xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-mca/Views/BottleneckAnalysis.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===--------------------- BottleneckAnalysis.cpp ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the functionalities used by the BottleneckAnalysis
11 /// to report bottleneck info.
12 ///
13 //===----------------------------------------------------------------------===//
14 
15 #include "Views/BottleneckAnalysis.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MCA/Support.h"
18 #include "llvm/Support/Format.h"
19 
20 namespace llvm {
21 namespace mca {
22 
23 #define DEBUG_TYPE "llvm-mca"
24 
25 PressureTracker::PressureTracker(const MCSchedModel &Model)
26     : SM(Model),
27       ResourcePressureDistribution(Model.getNumProcResourceKinds(), 0),
28       ProcResID2Mask(Model.getNumProcResourceKinds(), 0),
29       ResIdx2ProcResID(Model.getNumProcResourceKinds(), 0),
30       ProcResID2ResourceUsersIndex(Model.getNumProcResourceKinds(), 0) {
31   computeProcResourceMasks(SM, ProcResID2Mask);
32 
33   // Ignore the invalid resource at index zero.
34   unsigned NextResourceUsersIdx = 0;
35   for (unsigned I = 1, E = Model.getNumProcResourceKinds(); I < E; ++I) {
36     const MCProcResourceDesc &ProcResource = *SM.getProcResource(I);
37     ProcResID2ResourceUsersIndex[I] = NextResourceUsersIdx;
38     NextResourceUsersIdx += ProcResource.NumUnits;
39     uint64_t ResourceMask = ProcResID2Mask[I];
40     ResIdx2ProcResID[getResourceStateIndex(ResourceMask)] = I;
41   }
42 
43   ResourceUsers.resize(NextResourceUsersIdx);
44   std::fill(ResourceUsers.begin(), ResourceUsers.end(),
45             std::make_pair<unsigned, unsigned>(~0U, 0U));
46 }
47 
48 void PressureTracker::getResourceUsers(uint64_t ResourceMask,
49                                        SmallVectorImpl<User> &Users) const {
50   unsigned Index = getResourceStateIndex(ResourceMask);
51   unsigned ProcResID = ResIdx2ProcResID[Index];
52   const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID);
53   for (unsigned I = 0, E = PRDesc.NumUnits; I < E; ++I) {
54     const User U = getResourceUser(ProcResID, I);
55     if (U.second && IPI.find(U.first) != IPI.end())
56       Users.emplace_back(U);
57   }
58 }
59 
60 void PressureTracker::onInstructionDispatched(unsigned IID) {
61   IPI.insert(std::make_pair(IID, InstructionPressureInfo()));
62 }
63 
64 void PressureTracker::onInstructionExecuted(unsigned IID) { IPI.erase(IID); }
65 
66 void PressureTracker::handleInstructionIssuedEvent(
67     const HWInstructionIssuedEvent &Event) {
68   unsigned IID = Event.IR.getSourceIndex();
69   using ResourceRef = HWInstructionIssuedEvent::ResourceRef;
70   using ResourceUse = std::pair<ResourceRef, ResourceCycles>;
71   for (const ResourceUse &Use : Event.UsedResources) {
72     const ResourceRef &RR = Use.first;
73     unsigned Index = ProcResID2ResourceUsersIndex[RR.first];
74     Index += countTrailingZeros(RR.second);
75     ResourceUsers[Index] = std::make_pair(IID, Use.second.getNumerator());
76   }
77 }
78 
79 void PressureTracker::updateResourcePressureDistribution(
80     uint64_t CumulativeMask) {
81   while (CumulativeMask) {
82     uint64_t Current = CumulativeMask & (-CumulativeMask);
83     unsigned ResIdx = getResourceStateIndex(Current);
84     unsigned ProcResID = ResIdx2ProcResID[ResIdx];
85     uint64_t Mask = ProcResID2Mask[ProcResID];
86 
87     if (Mask == Current) {
88       ResourcePressureDistribution[ProcResID]++;
89       CumulativeMask ^= Current;
90       continue;
91     }
92 
93     Mask ^= Current;
94     while (Mask) {
95       uint64_t SubUnit = Mask & (-Mask);
96       ResIdx = getResourceStateIndex(SubUnit);
97       ProcResID = ResIdx2ProcResID[ResIdx];
98       ResourcePressureDistribution[ProcResID]++;
99       Mask ^= SubUnit;
100     }
101 
102     CumulativeMask ^= Current;
103   }
104 }
105 
106 void PressureTracker::handlePressureEvent(const HWPressureEvent &Event) {
107   assert(Event.Reason != HWPressureEvent::INVALID &&
108          "Unexpected invalid event!");
109 
110   switch (Event.Reason) {
111   default:
112     break;
113 
114   case HWPressureEvent::RESOURCES: {
115     const uint64_t ResourceMask = Event.ResourceMask;
116     updateResourcePressureDistribution(Event.ResourceMask);
117 
118     for (const InstRef &IR : Event.AffectedInstructions) {
119       const Instruction &IS = *IR.getInstruction();
120       unsigned BusyResources = IS.getCriticalResourceMask() & ResourceMask;
121       if (!BusyResources)
122         continue;
123 
124       unsigned IID = IR.getSourceIndex();
125       IPI[IID].ResourcePressureCycles++;
126     }
127     break;
128   }
129 
130   case HWPressureEvent::REGISTER_DEPS:
131     for (const InstRef &IR : Event.AffectedInstructions) {
132       unsigned IID = IR.getSourceIndex();
133       IPI[IID].RegisterPressureCycles++;
134     }
135     break;
136 
137   case HWPressureEvent::MEMORY_DEPS:
138     for (const InstRef &IR : Event.AffectedInstructions) {
139       unsigned IID = IR.getSourceIndex();
140       IPI[IID].MemoryPressureCycles++;
141     }
142   }
143 }
144 
145 #ifndef NDEBUG
146 void DependencyGraph::dumpDependencyEdge(raw_ostream &OS,
147                                          const DependencyEdge &DepEdge,
148                                          MCInstPrinter &MCIP) const {
149   unsigned FromIID = DepEdge.FromIID;
150   unsigned ToIID = DepEdge.ToIID;
151   assert(FromIID < ToIID && "Graph should be acyclic!");
152 
153   const DependencyEdge::Dependency &DE = DepEdge.Dep;
154   assert(DE.Type != DependencyEdge::DT_INVALID && "Unexpected invalid edge!");
155 
156   OS << " FROM: " << FromIID << " TO: " << ToIID << "             ";
157   if (DE.Type == DependencyEdge::DT_REGISTER) {
158     OS << " - REGISTER: ";
159     MCIP.printRegName(OS, DE.ResourceOrRegID);
160   } else if (DE.Type == DependencyEdge::DT_MEMORY) {
161     OS << " - MEMORY";
162   } else {
163     assert(DE.Type == DependencyEdge::DT_RESOURCE &&
164            "Unsupported dependency type!");
165     OS << " - RESOURCE MASK: " << DE.ResourceOrRegID;
166   }
167   OS << " - COST: " << DE.Cost << '\n';
168 }
169 #endif // NDEBUG
170 
171 void DependencyGraph::pruneEdges(unsigned Iterations) {
172   for (DGNode &N : Nodes) {
173     unsigned NumPruned = 0;
174     const unsigned Size = N.OutgoingEdges.size();
175     // Use a cut-off threshold to prune edges with a low frequency.
176     for (unsigned I = 0, E = Size; I < E; ++I) {
177       DependencyEdge &Edge = N.OutgoingEdges[I];
178       if (Edge.Frequency == Iterations)
179         continue;
180       double Factor = (double)Edge.Frequency / Iterations;
181       if (0.10 < Factor)
182         continue;
183       Nodes[Edge.ToIID].NumPredecessors--;
184       std::swap(Edge, N.OutgoingEdges[E - 1]);
185       --E;
186       ++NumPruned;
187     }
188 
189     if (NumPruned)
190       N.OutgoingEdges.resize(Size - NumPruned);
191   }
192 }
193 
194 void DependencyGraph::initializeRootSet(
195     SmallVectorImpl<unsigned> &RootSet) const {
196   for (unsigned I = 0, E = Nodes.size(); I < E; ++I) {
197     const DGNode &N = Nodes[I];
198     if (N.NumPredecessors == 0 && !N.OutgoingEdges.empty())
199       RootSet.emplace_back(I);
200   }
201 }
202 
203 void DependencyGraph::propagateThroughEdges(
204     SmallVectorImpl<unsigned> &RootSet, unsigned Iterations) {
205   SmallVector<unsigned, 8> ToVisit;
206 
207   // A critical sequence is computed as the longest path from a node of the
208   // RootSet to a leaf node (i.e. a node with no successors).  The RootSet is
209   // composed of nodes with at least one successor, and no predecessors.
210   //
211   // Each node of the graph starts with an initial default cost of zero.  The
212   // cost of a node is a measure of criticality: the higher the cost, the bigger
213   // is the performance impact.
214   // For register and memory dependencies, the cost is a function of the write
215   // latency as well as the actual delay (in cycles) caused to users.
216   // For processor resource dependencies, the cost is a function of the resource
217   // pressure. Resource interferences with low frequency values are ignored.
218   //
219   // This algorithm is very similar to a (reverse) Dijkstra.  Every iteration of
220   // the inner loop selects (i.e. visits) a node N from a set of `unvisited
221   // nodes`, and then propagates the cost of N to all its neighbors.
222   //
223   // The `unvisited nodes` set initially contains all the nodes from the
224   // RootSet.  A node N is added to the `unvisited nodes` if all its
225   // predecessors have been visited already.
226   //
227   // For simplicity, every node tracks the number of unvisited incoming edges in
228   // field `NumVisitedPredecessors`.  When the value of that field drops to
229   // zero, then the corresponding node is added to a `ToVisit` set.
230   //
231   // At the end of every iteration of the outer loop, set `ToVisit` becomes our
232   // new `unvisited nodes` set.
233   //
234   // The algorithm terminates when the set of unvisited nodes (i.e. our RootSet)
235   // is empty. This algorithm works under the assumption that the graph is
236   // acyclic.
237   do {
238     for (unsigned IID : RootSet) {
239       const DGNode &N = Nodes[IID];
240       for (const DependencyEdge &DepEdge : N.OutgoingEdges) {
241         unsigned ToIID = DepEdge.ToIID;
242         DGNode &To = Nodes[ToIID];
243         uint64_t Cost = N.Cost + DepEdge.Dep.Cost;
244         // Check if this is the most expensive incoming edge seen so far.  In
245         // case, update the total cost of the destination node (ToIID), as well
246         // its field `CriticalPredecessor`.
247         if (Cost > To.Cost) {
248           To.CriticalPredecessor = DepEdge;
249           To.Cost = Cost;
250           To.Depth = N.Depth + 1;
251         }
252         To.NumVisitedPredecessors++;
253         if (To.NumVisitedPredecessors == To.NumPredecessors)
254           ToVisit.emplace_back(ToIID);
255       }
256     }
257 
258     std::swap(RootSet, ToVisit);
259     ToVisit.clear();
260   } while (!RootSet.empty());
261 }
262 
263 void DependencyGraph::getCriticalSequence(
264     SmallVectorImpl<const DependencyEdge *> &Seq) const {
265   // At this stage, nodes of the graph have been already visited, and costs have
266   // been propagated through the edges (see method `propagateThroughEdges()`).
267 
268   // Identify the node N with the highest cost in the graph. By construction,
269   // that node is the last instruction of our critical sequence.
270   // Field N.Depth would tell us the total length of the sequence.
271   //
272   // To obtain the sequence of critical edges, we simply follow the chain of critical
273   // predecessors starting from node N (field DGNode::CriticalPredecessor).
274   const auto It = std::max_element(
275       Nodes.begin(), Nodes.end(),
276       [](const DGNode &Lhs, const DGNode &Rhs) { return Lhs.Cost < Rhs.Cost; });
277   unsigned IID = std::distance(Nodes.begin(), It);
278   Seq.resize(Nodes[IID].Depth);
279   for (unsigned I = Seq.size(), E = 0; I > E; --I) {
280     const DGNode &N = Nodes[IID];
281     Seq[I - 1] = &N.CriticalPredecessor;
282     IID = N.CriticalPredecessor.FromIID;
283   }
284 }
285 
286 void BottleneckAnalysis::printInstruction(formatted_raw_ostream &FOS,
287                                           const MCInst &MCI,
288                                           bool UseDifferentColor) const {
289   FOS.PadToColumn(14);
290   if (UseDifferentColor)
291     FOS.changeColor(raw_ostream::CYAN, true, false);
292   FOS << printInstructionString(MCI);
293   if (UseDifferentColor)
294     FOS.resetColor();
295 }
296 
297 void BottleneckAnalysis::printCriticalSequence(raw_ostream &OS) const {
298   // Early exit if no bottlenecks were found during the simulation.
299   if (!SeenStallCycles || !BPI.PressureIncreaseCycles)
300     return;
301 
302   SmallVector<const DependencyEdge *, 16> Seq;
303   DG.getCriticalSequence(Seq);
304   if (Seq.empty())
305     return;
306 
307   OS << "\nCritical sequence based on the simulation:\n\n";
308 
309   const DependencyEdge &FirstEdge = *Seq[0];
310   ArrayRef<llvm::MCInst> Source = getSource();
311   unsigned FromIID = FirstEdge.FromIID % Source.size();
312   unsigned ToIID = FirstEdge.ToIID % Source.size();
313   bool IsLoopCarried = FromIID >= ToIID;
314 
315   formatted_raw_ostream FOS(OS);
316   FOS.PadToColumn(14);
317   FOS << "Instruction";
318   FOS.PadToColumn(58);
319   FOS << "Dependency Information";
320 
321   bool HasColors = FOS.has_colors();
322 
323   unsigned CurrentIID = 0;
324   if (IsLoopCarried) {
325     FOS << "\n +----< " << FromIID << ".";
326     printInstruction(FOS, Source[FromIID], HasColors);
327     FOS << "\n |\n |    < loop carried > \n |";
328   } else {
329     while (CurrentIID < FromIID) {
330       FOS << "\n        " << CurrentIID << ".";
331       printInstruction(FOS, Source[CurrentIID]);
332       CurrentIID++;
333     }
334 
335     FOS << "\n +----< " << CurrentIID << ".";
336     printInstruction(FOS, Source[CurrentIID], HasColors);
337     CurrentIID++;
338   }
339 
340   for (const DependencyEdge *&DE : Seq) {
341     ToIID = DE->ToIID % Source.size();
342     unsigned LastIID = CurrentIID > ToIID ? Source.size() : ToIID;
343 
344     while (CurrentIID < LastIID) {
345       FOS << "\n |      " << CurrentIID << ".";
346       printInstruction(FOS, Source[CurrentIID]);
347       CurrentIID++;
348     }
349 
350     if (CurrentIID == ToIID) {
351       FOS << "\n +----> " << ToIID << ".";
352       printInstruction(FOS, Source[CurrentIID], HasColors);
353     } else {
354       FOS << "\n |\n |    < loop carried > \n |"
355           << "\n +----> " << ToIID << ".";
356       printInstruction(FOS, Source[ToIID], HasColors);
357     }
358     FOS.PadToColumn(58);
359 
360     const DependencyEdge::Dependency &Dep = DE->Dep;
361     if (HasColors)
362       FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
363 
364     if (Dep.Type == DependencyEdge::DT_REGISTER) {
365       FOS << "## REGISTER dependency:  ";
366       if (HasColors)
367         FOS.changeColor(raw_ostream::MAGENTA, true, false);
368       getInstPrinter().printRegName(FOS, Dep.ResourceOrRegID);
369     } else if (Dep.Type == DependencyEdge::DT_MEMORY) {
370       FOS << "## MEMORY dependency.";
371     } else {
372       assert(Dep.Type == DependencyEdge::DT_RESOURCE &&
373              "Unsupported dependency type!");
374       FOS << "## RESOURCE interference:  ";
375       if (HasColors)
376         FOS.changeColor(raw_ostream::MAGENTA, true, false);
377       FOS << Tracker.resolveResourceName(Dep.ResourceOrRegID);
378       if (HasColors) {
379         FOS.resetColor();
380         FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
381       }
382       FOS << " [ probability: " << ((DE->Frequency * 100) / Iterations)
383           << "% ]";
384     }
385     if (HasColors)
386       FOS.resetColor();
387     ++CurrentIID;
388   }
389 
390   while (CurrentIID < Source.size()) {
391     FOS << "\n        " << CurrentIID << ".";
392     printInstruction(FOS, Source[CurrentIID]);
393     CurrentIID++;
394   }
395 
396   FOS << '\n';
397   FOS.flush();
398 }
399 
400 #ifndef NDEBUG
401 void DependencyGraph::dump(raw_ostream &OS, MCInstPrinter &MCIP) const {
402   OS << "\nREG DEPS\n";
403   for (const DGNode &Node : Nodes)
404     for (const DependencyEdge &DE : Node.OutgoingEdges)
405       if (DE.Dep.Type == DependencyEdge::DT_REGISTER)
406         dumpDependencyEdge(OS, DE, MCIP);
407 
408   OS << "\nMEM DEPS\n";
409   for (const DGNode &Node : Nodes)
410     for (const DependencyEdge &DE : Node.OutgoingEdges)
411       if (DE.Dep.Type == DependencyEdge::DT_MEMORY)
412         dumpDependencyEdge(OS, DE, MCIP);
413 
414   OS << "\nRESOURCE DEPS\n";
415   for (const DGNode &Node : Nodes)
416     for (const DependencyEdge &DE : Node.OutgoingEdges)
417       if (DE.Dep.Type == DependencyEdge::DT_RESOURCE)
418         dumpDependencyEdge(OS, DE, MCIP);
419 }
420 #endif // NDEBUG
421 
422 void DependencyGraph::addDependency(unsigned From, unsigned To,
423                                     DependencyEdge::Dependency &&Dep) {
424   DGNode &NodeFrom = Nodes[From];
425   DGNode &NodeTo = Nodes[To];
426   SmallVectorImpl<DependencyEdge> &Vec = NodeFrom.OutgoingEdges;
427 
428   auto It = find_if(Vec, [To, Dep](DependencyEdge &DE) {
429     return DE.ToIID == To && DE.Dep.ResourceOrRegID == Dep.ResourceOrRegID;
430   });
431 
432   if (It != Vec.end()) {
433     It->Dep.Cost += Dep.Cost;
434     It->Frequency++;
435     return;
436   }
437 
438   DependencyEdge DE = {Dep, From, To, 1};
439   Vec.emplace_back(DE);
440   NodeTo.NumPredecessors++;
441 }
442 
443 BottleneckAnalysis::BottleneckAnalysis(const MCSubtargetInfo &sti,
444                                        MCInstPrinter &Printer,
445                                        ArrayRef<MCInst> S, unsigned NumIter)
446     : InstructionView(sti, Printer, S), Tracker(sti.getSchedModel()),
447       DG(S.size() * 3), Iterations(NumIter), TotalCycles(0),
448       PressureIncreasedBecauseOfResources(false),
449       PressureIncreasedBecauseOfRegisterDependencies(false),
450       PressureIncreasedBecauseOfMemoryDependencies(false),
451       SeenStallCycles(false), BPI() {}
452 
453 void BottleneckAnalysis::addRegisterDep(unsigned From, unsigned To,
454                                         unsigned RegID, unsigned Cost) {
455   bool IsLoopCarried = From >= To;
456   unsigned SourceSize = getSource().size();
457   if (IsLoopCarried) {
458     DG.addRegisterDep(From, To + SourceSize, RegID, Cost);
459     DG.addRegisterDep(From + SourceSize, To + (SourceSize * 2), RegID, Cost);
460     return;
461   }
462   DG.addRegisterDep(From + SourceSize, To + SourceSize, RegID, Cost);
463 }
464 
465 void BottleneckAnalysis::addMemoryDep(unsigned From, unsigned To,
466                                       unsigned Cost) {
467   bool IsLoopCarried = From >= To;
468   unsigned SourceSize = getSource().size();
469   if (IsLoopCarried) {
470     DG.addMemoryDep(From, To + SourceSize, Cost);
471     DG.addMemoryDep(From + SourceSize, To + (SourceSize * 2), Cost);
472     return;
473   }
474   DG.addMemoryDep(From + SourceSize, To + SourceSize, Cost);
475 }
476 
477 void BottleneckAnalysis::addResourceDep(unsigned From, unsigned To,
478                                         uint64_t Mask, unsigned Cost) {
479   bool IsLoopCarried = From >= To;
480   unsigned SourceSize = getSource().size();
481   if (IsLoopCarried) {
482     DG.addResourceDep(From, To + SourceSize, Mask, Cost);
483     DG.addResourceDep(From + SourceSize, To + (SourceSize * 2), Mask, Cost);
484     return;
485   }
486   DG.addResourceDep(From + SourceSize, To + SourceSize, Mask, Cost);
487 }
488 
489 void BottleneckAnalysis::onEvent(const HWInstructionEvent &Event) {
490   const unsigned IID = Event.IR.getSourceIndex();
491   if (Event.Type == HWInstructionEvent::Dispatched) {
492     Tracker.onInstructionDispatched(IID);
493     return;
494   }
495   if (Event.Type == HWInstructionEvent::Executed) {
496     Tracker.onInstructionExecuted(IID);
497     return;
498   }
499 
500   if (Event.Type != HWInstructionEvent::Issued)
501     return;
502 
503   ArrayRef<llvm::MCInst> Source = getSource();
504   const Instruction &IS = *Event.IR.getInstruction();
505   unsigned To = IID % Source.size();
506 
507   unsigned Cycles = 2 * Tracker.getResourcePressureCycles(IID);
508   uint64_t ResourceMask = IS.getCriticalResourceMask();
509   SmallVector<std::pair<unsigned, unsigned>, 4> Users;
510   while (ResourceMask) {
511     uint64_t Current = ResourceMask & (-ResourceMask);
512     Tracker.getResourceUsers(Current, Users);
513     for (const std::pair<unsigned, unsigned> &U : Users)
514       addResourceDep(U.first % Source.size(), To, Current, U.second + Cycles);
515     Users.clear();
516     ResourceMask ^= Current;
517   }
518 
519   const CriticalDependency &RegDep = IS.getCriticalRegDep();
520   if (RegDep.Cycles) {
521     Cycles = RegDep.Cycles + 2 * Tracker.getRegisterPressureCycles(IID);
522     unsigned From = RegDep.IID % Source.size();
523     addRegisterDep(From, To, RegDep.RegID, Cycles);
524   }
525 
526   const CriticalDependency &MemDep = IS.getCriticalMemDep();
527   if (MemDep.Cycles) {
528     Cycles = MemDep.Cycles + 2 * Tracker.getMemoryPressureCycles(IID);
529     unsigned From = MemDep.IID % Source.size();
530     addMemoryDep(From, To, Cycles);
531   }
532 
533   Tracker.handleInstructionIssuedEvent(
534       static_cast<const HWInstructionIssuedEvent &>(Event));
535 
536   // Check if this is the last simulated instruction.
537   if (IID == ((Iterations * Source.size()) - 1))
538     DG.finalizeGraph(Iterations);
539 }
540 
541 void BottleneckAnalysis::onEvent(const HWPressureEvent &Event) {
542   assert(Event.Reason != HWPressureEvent::INVALID &&
543          "Unexpected invalid event!");
544 
545   Tracker.handlePressureEvent(Event);
546 
547   switch (Event.Reason) {
548   default:
549     break;
550 
551   case HWPressureEvent::RESOURCES:
552     PressureIncreasedBecauseOfResources = true;
553     break;
554   case HWPressureEvent::REGISTER_DEPS:
555     PressureIncreasedBecauseOfRegisterDependencies = true;
556     break;
557   case HWPressureEvent::MEMORY_DEPS:
558     PressureIncreasedBecauseOfMemoryDependencies = true;
559     break;
560   }
561 }
562 
563 void BottleneckAnalysis::onCycleEnd() {
564   ++TotalCycles;
565 
566   bool PressureIncreasedBecauseOfDataDependencies =
567       PressureIncreasedBecauseOfRegisterDependencies ||
568       PressureIncreasedBecauseOfMemoryDependencies;
569   if (!PressureIncreasedBecauseOfResources &&
570       !PressureIncreasedBecauseOfDataDependencies)
571     return;
572 
573   ++BPI.PressureIncreaseCycles;
574   if (PressureIncreasedBecauseOfRegisterDependencies)
575     ++BPI.RegisterDependencyCycles;
576   if (PressureIncreasedBecauseOfMemoryDependencies)
577     ++BPI.MemoryDependencyCycles;
578   if (PressureIncreasedBecauseOfDataDependencies)
579     ++BPI.DataDependencyCycles;
580   if (PressureIncreasedBecauseOfResources)
581     ++BPI.ResourcePressureCycles;
582   PressureIncreasedBecauseOfResources = false;
583   PressureIncreasedBecauseOfRegisterDependencies = false;
584   PressureIncreasedBecauseOfMemoryDependencies = false;
585 }
586 
587 void BottleneckAnalysis::printBottleneckHints(raw_ostream &OS) const {
588   if (!SeenStallCycles || !BPI.PressureIncreaseCycles) {
589     OS << "\n\nNo resource or data dependency bottlenecks discovered.\n";
590     return;
591   }
592 
593   double PressurePerCycle =
594       (double)BPI.PressureIncreaseCycles * 100 / TotalCycles;
595   double ResourcePressurePerCycle =
596       (double)BPI.ResourcePressureCycles * 100 / TotalCycles;
597   double DDPerCycle = (double)BPI.DataDependencyCycles * 100 / TotalCycles;
598   double RegDepPressurePerCycle =
599       (double)BPI.RegisterDependencyCycles * 100 / TotalCycles;
600   double MemDepPressurePerCycle =
601       (double)BPI.MemoryDependencyCycles * 100 / TotalCycles;
602 
603   OS << "\n\nCycles with backend pressure increase [ "
604      << format("%.2f", floor((PressurePerCycle * 100) + 0.5) / 100) << "% ]";
605 
606   OS << "\nThroughput Bottlenecks: "
607      << "\n  Resource Pressure       [ "
608      << format("%.2f", floor((ResourcePressurePerCycle * 100) + 0.5) / 100)
609      << "% ]";
610 
611   if (BPI.PressureIncreaseCycles) {
612     ArrayRef<unsigned> Distribution = Tracker.getResourcePressureDistribution();
613     const MCSchedModel &SM = getSubTargetInfo().getSchedModel();
614     for (unsigned I = 0, E = Distribution.size(); I < E; ++I) {
615       unsigned ResourceCycles = Distribution[I];
616       if (ResourceCycles) {
617         double Frequency = (double)ResourceCycles * 100 / TotalCycles;
618         const MCProcResourceDesc &PRDesc = *SM.getProcResource(I);
619         OS << "\n  - " << PRDesc.Name << "  [ "
620            << format("%.2f", floor((Frequency * 100) + 0.5) / 100) << "% ]";
621       }
622     }
623   }
624 
625   OS << "\n  Data Dependencies:      [ "
626      << format("%.2f", floor((DDPerCycle * 100) + 0.5) / 100) << "% ]";
627   OS << "\n  - Register Dependencies [ "
628      << format("%.2f", floor((RegDepPressurePerCycle * 100) + 0.5) / 100)
629      << "% ]";
630   OS << "\n  - Memory Dependencies   [ "
631      << format("%.2f", floor((MemDepPressurePerCycle * 100) + 0.5) / 100)
632      << "% ]\n";
633 }
634 
635 void BottleneckAnalysis::printView(raw_ostream &OS) const {
636   std::string Buffer;
637   raw_string_ostream TempStream(Buffer);
638   printBottleneckHints(TempStream);
639   TempStream.flush();
640   OS << Buffer;
641   printCriticalSequence(OS);
642 }
643 
644 } // namespace mca.
645 } // namespace llvm
646