xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-diff/lib/DifferenceEngine.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This header defines the implementation of the LLVM difference
10 // engine, which structurally compares global values within a module.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DifferenceEngine.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringSet.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Support/type_traits.h"
29 #include <utility>
30 
31 using namespace llvm;
32 
33 namespace {
34 
35 /// A priority queue, implemented as a heap.
36 template <class T, class Sorter, unsigned InlineCapacity>
37 class PriorityQueue {
38   Sorter Precedes;
39   llvm::SmallVector<T, InlineCapacity> Storage;
40 
41 public:
42   PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43 
44   /// Checks whether the heap is empty.
45   bool empty() const { return Storage.empty(); }
46 
47   /// Insert a new value on the heap.
48   void insert(const T &V) {
49     unsigned Index = Storage.size();
50     Storage.push_back(V);
51     if (Index == 0) return;
52 
53     T *data = Storage.data();
54     while (true) {
55       unsigned Target = (Index + 1) / 2 - 1;
56       if (!Precedes(data[Index], data[Target])) return;
57       std::swap(data[Index], data[Target]);
58       if (Target == 0) return;
59       Index = Target;
60     }
61   }
62 
63   /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
64   T remove_min() {
65     assert(!empty());
66     T tmp = Storage[0];
67 
68     unsigned NewSize = Storage.size() - 1;
69     if (NewSize) {
70       // Move the slot at the end to the beginning.
71       if (std::is_trivially_copyable<T>::value)
72         Storage[0] = Storage[NewSize];
73       else
74         std::swap(Storage[0], Storage[NewSize]);
75 
76       // Bubble the root up as necessary.
77       unsigned Index = 0;
78       while (true) {
79         // With a 1-based index, the children would be Index*2 and Index*2+1.
80         unsigned R = (Index + 1) * 2;
81         unsigned L = R - 1;
82 
83         // If R is out of bounds, we're done after this in any case.
84         if (R >= NewSize) {
85           // If L is also out of bounds, we're done immediately.
86           if (L >= NewSize) break;
87 
88           // Otherwise, test whether we should swap L and Index.
89           if (Precedes(Storage[L], Storage[Index]))
90             std::swap(Storage[L], Storage[Index]);
91           break;
92         }
93 
94         // Otherwise, we need to compare with the smaller of L and R.
95         // Prefer R because it's closer to the end of the array.
96         unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97 
98         // If Index is >= the min of L and R, then heap ordering is restored.
99         if (!Precedes(Storage[IndexToTest], Storage[Index]))
100           break;
101 
102         // Otherwise, keep bubbling up.
103         std::swap(Storage[IndexToTest], Storage[Index]);
104         Index = IndexToTest;
105       }
106     }
107     Storage.pop_back();
108 
109     return tmp;
110   }
111 };
112 
113 /// A function-scope difference engine.
114 class FunctionDifferenceEngine {
115   DifferenceEngine &Engine;
116 
117   // Some initializers may reference the variable we're currently checking. This
118   // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119   // recursing.
120   const Value *SavedLHS;
121   const Value *SavedRHS;
122 
123   // The current mapping from old local values to new local values.
124   DenseMap<const Value *, const Value *> Values;
125 
126   // The current mapping from old blocks to new blocks.
127   DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128 
129   // The tentative mapping from old local values while comparing a pair of
130   // basic blocks. Once the pair has been processed, the tentative mapping is
131   // committed to the Values map.
132   DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133 
134   // Equivalence Assumptions
135   //
136   // For basic blocks in loops, some values in phi nodes may depend on
137   // values from not yet processed basic blocks in the loop. When encountering
138   // such values, we optimistically asssume their equivalence and store this
139   // assumption in a BlockDiffCandidate for the pair of compared BBs.
140   //
141   // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142   // stored assumptions using the Values map that stores proven equivalences
143   // between the old and new values, and report a diff if an assumption cannot
144   // be proven to be true.
145   //
146   // Note that after having made an assumption, all further determined
147   // equivalences implicitly depend on that assumption. These will not be
148   // reverted or reported if the assumption proves to be false, because these
149   // are considered indirect diffs caused by earlier direct diffs.
150   //
151   // We aim to avoid false negatives in llvm-diff, that is, ensure that
152   // whenever no diff is reported, the functions are indeed equal. If
153   // assumptions were made, this is not entirely clear, because in principle we
154   // could end up with a circular proof where the proof of equivalence of two
155   // nodes is depending on the assumption of their equivalence.
156   //
157   // To see that assumptions do not add false negatives, note that if we do not
158   // report a diff, this means that there is an equivalence mapping between old
159   // and new values that is consistent with all assumptions made. The circular
160   // dependency that exists on an IR value level does not exist at run time,
161   // because the values selected by the phi nodes must always already have been
162   // computed. Hence, we can prove equivalence of the old and new functions by
163   // considering step-wise parallel execution, and incrementally proving
164   // equivalence of every new computed value. Another way to think about it is
165   // to imagine cloning the loop BBs for every iteration, turning the loops
166   // into (possibly infinite) DAGs, and proving equivalence by induction on the
167   // iteration, using the computed value mapping.
168 
169   // The class BlockDiffCandidate stores pairs which either have already been
170   // proven to differ, or pairs whose equivalence depends on assumptions to be
171   // verified later.
172   struct BlockDiffCandidate {
173     const BasicBlock *LBB;
174     const BasicBlock *RBB;
175     // Maps old values to assumed-to-be-equivalent new values
176     SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177     // If set, we already know the blocks differ.
178     bool KnownToDiffer;
179   };
180 
181   // List of block diff candidates in the order found by processing.
182   // We generate reports in this order.
183   // For every LBB, there may only be one corresponding RBB.
184   SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185   // Maps LBB to the index of its BlockDiffCandidate, if existing.
186   DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187 
188   // Note: Every LBB must always be queried together with the same RBB.
189   // The returned reference is not permanently valid and should not be stored.
190   BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191                                                     const BasicBlock *RBB) {
192     auto It = BlockDiffCandidateIndices.find(LBB);
193     // Check if LBB already has a diff candidate
194     if (It == BlockDiffCandidateIndices.end()) {
195       // Add new one
196       BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197       BlockDiffCandidates.push_back(
198           {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199       return BlockDiffCandidates.back();
200     }
201     // Use existing one
202     BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203     assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204     return Result;
205   }
206 
207   // Optionally passed to equivalence checker functions, so these can add
208   // assumptions in BlockDiffCandidates. Its presence controls whether
209   // assumptions are generated.
210   struct AssumptionContext {
211     // The two basic blocks that need the two compared values to be equivalent.
212     const BasicBlock *LBB;
213     const BasicBlock *RBB;
214   };
215 
216   unsigned getUnprocPredCount(const BasicBlock *Block) const {
217     return llvm::count_if(predecessors(Block), [&](const BasicBlock *Pred) {
218       return !Blocks.contains(Pred);
219     });
220   }
221 
222   typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
223 
224   /// A type which sorts a priority queue by the number of unprocessed
225   /// predecessor blocks it has remaining.
226   ///
227   /// This is actually really expensive to calculate.
228   struct QueueSorter {
229     const FunctionDifferenceEngine &fde;
230     explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
231 
232     bool operator()(BlockPair &Old, BlockPair &New) {
233       return fde.getUnprocPredCount(Old.first)
234            < fde.getUnprocPredCount(New.first);
235     }
236   };
237 
238   /// A queue of unified blocks to process.
239   PriorityQueue<BlockPair, QueueSorter, 20> Queue;
240 
241   /// Try to unify the given two blocks.  Enqueues them for processing
242   /// if they haven't already been processed.
243   ///
244   /// Returns true if there was a problem unifying them.
245   bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
246     const BasicBlock *&Ref = Blocks[L];
247 
248     if (Ref) {
249       if (Ref == R) return false;
250 
251       Engine.logf("successor %l cannot be equivalent to %r; "
252                   "it's already equivalent to %r")
253         << L << R << Ref;
254       return true;
255     }
256 
257     Ref = R;
258     Queue.insert(BlockPair(L, R));
259     return false;
260   }
261 
262   /// Unifies two instructions, given that they're known not to have
263   /// structural differences.
264   void unify(const Instruction *L, const Instruction *R) {
265     DifferenceEngine::Context C(Engine, L, R);
266 
267     bool Result = diff(L, R, true, true, true);
268     assert(!Result && "structural differences second time around?");
269     (void) Result;
270     if (!L->use_empty())
271       Values[L] = R;
272   }
273 
274   void processQueue() {
275     while (!Queue.empty()) {
276       BlockPair Pair = Queue.remove_min();
277       diff(Pair.first, Pair.second);
278     }
279   }
280 
281   void checkAndReportDiffCandidates() {
282     for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
283 
284       // Check assumptions
285       for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
286         auto It = Values.find(L);
287         if (It == Values.end() || It->second != R) {
288           BDC.KnownToDiffer = true;
289           break;
290         }
291       }
292 
293       // Run block diff if the BBs differ
294       if (BDC.KnownToDiffer) {
295         DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
296         runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
297       }
298     }
299   }
300 
301   void diff(const BasicBlock *L, const BasicBlock *R) {
302     DifferenceEngine::Context C(Engine, L, R);
303 
304     BasicBlock::const_iterator LI = L->begin(), LE = L->end();
305     BasicBlock::const_iterator RI = R->begin();
306 
307     do {
308       assert(LI != LE && RI != R->end());
309       const Instruction *LeftI = &*LI, *RightI = &*RI;
310 
311       // If the instructions differ, start the more sophisticated diff
312       // algorithm at the start of the block.
313       if (diff(LeftI, RightI, false, false, true)) {
314         TentativeValues.clear();
315         // Register (L, R) as diffing pair. Note that we could directly emit a
316         // block diff here, but this way we ensure all diffs are emitted in one
317         // consistent order, independent of whether the diffs were detected
318         // immediately or via invalid assumptions.
319         getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
320         return;
321       }
322 
323       // Otherwise, tentatively unify them.
324       if (!LeftI->use_empty())
325         TentativeValues.insert(std::make_pair(LeftI, RightI));
326 
327       ++LI;
328       ++RI;
329     } while (LI != LE); // This is sufficient: we can't get equality of
330                         // terminators if there are residual instructions.
331 
332     // Unify everything in the block, non-tentatively this time.
333     TentativeValues.clear();
334     for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
335       unify(&*LI, &*RI);
336   }
337 
338   bool matchForBlockDiff(const Instruction *L, const Instruction *R);
339   void runBlockDiff(BasicBlock::const_iterator LI,
340                     BasicBlock::const_iterator RI);
341 
342   bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
343     // FIXME: call attributes
344     AssumptionContext AC = {L.getParent(), R.getParent()};
345     if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
346                               &AC)) {
347       if (Complain) Engine.log("called functions differ");
348       return true;
349     }
350     if (L.arg_size() != R.arg_size()) {
351       if (Complain) Engine.log("argument counts differ");
352       return true;
353     }
354     for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
355       if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
356         if (Complain)
357           Engine.logf("arguments %l and %r differ")
358               << L.getArgOperand(I) << R.getArgOperand(I);
359         return true;
360       }
361     return false;
362   }
363 
364   // If AllowAssumptions is enabled, whenever we encounter a pair of values
365   // that we cannot prove to be equivalent, we assume equivalence and store that
366   // assumption to be checked later in BlockDiffCandidates.
367   bool diff(const Instruction *L, const Instruction *R, bool Complain,
368             bool TryUnify, bool AllowAssumptions) {
369     // FIXME: metadata (if Complain is set)
370     AssumptionContext ACValue = {L->getParent(), R->getParent()};
371     // nullptr AssumptionContext disables assumption generation.
372     const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
373 
374     // Different opcodes always imply different operations.
375     if (L->getOpcode() != R->getOpcode()) {
376       if (Complain) Engine.log("different instruction types");
377       return true;
378     }
379 
380     if (isa<CmpInst>(L)) {
381       if (cast<CmpInst>(L)->getPredicate()
382             != cast<CmpInst>(R)->getPredicate()) {
383         if (Complain) Engine.log("different predicates");
384         return true;
385       }
386     } else if (isa<CallInst>(L)) {
387       return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
388     } else if (isa<PHINode>(L)) {
389       const PHINode &LI = cast<PHINode>(*L);
390       const PHINode &RI = cast<PHINode>(*R);
391 
392       // This is really weird;  type uniquing is broken?
393       if (LI.getType() != RI.getType()) {
394         if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
395           if (Complain) Engine.log("different phi types");
396           return true;
397         }
398       }
399 
400       if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
401         if (Complain)
402           Engine.log("PHI node # of incoming values differ");
403         return true;
404       }
405 
406       for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
407         if (TryUnify)
408           tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
409 
410         if (!equivalentAsOperands(LI.getIncomingValue(I),
411                                   RI.getIncomingValue(I), AC)) {
412           if (Complain)
413             Engine.log("PHI node incoming values differ");
414           return true;
415         }
416       }
417 
418       return false;
419 
420     // Terminators.
421     } else if (isa<InvokeInst>(L)) {
422       const InvokeInst &LI = cast<InvokeInst>(*L);
423       const InvokeInst &RI = cast<InvokeInst>(*R);
424       if (diffCallSites(LI, RI, Complain))
425         return true;
426 
427       if (TryUnify) {
428         tryUnify(LI.getNormalDest(), RI.getNormalDest());
429         tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
430       }
431       return false;
432 
433     } else if (isa<CallBrInst>(L)) {
434       const CallBrInst &LI = cast<CallBrInst>(*L);
435       const CallBrInst &RI = cast<CallBrInst>(*R);
436       if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
437         if (Complain)
438           Engine.log("callbr # of indirect destinations differ");
439         return true;
440       }
441 
442       // Perform the "try unify" step so that we can equate the indirect
443       // destinations before checking the call site.
444       for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
445         tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
446 
447       if (diffCallSites(LI, RI, Complain))
448         return true;
449 
450       if (TryUnify)
451         tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
452       return false;
453 
454     } else if (isa<BranchInst>(L)) {
455       const BranchInst *LI = cast<BranchInst>(L);
456       const BranchInst *RI = cast<BranchInst>(R);
457       if (LI->isConditional() != RI->isConditional()) {
458         if (Complain) Engine.log("branch conditionality differs");
459         return true;
460       }
461 
462       if (LI->isConditional()) {
463         if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
464           if (Complain) Engine.log("branch conditions differ");
465           return true;
466         }
467         if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
468       }
469       if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
470       return false;
471 
472     } else if (isa<IndirectBrInst>(L)) {
473       const IndirectBrInst *LI = cast<IndirectBrInst>(L);
474       const IndirectBrInst *RI = cast<IndirectBrInst>(R);
475       if (LI->getNumDestinations() != RI->getNumDestinations()) {
476         if (Complain) Engine.log("indirectbr # of destinations differ");
477         return true;
478       }
479 
480       if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
481         if (Complain) Engine.log("indirectbr addresses differ");
482         return true;
483       }
484 
485       if (TryUnify) {
486         for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
487           tryUnify(LI->getDestination(i), RI->getDestination(i));
488         }
489       }
490       return false;
491 
492     } else if (isa<SwitchInst>(L)) {
493       const SwitchInst *LI = cast<SwitchInst>(L);
494       const SwitchInst *RI = cast<SwitchInst>(R);
495       if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
496         if (Complain) Engine.log("switch conditions differ");
497         return true;
498       }
499       if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
500 
501       bool Difference = false;
502 
503       DenseMap<const ConstantInt *, const BasicBlock *> LCases;
504       for (auto Case : LI->cases())
505         LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
506 
507       for (auto Case : RI->cases()) {
508         const ConstantInt *CaseValue = Case.getCaseValue();
509         const BasicBlock *LCase = LCases[CaseValue];
510         if (LCase) {
511           if (TryUnify)
512             tryUnify(LCase, Case.getCaseSuccessor());
513           LCases.erase(CaseValue);
514         } else if (Complain || !Difference) {
515           if (Complain)
516             Engine.logf("right switch has extra case %r") << CaseValue;
517           Difference = true;
518         }
519       }
520       if (!Difference)
521         for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
522                  I = LCases.begin(),
523                  E = LCases.end();
524              I != E; ++I) {
525           if (Complain)
526             Engine.logf("left switch has extra case %l") << I->first;
527           Difference = true;
528         }
529       return Difference;
530     } else if (isa<UnreachableInst>(L)) {
531       return false;
532     }
533 
534     if (L->getNumOperands() != R->getNumOperands()) {
535       if (Complain) Engine.log("instructions have different operand counts");
536       return true;
537     }
538 
539     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
540       Value *LO = L->getOperand(I), *RO = R->getOperand(I);
541       if (!equivalentAsOperands(LO, RO, AC)) {
542         if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
543         return true;
544       }
545     }
546 
547     return false;
548   }
549 
550 public:
551   bool equivalentAsOperands(const Constant *L, const Constant *R,
552                             const AssumptionContext *AC) {
553     // Use equality as a preliminary filter.
554     if (L == R)
555       return true;
556 
557     if (L->getValueID() != R->getValueID())
558       return false;
559 
560     // Ask the engine about global values.
561     if (isa<GlobalValue>(L))
562       return Engine.equivalentAsOperands(cast<GlobalValue>(L),
563                                          cast<GlobalValue>(R));
564 
565     // Compare constant expressions structurally.
566     if (isa<ConstantExpr>(L))
567       return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
568                                   AC);
569 
570     // Constants of the "same type" don't always actually have the same
571     // type; I don't know why.  Just white-list them.
572     if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
573       return true;
574 
575     // Block addresses only match if we've already encountered the
576     // block.  FIXME: tentative matches?
577     if (isa<BlockAddress>(L))
578       return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
579                  == cast<BlockAddress>(R)->getBasicBlock();
580 
581     // If L and R are ConstantVectors, compare each element
582     if (isa<ConstantVector>(L)) {
583       const ConstantVector *CVL = cast<ConstantVector>(L);
584       const ConstantVector *CVR = cast<ConstantVector>(R);
585       if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
586         return false;
587       for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
588         if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
589           return false;
590       }
591       return true;
592     }
593 
594     // If L and R are ConstantArrays, compare the element count and types.
595     if (isa<ConstantArray>(L)) {
596       const ConstantArray *CAL = cast<ConstantArray>(L);
597       const ConstantArray *CAR = cast<ConstantArray>(R);
598       // Sometimes a type may be equivalent, but not uniquified---e.g. it may
599       // contain a GEP instruction. Do a deeper comparison of the types.
600       if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
601         return false;
602 
603       for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
604         if (!equivalentAsOperands(CAL->getAggregateElement(I),
605                                   CAR->getAggregateElement(I), AC))
606           return false;
607       }
608 
609       return true;
610     }
611 
612     // If L and R are ConstantStructs, compare each field and type.
613     if (isa<ConstantStruct>(L)) {
614       const ConstantStruct *CSL = cast<ConstantStruct>(L);
615       const ConstantStruct *CSR = cast<ConstantStruct>(R);
616 
617       const StructType *LTy = cast<StructType>(CSL->getType());
618       const StructType *RTy = cast<StructType>(CSR->getType());
619 
620       // The StructTypes should have the same attributes. Don't use
621       // isLayoutIdentical(), because that just checks the element pointers,
622       // which may not work here.
623       if (LTy->getNumElements() != RTy->getNumElements() ||
624           LTy->isPacked() != RTy->isPacked())
625         return false;
626 
627       for (unsigned I = 0; I < LTy->getNumElements(); I++) {
628         const Value *LAgg = CSL->getAggregateElement(I);
629         const Value *RAgg = CSR->getAggregateElement(I);
630 
631         if (LAgg == SavedLHS || RAgg == SavedRHS) {
632           if (LAgg != SavedLHS || RAgg != SavedRHS)
633             // If the left and right operands aren't both re-analyzing the
634             // variable, then the initialiers don't match, so report "false".
635             // Otherwise, we skip these operands..
636             return false;
637 
638           continue;
639         }
640 
641         if (!equivalentAsOperands(LAgg, RAgg, AC)) {
642           return false;
643         }
644       }
645 
646       return true;
647     }
648 
649     return false;
650   }
651 
652   bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
653                             const AssumptionContext *AC) {
654     if (L == R)
655       return true;
656 
657     if (L->getOpcode() != R->getOpcode())
658       return false;
659 
660     switch (L->getOpcode()) {
661     case Instruction::GetElementPtr:
662       // FIXME: inbounds?
663       break;
664 
665     default:
666       break;
667     }
668 
669     if (L->getNumOperands() != R->getNumOperands())
670       return false;
671 
672     for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
673       const auto *LOp = L->getOperand(I);
674       const auto *ROp = R->getOperand(I);
675 
676       if (LOp == SavedLHS || ROp == SavedRHS) {
677         if (LOp != SavedLHS || ROp != SavedRHS)
678           // If the left and right operands aren't both re-analyzing the
679           // variable, then the initialiers don't match, so report "false".
680           // Otherwise, we skip these operands..
681           return false;
682 
683         continue;
684       }
685 
686       if (!equivalentAsOperands(LOp, ROp, AC))
687         return false;
688     }
689 
690     return true;
691   }
692 
693   // There are cases where we cannot determine whether two values are
694   // equivalent, because it depends on not yet processed basic blocks -- see the
695   // documentation on assumptions.
696   //
697   // AC is the context in which we are currently performing a diff.
698   // When we encounter a pair of values for which we can neither prove
699   // equivalence nor the opposite, we do the following:
700   //  * If AC is nullptr, we treat the pair as non-equivalent.
701   //  * If AC is set, we add an assumption for the basic blocks given by AC,
702   //    and treat the pair as equivalent. The assumption is checked later.
703   bool equivalentAsOperands(const Value *L, const Value *R,
704                             const AssumptionContext *AC) {
705     // Fall out if the values have different kind.
706     // This possibly shouldn't take priority over oracles.
707     if (L->getValueID() != R->getValueID())
708       return false;
709 
710     // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
711     //                  InlineAsm, MDNode, MDString, PseudoSourceValue
712 
713     if (isa<Constant>(L))
714       return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
715 
716     if (isa<Instruction>(L)) {
717       auto It = Values.find(L);
718       if (It != Values.end())
719         return It->second == R;
720 
721       if (TentativeValues.count(std::make_pair(L, R)))
722         return true;
723 
724       // L and R might be equivalent, this could depend on not yet processed
725       // basic blocks, so we cannot decide here.
726       if (AC) {
727         // Add an assumption, unless there is a conflict with an existing one
728         BlockDiffCandidate &BDC =
729             getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
730         auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
731         if (!InsertionResult.second && InsertionResult.first->second != R) {
732           // We already have a conflicting equivalence assumption for L, so at
733           // least one must be wrong, and we know that there is a diff.
734           BDC.KnownToDiffer = true;
735           BDC.EquivalenceAssumptions.clear();
736           return false;
737         }
738         // Optimistically assume equivalence, and check later once all BBs
739         // have been processed.
740         return true;
741       }
742 
743       // Assumptions disabled, so pessimistically assume non-equivalence.
744       return false;
745     }
746 
747     if (isa<Argument>(L))
748       return Values[L] == R;
749 
750     if (isa<BasicBlock>(L))
751       return Blocks[cast<BasicBlock>(L)] != R;
752 
753     // Pretend everything else is identical.
754     return true;
755   }
756 
757   // Avoid a gcc warning about accessing 'this' in an initializer.
758   FunctionDifferenceEngine *this_() { return this; }
759 
760 public:
761   FunctionDifferenceEngine(DifferenceEngine &Engine,
762                            const Value *SavedLHS = nullptr,
763                            const Value *SavedRHS = nullptr)
764       : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
765         Queue(QueueSorter(*this_())) {}
766 
767   void diff(const Function *L, const Function *R) {
768     assert(Values.empty() && "Multiple diffs per engine are not supported!");
769 
770     if (L->arg_size() != R->arg_size())
771       Engine.log("different argument counts");
772 
773     // Map the arguments.
774     for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
775                                       RI = R->arg_begin(), RE = R->arg_end();
776          LI != LE && RI != RE; ++LI, ++RI)
777       Values[&*LI] = &*RI;
778 
779     tryUnify(&*L->begin(), &*R->begin());
780     processQueue();
781     checkAndReportDiffCandidates();
782   }
783 };
784 
785 struct DiffEntry {
786   DiffEntry() = default;
787 
788   unsigned Cost = 0;
789   llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
790 };
791 
792 bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
793                                                  const Instruction *R) {
794   return !diff(L, R, false, false, false);
795 }
796 
797 void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
798                                             BasicBlock::const_iterator RStart) {
799   BasicBlock::const_iterator LE = LStart->getParent()->end();
800   BasicBlock::const_iterator RE = RStart->getParent()->end();
801 
802   unsigned NL = std::distance(LStart, LE);
803 
804   SmallVector<DiffEntry, 20> Paths1(NL+1);
805   SmallVector<DiffEntry, 20> Paths2(NL+1);
806 
807   DiffEntry *Cur = Paths1.data();
808   DiffEntry *Next = Paths2.data();
809 
810   const unsigned LeftCost = 2;
811   const unsigned RightCost = 2;
812   const unsigned MatchCost = 0;
813 
814   assert(TentativeValues.empty());
815 
816   // Initialize the first column.
817   for (unsigned I = 0; I != NL+1; ++I) {
818     Cur[I].Cost = I * LeftCost;
819     for (unsigned J = 0; J != I; ++J)
820       Cur[I].Path.push_back(DC_left);
821   }
822 
823   for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
824     // Initialize the first row.
825     Next[0] = Cur[0];
826     Next[0].Cost += RightCost;
827     Next[0].Path.push_back(DC_right);
828 
829     unsigned Index = 1;
830     for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
831       if (matchForBlockDiff(&*LI, &*RI)) {
832         Next[Index] = Cur[Index-1];
833         Next[Index].Cost += MatchCost;
834         Next[Index].Path.push_back(DC_match);
835         TentativeValues.insert(std::make_pair(&*LI, &*RI));
836       } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
837         Next[Index] = Next[Index-1];
838         Next[Index].Cost += LeftCost;
839         Next[Index].Path.push_back(DC_left);
840       } else {
841         Next[Index] = Cur[Index];
842         Next[Index].Cost += RightCost;
843         Next[Index].Path.push_back(DC_right);
844       }
845     }
846 
847     std::swap(Cur, Next);
848   }
849 
850   // We don't need the tentative values anymore; everything from here
851   // on out should be non-tentative.
852   TentativeValues.clear();
853 
854   SmallVectorImpl<char> &Path = Cur[NL].Path;
855   BasicBlock::const_iterator LI = LStart, RI = RStart;
856 
857   DiffLogBuilder Diff(Engine.getConsumer());
858 
859   // Drop trailing matches.
860   while (Path.size() && Path.back() == DC_match)
861     Path.pop_back();
862 
863   // Skip leading matches.
864   SmallVectorImpl<char>::iterator
865     PI = Path.begin(), PE = Path.end();
866   while (PI != PE && *PI == DC_match) {
867     unify(&*LI, &*RI);
868     ++PI;
869     ++LI;
870     ++RI;
871   }
872 
873   for (; PI != PE; ++PI) {
874     switch (static_cast<DiffChange>(*PI)) {
875     case DC_match:
876       assert(LI != LE && RI != RE);
877       {
878         const Instruction *L = &*LI, *R = &*RI;
879         unify(L, R);
880         Diff.addMatch(L, R);
881       }
882       ++LI; ++RI;
883       break;
884 
885     case DC_left:
886       assert(LI != LE);
887       Diff.addLeft(&*LI);
888       ++LI;
889       break;
890 
891     case DC_right:
892       assert(RI != RE);
893       Diff.addRight(&*RI);
894       ++RI;
895       break;
896     }
897   }
898 
899   // Finishing unifying and complaining about the tails of the block,
900   // which should be matches all the way through.
901   while (LI != LE) {
902     assert(RI != RE);
903     unify(&*LI, &*RI);
904     ++LI;
905     ++RI;
906   }
907 
908   // If the terminators have different kinds, but one is an invoke and the
909   // other is an unconditional branch immediately following a call, unify
910   // the results and the destinations.
911   const Instruction *LTerm = LStart->getParent()->getTerminator();
912   const Instruction *RTerm = RStart->getParent()->getTerminator();
913   if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
914     if (cast<BranchInst>(LTerm)->isConditional()) return;
915     BasicBlock::const_iterator I = LTerm->getIterator();
916     if (I == LStart->getParent()->begin()) return;
917     --I;
918     if (!isa<CallInst>(*I)) return;
919     const CallInst *LCall = cast<CallInst>(&*I);
920     const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
921     if (!equivalentAsOperands(LCall->getCalledOperand(),
922                               RInvoke->getCalledOperand(), nullptr))
923       return;
924     if (!LCall->use_empty())
925       Values[LCall] = RInvoke;
926     tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
927   } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
928     if (cast<BranchInst>(RTerm)->isConditional()) return;
929     BasicBlock::const_iterator I = RTerm->getIterator();
930     if (I == RStart->getParent()->begin()) return;
931     --I;
932     if (!isa<CallInst>(*I)) return;
933     const CallInst *RCall = cast<CallInst>(I);
934     const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
935     if (!equivalentAsOperands(LInvoke->getCalledOperand(),
936                               RCall->getCalledOperand(), nullptr))
937       return;
938     if (!LInvoke->use_empty())
939       Values[LInvoke] = RCall;
940     tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
941   }
942 }
943 }
944 
945 void DifferenceEngine::Oracle::anchor() { }
946 
947 void DifferenceEngine::diff(const Function *L, const Function *R) {
948   Context C(*this, L, R);
949 
950   // FIXME: types
951   // FIXME: attributes and CC
952   // FIXME: parameter attributes
953 
954   // If both are declarations, we're done.
955   if (L->empty() && R->empty())
956     return;
957   else if (L->empty())
958     log("left function is declaration, right function is definition");
959   else if (R->empty())
960     log("right function is declaration, left function is definition");
961   else
962     FunctionDifferenceEngine(*this).diff(L, R);
963 }
964 
965 void DifferenceEngine::diff(const Module *L, const Module *R) {
966   StringSet<> LNames;
967   SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
968 
969   unsigned LeftAnonCount = 0;
970   unsigned RightAnonCount = 0;
971 
972   for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
973     const Function *LFn = &*I;
974     StringRef Name = LFn->getName();
975     if (Name.empty()) {
976       ++LeftAnonCount;
977       continue;
978     }
979 
980     LNames.insert(Name);
981 
982     if (Function *RFn = R->getFunction(LFn->getName()))
983       Queue.push_back(std::make_pair(LFn, RFn));
984     else
985       logf("function %l exists only in left module") << LFn;
986   }
987 
988   for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
989     const Function *RFn = &*I;
990     StringRef Name = RFn->getName();
991     if (Name.empty()) {
992       ++RightAnonCount;
993       continue;
994     }
995 
996     if (!LNames.count(Name))
997       logf("function %r exists only in right module") << RFn;
998   }
999 
1000   if (LeftAnonCount != 0 || RightAnonCount != 0) {
1001     SmallString<32> Tmp;
1002     logf(("not comparing " + Twine(LeftAnonCount) +
1003           " anonymous functions in the left module and " +
1004           Twine(RightAnonCount) + " in the right module")
1005              .toStringRef(Tmp));
1006   }
1007 
1008   for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1009            I = Queue.begin(),
1010            E = Queue.end();
1011        I != E; ++I)
1012     diff(I->first, I->second);
1013 }
1014 
1015 bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1016                                             const GlobalValue *R) {
1017   if (globalValueOracle) return (*globalValueOracle)(L, R);
1018 
1019   if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1020     const GlobalVariable *GVL = cast<GlobalVariable>(L);
1021     const GlobalVariable *GVR = cast<GlobalVariable>(R);
1022     if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1023         GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1024       return FunctionDifferenceEngine(*this, GVL, GVR)
1025           .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1026                                 nullptr);
1027   }
1028 
1029   return L->getName() == R->getName();
1030 }
1031