1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the construction of a VPlan-based Hierarchical CFG 11 /// (H-CFG) for an incoming IR. This construction comprises the following 12 /// components and steps: 13 // 14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that 15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top 16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks 17 /// in the plain CFG. 18 /// NOTE: At this point, there is a direct correspondence between all the 19 /// VPBasicBlocks created for the initial plain CFG and the incoming 20 /// BasicBlocks. However, this might change in the future. 21 /// 22 //===----------------------------------------------------------------------===// 23 24 #include "VPlanHCFGBuilder.h" 25 #include "LoopVectorizationPlanner.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 28 #define DEBUG_TYPE "loop-vectorize" 29 30 using namespace llvm; 31 32 namespace { 33 // Class that is used to build the plain CFG for the incoming IR. 34 class PlainCFGBuilder { 35 private: 36 // The outermost loop of the input loop nest considered for vectorization. 37 Loop *TheLoop; 38 39 // Loop Info analysis. 40 LoopInfo *LI; 41 42 // Vectorization plan that we are working on. 43 VPlan &Plan; 44 45 // Output Top Region. 46 VPRegionBlock *TopRegion = nullptr; 47 48 // Builder of the VPlan instruction-level representation. 49 VPBuilder VPIRBuilder; 50 51 // NOTE: The following maps are intentionally destroyed after the plain CFG 52 // construction because subsequent VPlan-to-VPlan transformation may 53 // invalidate them. 54 // Map incoming BasicBlocks to their newly-created VPBasicBlocks. 55 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; 56 // Map incoming Value definitions to their newly-created VPValues. 57 DenseMap<Value *, VPValue *> IRDef2VPValue; 58 59 // Hold phi node's that need to be fixed once the plain CFG has been built. 60 SmallVector<PHINode *, 8> PhisToFix; 61 62 // Utility functions. 63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); 64 void fixPhiNodes(); 65 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); 66 #ifndef NDEBUG 67 bool isExternalDef(Value *Val); 68 #endif 69 VPValue *getOrCreateVPOperand(Value *IRVal); 70 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); 71 72 public: 73 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) 74 : TheLoop(Lp), LI(LI), Plan(P) {} 75 76 // Build the plain CFG and return its Top Region. 77 VPRegionBlock *buildPlainCFG(); 78 }; 79 } // anonymous namespace 80 81 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB 82 // must have no predecessors. 83 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { 84 SmallVector<VPBlockBase *, 8> VPBBPreds; 85 // Collect VPBB predecessors. 86 for (BasicBlock *Pred : predecessors(BB)) 87 VPBBPreds.push_back(getOrCreateVPBB(Pred)); 88 89 VPBB->setPredecessors(VPBBPreds); 90 } 91 92 // Add operands to VPInstructions representing phi nodes from the input IR. 93 void PlainCFGBuilder::fixPhiNodes() { 94 for (auto *Phi : PhisToFix) { 95 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); 96 VPValue *VPVal = IRDef2VPValue[Phi]; 97 assert(isa<VPWidenPHIRecipe>(VPVal) && 98 "Expected WidenPHIRecipe for phi node."); 99 auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal); 100 assert(VPPhi->getNumOperands() == 0 && 101 "Expected VPInstruction with no operands."); 102 103 for (unsigned I = 0; I != Phi->getNumOperands(); ++I) 104 VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)), 105 BB2VPBB[Phi->getIncomingBlock(I)]); 106 } 107 } 108 109 // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an 110 // existing one if it was already created. 111 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { 112 auto BlockIt = BB2VPBB.find(BB); 113 if (BlockIt != BB2VPBB.end()) 114 // Retrieve existing VPBB. 115 return BlockIt->second; 116 117 // Create new VPBB. 118 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); 119 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); 120 BB2VPBB[BB] = VPBB; 121 VPBB->setParent(TopRegion); 122 return VPBB; 123 } 124 125 #ifndef NDEBUG 126 // Return true if \p Val is considered an external definition. An external 127 // definition is either: 128 // 1. A Value that is not an Instruction. This will be refined in the future. 129 // 2. An Instruction that is outside of the CFG snippet represented in VPlan, 130 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) 131 // outermost loop exits. 132 bool PlainCFGBuilder::isExternalDef(Value *Val) { 133 // All the Values that are not Instructions are considered external 134 // definitions for now. 135 Instruction *Inst = dyn_cast<Instruction>(Val); 136 if (!Inst) 137 return true; 138 139 BasicBlock *InstParent = Inst->getParent(); 140 assert(InstParent && "Expected instruction parent."); 141 142 // Check whether Instruction definition is in loop PH. 143 BasicBlock *PH = TheLoop->getLoopPreheader(); 144 assert(PH && "Expected loop pre-header."); 145 146 if (InstParent == PH) 147 // Instruction definition is in outermost loop PH. 148 return false; 149 150 // Check whether Instruction definition is in the loop exit. 151 BasicBlock *Exit = TheLoop->getUniqueExitBlock(); 152 assert(Exit && "Expected loop with single exit."); 153 if (InstParent == Exit) { 154 // Instruction definition is in outermost loop exit. 155 return false; 156 } 157 158 // Check whether Instruction definition is in loop body. 159 return !TheLoop->contains(Inst); 160 } 161 #endif 162 163 // Create a new VPValue or retrieve an existing one for the Instruction's 164 // operand \p IRVal. This function must only be used to create/retrieve VPValues 165 // for *Instruction's operands* and not to create regular VPInstruction's. For 166 // the latter, please, look at 'createVPInstructionsForVPBB'. 167 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { 168 auto VPValIt = IRDef2VPValue.find(IRVal); 169 if (VPValIt != IRDef2VPValue.end()) 170 // Operand has an associated VPInstruction or VPValue that was previously 171 // created. 172 return VPValIt->second; 173 174 // Operand doesn't have a previously created VPInstruction/VPValue. This 175 // means that operand is: 176 // A) a definition external to VPlan, 177 // B) any other Value without specific representation in VPlan. 178 // For now, we use VPValue to represent A and B and classify both as external 179 // definitions. We may introduce specific VPValue subclasses for them in the 180 // future. 181 assert(isExternalDef(IRVal) && "Expected external definition as operand."); 182 183 // A and B: Create VPValue and add it to the pool of external definitions and 184 // to the Value->VPValue map. 185 VPValue *NewVPVal = new VPValue(IRVal); 186 Plan.addExternalDef(NewVPVal); 187 IRDef2VPValue[IRVal] = NewVPVal; 188 return NewVPVal; 189 } 190 191 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock 192 // counterpart. This function must be invoked in RPO so that the operands of a 193 // VPInstruction in \p BB have been visited before (except for Phi nodes). 194 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, 195 BasicBlock *BB) { 196 VPIRBuilder.setInsertPoint(VPBB); 197 for (Instruction &InstRef : *BB) { 198 Instruction *Inst = &InstRef; 199 200 // There shouldn't be any VPValue for Inst at this point. Otherwise, we 201 // visited Inst when we shouldn't, breaking the RPO traversal order. 202 assert(!IRDef2VPValue.count(Inst) && 203 "Instruction shouldn't have been visited."); 204 205 if (auto *Br = dyn_cast<BranchInst>(Inst)) { 206 // Branch instruction is not explicitly represented in VPlan but we need 207 // to represent its condition bit when it's conditional. 208 if (Br->isConditional()) 209 getOrCreateVPOperand(Br->getCondition()); 210 211 // Skip the rest of the Instruction processing for Branch instructions. 212 continue; 213 } 214 215 VPValue *NewVPV; 216 if (auto *Phi = dyn_cast<PHINode>(Inst)) { 217 // Phi node's operands may have not been visited at this point. We create 218 // an empty VPInstruction that we will fix once the whole plain CFG has 219 // been built. 220 NewVPV = new VPWidenPHIRecipe(Phi); 221 VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV)); 222 PhisToFix.push_back(Phi); 223 } else { 224 // Translate LLVM-IR operands into VPValue operands and set them in the 225 // new VPInstruction. 226 SmallVector<VPValue *, 4> VPOperands; 227 for (Value *Op : Inst->operands()) 228 VPOperands.push_back(getOrCreateVPOperand(Op)); 229 230 // Build VPInstruction for any arbitraty Instruction without specific 231 // representation in VPlan. 232 NewVPV = cast<VPInstruction>( 233 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); 234 } 235 236 IRDef2VPValue[Inst] = NewVPV; 237 } 238 } 239 240 // Main interface to build the plain CFG. 241 VPRegionBlock *PlainCFGBuilder::buildPlainCFG() { 242 // 1. Create the Top Region. It will be the parent of all VPBBs. 243 TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/); 244 245 // 2. Scan the body of the loop in a topological order to visit each basic 246 // block after having visited its predecessor basic blocks. Create a VPBB for 247 // each BB and link it to its successor and predecessor VPBBs. Note that 248 // predecessors must be set in the same order as they are in the incomming IR. 249 // Otherwise, there might be problems with existing phi nodes and algorithm 250 // based on predecessors traversal. 251 252 // Loop PH needs to be explicitly visited since it's not taken into account by 253 // LoopBlocksDFS. 254 BasicBlock *PreheaderBB = TheLoop->getLoopPreheader(); 255 assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) && 256 "Unexpected loop preheader"); 257 VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB); 258 for (auto &I : *PreheaderBB) { 259 if (I.getType()->isVoidTy()) 260 continue; 261 VPValue *VPV = new VPValue(&I); 262 Plan.addExternalDef(VPV); 263 IRDef2VPValue[&I] = VPV; 264 } 265 // Create empty VPBB for Loop H so that we can link PH->H. 266 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); 267 // Preheader's predecessors will be set during the loop RPO traversal below. 268 PreheaderVPBB->setOneSuccessor(HeaderVPBB); 269 270 LoopBlocksRPO RPO(TheLoop); 271 RPO.perform(LI); 272 273 for (BasicBlock *BB : RPO) { 274 // Create or retrieve the VPBasicBlock for this BB and create its 275 // VPInstructions. 276 VPBasicBlock *VPBB = getOrCreateVPBB(BB); 277 createVPInstructionsForVPBB(VPBB, BB); 278 279 // Set VPBB successors. We create empty VPBBs for successors if they don't 280 // exist already. Recipes will be created when the successor is visited 281 // during the RPO traversal. 282 Instruction *TI = BB->getTerminator(); 283 assert(TI && "Terminator expected."); 284 unsigned NumSuccs = TI->getNumSuccessors(); 285 286 if (NumSuccs == 1) { 287 VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); 288 assert(SuccVPBB && "VPBB Successor not found."); 289 VPBB->setOneSuccessor(SuccVPBB); 290 } else if (NumSuccs == 2) { 291 VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); 292 assert(SuccVPBB0 && "Successor 0 not found."); 293 VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); 294 assert(SuccVPBB1 && "Successor 1 not found."); 295 296 // Get VPBB's condition bit. 297 assert(isa<BranchInst>(TI) && "Unsupported terminator!"); 298 auto *Br = cast<BranchInst>(TI); 299 Value *BrCond = Br->getCondition(); 300 // Look up the branch condition to get the corresponding VPValue 301 // representing the condition bit in VPlan (which may be in another VPBB). 302 assert(IRDef2VPValue.count(BrCond) && 303 "Missing condition bit in IRDef2VPValue!"); 304 VPValue *VPCondBit = IRDef2VPValue[BrCond]; 305 306 // Link successors using condition bit. 307 VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit); 308 } else 309 llvm_unreachable("Number of successors not supported."); 310 311 // Set VPBB predecessors in the same order as they are in the incoming BB. 312 setVPBBPredsFromBB(VPBB, BB); 313 } 314 315 // 3. Process outermost loop exit. We created an empty VPBB for the loop 316 // single exit BB during the RPO traversal of the loop body but Instructions 317 // weren't visited because it's not part of the the loop. 318 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); 319 assert(LoopExitBB && "Loops with multiple exits are not supported."); 320 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; 321 createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB); 322 // Loop exit was already set as successor of the loop exiting BB. 323 // We only set its predecessor VPBB now. 324 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); 325 326 // 4. The whole CFG has been built at this point so all the input Values must 327 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding 328 // VPlan operands. 329 fixPhiNodes(); 330 331 // 5. Final Top Region setup. Set outermost loop pre-header and single exit as 332 // Top Region entry and exit. 333 TopRegion->setEntry(PreheaderVPBB); 334 TopRegion->setExit(LoopExitVPBB); 335 return TopRegion; 336 } 337 338 VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() { 339 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); 340 return PCFGBuilder.buildPlainCFG(); 341 } 342 343 // Public interface to build a H-CFG. 344 void VPlanHCFGBuilder::buildHierarchicalCFG() { 345 // Build Top Region enclosing the plain CFG and set it as VPlan entry. 346 VPRegionBlock *TopRegion = buildPlainCFG(); 347 Plan.setEntry(TopRegion); 348 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); 349 350 Verifier.verifyHierarchicalCFG(TopRegion); 351 352 // Compute plain CFG dom tree for VPLInfo. 353 VPDomTree.recalculate(*TopRegion); 354 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; 355 VPDomTree.print(dbgs())); 356 357 // Compute VPLInfo and keep it in Plan. 358 VPLoopInfo &VPLInfo = Plan.getVPLoopInfo(); 359 VPLInfo.analyze(VPDomTree); 360 LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n"; 361 VPLInfo.print(dbgs())); 362 } 363