1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/IndexedMap.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/ADT/StringSet.h" 33 #include "llvm/ADT/Triple.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 36 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 37 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 38 #include "llvm/Debuginfod/BuildIDFetcher.h" 39 #include "llvm/Debuginfod/Debuginfod.h" 40 #include "llvm/Debuginfod/HTTPClient.h" 41 #include "llvm/Demangle/Demangle.h" 42 #include "llvm/MC/MCAsmInfo.h" 43 #include "llvm/MC/MCContext.h" 44 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 45 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 46 #include "llvm/MC/MCInst.h" 47 #include "llvm/MC/MCInstPrinter.h" 48 #include "llvm/MC/MCInstrAnalysis.h" 49 #include "llvm/MC/MCInstrInfo.h" 50 #include "llvm/MC/MCObjectFileInfo.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/MC/MCSubtargetInfo.h" 53 #include "llvm/MC/MCTargetOptions.h" 54 #include "llvm/MC/TargetRegistry.h" 55 #include "llvm/Object/Archive.h" 56 #include "llvm/Object/BuildID.h" 57 #include "llvm/Object/COFF.h" 58 #include "llvm/Object/COFFImportFile.h" 59 #include "llvm/Object/ELFObjectFile.h" 60 #include "llvm/Object/ELFTypes.h" 61 #include "llvm/Object/FaultMapParser.h" 62 #include "llvm/Object/MachO.h" 63 #include "llvm/Object/MachOUniversal.h" 64 #include "llvm/Object/ObjectFile.h" 65 #include "llvm/Object/OffloadBinary.h" 66 #include "llvm/Object/Wasm.h" 67 #include "llvm/Option/Arg.h" 68 #include "llvm/Option/ArgList.h" 69 #include "llvm/Option/Option.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/Errc.h" 73 #include "llvm/Support/FileSystem.h" 74 #include "llvm/Support/Format.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/GraphWriter.h" 77 #include "llvm/Support/Host.h" 78 #include "llvm/Support/InitLLVM.h" 79 #include "llvm/Support/MemoryBuffer.h" 80 #include "llvm/Support/SourceMgr.h" 81 #include "llvm/Support/StringSaver.h" 82 #include "llvm/Support/TargetSelect.h" 83 #include "llvm/Support/WithColor.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include <algorithm> 86 #include <cctype> 87 #include <cstring> 88 #include <optional> 89 #include <system_error> 90 #include <unordered_map> 91 #include <utility> 92 93 using namespace llvm; 94 using namespace llvm::object; 95 using namespace llvm::objdump; 96 using namespace llvm::opt; 97 98 namespace { 99 100 class CommonOptTable : public opt::GenericOptTable { 101 public: 102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 103 const char *Description) 104 : opt::GenericOptTable(OptionInfos), Usage(Usage), 105 Description(Description) { 106 setGroupedShortOptions(true); 107 } 108 109 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 110 Argv0 = sys::path::filename(Argv0); 111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 112 Description, ShowHidden, ShowHidden); 113 // TODO Replace this with OptTable API once it adds extrahelp support. 114 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 115 } 116 117 private: 118 const char *Usage; 119 const char *Description; 120 }; 121 122 // ObjdumpOptID is in ObjdumpOptID.h 123 namespace objdump_opt { 124 #define PREFIX(NAME, VALUE) \ 125 static constexpr StringLiteral NAME##_init[] = VALUE; \ 126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 127 std::size(NAME##_init) - 1); 128 #include "ObjdumpOpts.inc" 129 #undef PREFIX 130 131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 132 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 133 HELPTEXT, METAVAR, VALUES) \ 134 {PREFIX, NAME, HELPTEXT, \ 135 METAVAR, OBJDUMP_##ID, opt::Option::KIND##Class, \ 136 PARAM, FLAGS, OBJDUMP_##GROUP, \ 137 OBJDUMP_##ALIAS, ALIASARGS, VALUES}, 138 #include "ObjdumpOpts.inc" 139 #undef OPTION 140 }; 141 } // namespace objdump_opt 142 143 class ObjdumpOptTable : public CommonOptTable { 144 public: 145 ObjdumpOptTable() 146 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 147 " [options] <input object files>", 148 "llvm object file dumper") {} 149 }; 150 151 enum OtoolOptID { 152 OTOOL_INVALID = 0, // This is not an option ID. 153 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 154 HELPTEXT, METAVAR, VALUES) \ 155 OTOOL_##ID, 156 #include "OtoolOpts.inc" 157 #undef OPTION 158 }; 159 160 namespace otool { 161 #define PREFIX(NAME, VALUE) \ 162 static constexpr StringLiteral NAME##_init[] = VALUE; \ 163 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 164 std::size(NAME##_init) - 1); 165 #include "OtoolOpts.inc" 166 #undef PREFIX 167 168 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 169 #define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \ 170 HELPTEXT, METAVAR, VALUES) \ 171 {PREFIX, NAME, HELPTEXT, \ 172 METAVAR, OTOOL_##ID, opt::Option::KIND##Class, \ 173 PARAM, FLAGS, OTOOL_##GROUP, \ 174 OTOOL_##ALIAS, ALIASARGS, VALUES}, 175 #include "OtoolOpts.inc" 176 #undef OPTION 177 }; 178 } // namespace otool 179 180 class OtoolOptTable : public CommonOptTable { 181 public: 182 OtoolOptTable() 183 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 184 "Mach-O object file displaying tool") {} 185 }; 186 187 } // namespace 188 189 #define DEBUG_TYPE "objdump" 190 191 static uint64_t AdjustVMA; 192 static bool AllHeaders; 193 static std::string ArchName; 194 bool objdump::ArchiveHeaders; 195 bool objdump::Demangle; 196 bool objdump::Disassemble; 197 bool objdump::DisassembleAll; 198 bool objdump::SymbolDescription; 199 static std::vector<std::string> DisassembleSymbols; 200 static bool DisassembleZeroes; 201 static std::vector<std::string> DisassemblerOptions; 202 DIDumpType objdump::DwarfDumpType; 203 static bool DynamicRelocations; 204 static bool FaultMapSection; 205 static bool FileHeaders; 206 bool objdump::SectionContents; 207 static std::vector<std::string> InputFilenames; 208 bool objdump::PrintLines; 209 static bool MachOOpt; 210 std::string objdump::MCPU; 211 std::vector<std::string> objdump::MAttrs; 212 bool objdump::ShowRawInsn; 213 bool objdump::LeadingAddr; 214 static bool Offloading; 215 static bool RawClangAST; 216 bool objdump::Relocations; 217 bool objdump::PrintImmHex; 218 bool objdump::PrivateHeaders; 219 std::vector<std::string> objdump::FilterSections; 220 bool objdump::SectionHeaders; 221 static bool ShowAllSymbols; 222 static bool ShowLMA; 223 bool objdump::PrintSource; 224 225 static uint64_t StartAddress; 226 static bool HasStartAddressFlag; 227 static uint64_t StopAddress = UINT64_MAX; 228 static bool HasStopAddressFlag; 229 230 bool objdump::SymbolTable; 231 static bool SymbolizeOperands; 232 static bool DynamicSymbolTable; 233 std::string objdump::TripleName; 234 bool objdump::UnwindInfo; 235 static bool Wide; 236 std::string objdump::Prefix; 237 uint32_t objdump::PrefixStrip; 238 239 DebugVarsFormat objdump::DbgVariables = DVDisabled; 240 241 int objdump::DbgIndent = 52; 242 243 static StringSet<> DisasmSymbolSet; 244 StringSet<> objdump::FoundSectionSet; 245 static StringRef ToolName; 246 247 std::unique_ptr<BuildIDFetcher> BIDFetcher; 248 ExitOnError ExitOnErr; 249 250 namespace { 251 struct FilterResult { 252 // True if the section should not be skipped. 253 bool Keep; 254 255 // True if the index counter should be incremented, even if the section should 256 // be skipped. For example, sections may be skipped if they are not included 257 // in the --section flag, but we still want those to count toward the section 258 // count. 259 bool IncrementIndex; 260 }; 261 } // namespace 262 263 static FilterResult checkSectionFilter(object::SectionRef S) { 264 if (FilterSections.empty()) 265 return {/*Keep=*/true, /*IncrementIndex=*/true}; 266 267 Expected<StringRef> SecNameOrErr = S.getName(); 268 if (!SecNameOrErr) { 269 consumeError(SecNameOrErr.takeError()); 270 return {/*Keep=*/false, /*IncrementIndex=*/false}; 271 } 272 StringRef SecName = *SecNameOrErr; 273 274 // StringSet does not allow empty key so avoid adding sections with 275 // no name (such as the section with index 0) here. 276 if (!SecName.empty()) 277 FoundSectionSet.insert(SecName); 278 279 // Only show the section if it's in the FilterSections list, but always 280 // increment so the indexing is stable. 281 return {/*Keep=*/is_contained(FilterSections, SecName), 282 /*IncrementIndex=*/true}; 283 } 284 285 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 286 uint64_t *Idx) { 287 // Start at UINT64_MAX so that the first index returned after an increment is 288 // zero (after the unsigned wrap). 289 if (Idx) 290 *Idx = UINT64_MAX; 291 return SectionFilter( 292 [Idx](object::SectionRef S) { 293 FilterResult Result = checkSectionFilter(S); 294 if (Idx != nullptr && Result.IncrementIndex) 295 *Idx += 1; 296 return Result.Keep; 297 }, 298 O); 299 } 300 301 std::string objdump::getFileNameForError(const object::Archive::Child &C, 302 unsigned Index) { 303 Expected<StringRef> NameOrErr = C.getName(); 304 if (NameOrErr) 305 return std::string(NameOrErr.get()); 306 // If we have an error getting the name then we print the index of the archive 307 // member. Since we are already in an error state, we just ignore this error. 308 consumeError(NameOrErr.takeError()); 309 return "<file index: " + std::to_string(Index) + ">"; 310 } 311 312 void objdump::reportWarning(const Twine &Message, StringRef File) { 313 // Output order between errs() and outs() matters especially for archive 314 // files where the output is per member object. 315 outs().flush(); 316 WithColor::warning(errs(), ToolName) 317 << "'" << File << "': " << Message << "\n"; 318 } 319 320 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 321 outs().flush(); 322 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 323 exit(1); 324 } 325 326 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 327 StringRef ArchiveName, 328 StringRef ArchitectureName) { 329 assert(E); 330 outs().flush(); 331 WithColor::error(errs(), ToolName); 332 if (ArchiveName != "") 333 errs() << ArchiveName << "(" << FileName << ")"; 334 else 335 errs() << "'" << FileName << "'"; 336 if (!ArchitectureName.empty()) 337 errs() << " (for architecture " << ArchitectureName << ")"; 338 errs() << ": "; 339 logAllUnhandledErrors(std::move(E), errs()); 340 exit(1); 341 } 342 343 static void reportCmdLineWarning(const Twine &Message) { 344 WithColor::warning(errs(), ToolName) << Message << "\n"; 345 } 346 347 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 348 WithColor::error(errs(), ToolName) << Message << "\n"; 349 exit(1); 350 } 351 352 static void warnOnNoMatchForSections() { 353 SetVector<StringRef> MissingSections; 354 for (StringRef S : FilterSections) { 355 if (FoundSectionSet.count(S)) 356 return; 357 // User may specify a unnamed section. Don't warn for it. 358 if (!S.empty()) 359 MissingSections.insert(S); 360 } 361 362 // Warn only if no section in FilterSections is matched. 363 for (StringRef S : MissingSections) 364 reportCmdLineWarning("section '" + S + 365 "' mentioned in a -j/--section option, but not " 366 "found in any input file"); 367 } 368 369 static const Target *getTarget(const ObjectFile *Obj) { 370 // Figure out the target triple. 371 Triple TheTriple("unknown-unknown-unknown"); 372 if (TripleName.empty()) { 373 TheTriple = Obj->makeTriple(); 374 } else { 375 TheTriple.setTriple(Triple::normalize(TripleName)); 376 auto Arch = Obj->getArch(); 377 if (Arch == Triple::arm || Arch == Triple::armeb) 378 Obj->setARMSubArch(TheTriple); 379 } 380 381 // Get the target specific parser. 382 std::string Error; 383 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 384 Error); 385 if (!TheTarget) 386 reportError(Obj->getFileName(), "can't find target: " + Error); 387 388 // Update the triple name and return the found target. 389 TripleName = TheTriple.getTriple(); 390 return TheTarget; 391 } 392 393 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 394 return A.getOffset() < B.getOffset(); 395 } 396 397 static Error getRelocationValueString(const RelocationRef &Rel, 398 SmallVectorImpl<char> &Result) { 399 const ObjectFile *Obj = Rel.getObject(); 400 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 401 return getELFRelocationValueString(ELF, Rel, Result); 402 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 403 return getCOFFRelocationValueString(COFF, Rel, Result); 404 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 405 return getWasmRelocationValueString(Wasm, Rel, Result); 406 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 407 return getMachORelocationValueString(MachO, Rel, Result); 408 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 409 return getXCOFFRelocationValueString(*XCOFF, Rel, Result); 410 llvm_unreachable("unknown object file format"); 411 } 412 413 /// Indicates whether this relocation should hidden when listing 414 /// relocations, usually because it is the trailing part of a multipart 415 /// relocation that will be printed as part of the leading relocation. 416 static bool getHidden(RelocationRef RelRef) { 417 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 418 if (!MachO) 419 return false; 420 421 unsigned Arch = MachO->getArch(); 422 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 423 uint64_t Type = MachO->getRelocationType(Rel); 424 425 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 426 // is always hidden. 427 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 428 return Type == MachO::GENERIC_RELOC_PAIR; 429 430 if (Arch == Triple::x86_64) { 431 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 432 // an X86_64_RELOC_SUBTRACTOR. 433 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 434 DataRefImpl RelPrev = Rel; 435 RelPrev.d.a--; 436 uint64_t PrevType = MachO->getRelocationType(RelPrev); 437 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 438 return true; 439 } 440 } 441 442 return false; 443 } 444 445 namespace { 446 447 /// Get the column at which we want to start printing the instruction 448 /// disassembly, taking into account anything which appears to the left of it. 449 unsigned getInstStartColumn(const MCSubtargetInfo &STI) { 450 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 451 } 452 453 static bool isAArch64Elf(const ObjectFile &Obj) { 454 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 455 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 456 } 457 458 static bool isArmElf(const ObjectFile &Obj) { 459 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 460 return Elf && Elf->getEMachine() == ELF::EM_ARM; 461 } 462 463 static bool isCSKYElf(const ObjectFile &Obj) { 464 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 465 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 466 } 467 468 static bool hasMappingSymbols(const ObjectFile &Obj) { 469 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 470 } 471 472 static bool isMappingSymbol(const SymbolInfoTy &Sym) { 473 return Sym.Name.startswith("$d") || Sym.Name.startswith("$x") || 474 Sym.Name.startswith("$a") || Sym.Name.startswith("$t"); 475 } 476 477 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 478 const RelocationRef &Rel, uint64_t Address, 479 bool Is64Bits) { 480 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 481 SmallString<16> Name; 482 SmallString<32> Val; 483 Rel.getTypeName(Name); 484 if (Error E = getRelocationValueString(Rel, Val)) 485 reportError(std::move(E), FileName); 486 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 487 if (LeadingAddr) 488 OS << format(Fmt.data(), Address); 489 OS << Name << "\t" << Val; 490 } 491 492 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 493 raw_ostream &OS) { 494 // The output of printInst starts with a tab. Print some spaces so that 495 // the tab has 1 column and advances to the target tab stop. 496 unsigned TabStop = getInstStartColumn(STI); 497 unsigned Column = OS.tell() - Start; 498 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 499 } 500 501 class PrettyPrinter { 502 public: 503 virtual ~PrettyPrinter() = default; 504 virtual void 505 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 506 object::SectionedAddress Address, formatted_raw_ostream &OS, 507 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 508 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 509 LiveVariablePrinter &LVP) { 510 if (SP && (PrintSource || PrintLines)) 511 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 512 LVP.printBetweenInsts(OS, false); 513 514 size_t Start = OS.tell(); 515 if (LeadingAddr) 516 OS << format("%8" PRIx64 ":", Address.Address); 517 if (ShowRawInsn) { 518 OS << ' '; 519 dumpBytes(Bytes, OS); 520 } 521 522 AlignToInstStartColumn(Start, STI, OS); 523 524 if (MI) { 525 // See MCInstPrinter::printInst. On targets where a PC relative immediate 526 // is relative to the next instruction and the length of a MCInst is 527 // difficult to measure (x86), this is the address of the next 528 // instruction. 529 uint64_t Addr = 530 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 531 IP.printInst(MI, Addr, "", STI, OS); 532 } else 533 OS << "\t<unknown>"; 534 } 535 }; 536 PrettyPrinter PrettyPrinterInst; 537 538 class HexagonPrettyPrinter : public PrettyPrinter { 539 public: 540 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 541 formatted_raw_ostream &OS) { 542 uint32_t opcode = 543 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 544 if (LeadingAddr) 545 OS << format("%8" PRIx64 ":", Address); 546 if (ShowRawInsn) { 547 OS << "\t"; 548 dumpBytes(Bytes.slice(0, 4), OS); 549 OS << format("\t%08" PRIx32, opcode); 550 } 551 } 552 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 553 object::SectionedAddress Address, formatted_raw_ostream &OS, 554 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 555 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 556 LiveVariablePrinter &LVP) override { 557 if (SP && (PrintSource || PrintLines)) 558 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 559 if (!MI) { 560 printLead(Bytes, Address.Address, OS); 561 OS << " <unknown>"; 562 return; 563 } 564 std::string Buffer; 565 { 566 raw_string_ostream TempStream(Buffer); 567 IP.printInst(MI, Address.Address, "", STI, TempStream); 568 } 569 StringRef Contents(Buffer); 570 // Split off bundle attributes 571 auto PacketBundle = Contents.rsplit('\n'); 572 // Split off first instruction from the rest 573 auto HeadTail = PacketBundle.first.split('\n'); 574 auto Preamble = " { "; 575 auto Separator = ""; 576 577 // Hexagon's packets require relocations to be inline rather than 578 // clustered at the end of the packet. 579 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 580 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 581 auto PrintReloc = [&]() -> void { 582 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 583 if (RelCur->getOffset() == Address.Address) { 584 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 585 return; 586 } 587 ++RelCur; 588 } 589 }; 590 591 while (!HeadTail.first.empty()) { 592 OS << Separator; 593 Separator = "\n"; 594 if (SP && (PrintSource || PrintLines)) 595 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 596 printLead(Bytes, Address.Address, OS); 597 OS << Preamble; 598 Preamble = " "; 599 StringRef Inst; 600 auto Duplex = HeadTail.first.split('\v'); 601 if (!Duplex.second.empty()) { 602 OS << Duplex.first; 603 OS << "; "; 604 Inst = Duplex.second; 605 } 606 else 607 Inst = HeadTail.first; 608 OS << Inst; 609 HeadTail = HeadTail.second.split('\n'); 610 if (HeadTail.first.empty()) 611 OS << " } " << PacketBundle.second; 612 PrintReloc(); 613 Bytes = Bytes.slice(4); 614 Address.Address += 4; 615 } 616 } 617 }; 618 HexagonPrettyPrinter HexagonPrettyPrinterInst; 619 620 class AMDGCNPrettyPrinter : public PrettyPrinter { 621 public: 622 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 623 object::SectionedAddress Address, formatted_raw_ostream &OS, 624 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 625 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 626 LiveVariablePrinter &LVP) override { 627 if (SP && (PrintSource || PrintLines)) 628 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 629 630 if (MI) { 631 SmallString<40> InstStr; 632 raw_svector_ostream IS(InstStr); 633 634 IP.printInst(MI, Address.Address, "", STI, IS); 635 636 OS << left_justify(IS.str(), 60); 637 } else { 638 // an unrecognized encoding - this is probably data so represent it 639 // using the .long directive, or .byte directive if fewer than 4 bytes 640 // remaining 641 if (Bytes.size() >= 4) { 642 OS << format("\t.long 0x%08" PRIx32 " ", 643 support::endian::read32<support::little>(Bytes.data())); 644 OS.indent(42); 645 } else { 646 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 647 for (unsigned int i = 1; i < Bytes.size(); i++) 648 OS << format(", 0x%02" PRIx8, Bytes[i]); 649 OS.indent(55 - (6 * Bytes.size())); 650 } 651 } 652 653 OS << format("// %012" PRIX64 ":", Address.Address); 654 if (Bytes.size() >= 4) { 655 // D should be casted to uint32_t here as it is passed by format to 656 // snprintf as vararg. 657 for (uint32_t D : 658 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 659 Bytes.size() / 4)) 660 OS << format(" %08" PRIX32, D); 661 } else { 662 for (unsigned char B : Bytes) 663 OS << format(" %02" PRIX8, B); 664 } 665 666 if (!Annot.empty()) 667 OS << " // " << Annot; 668 } 669 }; 670 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 671 672 class BPFPrettyPrinter : public PrettyPrinter { 673 public: 674 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 675 object::SectionedAddress Address, formatted_raw_ostream &OS, 676 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 677 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 678 LiveVariablePrinter &LVP) override { 679 if (SP && (PrintSource || PrintLines)) 680 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 681 if (LeadingAddr) 682 OS << format("%8" PRId64 ":", Address.Address / 8); 683 if (ShowRawInsn) { 684 OS << "\t"; 685 dumpBytes(Bytes, OS); 686 } 687 if (MI) 688 IP.printInst(MI, Address.Address, "", STI, OS); 689 else 690 OS << "\t<unknown>"; 691 } 692 }; 693 BPFPrettyPrinter BPFPrettyPrinterInst; 694 695 class ARMPrettyPrinter : public PrettyPrinter { 696 public: 697 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 698 object::SectionedAddress Address, formatted_raw_ostream &OS, 699 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 700 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 701 LiveVariablePrinter &LVP) override { 702 if (SP && (PrintSource || PrintLines)) 703 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 704 LVP.printBetweenInsts(OS, false); 705 706 size_t Start = OS.tell(); 707 if (LeadingAddr) 708 OS << format("%8" PRIx64 ":", Address.Address); 709 if (ShowRawInsn) { 710 size_t Pos = 0, End = Bytes.size(); 711 if (STI.checkFeatures("+thumb-mode")) { 712 for (; Pos + 2 <= End; Pos += 2) 713 OS << ' ' 714 << format_hex_no_prefix( 715 llvm::support::endian::read<uint16_t>( 716 Bytes.data() + Pos, InstructionEndianness), 717 4); 718 } else { 719 for (; Pos + 4 <= End; Pos += 4) 720 OS << ' ' 721 << format_hex_no_prefix( 722 llvm::support::endian::read<uint32_t>( 723 Bytes.data() + Pos, InstructionEndianness), 724 8); 725 } 726 if (Pos < End) { 727 OS << ' '; 728 dumpBytes(Bytes.slice(Pos), OS); 729 } 730 } 731 732 AlignToInstStartColumn(Start, STI, OS); 733 734 if (MI) { 735 IP.printInst(MI, Address.Address, "", STI, OS); 736 } else 737 OS << "\t<unknown>"; 738 } 739 740 void setInstructionEndianness(llvm::support::endianness Endianness) { 741 InstructionEndianness = Endianness; 742 } 743 744 private: 745 llvm::support::endianness InstructionEndianness = llvm::support::little; 746 }; 747 ARMPrettyPrinter ARMPrettyPrinterInst; 748 749 class AArch64PrettyPrinter : public PrettyPrinter { 750 public: 751 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 752 object::SectionedAddress Address, formatted_raw_ostream &OS, 753 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 754 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 755 LiveVariablePrinter &LVP) override { 756 if (SP && (PrintSource || PrintLines)) 757 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 758 LVP.printBetweenInsts(OS, false); 759 760 size_t Start = OS.tell(); 761 if (LeadingAddr) 762 OS << format("%8" PRIx64 ":", Address.Address); 763 if (ShowRawInsn) { 764 size_t Pos = 0, End = Bytes.size(); 765 for (; Pos + 4 <= End; Pos += 4) 766 OS << ' ' 767 << format_hex_no_prefix( 768 llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, 769 llvm::support::little), 770 8); 771 if (Pos < End) { 772 OS << ' '; 773 dumpBytes(Bytes.slice(Pos), OS); 774 } 775 } 776 777 AlignToInstStartColumn(Start, STI, OS); 778 779 if (MI) { 780 IP.printInst(MI, Address.Address, "", STI, OS); 781 } else 782 OS << "\t<unknown>"; 783 } 784 }; 785 AArch64PrettyPrinter AArch64PrettyPrinterInst; 786 787 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 788 switch(Triple.getArch()) { 789 default: 790 return PrettyPrinterInst; 791 case Triple::hexagon: 792 return HexagonPrettyPrinterInst; 793 case Triple::amdgcn: 794 return AMDGCNPrettyPrinterInst; 795 case Triple::bpfel: 796 case Triple::bpfeb: 797 return BPFPrettyPrinterInst; 798 case Triple::arm: 799 case Triple::armeb: 800 case Triple::thumb: 801 case Triple::thumbeb: 802 return ARMPrettyPrinterInst; 803 case Triple::aarch64: 804 case Triple::aarch64_be: 805 case Triple::aarch64_32: 806 return AArch64PrettyPrinterInst; 807 } 808 } 809 } 810 811 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 812 assert(Obj.isELF()); 813 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 814 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 815 Obj.getFileName()) 816 ->getType(); 817 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 818 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 819 Obj.getFileName()) 820 ->getType(); 821 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 822 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 823 Obj.getFileName()) 824 ->getType(); 825 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 826 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 827 Obj.getFileName()) 828 ->getType(); 829 llvm_unreachable("Unsupported binary format"); 830 } 831 832 template <class ELFT> 833 static void 834 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 835 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 836 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 837 uint8_t SymbolType = Symbol.getELFType(); 838 if (SymbolType == ELF::STT_SECTION) 839 continue; 840 841 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 842 // ELFSymbolRef::getAddress() returns size instead of value for common 843 // symbols which is not desirable for disassembly output. Overriding. 844 if (SymbolType == ELF::STT_COMMON) 845 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 846 Obj.getFileName()) 847 ->st_value; 848 849 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 850 if (Name.empty()) 851 continue; 852 853 section_iterator SecI = 854 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 855 if (SecI == Obj.section_end()) 856 continue; 857 858 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 859 } 860 } 861 862 static void 863 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 864 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 865 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 866 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 867 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 868 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 869 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 870 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 871 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 872 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 873 else 874 llvm_unreachable("Unsupported binary format"); 875 } 876 877 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 878 for (auto SecI : Obj.sections()) { 879 const WasmSection &Section = Obj.getWasmSection(SecI); 880 if (Section.Type == wasm::WASM_SEC_CODE) 881 return SecI; 882 } 883 return std::nullopt; 884 } 885 886 static void 887 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 888 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 889 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 890 if (!Section) 891 return; 892 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 893 894 std::set<uint64_t> SymbolAddresses; 895 for (const auto &Sym : Symbols) 896 SymbolAddresses.insert(Sym.Addr); 897 898 for (const wasm::WasmFunction &Function : Obj.functions()) { 899 uint64_t Address = Function.CodeSectionOffset; 900 // Only add fallback symbols for functions not already present in the symbol 901 // table. 902 if (SymbolAddresses.count(Address)) 903 continue; 904 // This function has no symbol, so it should have no SymbolName. 905 assert(Function.SymbolName.empty()); 906 // We use DebugName for the name, though it may be empty if there is no 907 // "name" custom section, or that section is missing a name for this 908 // function. 909 StringRef Name = Function.DebugName; 910 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 911 } 912 } 913 914 static void addPltEntries(const ObjectFile &Obj, 915 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 916 StringSaver &Saver) { 917 std::optional<SectionRef> Plt; 918 for (const SectionRef &Section : Obj.sections()) { 919 Expected<StringRef> SecNameOrErr = Section.getName(); 920 if (!SecNameOrErr) { 921 consumeError(SecNameOrErr.takeError()); 922 continue; 923 } 924 if (*SecNameOrErr == ".plt") 925 Plt = Section; 926 } 927 if (!Plt) 928 return; 929 if (auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj)) { 930 for (auto PltEntry : ElfObj->getPltAddresses()) { 931 if (PltEntry.first) { 932 SymbolRef Symbol(*PltEntry.first, ElfObj); 933 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 934 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 935 if (!NameOrErr->empty()) 936 AllSymbols[*Plt].emplace_back( 937 PltEntry.second, Saver.save((*NameOrErr + "@plt").str()), 938 SymbolType); 939 continue; 940 } else { 941 // The warning has been reported in disassembleObject(). 942 consumeError(NameOrErr.takeError()); 943 } 944 } 945 reportWarning("PLT entry at 0x" + Twine::utohexstr(PltEntry.second) + 946 " references an invalid symbol", 947 Obj.getFileName()); 948 } 949 } 950 } 951 952 // Normally the disassembly output will skip blocks of zeroes. This function 953 // returns the number of zero bytes that can be skipped when dumping the 954 // disassembly of the instructions in Buf. 955 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 956 // Find the number of leading zeroes. 957 size_t N = 0; 958 while (N < Buf.size() && !Buf[N]) 959 ++N; 960 961 // We may want to skip blocks of zero bytes, but unless we see 962 // at least 8 of them in a row. 963 if (N < 8) 964 return 0; 965 966 // We skip zeroes in multiples of 4 because do not want to truncate an 967 // instruction if it starts with a zero byte. 968 return N & ~0x3; 969 } 970 971 // Returns a map from sections to their relocations. 972 static std::map<SectionRef, std::vector<RelocationRef>> 973 getRelocsMap(object::ObjectFile const &Obj) { 974 std::map<SectionRef, std::vector<RelocationRef>> Ret; 975 uint64_t I = (uint64_t)-1; 976 for (SectionRef Sec : Obj.sections()) { 977 ++I; 978 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 979 if (!RelocatedOrErr) 980 reportError(Obj.getFileName(), 981 "section (" + Twine(I) + 982 "): failed to get a relocated section: " + 983 toString(RelocatedOrErr.takeError())); 984 985 section_iterator Relocated = *RelocatedOrErr; 986 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 987 continue; 988 std::vector<RelocationRef> &V = Ret[*Relocated]; 989 append_range(V, Sec.relocations()); 990 // Sort relocations by address. 991 llvm::stable_sort(V, isRelocAddressLess); 992 } 993 return Ret; 994 } 995 996 // Used for --adjust-vma to check if address should be adjusted by the 997 // specified value for a given section. 998 // For ELF we do not adjust non-allocatable sections like debug ones, 999 // because they are not loadable. 1000 // TODO: implement for other file formats. 1001 static bool shouldAdjustVA(const SectionRef &Section) { 1002 const ObjectFile *Obj = Section.getObject(); 1003 if (Obj->isELF()) 1004 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1005 return false; 1006 } 1007 1008 1009 typedef std::pair<uint64_t, char> MappingSymbolPair; 1010 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1011 uint64_t Address) { 1012 auto It = 1013 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1014 return Val.first <= Address; 1015 }); 1016 // Return zero for any address before the first mapping symbol; this means 1017 // we should use the default disassembly mode, depending on the target. 1018 if (It == MappingSymbols.begin()) 1019 return '\x00'; 1020 return (It - 1)->second; 1021 } 1022 1023 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1024 uint64_t End, const ObjectFile &Obj, 1025 ArrayRef<uint8_t> Bytes, 1026 ArrayRef<MappingSymbolPair> MappingSymbols, 1027 const MCSubtargetInfo &STI, raw_ostream &OS) { 1028 support::endianness Endian = 1029 Obj.isLittleEndian() ? support::little : support::big; 1030 size_t Start = OS.tell(); 1031 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1032 if (Index + 4 <= End) { 1033 dumpBytes(Bytes.slice(Index, 4), OS); 1034 AlignToInstStartColumn(Start, STI, OS); 1035 OS << "\t.word\t" 1036 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1037 10); 1038 return 4; 1039 } 1040 if (Index + 2 <= End) { 1041 dumpBytes(Bytes.slice(Index, 2), OS); 1042 AlignToInstStartColumn(Start, STI, OS); 1043 OS << "\t.short\t" 1044 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1045 return 2; 1046 } 1047 dumpBytes(Bytes.slice(Index, 1), OS); 1048 AlignToInstStartColumn(Start, STI, OS); 1049 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1050 return 1; 1051 } 1052 1053 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1054 ArrayRef<uint8_t> Bytes) { 1055 // print out data up to 8 bytes at a time in hex and ascii 1056 uint8_t AsciiData[9] = {'\0'}; 1057 uint8_t Byte; 1058 int NumBytes = 0; 1059 1060 for (; Index < End; ++Index) { 1061 if (NumBytes == 0) 1062 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1063 Byte = Bytes.slice(Index)[0]; 1064 outs() << format(" %02x", Byte); 1065 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1066 1067 uint8_t IndentOffset = 0; 1068 NumBytes++; 1069 if (Index == End - 1 || NumBytes > 8) { 1070 // Indent the space for less than 8 bytes data. 1071 // 2 spaces for byte and one for space between bytes 1072 IndentOffset = 3 * (8 - NumBytes); 1073 for (int Excess = NumBytes; Excess < 8; Excess++) 1074 AsciiData[Excess] = '\0'; 1075 NumBytes = 8; 1076 } 1077 if (NumBytes == 8) { 1078 AsciiData[8] = '\0'; 1079 outs() << std::string(IndentOffset, ' ') << " "; 1080 outs() << reinterpret_cast<char *>(AsciiData); 1081 outs() << '\n'; 1082 NumBytes = 0; 1083 } 1084 } 1085 } 1086 1087 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1088 const SymbolRef &Symbol) { 1089 const StringRef FileName = Obj.getFileName(); 1090 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1091 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1092 1093 if (Obj.isXCOFF() && SymbolDescription) { 1094 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1095 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1096 1097 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1098 std::optional<XCOFF::StorageMappingClass> Smc = 1099 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1100 return SymbolInfoTy(Addr, Name, Smc, SymbolIndex, 1101 isLabel(XCOFFObj, Symbol)); 1102 } else if (Obj.isXCOFF()) { 1103 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1104 return SymbolInfoTy(Addr, Name, SymType, true); 1105 } else 1106 return SymbolInfoTy(Addr, Name, 1107 Obj.isELF() ? getElfSymbolType(Obj, Symbol) 1108 : (uint8_t)ELF::STT_NOTYPE); 1109 } 1110 1111 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1112 const uint64_t Addr, StringRef &Name, 1113 uint8_t Type) { 1114 if (Obj.isXCOFF() && SymbolDescription) 1115 return SymbolInfoTy(Addr, Name, std::nullopt, std::nullopt, false); 1116 else 1117 return SymbolInfoTy(Addr, Name, Type); 1118 } 1119 1120 static void 1121 collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, 1122 uint64_t SectionAddr, uint64_t Start, uint64_t End, 1123 std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { 1124 if (AddrToBBAddrMap.empty()) 1125 return; 1126 Labels.clear(); 1127 uint64_t StartAddress = SectionAddr + Start; 1128 uint64_t EndAddress = SectionAddr + End; 1129 auto Iter = AddrToBBAddrMap.find(StartAddress); 1130 if (Iter == AddrToBBAddrMap.end()) 1131 return; 1132 for (unsigned I = 0, Size = Iter->second.BBEntries.size(); I < Size; ++I) { 1133 uint64_t BBAddress = Iter->second.BBEntries[I].Offset + Iter->second.Addr; 1134 if (BBAddress >= EndAddress) 1135 continue; 1136 Labels[BBAddress].push_back(("BB" + Twine(I)).str()); 1137 } 1138 } 1139 1140 static void collectLocalBranchTargets( 1141 ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, 1142 MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, 1143 uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { 1144 // So far only supports PowerPC and X86. 1145 if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) 1146 return; 1147 1148 Labels.clear(); 1149 unsigned LabelCount = 0; 1150 Start += SectionAddr; 1151 End += SectionAddr; 1152 uint64_t Index = Start; 1153 while (Index < End) { 1154 // Disassemble a real instruction and record function-local branch labels. 1155 MCInst Inst; 1156 uint64_t Size; 1157 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1158 bool Disassembled = 1159 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1160 if (Size == 0) 1161 Size = std::min<uint64_t>(ThisBytes.size(), 1162 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1163 1164 if (Disassembled && MIA) { 1165 uint64_t Target; 1166 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1167 // On PowerPC, if the address of a branch is the same as the target, it 1168 // means that it's a function call. Do not mark the label for this case. 1169 if (TargetKnown && (Target >= Start && Target < End) && 1170 !Labels.count(Target) && 1171 !(STI->getTargetTriple().isPPC() && Target == Index)) 1172 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1173 } 1174 Index += Size; 1175 } 1176 } 1177 1178 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1179 // This is currently only used on AMDGPU, and assumes the format of the 1180 // void * argument passed to AMDGPU's createMCSymbolizer. 1181 static void addSymbolizer( 1182 MCContext &Ctx, const Target *Target, StringRef TripleName, 1183 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1184 SectionSymbolsTy &Symbols, 1185 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1186 1187 std::unique_ptr<MCRelocationInfo> RelInfo( 1188 Target->createMCRelocationInfo(TripleName, Ctx)); 1189 if (!RelInfo) 1190 return; 1191 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1192 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1193 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1194 DisAsm->setSymbolizer(std::move(Symbolizer)); 1195 1196 if (!SymbolizeOperands) 1197 return; 1198 1199 // Synthesize labels referenced by branch instructions by 1200 // disassembling, discarding the output, and collecting the referenced 1201 // addresses from the symbolizer. 1202 for (size_t Index = 0; Index != Bytes.size();) { 1203 MCInst Inst; 1204 uint64_t Size; 1205 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1206 const uint64_t ThisAddr = SectionAddr + Index; 1207 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1208 if (Size == 0) 1209 Size = std::min<uint64_t>(ThisBytes.size(), 1210 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1211 Index += Size; 1212 } 1213 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1214 // Copy and sort to remove duplicates. 1215 std::vector<uint64_t> LabelAddrs; 1216 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1217 LabelAddrsRef.end()); 1218 llvm::sort(LabelAddrs); 1219 LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - 1220 LabelAddrs.begin()); 1221 // Add the labels. 1222 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1223 auto Name = std::make_unique<std::string>(); 1224 *Name = (Twine("L") + Twine(LabelNum)).str(); 1225 SynthesizedLabelNames.push_back(std::move(Name)); 1226 Symbols.push_back(SymbolInfoTy( 1227 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1228 } 1229 llvm::stable_sort(Symbols); 1230 // Recreate the symbolizer with the new symbols list. 1231 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1232 Symbolizer.reset(Target->createMCSymbolizer( 1233 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1234 DisAsm->setSymbolizer(std::move(Symbolizer)); 1235 } 1236 1237 static StringRef getSegmentName(const MachOObjectFile *MachO, 1238 const SectionRef &Section) { 1239 if (MachO) { 1240 DataRefImpl DR = Section.getRawDataRefImpl(); 1241 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1242 return SegmentName; 1243 } 1244 return ""; 1245 } 1246 1247 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1248 const MCAsmInfo &MAI, 1249 const MCSubtargetInfo &STI, 1250 StringRef Comments, 1251 LiveVariablePrinter &LVP) { 1252 do { 1253 if (!Comments.empty()) { 1254 // Emit a line of comments. 1255 StringRef Comment; 1256 std::tie(Comment, Comments) = Comments.split('\n'); 1257 // MAI.getCommentColumn() assumes that instructions are printed at the 1258 // position of 8, while getInstStartColumn() returns the actual position. 1259 unsigned CommentColumn = 1260 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1261 FOS.PadToColumn(CommentColumn); 1262 FOS << MAI.getCommentString() << ' ' << Comment; 1263 } 1264 LVP.printAfterInst(FOS); 1265 FOS << '\n'; 1266 } while (!Comments.empty()); 1267 FOS.flush(); 1268 } 1269 1270 static void createFakeELFSections(ObjectFile &Obj) { 1271 assert(Obj.isELF()); 1272 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1273 Elf32LEObj->createFakeSections(); 1274 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1275 Elf64LEObj->createFakeSections(); 1276 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1277 Elf32BEObj->createFakeSections(); 1278 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1279 Elf64BEObj->createFakeSections(); 1280 else 1281 llvm_unreachable("Unsupported binary format"); 1282 } 1283 1284 // Tries to fetch a more complete version of the given object file using its 1285 // Build ID. Returns std::nullopt if nothing was found. 1286 static std::optional<OwningBinary<Binary>> 1287 fetchBinaryByBuildID(const ObjectFile &Obj) { 1288 std::optional<object::BuildIDRef> BuildID = getBuildID(&Obj); 1289 if (!BuildID) 1290 return std::nullopt; 1291 std::optional<std::string> Path = BIDFetcher->fetch(*BuildID); 1292 if (!Path) 1293 return std::nullopt; 1294 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1295 if (!DebugBinary) { 1296 reportWarning(toString(DebugBinary.takeError()), *Path); 1297 return std::nullopt; 1298 } 1299 return std::move(*DebugBinary); 1300 } 1301 1302 static void disassembleObject(const Target *TheTarget, ObjectFile &Obj, 1303 const ObjectFile &DbgObj, MCContext &Ctx, 1304 MCDisassembler *PrimaryDisAsm, 1305 MCDisassembler *SecondaryDisAsm, 1306 const MCInstrAnalysis *MIA, MCInstPrinter *IP, 1307 const MCSubtargetInfo *PrimarySTI, 1308 const MCSubtargetInfo *SecondarySTI, 1309 PrettyPrinter &PIP, SourcePrinter &SP, 1310 bool InlineRelocs) { 1311 const MCSubtargetInfo *STI = PrimarySTI; 1312 MCDisassembler *DisAsm = PrimaryDisAsm; 1313 bool PrimaryIsThumb = false; 1314 if (isArmElf(Obj)) 1315 PrimaryIsThumb = STI->checkFeatures("+thumb-mode"); 1316 1317 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1318 if (InlineRelocs) 1319 RelocMap = getRelocsMap(Obj); 1320 bool Is64Bits = Obj.getBytesInAddress() > 4; 1321 1322 // Create a mapping from virtual address to symbol name. This is used to 1323 // pretty print the symbols while disassembling. 1324 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1325 SectionSymbolsTy AbsoluteSymbols; 1326 const StringRef FileName = Obj.getFileName(); 1327 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1328 for (const SymbolRef &Symbol : Obj.symbols()) { 1329 Expected<StringRef> NameOrErr = Symbol.getName(); 1330 if (!NameOrErr) { 1331 reportWarning(toString(NameOrErr.takeError()), FileName); 1332 continue; 1333 } 1334 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1335 continue; 1336 1337 if (Obj.isELF() && getElfSymbolType(Obj, Symbol) == ELF::STT_SECTION) 1338 continue; 1339 1340 if (MachO) { 1341 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1342 // symbols that support MachO header introspection. They do not bind to 1343 // code locations and are irrelevant for disassembly. 1344 if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) 1345 continue; 1346 // Don't ask a Mach-O STAB symbol for its section unless you know that 1347 // STAB symbol's section field refers to a valid section index. Otherwise 1348 // the symbol may error trying to load a section that does not exist. 1349 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1350 uint8_t NType = (MachO->is64Bit() ? 1351 MachO->getSymbol64TableEntry(SymDRI).n_type: 1352 MachO->getSymbolTableEntry(SymDRI).n_type); 1353 if (NType & MachO::N_STAB) 1354 continue; 1355 } 1356 1357 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1358 if (SecI != Obj.section_end()) 1359 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1360 else 1361 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1362 } 1363 1364 if (AllSymbols.empty() && Obj.isELF()) 1365 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1366 1367 if (Obj.isWasm()) 1368 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1369 1370 if (Obj.isELF() && Obj.sections().empty()) 1371 createFakeELFSections(Obj); 1372 1373 BumpPtrAllocator A; 1374 StringSaver Saver(A); 1375 addPltEntries(Obj, AllSymbols, Saver); 1376 1377 // Create a mapping from virtual address to section. An empty section can 1378 // cause more than one section at the same address. Sort such sections to be 1379 // before same-addressed non-empty sections so that symbol lookups prefer the 1380 // non-empty section. 1381 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1382 for (SectionRef Sec : Obj.sections()) 1383 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1384 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1385 if (LHS.first != RHS.first) 1386 return LHS.first < RHS.first; 1387 return LHS.second.getSize() < RHS.second.getSize(); 1388 }); 1389 1390 // Linked executables (.exe and .dll files) typically don't include a real 1391 // symbol table but they might contain an export table. 1392 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1393 for (const auto &ExportEntry : COFFObj->export_directories()) { 1394 StringRef Name; 1395 if (Error E = ExportEntry.getSymbolName(Name)) 1396 reportError(std::move(E), Obj.getFileName()); 1397 if (Name.empty()) 1398 continue; 1399 1400 uint32_t RVA; 1401 if (Error E = ExportEntry.getExportRVA(RVA)) 1402 reportError(std::move(E), Obj.getFileName()); 1403 1404 uint64_t VA = COFFObj->getImageBase() + RVA; 1405 auto Sec = partition_point( 1406 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1407 return O.first <= VA; 1408 }); 1409 if (Sec != SectionAddresses.begin()) { 1410 --Sec; 1411 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1412 } else 1413 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1414 } 1415 } 1416 1417 // Sort all the symbols, this allows us to use a simple binary search to find 1418 // Multiple symbols can have the same address. Use a stable sort to stabilize 1419 // the output. 1420 StringSet<> FoundDisasmSymbolSet; 1421 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1422 llvm::stable_sort(SecSyms.second); 1423 llvm::stable_sort(AbsoluteSymbols); 1424 1425 std::unique_ptr<DWARFContext> DICtx; 1426 LiveVariablePrinter LVP(*Ctx.getRegisterInfo(), *STI); 1427 1428 if (DbgVariables != DVDisabled) { 1429 DICtx = DWARFContext::create(DbgObj); 1430 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1431 LVP.addCompileUnit(CU->getUnitDIE(false)); 1432 } 1433 1434 LLVM_DEBUG(LVP.dump()); 1435 1436 std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; 1437 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1438 std::nullopt) { 1439 AddrToBBAddrMap.clear(); 1440 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1441 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); 1442 if (!BBAddrMapsOrErr) 1443 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1444 for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) 1445 AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, 1446 std::move(FunctionBBAddrMap)); 1447 } 1448 }; 1449 1450 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1451 // single mapping, since they don't have any conflicts. 1452 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1453 ReadBBAddrMap(); 1454 1455 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1456 if (FilterSections.empty() && !DisassembleAll && 1457 (!Section.isText() || Section.isVirtual())) 1458 continue; 1459 1460 uint64_t SectionAddr = Section.getAddress(); 1461 uint64_t SectSize = Section.getSize(); 1462 if (!SectSize) 1463 continue; 1464 1465 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1466 // corresponding to this section, if present. 1467 if (SymbolizeOperands && Obj.isRelocatableObject()) 1468 ReadBBAddrMap(Section.getIndex()); 1469 1470 // Get the list of all the symbols in this section. 1471 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1472 std::vector<MappingSymbolPair> MappingSymbols; 1473 if (hasMappingSymbols(Obj)) { 1474 for (const auto &Symb : Symbols) { 1475 uint64_t Address = Symb.Addr; 1476 StringRef Name = Symb.Name; 1477 if (Name.startswith("$d")) 1478 MappingSymbols.emplace_back(Address - SectionAddr, 'd'); 1479 if (Name.startswith("$x")) 1480 MappingSymbols.emplace_back(Address - SectionAddr, 'x'); 1481 if (Name.startswith("$a")) 1482 MappingSymbols.emplace_back(Address - SectionAddr, 'a'); 1483 if (Name.startswith("$t")) 1484 MappingSymbols.emplace_back(Address - SectionAddr, 't'); 1485 } 1486 } 1487 1488 llvm::sort(MappingSymbols); 1489 1490 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1491 unwrapOrError(Section.getContents(), Obj.getFileName())); 1492 1493 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1494 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1495 // AMDGPU disassembler uses symbolizer for printing labels 1496 addSymbolizer(Ctx, TheTarget, TripleName, DisAsm, SectionAddr, Bytes, 1497 Symbols, SynthesizedLabelNames); 1498 } 1499 1500 StringRef SegmentName = getSegmentName(MachO, Section); 1501 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1502 // If the section has no symbol at the start, just insert a dummy one. 1503 if (Symbols.empty() || Symbols[0].Addr != 0) { 1504 Symbols.insert(Symbols.begin(), 1505 createDummySymbolInfo(Obj, SectionAddr, SectionName, 1506 Section.isText() ? ELF::STT_FUNC 1507 : ELF::STT_OBJECT)); 1508 } 1509 1510 SmallString<40> Comments; 1511 raw_svector_ostream CommentStream(Comments); 1512 1513 uint64_t VMAAdjustment = 0; 1514 if (shouldAdjustVA(Section)) 1515 VMAAdjustment = AdjustVMA; 1516 1517 // In executable and shared objects, r_offset holds a virtual address. 1518 // Subtract SectionAddr from the r_offset field of a relocation to get 1519 // the section offset. 1520 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1521 uint64_t Size; 1522 uint64_t Index; 1523 bool PrintedSection = false; 1524 std::vector<RelocationRef> Rels = RelocMap[Section]; 1525 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1526 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1527 1528 // Loop over each chunk of code between two points where at least 1529 // one symbol is defined. 1530 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1531 // Advance SI past all the symbols starting at the same address, 1532 // and make an ArrayRef of them. 1533 unsigned FirstSI = SI; 1534 uint64_t Start = Symbols[SI].Addr; 1535 ArrayRef<SymbolInfoTy> SymbolsHere; 1536 while (SI != SE && Symbols[SI].Addr == Start) 1537 ++SI; 1538 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1539 1540 // Get the demangled names of all those symbols. We end up with a vector 1541 // of StringRef that holds the names we're going to use, and a vector of 1542 // std::string that stores the new strings returned by demangle(), if 1543 // any. If we don't call demangle() then that vector can stay empty. 1544 std::vector<StringRef> SymNamesHere; 1545 std::vector<std::string> DemangledSymNamesHere; 1546 if (Demangle) { 1547 // Fetch the demangled names and store them locally. 1548 for (const SymbolInfoTy &Symbol : SymbolsHere) 1549 DemangledSymNamesHere.push_back(demangle(Symbol.Name.str())); 1550 // Now we've finished modifying that vector, it's safe to make 1551 // a vector of StringRefs pointing into it. 1552 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1553 DemangledSymNamesHere.end()); 1554 } else { 1555 for (const SymbolInfoTy &Symbol : SymbolsHere) 1556 SymNamesHere.push_back(Symbol.Name); 1557 } 1558 1559 // Distinguish ELF data from code symbols, which will be used later on to 1560 // decide whether to 'disassemble' this chunk as a data declaration via 1561 // dumpELFData(), or whether to treat it as code. 1562 // 1563 // If data _and_ code symbols are defined at the same address, the code 1564 // takes priority, on the grounds that disassembling code is our main 1565 // purpose here, and it would be a worse failure to _not_ interpret 1566 // something that _was_ meaningful as code than vice versa. 1567 // 1568 // Any ELF symbol type that is not clearly data will be regarded as code. 1569 // In particular, one of the uses of STT_NOTYPE is for branch targets 1570 // inside functions, for which STT_FUNC would be inaccurate. 1571 // 1572 // So here, we spot whether there's any non-data symbol present at all, 1573 // and only set the DisassembleAsData flag if there isn't. Also, we use 1574 // this distinction to inform the decision of which symbol to print at 1575 // the head of the section, so that if we're printing code, we print a 1576 // code-related symbol name to go with it. 1577 bool DisassembleAsData = false; 1578 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1579 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1580 DisassembleAsData = true; // unless we find a code symbol below 1581 1582 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1583 uint8_t SymTy = SymbolsHere[i].Type; 1584 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1585 DisassembleAsData = false; 1586 DisplaySymIndex = i; 1587 } 1588 } 1589 } 1590 1591 // Decide which symbol(s) from this collection we're going to print. 1592 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 1593 // If the user has given the --disassemble-symbols option, then we must 1594 // display every symbol in that set, and no others. 1595 if (!DisasmSymbolSet.empty()) { 1596 bool FoundAny = false; 1597 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1598 if (DisasmSymbolSet.count(SymNamesHere[i])) { 1599 SymsToPrint[i] = true; 1600 FoundAny = true; 1601 } 1602 } 1603 1604 // And if none of the symbols here is one that the user asked for, skip 1605 // disassembling this entire chunk of code. 1606 if (!FoundAny) 1607 continue; 1608 } else { 1609 // Otherwise, print whichever symbol at this location is last in the 1610 // Symbols array, because that array is pre-sorted in a way intended to 1611 // correlate with priority of which symbol to display. 1612 SymsToPrint[DisplaySymIndex] = true; 1613 } 1614 1615 // Now that we know we're disassembling this section, override the choice 1616 // of which symbols to display by printing _all_ of them at this address 1617 // if the user asked for all symbols. 1618 // 1619 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 1620 // only the chunk of code headed by 'foo', but also show any other 1621 // symbols defined at that address, such as aliases for 'foo', or the ARM 1622 // mapping symbol preceding its code. 1623 if (ShowAllSymbols) { 1624 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1625 SymsToPrint[i] = true; 1626 } 1627 1628 if (Start < SectionAddr || StopAddress <= Start) 1629 continue; 1630 1631 for (size_t i = 0; i < SymbolsHere.size(); ++i) 1632 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 1633 1634 // The end is the section end, the beginning of the next symbol, or 1635 // --stop-address. 1636 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 1637 if (SI < SE) 1638 End = std::min(End, Symbols[SI].Addr); 1639 if (Start >= End || End <= StartAddress) 1640 continue; 1641 Start -= SectionAddr; 1642 End -= SectionAddr; 1643 1644 if (!PrintedSection) { 1645 PrintedSection = true; 1646 outs() << "\nDisassembly of section "; 1647 if (!SegmentName.empty()) 1648 outs() << SegmentName << ","; 1649 outs() << SectionName << ":\n"; 1650 } 1651 1652 outs() << '\n'; 1653 1654 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1655 if (!SymsToPrint[i]) 1656 continue; 1657 1658 const SymbolInfoTy &Symbol = SymbolsHere[i]; 1659 const StringRef SymbolName = SymNamesHere[i]; 1660 1661 if (LeadingAddr) 1662 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 1663 SectionAddr + Start + VMAAdjustment); 1664 if (Obj.isXCOFF() && SymbolDescription) { 1665 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 1666 } else 1667 outs() << '<' << SymbolName << ">:\n"; 1668 } 1669 1670 // Don't print raw contents of a virtual section. A virtual section 1671 // doesn't have any contents in the file. 1672 if (Section.isVirtual()) { 1673 outs() << "...\n"; 1674 continue; 1675 } 1676 1677 // See if any of the symbols defined at this location triggers target- 1678 // specific disassembly behavior, e.g. of special descriptors or function 1679 // prelude information. 1680 // 1681 // We stop this loop at the first symbol that triggers some kind of 1682 // interesting behavior (if any), on the assumption that if two symbols 1683 // defined at the same address trigger two conflicting symbol handlers, 1684 // the object file is probably confused anyway, and it would make even 1685 // less sense to present the output of _both_ handlers, because that 1686 // would describe the same data twice. 1687 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 1688 SymbolInfoTy Symbol = SymbolsHere[SHI]; 1689 1690 auto Status = 1691 DisAsm->onSymbolStart(Symbol, Size, Bytes.slice(Start, End - Start), 1692 SectionAddr + Start, CommentStream); 1693 1694 if (!Status) { 1695 // If onSymbolStart returns std::nullopt, that means it didn't trigger 1696 // any interesting handling for this symbol. Try the other symbols 1697 // defined at this address. 1698 continue; 1699 } 1700 1701 if (*Status == MCDisassembler::Fail) { 1702 // If onSymbolStart returns Fail, that means it identified some kind 1703 // of special data at this address, but wasn't able to disassemble it 1704 // meaningfully. So we fall back to disassembling the failed region 1705 // as bytes, assuming that the target detected the failure before 1706 // printing anything. 1707 // 1708 // Return values Success or SoftFail (i.e no 'real' failure) are 1709 // expected to mean that the target has emitted its own output. 1710 // 1711 // Either way, 'Size' will have been set to the amount of data 1712 // covered by whatever prologue the target identified. So we advance 1713 // our own position to beyond that. Sometimes that will be the entire 1714 // distance to the next symbol, and sometimes it will be just a 1715 // prologue and we should start disassembling instructions from where 1716 // it left off. 1717 outs() << "// Error in decoding " << SymNamesHere[SHI] 1718 << " : Decoding failed region as bytes.\n"; 1719 for (uint64_t I = 0; I < Size; ++I) { 1720 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 1721 << "\n"; 1722 } 1723 } 1724 Start += Size; 1725 break; 1726 } 1727 1728 Index = Start; 1729 if (SectionAddr < StartAddress) 1730 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 1731 1732 if (DisassembleAsData) { 1733 dumpELFData(SectionAddr, Index, End, Bytes); 1734 Index = End; 1735 continue; 1736 } 1737 1738 bool DumpARMELFData = false; 1739 formatted_raw_ostream FOS(outs()); 1740 1741 std::unordered_map<uint64_t, std::string> AllLabels; 1742 std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; 1743 if (SymbolizeOperands) { 1744 collectLocalBranchTargets(Bytes, MIA, DisAsm, IP, PrimarySTI, 1745 SectionAddr, Index, End, AllLabels); 1746 collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, 1747 BBAddrMapLabels); 1748 } 1749 1750 while (Index < End) { 1751 // ARM and AArch64 ELF binaries can interleave data and text in the 1752 // same section. We rely on the markers introduced to understand what 1753 // we need to dump. If the data marker is within a function, it is 1754 // denoted as a word/short etc. 1755 if (!MappingSymbols.empty()) { 1756 char Kind = getMappingSymbolKind(MappingSymbols, Index); 1757 DumpARMELFData = Kind == 'd'; 1758 if (SecondarySTI) { 1759 if (Kind == 'a') { 1760 STI = PrimaryIsThumb ? SecondarySTI : PrimarySTI; 1761 DisAsm = PrimaryIsThumb ? SecondaryDisAsm : PrimaryDisAsm; 1762 } else if (Kind == 't') { 1763 STI = PrimaryIsThumb ? PrimarySTI : SecondarySTI; 1764 DisAsm = PrimaryIsThumb ? PrimaryDisAsm : SecondaryDisAsm; 1765 } 1766 } 1767 } 1768 1769 if (DumpARMELFData) { 1770 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 1771 MappingSymbols, *STI, FOS); 1772 } else { 1773 // When -z or --disassemble-zeroes are given we always dissasemble 1774 // them. Otherwise we might want to skip zero bytes we see. 1775 if (!DisassembleZeroes) { 1776 uint64_t MaxOffset = End - Index; 1777 // For --reloc: print zero blocks patched by relocations, so that 1778 // relocations can be shown in the dump. 1779 if (RelCur != RelEnd) 1780 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 1781 MaxOffset); 1782 1783 if (size_t N = 1784 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 1785 FOS << "\t\t..." << '\n'; 1786 Index += N; 1787 continue; 1788 } 1789 } 1790 1791 // Print local label if there's any. 1792 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 1793 if (Iter1 != BBAddrMapLabels.end()) { 1794 for (StringRef Label : Iter1->second) 1795 FOS << "<" << Label << ">:\n"; 1796 } else { 1797 auto Iter2 = AllLabels.find(SectionAddr + Index); 1798 if (Iter2 != AllLabels.end()) 1799 FOS << "<" << Iter2->second << ">:\n"; 1800 } 1801 1802 // Disassemble a real instruction or a data when disassemble all is 1803 // provided 1804 MCInst Inst; 1805 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1806 uint64_t ThisAddr = SectionAddr + Index; 1807 bool Disassembled = DisAsm->getInstruction(Inst, Size, ThisBytes, 1808 ThisAddr, CommentStream); 1809 if (Size == 0) 1810 Size = std::min<uint64_t>( 1811 ThisBytes.size(), 1812 DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 1813 1814 LVP.update({Index, Section.getIndex()}, 1815 {Index + Size, Section.getIndex()}, Index + Size != End); 1816 1817 IP->setCommentStream(CommentStream); 1818 1819 PIP.printInst( 1820 *IP, Disassembled ? &Inst : nullptr, Bytes.slice(Index, Size), 1821 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 1822 "", *STI, &SP, Obj.getFileName(), &Rels, LVP); 1823 1824 IP->setCommentStream(llvm::nulls()); 1825 1826 // If disassembly has failed, avoid analysing invalid/incomplete 1827 // instruction information. Otherwise, try to resolve the target 1828 // address (jump target or memory operand address) and print it on the 1829 // right of the instruction. 1830 if (Disassembled && MIA) { 1831 // Branch targets are printed just after the instructions. 1832 llvm::raw_ostream *TargetOS = &FOS; 1833 uint64_t Target; 1834 bool PrintTarget = 1835 MIA->evaluateBranch(Inst, SectionAddr + Index, Size, Target); 1836 if (!PrintTarget) 1837 if (std::optional<uint64_t> MaybeTarget = 1838 MIA->evaluateMemoryOperandAddress( 1839 Inst, STI, SectionAddr + Index, Size)) { 1840 Target = *MaybeTarget; 1841 PrintTarget = true; 1842 // Do not print real address when symbolizing. 1843 if (!SymbolizeOperands) { 1844 // Memory operand addresses are printed as comments. 1845 TargetOS = &CommentStream; 1846 *TargetOS << "0x" << Twine::utohexstr(Target); 1847 } 1848 } 1849 if (PrintTarget) { 1850 // In a relocatable object, the target's section must reside in 1851 // the same section as the call instruction or it is accessed 1852 // through a relocation. 1853 // 1854 // In a non-relocatable object, the target may be in any section. 1855 // In that case, locate the section(s) containing the target 1856 // address and find the symbol in one of those, if possible. 1857 // 1858 // N.B. We don't walk the relocations in the relocatable case yet. 1859 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 1860 if (!Obj.isRelocatableObject()) { 1861 auto It = llvm::partition_point( 1862 SectionAddresses, 1863 [=](const std::pair<uint64_t, SectionRef> &O) { 1864 return O.first <= Target; 1865 }); 1866 uint64_t TargetSecAddr = 0; 1867 while (It != SectionAddresses.begin()) { 1868 --It; 1869 if (TargetSecAddr == 0) 1870 TargetSecAddr = It->first; 1871 if (It->first != TargetSecAddr) 1872 break; 1873 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 1874 } 1875 } else { 1876 TargetSectionSymbols.push_back(&Symbols); 1877 } 1878 TargetSectionSymbols.push_back(&AbsoluteSymbols); 1879 1880 // Find the last symbol in the first candidate section whose 1881 // offset is less than or equal to the target. If there are no 1882 // such symbols, try in the next section and so on, before finally 1883 // using the nearest preceding absolute symbol (if any), if there 1884 // are no other valid symbols. 1885 const SymbolInfoTy *TargetSym = nullptr; 1886 for (const SectionSymbolsTy *TargetSymbols : 1887 TargetSectionSymbols) { 1888 auto It = llvm::partition_point( 1889 *TargetSymbols, 1890 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 1891 while (It != TargetSymbols->begin()) { 1892 --It; 1893 // Skip mapping symbols to avoid possible ambiguity as they 1894 // do not allow uniquely identifying the target address. 1895 if (!hasMappingSymbols(Obj) || !isMappingSymbol(*It)) { 1896 TargetSym = &*It; 1897 break; 1898 } 1899 } 1900 if (TargetSym) 1901 break; 1902 } 1903 1904 // Print the labels corresponding to the target if there's any. 1905 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 1906 bool LabelAvailable = AllLabels.count(Target); 1907 if (TargetSym != nullptr) { 1908 uint64_t TargetAddress = TargetSym->Addr; 1909 uint64_t Disp = Target - TargetAddress; 1910 std::string TargetName = TargetSym->Name.str(); 1911 if (Demangle) 1912 TargetName = demangle(TargetName); 1913 1914 *TargetOS << " <"; 1915 if (!Disp) { 1916 // Always Print the binary symbol precisely corresponding to 1917 // the target address. 1918 *TargetOS << TargetName; 1919 } else if (BBAddrMapLabelAvailable) { 1920 *TargetOS << BBAddrMapLabels[Target].front(); 1921 } else if (LabelAvailable) { 1922 *TargetOS << AllLabels[Target]; 1923 } else { 1924 // Always Print the binary symbol plus an offset if there's no 1925 // local label corresponding to the target address. 1926 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 1927 } 1928 *TargetOS << ">"; 1929 } else if (BBAddrMapLabelAvailable) { 1930 *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; 1931 } else if (LabelAvailable) { 1932 *TargetOS << " <" << AllLabels[Target] << ">"; 1933 } 1934 // By convention, each record in the comment stream should be 1935 // terminated. 1936 if (TargetOS == &CommentStream) 1937 *TargetOS << "\n"; 1938 } 1939 } 1940 } 1941 1942 assert(Ctx.getAsmInfo()); 1943 emitPostInstructionInfo(FOS, *Ctx.getAsmInfo(), *STI, 1944 CommentStream.str(), LVP); 1945 Comments.clear(); 1946 1947 // Hexagon does this in pretty printer 1948 if (Obj.getArch() != Triple::hexagon) { 1949 // Print relocation for instruction and data. 1950 while (RelCur != RelEnd) { 1951 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 1952 // If this relocation is hidden, skip it. 1953 if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { 1954 ++RelCur; 1955 continue; 1956 } 1957 1958 // Stop when RelCur's offset is past the disassembled 1959 // instruction/data. Note that it's possible the disassembled data 1960 // is not the complete data: we might see the relocation printed in 1961 // the middle of the data, but this matches the binutils objdump 1962 // output. 1963 if (Offset >= Index + Size) 1964 break; 1965 1966 // When --adjust-vma is used, update the address printed. 1967 if (RelCur->getSymbol() != Obj.symbol_end()) { 1968 Expected<section_iterator> SymSI = 1969 RelCur->getSymbol()->getSection(); 1970 if (SymSI && *SymSI != Obj.section_end() && 1971 shouldAdjustVA(**SymSI)) 1972 Offset += AdjustVMA; 1973 } 1974 1975 printRelocation(FOS, Obj.getFileName(), *RelCur, 1976 SectionAddr + Offset, Is64Bits); 1977 LVP.printAfterOtherLine(FOS, true); 1978 ++RelCur; 1979 } 1980 } 1981 1982 Index += Size; 1983 } 1984 } 1985 } 1986 StringSet<> MissingDisasmSymbolSet = 1987 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 1988 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 1989 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 1990 } 1991 1992 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 1993 // If information useful for showing the disassembly is missing, try to find a 1994 // more complete binary and disassemble that instead. 1995 OwningBinary<Binary> FetchedBinary; 1996 if (Obj->symbols().empty()) { 1997 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 1998 fetchBinaryByBuildID(*Obj)) { 1999 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2000 if (!O->symbols().empty() || 2001 (!O->sections().empty() && Obj->sections().empty())) { 2002 FetchedBinary = std::move(*FetchedBinaryOpt); 2003 Obj = O; 2004 } 2005 } 2006 } 2007 } 2008 2009 const Target *TheTarget = getTarget(Obj); 2010 2011 // Package up features to be passed to target/subtarget 2012 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2013 if (!FeaturesValue) 2014 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2015 SubtargetFeatures Features = *FeaturesValue; 2016 if (!MAttrs.empty()) { 2017 for (unsigned I = 0; I != MAttrs.size(); ++I) 2018 Features.AddFeature(MAttrs[I]); 2019 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2020 Features.AddFeature("+all"); 2021 } 2022 2023 std::unique_ptr<const MCRegisterInfo> MRI( 2024 TheTarget->createMCRegInfo(TripleName)); 2025 if (!MRI) 2026 reportError(Obj->getFileName(), 2027 "no register info for target " + TripleName); 2028 2029 // Set up disassembler. 2030 MCTargetOptions MCOptions; 2031 std::unique_ptr<const MCAsmInfo> AsmInfo( 2032 TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions)); 2033 if (!AsmInfo) 2034 reportError(Obj->getFileName(), 2035 "no assembly info for target " + TripleName); 2036 2037 if (MCPU.empty()) 2038 MCPU = Obj->tryGetCPUName().value_or("").str(); 2039 2040 if (isArmElf(*Obj)) { 2041 // When disassembling big-endian Arm ELF, the instruction endianness is 2042 // determined in a complex way. In relocatable objects, AAELF32 mandates 2043 // that instruction endianness matches the ELF file endianness; in 2044 // executable images, that's true unless the file header has the EF_ARM_BE8 2045 // flag, in which case instructions are little-endian regardless of data 2046 // endianness. 2047 // 2048 // We must set the big-endian-instructions SubtargetFeature to make the 2049 // disassembler read the instructions the right way round, and also tell 2050 // our own prettyprinter to retrieve the encodings the same way to print in 2051 // hex. 2052 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2053 2054 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2055 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2056 Features.AddFeature("+big-endian-instructions"); 2057 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); 2058 } else { 2059 ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); 2060 } 2061 } 2062 2063 std::unique_ptr<const MCSubtargetInfo> STI( 2064 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 2065 if (!STI) 2066 reportError(Obj->getFileName(), 2067 "no subtarget info for target " + TripleName); 2068 std::unique_ptr<const MCInstrInfo> MII(TheTarget->createMCInstrInfo()); 2069 if (!MII) 2070 reportError(Obj->getFileName(), 2071 "no instruction info for target " + TripleName); 2072 MCContext Ctx(Triple(TripleName), AsmInfo.get(), MRI.get(), STI.get()); 2073 // FIXME: for now initialize MCObjectFileInfo with default values 2074 std::unique_ptr<MCObjectFileInfo> MOFI( 2075 TheTarget->createMCObjectFileInfo(Ctx, /*PIC=*/false)); 2076 Ctx.setObjectFileInfo(MOFI.get()); 2077 2078 std::unique_ptr<MCDisassembler> DisAsm( 2079 TheTarget->createMCDisassembler(*STI, Ctx)); 2080 if (!DisAsm) 2081 reportError(Obj->getFileName(), "no disassembler for target " + TripleName); 2082 2083 // If we have an ARM object file, we need a second disassembler, because 2084 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2085 // We use mapping symbols to switch between the two assemblers, where 2086 // appropriate. 2087 std::unique_ptr<MCDisassembler> SecondaryDisAsm; 2088 std::unique_ptr<const MCSubtargetInfo> SecondarySTI; 2089 if (isArmElf(*Obj) && !STI->checkFeatures("+mclass")) { 2090 if (STI->checkFeatures("+thumb-mode")) 2091 Features.AddFeature("-thumb-mode"); 2092 else 2093 Features.AddFeature("+thumb-mode"); 2094 SecondarySTI.reset(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 2095 Features.getString())); 2096 SecondaryDisAsm.reset(TheTarget->createMCDisassembler(*SecondarySTI, Ctx)); 2097 } 2098 2099 std::unique_ptr<const MCInstrAnalysis> MIA( 2100 TheTarget->createMCInstrAnalysis(MII.get())); 2101 2102 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 2103 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter( 2104 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI)); 2105 if (!IP) 2106 reportError(Obj->getFileName(), 2107 "no instruction printer for target " + TripleName); 2108 IP->setPrintImmHex(PrintImmHex); 2109 IP->setPrintBranchImmAsAddress(true); 2110 IP->setSymbolizeOperands(SymbolizeOperands); 2111 IP->setMCInstrAnalysis(MIA.get()); 2112 2113 PrettyPrinter &PIP = selectPrettyPrinter(Triple(TripleName)); 2114 2115 const ObjectFile *DbgObj = Obj; 2116 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2117 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2118 fetchBinaryByBuildID(*Obj)) { 2119 if (auto *FetchedObj = 2120 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2121 if (FetchedObj->hasDebugInfo()) { 2122 FetchedBinary = std::move(*DebugBinaryOpt); 2123 DbgObj = FetchedObj; 2124 } 2125 } 2126 } 2127 } 2128 2129 std::unique_ptr<object::Binary> DSYMBinary; 2130 std::unique_ptr<MemoryBuffer> DSYMBuf; 2131 if (!DbgObj->hasDebugInfo()) { 2132 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2133 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2134 DSYMBinary, DSYMBuf); 2135 if (!DbgObj) 2136 return; 2137 } 2138 } 2139 2140 SourcePrinter SP(DbgObj, TheTarget->getName()); 2141 2142 for (StringRef Opt : DisassemblerOptions) 2143 if (!IP->applyTargetSpecificCLOption(Opt)) 2144 reportError(Obj->getFileName(), 2145 "Unrecognized disassembler option: " + Opt); 2146 2147 disassembleObject(TheTarget, *Obj, *DbgObj, Ctx, DisAsm.get(), 2148 SecondaryDisAsm.get(), MIA.get(), IP.get(), STI.get(), 2149 SecondarySTI.get(), PIP, SP, InlineRelocs); 2150 } 2151 2152 void objdump::printRelocations(const ObjectFile *Obj) { 2153 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : 2154 "%08" PRIx64; 2155 2156 // Build a mapping from relocation target to a vector of relocation 2157 // sections. Usually, there is an only one relocation section for 2158 // each relocated section. 2159 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2160 uint64_t Ndx; 2161 for (const SectionRef &Section : ToolSectionFilter(*Obj, &Ndx)) { 2162 if (Obj->isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2163 continue; 2164 if (Section.relocation_begin() == Section.relocation_end()) 2165 continue; 2166 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2167 if (!SecOrErr) 2168 reportError(Obj->getFileName(), 2169 "section (" + Twine(Ndx) + 2170 "): unable to get a relocation target: " + 2171 toString(SecOrErr.takeError())); 2172 SecToRelSec[**SecOrErr].push_back(Section); 2173 } 2174 2175 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2176 StringRef SecName = unwrapOrError(P.first.getName(), Obj->getFileName()); 2177 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2178 uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2179 uint32_t TypePadding = 24; 2180 outs() << left_justify("OFFSET", OffsetPadding) << " " 2181 << left_justify("TYPE", TypePadding) << " " 2182 << "VALUE\n"; 2183 2184 for (SectionRef Section : P.second) { 2185 for (const RelocationRef &Reloc : Section.relocations()) { 2186 uint64_t Address = Reloc.getOffset(); 2187 SmallString<32> RelocName; 2188 SmallString<32> ValueStr; 2189 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2190 continue; 2191 Reloc.getTypeName(RelocName); 2192 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2193 reportError(std::move(E), Obj->getFileName()); 2194 2195 outs() << format(Fmt.data(), Address) << " " 2196 << left_justify(RelocName, TypePadding) << " " << ValueStr 2197 << "\n"; 2198 } 2199 } 2200 } 2201 } 2202 2203 void objdump::printDynamicRelocations(const ObjectFile *Obj) { 2204 // For the moment, this option is for ELF only 2205 if (!Obj->isELF()) 2206 return; 2207 2208 const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj); 2209 if (!Elf || !any_of(Elf->sections(), [](const ELFSectionRef Sec) { 2210 return Sec.getType() == ELF::SHT_DYNAMIC; 2211 })) { 2212 reportError(Obj->getFileName(), "not a dynamic object"); 2213 return; 2214 } 2215 2216 std::vector<SectionRef> DynRelSec = Obj->dynamic_relocation_sections(); 2217 if (DynRelSec.empty()) 2218 return; 2219 2220 outs() << "\nDYNAMIC RELOCATION RECORDS\n"; 2221 const uint32_t OffsetPadding = (Obj->getBytesInAddress() > 4 ? 16 : 8); 2222 const uint32_t TypePadding = 24; 2223 outs() << left_justify("OFFSET", OffsetPadding) << ' ' 2224 << left_justify("TYPE", TypePadding) << " VALUE\n"; 2225 2226 StringRef Fmt = Obj->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2227 for (const SectionRef &Section : DynRelSec) 2228 for (const RelocationRef &Reloc : Section.relocations()) { 2229 uint64_t Address = Reloc.getOffset(); 2230 SmallString<32> RelocName; 2231 SmallString<32> ValueStr; 2232 Reloc.getTypeName(RelocName); 2233 if (Error E = getRelocationValueString(Reloc, ValueStr)) 2234 reportError(std::move(E), Obj->getFileName()); 2235 outs() << format(Fmt.data(), Address) << ' ' 2236 << left_justify(RelocName, TypePadding) << ' ' << ValueStr << '\n'; 2237 } 2238 } 2239 2240 // Returns true if we need to show LMA column when dumping section headers. We 2241 // show it only when the platform is ELF and either we have at least one section 2242 // whose VMA and LMA are different and/or when --show-lma flag is used. 2243 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2244 if (!Obj.isELF()) 2245 return false; 2246 for (const SectionRef &S : ToolSectionFilter(Obj)) 2247 if (S.getAddress() != getELFSectionLMA(S)) 2248 return true; 2249 return ShowLMA; 2250 } 2251 2252 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2253 // Default column width for names is 13 even if no names are that long. 2254 size_t MaxWidth = 13; 2255 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2256 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2257 MaxWidth = std::max(MaxWidth, Name.size()); 2258 } 2259 return MaxWidth; 2260 } 2261 2262 void objdump::printSectionHeaders(ObjectFile &Obj) { 2263 if (Obj.isELF() && Obj.sections().empty()) 2264 createFakeELFSections(Obj); 2265 2266 size_t NameWidth = getMaxSectionNameWidth(Obj); 2267 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2268 bool HasLMAColumn = shouldDisplayLMA(Obj); 2269 outs() << "\nSections:\n"; 2270 if (HasLMAColumn) 2271 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2272 << left_justify("VMA", AddressWidth) << " " 2273 << left_justify("LMA", AddressWidth) << " Type\n"; 2274 else 2275 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2276 << left_justify("VMA", AddressWidth) << " Type\n"; 2277 2278 uint64_t Idx; 2279 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2280 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2281 uint64_t VMA = Section.getAddress(); 2282 if (shouldAdjustVA(Section)) 2283 VMA += AdjustVMA; 2284 2285 uint64_t Size = Section.getSize(); 2286 2287 std::string Type = Section.isText() ? "TEXT" : ""; 2288 if (Section.isData()) 2289 Type += Type.empty() ? "DATA" : ", DATA"; 2290 if (Section.isBSS()) 2291 Type += Type.empty() ? "BSS" : ", BSS"; 2292 if (Section.isDebugSection()) 2293 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2294 2295 if (HasLMAColumn) 2296 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2297 Name.str().c_str(), Size) 2298 << format_hex_no_prefix(VMA, AddressWidth) << " " 2299 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2300 << " " << Type << "\n"; 2301 else 2302 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2303 Name.str().c_str(), Size) 2304 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2305 } 2306 } 2307 2308 void objdump::printSectionContents(const ObjectFile *Obj) { 2309 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2310 2311 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2312 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2313 uint64_t BaseAddr = Section.getAddress(); 2314 uint64_t Size = Section.getSize(); 2315 if (!Size) 2316 continue; 2317 2318 outs() << "Contents of section "; 2319 StringRef SegmentName = getSegmentName(MachO, Section); 2320 if (!SegmentName.empty()) 2321 outs() << SegmentName << ","; 2322 outs() << Name << ":\n"; 2323 if (Section.isBSS()) { 2324 outs() << format("<skipping contents of bss section at [%04" PRIx64 2325 ", %04" PRIx64 ")>\n", 2326 BaseAddr, BaseAddr + Size); 2327 continue; 2328 } 2329 2330 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2331 2332 // Dump out the content as hex and printable ascii characters. 2333 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2334 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2335 // Dump line of hex. 2336 for (std::size_t I = 0; I < 16; ++I) { 2337 if (I != 0 && I % 4 == 0) 2338 outs() << ' '; 2339 if (Addr + I < End) 2340 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2341 << hexdigit(Contents[Addr + I] & 0xF, true); 2342 else 2343 outs() << " "; 2344 } 2345 // Print ascii. 2346 outs() << " "; 2347 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2348 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2349 outs() << Contents[Addr + I]; 2350 else 2351 outs() << "."; 2352 } 2353 outs() << "\n"; 2354 } 2355 } 2356 } 2357 2358 void objdump::printSymbolTable(const ObjectFile &O, StringRef ArchiveName, 2359 StringRef ArchitectureName, bool DumpDynamic) { 2360 if (O.isCOFF() && !DumpDynamic) { 2361 outs() << "\nSYMBOL TABLE:\n"; 2362 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2363 return; 2364 } 2365 2366 const StringRef FileName = O.getFileName(); 2367 2368 if (!DumpDynamic) { 2369 outs() << "\nSYMBOL TABLE:\n"; 2370 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2371 printSymbol(O, *I, {}, FileName, ArchiveName, ArchitectureName, 2372 DumpDynamic); 2373 return; 2374 } 2375 2376 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2377 if (!O.isELF()) { 2378 reportWarning( 2379 "this operation is not currently supported for this file format", 2380 FileName); 2381 return; 2382 } 2383 2384 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2385 auto Symbols = ELF->getDynamicSymbolIterators(); 2386 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2387 ELF->readDynsymVersions(); 2388 if (!SymbolVersionsOrErr) { 2389 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2390 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2391 (void)!SymbolVersionsOrErr; 2392 } 2393 for (auto &Sym : Symbols) 2394 printSymbol(O, Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2395 ArchitectureName, DumpDynamic); 2396 } 2397 2398 void objdump::printSymbol(const ObjectFile &O, const SymbolRef &Symbol, 2399 ArrayRef<VersionEntry> SymbolVersions, 2400 StringRef FileName, StringRef ArchiveName, 2401 StringRef ArchitectureName, bool DumpDynamic) { 2402 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2403 uint64_t Address = unwrapOrError(Symbol.getAddress(), FileName, ArchiveName, 2404 ArchitectureName); 2405 if ((Address < StartAddress) || (Address > StopAddress)) 2406 return; 2407 SymbolRef::Type Type = 2408 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2409 uint32_t Flags = 2410 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2411 2412 // Don't ask a Mach-O STAB symbol for its section unless you know that 2413 // STAB symbol's section field refers to a valid section index. Otherwise 2414 // the symbol may error trying to load a section that does not exist. 2415 bool IsSTAB = false; 2416 if (MachO) { 2417 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2418 uint8_t NType = 2419 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2420 : MachO->getSymbolTableEntry(SymDRI).n_type); 2421 if (NType & MachO::N_STAB) 2422 IsSTAB = true; 2423 } 2424 section_iterator Section = IsSTAB 2425 ? O.section_end() 2426 : unwrapOrError(Symbol.getSection(), FileName, 2427 ArchiveName, ArchitectureName); 2428 2429 StringRef Name; 2430 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2431 if (Expected<StringRef> NameOrErr = Section->getName()) 2432 Name = *NameOrErr; 2433 else 2434 consumeError(NameOrErr.takeError()); 2435 2436 } else { 2437 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2438 ArchitectureName); 2439 } 2440 2441 bool Global = Flags & SymbolRef::SF_Global; 2442 bool Weak = Flags & SymbolRef::SF_Weak; 2443 bool Absolute = Flags & SymbolRef::SF_Absolute; 2444 bool Common = Flags & SymbolRef::SF_Common; 2445 bool Hidden = Flags & SymbolRef::SF_Hidden; 2446 2447 char GlobLoc = ' '; 2448 if ((Section != O.section_end() || Absolute) && !Weak) 2449 GlobLoc = Global ? 'g' : 'l'; 2450 char IFunc = ' '; 2451 if (O.isELF()) { 2452 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2453 IFunc = 'i'; 2454 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2455 GlobLoc = 'u'; 2456 } 2457 2458 char Debug = ' '; 2459 if (DumpDynamic) 2460 Debug = 'D'; 2461 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2462 Debug = 'd'; 2463 2464 char FileFunc = ' '; 2465 if (Type == SymbolRef::ST_File) 2466 FileFunc = 'f'; 2467 else if (Type == SymbolRef::ST_Function) 2468 FileFunc = 'F'; 2469 else if (Type == SymbolRef::ST_Data) 2470 FileFunc = 'O'; 2471 2472 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2473 2474 outs() << format(Fmt, Address) << " " 2475 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2476 << (Weak ? 'w' : ' ') // Weak? 2477 << ' ' // Constructor. Not supported yet. 2478 << ' ' // Warning. Not supported yet. 2479 << IFunc // Indirect reference to another symbol. 2480 << Debug // Debugging (d) or dynamic (D) symbol. 2481 << FileFunc // Name of function (F), file (f) or object (O). 2482 << ' '; 2483 if (Absolute) { 2484 outs() << "*ABS*"; 2485 } else if (Common) { 2486 outs() << "*COM*"; 2487 } else if (Section == O.section_end()) { 2488 if (O.isXCOFF()) { 2489 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2490 Symbol.getRawDataRefImpl()); 2491 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2492 outs() << "*DEBUG*"; 2493 else 2494 outs() << "*UND*"; 2495 } else 2496 outs() << "*UND*"; 2497 } else { 2498 StringRef SegmentName = getSegmentName(MachO, *Section); 2499 if (!SegmentName.empty()) 2500 outs() << SegmentName << ","; 2501 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2502 outs() << SectionName; 2503 if (O.isXCOFF()) { 2504 std::optional<SymbolRef> SymRef = 2505 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2506 if (SymRef) { 2507 2508 Expected<StringRef> NameOrErr = SymRef->getName(); 2509 2510 if (NameOrErr) { 2511 outs() << " (csect:"; 2512 std::string SymName(NameOrErr.get()); 2513 2514 if (Demangle) 2515 SymName = demangle(SymName); 2516 2517 if (SymbolDescription) 2518 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 2519 SymName); 2520 2521 outs() << ' ' << SymName; 2522 outs() << ") "; 2523 } else 2524 reportWarning(toString(NameOrErr.takeError()), FileName); 2525 } 2526 } 2527 } 2528 2529 if (Common) 2530 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 2531 else if (O.isXCOFF()) 2532 outs() << '\t' 2533 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 2534 Symbol.getRawDataRefImpl())); 2535 else if (O.isELF()) 2536 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 2537 2538 if (O.isELF()) { 2539 if (!SymbolVersions.empty()) { 2540 const VersionEntry &Ver = 2541 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 2542 std::string Str; 2543 if (!Ver.Name.empty()) 2544 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 2545 outs() << ' ' << left_justify(Str, 12); 2546 } 2547 2548 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 2549 switch (Other) { 2550 case ELF::STV_DEFAULT: 2551 break; 2552 case ELF::STV_INTERNAL: 2553 outs() << " .internal"; 2554 break; 2555 case ELF::STV_HIDDEN: 2556 outs() << " .hidden"; 2557 break; 2558 case ELF::STV_PROTECTED: 2559 outs() << " .protected"; 2560 break; 2561 default: 2562 outs() << format(" 0x%02x", Other); 2563 break; 2564 } 2565 } else if (Hidden) { 2566 outs() << " .hidden"; 2567 } 2568 2569 std::string SymName(Name); 2570 if (Demangle) 2571 SymName = demangle(SymName); 2572 2573 if (O.isXCOFF() && SymbolDescription) 2574 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 2575 2576 outs() << ' ' << SymName << '\n'; 2577 } 2578 2579 static void printUnwindInfo(const ObjectFile *O) { 2580 outs() << "Unwind info:\n\n"; 2581 2582 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 2583 printCOFFUnwindInfo(Coff); 2584 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 2585 printMachOUnwindInfo(MachO); 2586 else 2587 // TODO: Extract DWARF dump tool to objdump. 2588 WithColor::error(errs(), ToolName) 2589 << "This operation is only currently supported " 2590 "for COFF and MachO object files.\n"; 2591 } 2592 2593 /// Dump the raw contents of the __clangast section so the output can be piped 2594 /// into llvm-bcanalyzer. 2595 static void printRawClangAST(const ObjectFile *Obj) { 2596 if (outs().is_displayed()) { 2597 WithColor::error(errs(), ToolName) 2598 << "The -raw-clang-ast option will dump the raw binary contents of " 2599 "the clang ast section.\n" 2600 "Please redirect the output to a file or another program such as " 2601 "llvm-bcanalyzer.\n"; 2602 return; 2603 } 2604 2605 StringRef ClangASTSectionName("__clangast"); 2606 if (Obj->isCOFF()) { 2607 ClangASTSectionName = "clangast"; 2608 } 2609 2610 std::optional<object::SectionRef> ClangASTSection; 2611 for (auto Sec : ToolSectionFilter(*Obj)) { 2612 StringRef Name; 2613 if (Expected<StringRef> NameOrErr = Sec.getName()) 2614 Name = *NameOrErr; 2615 else 2616 consumeError(NameOrErr.takeError()); 2617 2618 if (Name == ClangASTSectionName) { 2619 ClangASTSection = Sec; 2620 break; 2621 } 2622 } 2623 if (!ClangASTSection) 2624 return; 2625 2626 StringRef ClangASTContents = 2627 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 2628 outs().write(ClangASTContents.data(), ClangASTContents.size()); 2629 } 2630 2631 static void printFaultMaps(const ObjectFile *Obj) { 2632 StringRef FaultMapSectionName; 2633 2634 if (Obj->isELF()) { 2635 FaultMapSectionName = ".llvm_faultmaps"; 2636 } else if (Obj->isMachO()) { 2637 FaultMapSectionName = "__llvm_faultmaps"; 2638 } else { 2639 WithColor::error(errs(), ToolName) 2640 << "This operation is only currently supported " 2641 "for ELF and Mach-O executable files.\n"; 2642 return; 2643 } 2644 2645 std::optional<object::SectionRef> FaultMapSection; 2646 2647 for (auto Sec : ToolSectionFilter(*Obj)) { 2648 StringRef Name; 2649 if (Expected<StringRef> NameOrErr = Sec.getName()) 2650 Name = *NameOrErr; 2651 else 2652 consumeError(NameOrErr.takeError()); 2653 2654 if (Name == FaultMapSectionName) { 2655 FaultMapSection = Sec; 2656 break; 2657 } 2658 } 2659 2660 outs() << "FaultMap table:\n"; 2661 2662 if (!FaultMapSection) { 2663 outs() << "<not found>\n"; 2664 return; 2665 } 2666 2667 StringRef FaultMapContents = 2668 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 2669 FaultMapParser FMP(FaultMapContents.bytes_begin(), 2670 FaultMapContents.bytes_end()); 2671 2672 outs() << FMP; 2673 } 2674 2675 static void printPrivateFileHeaders(const ObjectFile *O, bool OnlyFirst) { 2676 if (O->isELF()) { 2677 printELFFileHeader(O); 2678 printELFDynamicSection(O); 2679 printELFSymbolVersionInfo(O); 2680 return; 2681 } 2682 if (O->isCOFF()) 2683 return printCOFFFileHeader(cast<object::COFFObjectFile>(*O)); 2684 if (O->isWasm()) 2685 return printWasmFileHeader(O); 2686 if (O->isMachO()) { 2687 printMachOFileHeader(O); 2688 if (!OnlyFirst) 2689 printMachOLoadCommands(O); 2690 return; 2691 } 2692 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2693 } 2694 2695 static void printFileHeaders(const ObjectFile *O) { 2696 if (!O->isELF() && !O->isCOFF()) 2697 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 2698 2699 Triple::ArchType AT = O->getArch(); 2700 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 2701 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 2702 2703 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2704 outs() << "start address: " 2705 << "0x" << format(Fmt.data(), Address) << "\n"; 2706 } 2707 2708 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 2709 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 2710 if (!ModeOrErr) { 2711 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 2712 consumeError(ModeOrErr.takeError()); 2713 return; 2714 } 2715 sys::fs::perms Mode = ModeOrErr.get(); 2716 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 2717 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 2718 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 2719 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 2720 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 2721 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 2722 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 2723 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 2724 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 2725 2726 outs() << " "; 2727 2728 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 2729 unwrapOrError(C.getGID(), Filename), 2730 unwrapOrError(C.getRawSize(), Filename)); 2731 2732 StringRef RawLastModified = C.getRawLastModified(); 2733 unsigned Seconds; 2734 if (RawLastModified.getAsInteger(10, Seconds)) 2735 outs() << "(date: \"" << RawLastModified 2736 << "\" contains non-decimal chars) "; 2737 else { 2738 // Since ctime(3) returns a 26 character string of the form: 2739 // "Sun Sep 16 01:03:52 1973\n\0" 2740 // just print 24 characters. 2741 time_t t = Seconds; 2742 outs() << format("%.24s ", ctime(&t)); 2743 } 2744 2745 StringRef Name = ""; 2746 Expected<StringRef> NameOrErr = C.getName(); 2747 if (!NameOrErr) { 2748 consumeError(NameOrErr.takeError()); 2749 Name = unwrapOrError(C.getRawName(), Filename); 2750 } else { 2751 Name = NameOrErr.get(); 2752 } 2753 outs() << Name << "\n"; 2754 } 2755 2756 // For ELF only now. 2757 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 2758 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 2759 if (Elf->getEType() != ELF::ET_REL) 2760 return true; 2761 } 2762 return false; 2763 } 2764 2765 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 2766 uint64_t Start, uint64_t Stop) { 2767 if (!shouldWarnForInvalidStartStopAddress(Obj)) 2768 return; 2769 2770 for (const SectionRef &Section : Obj->sections()) 2771 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 2772 uint64_t BaseAddr = Section.getAddress(); 2773 uint64_t Size = Section.getSize(); 2774 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 2775 return; 2776 } 2777 2778 if (!HasStartAddressFlag) 2779 reportWarning("no section has address less than 0x" + 2780 Twine::utohexstr(Stop) + " specified by --stop-address", 2781 Obj->getFileName()); 2782 else if (!HasStopAddressFlag) 2783 reportWarning("no section has address greater than or equal to 0x" + 2784 Twine::utohexstr(Start) + " specified by --start-address", 2785 Obj->getFileName()); 2786 else 2787 reportWarning("no section overlaps the range [0x" + 2788 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 2789 ") specified by --start-address/--stop-address", 2790 Obj->getFileName()); 2791 } 2792 2793 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 2794 const Archive::Child *C = nullptr) { 2795 // Avoid other output when using a raw option. 2796 if (!RawClangAST) { 2797 outs() << '\n'; 2798 if (A) 2799 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 2800 else 2801 outs() << O->getFileName(); 2802 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 2803 } 2804 2805 if (HasStartAddressFlag || HasStopAddressFlag) 2806 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 2807 2808 // Note: the order here matches GNU objdump for compatability. 2809 StringRef ArchiveName = A ? A->getFileName() : ""; 2810 if (ArchiveHeaders && !MachOOpt && C) 2811 printArchiveChild(ArchiveName, *C); 2812 if (FileHeaders) 2813 printFileHeaders(O); 2814 if (PrivateHeaders || FirstPrivateHeader) 2815 printPrivateFileHeaders(O, FirstPrivateHeader); 2816 if (SectionHeaders) 2817 printSectionHeaders(*O); 2818 if (SymbolTable) 2819 printSymbolTable(*O, ArchiveName); 2820 if (DynamicSymbolTable) 2821 printSymbolTable(*O, ArchiveName, /*ArchitectureName=*/"", 2822 /*DumpDynamic=*/true); 2823 if (DwarfDumpType != DIDT_Null) { 2824 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 2825 // Dump the complete DWARF structure. 2826 DIDumpOptions DumpOpts; 2827 DumpOpts.DumpType = DwarfDumpType; 2828 DICtx->dump(outs(), DumpOpts); 2829 } 2830 if (Relocations && !Disassemble) 2831 printRelocations(O); 2832 if (DynamicRelocations) 2833 printDynamicRelocations(O); 2834 if (SectionContents) 2835 printSectionContents(O); 2836 if (Disassemble) 2837 disassembleObject(O, Relocations); 2838 if (UnwindInfo) 2839 printUnwindInfo(O); 2840 2841 // Mach-O specific options: 2842 if (ExportsTrie) 2843 printExportsTrie(O); 2844 if (Rebase) 2845 printRebaseTable(O); 2846 if (Bind) 2847 printBindTable(O); 2848 if (LazyBind) 2849 printLazyBindTable(O); 2850 if (WeakBind) 2851 printWeakBindTable(O); 2852 2853 // Other special sections: 2854 if (RawClangAST) 2855 printRawClangAST(O); 2856 if (FaultMapSection) 2857 printFaultMaps(O); 2858 if (Offloading) 2859 dumpOffloadBinary(*O); 2860 } 2861 2862 static void dumpObject(const COFFImportFile *I, const Archive *A, 2863 const Archive::Child *C = nullptr) { 2864 StringRef ArchiveName = A ? A->getFileName() : ""; 2865 2866 // Avoid other output when using a raw option. 2867 if (!RawClangAST) 2868 outs() << '\n' 2869 << ArchiveName << "(" << I->getFileName() << ")" 2870 << ":\tfile format COFF-import-file" 2871 << "\n\n"; 2872 2873 if (ArchiveHeaders && !MachOOpt && C) 2874 printArchiveChild(ArchiveName, *C); 2875 if (SymbolTable) 2876 printCOFFSymbolTable(*I); 2877 } 2878 2879 /// Dump each object file in \a a; 2880 static void dumpArchive(const Archive *A) { 2881 Error Err = Error::success(); 2882 unsigned I = -1; 2883 for (auto &C : A->children(Err)) { 2884 ++I; 2885 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 2886 if (!ChildOrErr) { 2887 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 2888 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 2889 continue; 2890 } 2891 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 2892 dumpObject(O, A, &C); 2893 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 2894 dumpObject(I, A, &C); 2895 else 2896 reportError(errorCodeToError(object_error::invalid_file_type), 2897 A->getFileName()); 2898 } 2899 if (Err) 2900 reportError(std::move(Err), A->getFileName()); 2901 } 2902 2903 /// Open file and figure out how to dump it. 2904 static void dumpInput(StringRef file) { 2905 // If we are using the Mach-O specific object file parser, then let it parse 2906 // the file and process the command line options. So the -arch flags can 2907 // be used to select specific slices, etc. 2908 if (MachOOpt) { 2909 parseInputMachO(file); 2910 return; 2911 } 2912 2913 // Attempt to open the binary. 2914 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 2915 Binary &Binary = *OBinary.getBinary(); 2916 2917 if (Archive *A = dyn_cast<Archive>(&Binary)) 2918 dumpArchive(A); 2919 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 2920 dumpObject(O); 2921 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 2922 parseInputMachO(UB); 2923 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 2924 dumpOffloadSections(*OB); 2925 else 2926 reportError(errorCodeToError(object_error::invalid_file_type), file); 2927 } 2928 2929 template <typename T> 2930 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 2931 T &Value) { 2932 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 2933 StringRef V(A->getValue()); 2934 if (!llvm::to_integer(V, Value, 0)) { 2935 reportCmdLineError(A->getSpelling() + 2936 ": expected a non-negative integer, but got '" + V + 2937 "'"); 2938 } 2939 } 2940 } 2941 2942 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 2943 StringRef V(A->getValue()); 2944 std::string Bytes; 2945 if (!tryGetFromHex(V, Bytes)) 2946 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 2947 V + "'"); 2948 ArrayRef<uint8_t> BuildID(reinterpret_cast<const uint8_t *>(Bytes.data()), 2949 Bytes.size()); 2950 return object::BuildID(BuildID.begin(), BuildID.end()); 2951 } 2952 2953 void objdump::invalidArgValue(const opt::Arg *A) { 2954 reportCmdLineError("'" + StringRef(A->getValue()) + 2955 "' is not a valid value for '" + A->getSpelling() + "'"); 2956 } 2957 2958 static std::vector<std::string> 2959 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 2960 std::vector<std::string> Values; 2961 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 2962 llvm::SmallVector<StringRef, 2> SplitValues; 2963 llvm::SplitString(Value, SplitValues, ","); 2964 for (StringRef SplitValue : SplitValues) 2965 Values.push_back(SplitValue.str()); 2966 } 2967 return Values; 2968 } 2969 2970 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 2971 MachOOpt = true; 2972 FullLeadingAddr = true; 2973 PrintImmHex = true; 2974 2975 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 2976 LinkOptHints = InputArgs.hasArg(OTOOL_C); 2977 if (InputArgs.hasArg(OTOOL_d)) 2978 FilterSections.push_back("__DATA,__data"); 2979 DylibId = InputArgs.hasArg(OTOOL_D); 2980 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 2981 DataInCode = InputArgs.hasArg(OTOOL_G); 2982 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 2983 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 2984 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 2985 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 2986 DylibsUsed = InputArgs.hasArg(OTOOL_L); 2987 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 2988 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 2989 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 2990 InfoPlist = InputArgs.hasArg(OTOOL_P); 2991 Relocations = InputArgs.hasArg(OTOOL_r); 2992 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 2993 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 2994 FilterSections.push_back(Filter); 2995 } 2996 if (InputArgs.hasArg(OTOOL_t)) 2997 FilterSections.push_back("__TEXT,__text"); 2998 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 2999 InputArgs.hasArg(OTOOL_o); 3000 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3001 if (InputArgs.hasArg(OTOOL_x)) 3002 FilterSections.push_back(",__text"); 3003 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3004 3005 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3006 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3007 3008 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3009 if (InputFilenames.empty()) 3010 reportCmdLineError("no input file"); 3011 3012 for (const Arg *A : InputArgs) { 3013 const Option &O = A->getOption(); 3014 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3015 reportCmdLineWarning(O.getPrefixedName() + 3016 " is obsolete and not implemented"); 3017 } 3018 } 3019 } 3020 3021 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3022 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3023 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3024 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3025 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3026 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3027 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3028 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3029 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3030 DisassembleSymbols = 3031 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3032 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3033 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3034 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3035 .Case("frames", DIDT_DebugFrame) 3036 .Default(DIDT_Null); 3037 if (DwarfDumpType == DIDT_Null) 3038 invalidArgValue(A); 3039 } 3040 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3041 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3042 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3043 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3044 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3045 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3046 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3047 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3048 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3049 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3050 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3051 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3052 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3053 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3054 PrintImmHex = 3055 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3056 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3057 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3058 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3059 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3060 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3061 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3062 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3063 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3064 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3065 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3066 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3067 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3068 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3069 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3070 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3071 Wide = InputArgs.hasArg(OBJDUMP_wide); 3072 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3073 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3074 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3075 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3076 .Case("ascii", DVASCII) 3077 .Case("unicode", DVUnicode) 3078 .Default(DVInvalid); 3079 if (DbgVariables == DVInvalid) 3080 invalidArgValue(A); 3081 } 3082 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3083 3084 parseMachOOptions(InputArgs); 3085 3086 // Parse -M (--disassembler-options) and deprecated 3087 // --x86-asm-syntax={att,intel}. 3088 // 3089 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3090 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3091 // called too late. For now we have to use the internal cl::opt option. 3092 const char *AsmSyntax = nullptr; 3093 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3094 OBJDUMP_x86_asm_syntax_att, 3095 OBJDUMP_x86_asm_syntax_intel)) { 3096 switch (A->getOption().getID()) { 3097 case OBJDUMP_x86_asm_syntax_att: 3098 AsmSyntax = "--x86-asm-syntax=att"; 3099 continue; 3100 case OBJDUMP_x86_asm_syntax_intel: 3101 AsmSyntax = "--x86-asm-syntax=intel"; 3102 continue; 3103 } 3104 3105 SmallVector<StringRef, 2> Values; 3106 llvm::SplitString(A->getValue(), Values, ","); 3107 for (StringRef V : Values) { 3108 if (V == "att") 3109 AsmSyntax = "--x86-asm-syntax=att"; 3110 else if (V == "intel") 3111 AsmSyntax = "--x86-asm-syntax=intel"; 3112 else 3113 DisassemblerOptions.push_back(V.str()); 3114 } 3115 } 3116 if (AsmSyntax) { 3117 const char *Argv[] = {"llvm-objdump", AsmSyntax}; 3118 llvm::cl::ParseCommandLineOptions(2, Argv); 3119 } 3120 3121 // Look up any provided build IDs, then append them to the input filenames. 3122 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3123 object::BuildID BuildID = parseBuildIDArg(A); 3124 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3125 if (!Path) { 3126 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3127 A->getValue() + "'"); 3128 } 3129 InputFilenames.push_back(std::move(*Path)); 3130 } 3131 3132 // objdump defaults to a.out if no filenames specified. 3133 if (InputFilenames.empty()) 3134 InputFilenames.push_back("a.out"); 3135 } 3136 3137 int main(int argc, char **argv) { 3138 using namespace llvm; 3139 InitLLVM X(argc, argv); 3140 3141 ToolName = argv[0]; 3142 std::unique_ptr<CommonOptTable> T; 3143 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3144 3145 StringRef Stem = sys::path::stem(ToolName); 3146 auto Is = [=](StringRef Tool) { 3147 // We need to recognize the following filenames: 3148 // 3149 // llvm-objdump -> objdump 3150 // llvm-otool-10.exe -> otool 3151 // powerpc64-unknown-freebsd13-objdump -> objdump 3152 auto I = Stem.rfind_insensitive(Tool); 3153 return I != StringRef::npos && 3154 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3155 }; 3156 if (Is("otool")) { 3157 T = std::make_unique<OtoolOptTable>(); 3158 Unknown = OTOOL_UNKNOWN; 3159 HelpFlag = OTOOL_help; 3160 HelpHiddenFlag = OTOOL_help_hidden; 3161 VersionFlag = OTOOL_version; 3162 } else { 3163 T = std::make_unique<ObjdumpOptTable>(); 3164 Unknown = OBJDUMP_UNKNOWN; 3165 HelpFlag = OBJDUMP_help; 3166 HelpHiddenFlag = OBJDUMP_help_hidden; 3167 VersionFlag = OBJDUMP_version; 3168 } 3169 3170 BumpPtrAllocator A; 3171 StringSaver Saver(A); 3172 opt::InputArgList InputArgs = 3173 T->parseArgs(argc, argv, Unknown, Saver, 3174 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3175 3176 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3177 T->printHelp(ToolName); 3178 return 0; 3179 } 3180 if (InputArgs.hasArg(HelpHiddenFlag)) { 3181 T->printHelp(ToolName, /*ShowHidden=*/true); 3182 return 0; 3183 } 3184 3185 // Initialize targets and assembly printers/parsers. 3186 InitializeAllTargetInfos(); 3187 InitializeAllTargetMCs(); 3188 InitializeAllDisassemblers(); 3189 3190 if (InputArgs.hasArg(VersionFlag)) { 3191 cl::PrintVersionMessage(); 3192 if (!Is("otool")) { 3193 outs() << '\n'; 3194 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3195 } 3196 return 0; 3197 } 3198 3199 // Initialize debuginfod. 3200 const bool ShouldUseDebuginfodByDefault = 3201 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3202 std::vector<std::string> DebugFileDirectories = 3203 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3204 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3205 ShouldUseDebuginfodByDefault)) { 3206 HTTPClient::initialize(); 3207 BIDFetcher = 3208 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3209 } else { 3210 BIDFetcher = 3211 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3212 } 3213 3214 if (Is("otool")) 3215 parseOtoolOptions(InputArgs); 3216 else 3217 parseObjdumpOptions(InputArgs); 3218 3219 if (StartAddress >= StopAddress) 3220 reportCmdLineError("start address should be less than stop address"); 3221 3222 // Removes trailing separators from prefix. 3223 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3224 Prefix.pop_back(); 3225 3226 if (AllHeaders) 3227 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3228 SectionHeaders = SymbolTable = true; 3229 3230 if (DisassembleAll || PrintSource || PrintLines || 3231 !DisassembleSymbols.empty()) 3232 Disassemble = true; 3233 3234 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3235 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3236 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3237 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3238 !(MachOOpt && 3239 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3240 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3241 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3242 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3243 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3244 T->printHelp(ToolName); 3245 return 2; 3246 } 3247 3248 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3249 3250 llvm::for_each(InputFilenames, dumpInput); 3251 3252 warnOnNoMatchForSections(); 3253 3254 return EXIT_SUCCESS; 3255 } 3256