1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the construction of a VPlan-based Hierarchical CFG 11 /// (H-CFG) for an incoming IR. This construction comprises the following 12 /// components and steps: 13 // 14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that 15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top 16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks 17 /// in the plain CFG. 18 /// NOTE: At this point, there is a direct correspondence between all the 19 /// VPBasicBlocks created for the initial plain CFG and the incoming 20 /// BasicBlocks. However, this might change in the future. 21 /// 22 //===----------------------------------------------------------------------===// 23 24 #include "VPlanHCFGBuilder.h" 25 #include "LoopVectorizationPlanner.h" 26 #include "llvm/Analysis/LoopIterator.h" 27 28 #define DEBUG_TYPE "loop-vectorize" 29 30 using namespace llvm; 31 32 namespace { 33 // Class that is used to build the plain CFG for the incoming IR. 34 class PlainCFGBuilder { 35 private: 36 // The outermost loop of the input loop nest considered for vectorization. 37 Loop *TheLoop; 38 39 // Loop Info analysis. 40 LoopInfo *LI; 41 42 // Vectorization plan that we are working on. 43 VPlan &Plan; 44 45 // Builder of the VPlan instruction-level representation. 46 VPBuilder VPIRBuilder; 47 48 // NOTE: The following maps are intentionally destroyed after the plain CFG 49 // construction because subsequent VPlan-to-VPlan transformation may 50 // invalidate them. 51 // Map incoming BasicBlocks to their newly-created VPBasicBlocks. 52 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; 53 // Map incoming Value definitions to their newly-created VPValues. 54 DenseMap<Value *, VPValue *> IRDef2VPValue; 55 56 // Hold phi node's that need to be fixed once the plain CFG has been built. 57 SmallVector<PHINode *, 8> PhisToFix; 58 59 /// Maps loops in the original IR to their corresponding region. 60 DenseMap<Loop *, VPRegionBlock *> Loop2Region; 61 62 // Utility functions. 63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); 64 void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB); 65 void fixPhiNodes(); 66 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); 67 #ifndef NDEBUG 68 bool isExternalDef(Value *Val); 69 #endif 70 VPValue *getOrCreateVPOperand(Value *IRVal); 71 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); 72 73 public: 74 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) 75 : TheLoop(Lp), LI(LI), Plan(P) {} 76 77 /// Build plain CFG for TheLoop and connects it to Plan's entry. 78 void buildPlainCFG(); 79 }; 80 } // anonymous namespace 81 82 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB 83 // must have no predecessors. 84 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { 85 auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * { 86 auto *SinglePred = BB->getSinglePredecessor(); 87 Loop *LoopForBB = LI->getLoopFor(BB); 88 if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB) 89 return nullptr; 90 // The input IR must be in loop-simplify form, ensuring a single predecessor 91 // for exit blocks. 92 assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() && 93 "SinglePred must be the only loop latch"); 94 return SinglePred; 95 }; 96 if (auto *LatchBB = GetLatchOfExit(BB)) { 97 auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent(); 98 assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) && 99 "successor must already be set for PredRegion; it must have VPBB " 100 "as single successor"); 101 VPBB->setPredecessors({PredRegion}); 102 return; 103 } 104 // Collect VPBB predecessors. 105 SmallVector<VPBlockBase *, 2> VPBBPreds; 106 for (BasicBlock *Pred : predecessors(BB)) 107 VPBBPreds.push_back(getOrCreateVPBB(Pred)); 108 VPBB->setPredecessors(VPBBPreds); 109 } 110 111 static bool isHeaderBB(BasicBlock *BB, Loop *L) { 112 return L && BB == L->getHeader(); 113 } 114 115 void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region, 116 BasicBlock *BB) { 117 // BB is a loop header block. Connect the region to the loop preheader. 118 Loop *LoopOfBB = LI->getLoopFor(BB); 119 Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())}); 120 } 121 122 // Add operands to VPInstructions representing phi nodes from the input IR. 123 void PlainCFGBuilder::fixPhiNodes() { 124 for (auto *Phi : PhisToFix) { 125 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); 126 VPValue *VPVal = IRDef2VPValue[Phi]; 127 assert(isa<VPWidenPHIRecipe>(VPVal) && 128 "Expected WidenPHIRecipe for phi node."); 129 auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal); 130 assert(VPPhi->getNumOperands() == 0 && 131 "Expected VPInstruction with no operands."); 132 133 Loop *L = LI->getLoopFor(Phi->getParent()); 134 if (isHeaderBB(Phi->getParent(), L)) { 135 // For header phis, make sure the incoming value from the loop 136 // predecessor is the first operand of the recipe. 137 assert(Phi->getNumOperands() == 2); 138 BasicBlock *LoopPred = L->getLoopPredecessor(); 139 VPPhi->addIncoming( 140 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)), 141 BB2VPBB[LoopPred]); 142 BasicBlock *LoopLatch = L->getLoopLatch(); 143 VPPhi->addIncoming( 144 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)), 145 BB2VPBB[LoopLatch]); 146 continue; 147 } 148 149 for (unsigned I = 0; I != Phi->getNumOperands(); ++I) 150 VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)), 151 BB2VPBB[Phi->getIncomingBlock(I)]); 152 } 153 } 154 155 static bool isHeaderVPBB(VPBasicBlock *VPBB) { 156 return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB; 157 } 158 159 /// Return true of \p L loop is contained within \p OuterLoop. 160 static bool doesContainLoop(const Loop *L, const Loop *OuterLoop) { 161 if (L->getLoopDepth() < OuterLoop->getLoopDepth()) 162 return false; 163 const Loop *P = L; 164 while (P) { 165 if (P == OuterLoop) 166 return true; 167 P = P->getParentLoop(); 168 } 169 return false; 170 } 171 172 // Create a new empty VPBasicBlock for an incoming BasicBlock in the region 173 // corresponding to the containing loop or retrieve an existing one if it was 174 // already created. If no region exists yet for the loop containing \p BB, a new 175 // one is created. 176 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { 177 if (auto *VPBB = BB2VPBB.lookup(BB)) { 178 // Retrieve existing VPBB. 179 return VPBB; 180 } 181 182 // Create new VPBB. 183 StringRef Name = isHeaderBB(BB, TheLoop) ? "vector.body" : BB->getName(); 184 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n"); 185 VPBasicBlock *VPBB = new VPBasicBlock(Name); 186 BB2VPBB[BB] = VPBB; 187 188 // Get or create a region for the loop containing BB. 189 Loop *LoopOfBB = LI->getLoopFor(BB); 190 if (!LoopOfBB || !doesContainLoop(LoopOfBB, TheLoop)) 191 return VPBB; 192 193 auto *RegionOfVPBB = Loop2Region.lookup(LoopOfBB); 194 if (!isHeaderBB(BB, LoopOfBB)) { 195 assert(RegionOfVPBB && 196 "Region should have been created by visiting header earlier"); 197 VPBB->setParent(RegionOfVPBB); 198 return VPBB; 199 } 200 201 assert(!RegionOfVPBB && 202 "First visit of a header basic block expects to register its region."); 203 // Handle a header - take care of its Region. 204 if (LoopOfBB == TheLoop) { 205 RegionOfVPBB = Plan.getVectorLoopRegion(); 206 } else { 207 RegionOfVPBB = new VPRegionBlock(Name.str(), false /*isReplicator*/); 208 RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]); 209 } 210 RegionOfVPBB->setEntry(VPBB); 211 Loop2Region[LoopOfBB] = RegionOfVPBB; 212 return VPBB; 213 } 214 215 #ifndef NDEBUG 216 // Return true if \p Val is considered an external definition. An external 217 // definition is either: 218 // 1. A Value that is not an Instruction. This will be refined in the future. 219 // 2. An Instruction that is outside of the CFG snippet represented in VPlan, 220 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) 221 // outermost loop exits. 222 bool PlainCFGBuilder::isExternalDef(Value *Val) { 223 // All the Values that are not Instructions are considered external 224 // definitions for now. 225 Instruction *Inst = dyn_cast<Instruction>(Val); 226 if (!Inst) 227 return true; 228 229 BasicBlock *InstParent = Inst->getParent(); 230 assert(InstParent && "Expected instruction parent."); 231 232 // Check whether Instruction definition is in loop PH. 233 BasicBlock *PH = TheLoop->getLoopPreheader(); 234 assert(PH && "Expected loop pre-header."); 235 236 if (InstParent == PH) 237 // Instruction definition is in outermost loop PH. 238 return false; 239 240 // Check whether Instruction definition is in the loop exit. 241 BasicBlock *Exit = TheLoop->getUniqueExitBlock(); 242 assert(Exit && "Expected loop with single exit."); 243 if (InstParent == Exit) { 244 // Instruction definition is in outermost loop exit. 245 return false; 246 } 247 248 // Check whether Instruction definition is in loop body. 249 return !TheLoop->contains(Inst); 250 } 251 #endif 252 253 // Create a new VPValue or retrieve an existing one for the Instruction's 254 // operand \p IRVal. This function must only be used to create/retrieve VPValues 255 // for *Instruction's operands* and not to create regular VPInstruction's. For 256 // the latter, please, look at 'createVPInstructionsForVPBB'. 257 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { 258 auto VPValIt = IRDef2VPValue.find(IRVal); 259 if (VPValIt != IRDef2VPValue.end()) 260 // Operand has an associated VPInstruction or VPValue that was previously 261 // created. 262 return VPValIt->second; 263 264 // Operand doesn't have a previously created VPInstruction/VPValue. This 265 // means that operand is: 266 // A) a definition external to VPlan, 267 // B) any other Value without specific representation in VPlan. 268 // For now, we use VPValue to represent A and B and classify both as external 269 // definitions. We may introduce specific VPValue subclasses for them in the 270 // future. 271 assert(isExternalDef(IRVal) && "Expected external definition as operand."); 272 273 // A and B: Create VPValue and add it to the pool of external definitions and 274 // to the Value->VPValue map. 275 VPValue *NewVPVal = Plan.getOrAddLiveIn(IRVal); 276 IRDef2VPValue[IRVal] = NewVPVal; 277 return NewVPVal; 278 } 279 280 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock 281 // counterpart. This function must be invoked in RPO so that the operands of a 282 // VPInstruction in \p BB have been visited before (except for Phi nodes). 283 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, 284 BasicBlock *BB) { 285 VPIRBuilder.setInsertPoint(VPBB); 286 for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) { 287 Instruction *Inst = &InstRef; 288 289 // There shouldn't be any VPValue for Inst at this point. Otherwise, we 290 // visited Inst when we shouldn't, breaking the RPO traversal order. 291 assert(!IRDef2VPValue.count(Inst) && 292 "Instruction shouldn't have been visited."); 293 294 if (auto *Br = dyn_cast<BranchInst>(Inst)) { 295 // Conditional branch instruction are represented using BranchOnCond 296 // recipes. 297 if (Br->isConditional()) { 298 VPValue *Cond = getOrCreateVPOperand(Br->getCondition()); 299 VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst); 300 } 301 302 // Skip the rest of the Instruction processing for Branch instructions. 303 continue; 304 } 305 306 VPValue *NewVPV; 307 if (auto *Phi = dyn_cast<PHINode>(Inst)) { 308 // Phi node's operands may have not been visited at this point. We create 309 // an empty VPInstruction that we will fix once the whole plain CFG has 310 // been built. 311 NewVPV = new VPWidenPHIRecipe(Phi); 312 VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV)); 313 PhisToFix.push_back(Phi); 314 } else { 315 // Translate LLVM-IR operands into VPValue operands and set them in the 316 // new VPInstruction. 317 SmallVector<VPValue *, 4> VPOperands; 318 for (Value *Op : Inst->operands()) 319 VPOperands.push_back(getOrCreateVPOperand(Op)); 320 321 // Build VPInstruction for any arbitrary Instruction without specific 322 // representation in VPlan. 323 NewVPV = cast<VPInstruction>( 324 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); 325 } 326 327 IRDef2VPValue[Inst] = NewVPV; 328 } 329 } 330 331 // Main interface to build the plain CFG. 332 void PlainCFGBuilder::buildPlainCFG() { 333 // 0. Reuse the top-level region, vector-preheader and exit VPBBs from the 334 // skeleton. These were created directly rather than via getOrCreateVPBB(), 335 // revisit them now to update BB2VPBB. Note that header/entry and 336 // latch/exiting VPBB's of top-level region have yet to be created. 337 VPRegionBlock *TheRegion = Plan.getVectorLoopRegion(); 338 BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader(); 339 assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) && 340 "Unexpected loop preheader"); 341 auto *VectorPreheaderVPBB = 342 cast<VPBasicBlock>(TheRegion->getSinglePredecessor()); 343 // ThePreheaderBB conceptually corresponds to both Plan.getPreheader() (which 344 // wraps the original preheader BB) and Plan.getEntry() (which represents the 345 // new vector preheader); here we're interested in setting BB2VPBB to the 346 // latter. 347 BB2VPBB[ThePreheaderBB] = VectorPreheaderVPBB; 348 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); 349 Loop2Region[LI->getLoopFor(TheLoop->getHeader())] = TheRegion; 350 assert(LoopExitBB && "Loops with multiple exits are not supported."); 351 BB2VPBB[LoopExitBB] = cast<VPBasicBlock>(TheRegion->getSingleSuccessor()); 352 353 // The existing vector region's entry and exiting VPBBs correspond to the loop 354 // header and latch. 355 VPBasicBlock *VectorHeaderVPBB = TheRegion->getEntryBasicBlock(); 356 VPBasicBlock *VectorLatchVPBB = TheRegion->getExitingBasicBlock(); 357 BB2VPBB[TheLoop->getHeader()] = VectorHeaderVPBB; 358 VectorHeaderVPBB->clearSuccessors(); 359 VectorLatchVPBB->clearPredecessors(); 360 if (TheLoop->getHeader() != TheLoop->getLoopLatch()) { 361 BB2VPBB[TheLoop->getLoopLatch()] = VectorLatchVPBB; 362 } else { 363 TheRegion->setExiting(VectorHeaderVPBB); 364 delete VectorLatchVPBB; 365 } 366 367 // 1. Scan the body of the loop in a topological order to visit each basic 368 // block after having visited its predecessor basic blocks. Create a VPBB for 369 // each BB and link it to its successor and predecessor VPBBs. Note that 370 // predecessors must be set in the same order as they are in the incomming IR. 371 // Otherwise, there might be problems with existing phi nodes and algorithm 372 // based on predecessors traversal. 373 374 // Loop PH needs to be explicitly visited since it's not taken into account by 375 // LoopBlocksDFS. 376 for (auto &I : *ThePreheaderBB) { 377 if (I.getType()->isVoidTy()) 378 continue; 379 IRDef2VPValue[&I] = Plan.getOrAddLiveIn(&I); 380 } 381 382 LoopBlocksRPO RPO(TheLoop); 383 RPO.perform(LI); 384 385 for (BasicBlock *BB : RPO) { 386 // Create or retrieve the VPBasicBlock for this BB and create its 387 // VPInstructions. 388 VPBasicBlock *VPBB = getOrCreateVPBB(BB); 389 VPRegionBlock *Region = VPBB->getParent(); 390 createVPInstructionsForVPBB(VPBB, BB); 391 Loop *LoopForBB = LI->getLoopFor(BB); 392 // Set VPBB predecessors in the same order as they are in the incoming BB. 393 if (!isHeaderBB(BB, LoopForBB)) { 394 setVPBBPredsFromBB(VPBB, BB); 395 } else { 396 // BB is a loop header, set the predecessor for the region, except for the 397 // top region, whose predecessor was set when creating VPlan's skeleton. 398 assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree"); 399 if (TheRegion != Region) 400 setRegionPredsFromBB(Region, BB); 401 } 402 403 // Set VPBB successors. We create empty VPBBs for successors if they don't 404 // exist already. Recipes will be created when the successor is visited 405 // during the RPO traversal. 406 auto *BI = cast<BranchInst>(BB->getTerminator()); 407 unsigned NumSuccs = succ_size(BB); 408 if (NumSuccs == 1) { 409 auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor()); 410 VPBB->setOneSuccessor(isHeaderVPBB(Successor) 411 ? Successor->getParent() 412 : static_cast<VPBlockBase *>(Successor)); 413 continue; 414 } 415 assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() && 416 "block must have conditional branch with 2 successors"); 417 // Look up the branch condition to get the corresponding VPValue 418 // representing the condition bit in VPlan (which may be in another VPBB). 419 assert(IRDef2VPValue.contains(BI->getCondition()) && 420 "Missing condition bit in IRDef2VPValue!"); 421 VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0)); 422 VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1)); 423 if (!LoopForBB || BB != LoopForBB->getLoopLatch()) { 424 VPBB->setTwoSuccessors(Successor0, Successor1); 425 continue; 426 } 427 // For a latch we need to set the successor of the region rather than that 428 // of VPBB and it should be set to the exit, i.e., non-header successor, 429 // except for the top region, whose successor was set when creating VPlan's 430 // skeleton. 431 if (TheRegion != Region) { 432 Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1 433 : Successor0); 434 Region->setExiting(VPBB); 435 } 436 } 437 438 // 2. The whole CFG has been built at this point so all the input Values must 439 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding 440 // VPlan operands. 441 fixPhiNodes(); 442 } 443 444 void VPlanHCFGBuilder::buildPlainCFG() { 445 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); 446 PCFGBuilder.buildPlainCFG(); 447 } 448 449 // Public interface to build a H-CFG. 450 void VPlanHCFGBuilder::buildHierarchicalCFG() { 451 // Build Top Region enclosing the plain CFG. 452 buildPlainCFG(); 453 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); 454 455 // Compute plain CFG dom tree for VPLInfo. 456 VPDomTree.recalculate(Plan); 457 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; 458 VPDomTree.print(dbgs())); 459 } 460