xref: /freebsd/contrib/llvm-project/llvm/tools/llvm-diff/lib/DifferenceEngine.cpp (revision 9c3f6368b1bdb576512a056e08d116f22da43931)
1  //===-- DifferenceEngine.cpp - Structural function/module comparison ------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This header defines the implementation of the LLVM difference
10  // engine, which structurally compares global values within a module.
11  //
12  //===----------------------------------------------------------------------===//
13  
14  #include "DifferenceEngine.h"
15  #include "llvm/ADT/DenseMap.h"
16  #include "llvm/ADT/DenseSet.h"
17  #include "llvm/ADT/SmallString.h"
18  #include "llvm/ADT/SmallVector.h"
19  #include "llvm/ADT/StringSet.h"
20  #include "llvm/IR/BasicBlock.h"
21  #include "llvm/IR/CFG.h"
22  #include "llvm/IR/Constants.h"
23  #include "llvm/IR/Function.h"
24  #include "llvm/IR/Instructions.h"
25  #include "llvm/IR/Module.h"
26  #include "llvm/Support/ErrorHandling.h"
27  #include "llvm/Support/raw_ostream.h"
28  #include "llvm/Support/type_traits.h"
29  #include <utility>
30  
31  using namespace llvm;
32  
33  namespace {
34  
35  /// A priority queue, implemented as a heap.
36  template <class T, class Sorter, unsigned InlineCapacity>
37  class PriorityQueue {
38    Sorter Precedes;
39    llvm::SmallVector<T, InlineCapacity> Storage;
40  
41  public:
42    PriorityQueue(const Sorter &Precedes) : Precedes(Precedes) {}
43  
44    /// Checks whether the heap is empty.
45    bool empty() const { return Storage.empty(); }
46  
47    /// Insert a new value on the heap.
48    void insert(const T &V) {
49      unsigned Index = Storage.size();
50      Storage.push_back(V);
51      if (Index == 0) return;
52  
53      T *data = Storage.data();
54      while (true) {
55        unsigned Target = (Index + 1) / 2 - 1;
56        if (!Precedes(data[Index], data[Target])) return;
57        std::swap(data[Index], data[Target]);
58        if (Target == 0) return;
59        Index = Target;
60      }
61    }
62  
63    /// Remove the minimum value in the heap.  Only valid on a non-empty heap.
64    T remove_min() {
65      assert(!empty());
66      T tmp = Storage[0];
67  
68      unsigned NewSize = Storage.size() - 1;
69      if (NewSize) {
70        // Move the slot at the end to the beginning.
71        if (std::is_trivially_copyable<T>::value)
72          Storage[0] = Storage[NewSize];
73        else
74          std::swap(Storage[0], Storage[NewSize]);
75  
76        // Bubble the root up as necessary.
77        unsigned Index = 0;
78        while (true) {
79          // With a 1-based index, the children would be Index*2 and Index*2+1.
80          unsigned R = (Index + 1) * 2;
81          unsigned L = R - 1;
82  
83          // If R is out of bounds, we're done after this in any case.
84          if (R >= NewSize) {
85            // If L is also out of bounds, we're done immediately.
86            if (L >= NewSize) break;
87  
88            // Otherwise, test whether we should swap L and Index.
89            if (Precedes(Storage[L], Storage[Index]))
90              std::swap(Storage[L], Storage[Index]);
91            break;
92          }
93  
94          // Otherwise, we need to compare with the smaller of L and R.
95          // Prefer R because it's closer to the end of the array.
96          unsigned IndexToTest = (Precedes(Storage[L], Storage[R]) ? L : R);
97  
98          // If Index is >= the min of L and R, then heap ordering is restored.
99          if (!Precedes(Storage[IndexToTest], Storage[Index]))
100            break;
101  
102          // Otherwise, keep bubbling up.
103          std::swap(Storage[IndexToTest], Storage[Index]);
104          Index = IndexToTest;
105        }
106      }
107      Storage.pop_back();
108  
109      return tmp;
110    }
111  };
112  
113  /// A function-scope difference engine.
114  class FunctionDifferenceEngine {
115    DifferenceEngine &Engine;
116  
117    // Some initializers may reference the variable we're currently checking. This
118    // can cause an infinite loop. The Saved[LR]HS ivars can be checked to prevent
119    // recursing.
120    const Value *SavedLHS;
121    const Value *SavedRHS;
122  
123    // The current mapping from old local values to new local values.
124    DenseMap<const Value *, const Value *> Values;
125  
126    // The current mapping from old blocks to new blocks.
127    DenseMap<const BasicBlock *, const BasicBlock *> Blocks;
128  
129    // The tentative mapping from old local values while comparing a pair of
130    // basic blocks. Once the pair has been processed, the tentative mapping is
131    // committed to the Values map.
132    DenseSet<std::pair<const Value *, const Value *>> TentativeValues;
133  
134    // Equivalence Assumptions
135    //
136    // For basic blocks in loops, some values in phi nodes may depend on
137    // values from not yet processed basic blocks in the loop. When encountering
138    // such values, we optimistically asssume their equivalence and store this
139    // assumption in a BlockDiffCandidate for the pair of compared BBs.
140    //
141    // Once we have diffed all BBs, for every BlockDiffCandidate, we check all
142    // stored assumptions using the Values map that stores proven equivalences
143    // between the old and new values, and report a diff if an assumption cannot
144    // be proven to be true.
145    //
146    // Note that after having made an assumption, all further determined
147    // equivalences implicitly depend on that assumption. These will not be
148    // reverted or reported if the assumption proves to be false, because these
149    // are considered indirect diffs caused by earlier direct diffs.
150    //
151    // We aim to avoid false negatives in llvm-diff, that is, ensure that
152    // whenever no diff is reported, the functions are indeed equal. If
153    // assumptions were made, this is not entirely clear, because in principle we
154    // could end up with a circular proof where the proof of equivalence of two
155    // nodes is depending on the assumption of their equivalence.
156    //
157    // To see that assumptions do not add false negatives, note that if we do not
158    // report a diff, this means that there is an equivalence mapping between old
159    // and new values that is consistent with all assumptions made. The circular
160    // dependency that exists on an IR value level does not exist at run time,
161    // because the values selected by the phi nodes must always already have been
162    // computed. Hence, we can prove equivalence of the old and new functions by
163    // considering step-wise parallel execution, and incrementally proving
164    // equivalence of every new computed value. Another way to think about it is
165    // to imagine cloning the loop BBs for every iteration, turning the loops
166    // into (possibly infinite) DAGs, and proving equivalence by induction on the
167    // iteration, using the computed value mapping.
168  
169    // The class BlockDiffCandidate stores pairs which either have already been
170    // proven to differ, or pairs whose equivalence depends on assumptions to be
171    // verified later.
172    struct BlockDiffCandidate {
173      const BasicBlock *LBB;
174      const BasicBlock *RBB;
175      // Maps old values to assumed-to-be-equivalent new values
176      SmallDenseMap<const Value *, const Value *> EquivalenceAssumptions;
177      // If set, we already know the blocks differ.
178      bool KnownToDiffer;
179    };
180  
181    // List of block diff candidates in the order found by processing.
182    // We generate reports in this order.
183    // For every LBB, there may only be one corresponding RBB.
184    SmallVector<BlockDiffCandidate> BlockDiffCandidates;
185    // Maps LBB to the index of its BlockDiffCandidate, if existing.
186    DenseMap<const BasicBlock *, uint64_t> BlockDiffCandidateIndices;
187  
188    // Note: Every LBB must always be queried together with the same RBB.
189    // The returned reference is not permanently valid and should not be stored.
190    BlockDiffCandidate &getOrCreateBlockDiffCandidate(const BasicBlock *LBB,
191                                                      const BasicBlock *RBB) {
192      auto It = BlockDiffCandidateIndices.find(LBB);
193      // Check if LBB already has a diff candidate
194      if (It == BlockDiffCandidateIndices.end()) {
195        // Add new one
196        BlockDiffCandidateIndices[LBB] = BlockDiffCandidates.size();
197        BlockDiffCandidates.push_back(
198            {LBB, RBB, SmallDenseMap<const Value *, const Value *>(), false});
199        return BlockDiffCandidates.back();
200      }
201      // Use existing one
202      BlockDiffCandidate &Result = BlockDiffCandidates[It->second];
203      assert(Result.RBB == RBB && "Inconsistent basic block pairing!");
204      return Result;
205    }
206  
207    // Optionally passed to equivalence checker functions, so these can add
208    // assumptions in BlockDiffCandidates. Its presence controls whether
209    // assumptions are generated.
210    struct AssumptionContext {
211      // The two basic blocks that need the two compared values to be equivalent.
212      const BasicBlock *LBB;
213      const BasicBlock *RBB;
214    };
215  
216    unsigned getUnprocPredCount(const BasicBlock *Block) const {
217      unsigned Count = 0;
218      for (const_pred_iterator I = pred_begin(Block), E = pred_end(Block); I != E;
219           ++I)
220        if (!Blocks.count(*I)) Count++;
221      return Count;
222    }
223  
224    typedef std::pair<const BasicBlock *, const BasicBlock *> BlockPair;
225  
226    /// A type which sorts a priority queue by the number of unprocessed
227    /// predecessor blocks it has remaining.
228    ///
229    /// This is actually really expensive to calculate.
230    struct QueueSorter {
231      const FunctionDifferenceEngine &fde;
232      explicit QueueSorter(const FunctionDifferenceEngine &fde) : fde(fde) {}
233  
234      bool operator()(BlockPair &Old, BlockPair &New) {
235        return fde.getUnprocPredCount(Old.first)
236             < fde.getUnprocPredCount(New.first);
237      }
238    };
239  
240    /// A queue of unified blocks to process.
241    PriorityQueue<BlockPair, QueueSorter, 20> Queue;
242  
243    /// Try to unify the given two blocks.  Enqueues them for processing
244    /// if they haven't already been processed.
245    ///
246    /// Returns true if there was a problem unifying them.
247    bool tryUnify(const BasicBlock *L, const BasicBlock *R) {
248      const BasicBlock *&Ref = Blocks[L];
249  
250      if (Ref) {
251        if (Ref == R) return false;
252  
253        Engine.logf("successor %l cannot be equivalent to %r; "
254                    "it's already equivalent to %r")
255          << L << R << Ref;
256        return true;
257      }
258  
259      Ref = R;
260      Queue.insert(BlockPair(L, R));
261      return false;
262    }
263  
264    /// Unifies two instructions, given that they're known not to have
265    /// structural differences.
266    void unify(const Instruction *L, const Instruction *R) {
267      DifferenceEngine::Context C(Engine, L, R);
268  
269      bool Result = diff(L, R, true, true, true);
270      assert(!Result && "structural differences second time around?");
271      (void) Result;
272      if (!L->use_empty())
273        Values[L] = R;
274    }
275  
276    void processQueue() {
277      while (!Queue.empty()) {
278        BlockPair Pair = Queue.remove_min();
279        diff(Pair.first, Pair.second);
280      }
281    }
282  
283    void checkAndReportDiffCandidates() {
284      for (BlockDiffCandidate &BDC : BlockDiffCandidates) {
285  
286        // Check assumptions
287        for (const auto &[L, R] : BDC.EquivalenceAssumptions) {
288          auto It = Values.find(L);
289          if (It == Values.end() || It->second != R) {
290            BDC.KnownToDiffer = true;
291            break;
292          }
293        }
294  
295        // Run block diff if the BBs differ
296        if (BDC.KnownToDiffer) {
297          DifferenceEngine::Context C(Engine, BDC.LBB, BDC.RBB);
298          runBlockDiff(BDC.LBB->begin(), BDC.RBB->begin());
299        }
300      }
301    }
302  
303    void diff(const BasicBlock *L, const BasicBlock *R) {
304      DifferenceEngine::Context C(Engine, L, R);
305  
306      BasicBlock::const_iterator LI = L->begin(), LE = L->end();
307      BasicBlock::const_iterator RI = R->begin();
308  
309      do {
310        assert(LI != LE && RI != R->end());
311        const Instruction *LeftI = &*LI, *RightI = &*RI;
312  
313        // If the instructions differ, start the more sophisticated diff
314        // algorithm at the start of the block.
315        if (diff(LeftI, RightI, false, false, true)) {
316          TentativeValues.clear();
317          // Register (L, R) as diffing pair. Note that we could directly emit a
318          // block diff here, but this way we ensure all diffs are emitted in one
319          // consistent order, independent of whether the diffs were detected
320          // immediately or via invalid assumptions.
321          getOrCreateBlockDiffCandidate(L, R).KnownToDiffer = true;
322          return;
323        }
324  
325        // Otherwise, tentatively unify them.
326        if (!LeftI->use_empty())
327          TentativeValues.insert(std::make_pair(LeftI, RightI));
328  
329        ++LI;
330        ++RI;
331      } while (LI != LE); // This is sufficient: we can't get equality of
332                          // terminators if there are residual instructions.
333  
334      // Unify everything in the block, non-tentatively this time.
335      TentativeValues.clear();
336      for (LI = L->begin(), RI = R->begin(); LI != LE; ++LI, ++RI)
337        unify(&*LI, &*RI);
338    }
339  
340    bool matchForBlockDiff(const Instruction *L, const Instruction *R);
341    void runBlockDiff(BasicBlock::const_iterator LI,
342                      BasicBlock::const_iterator RI);
343  
344    bool diffCallSites(const CallBase &L, const CallBase &R, bool Complain) {
345      // FIXME: call attributes
346      AssumptionContext AC = {L.getParent(), R.getParent()};
347      if (!equivalentAsOperands(L.getCalledOperand(), R.getCalledOperand(),
348                                &AC)) {
349        if (Complain) Engine.log("called functions differ");
350        return true;
351      }
352      if (L.arg_size() != R.arg_size()) {
353        if (Complain) Engine.log("argument counts differ");
354        return true;
355      }
356      for (unsigned I = 0, E = L.arg_size(); I != E; ++I)
357        if (!equivalentAsOperands(L.getArgOperand(I), R.getArgOperand(I), &AC)) {
358          if (Complain)
359            Engine.logf("arguments %l and %r differ")
360                << L.getArgOperand(I) << R.getArgOperand(I);
361          return true;
362        }
363      return false;
364    }
365  
366    // If AllowAssumptions is enabled, whenever we encounter a pair of values
367    // that we cannot prove to be equivalent, we assume equivalence and store that
368    // assumption to be checked later in BlockDiffCandidates.
369    bool diff(const Instruction *L, const Instruction *R, bool Complain,
370              bool TryUnify, bool AllowAssumptions) {
371      // FIXME: metadata (if Complain is set)
372      AssumptionContext ACValue = {L->getParent(), R->getParent()};
373      // nullptr AssumptionContext disables assumption generation.
374      const AssumptionContext *AC = AllowAssumptions ? &ACValue : nullptr;
375  
376      // Different opcodes always imply different operations.
377      if (L->getOpcode() != R->getOpcode()) {
378        if (Complain) Engine.log("different instruction types");
379        return true;
380      }
381  
382      if (isa<CmpInst>(L)) {
383        if (cast<CmpInst>(L)->getPredicate()
384              != cast<CmpInst>(R)->getPredicate()) {
385          if (Complain) Engine.log("different predicates");
386          return true;
387        }
388      } else if (isa<CallInst>(L)) {
389        return diffCallSites(cast<CallInst>(*L), cast<CallInst>(*R), Complain);
390      } else if (isa<PHINode>(L)) {
391        const PHINode &LI = cast<PHINode>(*L);
392        const PHINode &RI = cast<PHINode>(*R);
393  
394        // This is really weird;  type uniquing is broken?
395        if (LI.getType() != RI.getType()) {
396          if (!LI.getType()->isPointerTy() || !RI.getType()->isPointerTy()) {
397            if (Complain) Engine.log("different phi types");
398            return true;
399          }
400        }
401  
402        if (LI.getNumIncomingValues() != RI.getNumIncomingValues()) {
403          if (Complain)
404            Engine.log("PHI node # of incoming values differ");
405          return true;
406        }
407  
408        for (unsigned I = 0; I < LI.getNumIncomingValues(); ++I) {
409          if (TryUnify)
410            tryUnify(LI.getIncomingBlock(I), RI.getIncomingBlock(I));
411  
412          if (!equivalentAsOperands(LI.getIncomingValue(I),
413                                    RI.getIncomingValue(I), AC)) {
414            if (Complain)
415              Engine.log("PHI node incoming values differ");
416            return true;
417          }
418        }
419  
420        return false;
421  
422      // Terminators.
423      } else if (isa<InvokeInst>(L)) {
424        const InvokeInst &LI = cast<InvokeInst>(*L);
425        const InvokeInst &RI = cast<InvokeInst>(*R);
426        if (diffCallSites(LI, RI, Complain))
427          return true;
428  
429        if (TryUnify) {
430          tryUnify(LI.getNormalDest(), RI.getNormalDest());
431          tryUnify(LI.getUnwindDest(), RI.getUnwindDest());
432        }
433        return false;
434  
435      } else if (isa<CallBrInst>(L)) {
436        const CallBrInst &LI = cast<CallBrInst>(*L);
437        const CallBrInst &RI = cast<CallBrInst>(*R);
438        if (LI.getNumIndirectDests() != RI.getNumIndirectDests()) {
439          if (Complain)
440            Engine.log("callbr # of indirect destinations differ");
441          return true;
442        }
443  
444        // Perform the "try unify" step so that we can equate the indirect
445        // destinations before checking the call site.
446        for (unsigned I = 0; I < LI.getNumIndirectDests(); I++)
447          tryUnify(LI.getIndirectDest(I), RI.getIndirectDest(I));
448  
449        if (diffCallSites(LI, RI, Complain))
450          return true;
451  
452        if (TryUnify)
453          tryUnify(LI.getDefaultDest(), RI.getDefaultDest());
454        return false;
455  
456      } else if (isa<BranchInst>(L)) {
457        const BranchInst *LI = cast<BranchInst>(L);
458        const BranchInst *RI = cast<BranchInst>(R);
459        if (LI->isConditional() != RI->isConditional()) {
460          if (Complain) Engine.log("branch conditionality differs");
461          return true;
462        }
463  
464        if (LI->isConditional()) {
465          if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
466            if (Complain) Engine.log("branch conditions differ");
467            return true;
468          }
469          if (TryUnify) tryUnify(LI->getSuccessor(1), RI->getSuccessor(1));
470        }
471        if (TryUnify) tryUnify(LI->getSuccessor(0), RI->getSuccessor(0));
472        return false;
473  
474      } else if (isa<IndirectBrInst>(L)) {
475        const IndirectBrInst *LI = cast<IndirectBrInst>(L);
476        const IndirectBrInst *RI = cast<IndirectBrInst>(R);
477        if (LI->getNumDestinations() != RI->getNumDestinations()) {
478          if (Complain) Engine.log("indirectbr # of destinations differ");
479          return true;
480        }
481  
482        if (!equivalentAsOperands(LI->getAddress(), RI->getAddress(), AC)) {
483          if (Complain) Engine.log("indirectbr addresses differ");
484          return true;
485        }
486  
487        if (TryUnify) {
488          for (unsigned i = 0; i < LI->getNumDestinations(); i++) {
489            tryUnify(LI->getDestination(i), RI->getDestination(i));
490          }
491        }
492        return false;
493  
494      } else if (isa<SwitchInst>(L)) {
495        const SwitchInst *LI = cast<SwitchInst>(L);
496        const SwitchInst *RI = cast<SwitchInst>(R);
497        if (!equivalentAsOperands(LI->getCondition(), RI->getCondition(), AC)) {
498          if (Complain) Engine.log("switch conditions differ");
499          return true;
500        }
501        if (TryUnify) tryUnify(LI->getDefaultDest(), RI->getDefaultDest());
502  
503        bool Difference = false;
504  
505        DenseMap<const ConstantInt *, const BasicBlock *> LCases;
506        for (auto Case : LI->cases())
507          LCases[Case.getCaseValue()] = Case.getCaseSuccessor();
508  
509        for (auto Case : RI->cases()) {
510          const ConstantInt *CaseValue = Case.getCaseValue();
511          const BasicBlock *LCase = LCases[CaseValue];
512          if (LCase) {
513            if (TryUnify)
514              tryUnify(LCase, Case.getCaseSuccessor());
515            LCases.erase(CaseValue);
516          } else if (Complain || !Difference) {
517            if (Complain)
518              Engine.logf("right switch has extra case %r") << CaseValue;
519            Difference = true;
520          }
521        }
522        if (!Difference)
523          for (DenseMap<const ConstantInt *, const BasicBlock *>::iterator
524                   I = LCases.begin(),
525                   E = LCases.end();
526               I != E; ++I) {
527            if (Complain)
528              Engine.logf("left switch has extra case %l") << I->first;
529            Difference = true;
530          }
531        return Difference;
532      } else if (isa<UnreachableInst>(L)) {
533        return false;
534      }
535  
536      if (L->getNumOperands() != R->getNumOperands()) {
537        if (Complain) Engine.log("instructions have different operand counts");
538        return true;
539      }
540  
541      for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
542        Value *LO = L->getOperand(I), *RO = R->getOperand(I);
543        if (!equivalentAsOperands(LO, RO, AC)) {
544          if (Complain) Engine.logf("operands %l and %r differ") << LO << RO;
545          return true;
546        }
547      }
548  
549      return false;
550    }
551  
552  public:
553    bool equivalentAsOperands(const Constant *L, const Constant *R,
554                              const AssumptionContext *AC) {
555      // Use equality as a preliminary filter.
556      if (L == R)
557        return true;
558  
559      if (L->getValueID() != R->getValueID())
560        return false;
561  
562      // Ask the engine about global values.
563      if (isa<GlobalValue>(L))
564        return Engine.equivalentAsOperands(cast<GlobalValue>(L),
565                                           cast<GlobalValue>(R));
566  
567      // Compare constant expressions structurally.
568      if (isa<ConstantExpr>(L))
569        return equivalentAsOperands(cast<ConstantExpr>(L), cast<ConstantExpr>(R),
570                                    AC);
571  
572      // Constants of the "same type" don't always actually have the same
573      // type; I don't know why.  Just white-list them.
574      if (isa<ConstantPointerNull>(L) || isa<UndefValue>(L) || isa<ConstantAggregateZero>(L))
575        return true;
576  
577      // Block addresses only match if we've already encountered the
578      // block.  FIXME: tentative matches?
579      if (isa<BlockAddress>(L))
580        return Blocks[cast<BlockAddress>(L)->getBasicBlock()]
581                   == cast<BlockAddress>(R)->getBasicBlock();
582  
583      // If L and R are ConstantVectors, compare each element
584      if (isa<ConstantVector>(L)) {
585        const ConstantVector *CVL = cast<ConstantVector>(L);
586        const ConstantVector *CVR = cast<ConstantVector>(R);
587        if (CVL->getType()->getNumElements() != CVR->getType()->getNumElements())
588          return false;
589        for (unsigned i = 0; i < CVL->getType()->getNumElements(); i++) {
590          if (!equivalentAsOperands(CVL->getOperand(i), CVR->getOperand(i), AC))
591            return false;
592        }
593        return true;
594      }
595  
596      // If L and R are ConstantArrays, compare the element count and types.
597      if (isa<ConstantArray>(L)) {
598        const ConstantArray *CAL = cast<ConstantArray>(L);
599        const ConstantArray *CAR = cast<ConstantArray>(R);
600        // Sometimes a type may be equivalent, but not uniquified---e.g. it may
601        // contain a GEP instruction. Do a deeper comparison of the types.
602        if (CAL->getType()->getNumElements() != CAR->getType()->getNumElements())
603          return false;
604  
605        for (unsigned I = 0; I < CAL->getType()->getNumElements(); ++I) {
606          if (!equivalentAsOperands(CAL->getAggregateElement(I),
607                                    CAR->getAggregateElement(I), AC))
608            return false;
609        }
610  
611        return true;
612      }
613  
614      // If L and R are ConstantStructs, compare each field and type.
615      if (isa<ConstantStruct>(L)) {
616        const ConstantStruct *CSL = cast<ConstantStruct>(L);
617        const ConstantStruct *CSR = cast<ConstantStruct>(R);
618  
619        const StructType *LTy = cast<StructType>(CSL->getType());
620        const StructType *RTy = cast<StructType>(CSR->getType());
621  
622        // The StructTypes should have the same attributes. Don't use
623        // isLayoutIdentical(), because that just checks the element pointers,
624        // which may not work here.
625        if (LTy->getNumElements() != RTy->getNumElements() ||
626            LTy->isPacked() != RTy->isPacked())
627          return false;
628  
629        for (unsigned I = 0; I < LTy->getNumElements(); I++) {
630          const Value *LAgg = CSL->getAggregateElement(I);
631          const Value *RAgg = CSR->getAggregateElement(I);
632  
633          if (LAgg == SavedLHS || RAgg == SavedRHS) {
634            if (LAgg != SavedLHS || RAgg != SavedRHS)
635              // If the left and right operands aren't both re-analyzing the
636              // variable, then the initialiers don't match, so report "false".
637              // Otherwise, we skip these operands..
638              return false;
639  
640            continue;
641          }
642  
643          if (!equivalentAsOperands(LAgg, RAgg, AC)) {
644            return false;
645          }
646        }
647  
648        return true;
649      }
650  
651      return false;
652    }
653  
654    bool equivalentAsOperands(const ConstantExpr *L, const ConstantExpr *R,
655                              const AssumptionContext *AC) {
656      if (L == R)
657        return true;
658  
659      if (L->getOpcode() != R->getOpcode())
660        return false;
661  
662      switch (L->getOpcode()) {
663      case Instruction::ICmp:
664      case Instruction::FCmp:
665        if (L->getPredicate() != R->getPredicate())
666          return false;
667        break;
668  
669      case Instruction::GetElementPtr:
670        // FIXME: inbounds?
671        break;
672  
673      default:
674        break;
675      }
676  
677      if (L->getNumOperands() != R->getNumOperands())
678        return false;
679  
680      for (unsigned I = 0, E = L->getNumOperands(); I != E; ++I) {
681        const auto *LOp = L->getOperand(I);
682        const auto *ROp = R->getOperand(I);
683  
684        if (LOp == SavedLHS || ROp == SavedRHS) {
685          if (LOp != SavedLHS || ROp != SavedRHS)
686            // If the left and right operands aren't both re-analyzing the
687            // variable, then the initialiers don't match, so report "false".
688            // Otherwise, we skip these operands..
689            return false;
690  
691          continue;
692        }
693  
694        if (!equivalentAsOperands(LOp, ROp, AC))
695          return false;
696      }
697  
698      return true;
699    }
700  
701    // There are cases where we cannot determine whether two values are
702    // equivalent, because it depends on not yet processed basic blocks -- see the
703    // documentation on assumptions.
704    //
705    // AC is the context in which we are currently performing a diff.
706    // When we encounter a pair of values for which we can neither prove
707    // equivalence nor the opposite, we do the following:
708    //  * If AC is nullptr, we treat the pair as non-equivalent.
709    //  * If AC is set, we add an assumption for the basic blocks given by AC,
710    //    and treat the pair as equivalent. The assumption is checked later.
711    bool equivalentAsOperands(const Value *L, const Value *R,
712                              const AssumptionContext *AC) {
713      // Fall out if the values have different kind.
714      // This possibly shouldn't take priority over oracles.
715      if (L->getValueID() != R->getValueID())
716        return false;
717  
718      // Value subtypes:  Argument, Constant, Instruction, BasicBlock,
719      //                  InlineAsm, MDNode, MDString, PseudoSourceValue
720  
721      if (isa<Constant>(L))
722        return equivalentAsOperands(cast<Constant>(L), cast<Constant>(R), AC);
723  
724      if (isa<Instruction>(L)) {
725        auto It = Values.find(L);
726        if (It != Values.end())
727          return It->second == R;
728  
729        if (TentativeValues.count(std::make_pair(L, R)))
730          return true;
731  
732        // L and R might be equivalent, this could depend on not yet processed
733        // basic blocks, so we cannot decide here.
734        if (AC) {
735          // Add an assumption, unless there is a conflict with an existing one
736          BlockDiffCandidate &BDC =
737              getOrCreateBlockDiffCandidate(AC->LBB, AC->RBB);
738          auto InsertionResult = BDC.EquivalenceAssumptions.insert({L, R});
739          if (!InsertionResult.second && InsertionResult.first->second != R) {
740            // We already have a conflicting equivalence assumption for L, so at
741            // least one must be wrong, and we know that there is a diff.
742            BDC.KnownToDiffer = true;
743            BDC.EquivalenceAssumptions.clear();
744            return false;
745          }
746          // Optimistically assume equivalence, and check later once all BBs
747          // have been processed.
748          return true;
749        }
750  
751        // Assumptions disabled, so pessimistically assume non-equivalence.
752        return false;
753      }
754  
755      if (isa<Argument>(L))
756        return Values[L] == R;
757  
758      if (isa<BasicBlock>(L))
759        return Blocks[cast<BasicBlock>(L)] != R;
760  
761      // Pretend everything else is identical.
762      return true;
763    }
764  
765    // Avoid a gcc warning about accessing 'this' in an initializer.
766    FunctionDifferenceEngine *this_() { return this; }
767  
768  public:
769    FunctionDifferenceEngine(DifferenceEngine &Engine,
770                             const Value *SavedLHS = nullptr,
771                             const Value *SavedRHS = nullptr)
772        : Engine(Engine), SavedLHS(SavedLHS), SavedRHS(SavedRHS),
773          Queue(QueueSorter(*this_())) {}
774  
775    void diff(const Function *L, const Function *R) {
776      assert(Values.empty() && "Multiple diffs per engine are not supported!");
777  
778      if (L->arg_size() != R->arg_size())
779        Engine.log("different argument counts");
780  
781      // Map the arguments.
782      for (Function::const_arg_iterator LI = L->arg_begin(), LE = L->arg_end(),
783                                        RI = R->arg_begin(), RE = R->arg_end();
784           LI != LE && RI != RE; ++LI, ++RI)
785        Values[&*LI] = &*RI;
786  
787      tryUnify(&*L->begin(), &*R->begin());
788      processQueue();
789      checkAndReportDiffCandidates();
790    }
791  };
792  
793  struct DiffEntry {
794    DiffEntry() : Cost(0) {}
795  
796    unsigned Cost;
797    llvm::SmallVector<char, 8> Path; // actually of DifferenceEngine::DiffChange
798  };
799  
800  bool FunctionDifferenceEngine::matchForBlockDiff(const Instruction *L,
801                                                   const Instruction *R) {
802    return !diff(L, R, false, false, false);
803  }
804  
805  void FunctionDifferenceEngine::runBlockDiff(BasicBlock::const_iterator LStart,
806                                              BasicBlock::const_iterator RStart) {
807    BasicBlock::const_iterator LE = LStart->getParent()->end();
808    BasicBlock::const_iterator RE = RStart->getParent()->end();
809  
810    unsigned NL = std::distance(LStart, LE);
811  
812    SmallVector<DiffEntry, 20> Paths1(NL+1);
813    SmallVector<DiffEntry, 20> Paths2(NL+1);
814  
815    DiffEntry *Cur = Paths1.data();
816    DiffEntry *Next = Paths2.data();
817  
818    const unsigned LeftCost = 2;
819    const unsigned RightCost = 2;
820    const unsigned MatchCost = 0;
821  
822    assert(TentativeValues.empty());
823  
824    // Initialize the first column.
825    for (unsigned I = 0; I != NL+1; ++I) {
826      Cur[I].Cost = I * LeftCost;
827      for (unsigned J = 0; J != I; ++J)
828        Cur[I].Path.push_back(DC_left);
829    }
830  
831    for (BasicBlock::const_iterator RI = RStart; RI != RE; ++RI) {
832      // Initialize the first row.
833      Next[0] = Cur[0];
834      Next[0].Cost += RightCost;
835      Next[0].Path.push_back(DC_right);
836  
837      unsigned Index = 1;
838      for (BasicBlock::const_iterator LI = LStart; LI != LE; ++LI, ++Index) {
839        if (matchForBlockDiff(&*LI, &*RI)) {
840          Next[Index] = Cur[Index-1];
841          Next[Index].Cost += MatchCost;
842          Next[Index].Path.push_back(DC_match);
843          TentativeValues.insert(std::make_pair(&*LI, &*RI));
844        } else if (Next[Index-1].Cost <= Cur[Index].Cost) {
845          Next[Index] = Next[Index-1];
846          Next[Index].Cost += LeftCost;
847          Next[Index].Path.push_back(DC_left);
848        } else {
849          Next[Index] = Cur[Index];
850          Next[Index].Cost += RightCost;
851          Next[Index].Path.push_back(DC_right);
852        }
853      }
854  
855      std::swap(Cur, Next);
856    }
857  
858    // We don't need the tentative values anymore; everything from here
859    // on out should be non-tentative.
860    TentativeValues.clear();
861  
862    SmallVectorImpl<char> &Path = Cur[NL].Path;
863    BasicBlock::const_iterator LI = LStart, RI = RStart;
864  
865    DiffLogBuilder Diff(Engine.getConsumer());
866  
867    // Drop trailing matches.
868    while (Path.size() && Path.back() == DC_match)
869      Path.pop_back();
870  
871    // Skip leading matches.
872    SmallVectorImpl<char>::iterator
873      PI = Path.begin(), PE = Path.end();
874    while (PI != PE && *PI == DC_match) {
875      unify(&*LI, &*RI);
876      ++PI;
877      ++LI;
878      ++RI;
879    }
880  
881    for (; PI != PE; ++PI) {
882      switch (static_cast<DiffChange>(*PI)) {
883      case DC_match:
884        assert(LI != LE && RI != RE);
885        {
886          const Instruction *L = &*LI, *R = &*RI;
887          unify(L, R);
888          Diff.addMatch(L, R);
889        }
890        ++LI; ++RI;
891        break;
892  
893      case DC_left:
894        assert(LI != LE);
895        Diff.addLeft(&*LI);
896        ++LI;
897        break;
898  
899      case DC_right:
900        assert(RI != RE);
901        Diff.addRight(&*RI);
902        ++RI;
903        break;
904      }
905    }
906  
907    // Finishing unifying and complaining about the tails of the block,
908    // which should be matches all the way through.
909    while (LI != LE) {
910      assert(RI != RE);
911      unify(&*LI, &*RI);
912      ++LI;
913      ++RI;
914    }
915  
916    // If the terminators have different kinds, but one is an invoke and the
917    // other is an unconditional branch immediately following a call, unify
918    // the results and the destinations.
919    const Instruction *LTerm = LStart->getParent()->getTerminator();
920    const Instruction *RTerm = RStart->getParent()->getTerminator();
921    if (isa<BranchInst>(LTerm) && isa<InvokeInst>(RTerm)) {
922      if (cast<BranchInst>(LTerm)->isConditional()) return;
923      BasicBlock::const_iterator I = LTerm->getIterator();
924      if (I == LStart->getParent()->begin()) return;
925      --I;
926      if (!isa<CallInst>(*I)) return;
927      const CallInst *LCall = cast<CallInst>(&*I);
928      const InvokeInst *RInvoke = cast<InvokeInst>(RTerm);
929      if (!equivalentAsOperands(LCall->getCalledOperand(),
930                                RInvoke->getCalledOperand(), nullptr))
931        return;
932      if (!LCall->use_empty())
933        Values[LCall] = RInvoke;
934      tryUnify(LTerm->getSuccessor(0), RInvoke->getNormalDest());
935    } else if (isa<InvokeInst>(LTerm) && isa<BranchInst>(RTerm)) {
936      if (cast<BranchInst>(RTerm)->isConditional()) return;
937      BasicBlock::const_iterator I = RTerm->getIterator();
938      if (I == RStart->getParent()->begin()) return;
939      --I;
940      if (!isa<CallInst>(*I)) return;
941      const CallInst *RCall = cast<CallInst>(I);
942      const InvokeInst *LInvoke = cast<InvokeInst>(LTerm);
943      if (!equivalentAsOperands(LInvoke->getCalledOperand(),
944                                RCall->getCalledOperand(), nullptr))
945        return;
946      if (!LInvoke->use_empty())
947        Values[LInvoke] = RCall;
948      tryUnify(LInvoke->getNormalDest(), RTerm->getSuccessor(0));
949    }
950  }
951  }
952  
953  void DifferenceEngine::Oracle::anchor() { }
954  
955  void DifferenceEngine::diff(const Function *L, const Function *R) {
956    Context C(*this, L, R);
957  
958    // FIXME: types
959    // FIXME: attributes and CC
960    // FIXME: parameter attributes
961  
962    // If both are declarations, we're done.
963    if (L->empty() && R->empty())
964      return;
965    else if (L->empty())
966      log("left function is declaration, right function is definition");
967    else if (R->empty())
968      log("right function is declaration, left function is definition");
969    else
970      FunctionDifferenceEngine(*this).diff(L, R);
971  }
972  
973  void DifferenceEngine::diff(const Module *L, const Module *R) {
974    StringSet<> LNames;
975    SmallVector<std::pair<const Function *, const Function *>, 20> Queue;
976  
977    unsigned LeftAnonCount = 0;
978    unsigned RightAnonCount = 0;
979  
980    for (Module::const_iterator I = L->begin(), E = L->end(); I != E; ++I) {
981      const Function *LFn = &*I;
982      StringRef Name = LFn->getName();
983      if (Name.empty()) {
984        ++LeftAnonCount;
985        continue;
986      }
987  
988      LNames.insert(Name);
989  
990      if (Function *RFn = R->getFunction(LFn->getName()))
991        Queue.push_back(std::make_pair(LFn, RFn));
992      else
993        logf("function %l exists only in left module") << LFn;
994    }
995  
996    for (Module::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
997      const Function *RFn = &*I;
998      StringRef Name = RFn->getName();
999      if (Name.empty()) {
1000        ++RightAnonCount;
1001        continue;
1002      }
1003  
1004      if (!LNames.count(Name))
1005        logf("function %r exists only in right module") << RFn;
1006    }
1007  
1008    if (LeftAnonCount != 0 || RightAnonCount != 0) {
1009      SmallString<32> Tmp;
1010      logf(("not comparing " + Twine(LeftAnonCount) +
1011            " anonymous functions in the left module and " +
1012            Twine(RightAnonCount) + " in the right module")
1013               .toStringRef(Tmp));
1014    }
1015  
1016    for (SmallVectorImpl<std::pair<const Function *, const Function *>>::iterator
1017             I = Queue.begin(),
1018             E = Queue.end();
1019         I != E; ++I)
1020      diff(I->first, I->second);
1021  }
1022  
1023  bool DifferenceEngine::equivalentAsOperands(const GlobalValue *L,
1024                                              const GlobalValue *R) {
1025    if (globalValueOracle) return (*globalValueOracle)(L, R);
1026  
1027    if (isa<GlobalVariable>(L) && isa<GlobalVariable>(R)) {
1028      const GlobalVariable *GVL = cast<GlobalVariable>(L);
1029      const GlobalVariable *GVR = cast<GlobalVariable>(R);
1030      if (GVL->hasLocalLinkage() && GVL->hasUniqueInitializer() &&
1031          GVR->hasLocalLinkage() && GVR->hasUniqueInitializer())
1032        return FunctionDifferenceEngine(*this, GVL, GVR)
1033            .equivalentAsOperands(GVL->getInitializer(), GVR->getInitializer(),
1034                                  nullptr);
1035    }
1036  
1037    return L->getName() == R->getName();
1038  }
1039