1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/IRBuilder.h" 44 #include "llvm/Support/InstructionCost.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstddef> 48 #include <map> 49 #include <string> 50 51 namespace llvm { 52 53 class BasicBlock; 54 class DominatorTree; 55 class InductionDescriptor; 56 class InnerLoopVectorizer; 57 class LoopInfo; 58 class raw_ostream; 59 class RecurrenceDescriptor; 60 class Value; 61 class VPBasicBlock; 62 class VPRegionBlock; 63 class VPlan; 64 class VPReplicateRecipe; 65 class VPlanSlp; 66 67 /// Returns a calculation for the total number of elements for a given \p VF. 68 /// For fixed width vectors this value is a constant, whereas for scalable 69 /// vectors it is an expression determined at runtime. 70 Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF); 71 72 /// Return a value for Step multiplied by VF. 73 Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF, int64_t Step); 74 75 /// A range of powers-of-2 vectorization factors with fixed start and 76 /// adjustable end. The range includes start and excludes end, e.g.,: 77 /// [1, 9) = {1, 2, 4, 8} 78 struct VFRange { 79 // A power of 2. 80 const ElementCount Start; 81 82 // Need not be a power of 2. If End <= Start range is empty. 83 ElementCount End; 84 85 bool isEmpty() const { 86 return End.getKnownMinValue() <= Start.getKnownMinValue(); 87 } 88 89 VFRange(const ElementCount &Start, const ElementCount &End) 90 : Start(Start), End(End) { 91 assert(Start.isScalable() == End.isScalable() && 92 "Both Start and End should have the same scalable flag"); 93 assert(isPowerOf2_32(Start.getKnownMinValue()) && 94 "Expected Start to be a power of 2"); 95 } 96 }; 97 98 using VPlanPtr = std::unique_ptr<VPlan>; 99 100 /// In what follows, the term "input IR" refers to code that is fed into the 101 /// vectorizer whereas the term "output IR" refers to code that is generated by 102 /// the vectorizer. 103 104 /// VPLane provides a way to access lanes in both fixed width and scalable 105 /// vectors, where for the latter the lane index sometimes needs calculating 106 /// as a runtime expression. 107 class VPLane { 108 public: 109 /// Kind describes how to interpret Lane. 110 enum class Kind : uint8_t { 111 /// For First, Lane is the index into the first N elements of a 112 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 113 First, 114 /// For ScalableLast, Lane is the offset from the start of the last 115 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 116 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 117 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 118 ScalableLast 119 }; 120 121 private: 122 /// in [0..VF) 123 unsigned Lane; 124 125 /// Indicates how the Lane should be interpreted, as described above. 126 Kind LaneKind; 127 128 public: 129 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 130 131 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 132 133 static VPLane getLastLaneForVF(const ElementCount &VF) { 134 unsigned LaneOffset = VF.getKnownMinValue() - 1; 135 Kind LaneKind; 136 if (VF.isScalable()) 137 // In this case 'LaneOffset' refers to the offset from the start of the 138 // last subvector with VF.getKnownMinValue() elements. 139 LaneKind = VPLane::Kind::ScalableLast; 140 else 141 LaneKind = VPLane::Kind::First; 142 return VPLane(LaneOffset, LaneKind); 143 } 144 145 /// Returns a compile-time known value for the lane index and asserts if the 146 /// lane can only be calculated at runtime. 147 unsigned getKnownLane() const { 148 assert(LaneKind == Kind::First); 149 return Lane; 150 } 151 152 /// Returns an expression describing the lane index that can be used at 153 /// runtime. 154 Value *getAsRuntimeExpr(IRBuilder<> &Builder, const ElementCount &VF) const; 155 156 /// Returns the Kind of lane offset. 157 Kind getKind() const { return LaneKind; } 158 159 /// Returns true if this is the first lane of the whole vector. 160 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 161 162 /// Maps the lane to a cache index based on \p VF. 163 unsigned mapToCacheIndex(const ElementCount &VF) const { 164 switch (LaneKind) { 165 case VPLane::Kind::ScalableLast: 166 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 167 return VF.getKnownMinValue() + Lane; 168 default: 169 assert(Lane < VF.getKnownMinValue()); 170 return Lane; 171 } 172 } 173 174 /// Returns the maxmimum number of lanes that we are able to consider 175 /// caching for \p VF. 176 static unsigned getNumCachedLanes(const ElementCount &VF) { 177 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 178 } 179 }; 180 181 /// VPIteration represents a single point in the iteration space of the output 182 /// (vectorized and/or unrolled) IR loop. 183 struct VPIteration { 184 /// in [0..UF) 185 unsigned Part; 186 187 VPLane Lane; 188 189 VPIteration(unsigned Part, unsigned Lane, 190 VPLane::Kind Kind = VPLane::Kind::First) 191 : Part(Part), Lane(Lane, Kind) {} 192 193 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 194 195 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 196 }; 197 198 /// VPTransformState holds information passed down when "executing" a VPlan, 199 /// needed for generating the output IR. 200 struct VPTransformState { 201 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 202 DominatorTree *DT, IRBuilder<> &Builder, 203 InnerLoopVectorizer *ILV, VPlan *Plan) 204 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan) { 205 } 206 207 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 208 ElementCount VF; 209 unsigned UF; 210 211 /// Hold the indices to generate specific scalar instructions. Null indicates 212 /// that all instances are to be generated, using either scalar or vector 213 /// instructions. 214 Optional<VPIteration> Instance; 215 216 struct DataState { 217 /// A type for vectorized values in the new loop. Each value from the 218 /// original loop, when vectorized, is represented by UF vector values in 219 /// the new unrolled loop, where UF is the unroll factor. 220 typedef SmallVector<Value *, 2> PerPartValuesTy; 221 222 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 223 224 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 225 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 226 } Data; 227 228 /// Get the generated Value for a given VPValue and a given Part. Note that 229 /// as some Defs are still created by ILV and managed in its ValueMap, this 230 /// method will delegate the call to ILV in such cases in order to provide 231 /// callers a consistent API. 232 /// \see set. 233 Value *get(VPValue *Def, unsigned Part); 234 235 /// Get the generated Value for a given VPValue and given Part and Lane. 236 Value *get(VPValue *Def, const VPIteration &Instance); 237 238 bool hasVectorValue(VPValue *Def, unsigned Part) { 239 auto I = Data.PerPartOutput.find(Def); 240 return I != Data.PerPartOutput.end() && Part < I->second.size() && 241 I->second[Part]; 242 } 243 244 bool hasAnyVectorValue(VPValue *Def) const { 245 return Data.PerPartOutput.find(Def) != Data.PerPartOutput.end(); 246 } 247 248 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 249 auto I = Data.PerPartScalars.find(Def); 250 if (I == Data.PerPartScalars.end()) 251 return false; 252 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 253 return Instance.Part < I->second.size() && 254 CacheIdx < I->second[Instance.Part].size() && 255 I->second[Instance.Part][CacheIdx]; 256 } 257 258 /// Set the generated Value for a given VPValue and a given Part. 259 void set(VPValue *Def, Value *V, unsigned Part) { 260 if (!Data.PerPartOutput.count(Def)) { 261 DataState::PerPartValuesTy Entry(UF); 262 Data.PerPartOutput[Def] = Entry; 263 } 264 Data.PerPartOutput[Def][Part] = V; 265 } 266 /// Reset an existing vector value for \p Def and a given \p Part. 267 void reset(VPValue *Def, Value *V, unsigned Part) { 268 auto Iter = Data.PerPartOutput.find(Def); 269 assert(Iter != Data.PerPartOutput.end() && 270 "need to overwrite existing value"); 271 Iter->second[Part] = V; 272 } 273 274 /// Set the generated scalar \p V for \p Def and the given \p Instance. 275 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 276 auto Iter = Data.PerPartScalars.insert({Def, {}}); 277 auto &PerPartVec = Iter.first->second; 278 while (PerPartVec.size() <= Instance.Part) 279 PerPartVec.emplace_back(); 280 auto &Scalars = PerPartVec[Instance.Part]; 281 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 282 while (Scalars.size() <= CacheIdx) 283 Scalars.push_back(nullptr); 284 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 285 Scalars[CacheIdx] = V; 286 } 287 288 /// Reset an existing scalar value for \p Def and a given \p Instance. 289 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 290 auto Iter = Data.PerPartScalars.find(Def); 291 assert(Iter != Data.PerPartScalars.end() && 292 "need to overwrite existing value"); 293 assert(Instance.Part < Iter->second.size() && 294 "need to overwrite existing value"); 295 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 296 assert(CacheIdx < Iter->second[Instance.Part].size() && 297 "need to overwrite existing value"); 298 Iter->second[Instance.Part][CacheIdx] = V; 299 } 300 301 /// Hold state information used when constructing the CFG of the output IR, 302 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 303 struct CFGState { 304 /// The previous VPBasicBlock visited. Initially set to null. 305 VPBasicBlock *PrevVPBB = nullptr; 306 307 /// The previous IR BasicBlock created or used. Initially set to the new 308 /// header BasicBlock. 309 BasicBlock *PrevBB = nullptr; 310 311 /// The last IR BasicBlock in the output IR. Set to the new latch 312 /// BasicBlock, used for placing the newly created BasicBlocks. 313 BasicBlock *LastBB = nullptr; 314 315 /// The IR BasicBlock that is the preheader of the vector loop in the output 316 /// IR. 317 /// FIXME: The vector preheader should also be modeled in VPlan, so any code 318 /// that needs to be added to the preheader gets directly generated by 319 /// VPlan. There should be no need to manage a pointer to the IR BasicBlock. 320 BasicBlock *VectorPreHeader = nullptr; 321 322 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 323 /// of replication, maps the BasicBlock of the last replica created. 324 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 325 326 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 327 /// up at the end of vector code generation. 328 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 329 330 CFGState() = default; 331 } CFG; 332 333 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 334 LoopInfo *LI; 335 336 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 337 DominatorTree *DT; 338 339 /// Hold a reference to the IRBuilder used to generate output IR code. 340 IRBuilder<> &Builder; 341 342 VPValue2ValueTy VPValue2Value; 343 344 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 345 Value *CanonicalIV = nullptr; 346 347 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 348 InnerLoopVectorizer *ILV; 349 350 /// Pointer to the VPlan code is generated for. 351 VPlan *Plan; 352 353 /// Holds recipes that may generate a poison value that is used after 354 /// vectorization, even when their operands are not poison. 355 SmallPtrSet<VPRecipeBase *, 16> MayGeneratePoisonRecipes; 356 }; 357 358 /// VPUsers instance used by VPBlockBase to manage CondBit and the block 359 /// predicate. Currently VPBlockUsers are used in VPBlockBase for historical 360 /// reasons, but in the future the only VPUsers should either be recipes or 361 /// live-outs.VPBlockBase uses. 362 struct VPBlockUser : public VPUser { 363 VPBlockUser() : VPUser({}, VPUserID::Block) {} 364 365 VPValue *getSingleOperandOrNull() { 366 if (getNumOperands() == 1) 367 return getOperand(0); 368 369 return nullptr; 370 } 371 const VPValue *getSingleOperandOrNull() const { 372 if (getNumOperands() == 1) 373 return getOperand(0); 374 375 return nullptr; 376 } 377 378 void resetSingleOpUser(VPValue *NewVal) { 379 assert(getNumOperands() <= 1 && "Didn't expect more than one operand!"); 380 if (!NewVal) { 381 if (getNumOperands() == 1) 382 removeLastOperand(); 383 return; 384 } 385 386 if (getNumOperands() == 1) 387 setOperand(0, NewVal); 388 else 389 addOperand(NewVal); 390 } 391 }; 392 393 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 394 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 395 class VPBlockBase { 396 friend class VPBlockUtils; 397 398 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 399 400 /// An optional name for the block. 401 std::string Name; 402 403 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 404 /// it is a topmost VPBlockBase. 405 VPRegionBlock *Parent = nullptr; 406 407 /// List of predecessor blocks. 408 SmallVector<VPBlockBase *, 1> Predecessors; 409 410 /// List of successor blocks. 411 SmallVector<VPBlockBase *, 1> Successors; 412 413 /// Successor selector managed by a VPUser. For blocks with zero or one 414 /// successors, there is no operand. Otherwise there is exactly one operand 415 /// which is the branch condition. 416 VPBlockUser CondBitUser; 417 418 /// If the block is predicated, its predicate is stored as an operand of this 419 /// VPUser to maintain the def-use relations. Otherwise there is no operand 420 /// here. 421 VPBlockUser PredicateUser; 422 423 /// VPlan containing the block. Can only be set on the entry block of the 424 /// plan. 425 VPlan *Plan = nullptr; 426 427 /// Add \p Successor as the last successor to this block. 428 void appendSuccessor(VPBlockBase *Successor) { 429 assert(Successor && "Cannot add nullptr successor!"); 430 Successors.push_back(Successor); 431 } 432 433 /// Add \p Predecessor as the last predecessor to this block. 434 void appendPredecessor(VPBlockBase *Predecessor) { 435 assert(Predecessor && "Cannot add nullptr predecessor!"); 436 Predecessors.push_back(Predecessor); 437 } 438 439 /// Remove \p Predecessor from the predecessors of this block. 440 void removePredecessor(VPBlockBase *Predecessor) { 441 auto Pos = find(Predecessors, Predecessor); 442 assert(Pos && "Predecessor does not exist"); 443 Predecessors.erase(Pos); 444 } 445 446 /// Remove \p Successor from the successors of this block. 447 void removeSuccessor(VPBlockBase *Successor) { 448 auto Pos = find(Successors, Successor); 449 assert(Pos && "Successor does not exist"); 450 Successors.erase(Pos); 451 } 452 453 protected: 454 VPBlockBase(const unsigned char SC, const std::string &N) 455 : SubclassID(SC), Name(N) {} 456 457 public: 458 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 459 /// that are actually instantiated. Values of this enumeration are kept in the 460 /// SubclassID field of the VPBlockBase objects. They are used for concrete 461 /// type identification. 462 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 463 464 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 465 466 virtual ~VPBlockBase() = default; 467 468 const std::string &getName() const { return Name; } 469 470 void setName(const Twine &newName) { Name = newName.str(); } 471 472 /// \return an ID for the concrete type of this object. 473 /// This is used to implement the classof checks. This should not be used 474 /// for any other purpose, as the values may change as LLVM evolves. 475 unsigned getVPBlockID() const { return SubclassID; } 476 477 VPRegionBlock *getParent() { return Parent; } 478 const VPRegionBlock *getParent() const { return Parent; } 479 480 /// \return A pointer to the plan containing the current block. 481 VPlan *getPlan(); 482 const VPlan *getPlan() const; 483 484 /// Sets the pointer of the plan containing the block. The block must be the 485 /// entry block into the VPlan. 486 void setPlan(VPlan *ParentPlan); 487 488 void setParent(VPRegionBlock *P) { Parent = P; } 489 490 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 491 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 492 /// VPBlockBase is a VPBasicBlock, it is returned. 493 const VPBasicBlock *getEntryBasicBlock() const; 494 VPBasicBlock *getEntryBasicBlock(); 495 496 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 497 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 498 /// VPBlockBase is a VPBasicBlock, it is returned. 499 const VPBasicBlock *getExitBasicBlock() const; 500 VPBasicBlock *getExitBasicBlock(); 501 502 const VPBlocksTy &getSuccessors() const { return Successors; } 503 VPBlocksTy &getSuccessors() { return Successors; } 504 505 iterator_range<VPBlockBase **> successors() { return Successors; } 506 507 const VPBlocksTy &getPredecessors() const { return Predecessors; } 508 VPBlocksTy &getPredecessors() { return Predecessors; } 509 510 /// \return the successor of this VPBlockBase if it has a single successor. 511 /// Otherwise return a null pointer. 512 VPBlockBase *getSingleSuccessor() const { 513 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 514 } 515 516 /// \return the predecessor of this VPBlockBase if it has a single 517 /// predecessor. Otherwise return a null pointer. 518 VPBlockBase *getSinglePredecessor() const { 519 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 520 } 521 522 size_t getNumSuccessors() const { return Successors.size(); } 523 size_t getNumPredecessors() const { return Predecessors.size(); } 524 525 /// An Enclosing Block of a block B is any block containing B, including B 526 /// itself. \return the closest enclosing block starting from "this", which 527 /// has successors. \return the root enclosing block if all enclosing blocks 528 /// have no successors. 529 VPBlockBase *getEnclosingBlockWithSuccessors(); 530 531 /// \return the closest enclosing block starting from "this", which has 532 /// predecessors. \return the root enclosing block if all enclosing blocks 533 /// have no predecessors. 534 VPBlockBase *getEnclosingBlockWithPredecessors(); 535 536 /// \return the successors either attached directly to this VPBlockBase or, if 537 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 538 /// successors of its own, search recursively for the first enclosing 539 /// VPRegionBlock that has successors and return them. If no such 540 /// VPRegionBlock exists, return the (empty) successors of the topmost 541 /// VPBlockBase reached. 542 const VPBlocksTy &getHierarchicalSuccessors() { 543 return getEnclosingBlockWithSuccessors()->getSuccessors(); 544 } 545 546 /// \return the hierarchical successor of this VPBlockBase if it has a single 547 /// hierarchical successor. Otherwise return a null pointer. 548 VPBlockBase *getSingleHierarchicalSuccessor() { 549 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 550 } 551 552 /// \return the predecessors either attached directly to this VPBlockBase or, 553 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 554 /// predecessors of its own, search recursively for the first enclosing 555 /// VPRegionBlock that has predecessors and return them. If no such 556 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 557 /// VPBlockBase reached. 558 const VPBlocksTy &getHierarchicalPredecessors() { 559 return getEnclosingBlockWithPredecessors()->getPredecessors(); 560 } 561 562 /// \return the hierarchical predecessor of this VPBlockBase if it has a 563 /// single hierarchical predecessor. Otherwise return a null pointer. 564 VPBlockBase *getSingleHierarchicalPredecessor() { 565 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 566 } 567 568 /// \return the condition bit selecting the successor. 569 VPValue *getCondBit(); 570 /// \return the condition bit selecting the successor. 571 const VPValue *getCondBit() const; 572 /// Set the condition bit selecting the successor. 573 void setCondBit(VPValue *CV); 574 575 /// \return the block's predicate. 576 VPValue *getPredicate(); 577 /// \return the block's predicate. 578 const VPValue *getPredicate() const; 579 /// Set the block's predicate. 580 void setPredicate(VPValue *Pred); 581 582 /// Set a given VPBlockBase \p Successor as the single successor of this 583 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 584 /// This VPBlockBase must have no successors. 585 void setOneSuccessor(VPBlockBase *Successor) { 586 assert(Successors.empty() && "Setting one successor when others exist."); 587 appendSuccessor(Successor); 588 } 589 590 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 591 /// successors of this VPBlockBase. \p Condition is set as the successor 592 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 593 /// IfFalse. This VPBlockBase must have no successors. 594 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 595 VPValue *Condition) { 596 assert(Successors.empty() && "Setting two successors when others exist."); 597 assert(Condition && "Setting two successors without condition!"); 598 setCondBit(Condition); 599 appendSuccessor(IfTrue); 600 appendSuccessor(IfFalse); 601 } 602 603 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 604 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 605 /// as successor of any VPBasicBlock in \p NewPreds. 606 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 607 assert(Predecessors.empty() && "Block predecessors already set."); 608 for (auto *Pred : NewPreds) 609 appendPredecessor(Pred); 610 } 611 612 /// Remove all the predecessor of this block. 613 void clearPredecessors() { Predecessors.clear(); } 614 615 /// Remove all the successors of this block and set to null its condition bit 616 void clearSuccessors() { 617 Successors.clear(); 618 setCondBit(nullptr); 619 } 620 621 /// The method which generates the output IR that correspond to this 622 /// VPBlockBase, thereby "executing" the VPlan. 623 virtual void execute(struct VPTransformState *State) = 0; 624 625 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 626 static void deleteCFG(VPBlockBase *Entry); 627 628 /// Return true if it is legal to hoist instructions into this block. 629 bool isLegalToHoistInto() { 630 // There are currently no constraints that prevent an instruction to be 631 // hoisted into a VPBlockBase. 632 return true; 633 } 634 635 /// Replace all operands of VPUsers in the block with \p NewValue and also 636 /// replaces all uses of VPValues defined in the block with NewValue. 637 virtual void dropAllReferences(VPValue *NewValue) = 0; 638 639 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 640 void printAsOperand(raw_ostream &OS, bool PrintType) const { 641 OS << getName(); 642 } 643 644 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 645 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 646 /// consequtive numbers. 647 /// 648 /// Note that the numbering is applied to the whole VPlan, so printing 649 /// individual blocks is consistent with the whole VPlan printing. 650 virtual void print(raw_ostream &O, const Twine &Indent, 651 VPSlotTracker &SlotTracker) const = 0; 652 653 /// Print plain-text dump of this VPlan to \p O. 654 void print(raw_ostream &O) const { 655 VPSlotTracker SlotTracker(getPlan()); 656 print(O, "", SlotTracker); 657 } 658 659 /// Print the successors of this block to \p O, prefixing all lines with \p 660 /// Indent. 661 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 662 663 /// Dump this VPBlockBase to dbgs(). 664 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 665 #endif 666 }; 667 668 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 669 /// instructions. VPRecipeBase owns the the VPValues it defines through VPDef 670 /// and is responsible for deleting its defined values. Single-value 671 /// VPRecipeBases that also inherit from VPValue must make sure to inherit from 672 /// VPRecipeBase before VPValue. 673 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 674 public VPDef, 675 public VPUser { 676 friend VPBasicBlock; 677 friend class VPBlockUtils; 678 679 /// Each VPRecipe belongs to a single VPBasicBlock. 680 VPBasicBlock *Parent = nullptr; 681 682 public: 683 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands) 684 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 685 686 template <typename IterT> 687 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands) 688 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe) {} 689 virtual ~VPRecipeBase() = default; 690 691 /// \return the VPBasicBlock which this VPRecipe belongs to. 692 VPBasicBlock *getParent() { return Parent; } 693 const VPBasicBlock *getParent() const { return Parent; } 694 695 /// The method which generates the output IR instructions that correspond to 696 /// this VPRecipe, thereby "executing" the VPlan. 697 virtual void execute(struct VPTransformState &State) = 0; 698 699 /// Insert an unlinked recipe into a basic block immediately before 700 /// the specified recipe. 701 void insertBefore(VPRecipeBase *InsertPos); 702 703 /// Insert an unlinked Recipe into a basic block immediately after 704 /// the specified Recipe. 705 void insertAfter(VPRecipeBase *InsertPos); 706 707 /// Unlink this recipe from its current VPBasicBlock and insert it into 708 /// the VPBasicBlock that MovePos lives in, right after MovePos. 709 void moveAfter(VPRecipeBase *MovePos); 710 711 /// Unlink this recipe and insert into BB before I. 712 /// 713 /// \pre I is a valid iterator into BB. 714 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 715 716 /// This method unlinks 'this' from the containing basic block, but does not 717 /// delete it. 718 void removeFromParent(); 719 720 /// This method unlinks 'this' from the containing basic block and deletes it. 721 /// 722 /// \returns an iterator pointing to the element after the erased one 723 iplist<VPRecipeBase>::iterator eraseFromParent(); 724 725 /// Returns the underlying instruction, if the recipe is a VPValue or nullptr 726 /// otherwise. 727 Instruction *getUnderlyingInstr() { 728 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 729 } 730 const Instruction *getUnderlyingInstr() const { 731 return cast<Instruction>(getVPSingleValue()->getUnderlyingValue()); 732 } 733 734 /// Method to support type inquiry through isa, cast, and dyn_cast. 735 static inline bool classof(const VPDef *D) { 736 // All VPDefs are also VPRecipeBases. 737 return true; 738 } 739 740 static inline bool classof(const VPUser *U) { 741 return U->getVPUserID() == VPUser::VPUserID::Recipe; 742 } 743 744 /// Returns true if the recipe may have side-effects. 745 bool mayHaveSideEffects() const; 746 747 /// Returns true for PHI-like recipes. 748 bool isPhi() const { 749 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 750 } 751 752 /// Returns true if the recipe may read from memory. 753 bool mayReadFromMemory() const; 754 755 /// Returns true if the recipe may write to memory. 756 bool mayWriteToMemory() const; 757 758 /// Returns true if the recipe may read from or write to memory. 759 bool mayReadOrWriteMemory() const { 760 return mayReadFromMemory() || mayWriteToMemory(); 761 } 762 763 /// Returns true if the recipe only uses the first lane of operand \p Op. 764 /// Conservatively returns false. 765 virtual bool onlyFirstLaneUsed(const VPValue *Op) const { 766 assert(is_contained(operands(), Op) && 767 "Op must be an operand of the recipe"); 768 return false; 769 } 770 }; 771 772 inline bool VPUser::classof(const VPDef *Def) { 773 return Def->getVPDefID() == VPRecipeBase::VPInstructionSC || 774 Def->getVPDefID() == VPRecipeBase::VPWidenSC || 775 Def->getVPDefID() == VPRecipeBase::VPWidenCallSC || 776 Def->getVPDefID() == VPRecipeBase::VPWidenSelectSC || 777 Def->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 778 Def->getVPDefID() == VPRecipeBase::VPBlendSC || 779 Def->getVPDefID() == VPRecipeBase::VPInterleaveSC || 780 Def->getVPDefID() == VPRecipeBase::VPReplicateSC || 781 Def->getVPDefID() == VPRecipeBase::VPReductionSC || 782 Def->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC || 783 Def->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 784 } 785 786 /// This is a concrete Recipe that models a single VPlan-level instruction. 787 /// While as any Recipe it may generate a sequence of IR instructions when 788 /// executed, these instructions would always form a single-def expression as 789 /// the VPInstruction is also a single def-use vertex. 790 class VPInstruction : public VPRecipeBase, public VPValue { 791 friend class VPlanSlp; 792 793 public: 794 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 795 enum { 796 FirstOrderRecurrenceSplice = 797 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 798 // values of a first-order recurrence. 799 Not, 800 ICmpULE, 801 SLPLoad, 802 SLPStore, 803 ActiveLaneMask, 804 CanonicalIVIncrement, 805 CanonicalIVIncrementNUW, 806 BranchOnCount, 807 }; 808 809 private: 810 typedef unsigned char OpcodeTy; 811 OpcodeTy Opcode; 812 FastMathFlags FMF; 813 DebugLoc DL; 814 815 /// Utility method serving execute(): generates a single instance of the 816 /// modeled instruction. 817 void generateInstruction(VPTransformState &State, unsigned Part); 818 819 protected: 820 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 821 822 public: 823 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL) 824 : VPRecipeBase(VPRecipeBase::VPInstructionSC, Operands), 825 VPValue(VPValue::VPVInstructionSC, nullptr, this), Opcode(Opcode), 826 DL(DL) {} 827 828 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 829 DebugLoc DL = {}) 830 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL) {} 831 832 /// Method to support type inquiry through isa, cast, and dyn_cast. 833 static inline bool classof(const VPValue *V) { 834 return V->getVPValueID() == VPValue::VPVInstructionSC; 835 } 836 837 VPInstruction *clone() const { 838 SmallVector<VPValue *, 2> Operands(operands()); 839 return new VPInstruction(Opcode, Operands, DL); 840 } 841 842 /// Method to support type inquiry through isa, cast, and dyn_cast. 843 static inline bool classof(const VPDef *R) { 844 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 845 } 846 847 /// Extra classof implementations to allow directly casting from VPUser -> 848 /// VPInstruction. 849 static inline bool classof(const VPUser *U) { 850 auto *R = dyn_cast<VPRecipeBase>(U); 851 return R && R->getVPDefID() == VPRecipeBase::VPInstructionSC; 852 } 853 static inline bool classof(const VPRecipeBase *R) { 854 return R->getVPDefID() == VPRecipeBase::VPInstructionSC; 855 } 856 857 unsigned getOpcode() const { return Opcode; } 858 859 /// Generate the instruction. 860 /// TODO: We currently execute only per-part unless a specific instance is 861 /// provided. 862 void execute(VPTransformState &State) override; 863 864 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 865 /// Print the VPInstruction to \p O. 866 void print(raw_ostream &O, const Twine &Indent, 867 VPSlotTracker &SlotTracker) const override; 868 869 /// Print the VPInstruction to dbgs() (for debugging). 870 LLVM_DUMP_METHOD void dump() const; 871 #endif 872 873 /// Return true if this instruction may modify memory. 874 bool mayWriteToMemory() const { 875 // TODO: we can use attributes of the called function to rule out memory 876 // modifications. 877 return Opcode == Instruction::Store || Opcode == Instruction::Call || 878 Opcode == Instruction::Invoke || Opcode == SLPStore; 879 } 880 881 bool hasResult() const { 882 // CallInst may or may not have a result, depending on the called function. 883 // Conservatively return calls have results for now. 884 switch (getOpcode()) { 885 case Instruction::Ret: 886 case Instruction::Br: 887 case Instruction::Store: 888 case Instruction::Switch: 889 case Instruction::IndirectBr: 890 case Instruction::Resume: 891 case Instruction::CatchRet: 892 case Instruction::Unreachable: 893 case Instruction::Fence: 894 case Instruction::AtomicRMW: 895 case VPInstruction::BranchOnCount: 896 return false; 897 default: 898 return true; 899 } 900 } 901 902 /// Set the fast-math flags. 903 void setFastMathFlags(FastMathFlags FMFNew); 904 905 /// Returns true if the recipe only uses the first lane of operand \p Op. 906 bool onlyFirstLaneUsed(const VPValue *Op) const override { 907 assert(is_contained(operands(), Op) && 908 "Op must be an operand of the recipe"); 909 if (getOperand(0) != Op) 910 return false; 911 switch (getOpcode()) { 912 default: 913 return false; 914 case VPInstruction::ActiveLaneMask: 915 case VPInstruction::CanonicalIVIncrement: 916 case VPInstruction::CanonicalIVIncrementNUW: 917 case VPInstruction::BranchOnCount: 918 return true; 919 }; 920 llvm_unreachable("switch should return"); 921 } 922 }; 923 924 /// VPWidenRecipe is a recipe for producing a copy of vector type its 925 /// ingredient. This recipe covers most of the traditional vectorization cases 926 /// where each ingredient transforms into a vectorized version of itself. 927 class VPWidenRecipe : public VPRecipeBase, public VPValue { 928 public: 929 template <typename IterT> 930 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 931 : VPRecipeBase(VPRecipeBase::VPWidenSC, Operands), 932 VPValue(VPValue::VPVWidenSC, &I, this) {} 933 934 ~VPWidenRecipe() override = default; 935 936 /// Method to support type inquiry through isa, cast, and dyn_cast. 937 static inline bool classof(const VPDef *D) { 938 return D->getVPDefID() == VPRecipeBase::VPWidenSC; 939 } 940 static inline bool classof(const VPValue *V) { 941 return V->getVPValueID() == VPValue::VPVWidenSC; 942 } 943 944 /// Produce widened copies of all Ingredients. 945 void execute(VPTransformState &State) override; 946 947 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 948 /// Print the recipe. 949 void print(raw_ostream &O, const Twine &Indent, 950 VPSlotTracker &SlotTracker) const override; 951 #endif 952 }; 953 954 /// A recipe for widening Call instructions. 955 class VPWidenCallRecipe : public VPRecipeBase, public VPValue { 956 957 public: 958 template <typename IterT> 959 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments) 960 : VPRecipeBase(VPRecipeBase::VPWidenCallSC, CallArguments), 961 VPValue(VPValue::VPVWidenCallSC, &I, this) {} 962 963 ~VPWidenCallRecipe() override = default; 964 965 /// Method to support type inquiry through isa, cast, and dyn_cast. 966 static inline bool classof(const VPDef *D) { 967 return D->getVPDefID() == VPRecipeBase::VPWidenCallSC; 968 } 969 970 /// Produce a widened version of the call instruction. 971 void execute(VPTransformState &State) override; 972 973 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 974 /// Print the recipe. 975 void print(raw_ostream &O, const Twine &Indent, 976 VPSlotTracker &SlotTracker) const override; 977 #endif 978 }; 979 980 /// A recipe for widening select instructions. 981 class VPWidenSelectRecipe : public VPRecipeBase, public VPValue { 982 983 /// Is the condition of the select loop invariant? 984 bool InvariantCond; 985 986 public: 987 template <typename IterT> 988 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands, 989 bool InvariantCond) 990 : VPRecipeBase(VPRecipeBase::VPWidenSelectSC, Operands), 991 VPValue(VPValue::VPVWidenSelectSC, &I, this), 992 InvariantCond(InvariantCond) {} 993 994 ~VPWidenSelectRecipe() override = default; 995 996 /// Method to support type inquiry through isa, cast, and dyn_cast. 997 static inline bool classof(const VPDef *D) { 998 return D->getVPDefID() == VPRecipeBase::VPWidenSelectSC; 999 } 1000 1001 /// Produce a widened version of the select instruction. 1002 void execute(VPTransformState &State) override; 1003 1004 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1005 /// Print the recipe. 1006 void print(raw_ostream &O, const Twine &Indent, 1007 VPSlotTracker &SlotTracker) const override; 1008 #endif 1009 }; 1010 1011 /// A recipe for handling GEP instructions. 1012 class VPWidenGEPRecipe : public VPRecipeBase, public VPValue { 1013 bool IsPtrLoopInvariant; 1014 SmallBitVector IsIndexLoopInvariant; 1015 1016 public: 1017 template <typename IterT> 1018 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 1019 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 1020 VPValue(VPWidenGEPSC, GEP, this), 1021 IsIndexLoopInvariant(GEP->getNumIndices(), false) {} 1022 1023 template <typename IterT> 1024 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands, 1025 Loop *OrigLoop) 1026 : VPRecipeBase(VPRecipeBase::VPWidenGEPSC, Operands), 1027 VPValue(VPValue::VPVWidenGEPSC, GEP, this), 1028 IsIndexLoopInvariant(GEP->getNumIndices(), false) { 1029 IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); 1030 for (auto Index : enumerate(GEP->indices())) 1031 IsIndexLoopInvariant[Index.index()] = 1032 OrigLoop->isLoopInvariant(Index.value().get()); 1033 } 1034 ~VPWidenGEPRecipe() override = default; 1035 1036 /// Method to support type inquiry through isa, cast, and dyn_cast. 1037 static inline bool classof(const VPDef *D) { 1038 return D->getVPDefID() == VPRecipeBase::VPWidenGEPSC; 1039 } 1040 1041 /// Generate the gep nodes. 1042 void execute(VPTransformState &State) override; 1043 1044 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1045 /// Print the recipe. 1046 void print(raw_ostream &O, const Twine &Indent, 1047 VPSlotTracker &SlotTracker) const override; 1048 #endif 1049 }; 1050 1051 /// A recipe for handling phi nodes of integer and floating-point inductions, 1052 /// producing their vector and scalar values. 1053 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase, public VPValue { 1054 PHINode *IV; 1055 const InductionDescriptor &IndDesc; 1056 bool NeedsScalarIV; 1057 bool NeedsVectorIV; 1058 1059 public: 1060 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, 1061 const InductionDescriptor &IndDesc, 1062 bool NeedsScalarIV, bool NeedsVectorIV) 1063 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), VPValue(IV, this), 1064 IV(IV), IndDesc(IndDesc), NeedsScalarIV(NeedsScalarIV), 1065 NeedsVectorIV(NeedsVectorIV) {} 1066 1067 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, 1068 const InductionDescriptor &IndDesc, 1069 TruncInst *Trunc, bool NeedsScalarIV, 1070 bool NeedsVectorIV) 1071 : VPRecipeBase(VPWidenIntOrFpInductionSC, {Start}), VPValue(Trunc, this), 1072 IV(IV), IndDesc(IndDesc), NeedsScalarIV(NeedsScalarIV), 1073 NeedsVectorIV(NeedsVectorIV) {} 1074 1075 ~VPWidenIntOrFpInductionRecipe() override = default; 1076 1077 /// Method to support type inquiry through isa, cast, and dyn_cast. 1078 static inline bool classof(const VPDef *D) { 1079 return D->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 1080 } 1081 1082 /// Generate the vectorized and scalarized versions of the phi node as 1083 /// needed by their users. 1084 void execute(VPTransformState &State) override; 1085 1086 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1087 /// Print the recipe. 1088 void print(raw_ostream &O, const Twine &Indent, 1089 VPSlotTracker &SlotTracker) const override; 1090 #endif 1091 1092 /// Returns the start value of the induction. 1093 VPValue *getStartValue() { return getOperand(0); } 1094 const VPValue *getStartValue() const { return getOperand(0); } 1095 1096 /// Returns the first defined value as TruncInst, if it is one or nullptr 1097 /// otherwise. 1098 TruncInst *getTruncInst() { 1099 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1100 } 1101 const TruncInst *getTruncInst() const { 1102 return dyn_cast_or_null<TruncInst>(getVPValue(0)->getUnderlyingValue()); 1103 } 1104 1105 /// Returns the induction descriptor for the recipe. 1106 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1107 1108 /// Returns true if the induction is canonical, i.e. starting at 0 and 1109 /// incremented by UF * VF (= the original IV is incremented by 1). 1110 bool isCanonical() const; 1111 1112 /// Returns the scalar type of the induction. 1113 const Type *getScalarType() const { 1114 const TruncInst *TruncI = getTruncInst(); 1115 return TruncI ? TruncI->getType() : IV->getType(); 1116 } 1117 1118 /// Returns true if a scalar phi needs to be created for the induction. 1119 bool needsScalarIV() const { return NeedsScalarIV; } 1120 1121 /// Returns true if a vector phi needs to be created for the induction. 1122 bool needsVectorIV() const { return NeedsVectorIV; } 1123 }; 1124 1125 /// A pure virtual base class for all recipes modeling header phis, including 1126 /// phis for first order recurrences, pointer inductions and reductions. The 1127 /// start value is the first operand of the recipe and the incoming value from 1128 /// the backedge is the second operand. 1129 class VPHeaderPHIRecipe : public VPRecipeBase, public VPValue { 1130 protected: 1131 VPHeaderPHIRecipe(unsigned char VPVID, unsigned char VPDefID, PHINode *Phi, 1132 VPValue *Start = nullptr) 1133 : VPRecipeBase(VPDefID, {}), VPValue(VPVID, Phi, this) { 1134 if (Start) 1135 addOperand(Start); 1136 } 1137 1138 public: 1139 ~VPHeaderPHIRecipe() override = default; 1140 1141 /// Method to support type inquiry through isa, cast, and dyn_cast. 1142 static inline bool classof(const VPRecipeBase *B) { 1143 return B->getVPDefID() == VPRecipeBase::VPCanonicalIVPHISC || 1144 B->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC || 1145 B->getVPDefID() == VPRecipeBase::VPReductionPHISC || 1146 B->getVPDefID() == VPRecipeBase::VPWidenIntOrFpInductionSC || 1147 B->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1148 } 1149 static inline bool classof(const VPValue *V) { 1150 return V->getVPValueID() == VPValue::VPVCanonicalIVPHISC || 1151 V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC || 1152 V->getVPValueID() == VPValue::VPVReductionPHISC || 1153 V->getVPValueID() == VPValue::VPVWidenIntOrFpInductionSC || 1154 V->getVPValueID() == VPValue::VPVWidenPHISC; 1155 } 1156 1157 /// Generate the phi nodes. 1158 void execute(VPTransformState &State) override = 0; 1159 1160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1161 /// Print the recipe. 1162 void print(raw_ostream &O, const Twine &Indent, 1163 VPSlotTracker &SlotTracker) const override = 0; 1164 #endif 1165 1166 /// Returns the start value of the phi, if one is set. 1167 VPValue *getStartValue() { 1168 return getNumOperands() == 0 ? nullptr : getOperand(0); 1169 } 1170 1171 /// Returns the incoming value from the loop backedge. 1172 VPValue *getBackedgeValue() { 1173 return getOperand(1); 1174 } 1175 1176 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1177 /// to be a recipe. 1178 VPRecipeBase *getBackedgeRecipe() { 1179 return cast<VPRecipeBase>(getBackedgeValue()->getDef()); 1180 } 1181 }; 1182 1183 /// A recipe for handling header phis that are widened in the vector loop. 1184 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are 1185 /// managed in the recipe directly. 1186 class VPWidenPHIRecipe : public VPHeaderPHIRecipe { 1187 /// List of incoming blocks. Only used in the VPlan native path. 1188 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1189 1190 public: 1191 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1192 VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr) 1193 : VPHeaderPHIRecipe(VPVWidenPHISC, VPWidenPHISC, Phi) { 1194 if (Start) 1195 addOperand(Start); 1196 } 1197 1198 ~VPWidenPHIRecipe() override = default; 1199 1200 /// Method to support type inquiry through isa, cast, and dyn_cast. 1201 static inline bool classof(const VPRecipeBase *B) { 1202 return B->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1203 } 1204 static inline bool classof(const VPHeaderPHIRecipe *R) { 1205 return R->getVPDefID() == VPRecipeBase::VPWidenPHISC; 1206 } 1207 static inline bool classof(const VPValue *V) { 1208 return V->getVPValueID() == VPValue::VPVWidenPHISC; 1209 } 1210 1211 /// Generate the phi/select nodes. 1212 void execute(VPTransformState &State) override; 1213 1214 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1215 /// Print the recipe. 1216 void print(raw_ostream &O, const Twine &Indent, 1217 VPSlotTracker &SlotTracker) const override; 1218 #endif 1219 1220 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1221 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1222 addOperand(IncomingV); 1223 IncomingBlocks.push_back(IncomingBlock); 1224 } 1225 1226 /// Returns the \p I th incoming VPBasicBlock. 1227 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1228 1229 /// Returns the \p I th incoming VPValue. 1230 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1231 }; 1232 1233 /// A recipe for handling first-order recurrence phis. The start value is the 1234 /// first operand of the recipe and the incoming value from the backedge is the 1235 /// second operand. 1236 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { 1237 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1238 : VPHeaderPHIRecipe(VPVFirstOrderRecurrencePHISC, 1239 VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1240 1241 /// Method to support type inquiry through isa, cast, and dyn_cast. 1242 static inline bool classof(const VPRecipeBase *R) { 1243 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1244 } 1245 static inline bool classof(const VPHeaderPHIRecipe *R) { 1246 return R->getVPDefID() == VPRecipeBase::VPFirstOrderRecurrencePHISC; 1247 } 1248 static inline bool classof(const VPValue *V) { 1249 return V->getVPValueID() == VPValue::VPVFirstOrderRecurrencePHISC; 1250 } 1251 1252 void execute(VPTransformState &State) override; 1253 1254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1255 /// Print the recipe. 1256 void print(raw_ostream &O, const Twine &Indent, 1257 VPSlotTracker &SlotTracker) const override; 1258 #endif 1259 }; 1260 1261 /// A recipe for handling reduction phis. The start value is the first operand 1262 /// of the recipe and the incoming value from the backedge is the second 1263 /// operand. 1264 class VPReductionPHIRecipe : public VPHeaderPHIRecipe { 1265 /// Descriptor for the reduction. 1266 const RecurrenceDescriptor &RdxDesc; 1267 1268 /// The phi is part of an in-loop reduction. 1269 bool IsInLoop; 1270 1271 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1272 bool IsOrdered; 1273 1274 public: 1275 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1276 /// RdxDesc. 1277 VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, 1278 VPValue &Start, bool IsInLoop = false, 1279 bool IsOrdered = false) 1280 : VPHeaderPHIRecipe(VPVReductionPHISC, VPReductionPHISC, Phi, &Start), 1281 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1282 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1283 } 1284 1285 ~VPReductionPHIRecipe() override = default; 1286 1287 /// Method to support type inquiry through isa, cast, and dyn_cast. 1288 static inline bool classof(const VPRecipeBase *R) { 1289 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1290 } 1291 static inline bool classof(const VPHeaderPHIRecipe *R) { 1292 return R->getVPDefID() == VPRecipeBase::VPReductionPHISC; 1293 } 1294 static inline bool classof(const VPValue *V) { 1295 return V->getVPValueID() == VPValue::VPVReductionPHISC; 1296 } 1297 1298 /// Generate the phi/select nodes. 1299 void execute(VPTransformState &State) override; 1300 1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1302 /// Print the recipe. 1303 void print(raw_ostream &O, const Twine &Indent, 1304 VPSlotTracker &SlotTracker) const override; 1305 #endif 1306 1307 const RecurrenceDescriptor &getRecurrenceDescriptor() const { 1308 return RdxDesc; 1309 } 1310 1311 /// Returns true, if the phi is part of an ordered reduction. 1312 bool isOrdered() const { return IsOrdered; } 1313 1314 /// Returns true, if the phi is part of an in-loop reduction. 1315 bool isInLoop() const { return IsInLoop; } 1316 }; 1317 1318 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1319 /// instructions. 1320 class VPBlendRecipe : public VPRecipeBase, public VPValue { 1321 PHINode *Phi; 1322 1323 public: 1324 /// The blend operation is a User of the incoming values and of their 1325 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1326 /// might be incoming with a full mask for which there is no VPValue. 1327 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1328 : VPRecipeBase(VPBlendSC, Operands), 1329 VPValue(VPValue::VPVBlendSC, Phi, this), Phi(Phi) { 1330 assert(Operands.size() > 0 && 1331 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1332 "Expected either a single incoming value or a positive even number " 1333 "of operands"); 1334 } 1335 1336 /// Method to support type inquiry through isa, cast, and dyn_cast. 1337 static inline bool classof(const VPDef *D) { 1338 return D->getVPDefID() == VPRecipeBase::VPBlendSC; 1339 } 1340 1341 /// Return the number of incoming values, taking into account that a single 1342 /// incoming value has no mask. 1343 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1344 1345 /// Return incoming value number \p Idx. 1346 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1347 1348 /// Return mask number \p Idx. 1349 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1350 1351 /// Generate the phi/select nodes. 1352 void execute(VPTransformState &State) override; 1353 1354 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1355 /// Print the recipe. 1356 void print(raw_ostream &O, const Twine &Indent, 1357 VPSlotTracker &SlotTracker) const override; 1358 #endif 1359 1360 /// Returns true if the recipe only uses the first lane of operand \p Op. 1361 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1362 assert(is_contained(operands(), Op) && 1363 "Op must be an operand of the recipe"); 1364 // Recursing through Blend recipes only, must terminate at header phi's the 1365 // latest. 1366 return all_of(users(), [this](VPUser *U) { 1367 return cast<VPRecipeBase>(U)->onlyFirstLaneUsed(this); 1368 }); 1369 } 1370 }; 1371 1372 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1373 /// or stores into one wide load/store and shuffles. The first operand of a 1374 /// VPInterleave recipe is the address, followed by the stored values, followed 1375 /// by an optional mask. 1376 class VPInterleaveRecipe : public VPRecipeBase { 1377 const InterleaveGroup<Instruction> *IG; 1378 1379 bool HasMask = false; 1380 1381 public: 1382 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1383 ArrayRef<VPValue *> StoredValues, VPValue *Mask) 1384 : VPRecipeBase(VPInterleaveSC, {Addr}), IG(IG) { 1385 for (unsigned i = 0; i < IG->getFactor(); ++i) 1386 if (Instruction *I = IG->getMember(i)) { 1387 if (I->getType()->isVoidTy()) 1388 continue; 1389 new VPValue(I, this); 1390 } 1391 1392 for (auto *SV : StoredValues) 1393 addOperand(SV); 1394 if (Mask) { 1395 HasMask = true; 1396 addOperand(Mask); 1397 } 1398 } 1399 ~VPInterleaveRecipe() override = default; 1400 1401 /// Method to support type inquiry through isa, cast, and dyn_cast. 1402 static inline bool classof(const VPDef *D) { 1403 return D->getVPDefID() == VPRecipeBase::VPInterleaveSC; 1404 } 1405 1406 /// Return the address accessed by this recipe. 1407 VPValue *getAddr() const { 1408 return getOperand(0); // Address is the 1st, mandatory operand. 1409 } 1410 1411 /// Return the mask used by this recipe. Note that a full mask is represented 1412 /// by a nullptr. 1413 VPValue *getMask() const { 1414 // Mask is optional and therefore the last, currently 2nd operand. 1415 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1416 } 1417 1418 /// Return the VPValues stored by this interleave group. If it is a load 1419 /// interleave group, return an empty ArrayRef. 1420 ArrayRef<VPValue *> getStoredValues() const { 1421 // The first operand is the address, followed by the stored values, followed 1422 // by an optional mask. 1423 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1424 .slice(1, getNumStoreOperands()); 1425 } 1426 1427 /// Generate the wide load or store, and shuffles. 1428 void execute(VPTransformState &State) override; 1429 1430 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1431 /// Print the recipe. 1432 void print(raw_ostream &O, const Twine &Indent, 1433 VPSlotTracker &SlotTracker) const override; 1434 #endif 1435 1436 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1437 1438 /// Returns the number of stored operands of this interleave group. Returns 0 1439 /// for load interleave groups. 1440 unsigned getNumStoreOperands() const { 1441 return getNumOperands() - (HasMask ? 2 : 1); 1442 } 1443 }; 1444 1445 /// A recipe to represent inloop reduction operations, performing a reduction on 1446 /// a vector operand into a scalar value, and adding the result to a chain. 1447 /// The Operands are {ChainOp, VecOp, [Condition]}. 1448 class VPReductionRecipe : public VPRecipeBase, public VPValue { 1449 /// The recurrence decriptor for the reduction in question. 1450 const RecurrenceDescriptor *RdxDesc; 1451 /// Pointer to the TTI, needed to create the target reduction 1452 const TargetTransformInfo *TTI; 1453 1454 public: 1455 VPReductionRecipe(const RecurrenceDescriptor *R, Instruction *I, 1456 VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp, 1457 const TargetTransformInfo *TTI) 1458 : VPRecipeBase(VPRecipeBase::VPReductionSC, {ChainOp, VecOp}), 1459 VPValue(VPValue::VPVReductionSC, I, this), RdxDesc(R), TTI(TTI) { 1460 if (CondOp) 1461 addOperand(CondOp); 1462 } 1463 1464 ~VPReductionRecipe() override = default; 1465 1466 /// Method to support type inquiry through isa, cast, and dyn_cast. 1467 static inline bool classof(const VPValue *V) { 1468 return V->getVPValueID() == VPValue::VPVReductionSC; 1469 } 1470 1471 /// Generate the reduction in the loop 1472 void execute(VPTransformState &State) override; 1473 1474 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1475 /// Print the recipe. 1476 void print(raw_ostream &O, const Twine &Indent, 1477 VPSlotTracker &SlotTracker) const override; 1478 #endif 1479 1480 /// The VPValue of the scalar Chain being accumulated. 1481 VPValue *getChainOp() const { return getOperand(0); } 1482 /// The VPValue of the vector value to be reduced. 1483 VPValue *getVecOp() const { return getOperand(1); } 1484 /// The VPValue of the condition for the block. 1485 VPValue *getCondOp() const { 1486 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1487 } 1488 }; 1489 1490 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1491 /// copies of the original scalar type, one per lane, instead of producing a 1492 /// single copy of widened type for all lanes. If the instruction is known to be 1493 /// uniform only one copy, per lane zero, will be generated. 1494 class VPReplicateRecipe : public VPRecipeBase, public VPValue { 1495 /// Indicator if only a single replica per lane is needed. 1496 bool IsUniform; 1497 1498 /// Indicator if the replicas are also predicated. 1499 bool IsPredicated; 1500 1501 /// Indicator if the scalar values should also be packed into a vector. 1502 bool AlsoPack; 1503 1504 public: 1505 template <typename IterT> 1506 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1507 bool IsUniform, bool IsPredicated = false) 1508 : VPRecipeBase(VPReplicateSC, Operands), VPValue(VPVReplicateSC, I, this), 1509 IsUniform(IsUniform), IsPredicated(IsPredicated) { 1510 // Retain the previous behavior of predicateInstructions(), where an 1511 // insert-element of a predicated instruction got hoisted into the 1512 // predicated basic block iff it was its only user. This is achieved by 1513 // having predicated instructions also pack their values into a vector by 1514 // default unless they have a replicated user which uses their scalar value. 1515 AlsoPack = IsPredicated && !I->use_empty(); 1516 } 1517 1518 ~VPReplicateRecipe() override = default; 1519 1520 /// Method to support type inquiry through isa, cast, and dyn_cast. 1521 static inline bool classof(const VPDef *D) { 1522 return D->getVPDefID() == VPRecipeBase::VPReplicateSC; 1523 } 1524 1525 static inline bool classof(const VPValue *V) { 1526 return V->getVPValueID() == VPValue::VPVReplicateSC; 1527 } 1528 1529 /// Generate replicas of the desired Ingredient. Replicas will be generated 1530 /// for all parts and lanes unless a specific part and lane are specified in 1531 /// the \p State. 1532 void execute(VPTransformState &State) override; 1533 1534 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 1535 1536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1537 /// Print the recipe. 1538 void print(raw_ostream &O, const Twine &Indent, 1539 VPSlotTracker &SlotTracker) const override; 1540 #endif 1541 1542 bool isUniform() const { return IsUniform; } 1543 1544 bool isPacked() const { return AlsoPack; } 1545 1546 bool isPredicated() const { return IsPredicated; } 1547 1548 /// Returns true if the recipe only uses the first lane of operand \p Op. 1549 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1550 assert(is_contained(operands(), Op) && 1551 "Op must be an operand of the recipe"); 1552 return isUniform(); 1553 } 1554 }; 1555 1556 /// A recipe for generating conditional branches on the bits of a mask. 1557 class VPBranchOnMaskRecipe : public VPRecipeBase { 1558 public: 1559 VPBranchOnMaskRecipe(VPValue *BlockInMask) 1560 : VPRecipeBase(VPBranchOnMaskSC, {}) { 1561 if (BlockInMask) // nullptr means all-one mask. 1562 addOperand(BlockInMask); 1563 } 1564 1565 /// Method to support type inquiry through isa, cast, and dyn_cast. 1566 static inline bool classof(const VPDef *D) { 1567 return D->getVPDefID() == VPRecipeBase::VPBranchOnMaskSC; 1568 } 1569 1570 /// Generate the extraction of the appropriate bit from the block mask and the 1571 /// conditional branch. 1572 void execute(VPTransformState &State) override; 1573 1574 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1575 /// Print the recipe. 1576 void print(raw_ostream &O, const Twine &Indent, 1577 VPSlotTracker &SlotTracker) const override { 1578 O << Indent << "BRANCH-ON-MASK "; 1579 if (VPValue *Mask = getMask()) 1580 Mask->printAsOperand(O, SlotTracker); 1581 else 1582 O << " All-One"; 1583 } 1584 #endif 1585 1586 /// Return the mask used by this recipe. Note that a full mask is represented 1587 /// by a nullptr. 1588 VPValue *getMask() const { 1589 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 1590 // Mask is optional. 1591 return getNumOperands() == 1 ? getOperand(0) : nullptr; 1592 } 1593 }; 1594 1595 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 1596 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 1597 /// order to merge values that are set under such a branch and feed their uses. 1598 /// The phi nodes can be scalar or vector depending on the users of the value. 1599 /// This recipe works in concert with VPBranchOnMaskRecipe. 1600 class VPPredInstPHIRecipe : public VPRecipeBase, public VPValue { 1601 public: 1602 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1603 /// nodes after merging back from a Branch-on-Mask. 1604 VPPredInstPHIRecipe(VPValue *PredV) 1605 : VPRecipeBase(VPPredInstPHISC, PredV), 1606 VPValue(VPValue::VPVPredInstPHI, nullptr, this) {} 1607 ~VPPredInstPHIRecipe() override = default; 1608 1609 /// Method to support type inquiry through isa, cast, and dyn_cast. 1610 static inline bool classof(const VPDef *D) { 1611 return D->getVPDefID() == VPRecipeBase::VPPredInstPHISC; 1612 } 1613 1614 /// Generates phi nodes for live-outs as needed to retain SSA form. 1615 void execute(VPTransformState &State) override; 1616 1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1618 /// Print the recipe. 1619 void print(raw_ostream &O, const Twine &Indent, 1620 VPSlotTracker &SlotTracker) const override; 1621 #endif 1622 }; 1623 1624 /// A Recipe for widening load/store operations. 1625 /// The recipe uses the following VPValues: 1626 /// - For load: Address, optional mask 1627 /// - For store: Address, stored value, optional mask 1628 /// TODO: We currently execute only per-part unless a specific instance is 1629 /// provided. 1630 class VPWidenMemoryInstructionRecipe : public VPRecipeBase, public VPValue { 1631 Instruction &Ingredient; 1632 1633 // Whether the loaded-from / stored-to addresses are consecutive. 1634 bool Consecutive; 1635 1636 // Whether the consecutive loaded/stored addresses are in reverse order. 1637 bool Reverse; 1638 1639 void setMask(VPValue *Mask) { 1640 if (!Mask) 1641 return; 1642 addOperand(Mask); 1643 } 1644 1645 bool isMasked() const { 1646 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 1647 } 1648 1649 public: 1650 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 1651 bool Consecutive, bool Reverse) 1652 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr}), 1653 VPValue(VPValue::VPVMemoryInstructionSC, &Load, this), Ingredient(Load), 1654 Consecutive(Consecutive), Reverse(Reverse) { 1655 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1656 setMask(Mask); 1657 } 1658 1659 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 1660 VPValue *StoredValue, VPValue *Mask, 1661 bool Consecutive, bool Reverse) 1662 : VPRecipeBase(VPWidenMemoryInstructionSC, {Addr, StoredValue}), 1663 VPValue(VPValue::VPVMemoryInstructionSC, &Store, this), 1664 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 1665 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 1666 setMask(Mask); 1667 } 1668 1669 /// Method to support type inquiry through isa, cast, and dyn_cast. 1670 static inline bool classof(const VPDef *D) { 1671 return D->getVPDefID() == VPRecipeBase::VPWidenMemoryInstructionSC; 1672 } 1673 1674 /// Return the address accessed by this recipe. 1675 VPValue *getAddr() const { 1676 return getOperand(0); // Address is the 1st, mandatory operand. 1677 } 1678 1679 /// Return the mask used by this recipe. Note that a full mask is represented 1680 /// by a nullptr. 1681 VPValue *getMask() const { 1682 // Mask is optional and therefore the last operand. 1683 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 1684 } 1685 1686 /// Returns true if this recipe is a store. 1687 bool isStore() const { return isa<StoreInst>(Ingredient); } 1688 1689 /// Return the address accessed by this recipe. 1690 VPValue *getStoredValue() const { 1691 assert(isStore() && "Stored value only available for store instructions"); 1692 return getOperand(1); // Stored value is the 2nd, mandatory operand. 1693 } 1694 1695 // Return whether the loaded-from / stored-to addresses are consecutive. 1696 bool isConsecutive() const { return Consecutive; } 1697 1698 // Return whether the consecutive loaded/stored addresses are in reverse 1699 // order. 1700 bool isReverse() const { return Reverse; } 1701 1702 /// Generate the wide load/store. 1703 void execute(VPTransformState &State) override; 1704 1705 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1706 /// Print the recipe. 1707 void print(raw_ostream &O, const Twine &Indent, 1708 VPSlotTracker &SlotTracker) const override; 1709 #endif 1710 1711 /// Returns true if the recipe only uses the first lane of operand \p Op. 1712 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1713 assert(is_contained(operands(), Op) && 1714 "Op must be an operand of the recipe"); 1715 1716 // Widened, consecutive memory operations only demand the first lane of 1717 // their address. 1718 return Op == getAddr() && isConsecutive(); 1719 } 1720 }; 1721 1722 /// Canonical scalar induction phi of the vector loop. Starting at the specified 1723 /// start value (either 0 or the resume value when vectorizing the epilogue 1724 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the 1725 /// canonical induction variable. 1726 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { 1727 DebugLoc DL; 1728 1729 public: 1730 VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) 1731 : VPHeaderPHIRecipe(VPValue::VPVCanonicalIVPHISC, VPCanonicalIVPHISC, 1732 nullptr, StartV), 1733 DL(DL) {} 1734 1735 ~VPCanonicalIVPHIRecipe() override = default; 1736 1737 /// Method to support type inquiry through isa, cast, and dyn_cast. 1738 static inline bool classof(const VPDef *D) { 1739 return D->getVPDefID() == VPCanonicalIVPHISC; 1740 } 1741 1742 /// Generate the canonical scalar induction phi of the vector loop. 1743 void execute(VPTransformState &State) override; 1744 1745 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1746 /// Print the recipe. 1747 void print(raw_ostream &O, const Twine &Indent, 1748 VPSlotTracker &SlotTracker) const override; 1749 #endif 1750 1751 /// Returns the scalar type of the induction. 1752 const Type *getScalarType() const { 1753 return getOperand(0)->getLiveInIRValue()->getType(); 1754 } 1755 1756 /// Returns true if the recipe only uses the first lane of operand \p Op. 1757 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1758 assert(is_contained(operands(), Op) && 1759 "Op must be an operand of the recipe"); 1760 return true; 1761 } 1762 }; 1763 1764 /// A Recipe for widening the canonical induction variable of the vector loop. 1765 class VPWidenCanonicalIVRecipe : public VPRecipeBase, public VPValue { 1766 public: 1767 VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) 1768 : VPRecipeBase(VPWidenCanonicalIVSC, {CanonicalIV}), 1769 VPValue(VPValue::VPVWidenCanonicalIVSC, nullptr, this) {} 1770 1771 ~VPWidenCanonicalIVRecipe() override = default; 1772 1773 /// Method to support type inquiry through isa, cast, and dyn_cast. 1774 static inline bool classof(const VPDef *D) { 1775 return D->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1776 } 1777 1778 /// Extra classof implementations to allow directly casting from VPUser -> 1779 /// VPWidenCanonicalIVRecipe. 1780 static inline bool classof(const VPUser *U) { 1781 auto *R = dyn_cast<VPRecipeBase>(U); 1782 return R && R->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1783 } 1784 static inline bool classof(const VPRecipeBase *R) { 1785 return R->getVPDefID() == VPRecipeBase::VPWidenCanonicalIVSC; 1786 } 1787 1788 /// Generate a canonical vector induction variable of the vector loop, with 1789 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 1790 /// step = <VF*UF, VF*UF, ..., VF*UF>. 1791 void execute(VPTransformState &State) override; 1792 1793 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1794 /// Print the recipe. 1795 void print(raw_ostream &O, const Twine &Indent, 1796 VPSlotTracker &SlotTracker) const override; 1797 #endif 1798 1799 /// Returns the scalar type of the induction. 1800 const Type *getScalarType() const { 1801 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDef()) 1802 ->getScalarType(); 1803 } 1804 }; 1805 1806 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 1807 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 1808 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 1809 class VPBasicBlock : public VPBlockBase { 1810 public: 1811 using RecipeListTy = iplist<VPRecipeBase>; 1812 1813 private: 1814 /// The VPRecipes held in the order of output instructions to generate. 1815 RecipeListTy Recipes; 1816 1817 public: 1818 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 1819 : VPBlockBase(VPBasicBlockSC, Name.str()) { 1820 if (Recipe) 1821 appendRecipe(Recipe); 1822 } 1823 1824 ~VPBasicBlock() override { 1825 while (!Recipes.empty()) 1826 Recipes.pop_back(); 1827 } 1828 1829 /// Instruction iterators... 1830 using iterator = RecipeListTy::iterator; 1831 using const_iterator = RecipeListTy::const_iterator; 1832 using reverse_iterator = RecipeListTy::reverse_iterator; 1833 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1834 1835 //===--------------------------------------------------------------------===// 1836 /// Recipe iterator methods 1837 /// 1838 inline iterator begin() { return Recipes.begin(); } 1839 inline const_iterator begin() const { return Recipes.begin(); } 1840 inline iterator end() { return Recipes.end(); } 1841 inline const_iterator end() const { return Recipes.end(); } 1842 1843 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1844 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1845 inline reverse_iterator rend() { return Recipes.rend(); } 1846 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1847 1848 inline size_t size() const { return Recipes.size(); } 1849 inline bool empty() const { return Recipes.empty(); } 1850 inline const VPRecipeBase &front() const { return Recipes.front(); } 1851 inline VPRecipeBase &front() { return Recipes.front(); } 1852 inline const VPRecipeBase &back() const { return Recipes.back(); } 1853 inline VPRecipeBase &back() { return Recipes.back(); } 1854 1855 /// Returns a reference to the list of recipes. 1856 RecipeListTy &getRecipeList() { return Recipes; } 1857 1858 /// Returns a pointer to a member of the recipe list. 1859 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1860 return &VPBasicBlock::Recipes; 1861 } 1862 1863 /// Method to support type inquiry through isa, cast, and dyn_cast. 1864 static inline bool classof(const VPBlockBase *V) { 1865 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1866 } 1867 1868 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1869 assert(Recipe && "No recipe to append."); 1870 assert(!Recipe->Parent && "Recipe already in VPlan"); 1871 Recipe->Parent = this; 1872 Recipes.insert(InsertPt, Recipe); 1873 } 1874 1875 /// Augment the existing recipes of a VPBasicBlock with an additional 1876 /// \p Recipe as the last recipe. 1877 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1878 1879 /// The method which generates the output IR instructions that correspond to 1880 /// this VPBasicBlock, thereby "executing" the VPlan. 1881 void execute(struct VPTransformState *State) override; 1882 1883 /// Return the position of the first non-phi node recipe in the block. 1884 iterator getFirstNonPhi(); 1885 1886 /// Returns an iterator range over the PHI-like recipes in the block. 1887 iterator_range<iterator> phis() { 1888 return make_range(begin(), getFirstNonPhi()); 1889 } 1890 1891 void dropAllReferences(VPValue *NewValue) override; 1892 1893 /// Split current block at \p SplitAt by inserting a new block between the 1894 /// current block and its successors and moving all recipes starting at 1895 /// SplitAt to the new block. Returns the new block. 1896 VPBasicBlock *splitAt(iterator SplitAt); 1897 1898 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1899 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 1900 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 1901 /// 1902 /// Note that the numbering is applied to the whole VPlan, so printing 1903 /// individual blocks is consistent with the whole VPlan printing. 1904 void print(raw_ostream &O, const Twine &Indent, 1905 VPSlotTracker &SlotTracker) const override; 1906 using VPBlockBase::print; // Get the print(raw_stream &O) version. 1907 #endif 1908 1909 private: 1910 /// Create an IR BasicBlock to hold the output instructions generated by this 1911 /// VPBasicBlock, and return it. Update the CFGState accordingly. 1912 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1913 }; 1914 1915 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1916 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1917 /// A VPRegionBlock may indicate that its contents are to be replicated several 1918 /// times. This is designed to support predicated scalarization, in which a 1919 /// scalar if-then code structure needs to be generated VF * UF times. Having 1920 /// this replication indicator helps to keep a single model for multiple 1921 /// candidate VF's. The actual replication takes place only once the desired VF 1922 /// and UF have been determined. 1923 class VPRegionBlock : public VPBlockBase { 1924 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1925 VPBlockBase *Entry; 1926 1927 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1928 VPBlockBase *Exit; 1929 1930 /// An indicator whether this region is to generate multiple replicated 1931 /// instances of output IR corresponding to its VPBlockBases. 1932 bool IsReplicator; 1933 1934 public: 1935 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1936 const std::string &Name = "", bool IsReplicator = false) 1937 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1938 IsReplicator(IsReplicator) { 1939 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1940 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1941 Entry->setParent(this); 1942 Exit->setParent(this); 1943 } 1944 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 1945 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1946 IsReplicator(IsReplicator) {} 1947 1948 ~VPRegionBlock() override { 1949 if (Entry) { 1950 VPValue DummyValue; 1951 Entry->dropAllReferences(&DummyValue); 1952 deleteCFG(Entry); 1953 } 1954 } 1955 1956 /// Method to support type inquiry through isa, cast, and dyn_cast. 1957 static inline bool classof(const VPBlockBase *V) { 1958 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1959 } 1960 1961 const VPBlockBase *getEntry() const { return Entry; } 1962 VPBlockBase *getEntry() { return Entry; } 1963 1964 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1965 /// EntryBlock must have no predecessors. 1966 void setEntry(VPBlockBase *EntryBlock) { 1967 assert(EntryBlock->getPredecessors().empty() && 1968 "Entry block cannot have predecessors."); 1969 Entry = EntryBlock; 1970 EntryBlock->setParent(this); 1971 } 1972 1973 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1974 // specific interface of llvm::Function, instead of using 1975 // GraphTraints::getEntryNode. We should add a new template parameter to 1976 // DominatorTreeBase representing the Graph type. 1977 VPBlockBase &front() const { return *Entry; } 1978 1979 const VPBlockBase *getExit() const { return Exit; } 1980 VPBlockBase *getExit() { return Exit; } 1981 1982 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1983 /// ExitBlock must have no successors. 1984 void setExit(VPBlockBase *ExitBlock) { 1985 assert(ExitBlock->getSuccessors().empty() && 1986 "Exit block cannot have successors."); 1987 Exit = ExitBlock; 1988 ExitBlock->setParent(this); 1989 } 1990 1991 /// An indicator whether this region is to generate multiple replicated 1992 /// instances of output IR corresponding to its VPBlockBases. 1993 bool isReplicator() const { return IsReplicator; } 1994 1995 /// The method which generates the output IR instructions that correspond to 1996 /// this VPRegionBlock, thereby "executing" the VPlan. 1997 void execute(struct VPTransformState *State) override; 1998 1999 void dropAllReferences(VPValue *NewValue) override; 2000 2001 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2002 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 2003 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 2004 /// consequtive numbers. 2005 /// 2006 /// Note that the numbering is applied to the whole VPlan, so printing 2007 /// individual regions is consistent with the whole VPlan printing. 2008 void print(raw_ostream &O, const Twine &Indent, 2009 VPSlotTracker &SlotTracker) const override; 2010 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2011 #endif 2012 }; 2013 2014 //===----------------------------------------------------------------------===// 2015 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 2016 //===----------------------------------------------------------------------===// 2017 2018 // The following set of template specializations implement GraphTraits to treat 2019 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 2020 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 2021 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 2022 // successors/predecessors but not to the blocks inside the region. 2023 2024 template <> struct GraphTraits<VPBlockBase *> { 2025 using NodeRef = VPBlockBase *; 2026 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 2027 2028 static NodeRef getEntryNode(NodeRef N) { return N; } 2029 2030 static inline ChildIteratorType child_begin(NodeRef N) { 2031 return N->getSuccessors().begin(); 2032 } 2033 2034 static inline ChildIteratorType child_end(NodeRef N) { 2035 return N->getSuccessors().end(); 2036 } 2037 }; 2038 2039 template <> struct GraphTraits<const VPBlockBase *> { 2040 using NodeRef = const VPBlockBase *; 2041 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 2042 2043 static NodeRef getEntryNode(NodeRef N) { return N; } 2044 2045 static inline ChildIteratorType child_begin(NodeRef N) { 2046 return N->getSuccessors().begin(); 2047 } 2048 2049 static inline ChildIteratorType child_end(NodeRef N) { 2050 return N->getSuccessors().end(); 2051 } 2052 }; 2053 2054 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 2055 // of successors for the inverse traversal. 2056 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 2057 using NodeRef = VPBlockBase *; 2058 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 2059 2060 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 2061 2062 static inline ChildIteratorType child_begin(NodeRef N) { 2063 return N->getPredecessors().begin(); 2064 } 2065 2066 static inline ChildIteratorType child_end(NodeRef N) { 2067 return N->getPredecessors().end(); 2068 } 2069 }; 2070 2071 // The following set of template specializations implement GraphTraits to 2072 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 2073 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 2074 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 2075 // there won't be automatic recursion into other VPBlockBases that turn to be 2076 // VPRegionBlocks. 2077 2078 template <> 2079 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 2080 using GraphRef = VPRegionBlock *; 2081 using nodes_iterator = df_iterator<NodeRef>; 2082 2083 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 2084 2085 static nodes_iterator nodes_begin(GraphRef N) { 2086 return nodes_iterator::begin(N->getEntry()); 2087 } 2088 2089 static nodes_iterator nodes_end(GraphRef N) { 2090 // df_iterator::end() returns an empty iterator so the node used doesn't 2091 // matter. 2092 return nodes_iterator::end(N); 2093 } 2094 }; 2095 2096 template <> 2097 struct GraphTraits<const VPRegionBlock *> 2098 : public GraphTraits<const VPBlockBase *> { 2099 using GraphRef = const VPRegionBlock *; 2100 using nodes_iterator = df_iterator<NodeRef>; 2101 2102 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 2103 2104 static nodes_iterator nodes_begin(GraphRef N) { 2105 return nodes_iterator::begin(N->getEntry()); 2106 } 2107 2108 static nodes_iterator nodes_end(GraphRef N) { 2109 // df_iterator::end() returns an empty iterator so the node used doesn't 2110 // matter. 2111 return nodes_iterator::end(N); 2112 } 2113 }; 2114 2115 template <> 2116 struct GraphTraits<Inverse<VPRegionBlock *>> 2117 : public GraphTraits<Inverse<VPBlockBase *>> { 2118 using GraphRef = VPRegionBlock *; 2119 using nodes_iterator = df_iterator<NodeRef>; 2120 2121 static NodeRef getEntryNode(Inverse<GraphRef> N) { 2122 return N.Graph->getExit(); 2123 } 2124 2125 static nodes_iterator nodes_begin(GraphRef N) { 2126 return nodes_iterator::begin(N->getExit()); 2127 } 2128 2129 static nodes_iterator nodes_end(GraphRef N) { 2130 // df_iterator::end() returns an empty iterator so the node used doesn't 2131 // matter. 2132 return nodes_iterator::end(N); 2133 } 2134 }; 2135 2136 /// Iterator to traverse all successors of a VPBlockBase node. This includes the 2137 /// entry node of VPRegionBlocks. Exit blocks of a region implicitly have their 2138 /// parent region's successors. This ensures all blocks in a region are visited 2139 /// before any blocks in a successor region when doing a reverse post-order 2140 // traversal of the graph. 2141 template <typename BlockPtrTy> 2142 class VPAllSuccessorsIterator 2143 : public iterator_facade_base<VPAllSuccessorsIterator<BlockPtrTy>, 2144 std::forward_iterator_tag, VPBlockBase> { 2145 BlockPtrTy Block; 2146 /// Index of the current successor. For VPBasicBlock nodes, this simply is the 2147 /// index for the successor array. For VPRegionBlock, SuccessorIdx == 0 is 2148 /// used for the region's entry block, and SuccessorIdx - 1 are the indices 2149 /// for the successor array. 2150 size_t SuccessorIdx; 2151 2152 static BlockPtrTy getBlockWithSuccs(BlockPtrTy Current) { 2153 while (Current && Current->getNumSuccessors() == 0) 2154 Current = Current->getParent(); 2155 return Current; 2156 } 2157 2158 /// Templated helper to dereference successor \p SuccIdx of \p Block. Used by 2159 /// both the const and non-const operator* implementations. 2160 template <typename T1> static T1 deref(T1 Block, unsigned SuccIdx) { 2161 if (auto *R = dyn_cast<VPRegionBlock>(Block)) { 2162 if (SuccIdx == 0) 2163 return R->getEntry(); 2164 SuccIdx--; 2165 } 2166 2167 // For exit blocks, use the next parent region with successors. 2168 return getBlockWithSuccs(Block)->getSuccessors()[SuccIdx]; 2169 } 2170 2171 public: 2172 VPAllSuccessorsIterator(BlockPtrTy Block, size_t Idx = 0) 2173 : Block(Block), SuccessorIdx(Idx) {} 2174 VPAllSuccessorsIterator(const VPAllSuccessorsIterator &Other) 2175 : Block(Other.Block), SuccessorIdx(Other.SuccessorIdx) {} 2176 2177 VPAllSuccessorsIterator &operator=(const VPAllSuccessorsIterator &R) { 2178 Block = R.Block; 2179 SuccessorIdx = R.SuccessorIdx; 2180 return *this; 2181 } 2182 2183 static VPAllSuccessorsIterator end(BlockPtrTy Block) { 2184 BlockPtrTy ParentWithSuccs = getBlockWithSuccs(Block); 2185 unsigned NumSuccessors = ParentWithSuccs 2186 ? ParentWithSuccs->getNumSuccessors() 2187 : Block->getNumSuccessors(); 2188 2189 if (auto *R = dyn_cast<VPRegionBlock>(Block)) 2190 return {R, NumSuccessors + 1}; 2191 return {Block, NumSuccessors}; 2192 } 2193 2194 bool operator==(const VPAllSuccessorsIterator &R) const { 2195 return Block == R.Block && SuccessorIdx == R.SuccessorIdx; 2196 } 2197 2198 const VPBlockBase *operator*() const { return deref(Block, SuccessorIdx); } 2199 2200 BlockPtrTy operator*() { return deref(Block, SuccessorIdx); } 2201 2202 VPAllSuccessorsIterator &operator++() { 2203 SuccessorIdx++; 2204 return *this; 2205 } 2206 2207 VPAllSuccessorsIterator operator++(int X) { 2208 VPAllSuccessorsIterator Orig = *this; 2209 SuccessorIdx++; 2210 return Orig; 2211 } 2212 }; 2213 2214 /// Helper for GraphTraits specialization that traverses through VPRegionBlocks. 2215 template <typename BlockTy> class VPBlockRecursiveTraversalWrapper { 2216 BlockTy Entry; 2217 2218 public: 2219 VPBlockRecursiveTraversalWrapper(BlockTy Entry) : Entry(Entry) {} 2220 BlockTy getEntry() { return Entry; } 2221 }; 2222 2223 /// GraphTraits specialization to recursively traverse VPBlockBase nodes, 2224 /// including traversing through VPRegionBlocks. Exit blocks of a region 2225 /// implicitly have their parent region's successors. This ensures all blocks in 2226 /// a region are visited before any blocks in a successor region when doing a 2227 /// reverse post-order traversal of the graph. 2228 template <> 2229 struct GraphTraits<VPBlockRecursiveTraversalWrapper<VPBlockBase *>> { 2230 using NodeRef = VPBlockBase *; 2231 using ChildIteratorType = VPAllSuccessorsIterator<VPBlockBase *>; 2232 2233 static NodeRef 2234 getEntryNode(VPBlockRecursiveTraversalWrapper<VPBlockBase *> N) { 2235 return N.getEntry(); 2236 } 2237 2238 static inline ChildIteratorType child_begin(NodeRef N) { 2239 return ChildIteratorType(N); 2240 } 2241 2242 static inline ChildIteratorType child_end(NodeRef N) { 2243 return ChildIteratorType::end(N); 2244 } 2245 }; 2246 2247 template <> 2248 struct GraphTraits<VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> { 2249 using NodeRef = const VPBlockBase *; 2250 using ChildIteratorType = VPAllSuccessorsIterator<const VPBlockBase *>; 2251 2252 static NodeRef 2253 getEntryNode(VPBlockRecursiveTraversalWrapper<const VPBlockBase *> N) { 2254 return N.getEntry(); 2255 } 2256 2257 static inline ChildIteratorType child_begin(NodeRef N) { 2258 return ChildIteratorType(N); 2259 } 2260 2261 static inline ChildIteratorType child_end(NodeRef N) { 2262 return ChildIteratorType::end(N); 2263 } 2264 }; 2265 2266 /// VPlan models a candidate for vectorization, encoding various decisions take 2267 /// to produce efficient output IR, including which branches, basic-blocks and 2268 /// output IR instructions to generate, and their cost. VPlan holds a 2269 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2270 /// VPBlock. 2271 class VPlan { 2272 friend class VPlanPrinter; 2273 friend class VPSlotTracker; 2274 2275 /// Hold the single entry to the Hierarchical CFG of the VPlan. 2276 VPBlockBase *Entry; 2277 2278 /// Holds the VFs applicable to this VPlan. 2279 SmallSetVector<ElementCount, 2> VFs; 2280 2281 /// Holds the name of the VPlan, for printing. 2282 std::string Name; 2283 2284 /// Holds all the external definitions created for this VPlan. 2285 // TODO: Introduce a specific representation for external definitions in 2286 // VPlan. External definitions must be immutable and hold a pointer to its 2287 // underlying IR that will be used to implement its structural comparison 2288 // (operators '==' and '<'). 2289 SetVector<VPValue *> VPExternalDefs; 2290 2291 /// Represents the trip count of the original loop, for folding 2292 /// the tail. 2293 VPValue *TripCount = nullptr; 2294 2295 /// Represents the backedge taken count of the original loop, for folding 2296 /// the tail. It equals TripCount - 1. 2297 VPValue *BackedgeTakenCount = nullptr; 2298 2299 /// Represents the vector trip count. 2300 VPValue VectorTripCount; 2301 2302 /// Holds a mapping between Values and their corresponding VPValue inside 2303 /// VPlan. 2304 Value2VPValueTy Value2VPValue; 2305 2306 /// Contains all VPValues that been allocated by addVPValue directly and need 2307 /// to be free when the plan's destructor is called. 2308 SmallVector<VPValue *, 16> VPValuesToFree; 2309 2310 /// Holds the VPLoopInfo analysis for this VPlan. 2311 VPLoopInfo VPLInfo; 2312 2313 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2314 /// mapping cannot be used any longer, because it is stale. 2315 bool Value2VPValueEnabled = true; 2316 2317 public: 2318 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) { 2319 if (Entry) 2320 Entry->setPlan(this); 2321 } 2322 2323 ~VPlan() { 2324 if (Entry) { 2325 VPValue DummyValue; 2326 for (VPBlockBase *Block : depth_first(Entry)) 2327 Block->dropAllReferences(&DummyValue); 2328 2329 VPBlockBase::deleteCFG(Entry); 2330 } 2331 for (VPValue *VPV : VPValuesToFree) 2332 delete VPV; 2333 if (TripCount) 2334 delete TripCount; 2335 if (BackedgeTakenCount) 2336 delete BackedgeTakenCount; 2337 for (VPValue *Def : VPExternalDefs) 2338 delete Def; 2339 } 2340 2341 /// Prepare the plan for execution, setting up the required live-in values. 2342 void prepareToExecute(Value *TripCount, Value *VectorTripCount, 2343 Value *CanonicalIVStartValue, VPTransformState &State); 2344 2345 /// Generate the IR code for this VPlan. 2346 void execute(struct VPTransformState *State); 2347 2348 VPBlockBase *getEntry() { return Entry; } 2349 const VPBlockBase *getEntry() const { return Entry; } 2350 2351 VPBlockBase *setEntry(VPBlockBase *Block) { 2352 Entry = Block; 2353 Block->setPlan(this); 2354 return Entry; 2355 } 2356 2357 /// The trip count of the original loop. 2358 VPValue *getOrCreateTripCount() { 2359 if (!TripCount) 2360 TripCount = new VPValue(); 2361 return TripCount; 2362 } 2363 2364 /// The backedge taken count of the original loop. 2365 VPValue *getOrCreateBackedgeTakenCount() { 2366 if (!BackedgeTakenCount) 2367 BackedgeTakenCount = new VPValue(); 2368 return BackedgeTakenCount; 2369 } 2370 2371 /// The vector trip count. 2372 VPValue &getVectorTripCount() { return VectorTripCount; } 2373 2374 /// Mark the plan to indicate that using Value2VPValue is not safe any 2375 /// longer, because it may be stale. 2376 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2377 2378 void addVF(ElementCount VF) { VFs.insert(VF); } 2379 2380 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2381 2382 const std::string &getName() const { return Name; } 2383 2384 void setName(const Twine &newName) { Name = newName.str(); } 2385 2386 /// Add \p VPVal to the pool of external definitions if it's not already 2387 /// in the pool. 2388 void addExternalDef(VPValue *VPVal) { VPExternalDefs.insert(VPVal); } 2389 2390 void addVPValue(Value *V) { 2391 assert(Value2VPValueEnabled && 2392 "IR value to VPValue mapping may be out of date!"); 2393 assert(V && "Trying to add a null Value to VPlan"); 2394 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2395 VPValue *VPV = new VPValue(V); 2396 Value2VPValue[V] = VPV; 2397 VPValuesToFree.push_back(VPV); 2398 } 2399 2400 void addVPValue(Value *V, VPValue *VPV) { 2401 assert(Value2VPValueEnabled && "Value2VPValue mapping may be out of date!"); 2402 assert(V && "Trying to add a null Value to VPlan"); 2403 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2404 Value2VPValue[V] = VPV; 2405 } 2406 2407 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2408 /// checking whether it is safe to query VPValues using IR Values. 2409 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2410 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2411 "Value2VPValue mapping may be out of date!"); 2412 assert(V && "Trying to get the VPValue of a null Value"); 2413 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2414 return Value2VPValue[V]; 2415 } 2416 2417 /// Gets the VPValue or adds a new one (if none exists yet) for \p V. \p 2418 /// OverrideAllowed can be used to disable checking whether it is safe to 2419 /// query VPValues using IR Values. 2420 VPValue *getOrAddVPValue(Value *V, bool OverrideAllowed = false) { 2421 assert((OverrideAllowed || isa<Constant>(V) || Value2VPValueEnabled) && 2422 "Value2VPValue mapping may be out of date!"); 2423 assert(V && "Trying to get or add the VPValue of a null Value"); 2424 if (!Value2VPValue.count(V)) 2425 addVPValue(V); 2426 return getVPValue(V); 2427 } 2428 2429 void removeVPValueFor(Value *V) { 2430 assert(Value2VPValueEnabled && 2431 "IR value to VPValue mapping may be out of date!"); 2432 Value2VPValue.erase(V); 2433 } 2434 2435 /// Return the VPLoopInfo analysis for this VPlan. 2436 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 2437 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 2438 2439 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2440 /// Print this VPlan to \p O. 2441 void print(raw_ostream &O) const; 2442 2443 /// Print this VPlan in DOT format to \p O. 2444 void printDOT(raw_ostream &O) const; 2445 2446 /// Dump the plan to stderr (for debugging). 2447 LLVM_DUMP_METHOD void dump() const; 2448 #endif 2449 2450 /// Returns a range mapping the values the range \p Operands to their 2451 /// corresponding VPValues. 2452 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2453 mapToVPValues(User::op_range Operands) { 2454 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2455 return getOrAddVPValue(Op); 2456 }; 2457 return map_range(Operands, Fn); 2458 } 2459 2460 /// Returns true if \p VPV is uniform after vectorization. 2461 bool isUniformAfterVectorization(VPValue *VPV) const { 2462 auto RepR = dyn_cast_or_null<VPReplicateRecipe>(VPV->getDef()); 2463 return !VPV->getDef() || (RepR && RepR->isUniform()); 2464 } 2465 2466 /// Returns the VPRegionBlock of the vector loop. 2467 VPRegionBlock *getVectorLoopRegion() { 2468 return cast<VPRegionBlock>(getEntry()); 2469 } 2470 2471 /// Returns the canonical induction recipe of the vector loop. 2472 VPCanonicalIVPHIRecipe *getCanonicalIV() { 2473 VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); 2474 if (EntryVPBB->empty()) { 2475 // VPlan native path. 2476 EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); 2477 } 2478 return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); 2479 } 2480 2481 private: 2482 /// Add to the given dominator tree the header block and every new basic block 2483 /// that was created between it and the latch block, inclusive. 2484 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2485 BasicBlock *LoopPreHeaderBB, 2486 BasicBlock *LoopExitBB); 2487 }; 2488 2489 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2490 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2491 /// indented and follows the dot format. 2492 class VPlanPrinter { 2493 raw_ostream &OS; 2494 const VPlan &Plan; 2495 unsigned Depth = 0; 2496 unsigned TabWidth = 2; 2497 std::string Indent; 2498 unsigned BID = 0; 2499 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2500 2501 VPSlotTracker SlotTracker; 2502 2503 /// Handle indentation. 2504 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2505 2506 /// Print a given \p Block of the Plan. 2507 void dumpBlock(const VPBlockBase *Block); 2508 2509 /// Print the information related to the CFG edges going out of a given 2510 /// \p Block, followed by printing the successor blocks themselves. 2511 void dumpEdges(const VPBlockBase *Block); 2512 2513 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2514 /// its successor blocks. 2515 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2516 2517 /// Print a given \p Region of the Plan. 2518 void dumpRegion(const VPRegionBlock *Region); 2519 2520 unsigned getOrCreateBID(const VPBlockBase *Block) { 2521 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2522 } 2523 2524 Twine getOrCreateName(const VPBlockBase *Block); 2525 2526 Twine getUID(const VPBlockBase *Block); 2527 2528 /// Print the information related to a CFG edge between two VPBlockBases. 2529 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2530 const Twine &Label); 2531 2532 public: 2533 VPlanPrinter(raw_ostream &O, const VPlan &P) 2534 : OS(O), Plan(P), SlotTracker(&P) {} 2535 2536 LLVM_DUMP_METHOD void dump(); 2537 }; 2538 2539 struct VPlanIngredient { 2540 const Value *V; 2541 2542 VPlanIngredient(const Value *V) : V(V) {} 2543 2544 void print(raw_ostream &O) const; 2545 }; 2546 2547 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2548 I.print(OS); 2549 return OS; 2550 } 2551 2552 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2553 Plan.print(OS); 2554 return OS; 2555 } 2556 #endif 2557 2558 //===----------------------------------------------------------------------===// 2559 // VPlan Utilities 2560 //===----------------------------------------------------------------------===// 2561 2562 /// Class that provides utilities for VPBlockBases in VPlan. 2563 class VPBlockUtils { 2564 public: 2565 VPBlockUtils() = delete; 2566 2567 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2568 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2569 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's 2570 /// successors are moved from \p BlockPtr to \p NewBlock and \p BlockPtr's 2571 /// conditional bit is propagated to \p NewBlock. \p NewBlock must have 2572 /// neither successors nor predecessors. 2573 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2574 assert(NewBlock->getSuccessors().empty() && 2575 NewBlock->getPredecessors().empty() && 2576 "Can't insert new block with predecessors or successors."); 2577 NewBlock->setParent(BlockPtr->getParent()); 2578 SmallVector<VPBlockBase *> Succs(BlockPtr->successors()); 2579 for (VPBlockBase *Succ : Succs) { 2580 disconnectBlocks(BlockPtr, Succ); 2581 connectBlocks(NewBlock, Succ); 2582 } 2583 NewBlock->setCondBit(BlockPtr->getCondBit()); 2584 BlockPtr->setCondBit(nullptr); 2585 connectBlocks(BlockPtr, NewBlock); 2586 } 2587 2588 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2589 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2590 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2591 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 2592 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 2593 /// must have neither successors nor predecessors. 2594 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2595 VPValue *Condition, VPBlockBase *BlockPtr) { 2596 assert(IfTrue->getSuccessors().empty() && 2597 "Can't insert IfTrue with successors."); 2598 assert(IfFalse->getSuccessors().empty() && 2599 "Can't insert IfFalse with successors."); 2600 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 2601 IfTrue->setPredecessors({BlockPtr}); 2602 IfFalse->setPredecessors({BlockPtr}); 2603 IfTrue->setParent(BlockPtr->getParent()); 2604 IfFalse->setParent(BlockPtr->getParent()); 2605 } 2606 2607 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 2608 /// the successors of \p From and \p From to the predecessors of \p To. Both 2609 /// VPBlockBases must have the same parent, which can be null. Both 2610 /// VPBlockBases can be already connected to other VPBlockBases. 2611 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 2612 assert((From->getParent() == To->getParent()) && 2613 "Can't connect two block with different parents"); 2614 assert(From->getNumSuccessors() < 2 && 2615 "Blocks can't have more than two successors."); 2616 From->appendSuccessor(To); 2617 To->appendPredecessor(From); 2618 } 2619 2620 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 2621 /// from the successors of \p From and \p From from the predecessors of \p To. 2622 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 2623 assert(To && "Successor to disconnect is null."); 2624 From->removeSuccessor(To); 2625 To->removePredecessor(From); 2626 } 2627 2628 /// Try to merge \p Block into its single predecessor, if \p Block is a 2629 /// VPBasicBlock and its predecessor has a single successor. Returns a pointer 2630 /// to the predecessor \p Block was merged into or nullptr otherwise. 2631 static VPBasicBlock *tryToMergeBlockIntoPredecessor(VPBlockBase *Block) { 2632 auto *VPBB = dyn_cast<VPBasicBlock>(Block); 2633 auto *PredVPBB = 2634 dyn_cast_or_null<VPBasicBlock>(Block->getSinglePredecessor()); 2635 if (!VPBB || !PredVPBB || PredVPBB->getNumSuccessors() != 1) 2636 return nullptr; 2637 2638 for (VPRecipeBase &R : make_early_inc_range(*VPBB)) 2639 R.moveBefore(*PredVPBB, PredVPBB->end()); 2640 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 2641 auto *ParentRegion = cast<VPRegionBlock>(Block->getParent()); 2642 if (ParentRegion->getExit() == Block) 2643 ParentRegion->setExit(PredVPBB); 2644 SmallVector<VPBlockBase *> Successors(Block->successors()); 2645 for (auto *Succ : Successors) { 2646 VPBlockUtils::disconnectBlocks(Block, Succ); 2647 VPBlockUtils::connectBlocks(PredVPBB, Succ); 2648 } 2649 delete Block; 2650 return PredVPBB; 2651 } 2652 2653 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 2654 static bool isBackEdge(const VPBlockBase *FromBlock, 2655 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 2656 assert(FromBlock->getParent() == ToBlock->getParent() && 2657 FromBlock->getParent() && "Must be in same region"); 2658 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 2659 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 2660 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 2661 return false; 2662 2663 // A back-edge is a branch from the loop latch to its header. 2664 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 2665 } 2666 2667 /// Returns true if \p Block is a loop latch 2668 static bool blockIsLoopLatch(const VPBlockBase *Block, 2669 const VPLoopInfo *VPLInfo) { 2670 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 2671 return ParentVPL->isLoopLatch(Block); 2672 2673 return false; 2674 } 2675 2676 /// Count and return the number of succesors of \p PredBlock excluding any 2677 /// backedges. 2678 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 2679 VPLoopInfo *VPLI) { 2680 unsigned Count = 0; 2681 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 2682 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 2683 Count++; 2684 } 2685 return Count; 2686 } 2687 2688 /// Return an iterator range over \p Range which only includes \p BlockTy 2689 /// blocks. The accesses are casted to \p BlockTy. 2690 template <typename BlockTy, typename T> 2691 static auto blocksOnly(const T &Range) { 2692 // Create BaseTy with correct const-ness based on BlockTy. 2693 using BaseTy = 2694 typename std::conditional<std::is_const<BlockTy>::value, 2695 const VPBlockBase, VPBlockBase>::type; 2696 2697 // We need to first create an iterator range over (const) BlocktTy & instead 2698 // of (const) BlockTy * for filter_range to work properly. 2699 auto Mapped = 2700 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 2701 auto Filter = make_filter_range( 2702 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 2703 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 2704 return cast<BlockTy>(&Block); 2705 }); 2706 } 2707 }; 2708 2709 class VPInterleavedAccessInfo { 2710 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 2711 InterleaveGroupMap; 2712 2713 /// Type for mapping of instruction based interleave groups to VPInstruction 2714 /// interleave groups 2715 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 2716 InterleaveGroup<VPInstruction> *>; 2717 2718 /// Recursively \p Region and populate VPlan based interleave groups based on 2719 /// \p IAI. 2720 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 2721 InterleavedAccessInfo &IAI); 2722 /// Recursively traverse \p Block and populate VPlan based interleave groups 2723 /// based on \p IAI. 2724 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 2725 InterleavedAccessInfo &IAI); 2726 2727 public: 2728 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 2729 2730 ~VPInterleavedAccessInfo() { 2731 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 2732 // Avoid releasing a pointer twice. 2733 for (auto &I : InterleaveGroupMap) 2734 DelSet.insert(I.second); 2735 for (auto *Ptr : DelSet) 2736 delete Ptr; 2737 } 2738 2739 /// Get the interleave group that \p Instr belongs to. 2740 /// 2741 /// \returns nullptr if doesn't have such group. 2742 InterleaveGroup<VPInstruction> * 2743 getInterleaveGroup(VPInstruction *Instr) const { 2744 return InterleaveGroupMap.lookup(Instr); 2745 } 2746 }; 2747 2748 /// Class that maps (parts of) an existing VPlan to trees of combined 2749 /// VPInstructions. 2750 class VPlanSlp { 2751 enum class OpMode { Failed, Load, Opcode }; 2752 2753 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 2754 /// DenseMap keys. 2755 struct BundleDenseMapInfo { 2756 static SmallVector<VPValue *, 4> getEmptyKey() { 2757 return {reinterpret_cast<VPValue *>(-1)}; 2758 } 2759 2760 static SmallVector<VPValue *, 4> getTombstoneKey() { 2761 return {reinterpret_cast<VPValue *>(-2)}; 2762 } 2763 2764 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 2765 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 2766 } 2767 2768 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 2769 const SmallVector<VPValue *, 4> &RHS) { 2770 return LHS == RHS; 2771 } 2772 }; 2773 2774 /// Mapping of values in the original VPlan to a combined VPInstruction. 2775 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 2776 BundleToCombined; 2777 2778 VPInterleavedAccessInfo &IAI; 2779 2780 /// Basic block to operate on. For now, only instructions in a single BB are 2781 /// considered. 2782 const VPBasicBlock &BB; 2783 2784 /// Indicates whether we managed to combine all visited instructions or not. 2785 bool CompletelySLP = true; 2786 2787 /// Width of the widest combined bundle in bits. 2788 unsigned WidestBundleBits = 0; 2789 2790 using MultiNodeOpTy = 2791 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 2792 2793 // Input operand bundles for the current multi node. Each multi node operand 2794 // bundle contains values not matching the multi node's opcode. They will 2795 // be reordered in reorderMultiNodeOps, once we completed building a 2796 // multi node. 2797 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 2798 2799 /// Indicates whether we are building a multi node currently. 2800 bool MultiNodeActive = false; 2801 2802 /// Check if we can vectorize Operands together. 2803 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 2804 2805 /// Add combined instruction \p New for the bundle \p Operands. 2806 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 2807 2808 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 2809 VPInstruction *markFailed(); 2810 2811 /// Reorder operands in the multi node to maximize sequential memory access 2812 /// and commutative operations. 2813 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 2814 2815 /// Choose the best candidate to use for the lane after \p Last. The set of 2816 /// candidates to choose from are values with an opcode matching \p Last's 2817 /// or loads consecutive to \p Last. 2818 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 2819 SmallPtrSetImpl<VPValue *> &Candidates, 2820 VPInterleavedAccessInfo &IAI); 2821 2822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2823 /// Print bundle \p Values to dbgs(). 2824 void dumpBundle(ArrayRef<VPValue *> Values); 2825 #endif 2826 2827 public: 2828 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 2829 2830 ~VPlanSlp() = default; 2831 2832 /// Tries to build an SLP tree rooted at \p Operands and returns a 2833 /// VPInstruction combining \p Operands, if they can be combined. 2834 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 2835 2836 /// Return the width of the widest combined bundle in bits. 2837 unsigned getWidestBundleBits() const { return WidestBundleBits; } 2838 2839 /// Return true if all visited instruction can be combined. 2840 bool isCompletelySLP() const { return CompletelySLP; } 2841 }; 2842 2843 namespace vputils { 2844 2845 /// Returns true if only the first lane of \p Def is used. 2846 bool onlyFirstLaneUsed(VPValue *Def); 2847 2848 } // end namespace vputils 2849 2850 } // end namespace llvm 2851 2852 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 2853