1 //===--------------------- BottleneckAnalysis.h -----------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// This file implements the bottleneck analysis view. 11 /// 12 /// This view internally observes backend pressure increase events in order to 13 /// identify problematic data dependencies and processor resource interferences. 14 /// 15 /// Example of bottleneck analysis report for a dot-product on X86 btver2: 16 /// 17 /// Cycles with backend pressure increase [ 40.76% ] 18 /// Throughput Bottlenecks: 19 /// Resource Pressure [ 39.34% ] 20 /// - JFPA [ 39.34% ] 21 /// - JFPU0 [ 39.34% ] 22 /// Data Dependencies: [ 1.42% ] 23 /// - Register Dependencies [ 1.42% ] 24 /// - Memory Dependencies [ 0.00% ] 25 /// 26 /// According to the example, backend pressure increased during the 40.76% of 27 /// the simulated cycles. In particular, the major cause of backend pressure 28 /// increases was the contention on floating point adder JFPA accessible from 29 /// pipeline resource JFPU0. 30 /// 31 /// At the end of each cycle, if pressure on the simulated out-of-order buffers 32 /// has increased, a backend pressure event is reported. 33 /// In particular, this occurs when there is a delta between the number of uOps 34 /// dispatched and the number of uOps issued to the underlying pipelines. 35 /// 36 /// The bottleneck analysis view is also responsible for identifying and printing 37 /// the most "critical" sequence of dependent instructions according to the 38 /// simulated run. 39 /// 40 /// Below is the critical sequence computed for the dot-product example on 41 /// btver2: 42 /// 43 /// Instruction Dependency Information 44 /// +----< 2. vhaddps %xmm3, %xmm3, %xmm4 45 /// | 46 /// | < loop carried > 47 /// | 48 /// | 0. vmulps %xmm0, %xmm0, %xmm2 49 /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ] 50 /// +----> 2. vhaddps %xmm3, %xmm3, %xmm4 ## REGISTER dependency: %xmm3 51 /// | 52 /// | < loop carried > 53 /// | 54 /// +----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [ probability: 73% ] 55 /// 56 /// 57 /// The algorithm that computes the critical sequence is very similar to a 58 /// critical path analysis. 59 /// 60 /// A dependency graph is used internally to track dependencies between nodes. 61 /// Nodes of the graph represent instructions from the input assembly sequence, 62 /// and edges of the graph represent data dependencies or processor resource 63 /// interferences. 64 /// 65 /// Edges are dynamically 'discovered' by observing instruction state transitions 66 /// and backend pressure increase events. Edges are internally ranked based on 67 /// their "criticality". A dependency is considered to be critical if it takes a 68 /// long time to execute, and if it contributes to backend pressure increases. 69 /// Criticality is internally measured in terms of cycles; it is computed for 70 /// every edge in the graph as a function of the edge latency and the number of 71 /// backend pressure increase cycles contributed by that edge. 72 /// 73 /// At the end of simulation, costs are propagated to nodes through the edges of 74 /// the graph, and the most expensive path connecting the root-set (a 75 /// set of nodes with no predecessors) to a leaf node is reported as critical 76 /// sequence. 77 // 78 //===----------------------------------------------------------------------===// 79 80 #ifndef LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H 81 #define LLVM_TOOLS_LLVM_MCA_BOTTLENECK_ANALYSIS_H 82 83 #include "Views/InstructionView.h" 84 #include "llvm/ADT/DenseMap.h" 85 #include "llvm/ADT/SmallVector.h" 86 #include "llvm/MC/MCInstPrinter.h" 87 #include "llvm/MC/MCSchedule.h" 88 #include "llvm/MC/MCSubtargetInfo.h" 89 #include "llvm/Support/FormattedStream.h" 90 #include "llvm/Support/raw_ostream.h" 91 92 namespace llvm { 93 namespace mca { 94 95 class PressureTracker { 96 const MCSchedModel &SM; 97 98 // Resource pressure distribution. There is an element for every processor 99 // resource declared by the scheduling model. Quantities are number of cycles. 100 SmallVector<unsigned, 4> ResourcePressureDistribution; 101 102 // Each processor resource is associated with a so-called processor resource 103 // mask. This vector allows to correlate processor resource IDs with processor 104 // resource masks. There is exactly one element per each processor resource 105 // declared by the scheduling model. 106 SmallVector<uint64_t, 4> ProcResID2Mask; 107 108 // Maps processor resource state indices (returned by calls to 109 // `getResourceStateIndex(Mask)` to processor resource identifiers. 110 SmallVector<unsigned, 4> ResIdx2ProcResID; 111 112 // Maps Processor Resource identifiers to ResourceUsers indices. 113 SmallVector<unsigned, 4> ProcResID2ResourceUsersIndex; 114 115 // Identifies the last user of a processor resource unit. 116 // This vector is updated on every instruction issued event. 117 // There is one entry for every processor resource unit declared by the 118 // processor model. An all_ones value is treated like an invalid instruction 119 // identifier. 120 using User = std::pair<unsigned, unsigned>; 121 SmallVector<User, 4> ResourceUsers; 122 123 struct InstructionPressureInfo { 124 unsigned RegisterPressureCycles; 125 unsigned MemoryPressureCycles; 126 unsigned ResourcePressureCycles; 127 }; 128 DenseMap<unsigned, InstructionPressureInfo> IPI; 129 130 void updateResourcePressureDistribution(uint64_t CumulativeMask); 131 132 User getResourceUser(unsigned ProcResID, unsigned UnitID) const { 133 unsigned Index = ProcResID2ResourceUsersIndex[ProcResID]; 134 return ResourceUsers[Index + UnitID]; 135 } 136 137 public: 138 PressureTracker(const MCSchedModel &Model); 139 140 ArrayRef<unsigned> getResourcePressureDistribution() const { 141 return ResourcePressureDistribution; 142 } 143 144 void getResourceUsers(uint64_t ResourceMask, 145 SmallVectorImpl<User> &Users) const; 146 147 unsigned getRegisterPressureCycles(unsigned IID) const { 148 assert(IPI.find(IID) != IPI.end() && "Instruction is not tracked!"); 149 const InstructionPressureInfo &Info = IPI.find(IID)->second; 150 return Info.RegisterPressureCycles; 151 } 152 153 unsigned getMemoryPressureCycles(unsigned IID) const { 154 assert(IPI.find(IID) != IPI.end() && "Instruction is not tracked!"); 155 const InstructionPressureInfo &Info = IPI.find(IID)->second; 156 return Info.MemoryPressureCycles; 157 } 158 159 unsigned getResourcePressureCycles(unsigned IID) const { 160 assert(IPI.find(IID) != IPI.end() && "Instruction is not tracked!"); 161 const InstructionPressureInfo &Info = IPI.find(IID)->second; 162 return Info.ResourcePressureCycles; 163 } 164 165 const char *resolveResourceName(uint64_t ResourceMask) const { 166 unsigned Index = getResourceStateIndex(ResourceMask); 167 unsigned ProcResID = ResIdx2ProcResID[Index]; 168 const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID); 169 return PRDesc.Name; 170 } 171 172 void onInstructionDispatched(unsigned IID); 173 void onInstructionExecuted(unsigned IID); 174 175 void handlePressureEvent(const HWPressureEvent &Event); 176 void handleInstructionIssuedEvent(const HWInstructionIssuedEvent &Event); 177 }; 178 179 // A dependency edge. 180 struct DependencyEdge { 181 enum DependencyType { DT_INVALID, DT_REGISTER, DT_MEMORY, DT_RESOURCE }; 182 183 // Dependency edge descriptor. 184 // 185 // It specifies the dependency type, as well as the edge cost in cycles. 186 struct Dependency { 187 DependencyType Type; 188 uint64_t ResourceOrRegID; 189 uint64_t Cost; 190 }; 191 Dependency Dep; 192 193 unsigned FromIID; 194 unsigned ToIID; 195 196 // Used by the bottleneck analysis to compute the interference 197 // probability for processor resources. 198 unsigned Frequency; 199 }; 200 201 // A dependency graph used by the bottleneck analysis to describe data 202 // dependencies and processor resource interferences between instructions. 203 // 204 // There is a node (an instance of struct DGNode) for every instruction in the 205 // input assembly sequence. Edges of the graph represent dependencies between 206 // instructions. 207 // 208 // Each edge of the graph is associated with a cost value which is used 209 // internally to rank dependency based on their impact on the runtime 210 // performance (see field DependencyEdge::Dependency::Cost). In general, the 211 // higher the cost of an edge, the higher the impact on performance. 212 // 213 // The cost of a dependency is a function of both the latency and the number of 214 // cycles where the dependency has been seen as critical (i.e. contributing to 215 // back-pressure increases). 216 // 217 // Loop carried dependencies are carefully expanded by the bottleneck analysis 218 // to guarantee that the graph stays acyclic. To this end, extra nodes are 219 // pre-allocated at construction time to describe instructions from "past and 220 // future" iterations. The graph is kept acyclic mainly because it simplifies the 221 // complexity of the algorithm that computes the critical sequence. 222 class DependencyGraph { 223 struct DGNode { 224 unsigned NumPredecessors; 225 unsigned NumVisitedPredecessors; 226 uint64_t Cost; 227 unsigned Depth; 228 229 DependencyEdge CriticalPredecessor; 230 SmallVector<DependencyEdge, 8> OutgoingEdges; 231 }; 232 SmallVector<DGNode, 16> Nodes; 233 234 DependencyGraph(const DependencyGraph &) = delete; 235 DependencyGraph &operator=(const DependencyGraph &) = delete; 236 237 void addDependency(unsigned From, unsigned To, 238 DependencyEdge::Dependency &&DE); 239 240 void pruneEdges(unsigned Iterations); 241 void initializeRootSet(SmallVectorImpl<unsigned> &RootSet) const; 242 void propagateThroughEdges(SmallVectorImpl<unsigned> &RootSet, unsigned Iterations); 243 244 #ifndef NDEBUG 245 void dumpDependencyEdge(raw_ostream &OS, const DependencyEdge &DE, 246 MCInstPrinter &MCIP) const; 247 #endif 248 249 public: 250 DependencyGraph(unsigned Size) : Nodes(Size) {} 251 252 void addRegisterDep(unsigned From, unsigned To, unsigned RegID, 253 unsigned Cost) { 254 addDependency(From, To, {DependencyEdge::DT_REGISTER, RegID, Cost}); 255 } 256 257 void addMemoryDep(unsigned From, unsigned To, unsigned Cost) { 258 addDependency(From, To, {DependencyEdge::DT_MEMORY, /* unused */ 0, Cost}); 259 } 260 261 void addResourceDep(unsigned From, unsigned To, uint64_t Mask, 262 unsigned Cost) { 263 addDependency(From, To, {DependencyEdge::DT_RESOURCE, Mask, Cost}); 264 } 265 266 // Called by the bottleneck analysis at the end of simulation to propagate 267 // costs through the edges of the graph, and compute a critical path. 268 void finalizeGraph(unsigned Iterations) { 269 SmallVector<unsigned, 16> RootSet; 270 pruneEdges(Iterations); 271 initializeRootSet(RootSet); 272 propagateThroughEdges(RootSet, Iterations); 273 } 274 275 // Returns a sequence of edges representing the critical sequence based on the 276 // simulated run. It assumes that the graph has already been finalized (i.e. 277 // method `finalizeGraph()` has already been called on this graph). 278 void getCriticalSequence(SmallVectorImpl<const DependencyEdge *> &Seq) const; 279 280 #ifndef NDEBUG 281 void dump(raw_ostream &OS, MCInstPrinter &MCIP) const; 282 #endif 283 }; 284 285 /// A view that collects and prints a few performance numbers. 286 class BottleneckAnalysis : public InstructionView { 287 PressureTracker Tracker; 288 DependencyGraph DG; 289 290 unsigned Iterations; 291 unsigned TotalCycles; 292 293 bool PressureIncreasedBecauseOfResources; 294 bool PressureIncreasedBecauseOfRegisterDependencies; 295 bool PressureIncreasedBecauseOfMemoryDependencies; 296 // True if throughput was affected by dispatch stalls. 297 bool SeenStallCycles; 298 299 struct BackPressureInfo { 300 // Cycles where backpressure increased. 301 unsigned PressureIncreaseCycles; 302 // Cycles where backpressure increased because of pipeline pressure. 303 unsigned ResourcePressureCycles; 304 // Cycles where backpressure increased because of data dependencies. 305 unsigned DataDependencyCycles; 306 // Cycles where backpressure increased because of register dependencies. 307 unsigned RegisterDependencyCycles; 308 // Cycles where backpressure increased because of memory dependencies. 309 unsigned MemoryDependencyCycles; 310 }; 311 BackPressureInfo BPI; 312 313 // Used to populate the dependency graph DG. 314 void addRegisterDep(unsigned From, unsigned To, unsigned RegID, unsigned Cy); 315 void addMemoryDep(unsigned From, unsigned To, unsigned Cy); 316 void addResourceDep(unsigned From, unsigned To, uint64_t Mask, unsigned Cy); 317 318 void printInstruction(formatted_raw_ostream &FOS, const MCInst &MCI, 319 bool UseDifferentColor = false) const; 320 321 // Prints a bottleneck message to OS. 322 void printBottleneckHints(raw_ostream &OS) const; 323 void printCriticalSequence(raw_ostream &OS) const; 324 325 public: 326 BottleneckAnalysis(const MCSubtargetInfo &STI, MCInstPrinter &MCIP, 327 ArrayRef<MCInst> Sequence, unsigned Iterations); 328 329 void onCycleEnd() override; 330 void onEvent(const HWStallEvent &Event) override { SeenStallCycles = true; } 331 void onEvent(const HWPressureEvent &Event) override; 332 void onEvent(const HWInstructionEvent &Event) override; 333 334 void printView(raw_ostream &OS) const override; 335 StringRef getNameAsString() const override { return "BottleneckAnalysis"; } 336 json::Value toJSON() const override { return "not implemented"; } 337 338 #ifndef NDEBUG 339 void dump(raw_ostream &OS, MCInstPrinter &MCIP) const { DG.dump(OS, MCIP); } 340 #endif 341 }; 342 343 } // namespace mca 344 } // namespace llvm 345 346 #endif 347