1 //===-- ELFDump.cpp - ELF-specific dumper -----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the ELF-specific dumper for llvm-objdump. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm-objdump.h" 15 #include "llvm/Demangle/Demangle.h" 16 #include "llvm/Object/ELFObjectFile.h" 17 #include "llvm/Support/Format.h" 18 #include "llvm/Support/MathExtras.h" 19 #include "llvm/Support/raw_ostream.h" 20 21 using namespace llvm::object; 22 23 namespace llvm { 24 template <class ELFT> 25 static Expected<StringRef> getDynamicStrTab(const ELFFile<ELFT> *Elf) { 26 auto DynamicEntriesOrError = Elf->dynamicEntries(); 27 if (!DynamicEntriesOrError) 28 return DynamicEntriesOrError.takeError(); 29 30 for (const typename ELFT::Dyn &Dyn : *DynamicEntriesOrError) { 31 if (Dyn.d_tag == ELF::DT_STRTAB) { 32 auto MappedAddrOrError = Elf->toMappedAddr(Dyn.getPtr()); 33 if (!MappedAddrOrError) 34 consumeError(MappedAddrOrError.takeError()); 35 return StringRef(reinterpret_cast<const char *>(*MappedAddrOrError)); 36 } 37 } 38 39 // If the dynamic segment is not present, we fall back on the sections. 40 auto SectionsOrError = Elf->sections(); 41 if (!SectionsOrError) 42 return SectionsOrError.takeError(); 43 44 for (const typename ELFT::Shdr &Sec : *SectionsOrError) { 45 if (Sec.sh_type == ELF::SHT_DYNSYM) 46 return Elf->getStringTableForSymtab(Sec); 47 } 48 49 return createError("dynamic string table not found"); 50 } 51 52 template <class ELFT> 53 static Error getRelocationValueString(const ELFObjectFile<ELFT> *Obj, 54 const RelocationRef &RelRef, 55 SmallVectorImpl<char> &Result) { 56 const ELFFile<ELFT> &EF = *Obj->getELFFile(); 57 DataRefImpl Rel = RelRef.getRawDataRefImpl(); 58 auto SecOrErr = EF.getSection(Rel.d.a); 59 if (!SecOrErr) 60 return SecOrErr.takeError(); 61 62 int64_t Addend = 0; 63 // If there is no Symbol associated with the relocation, we set the undef 64 // boolean value to 'true'. This will prevent us from calling functions that 65 // requires the relocation to be associated with a symbol. 66 // 67 // In SHT_REL case we would need to read the addend from section data. 68 // GNU objdump does not do that and we just follow for simplicity atm. 69 bool Undef = false; 70 if ((*SecOrErr)->sh_type == ELF::SHT_RELA) { 71 const typename ELFT::Rela *ERela = Obj->getRela(Rel); 72 Addend = ERela->r_addend; 73 Undef = ERela->getSymbol(false) == 0; 74 } else if ((*SecOrErr)->sh_type != ELF::SHT_REL) { 75 return make_error<BinaryError>(); 76 } 77 78 // Default scheme is to print Target, as well as "+ <addend>" for nonzero 79 // addend. Should be acceptable for all normal purposes. 80 std::string FmtBuf; 81 raw_string_ostream Fmt(FmtBuf); 82 83 if (!Undef) { 84 symbol_iterator SI = RelRef.getSymbol(); 85 const typename ELFT::Sym *Sym = Obj->getSymbol(SI->getRawDataRefImpl()); 86 if (Sym->getType() == ELF::STT_SECTION) { 87 Expected<section_iterator> SymSI = SI->getSection(); 88 if (!SymSI) 89 return SymSI.takeError(); 90 const typename ELFT::Shdr *SymSec = 91 Obj->getSection((*SymSI)->getRawDataRefImpl()); 92 auto SecName = EF.getSectionName(SymSec); 93 if (!SecName) 94 return SecName.takeError(); 95 Fmt << *SecName; 96 } else { 97 Expected<StringRef> SymName = SI->getName(); 98 if (!SymName) 99 return SymName.takeError(); 100 if (Demangle) 101 Fmt << demangle(*SymName); 102 else 103 Fmt << *SymName; 104 } 105 } else { 106 Fmt << "*ABS*"; 107 } 108 109 if (Addend != 0) 110 Fmt << (Addend < 0 ? "" : "+") << Addend; 111 Fmt.flush(); 112 Result.append(FmtBuf.begin(), FmtBuf.end()); 113 return Error::success(); 114 } 115 116 Error getELFRelocationValueString(const ELFObjectFileBase *Obj, 117 const RelocationRef &Rel, 118 SmallVectorImpl<char> &Result) { 119 if (auto *ELF32LE = dyn_cast<ELF32LEObjectFile>(Obj)) 120 return getRelocationValueString(ELF32LE, Rel, Result); 121 if (auto *ELF64LE = dyn_cast<ELF64LEObjectFile>(Obj)) 122 return getRelocationValueString(ELF64LE, Rel, Result); 123 if (auto *ELF32BE = dyn_cast<ELF32BEObjectFile>(Obj)) 124 return getRelocationValueString(ELF32BE, Rel, Result); 125 auto *ELF64BE = cast<ELF64BEObjectFile>(Obj); 126 return getRelocationValueString(ELF64BE, Rel, Result); 127 } 128 129 template <class ELFT> 130 static uint64_t getSectionLMA(const ELFFile<ELFT> *Obj, 131 const object::ELFSectionRef &Sec) { 132 auto PhdrRangeOrErr = Obj->program_headers(); 133 if (!PhdrRangeOrErr) 134 report_fatal_error(toString(PhdrRangeOrErr.takeError())); 135 136 // Search for a PT_LOAD segment containing the requested section. Use this 137 // segment's p_addr to calculate the section's LMA. 138 for (const typename ELFT::Phdr &Phdr : *PhdrRangeOrErr) 139 if ((Phdr.p_type == ELF::PT_LOAD) && (Phdr.p_vaddr <= Sec.getAddress()) && 140 (Phdr.p_vaddr + Phdr.p_memsz > Sec.getAddress())) 141 return Sec.getAddress() - Phdr.p_vaddr + Phdr.p_paddr; 142 143 // Return section's VMA if it isn't in a PT_LOAD segment. 144 return Sec.getAddress(); 145 } 146 147 uint64_t getELFSectionLMA(const object::ELFSectionRef &Sec) { 148 if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Sec.getObject())) 149 return getSectionLMA(ELFObj->getELFFile(), Sec); 150 else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Sec.getObject())) 151 return getSectionLMA(ELFObj->getELFFile(), Sec); 152 else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Sec.getObject())) 153 return getSectionLMA(ELFObj->getELFFile(), Sec); 154 const auto *ELFObj = cast<ELF64BEObjectFile>(Sec.getObject()); 155 return getSectionLMA(ELFObj->getELFFile(), Sec); 156 } 157 158 template <class ELFT> 159 void printDynamicSection(const ELFFile<ELFT> *Elf, StringRef Filename) { 160 ArrayRef<typename ELFT::Dyn> DynamicEntries = 161 unwrapOrError(Elf->dynamicEntries(), Filename); 162 outs() << "Dynamic Section:\n"; 163 for (const typename ELFT::Dyn &Dyn : DynamicEntries) { 164 if (Dyn.d_tag == ELF::DT_NULL) 165 continue; 166 167 std::string Str = Elf->getDynamicTagAsString(Dyn.d_tag); 168 outs() << format(" %-21s", Str.c_str()); 169 170 const char *Fmt = 171 ELFT::Is64Bits ? "0x%016" PRIx64 "\n" : "0x%08" PRIx64 "\n"; 172 if (Dyn.d_tag == ELF::DT_NEEDED || Dyn.d_tag == ELF::DT_RPATH || 173 Dyn.d_tag == ELF::DT_RUNPATH || Dyn.d_tag == ELF::DT_SONAME || 174 Dyn.d_tag == ELF::DT_AUXILIARY || Dyn.d_tag == ELF::DT_FILTER) { 175 Expected<StringRef> StrTabOrErr = getDynamicStrTab(Elf); 176 if (StrTabOrErr) { 177 const char *Data = StrTabOrErr.get().data(); 178 outs() << (Data + Dyn.d_un.d_val) << "\n"; 179 continue; 180 } 181 warn(toString(StrTabOrErr.takeError())); 182 consumeError(StrTabOrErr.takeError()); 183 } 184 outs() << format(Fmt, (uint64_t)Dyn.d_un.d_val); 185 } 186 } 187 188 template <class ELFT> void printProgramHeaders(const ELFFile<ELFT> *o) { 189 outs() << "Program Header:\n"; 190 auto ProgramHeaderOrError = o->program_headers(); 191 if (!ProgramHeaderOrError) 192 report_fatal_error(toString(ProgramHeaderOrError.takeError())); 193 for (const typename ELFT::Phdr &Phdr : *ProgramHeaderOrError) { 194 switch (Phdr.p_type) { 195 case ELF::PT_DYNAMIC: 196 outs() << " DYNAMIC "; 197 break; 198 case ELF::PT_GNU_EH_FRAME: 199 outs() << "EH_FRAME "; 200 break; 201 case ELF::PT_GNU_RELRO: 202 outs() << " RELRO "; 203 break; 204 case ELF::PT_GNU_STACK: 205 outs() << " STACK "; 206 break; 207 case ELF::PT_INTERP: 208 outs() << " INTERP "; 209 break; 210 case ELF::PT_LOAD: 211 outs() << " LOAD "; 212 break; 213 case ELF::PT_NOTE: 214 outs() << " NOTE "; 215 break; 216 case ELF::PT_OPENBSD_BOOTDATA: 217 outs() << " OPENBSD_BOOTDATA "; 218 break; 219 case ELF::PT_OPENBSD_RANDOMIZE: 220 outs() << " OPENBSD_RANDOMIZE "; 221 break; 222 case ELF::PT_OPENBSD_WXNEEDED: 223 outs() << " OPENBSD_WXNEEDED "; 224 break; 225 case ELF::PT_PHDR: 226 outs() << " PHDR "; 227 break; 228 case ELF::PT_TLS: 229 outs() << " TLS "; 230 break; 231 default: 232 outs() << " UNKNOWN "; 233 } 234 235 const char *Fmt = ELFT::Is64Bits ? "0x%016" PRIx64 " " : "0x%08" PRIx64 " "; 236 237 outs() << "off " << format(Fmt, (uint64_t)Phdr.p_offset) << "vaddr " 238 << format(Fmt, (uint64_t)Phdr.p_vaddr) << "paddr " 239 << format(Fmt, (uint64_t)Phdr.p_paddr) 240 << format("align 2**%u\n", 241 countTrailingZeros<uint64_t>(Phdr.p_align)) 242 << " filesz " << format(Fmt, (uint64_t)Phdr.p_filesz) 243 << "memsz " << format(Fmt, (uint64_t)Phdr.p_memsz) << "flags " 244 << ((Phdr.p_flags & ELF::PF_R) ? "r" : "-") 245 << ((Phdr.p_flags & ELF::PF_W) ? "w" : "-") 246 << ((Phdr.p_flags & ELF::PF_X) ? "x" : "-") << "\n"; 247 } 248 outs() << "\n"; 249 } 250 251 template <class ELFT> 252 void printSymbolVersionDependency(ArrayRef<uint8_t> Contents, 253 StringRef StrTab) { 254 outs() << "Version References:\n"; 255 256 const uint8_t *Buf = Contents.data(); 257 while (Buf) { 258 auto *Verneed = reinterpret_cast<const typename ELFT::Verneed *>(Buf); 259 outs() << " required from " 260 << StringRef(StrTab.drop_front(Verneed->vn_file).data()) << ":\n"; 261 262 const uint8_t *BufAux = Buf + Verneed->vn_aux; 263 while (BufAux) { 264 auto *Vernaux = reinterpret_cast<const typename ELFT::Vernaux *>(BufAux); 265 outs() << " " 266 << format("0x%08" PRIx32 " ", (uint32_t)Vernaux->vna_hash) 267 << format("0x%02" PRIx16 " ", (uint16_t)Vernaux->vna_flags) 268 << format("%02" PRIu16 " ", (uint16_t)Vernaux->vna_other) 269 << StringRef(StrTab.drop_front(Vernaux->vna_name).data()) << '\n'; 270 BufAux = Vernaux->vna_next ? BufAux + Vernaux->vna_next : nullptr; 271 } 272 Buf = Verneed->vn_next ? Buf + Verneed->vn_next : nullptr; 273 } 274 } 275 276 template <class ELFT> 277 void printSymbolVersionDefinition(const typename ELFT::Shdr &Shdr, 278 ArrayRef<uint8_t> Contents, 279 StringRef StrTab) { 280 outs() << "Version definitions:\n"; 281 282 const uint8_t *Buf = Contents.data(); 283 uint32_t VerdefIndex = 1; 284 // sh_info contains the number of entries in the SHT_GNU_verdef section. To 285 // make the index column have consistent width, we should insert blank spaces 286 // according to sh_info. 287 uint16_t VerdefIndexWidth = std::to_string(Shdr.sh_info).size(); 288 while (Buf) { 289 auto *Verdef = reinterpret_cast<const typename ELFT::Verdef *>(Buf); 290 outs() << format_decimal(VerdefIndex++, VerdefIndexWidth) << " " 291 << format("0x%02" PRIx16 " ", (uint16_t)Verdef->vd_flags) 292 << format("0x%08" PRIx32 " ", (uint32_t)Verdef->vd_hash); 293 294 const uint8_t *BufAux = Buf + Verdef->vd_aux; 295 uint16_t VerdauxIndex = 0; 296 while (BufAux) { 297 auto *Verdaux = reinterpret_cast<const typename ELFT::Verdaux *>(BufAux); 298 if (VerdauxIndex) 299 outs() << std::string(VerdefIndexWidth + 17, ' '); 300 outs() << StringRef(StrTab.drop_front(Verdaux->vda_name).data()) << '\n'; 301 BufAux = Verdaux->vda_next ? BufAux + Verdaux->vda_next : nullptr; 302 ++VerdauxIndex; 303 } 304 Buf = Verdef->vd_next ? Buf + Verdef->vd_next : nullptr; 305 } 306 } 307 308 template <class ELFT> 309 void printSymbolVersionInfo(const ELFFile<ELFT> *Elf, StringRef FileName) { 310 ArrayRef<typename ELFT::Shdr> Sections = 311 unwrapOrError(Elf->sections(), FileName); 312 for (const typename ELFT::Shdr &Shdr : Sections) { 313 if (Shdr.sh_type != ELF::SHT_GNU_verneed && 314 Shdr.sh_type != ELF::SHT_GNU_verdef) 315 continue; 316 317 ArrayRef<uint8_t> Contents = 318 unwrapOrError(Elf->getSectionContents(&Shdr), FileName); 319 const typename ELFT::Shdr *StrTabSec = 320 unwrapOrError(Elf->getSection(Shdr.sh_link), FileName); 321 StringRef StrTab = unwrapOrError(Elf->getStringTable(StrTabSec), FileName); 322 323 if (Shdr.sh_type == ELF::SHT_GNU_verneed) 324 printSymbolVersionDependency<ELFT>(Contents, StrTab); 325 else 326 printSymbolVersionDefinition<ELFT>(Shdr, Contents, StrTab); 327 } 328 } 329 330 void printELFFileHeader(const object::ObjectFile *Obj) { 331 if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) 332 printProgramHeaders(ELFObj->getELFFile()); 333 else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) 334 printProgramHeaders(ELFObj->getELFFile()); 335 else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) 336 printProgramHeaders(ELFObj->getELFFile()); 337 else if (const auto *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj)) 338 printProgramHeaders(ELFObj->getELFFile()); 339 } 340 341 void printELFDynamicSection(const object::ObjectFile *Obj) { 342 if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) 343 printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); 344 else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) 345 printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); 346 else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) 347 printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); 348 else if (const auto *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj)) 349 printDynamicSection(ELFObj->getELFFile(), Obj->getFileName()); 350 } 351 352 void printELFSymbolVersionInfo(const object::ObjectFile *Obj) { 353 if (const auto *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj)) 354 printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); 355 else if (const auto *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj)) 356 printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); 357 else if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj)) 358 printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); 359 else if (const auto *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj)) 360 printSymbolVersionInfo(ELFObj->getELFFile(), Obj->getFileName()); 361 } 362 } // namespace llvm 363