xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlanHCFGBuilder.cpp (revision e2eeea75eb8b6dd50c1298067a0655880d186734)
1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
13 //
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17 /// in the plain CFG.
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
27 
28 #define DEBUG_TYPE "loop-vectorize"
29 
30 using namespace llvm;
31 
32 namespace {
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder {
35 private:
36   // The outermost loop of the input loop nest considered for vectorization.
37   Loop *TheLoop;
38 
39   // Loop Info analysis.
40   LoopInfo *LI;
41 
42   // Vectorization plan that we are working on.
43   VPlan &Plan;
44 
45   // Output Top Region.
46   VPRegionBlock *TopRegion = nullptr;
47 
48   // Builder of the VPlan instruction-level representation.
49   VPBuilder VPIRBuilder;
50 
51   // NOTE: The following maps are intentionally destroyed after the plain CFG
52   // construction because subsequent VPlan-to-VPlan transformation may
53   // invalidate them.
54   // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
55   DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
56   // Map incoming Value definitions to their newly-created VPValues.
57   DenseMap<Value *, VPValue *> IRDef2VPValue;
58 
59   // Hold phi node's that need to be fixed once the plain CFG has been built.
60   SmallVector<PHINode *, 8> PhisToFix;
61 
62   // Utility functions.
63   void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64   void fixPhiNodes();
65   VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
66 #ifndef NDEBUG
67   bool isExternalDef(Value *Val);
68 #endif
69   VPValue *getOrCreateVPOperand(Value *IRVal);
70   void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
71 
72 public:
73   PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
74       : TheLoop(Lp), LI(LI), Plan(P) {}
75 
76   // Build the plain CFG and return its Top Region.
77   VPRegionBlock *buildPlainCFG();
78 };
79 } // anonymous namespace
80 
81 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
82 // must have no predecessors.
83 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
84   SmallVector<VPBlockBase *, 8> VPBBPreds;
85   // Collect VPBB predecessors.
86   for (BasicBlock *Pred : predecessors(BB))
87     VPBBPreds.push_back(getOrCreateVPBB(Pred));
88 
89   VPBB->setPredecessors(VPBBPreds);
90 }
91 
92 // Add operands to VPInstructions representing phi nodes from the input IR.
93 void PlainCFGBuilder::fixPhiNodes() {
94   for (auto *Phi : PhisToFix) {
95     assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
96     VPValue *VPVal = IRDef2VPValue[Phi];
97     assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
98     auto *VPPhi = cast<VPInstruction>(VPVal);
99     assert(VPPhi->getNumOperands() == 0 &&
100            "Expected VPInstruction with no operands.");
101 
102     for (Value *Op : Phi->operands())
103       VPPhi->addOperand(getOrCreateVPOperand(Op));
104   }
105 }
106 
107 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
108 // existing one if it was already created.
109 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
110   auto BlockIt = BB2VPBB.find(BB);
111   if (BlockIt != BB2VPBB.end())
112     // Retrieve existing VPBB.
113     return BlockIt->second;
114 
115   // Create new VPBB.
116   LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
117   VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
118   BB2VPBB[BB] = VPBB;
119   VPBB->setParent(TopRegion);
120   return VPBB;
121 }
122 
123 #ifndef NDEBUG
124 // Return true if \p Val is considered an external definition. An external
125 // definition is either:
126 // 1. A Value that is not an Instruction. This will be refined in the future.
127 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
128 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
129 // outermost loop exits.
130 bool PlainCFGBuilder::isExternalDef(Value *Val) {
131   // All the Values that are not Instructions are considered external
132   // definitions for now.
133   Instruction *Inst = dyn_cast<Instruction>(Val);
134   if (!Inst)
135     return true;
136 
137   BasicBlock *InstParent = Inst->getParent();
138   assert(InstParent && "Expected instruction parent.");
139 
140   // Check whether Instruction definition is in loop PH.
141   BasicBlock *PH = TheLoop->getLoopPreheader();
142   assert(PH && "Expected loop pre-header.");
143 
144   if (InstParent == PH)
145     // Instruction definition is in outermost loop PH.
146     return false;
147 
148   // Check whether Instruction definition is in the loop exit.
149   BasicBlock *Exit = TheLoop->getUniqueExitBlock();
150   assert(Exit && "Expected loop with single exit.");
151   if (InstParent == Exit) {
152     // Instruction definition is in outermost loop exit.
153     return false;
154   }
155 
156   // Check whether Instruction definition is in loop body.
157   return !TheLoop->contains(Inst);
158 }
159 #endif
160 
161 // Create a new VPValue or retrieve an existing one for the Instruction's
162 // operand \p IRVal. This function must only be used to create/retrieve VPValues
163 // for *Instruction's operands* and not to create regular VPInstruction's. For
164 // the latter, please, look at 'createVPInstructionsForVPBB'.
165 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
166   auto VPValIt = IRDef2VPValue.find(IRVal);
167   if (VPValIt != IRDef2VPValue.end())
168     // Operand has an associated VPInstruction or VPValue that was previously
169     // created.
170     return VPValIt->second;
171 
172   // Operand doesn't have a previously created VPInstruction/VPValue. This
173   // means that operand is:
174   //   A) a definition external to VPlan,
175   //   B) any other Value without specific representation in VPlan.
176   // For now, we use VPValue to represent A and B and classify both as external
177   // definitions. We may introduce specific VPValue subclasses for them in the
178   // future.
179   assert(isExternalDef(IRVal) && "Expected external definition as operand.");
180 
181   // A and B: Create VPValue and add it to the pool of external definitions and
182   // to the Value->VPValue map.
183   VPValue *NewVPVal = new VPValue(IRVal);
184   Plan.addExternalDef(NewVPVal);
185   IRDef2VPValue[IRVal] = NewVPVal;
186   return NewVPVal;
187 }
188 
189 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
190 // counterpart. This function must be invoked in RPO so that the operands of a
191 // VPInstruction in \p BB have been visited before (except for Phi nodes).
192 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
193                                                   BasicBlock *BB) {
194   VPIRBuilder.setInsertPoint(VPBB);
195   for (Instruction &InstRef : *BB) {
196     Instruction *Inst = &InstRef;
197 
198     // There shouldn't be any VPValue for Inst at this point. Otherwise, we
199     // visited Inst when we shouldn't, breaking the RPO traversal order.
200     assert(!IRDef2VPValue.count(Inst) &&
201            "Instruction shouldn't have been visited.");
202 
203     if (auto *Br = dyn_cast<BranchInst>(Inst)) {
204       // Branch instruction is not explicitly represented in VPlan but we need
205       // to represent its condition bit when it's conditional.
206       if (Br->isConditional())
207         getOrCreateVPOperand(Br->getCondition());
208 
209       // Skip the rest of the Instruction processing for Branch instructions.
210       continue;
211     }
212 
213     VPInstruction *NewVPInst;
214     if (auto *Phi = dyn_cast<PHINode>(Inst)) {
215       // Phi node's operands may have not been visited at this point. We create
216       // an empty VPInstruction that we will fix once the whole plain CFG has
217       // been built.
218       NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
219           Inst->getOpcode(), {} /*No operands*/, Inst));
220       PhisToFix.push_back(Phi);
221     } else {
222       // Translate LLVM-IR operands into VPValue operands and set them in the
223       // new VPInstruction.
224       SmallVector<VPValue *, 4> VPOperands;
225       for (Value *Op : Inst->operands())
226         VPOperands.push_back(getOrCreateVPOperand(Op));
227 
228       // Build VPInstruction for any arbitraty Instruction without specific
229       // representation in VPlan.
230       NewVPInst = cast<VPInstruction>(
231           VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
232     }
233 
234     IRDef2VPValue[Inst] = NewVPInst;
235   }
236 }
237 
238 // Main interface to build the plain CFG.
239 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
240   // 1. Create the Top Region. It will be the parent of all VPBBs.
241   TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
242 
243   // 2. Scan the body of the loop in a topological order to visit each basic
244   // block after having visited its predecessor basic blocks. Create a VPBB for
245   // each BB and link it to its successor and predecessor VPBBs. Note that
246   // predecessors must be set in the same order as they are in the incomming IR.
247   // Otherwise, there might be problems with existing phi nodes and algorithm
248   // based on predecessors traversal.
249 
250   // Loop PH needs to be explicitly visited since it's not taken into account by
251   // LoopBlocksDFS.
252   BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
253   assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
254          "Unexpected loop preheader");
255   VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
256   createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
257   // Create empty VPBB for Loop H so that we can link PH->H.
258   VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
259   // Preheader's predecessors will be set during the loop RPO traversal below.
260   PreheaderVPBB->setOneSuccessor(HeaderVPBB);
261 
262   LoopBlocksRPO RPO(TheLoop);
263   RPO.perform(LI);
264 
265   for (BasicBlock *BB : RPO) {
266     // Create or retrieve the VPBasicBlock for this BB and create its
267     // VPInstructions.
268     VPBasicBlock *VPBB = getOrCreateVPBB(BB);
269     createVPInstructionsForVPBB(VPBB, BB);
270 
271     // Set VPBB successors. We create empty VPBBs for successors if they don't
272     // exist already. Recipes will be created when the successor is visited
273     // during the RPO traversal.
274     Instruction *TI = BB->getTerminator();
275     assert(TI && "Terminator expected.");
276     unsigned NumSuccs = TI->getNumSuccessors();
277 
278     if (NumSuccs == 1) {
279       VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
280       assert(SuccVPBB && "VPBB Successor not found.");
281       VPBB->setOneSuccessor(SuccVPBB);
282     } else if (NumSuccs == 2) {
283       VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
284       assert(SuccVPBB0 && "Successor 0 not found.");
285       VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
286       assert(SuccVPBB1 && "Successor 1 not found.");
287 
288       // Get VPBB's condition bit.
289       assert(isa<BranchInst>(TI) && "Unsupported terminator!");
290       auto *Br = cast<BranchInst>(TI);
291       Value *BrCond = Br->getCondition();
292       // Look up the branch condition to get the corresponding VPValue
293       // representing the condition bit in VPlan (which may be in another VPBB).
294       assert(IRDef2VPValue.count(BrCond) &&
295              "Missing condition bit in IRDef2VPValue!");
296       VPValue *VPCondBit = IRDef2VPValue[BrCond];
297 
298       // Link successors using condition bit.
299       VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
300     } else
301       llvm_unreachable("Number of successors not supported.");
302 
303     // Set VPBB predecessors in the same order as they are in the incoming BB.
304     setVPBBPredsFromBB(VPBB, BB);
305   }
306 
307   // 3. Process outermost loop exit. We created an empty VPBB for the loop
308   // single exit BB during the RPO traversal of the loop body but Instructions
309   // weren't visited because it's not part of the the loop.
310   BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
311   assert(LoopExitBB && "Loops with multiple exits are not supported.");
312   VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
313   createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
314   // Loop exit was already set as successor of the loop exiting BB.
315   // We only set its predecessor VPBB now.
316   setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
317 
318   // 4. The whole CFG has been built at this point so all the input Values must
319   // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
320   // VPlan operands.
321   fixPhiNodes();
322 
323   // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
324   // Top Region entry and exit.
325   TopRegion->setEntry(PreheaderVPBB);
326   TopRegion->setExit(LoopExitVPBB);
327   return TopRegion;
328 }
329 
330 VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
331   PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
332   return PCFGBuilder.buildPlainCFG();
333 }
334 
335 // Public interface to build a H-CFG.
336 void VPlanHCFGBuilder::buildHierarchicalCFG() {
337   // Build Top Region enclosing the plain CFG and set it as VPlan entry.
338   VPRegionBlock *TopRegion = buildPlainCFG();
339   Plan.setEntry(TopRegion);
340   LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
341 
342   Verifier.verifyHierarchicalCFG(TopRegion);
343 
344   // Compute plain CFG dom tree for VPLInfo.
345   VPDomTree.recalculate(*TopRegion);
346   LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
347              VPDomTree.print(dbgs()));
348 
349   // Compute VPLInfo and keep it in Plan.
350   VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
351   VPLInfo.analyze(VPDomTree);
352   LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
353              VPLInfo.print(dbgs()));
354 }
355