1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This program is a utility that works like binutils "objdump", that is, it 10 // dumps out a plethora of information about an object file depending on the 11 // flags. 12 // 13 // The flags and output of this program should be near identical to those of 14 // binutils objdump. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm-objdump.h" 19 #include "COFFDump.h" 20 #include "ELFDump.h" 21 #include "MachODump.h" 22 #include "ObjdumpOptID.h" 23 #include "OffloadDump.h" 24 #include "SourcePrinter.h" 25 #include "WasmDump.h" 26 #include "XCOFFDump.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/StringExtras.h" 30 #include "llvm/ADT/StringSet.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Wasm.h" 33 #include "llvm/DebugInfo/BTF/BTFParser.h" 34 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 35 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" 36 #include "llvm/DebugInfo/Symbolize/Symbolize.h" 37 #include "llvm/Debuginfod/BuildIDFetcher.h" 38 #include "llvm/Debuginfod/Debuginfod.h" 39 #include "llvm/Debuginfod/HTTPClient.h" 40 #include "llvm/Demangle/Demangle.h" 41 #include "llvm/MC/MCAsmInfo.h" 42 #include "llvm/MC/MCContext.h" 43 #include "llvm/MC/MCDisassembler/MCDisassembler.h" 44 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" 45 #include "llvm/MC/MCInst.h" 46 #include "llvm/MC/MCInstPrinter.h" 47 #include "llvm/MC/MCInstrAnalysis.h" 48 #include "llvm/MC/MCInstrInfo.h" 49 #include "llvm/MC/MCObjectFileInfo.h" 50 #include "llvm/MC/MCRegisterInfo.h" 51 #include "llvm/MC/MCTargetOptions.h" 52 #include "llvm/MC/TargetRegistry.h" 53 #include "llvm/Object/Archive.h" 54 #include "llvm/Object/BuildID.h" 55 #include "llvm/Object/COFF.h" 56 #include "llvm/Object/COFFImportFile.h" 57 #include "llvm/Object/ELFObjectFile.h" 58 #include "llvm/Object/ELFTypes.h" 59 #include "llvm/Object/FaultMapParser.h" 60 #include "llvm/Object/MachO.h" 61 #include "llvm/Object/MachOUniversal.h" 62 #include "llvm/Object/ObjectFile.h" 63 #include "llvm/Object/OffloadBinary.h" 64 #include "llvm/Object/Wasm.h" 65 #include "llvm/Option/Arg.h" 66 #include "llvm/Option/ArgList.h" 67 #include "llvm/Option/Option.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Errc.h" 71 #include "llvm/Support/FileSystem.h" 72 #include "llvm/Support/Format.h" 73 #include "llvm/Support/FormatVariadic.h" 74 #include "llvm/Support/GraphWriter.h" 75 #include "llvm/Support/LLVMDriver.h" 76 #include "llvm/Support/MemoryBuffer.h" 77 #include "llvm/Support/SourceMgr.h" 78 #include "llvm/Support/StringSaver.h" 79 #include "llvm/Support/TargetSelect.h" 80 #include "llvm/Support/WithColor.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include "llvm/TargetParser/Host.h" 83 #include "llvm/TargetParser/Triple.h" 84 #include <algorithm> 85 #include <cctype> 86 #include <cstring> 87 #include <optional> 88 #include <set> 89 #include <system_error> 90 #include <unordered_map> 91 #include <utility> 92 93 using namespace llvm; 94 using namespace llvm::object; 95 using namespace llvm::objdump; 96 using namespace llvm::opt; 97 98 namespace { 99 100 class CommonOptTable : public opt::GenericOptTable { 101 public: 102 CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, 103 const char *Description) 104 : opt::GenericOptTable(OptionInfos), Usage(Usage), 105 Description(Description) { 106 setGroupedShortOptions(true); 107 } 108 109 void printHelp(StringRef Argv0, bool ShowHidden = false) const { 110 Argv0 = sys::path::filename(Argv0); 111 opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), 112 Description, ShowHidden, ShowHidden); 113 // TODO Replace this with OptTable API once it adds extrahelp support. 114 outs() << "\nPass @FILE as argument to read options from FILE.\n"; 115 } 116 117 private: 118 const char *Usage; 119 const char *Description; 120 }; 121 122 // ObjdumpOptID is in ObjdumpOptID.h 123 namespace objdump_opt { 124 #define PREFIX(NAME, VALUE) \ 125 static constexpr StringLiteral NAME##_init[] = VALUE; \ 126 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 127 std::size(NAME##_init) - 1); 128 #include "ObjdumpOpts.inc" 129 #undef PREFIX 130 131 static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { 132 #define OPTION(...) \ 133 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), 134 #include "ObjdumpOpts.inc" 135 #undef OPTION 136 }; 137 } // namespace objdump_opt 138 139 class ObjdumpOptTable : public CommonOptTable { 140 public: 141 ObjdumpOptTable() 142 : CommonOptTable(objdump_opt::ObjdumpInfoTable, 143 " [options] <input object files>", 144 "llvm object file dumper") {} 145 }; 146 147 enum OtoolOptID { 148 OTOOL_INVALID = 0, // This is not an option ID. 149 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 150 #include "OtoolOpts.inc" 151 #undef OPTION 152 }; 153 154 namespace otool { 155 #define PREFIX(NAME, VALUE) \ 156 static constexpr StringLiteral NAME##_init[] = VALUE; \ 157 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ 158 std::size(NAME##_init) - 1); 159 #include "OtoolOpts.inc" 160 #undef PREFIX 161 162 static constexpr opt::OptTable::Info OtoolInfoTable[] = { 163 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), 164 #include "OtoolOpts.inc" 165 #undef OPTION 166 }; 167 } // namespace otool 168 169 class OtoolOptTable : public CommonOptTable { 170 public: 171 OtoolOptTable() 172 : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", 173 "Mach-O object file displaying tool") {} 174 }; 175 176 struct BBAddrMapLabel { 177 std::string BlockLabel; 178 std::string PGOAnalysis; 179 }; 180 181 // This class represents the BBAddrMap and PGOMap associated with a single 182 // function. 183 class BBAddrMapFunctionEntry { 184 public: 185 BBAddrMapFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) 186 : AddrMap(std::move(AddrMap)), PGOMap(std::move(PGOMap)) {} 187 188 const BBAddrMap &getAddrMap() const { return AddrMap; } 189 190 // Returns the PGO string associated with the entry of index `PGOBBEntryIndex` 191 // in `PGOMap`. If PrettyPGOAnalysis is true, prints BFI as relative frequency 192 // and BPI as percentage. Otherwise raw values are displayed. 193 std::string constructPGOLabelString(size_t PGOBBEntryIndex, 194 bool PrettyPGOAnalysis) const { 195 if (!PGOMap.FeatEnable.hasPGOAnalysis()) 196 return ""; 197 std::string PGOString; 198 raw_string_ostream PGOSS(PGOString); 199 200 PGOSS << " ("; 201 if (PGOMap.FeatEnable.FuncEntryCount && PGOBBEntryIndex == 0) { 202 PGOSS << "Entry count: " << Twine(PGOMap.FuncEntryCount); 203 if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) { 204 PGOSS << ", "; 205 } 206 } 207 208 if (PGOMap.FeatEnable.hasPGOAnalysisBBData()) { 209 210 assert(PGOBBEntryIndex < PGOMap.BBEntries.size() && 211 "Expected PGOAnalysisMap and BBAddrMap to have the same entries"); 212 const PGOAnalysisMap::PGOBBEntry &PGOBBEntry = 213 PGOMap.BBEntries[PGOBBEntryIndex]; 214 215 if (PGOMap.FeatEnable.BBFreq) { 216 PGOSS << "Frequency: "; 217 if (PrettyPGOAnalysis) 218 printRelativeBlockFreq(PGOSS, PGOMap.BBEntries.front().BlockFreq, 219 PGOBBEntry.BlockFreq); 220 else 221 PGOSS << Twine(PGOBBEntry.BlockFreq.getFrequency()); 222 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) { 223 PGOSS << ", "; 224 } 225 } 226 if (PGOMap.FeatEnable.BrProb && PGOBBEntry.Successors.size() > 0) { 227 PGOSS << "Successors: "; 228 interleaveComma( 229 PGOBBEntry.Successors, PGOSS, 230 [&](const PGOAnalysisMap::PGOBBEntry::SuccessorEntry &SE) { 231 PGOSS << "BB" << SE.ID << ":"; 232 if (PrettyPGOAnalysis) 233 PGOSS << "[" << SE.Prob << "]"; 234 else 235 PGOSS.write_hex(SE.Prob.getNumerator()); 236 }); 237 } 238 } 239 PGOSS << ")"; 240 241 return PGOString; 242 } 243 244 private: 245 const BBAddrMap AddrMap; 246 const PGOAnalysisMap PGOMap; 247 }; 248 249 // This class represents the BBAddrMap and PGOMap of potentially multiple 250 // functions in a section. 251 class BBAddrMapInfo { 252 public: 253 void clear() { 254 FunctionAddrToMap.clear(); 255 RangeBaseAddrToFunctionAddr.clear(); 256 } 257 258 bool empty() const { return FunctionAddrToMap.empty(); } 259 260 void AddFunctionEntry(BBAddrMap AddrMap, PGOAnalysisMap PGOMap) { 261 uint64_t FunctionAddr = AddrMap.getFunctionAddress(); 262 for (size_t I = 1; I < AddrMap.BBRanges.size(); ++I) 263 RangeBaseAddrToFunctionAddr.emplace(AddrMap.BBRanges[I].BaseAddress, 264 FunctionAddr); 265 [[maybe_unused]] auto R = FunctionAddrToMap.try_emplace( 266 FunctionAddr, std::move(AddrMap), std::move(PGOMap)); 267 assert(R.second && "duplicate function address"); 268 } 269 270 // Returns the BBAddrMap entry for the function associated with `BaseAddress`. 271 // `BaseAddress` could be the function address or the address of a range 272 // associated with that function. Returns `nullptr` if `BaseAddress` is not 273 // mapped to any entry. 274 const BBAddrMapFunctionEntry *getEntryForAddress(uint64_t BaseAddress) const { 275 uint64_t FunctionAddr = BaseAddress; 276 auto S = RangeBaseAddrToFunctionAddr.find(BaseAddress); 277 if (S != RangeBaseAddrToFunctionAddr.end()) 278 FunctionAddr = S->second; 279 auto R = FunctionAddrToMap.find(FunctionAddr); 280 if (R == FunctionAddrToMap.end()) 281 return nullptr; 282 return &R->second; 283 } 284 285 private: 286 std::unordered_map<uint64_t, BBAddrMapFunctionEntry> FunctionAddrToMap; 287 std::unordered_map<uint64_t, uint64_t> RangeBaseAddrToFunctionAddr; 288 }; 289 290 } // namespace 291 292 #define DEBUG_TYPE "objdump" 293 294 enum class ColorOutput { 295 Auto, 296 Enable, 297 Disable, 298 Invalid, 299 }; 300 301 static uint64_t AdjustVMA; 302 static bool AllHeaders; 303 static std::string ArchName; 304 bool objdump::ArchiveHeaders; 305 bool objdump::Demangle; 306 bool objdump::Disassemble; 307 bool objdump::DisassembleAll; 308 bool objdump::SymbolDescription; 309 bool objdump::TracebackTable; 310 static std::vector<std::string> DisassembleSymbols; 311 static bool DisassembleZeroes; 312 static std::vector<std::string> DisassemblerOptions; 313 static ColorOutput DisassemblyColor; 314 DIDumpType objdump::DwarfDumpType; 315 static bool DynamicRelocations; 316 static bool FaultMapSection; 317 static bool FileHeaders; 318 bool objdump::SectionContents; 319 static std::vector<std::string> InputFilenames; 320 bool objdump::PrintLines; 321 static bool MachOOpt; 322 std::string objdump::MCPU; 323 std::vector<std::string> objdump::MAttrs; 324 bool objdump::ShowRawInsn; 325 bool objdump::LeadingAddr; 326 static bool Offloading; 327 static bool RawClangAST; 328 bool objdump::Relocations; 329 bool objdump::PrintImmHex; 330 bool objdump::PrivateHeaders; 331 std::vector<std::string> objdump::FilterSections; 332 bool objdump::SectionHeaders; 333 static bool ShowAllSymbols; 334 static bool ShowLMA; 335 bool objdump::PrintSource; 336 337 static uint64_t StartAddress; 338 static bool HasStartAddressFlag; 339 static uint64_t StopAddress = UINT64_MAX; 340 static bool HasStopAddressFlag; 341 342 bool objdump::SymbolTable; 343 static bool SymbolizeOperands; 344 static bool PrettyPGOAnalysisMap; 345 static bool DynamicSymbolTable; 346 std::string objdump::TripleName; 347 bool objdump::UnwindInfo; 348 static bool Wide; 349 std::string objdump::Prefix; 350 uint32_t objdump::PrefixStrip; 351 352 DebugVarsFormat objdump::DbgVariables = DVDisabled; 353 354 int objdump::DbgIndent = 52; 355 356 static StringSet<> DisasmSymbolSet; 357 StringSet<> objdump::FoundSectionSet; 358 static StringRef ToolName; 359 360 std::unique_ptr<BuildIDFetcher> BIDFetcher; 361 362 Dumper::Dumper(const object::ObjectFile &O) : O(O) { 363 WarningHandler = [this](const Twine &Msg) { 364 if (Warnings.insert(Msg.str()).second) 365 reportWarning(Msg, this->O.getFileName()); 366 return Error::success(); 367 }; 368 } 369 370 void Dumper::reportUniqueWarning(Error Err) { 371 reportUniqueWarning(toString(std::move(Err))); 372 } 373 374 void Dumper::reportUniqueWarning(const Twine &Msg) { 375 cantFail(WarningHandler(Msg)); 376 } 377 378 static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { 379 if (const auto *O = dyn_cast<COFFObjectFile>(&Obj)) 380 return createCOFFDumper(*O); 381 if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj)) 382 return createELFDumper(*O); 383 if (const auto *O = dyn_cast<MachOObjectFile>(&Obj)) 384 return createMachODumper(*O); 385 if (const auto *O = dyn_cast<WasmObjectFile>(&Obj)) 386 return createWasmDumper(*O); 387 if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj)) 388 return createXCOFFDumper(*O); 389 390 return createStringError(errc::invalid_argument, 391 "unsupported object file format"); 392 } 393 394 namespace { 395 struct FilterResult { 396 // True if the section should not be skipped. 397 bool Keep; 398 399 // True if the index counter should be incremented, even if the section should 400 // be skipped. For example, sections may be skipped if they are not included 401 // in the --section flag, but we still want those to count toward the section 402 // count. 403 bool IncrementIndex; 404 }; 405 } // namespace 406 407 static FilterResult checkSectionFilter(object::SectionRef S) { 408 if (FilterSections.empty()) 409 return {/*Keep=*/true, /*IncrementIndex=*/true}; 410 411 Expected<StringRef> SecNameOrErr = S.getName(); 412 if (!SecNameOrErr) { 413 consumeError(SecNameOrErr.takeError()); 414 return {/*Keep=*/false, /*IncrementIndex=*/false}; 415 } 416 StringRef SecName = *SecNameOrErr; 417 418 // StringSet does not allow empty key so avoid adding sections with 419 // no name (such as the section with index 0) here. 420 if (!SecName.empty()) 421 FoundSectionSet.insert(SecName); 422 423 // Only show the section if it's in the FilterSections list, but always 424 // increment so the indexing is stable. 425 return {/*Keep=*/is_contained(FilterSections, SecName), 426 /*IncrementIndex=*/true}; 427 } 428 429 SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, 430 uint64_t *Idx) { 431 // Start at UINT64_MAX so that the first index returned after an increment is 432 // zero (after the unsigned wrap). 433 if (Idx) 434 *Idx = UINT64_MAX; 435 return SectionFilter( 436 [Idx](object::SectionRef S) { 437 FilterResult Result = checkSectionFilter(S); 438 if (Idx != nullptr && Result.IncrementIndex) 439 *Idx += 1; 440 return Result.Keep; 441 }, 442 O); 443 } 444 445 std::string objdump::getFileNameForError(const object::Archive::Child &C, 446 unsigned Index) { 447 Expected<StringRef> NameOrErr = C.getName(); 448 if (NameOrErr) 449 return std::string(NameOrErr.get()); 450 // If we have an error getting the name then we print the index of the archive 451 // member. Since we are already in an error state, we just ignore this error. 452 consumeError(NameOrErr.takeError()); 453 return "<file index: " + std::to_string(Index) + ">"; 454 } 455 456 void objdump::reportWarning(const Twine &Message, StringRef File) { 457 // Output order between errs() and outs() matters especially for archive 458 // files where the output is per member object. 459 outs().flush(); 460 WithColor::warning(errs(), ToolName) 461 << "'" << File << "': " << Message << "\n"; 462 } 463 464 [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { 465 outs().flush(); 466 WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; 467 exit(1); 468 } 469 470 [[noreturn]] void objdump::reportError(Error E, StringRef FileName, 471 StringRef ArchiveName, 472 StringRef ArchitectureName) { 473 assert(E); 474 outs().flush(); 475 WithColor::error(errs(), ToolName); 476 if (ArchiveName != "") 477 errs() << ArchiveName << "(" << FileName << ")"; 478 else 479 errs() << "'" << FileName << "'"; 480 if (!ArchitectureName.empty()) 481 errs() << " (for architecture " << ArchitectureName << ")"; 482 errs() << ": "; 483 logAllUnhandledErrors(std::move(E), errs()); 484 exit(1); 485 } 486 487 static void reportCmdLineWarning(const Twine &Message) { 488 WithColor::warning(errs(), ToolName) << Message << "\n"; 489 } 490 491 [[noreturn]] static void reportCmdLineError(const Twine &Message) { 492 WithColor::error(errs(), ToolName) << Message << "\n"; 493 exit(1); 494 } 495 496 static void warnOnNoMatchForSections() { 497 SetVector<StringRef> MissingSections; 498 for (StringRef S : FilterSections) { 499 if (FoundSectionSet.count(S)) 500 return; 501 // User may specify a unnamed section. Don't warn for it. 502 if (!S.empty()) 503 MissingSections.insert(S); 504 } 505 506 // Warn only if no section in FilterSections is matched. 507 for (StringRef S : MissingSections) 508 reportCmdLineWarning("section '" + S + 509 "' mentioned in a -j/--section option, but not " 510 "found in any input file"); 511 } 512 513 static const Target *getTarget(const ObjectFile *Obj) { 514 // Figure out the target triple. 515 Triple TheTriple("unknown-unknown-unknown"); 516 if (TripleName.empty()) { 517 TheTriple = Obj->makeTriple(); 518 } else { 519 TheTriple.setTriple(Triple::normalize(TripleName)); 520 auto Arch = Obj->getArch(); 521 if (Arch == Triple::arm || Arch == Triple::armeb) 522 Obj->setARMSubArch(TheTriple); 523 } 524 525 // Get the target specific parser. 526 std::string Error; 527 const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, 528 Error); 529 if (!TheTarget) 530 reportError(Obj->getFileName(), "can't find target: " + Error); 531 532 // Update the triple name and return the found target. 533 TripleName = TheTriple.getTriple(); 534 return TheTarget; 535 } 536 537 bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { 538 return A.getOffset() < B.getOffset(); 539 } 540 541 static Error getRelocationValueString(const RelocationRef &Rel, 542 bool SymbolDescription, 543 SmallVectorImpl<char> &Result) { 544 const ObjectFile *Obj = Rel.getObject(); 545 if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) 546 return getELFRelocationValueString(ELF, Rel, Result); 547 if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) 548 return getCOFFRelocationValueString(COFF, Rel, Result); 549 if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) 550 return getWasmRelocationValueString(Wasm, Rel, Result); 551 if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) 552 return getMachORelocationValueString(MachO, Rel, Result); 553 if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) 554 return getXCOFFRelocationValueString(*XCOFF, Rel, SymbolDescription, 555 Result); 556 llvm_unreachable("unknown object file format"); 557 } 558 559 /// Indicates whether this relocation should hidden when listing 560 /// relocations, usually because it is the trailing part of a multipart 561 /// relocation that will be printed as part of the leading relocation. 562 static bool getHidden(RelocationRef RelRef) { 563 auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); 564 if (!MachO) 565 return false; 566 567 unsigned Arch = MachO->getArch(); 568 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 569 uint64_t Type = MachO->getRelocationType(Rel); 570 571 // On arches that use the generic relocations, GENERIC_RELOC_PAIR 572 // is always hidden. 573 if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) 574 return Type == MachO::GENERIC_RELOC_PAIR; 575 576 if (Arch == Triple::x86_64) { 577 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows 578 // an X86_64_RELOC_SUBTRACTOR. 579 if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { 580 DataRefImpl RelPrev = Rel; 581 RelPrev.d.a--; 582 uint64_t PrevType = MachO->getRelocationType(RelPrev); 583 if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) 584 return true; 585 } 586 } 587 588 return false; 589 } 590 591 /// Get the column at which we want to start printing the instruction 592 /// disassembly, taking into account anything which appears to the left of it. 593 unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { 594 return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; 595 } 596 597 static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, 598 raw_ostream &OS) { 599 // The output of printInst starts with a tab. Print some spaces so that 600 // the tab has 1 column and advances to the target tab stop. 601 unsigned TabStop = getInstStartColumn(STI); 602 unsigned Column = OS.tell() - Start; 603 OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); 604 } 605 606 void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, 607 formatted_raw_ostream &OS, 608 MCSubtargetInfo const &STI) { 609 size_t Start = OS.tell(); 610 if (LeadingAddr) 611 OS << format("%8" PRIx64 ":", Address); 612 if (ShowRawInsn) { 613 OS << ' '; 614 dumpBytes(Bytes, OS); 615 } 616 AlignToInstStartColumn(Start, STI, OS); 617 } 618 619 namespace { 620 621 static bool isAArch64Elf(const ObjectFile &Obj) { 622 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 623 return Elf && Elf->getEMachine() == ELF::EM_AARCH64; 624 } 625 626 static bool isArmElf(const ObjectFile &Obj) { 627 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 628 return Elf && Elf->getEMachine() == ELF::EM_ARM; 629 } 630 631 static bool isCSKYElf(const ObjectFile &Obj) { 632 const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); 633 return Elf && Elf->getEMachine() == ELF::EM_CSKY; 634 } 635 636 static bool hasMappingSymbols(const ObjectFile &Obj) { 637 return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; 638 } 639 640 static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, 641 const RelocationRef &Rel, uint64_t Address, 642 bool Is64Bits) { 643 StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; 644 SmallString<16> Name; 645 SmallString<32> Val; 646 Rel.getTypeName(Name); 647 if (Error E = getRelocationValueString(Rel, SymbolDescription, Val)) 648 reportError(std::move(E), FileName); 649 OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); 650 if (LeadingAddr) 651 OS << format(Fmt.data(), Address); 652 OS << Name << "\t" << Val; 653 } 654 655 static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF, 656 object::SectionedAddress Address, 657 LiveVariablePrinter &LVP) { 658 const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address); 659 if (!Reloc) 660 return; 661 662 SmallString<64> Val; 663 BTF.symbolize(Reloc, Val); 664 FOS << "\t\t"; 665 if (LeadingAddr) 666 FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA); 667 FOS << "CO-RE " << Val; 668 LVP.printAfterOtherLine(FOS, true); 669 } 670 671 class PrettyPrinter { 672 public: 673 virtual ~PrettyPrinter() = default; 674 virtual void 675 printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 676 object::SectionedAddress Address, formatted_raw_ostream &OS, 677 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 678 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 679 LiveVariablePrinter &LVP) { 680 if (SP && (PrintSource || PrintLines)) 681 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 682 LVP.printBetweenInsts(OS, false); 683 684 printRawData(Bytes, Address.Address, OS, STI); 685 686 if (MI) { 687 // See MCInstPrinter::printInst. On targets where a PC relative immediate 688 // is relative to the next instruction and the length of a MCInst is 689 // difficult to measure (x86), this is the address of the next 690 // instruction. 691 uint64_t Addr = 692 Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); 693 IP.printInst(MI, Addr, "", STI, OS); 694 } else 695 OS << "\t<unknown>"; 696 } 697 }; 698 PrettyPrinter PrettyPrinterInst; 699 700 class HexagonPrettyPrinter : public PrettyPrinter { 701 public: 702 void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, 703 formatted_raw_ostream &OS) { 704 uint32_t opcode = 705 (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; 706 if (LeadingAddr) 707 OS << format("%8" PRIx64 ":", Address); 708 if (ShowRawInsn) { 709 OS << "\t"; 710 dumpBytes(Bytes.slice(0, 4), OS); 711 OS << format("\t%08" PRIx32, opcode); 712 } 713 } 714 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 715 object::SectionedAddress Address, formatted_raw_ostream &OS, 716 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 717 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 718 LiveVariablePrinter &LVP) override { 719 if (SP && (PrintSource || PrintLines)) 720 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 721 if (!MI) { 722 printLead(Bytes, Address.Address, OS); 723 OS << " <unknown>"; 724 return; 725 } 726 std::string Buffer; 727 { 728 raw_string_ostream TempStream(Buffer); 729 IP.printInst(MI, Address.Address, "", STI, TempStream); 730 } 731 StringRef Contents(Buffer); 732 // Split off bundle attributes 733 auto PacketBundle = Contents.rsplit('\n'); 734 // Split off first instruction from the rest 735 auto HeadTail = PacketBundle.first.split('\n'); 736 auto Preamble = " { "; 737 auto Separator = ""; 738 739 // Hexagon's packets require relocations to be inline rather than 740 // clustered at the end of the packet. 741 std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); 742 std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); 743 auto PrintReloc = [&]() -> void { 744 while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { 745 if (RelCur->getOffset() == Address.Address) { 746 printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); 747 return; 748 } 749 ++RelCur; 750 } 751 }; 752 753 while (!HeadTail.first.empty()) { 754 OS << Separator; 755 Separator = "\n"; 756 if (SP && (PrintSource || PrintLines)) 757 SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); 758 printLead(Bytes, Address.Address, OS); 759 OS << Preamble; 760 Preamble = " "; 761 StringRef Inst; 762 auto Duplex = HeadTail.first.split('\v'); 763 if (!Duplex.second.empty()) { 764 OS << Duplex.first; 765 OS << "; "; 766 Inst = Duplex.second; 767 } 768 else 769 Inst = HeadTail.first; 770 OS << Inst; 771 HeadTail = HeadTail.second.split('\n'); 772 if (HeadTail.first.empty()) 773 OS << " } " << PacketBundle.second; 774 PrintReloc(); 775 Bytes = Bytes.slice(4); 776 Address.Address += 4; 777 } 778 } 779 }; 780 HexagonPrettyPrinter HexagonPrettyPrinterInst; 781 782 class AMDGCNPrettyPrinter : public PrettyPrinter { 783 public: 784 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 785 object::SectionedAddress Address, formatted_raw_ostream &OS, 786 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 787 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 788 LiveVariablePrinter &LVP) override { 789 if (SP && (PrintSource || PrintLines)) 790 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 791 792 if (MI) { 793 SmallString<40> InstStr; 794 raw_svector_ostream IS(InstStr); 795 796 IP.printInst(MI, Address.Address, "", STI, IS); 797 798 OS << left_justify(IS.str(), 60); 799 } else { 800 // an unrecognized encoding - this is probably data so represent it 801 // using the .long directive, or .byte directive if fewer than 4 bytes 802 // remaining 803 if (Bytes.size() >= 4) { 804 OS << format( 805 "\t.long 0x%08" PRIx32 " ", 806 support::endian::read32<llvm::endianness::little>(Bytes.data())); 807 OS.indent(42); 808 } else { 809 OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); 810 for (unsigned int i = 1; i < Bytes.size(); i++) 811 OS << format(", 0x%02" PRIx8, Bytes[i]); 812 OS.indent(55 - (6 * Bytes.size())); 813 } 814 } 815 816 OS << format("// %012" PRIX64 ":", Address.Address); 817 if (Bytes.size() >= 4) { 818 // D should be casted to uint32_t here as it is passed by format to 819 // snprintf as vararg. 820 for (uint32_t D : 821 ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), 822 Bytes.size() / 4)) 823 OS << format(" %08" PRIX32, D); 824 } else { 825 for (unsigned char B : Bytes) 826 OS << format(" %02" PRIX8, B); 827 } 828 829 if (!Annot.empty()) 830 OS << " // " << Annot; 831 } 832 }; 833 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; 834 835 class BPFPrettyPrinter : public PrettyPrinter { 836 public: 837 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 838 object::SectionedAddress Address, formatted_raw_ostream &OS, 839 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 840 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 841 LiveVariablePrinter &LVP) override { 842 if (SP && (PrintSource || PrintLines)) 843 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 844 if (LeadingAddr) 845 OS << format("%8" PRId64 ":", Address.Address / 8); 846 if (ShowRawInsn) { 847 OS << "\t"; 848 dumpBytes(Bytes, OS); 849 } 850 if (MI) 851 IP.printInst(MI, Address.Address, "", STI, OS); 852 else 853 OS << "\t<unknown>"; 854 } 855 }; 856 BPFPrettyPrinter BPFPrettyPrinterInst; 857 858 class ARMPrettyPrinter : public PrettyPrinter { 859 public: 860 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 861 object::SectionedAddress Address, formatted_raw_ostream &OS, 862 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 863 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 864 LiveVariablePrinter &LVP) override { 865 if (SP && (PrintSource || PrintLines)) 866 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 867 LVP.printBetweenInsts(OS, false); 868 869 size_t Start = OS.tell(); 870 if (LeadingAddr) 871 OS << format("%8" PRIx64 ":", Address.Address); 872 if (ShowRawInsn) { 873 size_t Pos = 0, End = Bytes.size(); 874 if (STI.checkFeatures("+thumb-mode")) { 875 for (; Pos + 2 <= End; Pos += 2) 876 OS << ' ' 877 << format_hex_no_prefix( 878 llvm::support::endian::read<uint16_t>( 879 Bytes.data() + Pos, InstructionEndianness), 880 4); 881 } else { 882 for (; Pos + 4 <= End; Pos += 4) 883 OS << ' ' 884 << format_hex_no_prefix( 885 llvm::support::endian::read<uint32_t>( 886 Bytes.data() + Pos, InstructionEndianness), 887 8); 888 } 889 if (Pos < End) { 890 OS << ' '; 891 dumpBytes(Bytes.slice(Pos), OS); 892 } 893 } 894 895 AlignToInstStartColumn(Start, STI, OS); 896 897 if (MI) { 898 IP.printInst(MI, Address.Address, "", STI, OS); 899 } else 900 OS << "\t<unknown>"; 901 } 902 903 void setInstructionEndianness(llvm::endianness Endianness) { 904 InstructionEndianness = Endianness; 905 } 906 907 private: 908 llvm::endianness InstructionEndianness = llvm::endianness::little; 909 }; 910 ARMPrettyPrinter ARMPrettyPrinterInst; 911 912 class AArch64PrettyPrinter : public PrettyPrinter { 913 public: 914 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 915 object::SectionedAddress Address, formatted_raw_ostream &OS, 916 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 917 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 918 LiveVariablePrinter &LVP) override { 919 if (SP && (PrintSource || PrintLines)) 920 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 921 LVP.printBetweenInsts(OS, false); 922 923 size_t Start = OS.tell(); 924 if (LeadingAddr) 925 OS << format("%8" PRIx64 ":", Address.Address); 926 if (ShowRawInsn) { 927 size_t Pos = 0, End = Bytes.size(); 928 for (; Pos + 4 <= End; Pos += 4) 929 OS << ' ' 930 << format_hex_no_prefix( 931 llvm::support::endian::read<uint32_t>( 932 Bytes.data() + Pos, llvm::endianness::little), 933 8); 934 if (Pos < End) { 935 OS << ' '; 936 dumpBytes(Bytes.slice(Pos), OS); 937 } 938 } 939 940 AlignToInstStartColumn(Start, STI, OS); 941 942 if (MI) { 943 IP.printInst(MI, Address.Address, "", STI, OS); 944 } else 945 OS << "\t<unknown>"; 946 } 947 }; 948 AArch64PrettyPrinter AArch64PrettyPrinterInst; 949 950 class RISCVPrettyPrinter : public PrettyPrinter { 951 public: 952 void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, 953 object::SectionedAddress Address, formatted_raw_ostream &OS, 954 StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, 955 StringRef ObjectFilename, std::vector<RelocationRef> *Rels, 956 LiveVariablePrinter &LVP) override { 957 if (SP && (PrintSource || PrintLines)) 958 SP->printSourceLine(OS, Address, ObjectFilename, LVP); 959 LVP.printBetweenInsts(OS, false); 960 961 size_t Start = OS.tell(); 962 if (LeadingAddr) 963 OS << format("%8" PRIx64 ":", Address.Address); 964 if (ShowRawInsn) { 965 size_t Pos = 0, End = Bytes.size(); 966 if (End % 4 == 0) { 967 // 32-bit and 64-bit instructions. 968 for (; Pos + 4 <= End; Pos += 4) 969 OS << ' ' 970 << format_hex_no_prefix( 971 llvm::support::endian::read<uint32_t>( 972 Bytes.data() + Pos, llvm::endianness::little), 973 8); 974 } else if (End % 2 == 0) { 975 // 16-bit and 48-bits instructions. 976 for (; Pos + 2 <= End; Pos += 2) 977 OS << ' ' 978 << format_hex_no_prefix( 979 llvm::support::endian::read<uint16_t>( 980 Bytes.data() + Pos, llvm::endianness::little), 981 4); 982 } 983 if (Pos < End) { 984 OS << ' '; 985 dumpBytes(Bytes.slice(Pos), OS); 986 } 987 } 988 989 AlignToInstStartColumn(Start, STI, OS); 990 991 if (MI) { 992 IP.printInst(MI, Address.Address, "", STI, OS); 993 } else 994 OS << "\t<unknown>"; 995 } 996 }; 997 RISCVPrettyPrinter RISCVPrettyPrinterInst; 998 999 PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { 1000 switch(Triple.getArch()) { 1001 default: 1002 return PrettyPrinterInst; 1003 case Triple::hexagon: 1004 return HexagonPrettyPrinterInst; 1005 case Triple::amdgcn: 1006 return AMDGCNPrettyPrinterInst; 1007 case Triple::bpfel: 1008 case Triple::bpfeb: 1009 return BPFPrettyPrinterInst; 1010 case Triple::arm: 1011 case Triple::armeb: 1012 case Triple::thumb: 1013 case Triple::thumbeb: 1014 return ARMPrettyPrinterInst; 1015 case Triple::aarch64: 1016 case Triple::aarch64_be: 1017 case Triple::aarch64_32: 1018 return AArch64PrettyPrinterInst; 1019 case Triple::riscv32: 1020 case Triple::riscv64: 1021 return RISCVPrettyPrinterInst; 1022 } 1023 } 1024 1025 class DisassemblerTarget { 1026 public: 1027 const Target *TheTarget; 1028 std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; 1029 std::shared_ptr<MCContext> Context; 1030 std::unique_ptr<MCDisassembler> DisAsm; 1031 std::shared_ptr<MCInstrAnalysis> InstrAnalysis; 1032 std::shared_ptr<MCInstPrinter> InstPrinter; 1033 PrettyPrinter *Printer; 1034 1035 DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 1036 StringRef TripleName, StringRef MCPU, 1037 SubtargetFeatures &Features); 1038 DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); 1039 1040 private: 1041 MCTargetOptions Options; 1042 std::shared_ptr<const MCRegisterInfo> RegisterInfo; 1043 std::shared_ptr<const MCAsmInfo> AsmInfo; 1044 std::shared_ptr<const MCInstrInfo> InstrInfo; 1045 std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; 1046 }; 1047 1048 DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, 1049 StringRef TripleName, StringRef MCPU, 1050 SubtargetFeatures &Features) 1051 : TheTarget(TheTarget), 1052 Printer(&selectPrettyPrinter(Triple(TripleName))), 1053 RegisterInfo(TheTarget->createMCRegInfo(TripleName)) { 1054 if (!RegisterInfo) 1055 reportError(Obj.getFileName(), "no register info for target " + TripleName); 1056 1057 // Set up disassembler. 1058 AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options)); 1059 if (!AsmInfo) 1060 reportError(Obj.getFileName(), "no assembly info for target " + TripleName); 1061 1062 SubtargetInfo.reset( 1063 TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); 1064 if (!SubtargetInfo) 1065 reportError(Obj.getFileName(), 1066 "no subtarget info for target " + TripleName); 1067 InstrInfo.reset(TheTarget->createMCInstrInfo()); 1068 if (!InstrInfo) 1069 reportError(Obj.getFileName(), 1070 "no instruction info for target " + TripleName); 1071 Context = 1072 std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(), 1073 RegisterInfo.get(), SubtargetInfo.get()); 1074 1075 // FIXME: for now initialize MCObjectFileInfo with default values 1076 ObjectFileInfo.reset( 1077 TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false)); 1078 Context->setObjectFileInfo(ObjectFileInfo.get()); 1079 1080 DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)); 1081 if (!DisAsm) 1082 reportError(Obj.getFileName(), "no disassembler for target " + TripleName); 1083 1084 if (auto *ELFObj = dyn_cast<ELFObjectFileBase>(&Obj)) 1085 DisAsm->setABIVersion(ELFObj->getEIdentABIVersion()); 1086 1087 InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get())); 1088 1089 int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); 1090 InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName), 1091 AsmPrinterVariant, *AsmInfo, 1092 *InstrInfo, *RegisterInfo)); 1093 if (!InstPrinter) 1094 reportError(Obj.getFileName(), 1095 "no instruction printer for target " + TripleName); 1096 InstPrinter->setPrintImmHex(PrintImmHex); 1097 InstPrinter->setPrintBranchImmAsAddress(true); 1098 InstPrinter->setSymbolizeOperands(SymbolizeOperands); 1099 InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); 1100 1101 switch (DisassemblyColor) { 1102 case ColorOutput::Enable: 1103 InstPrinter->setUseColor(true); 1104 break; 1105 case ColorOutput::Auto: 1106 InstPrinter->setUseColor(outs().has_colors()); 1107 break; 1108 case ColorOutput::Disable: 1109 case ColorOutput::Invalid: 1110 InstPrinter->setUseColor(false); 1111 break; 1112 }; 1113 } 1114 1115 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, 1116 SubtargetFeatures &Features) 1117 : TheTarget(Other.TheTarget), 1118 SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU, 1119 Features.getString())), 1120 Context(Other.Context), 1121 DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)), 1122 InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), 1123 Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), 1124 AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), 1125 ObjectFileInfo(Other.ObjectFileInfo) {} 1126 } // namespace 1127 1128 static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { 1129 assert(Obj.isELF()); 1130 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1131 return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), 1132 Obj.getFileName()) 1133 ->getType(); 1134 if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1135 return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), 1136 Obj.getFileName()) 1137 ->getType(); 1138 if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1139 return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), 1140 Obj.getFileName()) 1141 ->getType(); 1142 if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1143 return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), 1144 Obj.getFileName()) 1145 ->getType(); 1146 llvm_unreachable("Unsupported binary format"); 1147 } 1148 1149 template <class ELFT> 1150 static void 1151 addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, 1152 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1153 for (auto Symbol : Obj.getDynamicSymbolIterators()) { 1154 uint8_t SymbolType = Symbol.getELFType(); 1155 if (SymbolType == ELF::STT_SECTION) 1156 continue; 1157 1158 uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); 1159 // ELFSymbolRef::getAddress() returns size instead of value for common 1160 // symbols which is not desirable for disassembly output. Overriding. 1161 if (SymbolType == ELF::STT_COMMON) 1162 Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), 1163 Obj.getFileName()) 1164 ->st_value; 1165 1166 StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); 1167 if (Name.empty()) 1168 continue; 1169 1170 section_iterator SecI = 1171 unwrapOrError(Symbol.getSection(), Obj.getFileName()); 1172 if (SecI == Obj.section_end()) 1173 continue; 1174 1175 AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); 1176 } 1177 } 1178 1179 static void 1180 addDynamicElfSymbols(const ELFObjectFileBase &Obj, 1181 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1182 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1183 addDynamicElfSymbols(*Elf32LEObj, AllSymbols); 1184 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1185 addDynamicElfSymbols(*Elf64LEObj, AllSymbols); 1186 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1187 addDynamicElfSymbols(*Elf32BEObj, AllSymbols); 1188 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1189 addDynamicElfSymbols(*Elf64BEObj, AllSymbols); 1190 else 1191 llvm_unreachable("Unsupported binary format"); 1192 } 1193 1194 static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { 1195 for (auto SecI : Obj.sections()) { 1196 const WasmSection &Section = Obj.getWasmSection(SecI); 1197 if (Section.Type == wasm::WASM_SEC_CODE) 1198 return SecI; 1199 } 1200 return std::nullopt; 1201 } 1202 1203 static void 1204 addMissingWasmCodeSymbols(const WasmObjectFile &Obj, 1205 std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { 1206 std::optional<SectionRef> Section = getWasmCodeSection(Obj); 1207 if (!Section) 1208 return; 1209 SectionSymbolsTy &Symbols = AllSymbols[*Section]; 1210 1211 std::set<uint64_t> SymbolAddresses; 1212 for (const auto &Sym : Symbols) 1213 SymbolAddresses.insert(Sym.Addr); 1214 1215 for (const wasm::WasmFunction &Function : Obj.functions()) { 1216 // This adjustment mirrors the one in WasmObjectFile::getSymbolAddress. 1217 uint32_t Adjustment = Obj.isRelocatableObject() || Obj.isSharedObject() 1218 ? 0 1219 : Section->getAddress(); 1220 uint64_t Address = Function.CodeSectionOffset + Adjustment; 1221 // Only add fallback symbols for functions not already present in the symbol 1222 // table. 1223 if (SymbolAddresses.count(Address)) 1224 continue; 1225 // This function has no symbol, so it should have no SymbolName. 1226 assert(Function.SymbolName.empty()); 1227 // We use DebugName for the name, though it may be empty if there is no 1228 // "name" custom section, or that section is missing a name for this 1229 // function. 1230 StringRef Name = Function.DebugName; 1231 Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); 1232 } 1233 } 1234 1235 static void addPltEntries(const ObjectFile &Obj, 1236 std::map<SectionRef, SectionSymbolsTy> &AllSymbols, 1237 StringSaver &Saver) { 1238 auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); 1239 if (!ElfObj) 1240 return; 1241 DenseMap<StringRef, SectionRef> Sections; 1242 for (SectionRef Section : Obj.sections()) { 1243 Expected<StringRef> SecNameOrErr = Section.getName(); 1244 if (!SecNameOrErr) { 1245 consumeError(SecNameOrErr.takeError()); 1246 continue; 1247 } 1248 Sections[*SecNameOrErr] = Section; 1249 } 1250 for (auto Plt : ElfObj->getPltEntries()) { 1251 if (Plt.Symbol) { 1252 SymbolRef Symbol(*Plt.Symbol, ElfObj); 1253 uint8_t SymbolType = getElfSymbolType(Obj, Symbol); 1254 if (Expected<StringRef> NameOrErr = Symbol.getName()) { 1255 if (!NameOrErr->empty()) 1256 AllSymbols[Sections[Plt.Section]].emplace_back( 1257 Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); 1258 continue; 1259 } else { 1260 // The warning has been reported in disassembleObject(). 1261 consumeError(NameOrErr.takeError()); 1262 } 1263 } 1264 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + 1265 " references an invalid symbol", 1266 Obj.getFileName()); 1267 } 1268 } 1269 1270 // Normally the disassembly output will skip blocks of zeroes. This function 1271 // returns the number of zero bytes that can be skipped when dumping the 1272 // disassembly of the instructions in Buf. 1273 static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { 1274 // Find the number of leading zeroes. 1275 size_t N = 0; 1276 while (N < Buf.size() && !Buf[N]) 1277 ++N; 1278 1279 // We may want to skip blocks of zero bytes, but unless we see 1280 // at least 8 of them in a row. 1281 if (N < 8) 1282 return 0; 1283 1284 // We skip zeroes in multiples of 4 because do not want to truncate an 1285 // instruction if it starts with a zero byte. 1286 return N & ~0x3; 1287 } 1288 1289 // Returns a map from sections to their relocations. 1290 static std::map<SectionRef, std::vector<RelocationRef>> 1291 getRelocsMap(object::ObjectFile const &Obj) { 1292 std::map<SectionRef, std::vector<RelocationRef>> Ret; 1293 uint64_t I = (uint64_t)-1; 1294 for (SectionRef Sec : Obj.sections()) { 1295 ++I; 1296 Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); 1297 if (!RelocatedOrErr) 1298 reportError(Obj.getFileName(), 1299 "section (" + Twine(I) + 1300 "): failed to get a relocated section: " + 1301 toString(RelocatedOrErr.takeError())); 1302 1303 section_iterator Relocated = *RelocatedOrErr; 1304 if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) 1305 continue; 1306 std::vector<RelocationRef> &V = Ret[*Relocated]; 1307 append_range(V, Sec.relocations()); 1308 // Sort relocations by address. 1309 llvm::stable_sort(V, isRelocAddressLess); 1310 } 1311 return Ret; 1312 } 1313 1314 // Used for --adjust-vma to check if address should be adjusted by the 1315 // specified value for a given section. 1316 // For ELF we do not adjust non-allocatable sections like debug ones, 1317 // because they are not loadable. 1318 // TODO: implement for other file formats. 1319 static bool shouldAdjustVA(const SectionRef &Section) { 1320 const ObjectFile *Obj = Section.getObject(); 1321 if (Obj->isELF()) 1322 return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; 1323 return false; 1324 } 1325 1326 1327 typedef std::pair<uint64_t, char> MappingSymbolPair; 1328 static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, 1329 uint64_t Address) { 1330 auto It = 1331 partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { 1332 return Val.first <= Address; 1333 }); 1334 // Return zero for any address before the first mapping symbol; this means 1335 // we should use the default disassembly mode, depending on the target. 1336 if (It == MappingSymbols.begin()) 1337 return '\x00'; 1338 return (It - 1)->second; 1339 } 1340 1341 static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, 1342 uint64_t End, const ObjectFile &Obj, 1343 ArrayRef<uint8_t> Bytes, 1344 ArrayRef<MappingSymbolPair> MappingSymbols, 1345 const MCSubtargetInfo &STI, raw_ostream &OS) { 1346 llvm::endianness Endian = 1347 Obj.isLittleEndian() ? llvm::endianness::little : llvm::endianness::big; 1348 size_t Start = OS.tell(); 1349 OS << format("%8" PRIx64 ": ", SectionAddr + Index); 1350 if (Index + 4 <= End) { 1351 dumpBytes(Bytes.slice(Index, 4), OS); 1352 AlignToInstStartColumn(Start, STI, OS); 1353 OS << "\t.word\t" 1354 << format_hex(support::endian::read32(Bytes.data() + Index, Endian), 1355 10); 1356 return 4; 1357 } 1358 if (Index + 2 <= End) { 1359 dumpBytes(Bytes.slice(Index, 2), OS); 1360 AlignToInstStartColumn(Start, STI, OS); 1361 OS << "\t.short\t" 1362 << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); 1363 return 2; 1364 } 1365 dumpBytes(Bytes.slice(Index, 1), OS); 1366 AlignToInstStartColumn(Start, STI, OS); 1367 OS << "\t.byte\t" << format_hex(Bytes[Index], 4); 1368 return 1; 1369 } 1370 1371 static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, 1372 ArrayRef<uint8_t> Bytes) { 1373 // print out data up to 8 bytes at a time in hex and ascii 1374 uint8_t AsciiData[9] = {'\0'}; 1375 uint8_t Byte; 1376 int NumBytes = 0; 1377 1378 for (; Index < End; ++Index) { 1379 if (NumBytes == 0) 1380 outs() << format("%8" PRIx64 ":", SectionAddr + Index); 1381 Byte = Bytes.slice(Index)[0]; 1382 outs() << format(" %02x", Byte); 1383 AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; 1384 1385 uint8_t IndentOffset = 0; 1386 NumBytes++; 1387 if (Index == End - 1 || NumBytes > 8) { 1388 // Indent the space for less than 8 bytes data. 1389 // 2 spaces for byte and one for space between bytes 1390 IndentOffset = 3 * (8 - NumBytes); 1391 for (int Excess = NumBytes; Excess < 8; Excess++) 1392 AsciiData[Excess] = '\0'; 1393 NumBytes = 8; 1394 } 1395 if (NumBytes == 8) { 1396 AsciiData[8] = '\0'; 1397 outs() << std::string(IndentOffset, ' ') << " "; 1398 outs() << reinterpret_cast<char *>(AsciiData); 1399 outs() << '\n'; 1400 NumBytes = 0; 1401 } 1402 } 1403 } 1404 1405 SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, 1406 const SymbolRef &Symbol, 1407 bool IsMappingSymbol) { 1408 const StringRef FileName = Obj.getFileName(); 1409 const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); 1410 const StringRef Name = unwrapOrError(Symbol.getName(), FileName); 1411 1412 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { 1413 const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); 1414 DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); 1415 1416 const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); 1417 std::optional<XCOFF::StorageMappingClass> Smc = 1418 getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); 1419 return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, 1420 isLabel(XCOFFObj, Symbol)); 1421 } else if (Obj.isXCOFF()) { 1422 const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); 1423 return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, 1424 /*IsXCOFF=*/true); 1425 } else if (Obj.isWasm()) { 1426 uint8_t SymType = 1427 cast<WasmObjectFile>(&Obj)->getWasmSymbol(Symbol).Info.Kind; 1428 return SymbolInfoTy(Addr, Name, SymType, false); 1429 } else { 1430 uint8_t Type = 1431 Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE; 1432 return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); 1433 } 1434 } 1435 1436 static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, 1437 const uint64_t Addr, StringRef &Name, 1438 uint8_t Type) { 1439 if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) 1440 return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); 1441 if (Obj.isWasm()) 1442 return SymbolInfoTy(Addr, Name, wasm::WASM_SYMBOL_TYPE_SECTION); 1443 return SymbolInfoTy(Addr, Name, Type); 1444 } 1445 1446 static void collectBBAddrMapLabels( 1447 const BBAddrMapInfo &FullAddrMap, uint64_t SectionAddr, uint64_t Start, 1448 uint64_t End, 1449 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> &Labels) { 1450 if (FullAddrMap.empty()) 1451 return; 1452 Labels.clear(); 1453 uint64_t StartAddress = SectionAddr + Start; 1454 uint64_t EndAddress = SectionAddr + End; 1455 const BBAddrMapFunctionEntry *FunctionMap = 1456 FullAddrMap.getEntryForAddress(StartAddress); 1457 if (!FunctionMap) 1458 return; 1459 std::optional<size_t> BBRangeIndex = 1460 FunctionMap->getAddrMap().getBBRangeIndexForBaseAddress(StartAddress); 1461 if (!BBRangeIndex) 1462 return; 1463 size_t NumBBEntriesBeforeRange = 0; 1464 for (size_t I = 0; I < *BBRangeIndex; ++I) 1465 NumBBEntriesBeforeRange += 1466 FunctionMap->getAddrMap().BBRanges[I].BBEntries.size(); 1467 const auto &BBRange = FunctionMap->getAddrMap().BBRanges[*BBRangeIndex]; 1468 for (size_t I = 0; I < BBRange.BBEntries.size(); ++I) { 1469 const BBAddrMap::BBEntry &BBEntry = BBRange.BBEntries[I]; 1470 uint64_t BBAddress = BBEntry.Offset + BBRange.BaseAddress; 1471 if (BBAddress >= EndAddress) 1472 continue; 1473 1474 std::string LabelString = ("BB" + Twine(BBEntry.ID)).str(); 1475 Labels[BBAddress].push_back( 1476 {LabelString, FunctionMap->constructPGOLabelString( 1477 NumBBEntriesBeforeRange + I, PrettyPGOAnalysisMap)}); 1478 } 1479 } 1480 1481 static void 1482 collectLocalBranchTargets(ArrayRef<uint8_t> Bytes, MCInstrAnalysis *MIA, 1483 MCDisassembler *DisAsm, MCInstPrinter *IP, 1484 const MCSubtargetInfo *STI, uint64_t SectionAddr, 1485 uint64_t Start, uint64_t End, 1486 std::unordered_map<uint64_t, std::string> &Labels) { 1487 // So far only supports PowerPC and X86. 1488 const bool isPPC = STI->getTargetTriple().isPPC(); 1489 if (!isPPC && !STI->getTargetTriple().isX86()) 1490 return; 1491 1492 if (MIA) 1493 MIA->resetState(); 1494 1495 Labels.clear(); 1496 unsigned LabelCount = 0; 1497 Start += SectionAddr; 1498 End += SectionAddr; 1499 const bool isXCOFF = STI->getTargetTriple().isOSBinFormatXCOFF(); 1500 for (uint64_t Index = Start; Index < End;) { 1501 // Disassemble a real instruction and record function-local branch labels. 1502 MCInst Inst; 1503 uint64_t Size; 1504 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); 1505 bool Disassembled = 1506 DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); 1507 if (Size == 0) 1508 Size = std::min<uint64_t>(ThisBytes.size(), 1509 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1510 1511 if (MIA) { 1512 if (Disassembled) { 1513 uint64_t Target; 1514 bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); 1515 if (TargetKnown && (Target >= Start && Target < End) && 1516 !Labels.count(Target)) { 1517 // On PowerPC and AIX, a function call is encoded as a branch to 0. 1518 // On other PowerPC platforms (ELF), a function call is encoded as 1519 // a branch to self. Do not add a label for these cases. 1520 if (!(isPPC && 1521 ((Target == 0 && isXCOFF) || (Target == Index && !isXCOFF)))) 1522 Labels[Target] = ("L" + Twine(LabelCount++)).str(); 1523 } 1524 MIA->updateState(Inst, Index); 1525 } else 1526 MIA->resetState(); 1527 } 1528 Index += Size; 1529 } 1530 } 1531 1532 // Create an MCSymbolizer for the target and add it to the MCDisassembler. 1533 // This is currently only used on AMDGPU, and assumes the format of the 1534 // void * argument passed to AMDGPU's createMCSymbolizer. 1535 static void addSymbolizer( 1536 MCContext &Ctx, const Target *Target, StringRef TripleName, 1537 MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, 1538 SectionSymbolsTy &Symbols, 1539 std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { 1540 1541 std::unique_ptr<MCRelocationInfo> RelInfo( 1542 Target->createMCRelocationInfo(TripleName, Ctx)); 1543 if (!RelInfo) 1544 return; 1545 std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( 1546 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1547 MCSymbolizer *SymbolizerPtr = &*Symbolizer; 1548 DisAsm->setSymbolizer(std::move(Symbolizer)); 1549 1550 if (!SymbolizeOperands) 1551 return; 1552 1553 // Synthesize labels referenced by branch instructions by 1554 // disassembling, discarding the output, and collecting the referenced 1555 // addresses from the symbolizer. 1556 for (size_t Index = 0; Index != Bytes.size();) { 1557 MCInst Inst; 1558 uint64_t Size; 1559 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 1560 const uint64_t ThisAddr = SectionAddr + Index; 1561 DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); 1562 if (Size == 0) 1563 Size = std::min<uint64_t>(ThisBytes.size(), 1564 DisAsm->suggestBytesToSkip(ThisBytes, Index)); 1565 Index += Size; 1566 } 1567 ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); 1568 // Copy and sort to remove duplicates. 1569 std::vector<uint64_t> LabelAddrs; 1570 LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), 1571 LabelAddrsRef.end()); 1572 llvm::sort(LabelAddrs); 1573 LabelAddrs.resize(llvm::unique(LabelAddrs) - LabelAddrs.begin()); 1574 // Add the labels. 1575 for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { 1576 auto Name = std::make_unique<std::string>(); 1577 *Name = (Twine("L") + Twine(LabelNum)).str(); 1578 SynthesizedLabelNames.push_back(std::move(Name)); 1579 Symbols.push_back(SymbolInfoTy( 1580 LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); 1581 } 1582 llvm::stable_sort(Symbols); 1583 // Recreate the symbolizer with the new symbols list. 1584 RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); 1585 Symbolizer.reset(Target->createMCSymbolizer( 1586 TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); 1587 DisAsm->setSymbolizer(std::move(Symbolizer)); 1588 } 1589 1590 static StringRef getSegmentName(const MachOObjectFile *MachO, 1591 const SectionRef &Section) { 1592 if (MachO) { 1593 DataRefImpl DR = Section.getRawDataRefImpl(); 1594 StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); 1595 return SegmentName; 1596 } 1597 return ""; 1598 } 1599 1600 static void emitPostInstructionInfo(formatted_raw_ostream &FOS, 1601 const MCAsmInfo &MAI, 1602 const MCSubtargetInfo &STI, 1603 StringRef Comments, 1604 LiveVariablePrinter &LVP) { 1605 do { 1606 if (!Comments.empty()) { 1607 // Emit a line of comments. 1608 StringRef Comment; 1609 std::tie(Comment, Comments) = Comments.split('\n'); 1610 // MAI.getCommentColumn() assumes that instructions are printed at the 1611 // position of 8, while getInstStartColumn() returns the actual position. 1612 unsigned CommentColumn = 1613 MAI.getCommentColumn() - 8 + getInstStartColumn(STI); 1614 FOS.PadToColumn(CommentColumn); 1615 FOS << MAI.getCommentString() << ' ' << Comment; 1616 } 1617 LVP.printAfterInst(FOS); 1618 FOS << '\n'; 1619 } while (!Comments.empty()); 1620 FOS.flush(); 1621 } 1622 1623 static void createFakeELFSections(ObjectFile &Obj) { 1624 assert(Obj.isELF()); 1625 if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) 1626 Elf32LEObj->createFakeSections(); 1627 else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) 1628 Elf64LEObj->createFakeSections(); 1629 else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) 1630 Elf32BEObj->createFakeSections(); 1631 else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) 1632 Elf64BEObj->createFakeSections(); 1633 else 1634 llvm_unreachable("Unsupported binary format"); 1635 } 1636 1637 // Tries to fetch a more complete version of the given object file using its 1638 // Build ID. Returns std::nullopt if nothing was found. 1639 static std::optional<OwningBinary<Binary>> 1640 fetchBinaryByBuildID(const ObjectFile &Obj) { 1641 object::BuildIDRef BuildID = getBuildID(&Obj); 1642 if (BuildID.empty()) 1643 return std::nullopt; 1644 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 1645 if (!Path) 1646 return std::nullopt; 1647 Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); 1648 if (!DebugBinary) { 1649 reportWarning(toString(DebugBinary.takeError()), *Path); 1650 return std::nullopt; 1651 } 1652 return std::move(*DebugBinary); 1653 } 1654 1655 static void 1656 disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, 1657 DisassemblerTarget &PrimaryTarget, 1658 std::optional<DisassemblerTarget> &SecondaryTarget, 1659 SourcePrinter &SP, bool InlineRelocs) { 1660 DisassemblerTarget *DT = &PrimaryTarget; 1661 bool PrimaryIsThumb = false; 1662 SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap; 1663 1664 if (SecondaryTarget) { 1665 if (isArmElf(Obj)) { 1666 PrimaryIsThumb = 1667 PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"); 1668 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1669 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 1670 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 1671 uintptr_t CodeMapInt; 1672 cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt)); 1673 auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt); 1674 1675 for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) { 1676 if (CodeMap[i].getType() == chpe_range_type::Amd64 && 1677 CodeMap[i].Length) { 1678 // Store x86_64 CHPE code ranges. 1679 uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase(); 1680 CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length); 1681 } 1682 } 1683 llvm::sort(CHPECodeMap); 1684 } 1685 } 1686 } 1687 1688 std::map<SectionRef, std::vector<RelocationRef>> RelocMap; 1689 if (InlineRelocs || Obj.isXCOFF()) 1690 RelocMap = getRelocsMap(Obj); 1691 bool Is64Bits = Obj.getBytesInAddress() > 4; 1692 1693 // Create a mapping from virtual address to symbol name. This is used to 1694 // pretty print the symbols while disassembling. 1695 std::map<SectionRef, SectionSymbolsTy> AllSymbols; 1696 std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; 1697 SectionSymbolsTy AbsoluteSymbols; 1698 const StringRef FileName = Obj.getFileName(); 1699 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); 1700 for (const SymbolRef &Symbol : Obj.symbols()) { 1701 Expected<StringRef> NameOrErr = Symbol.getName(); 1702 if (!NameOrErr) { 1703 reportWarning(toString(NameOrErr.takeError()), FileName); 1704 continue; 1705 } 1706 if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) 1707 continue; 1708 1709 if (Obj.isELF() && 1710 (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { 1711 // Symbol is intended not to be displayed by default (STT_FILE, 1712 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will 1713 // synthesize a section symbol if no symbol is defined at offset 0. 1714 // 1715 // For a mapping symbol, store it within both AllSymbols and 1716 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will 1717 // not be printed in disassembly listing. 1718 if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION && 1719 hasMappingSymbols(Obj)) { 1720 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1721 if (SecI != Obj.section_end()) { 1722 uint64_t SectionAddr = SecI->getAddress(); 1723 uint64_t Address = cantFail(Symbol.getAddress()); 1724 StringRef Name = *NameOrErr; 1725 if (Name.consume_front("$") && Name.size() && 1726 strchr("adtx", Name[0])) { 1727 AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr, 1728 Name[0]); 1729 AllSymbols[*SecI].push_back( 1730 createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true)); 1731 } 1732 } 1733 } 1734 continue; 1735 } 1736 1737 if (MachO) { 1738 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special 1739 // symbols that support MachO header introspection. They do not bind to 1740 // code locations and are irrelevant for disassembly. 1741 if (NameOrErr->starts_with("__mh_") && NameOrErr->ends_with("_header")) 1742 continue; 1743 // Don't ask a Mach-O STAB symbol for its section unless you know that 1744 // STAB symbol's section field refers to a valid section index. Otherwise 1745 // the symbol may error trying to load a section that does not exist. 1746 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 1747 uint8_t NType = (MachO->is64Bit() ? 1748 MachO->getSymbol64TableEntry(SymDRI).n_type: 1749 MachO->getSymbolTableEntry(SymDRI).n_type); 1750 if (NType & MachO::N_STAB) 1751 continue; 1752 } 1753 1754 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 1755 if (SecI != Obj.section_end()) 1756 AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); 1757 else 1758 AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); 1759 } 1760 1761 if (AllSymbols.empty() && Obj.isELF()) 1762 addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); 1763 1764 if (Obj.isWasm()) 1765 addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); 1766 1767 if (Obj.isELF() && Obj.sections().empty()) 1768 createFakeELFSections(Obj); 1769 1770 BumpPtrAllocator A; 1771 StringSaver Saver(A); 1772 addPltEntries(Obj, AllSymbols, Saver); 1773 1774 // Create a mapping from virtual address to section. An empty section can 1775 // cause more than one section at the same address. Sort such sections to be 1776 // before same-addressed non-empty sections so that symbol lookups prefer the 1777 // non-empty section. 1778 std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; 1779 for (SectionRef Sec : Obj.sections()) 1780 SectionAddresses.emplace_back(Sec.getAddress(), Sec); 1781 llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { 1782 if (LHS.first != RHS.first) 1783 return LHS.first < RHS.first; 1784 return LHS.second.getSize() < RHS.second.getSize(); 1785 }); 1786 1787 // Linked executables (.exe and .dll files) typically don't include a real 1788 // symbol table but they might contain an export table. 1789 if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { 1790 for (const auto &ExportEntry : COFFObj->export_directories()) { 1791 StringRef Name; 1792 if (Error E = ExportEntry.getSymbolName(Name)) 1793 reportError(std::move(E), Obj.getFileName()); 1794 if (Name.empty()) 1795 continue; 1796 1797 uint32_t RVA; 1798 if (Error E = ExportEntry.getExportRVA(RVA)) 1799 reportError(std::move(E), Obj.getFileName()); 1800 1801 uint64_t VA = COFFObj->getImageBase() + RVA; 1802 auto Sec = partition_point( 1803 SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { 1804 return O.first <= VA; 1805 }); 1806 if (Sec != SectionAddresses.begin()) { 1807 --Sec; 1808 AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); 1809 } else 1810 AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); 1811 } 1812 } 1813 1814 // Sort all the symbols, this allows us to use a simple binary search to find 1815 // Multiple symbols can have the same address. Use a stable sort to stabilize 1816 // the output. 1817 StringSet<> FoundDisasmSymbolSet; 1818 for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) 1819 llvm::stable_sort(SecSyms.second); 1820 llvm::stable_sort(AbsoluteSymbols); 1821 1822 std::unique_ptr<DWARFContext> DICtx; 1823 LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); 1824 1825 if (DbgVariables != DVDisabled) { 1826 DICtx = DWARFContext::create(DbgObj); 1827 for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) 1828 LVP.addCompileUnit(CU->getUnitDIE(false)); 1829 } 1830 1831 LLVM_DEBUG(LVP.dump()); 1832 1833 BBAddrMapInfo FullAddrMap; 1834 auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = 1835 std::nullopt) { 1836 FullAddrMap.clear(); 1837 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { 1838 std::vector<PGOAnalysisMap> PGOAnalyses; 1839 auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex, &PGOAnalyses); 1840 if (!BBAddrMapsOrErr) { 1841 reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); 1842 return; 1843 } 1844 for (auto &&[FunctionBBAddrMap, FunctionPGOAnalysis] : 1845 zip_equal(*std::move(BBAddrMapsOrErr), std::move(PGOAnalyses))) { 1846 FullAddrMap.AddFunctionEntry(std::move(FunctionBBAddrMap), 1847 std::move(FunctionPGOAnalysis)); 1848 } 1849 } 1850 }; 1851 1852 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a 1853 // single mapping, since they don't have any conflicts. 1854 if (SymbolizeOperands && !Obj.isRelocatableObject()) 1855 ReadBBAddrMap(); 1856 1857 std::optional<llvm::BTFParser> BTF; 1858 if (InlineRelocs && BTFParser::hasBTFSections(Obj)) { 1859 BTF.emplace(); 1860 BTFParser::ParseOptions Opts = {}; 1861 Opts.LoadTypes = true; 1862 Opts.LoadRelocs = true; 1863 if (Error E = BTF->parse(Obj, Opts)) 1864 WithColor::defaultErrorHandler(std::move(E)); 1865 } 1866 1867 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 1868 if (FilterSections.empty() && !DisassembleAll && 1869 (!Section.isText() || Section.isVirtual())) 1870 continue; 1871 1872 uint64_t SectionAddr = Section.getAddress(); 1873 uint64_t SectSize = Section.getSize(); 1874 if (!SectSize) 1875 continue; 1876 1877 // For relocatable object files, read the LLVM_BB_ADDR_MAP section 1878 // corresponding to this section, if present. 1879 if (SymbolizeOperands && Obj.isRelocatableObject()) 1880 ReadBBAddrMap(Section.getIndex()); 1881 1882 // Get the list of all the symbols in this section. 1883 SectionSymbolsTy &Symbols = AllSymbols[Section]; 1884 auto &MappingSymbols = AllMappingSymbols[Section]; 1885 llvm::sort(MappingSymbols); 1886 1887 ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( 1888 unwrapOrError(Section.getContents(), Obj.getFileName())); 1889 1890 std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; 1891 if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { 1892 // AMDGPU disassembler uses symbolizer for printing labels 1893 addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(), 1894 SectionAddr, Bytes, Symbols, SynthesizedLabelNames); 1895 } 1896 1897 StringRef SegmentName = getSegmentName(MachO, Section); 1898 StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); 1899 // If the section has no symbol at the start, just insert a dummy one. 1900 // Without --show-all-symbols, also insert one if all symbols at the start 1901 // are mapping symbols. 1902 bool CreateDummy = Symbols.empty(); 1903 if (!CreateDummy) { 1904 CreateDummy = true; 1905 for (auto &Sym : Symbols) { 1906 if (Sym.Addr != SectionAddr) 1907 break; 1908 if (!Sym.IsMappingSymbol || ShowAllSymbols) 1909 CreateDummy = false; 1910 } 1911 } 1912 if (CreateDummy) { 1913 SymbolInfoTy Sym = createDummySymbolInfo( 1914 Obj, SectionAddr, SectionName, 1915 Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); 1916 if (Obj.isXCOFF()) 1917 Symbols.insert(Symbols.begin(), Sym); 1918 else 1919 Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym); 1920 } 1921 1922 SmallString<40> Comments; 1923 raw_svector_ostream CommentStream(Comments); 1924 1925 uint64_t VMAAdjustment = 0; 1926 if (shouldAdjustVA(Section)) 1927 VMAAdjustment = AdjustVMA; 1928 1929 // In executable and shared objects, r_offset holds a virtual address. 1930 // Subtract SectionAddr from the r_offset field of a relocation to get 1931 // the section offset. 1932 uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; 1933 uint64_t Size; 1934 uint64_t Index; 1935 bool PrintedSection = false; 1936 std::vector<RelocationRef> Rels = RelocMap[Section]; 1937 std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); 1938 std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); 1939 1940 // Loop over each chunk of code between two points where at least 1941 // one symbol is defined. 1942 for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { 1943 // Advance SI past all the symbols starting at the same address, 1944 // and make an ArrayRef of them. 1945 unsigned FirstSI = SI; 1946 uint64_t Start = Symbols[SI].Addr; 1947 ArrayRef<SymbolInfoTy> SymbolsHere; 1948 while (SI != SE && Symbols[SI].Addr == Start) 1949 ++SI; 1950 SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); 1951 1952 // Get the demangled names of all those symbols. We end up with a vector 1953 // of StringRef that holds the names we're going to use, and a vector of 1954 // std::string that stores the new strings returned by demangle(), if 1955 // any. If we don't call demangle() then that vector can stay empty. 1956 std::vector<StringRef> SymNamesHere; 1957 std::vector<std::string> DemangledSymNamesHere; 1958 if (Demangle) { 1959 // Fetch the demangled names and store them locally. 1960 for (const SymbolInfoTy &Symbol : SymbolsHere) 1961 DemangledSymNamesHere.push_back(demangle(Symbol.Name)); 1962 // Now we've finished modifying that vector, it's safe to make 1963 // a vector of StringRefs pointing into it. 1964 SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), 1965 DemangledSymNamesHere.end()); 1966 } else { 1967 for (const SymbolInfoTy &Symbol : SymbolsHere) 1968 SymNamesHere.push_back(Symbol.Name); 1969 } 1970 1971 // Distinguish ELF data from code symbols, which will be used later on to 1972 // decide whether to 'disassemble' this chunk as a data declaration via 1973 // dumpELFData(), or whether to treat it as code. 1974 // 1975 // If data _and_ code symbols are defined at the same address, the code 1976 // takes priority, on the grounds that disassembling code is our main 1977 // purpose here, and it would be a worse failure to _not_ interpret 1978 // something that _was_ meaningful as code than vice versa. 1979 // 1980 // Any ELF symbol type that is not clearly data will be regarded as code. 1981 // In particular, one of the uses of STT_NOTYPE is for branch targets 1982 // inside functions, for which STT_FUNC would be inaccurate. 1983 // 1984 // So here, we spot whether there's any non-data symbol present at all, 1985 // and only set the DisassembleAsELFData flag if there isn't. Also, we use 1986 // this distinction to inform the decision of which symbol to print at 1987 // the head of the section, so that if we're printing code, we print a 1988 // code-related symbol name to go with it. 1989 bool DisassembleAsELFData = false; 1990 size_t DisplaySymIndex = SymbolsHere.size() - 1; 1991 if (Obj.isELF() && !DisassembleAll && Section.isText()) { 1992 DisassembleAsELFData = true; // unless we find a code symbol below 1993 1994 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 1995 uint8_t SymTy = SymbolsHere[i].Type; 1996 if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { 1997 DisassembleAsELFData = false; 1998 DisplaySymIndex = i; 1999 } 2000 } 2001 } 2002 2003 // Decide which symbol(s) from this collection we're going to print. 2004 std::vector<bool> SymsToPrint(SymbolsHere.size(), false); 2005 // If the user has given the --disassemble-symbols option, then we must 2006 // display every symbol in that set, and no others. 2007 if (!DisasmSymbolSet.empty()) { 2008 bool FoundAny = false; 2009 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 2010 if (DisasmSymbolSet.count(SymNamesHere[i])) { 2011 SymsToPrint[i] = true; 2012 FoundAny = true; 2013 } 2014 } 2015 2016 // And if none of the symbols here is one that the user asked for, skip 2017 // disassembling this entire chunk of code. 2018 if (!FoundAny) 2019 continue; 2020 } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { 2021 // Otherwise, print whichever symbol at this location is last in the 2022 // Symbols array, because that array is pre-sorted in a way intended to 2023 // correlate with priority of which symbol to display. 2024 SymsToPrint[DisplaySymIndex] = true; 2025 } 2026 2027 // Now that we know we're disassembling this section, override the choice 2028 // of which symbols to display by printing _all_ of them at this address 2029 // if the user asked for all symbols. 2030 // 2031 // That way, '--show-all-symbols --disassemble-symbol=foo' will print 2032 // only the chunk of code headed by 'foo', but also show any other 2033 // symbols defined at that address, such as aliases for 'foo', or the ARM 2034 // mapping symbol preceding its code. 2035 if (ShowAllSymbols) { 2036 for (size_t i = 0; i < SymbolsHere.size(); ++i) 2037 SymsToPrint[i] = true; 2038 } 2039 2040 if (Start < SectionAddr || StopAddress <= Start) 2041 continue; 2042 2043 for (size_t i = 0; i < SymbolsHere.size(); ++i) 2044 FoundDisasmSymbolSet.insert(SymNamesHere[i]); 2045 2046 // The end is the section end, the beginning of the next symbol, or 2047 // --stop-address. 2048 uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); 2049 if (SI < SE) 2050 End = std::min(End, Symbols[SI].Addr); 2051 if (Start >= End || End <= StartAddress) 2052 continue; 2053 Start -= SectionAddr; 2054 End -= SectionAddr; 2055 2056 if (!PrintedSection) { 2057 PrintedSection = true; 2058 outs() << "\nDisassembly of section "; 2059 if (!SegmentName.empty()) 2060 outs() << SegmentName << ","; 2061 outs() << SectionName << ":\n"; 2062 } 2063 2064 bool PrintedLabel = false; 2065 for (size_t i = 0; i < SymbolsHere.size(); ++i) { 2066 if (!SymsToPrint[i]) 2067 continue; 2068 2069 const SymbolInfoTy &Symbol = SymbolsHere[i]; 2070 const StringRef SymbolName = SymNamesHere[i]; 2071 2072 if (!PrintedLabel) { 2073 outs() << '\n'; 2074 PrintedLabel = true; 2075 } 2076 if (LeadingAddr) 2077 outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", 2078 SectionAddr + Start + VMAAdjustment); 2079 if (Obj.isXCOFF() && SymbolDescription) { 2080 outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; 2081 } else 2082 outs() << '<' << SymbolName << ">:\n"; 2083 } 2084 2085 // Don't print raw contents of a virtual section. A virtual section 2086 // doesn't have any contents in the file. 2087 if (Section.isVirtual()) { 2088 outs() << "...\n"; 2089 continue; 2090 } 2091 2092 // See if any of the symbols defined at this location triggers target- 2093 // specific disassembly behavior, e.g. of special descriptors or function 2094 // prelude information. 2095 // 2096 // We stop this loop at the first symbol that triggers some kind of 2097 // interesting behavior (if any), on the assumption that if two symbols 2098 // defined at the same address trigger two conflicting symbol handlers, 2099 // the object file is probably confused anyway, and it would make even 2100 // less sense to present the output of _both_ handlers, because that 2101 // would describe the same data twice. 2102 for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { 2103 SymbolInfoTy Symbol = SymbolsHere[SHI]; 2104 2105 Expected<bool> RespondedOrErr = DT->DisAsm->onSymbolStart( 2106 Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start); 2107 2108 if (RespondedOrErr && !*RespondedOrErr) { 2109 // This symbol didn't trigger any interesting handling. Try the other 2110 // symbols defined at this address. 2111 continue; 2112 } 2113 2114 // If onSymbolStart returned an Error, that means it identified some 2115 // kind of special data at this address, but wasn't able to disassemble 2116 // it meaningfully. So we fall back to printing the error out and 2117 // disassembling the failed region as bytes, assuming that the target 2118 // detected the failure before printing anything. 2119 if (!RespondedOrErr) { 2120 std::string ErrMsgStr = toString(RespondedOrErr.takeError()); 2121 StringRef ErrMsg = ErrMsgStr; 2122 do { 2123 StringRef Line; 2124 std::tie(Line, ErrMsg) = ErrMsg.split('\n'); 2125 outs() << DT->Context->getAsmInfo()->getCommentString() 2126 << " error decoding " << SymNamesHere[SHI] << ": " << Line 2127 << '\n'; 2128 } while (!ErrMsg.empty()); 2129 2130 if (Size) { 2131 outs() << DT->Context->getAsmInfo()->getCommentString() 2132 << " decoding failed region as bytes\n"; 2133 for (uint64_t I = 0; I < Size; ++I) 2134 outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) 2135 << '\n'; 2136 } 2137 } 2138 2139 // Regardless of whether onSymbolStart returned an Error or true, 'Size' 2140 // will have been set to the amount of data covered by whatever prologue 2141 // the target identified. So we advance our own position to beyond that. 2142 // Sometimes that will be the entire distance to the next symbol, and 2143 // sometimes it will be just a prologue and we should start 2144 // disassembling instructions from where it left off. 2145 Start += Size; 2146 break; 2147 } 2148 2149 Index = Start; 2150 if (SectionAddr < StartAddress) 2151 Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); 2152 2153 if (DisassembleAsELFData) { 2154 dumpELFData(SectionAddr, Index, End, Bytes); 2155 Index = End; 2156 continue; 2157 } 2158 2159 // Skip relocations from symbols that are not dumped. 2160 for (; RelCur != RelEnd; ++RelCur) { 2161 uint64_t Offset = RelCur->getOffset() - RelAdjustment; 2162 if (Index <= Offset) 2163 break; 2164 } 2165 2166 bool DumpARMELFData = false; 2167 bool DumpTracebackTableForXCOFFFunction = 2168 Obj.isXCOFF() && Section.isText() && TracebackTable && 2169 Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && 2170 (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); 2171 2172 formatted_raw_ostream FOS(outs()); 2173 2174 std::unordered_map<uint64_t, std::string> AllLabels; 2175 std::unordered_map<uint64_t, std::vector<BBAddrMapLabel>> BBAddrMapLabels; 2176 if (SymbolizeOperands) { 2177 collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(), 2178 DT->DisAsm.get(), DT->InstPrinter.get(), 2179 PrimaryTarget.SubtargetInfo.get(), 2180 SectionAddr, Index, End, AllLabels); 2181 collectBBAddrMapLabels(FullAddrMap, SectionAddr, Index, End, 2182 BBAddrMapLabels); 2183 } 2184 2185 if (DT->InstrAnalysis) 2186 DT->InstrAnalysis->resetState(); 2187 2188 while (Index < End) { 2189 uint64_t RelOffset; 2190 2191 // ARM and AArch64 ELF binaries can interleave data and text in the 2192 // same section. We rely on the markers introduced to understand what 2193 // we need to dump. If the data marker is within a function, it is 2194 // denoted as a word/short etc. 2195 if (!MappingSymbols.empty()) { 2196 char Kind = getMappingSymbolKind(MappingSymbols, Index); 2197 DumpARMELFData = Kind == 'd'; 2198 if (SecondaryTarget) { 2199 if (Kind == 'a') { 2200 DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; 2201 } else if (Kind == 't') { 2202 DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; 2203 } 2204 } 2205 } else if (!CHPECodeMap.empty()) { 2206 uint64_t Address = SectionAddr + Index; 2207 auto It = partition_point( 2208 CHPECodeMap, 2209 [Address](const std::pair<uint64_t, uint64_t> &Entry) { 2210 return Entry.first <= Address; 2211 }); 2212 if (It != CHPECodeMap.begin() && Address < (It - 1)->second) { 2213 DT = &*SecondaryTarget; 2214 } else { 2215 DT = &PrimaryTarget; 2216 // X64 disassembler range may have left Index unaligned, so 2217 // make sure that it's aligned when we switch back to ARM64 2218 // code. 2219 Index = llvm::alignTo(Index, 4); 2220 if (Index >= End) 2221 break; 2222 } 2223 } 2224 2225 auto findRel = [&]() { 2226 while (RelCur != RelEnd) { 2227 RelOffset = RelCur->getOffset() - RelAdjustment; 2228 // If this relocation is hidden, skip it. 2229 if (getHidden(*RelCur) || SectionAddr + RelOffset < StartAddress) { 2230 ++RelCur; 2231 continue; 2232 } 2233 2234 // Stop when RelCur's offset is past the disassembled 2235 // instruction/data. 2236 if (RelOffset >= Index + Size) 2237 return false; 2238 if (RelOffset >= Index) 2239 return true; 2240 ++RelCur; 2241 } 2242 return false; 2243 }; 2244 2245 if (DumpARMELFData) { 2246 Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, 2247 MappingSymbols, *DT->SubtargetInfo, FOS); 2248 } else { 2249 // When -z or --disassemble-zeroes are given we always dissasemble 2250 // them. Otherwise we might want to skip zero bytes we see. 2251 if (!DisassembleZeroes) { 2252 uint64_t MaxOffset = End - Index; 2253 // For --reloc: print zero blocks patched by relocations, so that 2254 // relocations can be shown in the dump. 2255 if (InlineRelocs && RelCur != RelEnd) 2256 MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, 2257 MaxOffset); 2258 2259 if (size_t N = 2260 countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { 2261 FOS << "\t\t..." << '\n'; 2262 Index += N; 2263 continue; 2264 } 2265 } 2266 2267 if (DumpTracebackTableForXCOFFFunction && 2268 doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) { 2269 dumpTracebackTable(Bytes.slice(Index), 2270 SectionAddr + Index + VMAAdjustment, FOS, 2271 SectionAddr + End + VMAAdjustment, 2272 *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj)); 2273 Index = End; 2274 continue; 2275 } 2276 2277 // Print local label if there's any. 2278 auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); 2279 if (Iter1 != BBAddrMapLabels.end()) { 2280 for (const auto &BBLabel : Iter1->second) 2281 FOS << "<" << BBLabel.BlockLabel << ">" << BBLabel.PGOAnalysis 2282 << ":\n"; 2283 } else { 2284 auto Iter2 = AllLabels.find(SectionAddr + Index); 2285 if (Iter2 != AllLabels.end()) 2286 FOS << "<" << Iter2->second << ">:\n"; 2287 } 2288 2289 // Disassemble a real instruction or a data when disassemble all is 2290 // provided 2291 MCInst Inst; 2292 ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); 2293 uint64_t ThisAddr = SectionAddr + Index; 2294 bool Disassembled = DT->DisAsm->getInstruction( 2295 Inst, Size, ThisBytes, ThisAddr, CommentStream); 2296 if (Size == 0) 2297 Size = std::min<uint64_t>( 2298 ThisBytes.size(), 2299 DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); 2300 2301 LVP.update({Index, Section.getIndex()}, 2302 {Index + Size, Section.getIndex()}, Index + Size != End); 2303 2304 DT->InstPrinter->setCommentStream(CommentStream); 2305 2306 DT->Printer->printInst( 2307 *DT->InstPrinter, Disassembled ? &Inst : nullptr, 2308 Bytes.slice(Index, Size), 2309 {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, 2310 "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP); 2311 2312 DT->InstPrinter->setCommentStream(llvm::nulls()); 2313 2314 // If disassembly succeeds, we try to resolve the target address 2315 // (jump target or memory operand address) and print it to the 2316 // right of the instruction. 2317 // 2318 // Otherwise, we don't print anything else so that we avoid 2319 // analyzing invalid or incomplete instruction information. 2320 if (Disassembled && DT->InstrAnalysis) { 2321 llvm::raw_ostream *TargetOS = &FOS; 2322 uint64_t Target; 2323 bool PrintTarget = DT->InstrAnalysis->evaluateBranch( 2324 Inst, SectionAddr + Index, Size, Target); 2325 2326 if (!PrintTarget) { 2327 if (std::optional<uint64_t> MaybeTarget = 2328 DT->InstrAnalysis->evaluateMemoryOperandAddress( 2329 Inst, DT->SubtargetInfo.get(), SectionAddr + Index, 2330 Size)) { 2331 Target = *MaybeTarget; 2332 PrintTarget = true; 2333 // Do not print real address when symbolizing. 2334 if (!SymbolizeOperands) { 2335 // Memory operand addresses are printed as comments. 2336 TargetOS = &CommentStream; 2337 *TargetOS << "0x" << Twine::utohexstr(Target); 2338 } 2339 } 2340 } 2341 2342 if (PrintTarget) { 2343 // In a relocatable object, the target's section must reside in 2344 // the same section as the call instruction or it is accessed 2345 // through a relocation. 2346 // 2347 // In a non-relocatable object, the target may be in any section. 2348 // In that case, locate the section(s) containing the target 2349 // address and find the symbol in one of those, if possible. 2350 // 2351 // N.B. Except for XCOFF, we don't walk the relocations in the 2352 // relocatable case yet. 2353 std::vector<const SectionSymbolsTy *> TargetSectionSymbols; 2354 if (!Obj.isRelocatableObject()) { 2355 auto It = llvm::partition_point( 2356 SectionAddresses, 2357 [=](const std::pair<uint64_t, SectionRef> &O) { 2358 return O.first <= Target; 2359 }); 2360 uint64_t TargetSecAddr = 0; 2361 while (It != SectionAddresses.begin()) { 2362 --It; 2363 if (TargetSecAddr == 0) 2364 TargetSecAddr = It->first; 2365 if (It->first != TargetSecAddr) 2366 break; 2367 TargetSectionSymbols.push_back(&AllSymbols[It->second]); 2368 } 2369 } else { 2370 TargetSectionSymbols.push_back(&Symbols); 2371 } 2372 TargetSectionSymbols.push_back(&AbsoluteSymbols); 2373 2374 // Find the last symbol in the first candidate section whose 2375 // offset is less than or equal to the target. If there are no 2376 // such symbols, try in the next section and so on, before finally 2377 // using the nearest preceding absolute symbol (if any), if there 2378 // are no other valid symbols. 2379 const SymbolInfoTy *TargetSym = nullptr; 2380 for (const SectionSymbolsTy *TargetSymbols : 2381 TargetSectionSymbols) { 2382 auto It = llvm::partition_point( 2383 *TargetSymbols, 2384 [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); 2385 while (It != TargetSymbols->begin()) { 2386 --It; 2387 // Skip mapping symbols to avoid possible ambiguity as they 2388 // do not allow uniquely identifying the target address. 2389 if (!It->IsMappingSymbol) { 2390 TargetSym = &*It; 2391 break; 2392 } 2393 } 2394 if (TargetSym) 2395 break; 2396 } 2397 2398 // Branch targets are printed just after the instructions. 2399 // Print the labels corresponding to the target if there's any. 2400 bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); 2401 bool LabelAvailable = AllLabels.count(Target); 2402 2403 if (TargetSym != nullptr) { 2404 uint64_t TargetAddress = TargetSym->Addr; 2405 uint64_t Disp = Target - TargetAddress; 2406 std::string TargetName = Demangle ? demangle(TargetSym->Name) 2407 : TargetSym->Name.str(); 2408 bool RelFixedUp = false; 2409 SmallString<32> Val; 2410 2411 *TargetOS << " <"; 2412 // On XCOFF, we use relocations, even without -r, so we 2413 // can print the correct name for an extern function call. 2414 if (Obj.isXCOFF() && findRel()) { 2415 // Check for possible branch relocations and 2416 // branches to fixup code. 2417 bool BranchRelocationType = true; 2418 XCOFF::RelocationType RelocType; 2419 if (Obj.is64Bit()) { 2420 const XCOFFRelocation64 *Reloc = 2421 reinterpret_cast<XCOFFRelocation64 *>( 2422 RelCur->getRawDataRefImpl().p); 2423 RelFixedUp = Reloc->isFixupIndicated(); 2424 RelocType = Reloc->Type; 2425 } else { 2426 const XCOFFRelocation32 *Reloc = 2427 reinterpret_cast<XCOFFRelocation32 *>( 2428 RelCur->getRawDataRefImpl().p); 2429 RelFixedUp = Reloc->isFixupIndicated(); 2430 RelocType = Reloc->Type; 2431 } 2432 BranchRelocationType = 2433 RelocType == XCOFF::R_BA || RelocType == XCOFF::R_BR || 2434 RelocType == XCOFF::R_RBA || RelocType == XCOFF::R_RBR; 2435 2436 // If we have a valid relocation, try to print its 2437 // corresponding symbol name. Multiple relocations on the 2438 // same instruction are not handled. 2439 // Branches to fixup code will have the RelFixedUp flag set in 2440 // the RLD. For these instructions, we print the correct 2441 // branch target, but print the referenced symbol as a 2442 // comment. 2443 if (Error E = getRelocationValueString(*RelCur, false, Val)) { 2444 // If -r was used, this error will be printed later. 2445 // Otherwise, we ignore the error and print what 2446 // would have been printed without using relocations. 2447 consumeError(std::move(E)); 2448 *TargetOS << TargetName; 2449 RelFixedUp = false; // Suppress comment for RLD sym name 2450 } else if (BranchRelocationType && !RelFixedUp) 2451 *TargetOS << Val; 2452 else 2453 *TargetOS << TargetName; 2454 if (Disp) 2455 *TargetOS << "+0x" << Twine::utohexstr(Disp); 2456 } else if (!Disp) { 2457 *TargetOS << TargetName; 2458 } else if (BBAddrMapLabelAvailable) { 2459 *TargetOS << BBAddrMapLabels[Target].front().BlockLabel; 2460 } else if (LabelAvailable) { 2461 *TargetOS << AllLabels[Target]; 2462 } else { 2463 // Always Print the binary symbol plus an offset if there's no 2464 // local label corresponding to the target address. 2465 *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); 2466 } 2467 *TargetOS << ">"; 2468 if (RelFixedUp && !InlineRelocs) { 2469 // We have fixup code for a relocation. We print the 2470 // referenced symbol as a comment. 2471 *TargetOS << "\t# " << Val; 2472 } 2473 2474 } else if (BBAddrMapLabelAvailable) { 2475 *TargetOS << " <" << BBAddrMapLabels[Target].front().BlockLabel 2476 << ">"; 2477 } else if (LabelAvailable) { 2478 *TargetOS << " <" << AllLabels[Target] << ">"; 2479 } 2480 // By convention, each record in the comment stream should be 2481 // terminated. 2482 if (TargetOS == &CommentStream) 2483 *TargetOS << "\n"; 2484 } 2485 2486 DT->InstrAnalysis->updateState(Inst, SectionAddr + Index); 2487 } else if (!Disassembled && DT->InstrAnalysis) { 2488 DT->InstrAnalysis->resetState(); 2489 } 2490 } 2491 2492 assert(DT->Context->getAsmInfo()); 2493 emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(), 2494 *DT->SubtargetInfo, CommentStream.str(), LVP); 2495 Comments.clear(); 2496 2497 if (BTF) 2498 printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP); 2499 2500 // Hexagon handles relocs in pretty printer 2501 if (InlineRelocs && Obj.getArch() != Triple::hexagon) { 2502 while (findRel()) { 2503 // When --adjust-vma is used, update the address printed. 2504 if (RelCur->getSymbol() != Obj.symbol_end()) { 2505 Expected<section_iterator> SymSI = 2506 RelCur->getSymbol()->getSection(); 2507 if (SymSI && *SymSI != Obj.section_end() && 2508 shouldAdjustVA(**SymSI)) 2509 RelOffset += AdjustVMA; 2510 } 2511 2512 printRelocation(FOS, Obj.getFileName(), *RelCur, 2513 SectionAddr + RelOffset, Is64Bits); 2514 LVP.printAfterOtherLine(FOS, true); 2515 ++RelCur; 2516 } 2517 } 2518 2519 Index += Size; 2520 } 2521 } 2522 } 2523 StringSet<> MissingDisasmSymbolSet = 2524 set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); 2525 for (StringRef Sym : MissingDisasmSymbolSet.keys()) 2526 reportWarning("failed to disassemble missing symbol " + Sym, FileName); 2527 } 2528 2529 static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { 2530 // If information useful for showing the disassembly is missing, try to find a 2531 // more complete binary and disassemble that instead. 2532 OwningBinary<Binary> FetchedBinary; 2533 if (Obj->symbols().empty()) { 2534 if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = 2535 fetchBinaryByBuildID(*Obj)) { 2536 if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { 2537 if (!O->symbols().empty() || 2538 (!O->sections().empty() && Obj->sections().empty())) { 2539 FetchedBinary = std::move(*FetchedBinaryOpt); 2540 Obj = O; 2541 } 2542 } 2543 } 2544 } 2545 2546 const Target *TheTarget = getTarget(Obj); 2547 2548 // Package up features to be passed to target/subtarget 2549 Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); 2550 if (!FeaturesValue) 2551 reportError(FeaturesValue.takeError(), Obj->getFileName()); 2552 SubtargetFeatures Features = *FeaturesValue; 2553 if (!MAttrs.empty()) { 2554 for (unsigned I = 0; I != MAttrs.size(); ++I) 2555 Features.AddFeature(MAttrs[I]); 2556 } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { 2557 Features.AddFeature("+all"); 2558 } 2559 2560 if (MCPU.empty()) 2561 MCPU = Obj->tryGetCPUName().value_or("").str(); 2562 2563 if (isArmElf(*Obj)) { 2564 // When disassembling big-endian Arm ELF, the instruction endianness is 2565 // determined in a complex way. In relocatable objects, AAELF32 mandates 2566 // that instruction endianness matches the ELF file endianness; in 2567 // executable images, that's true unless the file header has the EF_ARM_BE8 2568 // flag, in which case instructions are little-endian regardless of data 2569 // endianness. 2570 // 2571 // We must set the big-endian-instructions SubtargetFeature to make the 2572 // disassembler read the instructions the right way round, and also tell 2573 // our own prettyprinter to retrieve the encodings the same way to print in 2574 // hex. 2575 const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); 2576 2577 if (Elf32BE && (Elf32BE->isRelocatableObject() || 2578 !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { 2579 Features.AddFeature("+big-endian-instructions"); 2580 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::big); 2581 } else { 2582 ARMPrettyPrinterInst.setInstructionEndianness(llvm::endianness::little); 2583 } 2584 } 2585 2586 DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); 2587 2588 // If we have an ARM object file, we need a second disassembler, because 2589 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. 2590 // We use mapping symbols to switch between the two assemblers, where 2591 // appropriate. 2592 std::optional<DisassemblerTarget> SecondaryTarget; 2593 2594 if (isArmElf(*Obj)) { 2595 if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) { 2596 if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode")) 2597 Features.AddFeature("-thumb-mode"); 2598 else 2599 Features.AddFeature("+thumb-mode"); 2600 SecondaryTarget.emplace(PrimaryTarget, Features); 2601 } 2602 } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { 2603 const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); 2604 if (CHPEMetadata && CHPEMetadata->CodeMapCount) { 2605 // Set up x86_64 disassembler for ARM64EC binaries. 2606 Triple X64Triple(TripleName); 2607 X64Triple.setArch(Triple::ArchType::x86_64); 2608 2609 std::string Error; 2610 const Target *X64Target = 2611 TargetRegistry::lookupTarget("", X64Triple, Error); 2612 if (X64Target) { 2613 SubtargetFeatures X64Features; 2614 SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "", 2615 X64Features); 2616 } else { 2617 reportWarning(Error, Obj->getFileName()); 2618 } 2619 } 2620 } 2621 2622 const ObjectFile *DbgObj = Obj; 2623 if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { 2624 if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = 2625 fetchBinaryByBuildID(*Obj)) { 2626 if (auto *FetchedObj = 2627 dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { 2628 if (FetchedObj->hasDebugInfo()) { 2629 FetchedBinary = std::move(*DebugBinaryOpt); 2630 DbgObj = FetchedObj; 2631 } 2632 } 2633 } 2634 } 2635 2636 std::unique_ptr<object::Binary> DSYMBinary; 2637 std::unique_ptr<MemoryBuffer> DSYMBuf; 2638 if (!DbgObj->hasDebugInfo()) { 2639 if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { 2640 DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), 2641 DSYMBinary, DSYMBuf); 2642 if (!DbgObj) 2643 return; 2644 } 2645 } 2646 2647 SourcePrinter SP(DbgObj, TheTarget->getName()); 2648 2649 for (StringRef Opt : DisassemblerOptions) 2650 if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) 2651 reportError(Obj->getFileName(), 2652 "Unrecognized disassembler option: " + Opt); 2653 2654 disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP, 2655 InlineRelocs); 2656 } 2657 2658 void Dumper::printRelocations() { 2659 StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2660 2661 // Build a mapping from relocation target to a vector of relocation 2662 // sections. Usually, there is an only one relocation section for 2663 // each relocated section. 2664 MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; 2665 uint64_t Ndx; 2666 for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) { 2667 if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) 2668 continue; 2669 if (Section.relocation_begin() == Section.relocation_end()) 2670 continue; 2671 Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); 2672 if (!SecOrErr) 2673 reportError(O.getFileName(), 2674 "section (" + Twine(Ndx) + 2675 "): unable to get a relocation target: " + 2676 toString(SecOrErr.takeError())); 2677 SecToRelSec[**SecOrErr].push_back(Section); 2678 } 2679 2680 for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { 2681 StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName()); 2682 outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; 2683 uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); 2684 uint32_t TypePadding = 24; 2685 outs() << left_justify("OFFSET", OffsetPadding) << " " 2686 << left_justify("TYPE", TypePadding) << " " 2687 << "VALUE\n"; 2688 2689 for (SectionRef Section : P.second) { 2690 // CREL sections require decoding, each section may have its own specific 2691 // decode problems. 2692 if (O.isELF() && ELFSectionRef(Section).getType() == ELF::SHT_CREL) { 2693 StringRef Err = 2694 cast<const ELFObjectFileBase>(O).getCrelDecodeProblem(Section); 2695 if (!Err.empty()) { 2696 reportUniqueWarning(Err); 2697 continue; 2698 } 2699 } 2700 for (const RelocationRef &Reloc : Section.relocations()) { 2701 uint64_t Address = Reloc.getOffset(); 2702 SmallString<32> RelocName; 2703 SmallString<32> ValueStr; 2704 if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) 2705 continue; 2706 Reloc.getTypeName(RelocName); 2707 if (Error E = 2708 getRelocationValueString(Reloc, SymbolDescription, ValueStr)) 2709 reportUniqueWarning(std::move(E)); 2710 2711 outs() << format(Fmt.data(), Address) << " " 2712 << left_justify(RelocName, TypePadding) << " " << ValueStr 2713 << "\n"; 2714 } 2715 } 2716 } 2717 } 2718 2719 // Returns true if we need to show LMA column when dumping section headers. We 2720 // show it only when the platform is ELF and either we have at least one section 2721 // whose VMA and LMA are different and/or when --show-lma flag is used. 2722 static bool shouldDisplayLMA(const ObjectFile &Obj) { 2723 if (!Obj.isELF()) 2724 return false; 2725 for (const SectionRef &S : ToolSectionFilter(Obj)) 2726 if (S.getAddress() != getELFSectionLMA(S)) 2727 return true; 2728 return ShowLMA; 2729 } 2730 2731 static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { 2732 // Default column width for names is 13 even if no names are that long. 2733 size_t MaxWidth = 13; 2734 for (const SectionRef &Section : ToolSectionFilter(Obj)) { 2735 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2736 MaxWidth = std::max(MaxWidth, Name.size()); 2737 } 2738 return MaxWidth; 2739 } 2740 2741 void objdump::printSectionHeaders(ObjectFile &Obj) { 2742 if (Obj.isELF() && Obj.sections().empty()) 2743 createFakeELFSections(Obj); 2744 2745 size_t NameWidth = getMaxSectionNameWidth(Obj); 2746 size_t AddressWidth = 2 * Obj.getBytesInAddress(); 2747 bool HasLMAColumn = shouldDisplayLMA(Obj); 2748 outs() << "\nSections:\n"; 2749 if (HasLMAColumn) 2750 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2751 << left_justify("VMA", AddressWidth) << " " 2752 << left_justify("LMA", AddressWidth) << " Type\n"; 2753 else 2754 outs() << "Idx " << left_justify("Name", NameWidth) << " Size " 2755 << left_justify("VMA", AddressWidth) << " Type\n"; 2756 2757 uint64_t Idx; 2758 for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { 2759 StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); 2760 uint64_t VMA = Section.getAddress(); 2761 if (shouldAdjustVA(Section)) 2762 VMA += AdjustVMA; 2763 2764 uint64_t Size = Section.getSize(); 2765 2766 std::string Type = Section.isText() ? "TEXT" : ""; 2767 if (Section.isData()) 2768 Type += Type.empty() ? "DATA" : ", DATA"; 2769 if (Section.isBSS()) 2770 Type += Type.empty() ? "BSS" : ", BSS"; 2771 if (Section.isDebugSection()) 2772 Type += Type.empty() ? "DEBUG" : ", DEBUG"; 2773 2774 if (HasLMAColumn) 2775 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2776 Name.str().c_str(), Size) 2777 << format_hex_no_prefix(VMA, AddressWidth) << " " 2778 << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) 2779 << " " << Type << "\n"; 2780 else 2781 outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, 2782 Name.str().c_str(), Size) 2783 << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; 2784 } 2785 } 2786 2787 void objdump::printSectionContents(const ObjectFile *Obj) { 2788 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); 2789 2790 for (const SectionRef &Section : ToolSectionFilter(*Obj)) { 2791 StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); 2792 uint64_t BaseAddr = Section.getAddress(); 2793 uint64_t Size = Section.getSize(); 2794 if (!Size) 2795 continue; 2796 2797 outs() << "Contents of section "; 2798 StringRef SegmentName = getSegmentName(MachO, Section); 2799 if (!SegmentName.empty()) 2800 outs() << SegmentName << ","; 2801 outs() << Name << ":\n"; 2802 if (Section.isBSS()) { 2803 outs() << format("<skipping contents of bss section at [%04" PRIx64 2804 ", %04" PRIx64 ")>\n", 2805 BaseAddr, BaseAddr + Size); 2806 continue; 2807 } 2808 2809 StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); 2810 2811 // Dump out the content as hex and printable ascii characters. 2812 for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { 2813 outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); 2814 // Dump line of hex. 2815 for (std::size_t I = 0; I < 16; ++I) { 2816 if (I != 0 && I % 4 == 0) 2817 outs() << ' '; 2818 if (Addr + I < End) 2819 outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) 2820 << hexdigit(Contents[Addr + I] & 0xF, true); 2821 else 2822 outs() << " "; 2823 } 2824 // Print ascii. 2825 outs() << " "; 2826 for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { 2827 if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) 2828 outs() << Contents[Addr + I]; 2829 else 2830 outs() << "."; 2831 } 2832 outs() << "\n"; 2833 } 2834 } 2835 } 2836 2837 void Dumper::printSymbolTable(StringRef ArchiveName, StringRef ArchitectureName, 2838 bool DumpDynamic) { 2839 if (O.isCOFF() && !DumpDynamic) { 2840 outs() << "\nSYMBOL TABLE:\n"; 2841 printCOFFSymbolTable(cast<const COFFObjectFile>(O)); 2842 return; 2843 } 2844 2845 const StringRef FileName = O.getFileName(); 2846 2847 if (!DumpDynamic) { 2848 outs() << "\nSYMBOL TABLE:\n"; 2849 for (auto I = O.symbol_begin(); I != O.symbol_end(); ++I) 2850 printSymbol(*I, {}, FileName, ArchiveName, ArchitectureName, DumpDynamic); 2851 return; 2852 } 2853 2854 outs() << "\nDYNAMIC SYMBOL TABLE:\n"; 2855 if (!O.isELF()) { 2856 reportWarning( 2857 "this operation is not currently supported for this file format", 2858 FileName); 2859 return; 2860 } 2861 2862 const ELFObjectFileBase *ELF = cast<const ELFObjectFileBase>(&O); 2863 auto Symbols = ELF->getDynamicSymbolIterators(); 2864 Expected<std::vector<VersionEntry>> SymbolVersionsOrErr = 2865 ELF->readDynsymVersions(); 2866 if (!SymbolVersionsOrErr) { 2867 reportWarning(toString(SymbolVersionsOrErr.takeError()), FileName); 2868 SymbolVersionsOrErr = std::vector<VersionEntry>(); 2869 (void)!SymbolVersionsOrErr; 2870 } 2871 for (auto &Sym : Symbols) 2872 printSymbol(Sym, *SymbolVersionsOrErr, FileName, ArchiveName, 2873 ArchitectureName, DumpDynamic); 2874 } 2875 2876 void Dumper::printSymbol(const SymbolRef &Symbol, 2877 ArrayRef<VersionEntry> SymbolVersions, 2878 StringRef FileName, StringRef ArchiveName, 2879 StringRef ArchitectureName, bool DumpDynamic) { 2880 const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&O); 2881 Expected<uint64_t> AddrOrErr = Symbol.getAddress(); 2882 if (!AddrOrErr) { 2883 reportUniqueWarning(AddrOrErr.takeError()); 2884 return; 2885 } 2886 uint64_t Address = *AddrOrErr; 2887 section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); 2888 if (SecI != O.section_end() && shouldAdjustVA(*SecI)) 2889 Address += AdjustVMA; 2890 if ((Address < StartAddress) || (Address > StopAddress)) 2891 return; 2892 SymbolRef::Type Type = 2893 unwrapOrError(Symbol.getType(), FileName, ArchiveName, ArchitectureName); 2894 uint32_t Flags = 2895 unwrapOrError(Symbol.getFlags(), FileName, ArchiveName, ArchitectureName); 2896 2897 // Don't ask a Mach-O STAB symbol for its section unless you know that 2898 // STAB symbol's section field refers to a valid section index. Otherwise 2899 // the symbol may error trying to load a section that does not exist. 2900 bool IsSTAB = false; 2901 if (MachO) { 2902 DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); 2903 uint8_t NType = 2904 (MachO->is64Bit() ? MachO->getSymbol64TableEntry(SymDRI).n_type 2905 : MachO->getSymbolTableEntry(SymDRI).n_type); 2906 if (NType & MachO::N_STAB) 2907 IsSTAB = true; 2908 } 2909 section_iterator Section = IsSTAB 2910 ? O.section_end() 2911 : unwrapOrError(Symbol.getSection(), FileName, 2912 ArchiveName, ArchitectureName); 2913 2914 StringRef Name; 2915 if (Type == SymbolRef::ST_Debug && Section != O.section_end()) { 2916 if (Expected<StringRef> NameOrErr = Section->getName()) 2917 Name = *NameOrErr; 2918 else 2919 consumeError(NameOrErr.takeError()); 2920 2921 } else { 2922 Name = unwrapOrError(Symbol.getName(), FileName, ArchiveName, 2923 ArchitectureName); 2924 } 2925 2926 bool Global = Flags & SymbolRef::SF_Global; 2927 bool Weak = Flags & SymbolRef::SF_Weak; 2928 bool Absolute = Flags & SymbolRef::SF_Absolute; 2929 bool Common = Flags & SymbolRef::SF_Common; 2930 bool Hidden = Flags & SymbolRef::SF_Hidden; 2931 2932 char GlobLoc = ' '; 2933 if ((Section != O.section_end() || Absolute) && !Weak) 2934 GlobLoc = Global ? 'g' : 'l'; 2935 char IFunc = ' '; 2936 if (O.isELF()) { 2937 if (ELFSymbolRef(Symbol).getELFType() == ELF::STT_GNU_IFUNC) 2938 IFunc = 'i'; 2939 if (ELFSymbolRef(Symbol).getBinding() == ELF::STB_GNU_UNIQUE) 2940 GlobLoc = 'u'; 2941 } 2942 2943 char Debug = ' '; 2944 if (DumpDynamic) 2945 Debug = 'D'; 2946 else if (Type == SymbolRef::ST_Debug || Type == SymbolRef::ST_File) 2947 Debug = 'd'; 2948 2949 char FileFunc = ' '; 2950 if (Type == SymbolRef::ST_File) 2951 FileFunc = 'f'; 2952 else if (Type == SymbolRef::ST_Function) 2953 FileFunc = 'F'; 2954 else if (Type == SymbolRef::ST_Data) 2955 FileFunc = 'O'; 2956 2957 const char *Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 2958 2959 outs() << format(Fmt, Address) << " " 2960 << GlobLoc // Local -> 'l', Global -> 'g', Neither -> ' ' 2961 << (Weak ? 'w' : ' ') // Weak? 2962 << ' ' // Constructor. Not supported yet. 2963 << ' ' // Warning. Not supported yet. 2964 << IFunc // Indirect reference to another symbol. 2965 << Debug // Debugging (d) or dynamic (D) symbol. 2966 << FileFunc // Name of function (F), file (f) or object (O). 2967 << ' '; 2968 if (Absolute) { 2969 outs() << "*ABS*"; 2970 } else if (Common) { 2971 outs() << "*COM*"; 2972 } else if (Section == O.section_end()) { 2973 if (O.isXCOFF()) { 2974 XCOFFSymbolRef XCOFFSym = cast<const XCOFFObjectFile>(O).toSymbolRef( 2975 Symbol.getRawDataRefImpl()); 2976 if (XCOFF::N_DEBUG == XCOFFSym.getSectionNumber()) 2977 outs() << "*DEBUG*"; 2978 else 2979 outs() << "*UND*"; 2980 } else 2981 outs() << "*UND*"; 2982 } else { 2983 StringRef SegmentName = getSegmentName(MachO, *Section); 2984 if (!SegmentName.empty()) 2985 outs() << SegmentName << ","; 2986 StringRef SectionName = unwrapOrError(Section->getName(), FileName); 2987 outs() << SectionName; 2988 if (O.isXCOFF()) { 2989 std::optional<SymbolRef> SymRef = 2990 getXCOFFSymbolContainingSymbolRef(cast<XCOFFObjectFile>(O), Symbol); 2991 if (SymRef) { 2992 2993 Expected<StringRef> NameOrErr = SymRef->getName(); 2994 2995 if (NameOrErr) { 2996 outs() << " (csect:"; 2997 std::string SymName = 2998 Demangle ? demangle(*NameOrErr) : NameOrErr->str(); 2999 3000 if (SymbolDescription) 3001 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, *SymRef), 3002 SymName); 3003 3004 outs() << ' ' << SymName; 3005 outs() << ") "; 3006 } else 3007 reportWarning(toString(NameOrErr.takeError()), FileName); 3008 } 3009 } 3010 } 3011 3012 if (Common) 3013 outs() << '\t' << format(Fmt, static_cast<uint64_t>(Symbol.getAlignment())); 3014 else if (O.isXCOFF()) 3015 outs() << '\t' 3016 << format(Fmt, cast<XCOFFObjectFile>(O).getSymbolSize( 3017 Symbol.getRawDataRefImpl())); 3018 else if (O.isELF()) 3019 outs() << '\t' << format(Fmt, ELFSymbolRef(Symbol).getSize()); 3020 else if (O.isWasm()) 3021 outs() << '\t' 3022 << format(Fmt, static_cast<uint64_t>( 3023 cast<WasmObjectFile>(O).getSymbolSize(Symbol))); 3024 3025 if (O.isELF()) { 3026 if (!SymbolVersions.empty()) { 3027 const VersionEntry &Ver = 3028 SymbolVersions[Symbol.getRawDataRefImpl().d.b - 1]; 3029 std::string Str; 3030 if (!Ver.Name.empty()) 3031 Str = Ver.IsVerDef ? ' ' + Ver.Name : '(' + Ver.Name + ')'; 3032 outs() << ' ' << left_justify(Str, 12); 3033 } 3034 3035 uint8_t Other = ELFSymbolRef(Symbol).getOther(); 3036 switch (Other) { 3037 case ELF::STV_DEFAULT: 3038 break; 3039 case ELF::STV_INTERNAL: 3040 outs() << " .internal"; 3041 break; 3042 case ELF::STV_HIDDEN: 3043 outs() << " .hidden"; 3044 break; 3045 case ELF::STV_PROTECTED: 3046 outs() << " .protected"; 3047 break; 3048 default: 3049 outs() << format(" 0x%02x", Other); 3050 break; 3051 } 3052 } else if (Hidden) { 3053 outs() << " .hidden"; 3054 } 3055 3056 std::string SymName = Demangle ? demangle(Name) : Name.str(); 3057 if (O.isXCOFF() && SymbolDescription) 3058 SymName = getXCOFFSymbolDescription(createSymbolInfo(O, Symbol), SymName); 3059 3060 outs() << ' ' << SymName << '\n'; 3061 } 3062 3063 static void printUnwindInfo(const ObjectFile *O) { 3064 outs() << "Unwind info:\n\n"; 3065 3066 if (const COFFObjectFile *Coff = dyn_cast<COFFObjectFile>(O)) 3067 printCOFFUnwindInfo(Coff); 3068 else if (const MachOObjectFile *MachO = dyn_cast<MachOObjectFile>(O)) 3069 printMachOUnwindInfo(MachO); 3070 else 3071 // TODO: Extract DWARF dump tool to objdump. 3072 WithColor::error(errs(), ToolName) 3073 << "This operation is only currently supported " 3074 "for COFF and MachO object files.\n"; 3075 } 3076 3077 /// Dump the raw contents of the __clangast section so the output can be piped 3078 /// into llvm-bcanalyzer. 3079 static void printRawClangAST(const ObjectFile *Obj) { 3080 if (outs().is_displayed()) { 3081 WithColor::error(errs(), ToolName) 3082 << "The -raw-clang-ast option will dump the raw binary contents of " 3083 "the clang ast section.\n" 3084 "Please redirect the output to a file or another program such as " 3085 "llvm-bcanalyzer.\n"; 3086 return; 3087 } 3088 3089 StringRef ClangASTSectionName("__clangast"); 3090 if (Obj->isCOFF()) { 3091 ClangASTSectionName = "clangast"; 3092 } 3093 3094 std::optional<object::SectionRef> ClangASTSection; 3095 for (auto Sec : ToolSectionFilter(*Obj)) { 3096 StringRef Name; 3097 if (Expected<StringRef> NameOrErr = Sec.getName()) 3098 Name = *NameOrErr; 3099 else 3100 consumeError(NameOrErr.takeError()); 3101 3102 if (Name == ClangASTSectionName) { 3103 ClangASTSection = Sec; 3104 break; 3105 } 3106 } 3107 if (!ClangASTSection) 3108 return; 3109 3110 StringRef ClangASTContents = 3111 unwrapOrError(ClangASTSection->getContents(), Obj->getFileName()); 3112 outs().write(ClangASTContents.data(), ClangASTContents.size()); 3113 } 3114 3115 static void printFaultMaps(const ObjectFile *Obj) { 3116 StringRef FaultMapSectionName; 3117 3118 if (Obj->isELF()) { 3119 FaultMapSectionName = ".llvm_faultmaps"; 3120 } else if (Obj->isMachO()) { 3121 FaultMapSectionName = "__llvm_faultmaps"; 3122 } else { 3123 WithColor::error(errs(), ToolName) 3124 << "This operation is only currently supported " 3125 "for ELF and Mach-O executable files.\n"; 3126 return; 3127 } 3128 3129 std::optional<object::SectionRef> FaultMapSection; 3130 3131 for (auto Sec : ToolSectionFilter(*Obj)) { 3132 StringRef Name; 3133 if (Expected<StringRef> NameOrErr = Sec.getName()) 3134 Name = *NameOrErr; 3135 else 3136 consumeError(NameOrErr.takeError()); 3137 3138 if (Name == FaultMapSectionName) { 3139 FaultMapSection = Sec; 3140 break; 3141 } 3142 } 3143 3144 outs() << "FaultMap table:\n"; 3145 3146 if (!FaultMapSection) { 3147 outs() << "<not found>\n"; 3148 return; 3149 } 3150 3151 StringRef FaultMapContents = 3152 unwrapOrError(FaultMapSection->getContents(), Obj->getFileName()); 3153 FaultMapParser FMP(FaultMapContents.bytes_begin(), 3154 FaultMapContents.bytes_end()); 3155 3156 outs() << FMP; 3157 } 3158 3159 void Dumper::printPrivateHeaders() { 3160 reportError(O.getFileName(), "Invalid/Unsupported object file format"); 3161 } 3162 3163 static void printFileHeaders(const ObjectFile *O) { 3164 if (!O->isELF() && !O->isCOFF() && !O->isXCOFF()) 3165 reportError(O->getFileName(), "Invalid/Unsupported object file format"); 3166 3167 Triple::ArchType AT = O->getArch(); 3168 outs() << "architecture: " << Triple::getArchTypeName(AT) << "\n"; 3169 uint64_t Address = unwrapOrError(O->getStartAddress(), O->getFileName()); 3170 3171 StringRef Fmt = O->getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; 3172 outs() << "start address: " 3173 << "0x" << format(Fmt.data(), Address) << "\n"; 3174 } 3175 3176 static void printArchiveChild(StringRef Filename, const Archive::Child &C) { 3177 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode(); 3178 if (!ModeOrErr) { 3179 WithColor::error(errs(), ToolName) << "ill-formed archive entry.\n"; 3180 consumeError(ModeOrErr.takeError()); 3181 return; 3182 } 3183 sys::fs::perms Mode = ModeOrErr.get(); 3184 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-"); 3185 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-"); 3186 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-"); 3187 outs() << ((Mode & sys::fs::group_read) ? "r" : "-"); 3188 outs() << ((Mode & sys::fs::group_write) ? "w" : "-"); 3189 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-"); 3190 outs() << ((Mode & sys::fs::others_read) ? "r" : "-"); 3191 outs() << ((Mode & sys::fs::others_write) ? "w" : "-"); 3192 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-"); 3193 3194 outs() << " "; 3195 3196 outs() << format("%d/%d %6" PRId64 " ", unwrapOrError(C.getUID(), Filename), 3197 unwrapOrError(C.getGID(), Filename), 3198 unwrapOrError(C.getRawSize(), Filename)); 3199 3200 StringRef RawLastModified = C.getRawLastModified(); 3201 unsigned Seconds; 3202 if (RawLastModified.getAsInteger(10, Seconds)) 3203 outs() << "(date: \"" << RawLastModified 3204 << "\" contains non-decimal chars) "; 3205 else { 3206 // Since ctime(3) returns a 26 character string of the form: 3207 // "Sun Sep 16 01:03:52 1973\n\0" 3208 // just print 24 characters. 3209 time_t t = Seconds; 3210 outs() << format("%.24s ", ctime(&t)); 3211 } 3212 3213 StringRef Name = ""; 3214 Expected<StringRef> NameOrErr = C.getName(); 3215 if (!NameOrErr) { 3216 consumeError(NameOrErr.takeError()); 3217 Name = unwrapOrError(C.getRawName(), Filename); 3218 } else { 3219 Name = NameOrErr.get(); 3220 } 3221 outs() << Name << "\n"; 3222 } 3223 3224 // For ELF only now. 3225 static bool shouldWarnForInvalidStartStopAddress(ObjectFile *Obj) { 3226 if (const auto *Elf = dyn_cast<ELFObjectFileBase>(Obj)) { 3227 if (Elf->getEType() != ELF::ET_REL) 3228 return true; 3229 } 3230 return false; 3231 } 3232 3233 static void checkForInvalidStartStopAddress(ObjectFile *Obj, 3234 uint64_t Start, uint64_t Stop) { 3235 if (!shouldWarnForInvalidStartStopAddress(Obj)) 3236 return; 3237 3238 for (const SectionRef &Section : Obj->sections()) 3239 if (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC) { 3240 uint64_t BaseAddr = Section.getAddress(); 3241 uint64_t Size = Section.getSize(); 3242 if ((Start < BaseAddr + Size) && Stop > BaseAddr) 3243 return; 3244 } 3245 3246 if (!HasStartAddressFlag) 3247 reportWarning("no section has address less than 0x" + 3248 Twine::utohexstr(Stop) + " specified by --stop-address", 3249 Obj->getFileName()); 3250 else if (!HasStopAddressFlag) 3251 reportWarning("no section has address greater than or equal to 0x" + 3252 Twine::utohexstr(Start) + " specified by --start-address", 3253 Obj->getFileName()); 3254 else 3255 reportWarning("no section overlaps the range [0x" + 3256 Twine::utohexstr(Start) + ",0x" + Twine::utohexstr(Stop) + 3257 ") specified by --start-address/--stop-address", 3258 Obj->getFileName()); 3259 } 3260 3261 static void dumpObject(ObjectFile *O, const Archive *A = nullptr, 3262 const Archive::Child *C = nullptr) { 3263 Expected<std::unique_ptr<Dumper>> DumperOrErr = createDumper(*O); 3264 if (!DumperOrErr) { 3265 reportError(DumperOrErr.takeError(), O->getFileName(), 3266 A ? A->getFileName() : ""); 3267 return; 3268 } 3269 Dumper &D = **DumperOrErr; 3270 3271 // Avoid other output when using a raw option. 3272 if (!RawClangAST) { 3273 outs() << '\n'; 3274 if (A) 3275 outs() << A->getFileName() << "(" << O->getFileName() << ")"; 3276 else 3277 outs() << O->getFileName(); 3278 outs() << ":\tfile format " << O->getFileFormatName().lower() << "\n"; 3279 } 3280 3281 if (HasStartAddressFlag || HasStopAddressFlag) 3282 checkForInvalidStartStopAddress(O, StartAddress, StopAddress); 3283 3284 // TODO: Change print* free functions to Dumper member functions to utilitize 3285 // stateful functions like reportUniqueWarning. 3286 3287 // Note: the order here matches GNU objdump for compatability. 3288 StringRef ArchiveName = A ? A->getFileName() : ""; 3289 if (ArchiveHeaders && !MachOOpt && C) 3290 printArchiveChild(ArchiveName, *C); 3291 if (FileHeaders) 3292 printFileHeaders(O); 3293 if (PrivateHeaders || FirstPrivateHeader) 3294 D.printPrivateHeaders(); 3295 if (SectionHeaders) 3296 printSectionHeaders(*O); 3297 if (SymbolTable) 3298 D.printSymbolTable(ArchiveName); 3299 if (DynamicSymbolTable) 3300 D.printSymbolTable(ArchiveName, /*ArchitectureName=*/"", 3301 /*DumpDynamic=*/true); 3302 if (DwarfDumpType != DIDT_Null) { 3303 std::unique_ptr<DIContext> DICtx = DWARFContext::create(*O); 3304 // Dump the complete DWARF structure. 3305 DIDumpOptions DumpOpts; 3306 DumpOpts.DumpType = DwarfDumpType; 3307 DICtx->dump(outs(), DumpOpts); 3308 } 3309 if (Relocations && !Disassemble) 3310 D.printRelocations(); 3311 if (DynamicRelocations) 3312 D.printDynamicRelocations(); 3313 if (SectionContents) 3314 printSectionContents(O); 3315 if (Disassemble) 3316 disassembleObject(O, Relocations); 3317 if (UnwindInfo) 3318 printUnwindInfo(O); 3319 3320 // Mach-O specific options: 3321 if (ExportsTrie) 3322 printExportsTrie(O); 3323 if (Rebase) 3324 printRebaseTable(O); 3325 if (Bind) 3326 printBindTable(O); 3327 if (LazyBind) 3328 printLazyBindTable(O); 3329 if (WeakBind) 3330 printWeakBindTable(O); 3331 3332 // Other special sections: 3333 if (RawClangAST) 3334 printRawClangAST(O); 3335 if (FaultMapSection) 3336 printFaultMaps(O); 3337 if (Offloading) 3338 dumpOffloadBinary(*O); 3339 } 3340 3341 static void dumpObject(const COFFImportFile *I, const Archive *A, 3342 const Archive::Child *C = nullptr) { 3343 StringRef ArchiveName = A ? A->getFileName() : ""; 3344 3345 // Avoid other output when using a raw option. 3346 if (!RawClangAST) 3347 outs() << '\n' 3348 << ArchiveName << "(" << I->getFileName() << ")" 3349 << ":\tfile format COFF-import-file" 3350 << "\n\n"; 3351 3352 if (ArchiveHeaders && !MachOOpt && C) 3353 printArchiveChild(ArchiveName, *C); 3354 if (SymbolTable) 3355 printCOFFSymbolTable(*I); 3356 } 3357 3358 /// Dump each object file in \a a; 3359 static void dumpArchive(const Archive *A) { 3360 Error Err = Error::success(); 3361 unsigned I = -1; 3362 for (auto &C : A->children(Err)) { 3363 ++I; 3364 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary(); 3365 if (!ChildOrErr) { 3366 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError())) 3367 reportError(std::move(E), getFileNameForError(C, I), A->getFileName()); 3368 continue; 3369 } 3370 if (ObjectFile *O = dyn_cast<ObjectFile>(&*ChildOrErr.get())) 3371 dumpObject(O, A, &C); 3372 else if (COFFImportFile *I = dyn_cast<COFFImportFile>(&*ChildOrErr.get())) 3373 dumpObject(I, A, &C); 3374 else 3375 reportError(errorCodeToError(object_error::invalid_file_type), 3376 A->getFileName()); 3377 } 3378 if (Err) 3379 reportError(std::move(Err), A->getFileName()); 3380 } 3381 3382 /// Open file and figure out how to dump it. 3383 static void dumpInput(StringRef file) { 3384 // If we are using the Mach-O specific object file parser, then let it parse 3385 // the file and process the command line options. So the -arch flags can 3386 // be used to select specific slices, etc. 3387 if (MachOOpt) { 3388 parseInputMachO(file); 3389 return; 3390 } 3391 3392 // Attempt to open the binary. 3393 OwningBinary<Binary> OBinary = unwrapOrError(createBinary(file), file); 3394 Binary &Binary = *OBinary.getBinary(); 3395 3396 if (Archive *A = dyn_cast<Archive>(&Binary)) 3397 dumpArchive(A); 3398 else if (ObjectFile *O = dyn_cast<ObjectFile>(&Binary)) 3399 dumpObject(O); 3400 else if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Binary)) 3401 parseInputMachO(UB); 3402 else if (OffloadBinary *OB = dyn_cast<OffloadBinary>(&Binary)) 3403 dumpOffloadSections(*OB); 3404 else 3405 reportError(errorCodeToError(object_error::invalid_file_type), file); 3406 } 3407 3408 template <typename T> 3409 static void parseIntArg(const llvm::opt::InputArgList &InputArgs, int ID, 3410 T &Value) { 3411 if (const opt::Arg *A = InputArgs.getLastArg(ID)) { 3412 StringRef V(A->getValue()); 3413 if (!llvm::to_integer(V, Value, 0)) { 3414 reportCmdLineError(A->getSpelling() + 3415 ": expected a non-negative integer, but got '" + V + 3416 "'"); 3417 } 3418 } 3419 } 3420 3421 static object::BuildID parseBuildIDArg(const opt::Arg *A) { 3422 StringRef V(A->getValue()); 3423 object::BuildID BID = parseBuildID(V); 3424 if (BID.empty()) 3425 reportCmdLineError(A->getSpelling() + ": expected a build ID, but got '" + 3426 V + "'"); 3427 return BID; 3428 } 3429 3430 void objdump::invalidArgValue(const opt::Arg *A) { 3431 reportCmdLineError("'" + StringRef(A->getValue()) + 3432 "' is not a valid value for '" + A->getSpelling() + "'"); 3433 } 3434 3435 static std::vector<std::string> 3436 commaSeparatedValues(const llvm::opt::InputArgList &InputArgs, int ID) { 3437 std::vector<std::string> Values; 3438 for (StringRef Value : InputArgs.getAllArgValues(ID)) { 3439 llvm::SmallVector<StringRef, 2> SplitValues; 3440 llvm::SplitString(Value, SplitValues, ","); 3441 for (StringRef SplitValue : SplitValues) 3442 Values.push_back(SplitValue.str()); 3443 } 3444 return Values; 3445 } 3446 3447 static void parseOtoolOptions(const llvm::opt::InputArgList &InputArgs) { 3448 MachOOpt = true; 3449 FullLeadingAddr = true; 3450 PrintImmHex = true; 3451 3452 ArchName = InputArgs.getLastArgValue(OTOOL_arch).str(); 3453 LinkOptHints = InputArgs.hasArg(OTOOL_C); 3454 if (InputArgs.hasArg(OTOOL_d)) 3455 FilterSections.push_back("__DATA,__data"); 3456 DylibId = InputArgs.hasArg(OTOOL_D); 3457 UniversalHeaders = InputArgs.hasArg(OTOOL_f); 3458 DataInCode = InputArgs.hasArg(OTOOL_G); 3459 FirstPrivateHeader = InputArgs.hasArg(OTOOL_h); 3460 IndirectSymbols = InputArgs.hasArg(OTOOL_I); 3461 ShowRawInsn = InputArgs.hasArg(OTOOL_j); 3462 PrivateHeaders = InputArgs.hasArg(OTOOL_l); 3463 DylibsUsed = InputArgs.hasArg(OTOOL_L); 3464 MCPU = InputArgs.getLastArgValue(OTOOL_mcpu_EQ).str(); 3465 ObjcMetaData = InputArgs.hasArg(OTOOL_o); 3466 DisSymName = InputArgs.getLastArgValue(OTOOL_p).str(); 3467 InfoPlist = InputArgs.hasArg(OTOOL_P); 3468 Relocations = InputArgs.hasArg(OTOOL_r); 3469 if (const Arg *A = InputArgs.getLastArg(OTOOL_s)) { 3470 auto Filter = (A->getValue(0) + StringRef(",") + A->getValue(1)).str(); 3471 FilterSections.push_back(Filter); 3472 } 3473 if (InputArgs.hasArg(OTOOL_t)) 3474 FilterSections.push_back("__TEXT,__text"); 3475 Verbose = InputArgs.hasArg(OTOOL_v) || InputArgs.hasArg(OTOOL_V) || 3476 InputArgs.hasArg(OTOOL_o); 3477 SymbolicOperands = InputArgs.hasArg(OTOOL_V); 3478 if (InputArgs.hasArg(OTOOL_x)) 3479 FilterSections.push_back(",__text"); 3480 LeadingAddr = LeadingHeaders = !InputArgs.hasArg(OTOOL_X); 3481 3482 ChainedFixups = InputArgs.hasArg(OTOOL_chained_fixups); 3483 DyldInfo = InputArgs.hasArg(OTOOL_dyld_info); 3484 3485 InputFilenames = InputArgs.getAllArgValues(OTOOL_INPUT); 3486 if (InputFilenames.empty()) 3487 reportCmdLineError("no input file"); 3488 3489 for (const Arg *A : InputArgs) { 3490 const Option &O = A->getOption(); 3491 if (O.getGroup().isValid() && O.getGroup().getID() == OTOOL_grp_obsolete) { 3492 reportCmdLineWarning(O.getPrefixedName() + 3493 " is obsolete and not implemented"); 3494 } 3495 } 3496 } 3497 3498 static void parseObjdumpOptions(const llvm::opt::InputArgList &InputArgs) { 3499 parseIntArg(InputArgs, OBJDUMP_adjust_vma_EQ, AdjustVMA); 3500 AllHeaders = InputArgs.hasArg(OBJDUMP_all_headers); 3501 ArchName = InputArgs.getLastArgValue(OBJDUMP_arch_name_EQ).str(); 3502 ArchiveHeaders = InputArgs.hasArg(OBJDUMP_archive_headers); 3503 Demangle = InputArgs.hasArg(OBJDUMP_demangle); 3504 Disassemble = InputArgs.hasArg(OBJDUMP_disassemble); 3505 DisassembleAll = InputArgs.hasArg(OBJDUMP_disassemble_all); 3506 SymbolDescription = InputArgs.hasArg(OBJDUMP_symbol_description); 3507 TracebackTable = InputArgs.hasArg(OBJDUMP_traceback_table); 3508 DisassembleSymbols = 3509 commaSeparatedValues(InputArgs, OBJDUMP_disassemble_symbols_EQ); 3510 DisassembleZeroes = InputArgs.hasArg(OBJDUMP_disassemble_zeroes); 3511 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_dwarf_EQ)) { 3512 DwarfDumpType = StringSwitch<DIDumpType>(A->getValue()) 3513 .Case("frames", DIDT_DebugFrame) 3514 .Default(DIDT_Null); 3515 if (DwarfDumpType == DIDT_Null) 3516 invalidArgValue(A); 3517 } 3518 DynamicRelocations = InputArgs.hasArg(OBJDUMP_dynamic_reloc); 3519 FaultMapSection = InputArgs.hasArg(OBJDUMP_fault_map_section); 3520 Offloading = InputArgs.hasArg(OBJDUMP_offloading); 3521 FileHeaders = InputArgs.hasArg(OBJDUMP_file_headers); 3522 SectionContents = InputArgs.hasArg(OBJDUMP_full_contents); 3523 PrintLines = InputArgs.hasArg(OBJDUMP_line_numbers); 3524 InputFilenames = InputArgs.getAllArgValues(OBJDUMP_INPUT); 3525 MachOOpt = InputArgs.hasArg(OBJDUMP_macho); 3526 MCPU = InputArgs.getLastArgValue(OBJDUMP_mcpu_EQ).str(); 3527 MAttrs = commaSeparatedValues(InputArgs, OBJDUMP_mattr_EQ); 3528 ShowRawInsn = !InputArgs.hasArg(OBJDUMP_no_show_raw_insn); 3529 LeadingAddr = !InputArgs.hasArg(OBJDUMP_no_leading_addr); 3530 RawClangAST = InputArgs.hasArg(OBJDUMP_raw_clang_ast); 3531 Relocations = InputArgs.hasArg(OBJDUMP_reloc); 3532 PrintImmHex = 3533 InputArgs.hasFlag(OBJDUMP_print_imm_hex, OBJDUMP_no_print_imm_hex, true); 3534 PrivateHeaders = InputArgs.hasArg(OBJDUMP_private_headers); 3535 FilterSections = InputArgs.getAllArgValues(OBJDUMP_section_EQ); 3536 SectionHeaders = InputArgs.hasArg(OBJDUMP_section_headers); 3537 ShowAllSymbols = InputArgs.hasArg(OBJDUMP_show_all_symbols); 3538 ShowLMA = InputArgs.hasArg(OBJDUMP_show_lma); 3539 PrintSource = InputArgs.hasArg(OBJDUMP_source); 3540 parseIntArg(InputArgs, OBJDUMP_start_address_EQ, StartAddress); 3541 HasStartAddressFlag = InputArgs.hasArg(OBJDUMP_start_address_EQ); 3542 parseIntArg(InputArgs, OBJDUMP_stop_address_EQ, StopAddress); 3543 HasStopAddressFlag = InputArgs.hasArg(OBJDUMP_stop_address_EQ); 3544 SymbolTable = InputArgs.hasArg(OBJDUMP_syms); 3545 SymbolizeOperands = InputArgs.hasArg(OBJDUMP_symbolize_operands); 3546 PrettyPGOAnalysisMap = InputArgs.hasArg(OBJDUMP_pretty_pgo_analysis_map); 3547 if (PrettyPGOAnalysisMap && !SymbolizeOperands) 3548 reportCmdLineWarning("--symbolize-operands must be enabled for " 3549 "--pretty-pgo-analysis-map to have an effect"); 3550 DynamicSymbolTable = InputArgs.hasArg(OBJDUMP_dynamic_syms); 3551 TripleName = InputArgs.getLastArgValue(OBJDUMP_triple_EQ).str(); 3552 UnwindInfo = InputArgs.hasArg(OBJDUMP_unwind_info); 3553 Wide = InputArgs.hasArg(OBJDUMP_wide); 3554 Prefix = InputArgs.getLastArgValue(OBJDUMP_prefix).str(); 3555 parseIntArg(InputArgs, OBJDUMP_prefix_strip, PrefixStrip); 3556 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_debug_vars_EQ)) { 3557 DbgVariables = StringSwitch<DebugVarsFormat>(A->getValue()) 3558 .Case("ascii", DVASCII) 3559 .Case("unicode", DVUnicode) 3560 .Default(DVInvalid); 3561 if (DbgVariables == DVInvalid) 3562 invalidArgValue(A); 3563 } 3564 if (const opt::Arg *A = InputArgs.getLastArg(OBJDUMP_disassembler_color_EQ)) { 3565 DisassemblyColor = StringSwitch<ColorOutput>(A->getValue()) 3566 .Case("on", ColorOutput::Enable) 3567 .Case("off", ColorOutput::Disable) 3568 .Case("terminal", ColorOutput::Auto) 3569 .Default(ColorOutput::Invalid); 3570 if (DisassemblyColor == ColorOutput::Invalid) 3571 invalidArgValue(A); 3572 } 3573 3574 parseIntArg(InputArgs, OBJDUMP_debug_vars_indent_EQ, DbgIndent); 3575 3576 parseMachOOptions(InputArgs); 3577 3578 // Parse -M (--disassembler-options) and deprecated 3579 // --x86-asm-syntax={att,intel}. 3580 // 3581 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the 3582 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is 3583 // called too late. For now we have to use the internal cl::opt option. 3584 const char *AsmSyntax = nullptr; 3585 for (const auto *A : InputArgs.filtered(OBJDUMP_disassembler_options_EQ, 3586 OBJDUMP_x86_asm_syntax_att, 3587 OBJDUMP_x86_asm_syntax_intel)) { 3588 switch (A->getOption().getID()) { 3589 case OBJDUMP_x86_asm_syntax_att: 3590 AsmSyntax = "--x86-asm-syntax=att"; 3591 continue; 3592 case OBJDUMP_x86_asm_syntax_intel: 3593 AsmSyntax = "--x86-asm-syntax=intel"; 3594 continue; 3595 } 3596 3597 SmallVector<StringRef, 2> Values; 3598 llvm::SplitString(A->getValue(), Values, ","); 3599 for (StringRef V : Values) { 3600 if (V == "att") 3601 AsmSyntax = "--x86-asm-syntax=att"; 3602 else if (V == "intel") 3603 AsmSyntax = "--x86-asm-syntax=intel"; 3604 else 3605 DisassemblerOptions.push_back(V.str()); 3606 } 3607 } 3608 SmallVector<const char *> Args = {"llvm-objdump"}; 3609 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_mllvm)) 3610 Args.push_back(A->getValue()); 3611 if (AsmSyntax) 3612 Args.push_back(AsmSyntax); 3613 if (Args.size() > 1) 3614 llvm::cl::ParseCommandLineOptions(Args.size(), Args.data()); 3615 3616 // Look up any provided build IDs, then append them to the input filenames. 3617 for (const opt::Arg *A : InputArgs.filtered(OBJDUMP_build_id)) { 3618 object::BuildID BuildID = parseBuildIDArg(A); 3619 std::optional<std::string> Path = BIDFetcher->fetch(BuildID); 3620 if (!Path) { 3621 reportCmdLineError(A->getSpelling() + ": could not find build ID '" + 3622 A->getValue() + "'"); 3623 } 3624 InputFilenames.push_back(std::move(*Path)); 3625 } 3626 3627 // objdump defaults to a.out if no filenames specified. 3628 if (InputFilenames.empty()) 3629 InputFilenames.push_back("a.out"); 3630 } 3631 3632 int llvm_objdump_main(int argc, char **argv, const llvm::ToolContext &) { 3633 using namespace llvm; 3634 3635 ToolName = argv[0]; 3636 std::unique_ptr<CommonOptTable> T; 3637 OptSpecifier Unknown, HelpFlag, HelpHiddenFlag, VersionFlag; 3638 3639 StringRef Stem = sys::path::stem(ToolName); 3640 auto Is = [=](StringRef Tool) { 3641 // We need to recognize the following filenames: 3642 // 3643 // llvm-objdump -> objdump 3644 // llvm-otool-10.exe -> otool 3645 // powerpc64-unknown-freebsd13-objdump -> objdump 3646 auto I = Stem.rfind_insensitive(Tool); 3647 return I != StringRef::npos && 3648 (I + Tool.size() == Stem.size() || !isAlnum(Stem[I + Tool.size()])); 3649 }; 3650 if (Is("otool")) { 3651 T = std::make_unique<OtoolOptTable>(); 3652 Unknown = OTOOL_UNKNOWN; 3653 HelpFlag = OTOOL_help; 3654 HelpHiddenFlag = OTOOL_help_hidden; 3655 VersionFlag = OTOOL_version; 3656 } else { 3657 T = std::make_unique<ObjdumpOptTable>(); 3658 Unknown = OBJDUMP_UNKNOWN; 3659 HelpFlag = OBJDUMP_help; 3660 HelpHiddenFlag = OBJDUMP_help_hidden; 3661 VersionFlag = OBJDUMP_version; 3662 } 3663 3664 BumpPtrAllocator A; 3665 StringSaver Saver(A); 3666 opt::InputArgList InputArgs = 3667 T->parseArgs(argc, argv, Unknown, Saver, 3668 [&](StringRef Msg) { reportCmdLineError(Msg); }); 3669 3670 if (InputArgs.size() == 0 || InputArgs.hasArg(HelpFlag)) { 3671 T->printHelp(ToolName); 3672 return 0; 3673 } 3674 if (InputArgs.hasArg(HelpHiddenFlag)) { 3675 T->printHelp(ToolName, /*ShowHidden=*/true); 3676 return 0; 3677 } 3678 3679 // Initialize targets and assembly printers/parsers. 3680 InitializeAllTargetInfos(); 3681 InitializeAllTargetMCs(); 3682 InitializeAllDisassemblers(); 3683 3684 if (InputArgs.hasArg(VersionFlag)) { 3685 cl::PrintVersionMessage(); 3686 if (!Is("otool")) { 3687 outs() << '\n'; 3688 TargetRegistry::printRegisteredTargetsForVersion(outs()); 3689 } 3690 return 0; 3691 } 3692 3693 // Initialize debuginfod. 3694 const bool ShouldUseDebuginfodByDefault = 3695 InputArgs.hasArg(OBJDUMP_build_id) || canUseDebuginfod(); 3696 std::vector<std::string> DebugFileDirectories = 3697 InputArgs.getAllArgValues(OBJDUMP_debug_file_directory); 3698 if (InputArgs.hasFlag(OBJDUMP_debuginfod, OBJDUMP_no_debuginfod, 3699 ShouldUseDebuginfodByDefault)) { 3700 HTTPClient::initialize(); 3701 BIDFetcher = 3702 std::make_unique<DebuginfodFetcher>(std::move(DebugFileDirectories)); 3703 } else { 3704 BIDFetcher = 3705 std::make_unique<BuildIDFetcher>(std::move(DebugFileDirectories)); 3706 } 3707 3708 if (Is("otool")) 3709 parseOtoolOptions(InputArgs); 3710 else 3711 parseObjdumpOptions(InputArgs); 3712 3713 if (StartAddress >= StopAddress) 3714 reportCmdLineError("start address should be less than stop address"); 3715 3716 // Removes trailing separators from prefix. 3717 while (!Prefix.empty() && sys::path::is_separator(Prefix.back())) 3718 Prefix.pop_back(); 3719 3720 if (AllHeaders) 3721 ArchiveHeaders = FileHeaders = PrivateHeaders = Relocations = 3722 SectionHeaders = SymbolTable = true; 3723 3724 if (DisassembleAll || PrintSource || PrintLines || TracebackTable || 3725 !DisassembleSymbols.empty()) 3726 Disassemble = true; 3727 3728 if (!ArchiveHeaders && !Disassemble && DwarfDumpType == DIDT_Null && 3729 !DynamicRelocations && !FileHeaders && !PrivateHeaders && !RawClangAST && 3730 !Relocations && !SectionHeaders && !SectionContents && !SymbolTable && 3731 !DynamicSymbolTable && !UnwindInfo && !FaultMapSection && !Offloading && 3732 !(MachOOpt && 3733 (Bind || DataInCode || ChainedFixups || DyldInfo || DylibId || 3734 DylibsUsed || ExportsTrie || FirstPrivateHeader || 3735 FunctionStartsType != FunctionStartsMode::None || IndirectSymbols || 3736 InfoPlist || LazyBind || LinkOptHints || ObjcMetaData || Rebase || 3737 Rpaths || UniversalHeaders || WeakBind || !FilterSections.empty()))) { 3738 T->printHelp(ToolName); 3739 return 2; 3740 } 3741 3742 DisasmSymbolSet.insert(DisassembleSymbols.begin(), DisassembleSymbols.end()); 3743 3744 llvm::for_each(InputFilenames, dumpInput); 3745 3746 warnOnNoMatchForSections(); 3747 3748 return EXIT_SUCCESS; 3749 } 3750