xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-diff/lib/DifferenceEngine.cpp (revision dd78d987cb38ef162d40aad86229f1dc19884f78)
1  //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This header defines the implementation of the LLVM difference
10  // engine, which structurally compares global values within a module.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "DifferenceEngine.h"
15  #include "llvm/ADT/DenseMap.h"
16  #include "llvm/ADT/DenseSet.h"
17  #include "llvm/ADT/SmallString.h"
18  #include "llvm/ADT/SmallVector.h"
19  #include "llvm/ADT/StringSet.h"
20  #include "llvm/IR/BasicBlock.h"
21  #include "llvm/IR/CFG.h"
22  #include "llvm/IR/Constants.h"
23  #include "llvm/IR/Function.h"
24  #include "llvm/IR/Instructions.h"
25  #include "llvm/IR/Module.h"
26  #include "llvm/Support/ErrorHandling.h"
27  #include "llvm/Support/raw_ostream.h"
28  #include "llvm/Support/type_traits.h"
29  #include <utility>
30  
31  using namespace llvm;
32  
33  namespace {
34  
35  /// A priority queue, implemented as a heap.
36  template <class T, class Sorter, unsigned InlineCapacity>
37  class PriorityQueue {
38    Sorter Precedes;
39    llvm::SmallVector<T, InlineCapacity> Storage;
40  
41  public:
42    PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43  
44    /// Checks whether the heap is empty.
45    bool empty() const { return Storage.empty(); }
46  
47    /// Insert a new value on the heap.
48    void insert(const T &V) {
49      unsigned Index = Storage.size();
50      Storage.push_back(V);
51      if (Index == 0) return;
52  
53      T *data = Storage.data();
54      while (true) {
55        unsigned Target = (Index + 1) / 2 - 1;
56        if (!Precedes(data[Index], data[Target])) return;
57        std::swap(data[Index], data[Target]);
58        if (Target == 0) return;
59        Index = Target;
60      }
61    }
62  
63    /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
64    T remove_min() {
65      assert(!empty());
66      T tmp = Storage[0];
67  
68      unsigned NewSize = Storage.size() - 1;
69      if (NewSize) {
70        // Move the slot at the end to the beginning.
71        if (std::is_trivially_copyable<T>::value)
72          Storage[0] = Storage[NewSize];
73        else
74          std::swap(Storage[0], Storage[NewSize]);
75  
76        // Bubble the root up as necessary.
77        unsigned Index = 0;
78        while (true) {
79          // With a 1-based index, the children would be Index*2 and Index*2+1.
80          unsigned R = (Index + 1) * 2;
81          unsigned L = R - 1;
82  
83          // If R is out of bounds, we're done after this in any case.
84          if (R >= NewSize) {
85            // If L is also out of bounds, we're done immediately.
86            if (L >= NewSize) break;
87  
88            // Otherwise, test whether we should swap L and Index.
89            if (Precedes(Storage[L], Storage[Index]))
90              std::swap(Storage[L], Storage[Index]);
91            break;
92          }
93  
94          // Otherwise, we need to compare with the smaller of L and R.
95          // Prefer R because it's closer to the end of the array.
96          unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97  
98          // If Index is >= the min of L and R, then heap ordering is restored.
99          if (!Precedes(Storage[IndexToTest], Storage[Index]))
100            break;
101  
102          // Otherwise, keep bubbling up.
103          std::swap(Storage[IndexToTest], Storage[Index]);
104          Index = IndexToTest;
105        }
106      }
107      Storage.pop_back();
108  
109      return tmp;
110    }
111  };
112  
113  /// A function-scope difference engine.
114  class FunctionDifferenceEngine {
115    DifferenceEngine &Engine;
116  
117    // Some initializers may reference the variable we're currently checking. This
118    // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119    // recursing.
120    const Value *SavedLHS;
121    const Value *SavedRHS;
122  
123    // The current mapping from old local values to new local values.
124    DenseMap<const Value *, const Value *> Values;
125  
126    // The current mapping from old blocks to new blocks.
127    DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128  
129    // The tentative mapping from old local values while comparing a pair of
130    // basic blocks. Once the pair has been processed, the tentative mapping is
131    // committed to the Values map.
132    DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133  
134    // Equivalence Assumptions
135    //
136    // For basic blocks in loops, some values in phi nodes may depend on
137    // values from not yet processed basic blocks in the loop. When encountering
138    // such values, we optimistically asssume their equivalence and store this
139    // assumption in a BlockDiffCandidate for the pair of compared BBs.
140    //
141    // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142    // stored assumptions using the Values map that stores proven equivalences
143    // between the old and new values, and report a diff if an assumption cannot
144    // be proven to be true.
145    //
146    // Note that after having made an assumption, all further determined
147    // equivalences implicitly depend on that assumption. These will not be
148    // reverted or reported if the assumption proves to be false, because these
149    // are considered indirect diffs caused by earlier direct diffs.
150    //
151    // We aim to avoid false negatives in llvm-diff, that is, ensure that
152    // whenever no diff is reported, the functions are indeed equal. If
153    // assumptions were made, this is not entirely clear, because in principle we
154    // could end up with a circular proof where the proof of equivalence of two
155    // nodes is depending on the assumption of their equivalence.
156    //
157    // To see that assumptions do not add false negatives, note that if we do not
158    // report a diff, this means that there is an equivalence mapping between old
159    // and new values that is consistent with all assumptions made. The circular
160    // dependency that exists on an IR value level does not exist at run time,
161    // because the values selected by the phi nodes must always already have been
162    // computed. Hence, we can prove equivalence of the old and new functions by
163    // considering step-wise parallel execution, and incrementally proving
164    // equivalence of every new computed value. Another way to think about it is
165    // to imagine cloning the loop BBs for every iteration, turning the loops
166    // into (possibly infinite) DAGs, and proving equivalence by induction on the
167    // iteration, using the computed value mapping.
168  
169    // The class BlockDiffCandidate stores pairs which either have already been
170    // proven to differ, or pairs whose equivalence depends on assumptions to be
171    // verified later.
172    struct BlockDiffCandidate {
173      const BasicBlock *LBB;
174      const BasicBlock *RBB;
175      // Maps old values to assumed-to-be-equivalent new values
176      SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177      // If set, we already know the blocks differ.
178      bool KnownToDiffer;
179    };
180  
181    // List of block diff candidates in the order found by processing.
182    // We generate reports in this order.
183    // For every LBB, there may only be one corresponding RBB.
184    SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185    // Maps LBB to the index of its BlockDiffCandidate, if existing.
186    DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187  
188    // Note: Every LBB must always be queried together with the same RBB.
189    // The returned reference is not permanently valid and should not be stored.
190    BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191                                                      const BasicBlock *RBB) {
192      auto It = BlockDiffCandidateIndices.find(LBB);
193      // Check if LBB already has a diff candidate
194      if (It == BlockDiffCandidateIndices.end()) {
195        // Add new one
196        BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197        BlockDiffCandidates.push_back(
198            {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199        return BlockDiffCandidates.back();
200      }
201      // Use existing one
202      BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203      assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204      return Result;
205    }
206  
207    // Optionally passed to equivalence checker functions, so these can add
208    // assumptions in BlockDiffCandidates. Its presence controls whether
209    // assumptions are generated.
210    struct AssumptionContext {
211      // The two basic blocks that need the two compared values to be equivalent.
212      const BasicBlock *LBB;
213      const BasicBlock *RBB;
214    };
215  
216    unsigned getUnprocPredCount(const BasicBlock *Block) const {
217      return llvm::count_if(predecessors(Block), [&](const BasicBlock *Pred) {
218        return !Blocks.contains(Pred);
219      });
220    }
221  
222    typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
223  
224    /// A type which sorts a priority queue by the number of unprocessed
225    /// predecessor blocks it has remaining.
226    ///
227    /// This is actually really expensive to calculate.
228    struct QueueSorter {
229      const FunctionDifferenceEngine &fde;
230      explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
231  
232      bool operator()(BlockPair &Old, BlockPair &New) {
233        return fde.getUnprocPredCount(Old.first)
234             < fde.getUnprocPredCount(New.first);
235      }
236    };
237  
238    /// A queue of unified blocks to process.
239    PriorityQueue<BlockPair, QueueSorter, 20> Queue;
240  
241    /// Try to unify the given two blocks.  Enqueues them for processing
242    /// if they haven't already been processed.
243    ///
244    /// Returns true if there was a problem unifying them.
245    bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
246      const BasicBlock *&Ref = Blocks[L];
247  
248      if (Ref) {
249        if (Ref == R) return false;
250  
251        Engine.logf("successor %l cannot be equivalent to %r; "
252                    "it's already equivalent to %r")
253          << L << R << Ref;
254        return true;
255      }
256  
257      Ref = R;
258      Queue.insert(BlockPair(L, R));
259      return false;
260    }
261  
262    /// Unifies two instructions, given that they're known not to have
263    /// structural differences.
264    void unify(const Instruction *L, const Instruction *R) {
265      DifferenceEngine::Context C(Engine, L, R);
266  
267      bool Result = diff(L, R, true, true, true);
268      assert(!Result && "structural differences second time around?");
269      (void) Result;
270      if (!L->use_empty())
271        Values[L] = R;
272    }
273  
274    void processQueue() {
275      while (!Queue.empty()) {
276        BlockPair Pair = Queue.remove_min();
277        diff(Pair.first, Pair.second);
278      }
279    }
280  
281    void checkAndReportDiffCandidates() {
282      for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
283  
284        // Check assumptions
285        for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
286          auto It = Values.find(L);
287          if (It == Values.end() || It->second != R) {
288            BDC.KnownToDiffer = true;
289            break;
290          }
291        }
292  
293        // Run block diff if the BBs differ
294        if (BDC.KnownToDiffer) {
295          DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
296          runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
297        }
298      }
299    }
300  
301    void diff(const BasicBlock *L, const BasicBlock *R) {
302      DifferenceEngine::Context C(Engine, L, R);
303  
304      BasicBlock::const_iterator LI = L->begin(), LE = L->end();
305      BasicBlock::const_iterator RI = R->begin();
306  
307      do {
308        assert(LI != LE && RI != R->end());
309        const Instruction *LeftI = &*LI, *RightI = &*RI;
310  
311        // If the instructions differ, start the more sophisticated diff
312        // algorithm at the start of the block.
313        if (diff(LeftI, RightI, false, false, true)) {
314          TentativeValues.clear();
315          // Register (L, R) as diffing pair. Note that we could directly emit a
316          // block diff here, but this way we ensure all diffs are emitted in one
317          // consistent order, independent of whether the diffs were detected
318          // immediately or via invalid assumptions.
319          getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
320          return;
321        }
322  
323        // Otherwise, tentatively unify them.
324        if (!LeftI->use_empty())
325          TentativeValues.insert(std::make_pair(LeftI, RightI));
326  
327        ++LI;
328        ++RI;
329      } while (LI != LE); // This is sufficient: we can't get equality of
330                          // terminators if there are residual instructions.
331  
332      // Unify everything in the block, non-tentatively this time.
333      TentativeValues.clear();
334      for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
335        unify(&*LI, &*RI);
336    }
337  
338    bool matchForBlockDiff(const Instruction *L, const Instruction *R);
339    void runBlockDiff(BasicBlock::const_iterator LI,
340                      BasicBlock::const_iterator RI);
341  
342    bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
343      // FIXME: call attributes
344      AssumptionContext AC = {L.getParent(), R.getParent()};
345      if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
346                                &AC)) {
347        if (Complain) Engine.log("called functions differ");
348        return true;
349      }
350      if (L.arg_size() != R.arg_size()) {
351        if (Complain) Engine.log("argument counts differ");
352        return true;
353      }
354      for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
355        if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
356          if (Complain)
357            Engine.logf("arguments %l and %r differ")
358                << L.getArgOperand(I) << R.getArgOperand(I);
359          return true;
360        }
361      return false;
362    }
363  
364    // If AllowAssumptions is enabled, whenever we encounter a pair of values
365    // that we cannot prove to be equivalent, we assume equivalence and store that
366    // assumption to be checked later in BlockDiffCandidates.
367    bool diff(const Instruction *L, const Instruction *R, bool Complain,
368              bool TryUnify, bool AllowAssumptions) {
369      // FIXME: metadata (if Complain is set)
370      AssumptionContext ACValue = {L->getParent(), R->getParent()};
371      // nullptr AssumptionContext disables assumption generation.
372      const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
373  
374      // Different opcodes always imply different operations.
375      if (L->getOpcode() != R->getOpcode()) {
376        if (Complain) Engine.log("different instruction types");
377        return true;
378      }
379  
380      if (isa<CmpInst>(L)) {
381        if (cast<CmpInst>(L)->getPredicate()
382              != cast<CmpInst>(R)->getPredicate()) {
383          if (Complain) Engine.log("different predicates");
384          return true;
385        }
386      } else if (isa<CallInst>(L)) {
387        return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
388      } else if (isa<PHINode>(L)) {
389        const PHINode &LI = cast<PHINode>(*L);
390        const PHINode &RI = cast<PHINode>(*R);
391  
392        // This is really weird;  type uniquing is broken?
393        if (LI.getType() != RI.getType()) {
394          if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
395            if (Complain) Engine.log("different phi types");
396            return true;
397          }
398        }
399  
400        if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
401          if (Complain)
402            Engine.log("PHI node # of incoming values differ");
403          return true;
404        }
405  
406        for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
407          if (TryUnify)
408            tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
409  
410          if (!equivalentAsOperands(LI.getIncomingValue(I),
411                                    RI.getIncomingValue(I), AC)) {
412            if (Complain)
413              Engine.log("PHI node incoming values differ");
414            return true;
415          }
416        }
417  
418        return false;
419  
420      // Terminators.
421      } else if (isa<InvokeInst>(L)) {
422        const InvokeInst &LI = cast<InvokeInst>(*L);
423        const InvokeInst &RI = cast<InvokeInst>(*R);
424        if (diffCallSites(LI, RI, Complain))
425          return true;
426  
427        if (TryUnify) {
428          tryUnify(LI.getNormalDest(), RI.getNormalDest());
429          tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
430        }
431        return false;
432  
433      } else if (isa<CallBrInst>(L)) {
434        const CallBrInst &LI = cast<CallBrInst>(*L);
435        const CallBrInst &RI = cast<CallBrInst>(*R);
436        if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
437          if (Complain)
438            Engine.log("callbr # of indirect destinations differ");
439          return true;
440        }
441  
442        // Perform the "try unify" step so that we can equate the indirect
443        // destinations before checking the call site.
444        for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
445          tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
446  
447        if (diffCallSites(LI, RI, Complain))
448          return true;
449  
450        if (TryUnify)
451          tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
452        return false;
453  
454      } else if (isa<BranchInst>(L)) {
455        const BranchInst *LI = cast<BranchInst>(L);
456        const BranchInst *RI = cast<BranchInst>(R);
457        if (LI->isConditional() != RI->isConditional()) {
458          if (Complain) Engine.log("branch conditionality differs");
459          return true;
460        }
461  
462        if (LI->isConditional()) {
463          if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
464            if (Complain) Engine.log("branch conditions differ");
465            return true;
466          }
467          if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
468        }
469        if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
470        return false;
471  
472      } else if (isa<IndirectBrInst>(L)) {
473        const IndirectBrInst *LI = cast<IndirectBrInst>(L);
474        const IndirectBrInst *RI = cast<IndirectBrInst>(R);
475        if (LI->getNumDestinations() != RI->getNumDestinations()) {
476          if (Complain) Engine.log("indirectbr # of destinations differ");
477          return true;
478        }
479  
480        if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
481          if (Complain) Engine.log("indirectbr addresses differ");
482          return true;
483        }
484  
485        if (TryUnify) {
486          for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
487            tryUnify(LI->getDestination(i), RI->getDestination(i));
488          }
489        }
490        return false;
491  
492      } else if (isa<SwitchInst>(L)) {
493        const SwitchInst *LI = cast<SwitchInst>(L);
494        const SwitchInst *RI = cast<SwitchInst>(R);
495        if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
496          if (Complain) Engine.log("switch conditions differ");
497          return true;
498        }
499        if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
500  
501        bool Difference = false;
502  
503        DenseMap<const ConstantInt *, const BasicBlock *> LCases;
504        for (auto Case : LI->cases())
505          LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
506  
507        for (auto Case : RI->cases()) {
508          const ConstantInt *CaseValue = Case.getCaseValue();
509          const BasicBlock *LCase = LCases[CaseValue];
510          if (LCase) {
511            if (TryUnify)
512              tryUnify(LCase, Case.getCaseSuccessor());
513            LCases.erase(CaseValue);
514          } else if (Complain || !Difference) {
515            if (Complain)
516              Engine.logf("right switch has extra case %r") << CaseValue;
517            Difference = true;
518          }
519        }
520        if (!Difference)
521          for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
522                   I = LCases.begin(),
523                   E = LCases.end();
524               I != E; ++I) {
525            if (Complain)
526              Engine.logf("left switch has extra case %l") << I->first;
527            Difference = true;
528          }
529        return Difference;
530      } else if (isa<UnreachableInst>(L)) {
531        return false;
532      }
533  
534      if (L->getNumOperands() != R->getNumOperands()) {
535        if (Complain) Engine.log("instructions have different operand counts");
536        return true;
537      }
538  
539      for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
540        Value *LO = L->getOperand(I), *RO = R->getOperand(I);
541        if (!equivalentAsOperands(LO, RO, AC)) {
542          if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
543          return true;
544        }
545      }
546  
547      return false;
548    }
549  
550  public:
551    bool equivalentAsOperands(const Constant *L, const Constant *R,
552                              const AssumptionContext *AC) {
553      // Use equality as a preliminary filter.
554      if (L == R)
555        return true;
556  
557      if (L->getValueID() != R->getValueID())
558        return false;
559  
560      // Ask the engine about global values.
561      if (isa<GlobalValue>(L))
562        return Engine.equivalentAsOperands(cast<GlobalValue>(L),
563                                           cast<GlobalValue>(R));
564  
565      // Compare constant expressions structurally.
566      if (isa<ConstantExpr>(L))
567        return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
568                                    AC);
569  
570      // Constants of the "same type" don't always actually have the same
571      // type; I don't know why.  Just white-list them.
572      if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
573        return true;
574  
575      // Block addresses only match if we've already encountered the
576      // block.  FIXME: tentative matches?
577      if (isa<BlockAddress>(L))
578        return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
579                   == cast<BlockAddress>(R)->getBasicBlock();
580  
581      // If L and R are ConstantVectors, compare each element
582      if (isa<ConstantVector>(L)) {
583        const ConstantVector *CVL = cast<ConstantVector>(L);
584        const ConstantVector *CVR = cast<ConstantVector>(R);
585        if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
586          return false;
587        for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
588          if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
589            return false;
590        }
591        return true;
592      }
593  
594      // If L and R are ConstantArrays, compare the element count and types.
595      if (isa<ConstantArray>(L)) {
596        const ConstantArray *CAL = cast<ConstantArray>(L);
597        const ConstantArray *CAR = cast<ConstantArray>(R);
598        // Sometimes a type may be equivalent, but not uniquified---e.g. it may
599        // contain a GEP instruction. Do a deeper comparison of the types.
600        if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
601          return false;
602  
603        for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
604          if (!equivalentAsOperands(CAL->getAggregateElement(I),
605                                    CAR->getAggregateElement(I), AC))
606            return false;
607        }
608  
609        return true;
610      }
611  
612      // If L and R are ConstantStructs, compare each field and type.
613      if (isa<ConstantStruct>(L)) {
614        const ConstantStruct *CSL = cast<ConstantStruct>(L);
615        const ConstantStruct *CSR = cast<ConstantStruct>(R);
616  
617        const StructType *LTy = cast<StructType>(CSL->getType());
618        const StructType *RTy = cast<StructType>(CSR->getType());
619  
620        // The StructTypes should have the same attributes. Don't use
621        // isLayoutIdentical(), because that just checks the element pointers,
622        // which may not work here.
623        if (LTy->getNumElements() != RTy->getNumElements() ||
624            LTy->isPacked() != RTy->isPacked())
625          return false;
626  
627        for (unsigned I = 0; I < LTy->getNumElements(); I++) {
628          const Value *LAgg = CSL->getAggregateElement(I);
629          const Value *RAgg = CSR->getAggregateElement(I);
630  
631          if (LAgg == SavedLHS || RAgg == SavedRHS) {
632            if (LAgg != SavedLHS || RAgg != SavedRHS)
633              // If the left and right operands aren't both re-analyzing the
634              // variable, then the initialiers don't match, so report "false".
635              // Otherwise, we skip these operands..
636              return false;
637  
638            continue;
639          }
640  
641          if (!equivalentAsOperands(LAgg, RAgg, AC)) {
642            return false;
643          }
644        }
645  
646        return true;
647      }
648  
649      return false;
650    }
651  
652    bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
653                              const AssumptionContext *AC) {
654      if (L == R)
655        return true;
656  
657      if (L->getOpcode() != R->getOpcode())
658        return false;
659  
660      switch (L->getOpcode()) {
661      case Instruction::GetElementPtr:
662        // FIXME: inbounds?
663        break;
664  
665      default:
666        break;
667      }
668  
669      if (L->getNumOperands() != R->getNumOperands())
670        return false;
671  
672      for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
673        const auto *LOp = L->getOperand(I);
674        const auto *ROp = R->getOperand(I);
675  
676        if (LOp == SavedLHS || ROp == SavedRHS) {
677          if (LOp != SavedLHS || ROp != SavedRHS)
678            // If the left and right operands aren't both re-analyzing the
679            // variable, then the initialiers don't match, so report "false".
680            // Otherwise, we skip these operands..
681            return false;
682  
683          continue;
684        }
685  
686        if (!equivalentAsOperands(LOp, ROp, AC))
687          return false;
688      }
689  
690      return true;
691    }
692  
693    // There are cases where we cannot determine whether two values are
694    // equivalent, because it depends on not yet processed basic blocks -- see the
695    // documentation on assumptions.
696    //
697    // AC is the context in which we are currently performing a diff.
698    // When we encounter a pair of values for which we can neither prove
699    // equivalence nor the opposite, we do the following:
700    //  * If AC is nullptr, we treat the pair as non-equivalent.
701    //  * If AC is set, we add an assumption for the basic blocks given by AC,
702    //    and treat the pair as equivalent. The assumption is checked later.
703    bool equivalentAsOperands(const Value *L, const Value *R,
704                              const AssumptionContext *AC) {
705      // Fall out if the values have different kind.
706      // This possibly shouldn't take priority over oracles.
707      if (L->getValueID() != R->getValueID())
708        return false;
709  
710      // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
711      //                  InlineAsm, MDNode, MDString, PseudoSourceValue
712  
713      if (isa<Constant>(L))
714        return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
715  
716      if (isa<Instruction>(L)) {
717        auto It = Values.find(L);
718        if (It != Values.end())
719          return It->second == R;
720  
721        if (TentativeValues.count(std::make_pair(L, R)))
722          return true;
723  
724        // L and R might be equivalent, this could depend on not yet processed
725        // basic blocks, so we cannot decide here.
726        if (AC) {
727          // Add an assumption, unless there is a conflict with an existing one
728          BlockDiffCandidate &BDC =
729              getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
730          auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
731          if (!InsertionResult.second && InsertionResult.first->second != R) {
732            // We already have a conflicting equivalence assumption for L, so at
733            // least one must be wrong, and we know that there is a diff.
734            BDC.KnownToDiffer = true;
735            BDC.EquivalenceAssumptions.clear();
736            return false;
737          }
738          // Optimistically assume equivalence, and check later once all BBs
739          // have been processed.
740          return true;
741        }
742  
743        // Assumptions disabled, so pessimistically assume non-equivalence.
744        return false;
745      }
746  
747      if (isa<Argument>(L))
748        return Values[L] == R;
749  
750      if (isa<BasicBlock>(L))
751        return Blocks[cast<BasicBlock>(L)] != R;
752  
753      // Pretend everything else is identical.
754      return true;
755    }
756  
757    // Avoid a gcc warning about accessing 'this' in an initializer.
758    FunctionDifferenceEngine *this_() { return this; }
759  
760  public:
761    FunctionDifferenceEngine(DifferenceEngine &Engine,
762                             const Value *SavedLHS = nullptr,
763                             const Value *SavedRHS = nullptr)
764        : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
765          Queue(QueueSorter(*this_())) {}
766  
767    void diff(const Function *L, const Function *R) {
768      assert(Values.empty() && "Multiple diffs per engine are not supported!");
769  
770      if (L->arg_size() != R->arg_size())
771        Engine.log("different argument counts");
772  
773      // Map the arguments.
774      for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
775                                        RI = R->arg_begin(), RE = R->arg_end();
776           LI != LE && RI != RE; ++LI, ++RI)
777        Values[&*LI] = &*RI;
778  
779      tryUnify(&*L->begin(), &*R->begin());
780      processQueue();
781      checkAndReportDiffCandidates();
782    }
783  };
784  
785  struct DiffEntry {
786    DiffEntry() = default;
787  
788    unsigned Cost = 0;
789    llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
790  };
791  
792  bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
793                                                   const Instruction *R) {
794    return !diff(L, R, false, false, false);
795  }
796  
797  void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
798                                              BasicBlock::const_iterator RStart) {
799    BasicBlock::const_iterator LE = LStart->getParent()->end();
800    BasicBlock::const_iterator RE = RStart->getParent()->end();
801  
802    unsigned NL = std::distance(LStart, LE);
803  
804    SmallVector<DiffEntry, 20> Paths1(NL+1);
805    SmallVector<DiffEntry, 20> Paths2(NL+1);
806  
807    DiffEntry *Cur = Paths1.data();
808    DiffEntry *Next = Paths2.data();
809  
810    const unsigned LeftCost = 2;
811    const unsigned RightCost = 2;
812    const unsigned MatchCost = 0;
813  
814    assert(TentativeValues.empty());
815  
816    // Initialize the first column.
817    for (unsigned I = 0; I != NL+1; ++I) {
818      Cur[I].Cost = I * LeftCost;
819      for (unsigned J = 0; J != I; ++J)
820        Cur[I].Path.push_back(DC_left);
821    }
822  
823    for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
824      // Initialize the first row.
825      Next[0] = Cur[0];
826      Next[0].Cost += RightCost;
827      Next[0].Path.push_back(DC_right);
828  
829      unsigned Index = 1;
830      for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
831        if (matchForBlockDiff(&*LI, &*RI)) {
832          Next[Index] = Cur[Index-1];
833          Next[Index].Cost += MatchCost;
834          Next[Index].Path.push_back(DC_match);
835          TentativeValues.insert(std::make_pair(&*LI, &*RI));
836        } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
837          Next[Index] = Next[Index-1];
838          Next[Index].Cost += LeftCost;
839          Next[Index].Path.push_back(DC_left);
840        } else {
841          Next[Index] = Cur[Index];
842          Next[Index].Cost += RightCost;
843          Next[Index].Path.push_back(DC_right);
844        }
845      }
846  
847      std::swap(Cur, Next);
848    }
849  
850    // We don't need the tentative values anymore; everything from here
851    // on out should be non-tentative.
852    TentativeValues.clear();
853  
854    SmallVectorImpl<char> &Path = Cur[NL].Path;
855    BasicBlock::const_iterator LI = LStart, RI = RStart;
856  
857    DiffLogBuilder Diff(Engine.getConsumer());
858  
859    // Drop trailing matches.
860    while (Path.size() && Path.back() == DC_match)
861      Path.pop_back();
862  
863    // Skip leading matches.
864    SmallVectorImpl<char>::iterator
865      PI = Path.begin(), PE = Path.end();
866    while (PI != PE && *PI == DC_match) {
867      unify(&*LI, &*RI);
868      ++PI;
869      ++LI;
870      ++RI;
871    }
872  
873    for (; PI != PE; ++PI) {
874      switch (static_cast<DiffChange>(*PI)) {
875      case DC_match:
876        assert(LI != LE && RI != RE);
877        {
878          const Instruction *L = &*LI, *R = &*RI;
879          unify(L, R);
880          Diff.addMatch(L, R);
881        }
882        ++LI; ++RI;
883        break;
884  
885      case DC_left:
886        assert(LI != LE);
887        Diff.addLeft(&*LI);
888        ++LI;
889        break;
890  
891      case DC_right:
892        assert(RI != RE);
893        Diff.addRight(&*RI);
894        ++RI;
895        break;
896      }
897    }
898  
899    // Finishing unifying and complaining about the tails of the block,
900    // which should be matches all the way through.
901    while (LI != LE) {
902      assert(RI != RE);
903      unify(&*LI, &*RI);
904      ++LI;
905      ++RI;
906    }
907  
908    // If the terminators have different kinds, but one is an invoke and the
909    // other is an unconditional branch immediately following a call, unify
910    // the results and the destinations.
911    const Instruction *LTerm = LStart->getParent()->getTerminator();
912    const Instruction *RTerm = RStart->getParent()->getTerminator();
913    if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
914      if (cast<BranchInst>(LTerm)->isConditional()) return;
915      BasicBlock::const_iterator I = LTerm->getIterator();
916      if (I == LStart->getParent()->begin()) return;
917      --I;
918      if (!isa<CallInst>(*I)) return;
919      const CallInst *LCall = cast<CallInst>(&*I);
920      const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
921      if (!equivalentAsOperands(LCall->getCalledOperand(),
922                                RInvoke->getCalledOperand(), nullptr))
923        return;
924      if (!LCall->use_empty())
925        Values[LCall] = RInvoke;
926      tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
927    } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
928      if (cast<BranchInst>(RTerm)->isConditional()) return;
929      BasicBlock::const_iterator I = RTerm->getIterator();
930      if (I == RStart->getParent()->begin()) return;
931      --I;
932      if (!isa<CallInst>(*I)) return;
933      const CallInst *RCall = cast<CallInst>(I);
934      const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
935      if (!equivalentAsOperands(LInvoke->getCalledOperand(),
936                                RCall->getCalledOperand(), nullptr))
937        return;
938      if (!LInvoke->use_empty())
939        Values[LInvoke] = RCall;
940      tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
941    }
942  }
943  }
944  
945  void DifferenceEngine::Oracle::anchor() { }
946  
947  void DifferenceEngine::diff(const Function *L, const Function *R) {
948    Context C(*this, L, R);
949  
950    // FIXME: types
951    // FIXME: attributes and CC
952    // FIXME: parameter attributes
953  
954    // If both are declarations, we're done.
955    if (L->empty() && R->empty())
956      return;
957    else if (L->empty())
958      log("left function is declaration, right function is definition");
959    else if (R->empty())
960      log("right function is declaration, left function is definition");
961    else
962      FunctionDifferenceEngine(*this).diff(L, R);
963  }
964  
965  void DifferenceEngine::diff(const Module *L, const Module *R) {
966    StringSet<> LNames;
967    SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
968  
969    unsigned LeftAnonCount = 0;
970    unsigned RightAnonCount = 0;
971  
972    for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
973      const Function *LFn = &*I;
974      StringRef Name = LFn->getName();
975      if (Name.empty()) {
976        ++LeftAnonCount;
977        continue;
978      }
979  
980      LNames.insert(Name);
981  
982      if (Function *RFn = R->getFunction(LFn->getName()))
983        Queue.push_back(std::make_pair(LFn, RFn));
984      else
985        logf("function %l exists only in left module") << LFn;
986    }
987  
988    for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
989      const Function *RFn = &*I;
990      StringRef Name = RFn->getName();
991      if (Name.empty()) {
992        ++RightAnonCount;
993        continue;
994      }
995  
996      if (!LNames.count(Name))
997        logf("function %r exists only in right module") << RFn;
998    }
999  
1000    if (LeftAnonCount != 0 || RightAnonCount != 0) {
1001      SmallString<32> Tmp;
1002      logf(("not comparing " + Twine(LeftAnonCount) +
1003            " anonymous functions in the left module and " +
1004            Twine(RightAnonCount) + " in the right module")
1005               .toStringRef(Tmp));
1006    }
1007  
1008    for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1009             I = Queue.begin(),
1010             E = Queue.end();
1011         I != E; ++I)
1012      diff(I->first, I->second);
1013  }
1014  
1015  bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1016                                              const GlobalValue *R) {
1017    if (globalValueOracle) return (*globalValueOracle)(L, R);
1018  
1019    if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1020      const GlobalVariable *GVL = cast<GlobalVariable>(L);
1021      const GlobalVariable *GVR = cast<GlobalVariable>(R);
1022      if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1023          GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1024        return FunctionDifferenceEngine(*this, GVL, GVR)
1025            .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1026                                  nullptr);
1027    }
1028  
1029    return L->getName() == R->getName();
1030  }
1031