(",__text"); 2556 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 2557 2558 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 2559 if (InputFilenames.empty()) 2560 reportCmdLineError("no input file"); 2561 2562 for (const Arg *A : InputArgs) { 2563 const Option &O = A->getOption(); 2564 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 2565 reportCmdLineWarning(O.getPrefixedName() + 2566 " is obsolete and not implemented"); 2567 } 2568 } 2569 } 2570 2571 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 2572 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 2573 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 2574 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 2575 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 2576 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 2577 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 2578 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 2579 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 2580 DisassembleSymbols = 2581 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 2582 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 2583 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 2584 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 2585 .Case("frames", DIDT_DebugFrame) 2586 .Default(DIDT_Null); 2587 if (DwarfDumpType == DIDT_Null) 2588 invalidArgValue(A); 2589 } 2590 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 2591 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 2592 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 2593 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 2594 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 2595 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 2596 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 2597 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 2598 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 2599 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 2600 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 2601 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 2602 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 2603 PrintImmHex = 2604 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, false); 2605 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 2606 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 2607 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 2608 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 2609 PrintSource = InputArgs.hasArg(OBJDUMP_source); 2610 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 2611 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 2612 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 2613 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 2614 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 2615 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 2616 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 2617 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 2618 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 2619 Wide = InputArgs.hasArg(OBJDUMP_wide); 2620 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 2621 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 2622 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 2623 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 2624 .Case("ascii", DVASCII) 2625 .Case("unicode", DVUnicode) 2626 .Default(DVInvalid); 2627 if (DbgVariables == DVInvalid) 2628 invalidArgValue(A); 2629 } 2630 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 2631 2632 parseMachOOptions(InputArgs); 2633 2634 // Parse -M (--disassembler-options) and deprecated 2635 // --x86-asm-syntax={att,intel}. 2636 // 2637 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 2638 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 2639 // called too late. For now we have to use the internal cl::opt option. 2640 const char *AsmSyntax = nullptr; 2641 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 2642 OBJDUMP_x86_asm_syntax_att, 2643 OBJDUMP_x86_asm_syntax_intel)) { 2644 switch (A->getOption().getID()) { 2645 case OBJDUMP_x86_asm_syntax_att: 2646 AsmSyntax = "--x86-asm-syntax=att"; 2647 continue; 2648 case OBJDUMP_x86_asm_syntax_intel: 2649 AsmSyntax = "--x86-asm-syntax=intel"; 2650 continue; 2651 } 2652 2653 SmallVector<StringRef, 2> Values; 2654 llvm::SplitString(A->getValue(), Values, ","); 2655 for (StringRef V : Values) { 2656 if (V == "att") 2657 AsmSyntax = "--x86-asm-syntax=att"; 2658 else if (V == "intel") 2659 AsmSyntax = "--x86-asm-syntax=intel"; 2660 else 2661 DisassemblerOptions.push_back(V.str()); 2662 } 2663 } 2664 if (AsmSyntax) { 2665 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 2666 llvm::cl::ParseCommandLineOptions(2, Argv); 2667 } 2668 2669 // objdump defaults to a.out if no filenames specified. 2670 if (InputFilenames.empty()) 2671 InputFilenames.push_back("a.out"); 2672 } 2673 2674 int main(int argc, char **argv) { 2675 using namespace llvm; 2676 InitLLVM X(argc, argv); 2677 2678 ToolName = argv[0]; 2679 std::unique_ptr<CommonOptTable> T; 2680 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 2681 2682 StringRef Stem = sys::path::stem(ToolName); 2683 auto Is = [=](StringRef Tool) { 2684 // We need to recognize the following filenames: 2685 // 2686 // llvm-objdump -> objdump 2687 // llvm-otool-10.exe -> otool 2688 // powerpc64-unknown-freebsd13-objdump -> objdump 2689 auto I = Stem.rfind_insensitive(Tool); 2690 return I != StringRef::npos && 2691 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 2692 }; 2693 if (Is("otool")) { 2694 T = std::make_unique<OtoolOptTable>(); 2695 Unknown = OTOOL_UNKNOWN; 2696 HelpFlag = OTOOL_help; 2697 HelpHiddenFlag = OTOOL_help_hidden; 2698 VersionFlag = OTOOL_version; 2699 } else { 2700 T = std::make_unique<ObjdumpOptTable>(); 2701 Unknown = OBJDUMP_UNKNOWN; 2702 HelpFlag = OBJDUMP_help; 2703 HelpHiddenFlag = OBJDUMP_help_hidden; 2704 VersionFlag = OBJDUMP_version; 2705 } 2706 2707 BumpPtrAllocator A; 2708 StringSaver Saver(A); 2709 opt::InputArgList InputArgs = 2710 T->parseArgs(argc, argv, Unknown, Saver, 2711 [&](StringRef Msg) { reportCmdLineError(Msg); }); 2712 2713 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 2714 T->printHelp(ToolName); 2715 return 0; 2716 } 2717 if (InputArgs.hasArg(HelpHiddenFlag)) { 2718 T->printHelp(ToolName, /*ShowHidden=*/true); 2719 return 0; 2720 } 2721 2722 // Initialize targets and assembly printers/parsers. 2723 InitializeAllTargetInfos(); 2724 InitializeAllTargetMCs(); 2725 InitializeAllDisassemblers(); 2726 2727 if (InputArgs.hasArg(VersionFlag)) { 2728 cl::PrintVersionMessage(); 2729 if (!Is("otool")) { 2730 outs() << '\n'; 2731 TargetRegistry::printRegisteredTargetsForVersion(outs()); 2732 } 2733 return 0; 2734 } 2735 2736 if (Is("otool")) 2737 parseOtoolOptions(InputArgs); 2738 else 2739 parseObjdumpOptions(InputArgs); 2740 2741 if (StartAddress >= StopAddress) 2742 reportCmdLineError("start address should be less than stop address"); 2743 2744 // Removes trailing separators from prefix. 2745 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 2746 Prefix.pop_back(); 2747 2748 if (AllHeaders) 2749 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 2750 SectionHeaders = SymbolTable = true; 2751 2752 if (DisassembleAll || PrintSource || PrintLines || 2753 !DisassembleSymbols.empty()) 2754 Disassemble = true; 2755 2756 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 2757 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 2758 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 2759 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && 2760 !(MachOOpt && 2761 (Bind || DataInCode || DylibId || DylibsUsed || ExportsTrie || 2762 FirstPrivateHeader || FunctionStarts || IndirectSymbols || InfoPlist || 2763 LazyBind || LinkOptHints || ObjcMetaData || Rebase || Rpaths || 2764 UniversalHeaders || WeakBind || !FilterSections.empty()))) { 2765 T->printHelp(ToolName); 2766 return 2; 2767 } 2768 2769 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 2770 2771 llvm::for_each(InputFilenames, dumpInput); 2772 2773 warnOnNoMatchForSections(); 2774 2775 return EXIT_SUCCESS; 2776 } 2777