1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallBitVector.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/Analysis/VectorUtils.h" 42 #include "llvm/IR/IRBuilder.h" 43 #include <algorithm> 44 #include <cassert> 45 #include <cstddef> 46 #include <map> 47 #include <string> 48 49 namespace llvm { 50 51 class LoopVectorizationLegality; 52 class LoopVectorizationCostModel; 53 class BasicBlock; 54 class DominatorTree; 55 class InnerLoopVectorizer; 56 template <class T> class InterleaveGroup; 57 class LoopInfo; 58 class raw_ostream; 59 class Value; 60 class VPBasicBlock; 61 class VPRegionBlock; 62 class VPlan; 63 class VPlanSlp; 64 65 /// A range of powers-of-2 vectorization factors with fixed start and 66 /// adjustable end. The range includes start and excludes end, e.g.,: 67 /// [1, 9) = {1, 2, 4, 8} 68 struct VFRange { 69 // A power of 2. 70 const unsigned Start; 71 72 // Need not be a power of 2. If End <= Start range is empty. 73 unsigned End; 74 }; 75 76 using VPlanPtr = std::unique_ptr<VPlan>; 77 78 /// In what follows, the term "input IR" refers to code that is fed into the 79 /// vectorizer whereas the term "output IR" refers to code that is generated by 80 /// the vectorizer. 81 82 /// VPIteration represents a single point in the iteration space of the output 83 /// (vectorized and/or unrolled) IR loop. 84 struct VPIteration { 85 /// in [0..UF) 86 unsigned Part; 87 88 /// in [0..VF) 89 unsigned Lane; 90 }; 91 92 /// This is a helper struct for maintaining vectorization state. It's used for 93 /// mapping values from the original loop to their corresponding values in 94 /// the new loop. Two mappings are maintained: one for vectorized values and 95 /// one for scalarized values. Vectorized values are represented with UF 96 /// vector values in the new loop, and scalarized values are represented with 97 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 98 /// vectorization factors, respectively. 99 /// 100 /// Entries can be added to either map with setVectorValue and setScalarValue, 101 /// which assert that an entry was not already added before. If an entry is to 102 /// replace an existing one, call resetVectorValue and resetScalarValue. This is 103 /// currently needed to modify the mapped values during "fix-up" operations that 104 /// occur once the first phase of widening is complete. These operations include 105 /// type truncation and the second phase of recurrence widening. 106 /// 107 /// Entries from either map can be retrieved using the getVectorValue and 108 /// getScalarValue functions, which assert that the desired value exists. 109 struct VectorizerValueMap { 110 friend struct VPTransformState; 111 112 private: 113 /// The unroll factor. Each entry in the vector map contains UF vector values. 114 unsigned UF; 115 116 /// The vectorization factor. Each entry in the scalar map contains UF x VF 117 /// scalar values. 118 unsigned VF; 119 120 /// The vector and scalar map storage. We use std::map and not DenseMap 121 /// because insertions to DenseMap invalidate its iterators. 122 using VectorParts = SmallVector<Value *, 2>; 123 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 124 std::map<Value *, VectorParts> VectorMapStorage; 125 std::map<Value *, ScalarParts> ScalarMapStorage; 126 127 public: 128 /// Construct an empty map with the given unroll and vectorization factors. 129 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} 130 131 /// \return True if the map has any vector entry for \p Key. 132 bool hasAnyVectorValue(Value *Key) const { 133 return VectorMapStorage.count(Key); 134 } 135 136 /// \return True if the map has a vector entry for \p Key and \p Part. 137 bool hasVectorValue(Value *Key, unsigned Part) const { 138 assert(Part < UF && "Queried Vector Part is too large."); 139 if (!hasAnyVectorValue(Key)) 140 return false; 141 const VectorParts &Entry = VectorMapStorage.find(Key)->second; 142 assert(Entry.size() == UF && "VectorParts has wrong dimensions."); 143 return Entry[Part] != nullptr; 144 } 145 146 /// \return True if the map has any scalar entry for \p Key. 147 bool hasAnyScalarValue(Value *Key) const { 148 return ScalarMapStorage.count(Key); 149 } 150 151 /// \return True if the map has a scalar entry for \p Key and \p Instance. 152 bool hasScalarValue(Value *Key, const VPIteration &Instance) const { 153 assert(Instance.Part < UF && "Queried Scalar Part is too large."); 154 assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); 155 if (!hasAnyScalarValue(Key)) 156 return false; 157 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; 158 assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); 159 assert(Entry[Instance.Part].size() == VF && 160 "ScalarParts has wrong dimensions."); 161 return Entry[Instance.Part][Instance.Lane] != nullptr; 162 } 163 164 /// Retrieve the existing vector value that corresponds to \p Key and 165 /// \p Part. 166 Value *getVectorValue(Value *Key, unsigned Part) { 167 assert(hasVectorValue(Key, Part) && "Getting non-existent value."); 168 return VectorMapStorage[Key][Part]; 169 } 170 171 /// Retrieve the existing scalar value that corresponds to \p Key and 172 /// \p Instance. 173 Value *getScalarValue(Value *Key, const VPIteration &Instance) { 174 assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); 175 return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; 176 } 177 178 /// Set a vector value associated with \p Key and \p Part. Assumes such a 179 /// value is not already set. If it is, use resetVectorValue() instead. 180 void setVectorValue(Value *Key, unsigned Part, Value *Vector) { 181 assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); 182 if (!VectorMapStorage.count(Key)) { 183 VectorParts Entry(UF); 184 VectorMapStorage[Key] = Entry; 185 } 186 VectorMapStorage[Key][Part] = Vector; 187 } 188 189 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a 190 /// value is not already set. 191 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { 192 assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); 193 if (!ScalarMapStorage.count(Key)) { 194 ScalarParts Entry(UF); 195 // TODO: Consider storing uniform values only per-part, as they occupy 196 // lane 0 only, keeping the other VF-1 redundant entries null. 197 for (unsigned Part = 0; Part < UF; ++Part) 198 Entry[Part].resize(VF, nullptr); 199 ScalarMapStorage[Key] = Entry; 200 } 201 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; 202 } 203 204 /// Reset the vector value associated with \p Key for the given \p Part. 205 /// This function can be used to update values that have already been 206 /// vectorized. This is the case for "fix-up" operations including type 207 /// truncation and the second phase of recurrence vectorization. 208 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { 209 assert(hasVectorValue(Key, Part) && "Vector value not set for part"); 210 VectorMapStorage[Key][Part] = Vector; 211 } 212 213 /// Reset the scalar value associated with \p Key for \p Part and \p Lane. 214 /// This function can be used to update values that have already been 215 /// scalarized. This is the case for "fix-up" operations including scalar phi 216 /// nodes for scalarized and predicated instructions. 217 void resetScalarValue(Value *Key, const VPIteration &Instance, 218 Value *Scalar) { 219 assert(hasScalarValue(Key, Instance) && 220 "Scalar value not set for part and lane"); 221 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; 222 } 223 }; 224 225 /// This class is used to enable the VPlan to invoke a method of ILV. This is 226 /// needed until the method is refactored out of ILV and becomes reusable. 227 struct VPCallback { 228 virtual ~VPCallback() {} 229 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; 230 virtual Value *getOrCreateScalarValue(Value *V, 231 const VPIteration &Instance) = 0; 232 }; 233 234 /// VPTransformState holds information passed down when "executing" a VPlan, 235 /// needed for generating the output IR. 236 struct VPTransformState { 237 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, 238 IRBuilder<> &Builder, VectorizerValueMap &ValueMap, 239 InnerLoopVectorizer *ILV, VPCallback &Callback) 240 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), 241 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} 242 243 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 244 unsigned VF; 245 unsigned UF; 246 247 /// Hold the indices to generate specific scalar instructions. Null indicates 248 /// that all instances are to be generated, using either scalar or vector 249 /// instructions. 250 Optional<VPIteration> Instance; 251 252 struct DataState { 253 /// A type for vectorized values in the new loop. Each value from the 254 /// original loop, when vectorized, is represented by UF vector values in 255 /// the new unrolled loop, where UF is the unroll factor. 256 typedef SmallVector<Value *, 2> PerPartValuesTy; 257 258 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 259 } Data; 260 261 /// Get the generated Value for a given VPValue and a given Part. Note that 262 /// as some Defs are still created by ILV and managed in its ValueMap, this 263 /// method will delegate the call to ILV in such cases in order to provide 264 /// callers a consistent API. 265 /// \see set. 266 Value *get(VPValue *Def, unsigned Part) { 267 // If Values have been set for this Def return the one relevant for \p Part. 268 if (Data.PerPartOutput.count(Def)) 269 return Data.PerPartOutput[Def][Part]; 270 // Def is managed by ILV: bring the Values from ValueMap. 271 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); 272 } 273 274 /// Get the generated Value for a given VPValue and given Part and Lane. Note 275 /// that as per-lane Defs are still created by ILV and managed in its ValueMap 276 /// this method currently just delegates the call to ILV. 277 Value *get(VPValue *Def, const VPIteration &Instance) { 278 return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance); 279 } 280 281 /// Set the generated Value for a given VPValue and a given Part. 282 void set(VPValue *Def, Value *V, unsigned Part) { 283 if (!Data.PerPartOutput.count(Def)) { 284 DataState::PerPartValuesTy Entry(UF); 285 Data.PerPartOutput[Def] = Entry; 286 } 287 Data.PerPartOutput[Def][Part] = V; 288 } 289 290 /// Hold state information used when constructing the CFG of the output IR, 291 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 292 struct CFGState { 293 /// The previous VPBasicBlock visited. Initially set to null. 294 VPBasicBlock *PrevVPBB = nullptr; 295 296 /// The previous IR BasicBlock created or used. Initially set to the new 297 /// header BasicBlock. 298 BasicBlock *PrevBB = nullptr; 299 300 /// The last IR BasicBlock in the output IR. Set to the new latch 301 /// BasicBlock, used for placing the newly created BasicBlocks. 302 BasicBlock *LastBB = nullptr; 303 304 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 305 /// of replication, maps the BasicBlock of the last replica created. 306 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 307 308 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 309 /// up at the end of vector code generation. 310 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 311 312 CFGState() = default; 313 } CFG; 314 315 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 316 LoopInfo *LI; 317 318 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 319 DominatorTree *DT; 320 321 /// Hold a reference to the IRBuilder used to generate output IR code. 322 IRBuilder<> &Builder; 323 324 /// Hold a reference to the Value state information used when generating the 325 /// Values of the output IR. 326 VectorizerValueMap &ValueMap; 327 328 /// Hold a reference to a mapping between VPValues in VPlan and original 329 /// Values they correspond to. 330 VPValue2ValueTy VPValue2Value; 331 332 /// Hold the trip count of the scalar loop. 333 Value *TripCount = nullptr; 334 335 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 336 InnerLoopVectorizer *ILV; 337 338 VPCallback &Callback; 339 }; 340 341 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 342 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 343 class VPBlockBase { 344 friend class VPBlockUtils; 345 346 private: 347 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 348 349 /// An optional name for the block. 350 std::string Name; 351 352 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 353 /// it is a topmost VPBlockBase. 354 VPRegionBlock *Parent = nullptr; 355 356 /// List of predecessor blocks. 357 SmallVector<VPBlockBase *, 1> Predecessors; 358 359 /// List of successor blocks. 360 SmallVector<VPBlockBase *, 1> Successors; 361 362 /// Successor selector, null for zero or single successor blocks. 363 VPValue *CondBit = nullptr; 364 365 /// Current block predicate - null if the block does not need a predicate. 366 VPValue *Predicate = nullptr; 367 368 /// Add \p Successor as the last successor to this block. 369 void appendSuccessor(VPBlockBase *Successor) { 370 assert(Successor && "Cannot add nullptr successor!"); 371 Successors.push_back(Successor); 372 } 373 374 /// Add \p Predecessor as the last predecessor to this block. 375 void appendPredecessor(VPBlockBase *Predecessor) { 376 assert(Predecessor && "Cannot add nullptr predecessor!"); 377 Predecessors.push_back(Predecessor); 378 } 379 380 /// Remove \p Predecessor from the predecessors of this block. 381 void removePredecessor(VPBlockBase *Predecessor) { 382 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); 383 assert(Pos && "Predecessor does not exist"); 384 Predecessors.erase(Pos); 385 } 386 387 /// Remove \p Successor from the successors of this block. 388 void removeSuccessor(VPBlockBase *Successor) { 389 auto Pos = std::find(Successors.begin(), Successors.end(), Successor); 390 assert(Pos && "Successor does not exist"); 391 Successors.erase(Pos); 392 } 393 394 protected: 395 VPBlockBase(const unsigned char SC, const std::string &N) 396 : SubclassID(SC), Name(N) {} 397 398 public: 399 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 400 /// that are actually instantiated. Values of this enumeration are kept in the 401 /// SubclassID field of the VPBlockBase objects. They are used for concrete 402 /// type identification. 403 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 404 405 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 406 407 virtual ~VPBlockBase() = default; 408 409 const std::string &getName() const { return Name; } 410 411 void setName(const Twine &newName) { Name = newName.str(); } 412 413 /// \return an ID for the concrete type of this object. 414 /// This is used to implement the classof checks. This should not be used 415 /// for any other purpose, as the values may change as LLVM evolves. 416 unsigned getVPBlockID() const { return SubclassID; } 417 418 VPRegionBlock *getParent() { return Parent; } 419 const VPRegionBlock *getParent() const { return Parent; } 420 421 void setParent(VPRegionBlock *P) { Parent = P; } 422 423 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 424 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 425 /// VPBlockBase is a VPBasicBlock, it is returned. 426 const VPBasicBlock *getEntryBasicBlock() const; 427 VPBasicBlock *getEntryBasicBlock(); 428 429 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 430 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 431 /// VPBlockBase is a VPBasicBlock, it is returned. 432 const VPBasicBlock *getExitBasicBlock() const; 433 VPBasicBlock *getExitBasicBlock(); 434 435 const VPBlocksTy &getSuccessors() const { return Successors; } 436 VPBlocksTy &getSuccessors() { return Successors; } 437 438 const VPBlocksTy &getPredecessors() const { return Predecessors; } 439 VPBlocksTy &getPredecessors() { return Predecessors; } 440 441 /// \return the successor of this VPBlockBase if it has a single successor. 442 /// Otherwise return a null pointer. 443 VPBlockBase *getSingleSuccessor() const { 444 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 445 } 446 447 /// \return the predecessor of this VPBlockBase if it has a single 448 /// predecessor. Otherwise return a null pointer. 449 VPBlockBase *getSinglePredecessor() const { 450 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 451 } 452 453 size_t getNumSuccessors() const { return Successors.size(); } 454 size_t getNumPredecessors() const { return Predecessors.size(); } 455 456 /// An Enclosing Block of a block B is any block containing B, including B 457 /// itself. \return the closest enclosing block starting from "this", which 458 /// has successors. \return the root enclosing block if all enclosing blocks 459 /// have no successors. 460 VPBlockBase *getEnclosingBlockWithSuccessors(); 461 462 /// \return the closest enclosing block starting from "this", which has 463 /// predecessors. \return the root enclosing block if all enclosing blocks 464 /// have no predecessors. 465 VPBlockBase *getEnclosingBlockWithPredecessors(); 466 467 /// \return the successors either attached directly to this VPBlockBase or, if 468 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 469 /// successors of its own, search recursively for the first enclosing 470 /// VPRegionBlock that has successors and return them. If no such 471 /// VPRegionBlock exists, return the (empty) successors of the topmost 472 /// VPBlockBase reached. 473 const VPBlocksTy &getHierarchicalSuccessors() { 474 return getEnclosingBlockWithSuccessors()->getSuccessors(); 475 } 476 477 /// \return the hierarchical successor of this VPBlockBase if it has a single 478 /// hierarchical successor. Otherwise return a null pointer. 479 VPBlockBase *getSingleHierarchicalSuccessor() { 480 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 481 } 482 483 /// \return the predecessors either attached directly to this VPBlockBase or, 484 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 485 /// predecessors of its own, search recursively for the first enclosing 486 /// VPRegionBlock that has predecessors and return them. If no such 487 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 488 /// VPBlockBase reached. 489 const VPBlocksTy &getHierarchicalPredecessors() { 490 return getEnclosingBlockWithPredecessors()->getPredecessors(); 491 } 492 493 /// \return the hierarchical predecessor of this VPBlockBase if it has a 494 /// single hierarchical predecessor. Otherwise return a null pointer. 495 VPBlockBase *getSingleHierarchicalPredecessor() { 496 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 497 } 498 499 /// \return the condition bit selecting the successor. 500 VPValue *getCondBit() { return CondBit; } 501 502 const VPValue *getCondBit() const { return CondBit; } 503 504 void setCondBit(VPValue *CV) { CondBit = CV; } 505 506 VPValue *getPredicate() { return Predicate; } 507 508 const VPValue *getPredicate() const { return Predicate; } 509 510 void setPredicate(VPValue *Pred) { Predicate = Pred; } 511 512 /// Set a given VPBlockBase \p Successor as the single successor of this 513 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 514 /// This VPBlockBase must have no successors. 515 void setOneSuccessor(VPBlockBase *Successor) { 516 assert(Successors.empty() && "Setting one successor when others exist."); 517 appendSuccessor(Successor); 518 } 519 520 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 521 /// successors of this VPBlockBase. \p Condition is set as the successor 522 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 523 /// IfFalse. This VPBlockBase must have no successors. 524 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 525 VPValue *Condition) { 526 assert(Successors.empty() && "Setting two successors when others exist."); 527 assert(Condition && "Setting two successors without condition!"); 528 CondBit = Condition; 529 appendSuccessor(IfTrue); 530 appendSuccessor(IfFalse); 531 } 532 533 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 534 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 535 /// as successor of any VPBasicBlock in \p NewPreds. 536 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 537 assert(Predecessors.empty() && "Block predecessors already set."); 538 for (auto *Pred : NewPreds) 539 appendPredecessor(Pred); 540 } 541 542 /// Remove all the predecessor of this block. 543 void clearPredecessors() { Predecessors.clear(); } 544 545 /// Remove all the successors of this block and set to null its condition bit 546 void clearSuccessors() { 547 Successors.clear(); 548 CondBit = nullptr; 549 } 550 551 /// The method which generates the output IR that correspond to this 552 /// VPBlockBase, thereby "executing" the VPlan. 553 virtual void execute(struct VPTransformState *State) = 0; 554 555 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 556 static void deleteCFG(VPBlockBase *Entry); 557 558 void printAsOperand(raw_ostream &OS, bool PrintType) const { 559 OS << getName(); 560 } 561 562 void print(raw_ostream &OS) const { 563 // TODO: Only printing VPBB name for now since we only have dot printing 564 // support for VPInstructions/Recipes. 565 printAsOperand(OS, false); 566 } 567 568 /// Return true if it is legal to hoist instructions into this block. 569 bool isLegalToHoistInto() { 570 // There are currently no constraints that prevent an instruction to be 571 // hoisted into a VPBlockBase. 572 return true; 573 } 574 }; 575 576 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 577 /// instructions. 578 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { 579 friend VPBasicBlock; 580 friend class VPBlockUtils; 581 582 private: 583 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 584 585 /// Each VPRecipe belongs to a single VPBasicBlock. 586 VPBasicBlock *Parent = nullptr; 587 588 public: 589 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase 590 /// that is actually instantiated. Values of this enumeration are kept in the 591 /// SubclassID field of the VPRecipeBase objects. They are used for concrete 592 /// type identification. 593 using VPRecipeTy = enum { 594 VPBlendSC, 595 VPBranchOnMaskSC, 596 VPInstructionSC, 597 VPInterleaveSC, 598 VPPredInstPHISC, 599 VPReplicateSC, 600 VPWidenGEPSC, 601 VPWidenIntOrFpInductionSC, 602 VPWidenMemoryInstructionSC, 603 VPWidenPHISC, 604 VPWidenSC, 605 }; 606 607 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} 608 virtual ~VPRecipeBase() = default; 609 610 /// \return an ID for the concrete type of this object. 611 /// This is used to implement the classof checks. This should not be used 612 /// for any other purpose, as the values may change as LLVM evolves. 613 unsigned getVPRecipeID() const { return SubclassID; } 614 615 /// \return the VPBasicBlock which this VPRecipe belongs to. 616 VPBasicBlock *getParent() { return Parent; } 617 const VPBasicBlock *getParent() const { return Parent; } 618 619 /// The method which generates the output IR instructions that correspond to 620 /// this VPRecipe, thereby "executing" the VPlan. 621 virtual void execute(struct VPTransformState &State) = 0; 622 623 /// Each recipe prints itself. 624 virtual void print(raw_ostream &O, const Twine &Indent) const = 0; 625 626 /// Insert an unlinked recipe into a basic block immediately before 627 /// the specified recipe. 628 void insertBefore(VPRecipeBase *InsertPos); 629 630 /// Insert an unlinked Recipe into a basic block immediately after 631 /// the specified Recipe. 632 void insertAfter(VPRecipeBase *InsertPos); 633 634 /// Unlink this recipe from its current VPBasicBlock and insert it into 635 /// the VPBasicBlock that MovePos lives in, right after MovePos. 636 void moveAfter(VPRecipeBase *MovePos); 637 638 /// This method unlinks 'this' from the containing basic block, but does not 639 /// delete it. 640 void removeFromParent(); 641 642 /// This method unlinks 'this' from the containing basic block and deletes it. 643 /// 644 /// \returns an iterator pointing to the element after the erased one 645 iplist<VPRecipeBase>::iterator eraseFromParent(); 646 }; 647 648 /// This is a concrete Recipe that models a single VPlan-level instruction. 649 /// While as any Recipe it may generate a sequence of IR instructions when 650 /// executed, these instructions would always form a single-def expression as 651 /// the VPInstruction is also a single def-use vertex. 652 class VPInstruction : public VPUser, public VPRecipeBase { 653 friend class VPlanSlp; 654 655 public: 656 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 657 enum { 658 Not = Instruction::OtherOpsEnd + 1, 659 ICmpULE, 660 SLPLoad, 661 SLPStore, 662 }; 663 664 private: 665 typedef unsigned char OpcodeTy; 666 OpcodeTy Opcode; 667 668 /// Utility method serving execute(): generates a single instance of the 669 /// modeled instruction. 670 void generateInstruction(VPTransformState &State, unsigned Part); 671 672 protected: 673 Instruction *getUnderlyingInstr() { 674 return cast_or_null<Instruction>(getUnderlyingValue()); 675 } 676 677 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 678 679 public: 680 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) 681 : VPUser(VPValue::VPInstructionSC, Operands), 682 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} 683 684 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) 685 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} 686 687 /// Method to support type inquiry through isa, cast, and dyn_cast. 688 static inline bool classof(const VPValue *V) { 689 return V->getVPValueID() == VPValue::VPInstructionSC; 690 } 691 692 VPInstruction *clone() const { 693 SmallVector<VPValue *, 2> Operands(operands()); 694 return new VPInstruction(Opcode, Operands); 695 } 696 697 /// Method to support type inquiry through isa, cast, and dyn_cast. 698 static inline bool classof(const VPRecipeBase *R) { 699 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; 700 } 701 702 unsigned getOpcode() const { return Opcode; } 703 704 /// Generate the instruction. 705 /// TODO: We currently execute only per-part unless a specific instance is 706 /// provided. 707 void execute(VPTransformState &State) override; 708 709 /// Print the Recipe. 710 void print(raw_ostream &O, const Twine &Indent) const override; 711 712 /// Print the VPInstruction. 713 void print(raw_ostream &O) const; 714 715 /// Return true if this instruction may modify memory. 716 bool mayWriteToMemory() const { 717 // TODO: we can use attributes of the called function to rule out memory 718 // modifications. 719 return Opcode == Instruction::Store || Opcode == Instruction::Call || 720 Opcode == Instruction::Invoke || Opcode == SLPStore; 721 } 722 }; 723 724 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 725 /// Instruction in its ingredients independently, in order. This recipe covers 726 /// most of the traditional vectorization cases where each ingredient transforms 727 /// into a vectorized version of itself. 728 class VPWidenRecipe : public VPRecipeBase { 729 private: 730 /// Hold the ingredients by pointing to their original BasicBlock location. 731 BasicBlock::iterator Begin; 732 BasicBlock::iterator End; 733 734 public: 735 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 736 End = I->getIterator(); 737 Begin = End++; 738 } 739 740 ~VPWidenRecipe() override = default; 741 742 /// Method to support type inquiry through isa, cast, and dyn_cast. 743 static inline bool classof(const VPRecipeBase *V) { 744 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 745 } 746 747 /// Produce widened copies of all Ingredients. 748 void execute(VPTransformState &State) override; 749 750 /// Augment the recipe to include Instr, if it lies at its End. 751 bool appendInstruction(Instruction *Instr) { 752 if (End != Instr->getIterator()) 753 return false; 754 End++; 755 return true; 756 } 757 758 /// Print the recipe. 759 void print(raw_ostream &O, const Twine &Indent) const override; 760 }; 761 762 /// A recipe for handling GEP instructions. 763 class VPWidenGEPRecipe : public VPRecipeBase { 764 private: 765 GetElementPtrInst *GEP; 766 bool IsPtrLoopInvariant; 767 SmallBitVector IsIndexLoopInvariant; 768 769 public: 770 VPWidenGEPRecipe(GetElementPtrInst *GEP, Loop *OrigLoop) 771 : VPRecipeBase(VPWidenGEPSC), GEP(GEP), 772 IsIndexLoopInvariant(GEP->getNumIndices(), false) { 773 IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand()); 774 for (auto Index : enumerate(GEP->indices())) 775 IsIndexLoopInvariant[Index.index()] = 776 OrigLoop->isLoopInvariant(Index.value().get()); 777 } 778 ~VPWidenGEPRecipe() override = default; 779 780 /// Method to support type inquiry through isa, cast, and dyn_cast. 781 static inline bool classof(const VPRecipeBase *V) { 782 return V->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC; 783 } 784 785 /// Generate the gep nodes. 786 void execute(VPTransformState &State) override; 787 788 /// Print the recipe. 789 void print(raw_ostream &O, const Twine &Indent) const override; 790 }; 791 792 /// A recipe for handling phi nodes of integer and floating-point inductions, 793 /// producing their vector and scalar values. 794 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 795 private: 796 PHINode *IV; 797 TruncInst *Trunc; 798 799 public: 800 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 801 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 802 ~VPWidenIntOrFpInductionRecipe() override = default; 803 804 /// Method to support type inquiry through isa, cast, and dyn_cast. 805 static inline bool classof(const VPRecipeBase *V) { 806 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 807 } 808 809 /// Generate the vectorized and scalarized versions of the phi node as 810 /// needed by their users. 811 void execute(VPTransformState &State) override; 812 813 /// Print the recipe. 814 void print(raw_ostream &O, const Twine &Indent) const override; 815 }; 816 817 /// A recipe for handling all phi nodes except for integer and FP inductions. 818 class VPWidenPHIRecipe : public VPRecipeBase { 819 private: 820 PHINode *Phi; 821 822 public: 823 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 824 ~VPWidenPHIRecipe() override = default; 825 826 /// Method to support type inquiry through isa, cast, and dyn_cast. 827 static inline bool classof(const VPRecipeBase *V) { 828 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 829 } 830 831 /// Generate the phi/select nodes. 832 void execute(VPTransformState &State) override; 833 834 /// Print the recipe. 835 void print(raw_ostream &O, const Twine &Indent) const override; 836 }; 837 838 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 839 /// instructions. 840 class VPBlendRecipe : public VPRecipeBase { 841 private: 842 PHINode *Phi; 843 844 /// The blend operation is a User of a mask, if not null. 845 std::unique_ptr<VPUser> User; 846 847 public: 848 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) 849 : VPRecipeBase(VPBlendSC), Phi(Phi) { 850 assert((Phi->getNumIncomingValues() == 1 || 851 Phi->getNumIncomingValues() == Masks.size()) && 852 "Expected the same number of incoming values and masks"); 853 if (!Masks.empty()) 854 User.reset(new VPUser(Masks)); 855 } 856 857 /// Method to support type inquiry through isa, cast, and dyn_cast. 858 static inline bool classof(const VPRecipeBase *V) { 859 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; 860 } 861 862 /// Generate the phi/select nodes. 863 void execute(VPTransformState &State) override; 864 865 /// Print the recipe. 866 void print(raw_ostream &O, const Twine &Indent) const override; 867 }; 868 869 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 870 /// or stores into one wide load/store and shuffles. 871 class VPInterleaveRecipe : public VPRecipeBase { 872 private: 873 const InterleaveGroup<Instruction> *IG; 874 VPUser User; 875 876 public: 877 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 878 VPValue *Mask) 879 : VPRecipeBase(VPInterleaveSC), IG(IG), User({Addr}) { 880 if (Mask) 881 User.addOperand(Mask); 882 } 883 ~VPInterleaveRecipe() override = default; 884 885 /// Method to support type inquiry through isa, cast, and dyn_cast. 886 static inline bool classof(const VPRecipeBase *V) { 887 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 888 } 889 890 /// Return the address accessed by this recipe. 891 VPValue *getAddr() const { 892 return User.getOperand(0); // Address is the 1st, mandatory operand. 893 } 894 895 /// Return the mask used by this recipe. Note that a full mask is represented 896 /// by a nullptr. 897 VPValue *getMask() const { 898 // Mask is optional and therefore the last, currently 2nd operand. 899 return User.getNumOperands() == 2 ? User.getOperand(1) : nullptr; 900 } 901 902 /// Generate the wide load or store, and shuffles. 903 void execute(VPTransformState &State) override; 904 905 /// Print the recipe. 906 void print(raw_ostream &O, const Twine &Indent) const override; 907 908 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 909 }; 910 911 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 912 /// copies of the original scalar type, one per lane, instead of producing a 913 /// single copy of widened type for all lanes. If the instruction is known to be 914 /// uniform only one copy, per lane zero, will be generated. 915 class VPReplicateRecipe : public VPRecipeBase { 916 private: 917 /// The instruction being replicated. 918 Instruction *Ingredient; 919 920 /// Indicator if only a single replica per lane is needed. 921 bool IsUniform; 922 923 /// Indicator if the replicas are also predicated. 924 bool IsPredicated; 925 926 /// Indicator if the scalar values should also be packed into a vector. 927 bool AlsoPack; 928 929 public: 930 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 931 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 932 IsPredicated(IsPredicated) { 933 // Retain the previous behavior of predicateInstructions(), where an 934 // insert-element of a predicated instruction got hoisted into the 935 // predicated basic block iff it was its only user. This is achieved by 936 // having predicated instructions also pack their values into a vector by 937 // default unless they have a replicated user which uses their scalar value. 938 AlsoPack = IsPredicated && !I->use_empty(); 939 } 940 941 ~VPReplicateRecipe() override = default; 942 943 /// Method to support type inquiry through isa, cast, and dyn_cast. 944 static inline bool classof(const VPRecipeBase *V) { 945 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 946 } 947 948 /// Generate replicas of the desired Ingredient. Replicas will be generated 949 /// for all parts and lanes unless a specific part and lane are specified in 950 /// the \p State. 951 void execute(VPTransformState &State) override; 952 953 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 954 955 /// Print the recipe. 956 void print(raw_ostream &O, const Twine &Indent) const override; 957 }; 958 959 /// A recipe for generating conditional branches on the bits of a mask. 960 class VPBranchOnMaskRecipe : public VPRecipeBase { 961 private: 962 std::unique_ptr<VPUser> User; 963 964 public: 965 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { 966 if (BlockInMask) // nullptr means all-one mask. 967 User.reset(new VPUser({BlockInMask})); 968 } 969 970 /// Method to support type inquiry through isa, cast, and dyn_cast. 971 static inline bool classof(const VPRecipeBase *V) { 972 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 973 } 974 975 /// Generate the extraction of the appropriate bit from the block mask and the 976 /// conditional branch. 977 void execute(VPTransformState &State) override; 978 979 /// Print the recipe. 980 void print(raw_ostream &O, const Twine &Indent) const override { 981 O << " +\n" << Indent << "\"BRANCH-ON-MASK "; 982 if (User) 983 O << *User->getOperand(0); 984 else 985 O << " All-One"; 986 O << "\\l\""; 987 } 988 }; 989 990 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 991 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 992 /// order to merge values that are set under such a branch and feed their uses. 993 /// The phi nodes can be scalar or vector depending on the users of the value. 994 /// This recipe works in concert with VPBranchOnMaskRecipe. 995 class VPPredInstPHIRecipe : public VPRecipeBase { 996 private: 997 Instruction *PredInst; 998 999 public: 1000 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 1001 /// nodes after merging back from a Branch-on-Mask. 1002 VPPredInstPHIRecipe(Instruction *PredInst) 1003 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 1004 ~VPPredInstPHIRecipe() override = default; 1005 1006 /// Method to support type inquiry through isa, cast, and dyn_cast. 1007 static inline bool classof(const VPRecipeBase *V) { 1008 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 1009 } 1010 1011 /// Generates phi nodes for live-outs as needed to retain SSA form. 1012 void execute(VPTransformState &State) override; 1013 1014 /// Print the recipe. 1015 void print(raw_ostream &O, const Twine &Indent) const override; 1016 }; 1017 1018 /// A Recipe for widening load/store operations. 1019 /// TODO: We currently execute only per-part unless a specific instance is 1020 /// provided. 1021 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 1022 private: 1023 Instruction &Instr; 1024 VPUser User; 1025 1026 public: 1027 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Addr, 1028 VPValue *Mask) 1029 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr), User({Addr}) { 1030 if (Mask) 1031 User.addOperand(Mask); 1032 } 1033 1034 /// Method to support type inquiry through isa, cast, and dyn_cast. 1035 static inline bool classof(const VPRecipeBase *V) { 1036 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; 1037 } 1038 1039 /// Return the address accessed by this recipe. 1040 VPValue *getAddr() const { 1041 return User.getOperand(0); // Address is the 1st, mandatory operand. 1042 } 1043 1044 /// Return the mask used by this recipe. Note that a full mask is represented 1045 /// by a nullptr. 1046 VPValue *getMask() const { 1047 // Mask is optional and therefore the last, currently 2nd operand. 1048 return User.getNumOperands() == 2 ? User.getOperand(1) : nullptr; 1049 } 1050 1051 /// Generate the wide load/store. 1052 void execute(VPTransformState &State) override; 1053 1054 /// Print the recipe. 1055 void print(raw_ostream &O, const Twine &Indent) const override; 1056 }; 1057 1058 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 1059 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 1060 /// output IR instructions. 1061 class VPBasicBlock : public VPBlockBase { 1062 public: 1063 using RecipeListTy = iplist<VPRecipeBase>; 1064 1065 private: 1066 /// The VPRecipes held in the order of output instructions to generate. 1067 RecipeListTy Recipes; 1068 1069 public: 1070 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 1071 : VPBlockBase(VPBasicBlockSC, Name.str()) { 1072 if (Recipe) 1073 appendRecipe(Recipe); 1074 } 1075 1076 ~VPBasicBlock() override { Recipes.clear(); } 1077 1078 /// Instruction iterators... 1079 using iterator = RecipeListTy::iterator; 1080 using const_iterator = RecipeListTy::const_iterator; 1081 using reverse_iterator = RecipeListTy::reverse_iterator; 1082 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1083 1084 //===--------------------------------------------------------------------===// 1085 /// Recipe iterator methods 1086 /// 1087 inline iterator begin() { return Recipes.begin(); } 1088 inline const_iterator begin() const { return Recipes.begin(); } 1089 inline iterator end() { return Recipes.end(); } 1090 inline const_iterator end() const { return Recipes.end(); } 1091 1092 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1093 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1094 inline reverse_iterator rend() { return Recipes.rend(); } 1095 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1096 1097 inline size_t size() const { return Recipes.size(); } 1098 inline bool empty() const { return Recipes.empty(); } 1099 inline const VPRecipeBase &front() const { return Recipes.front(); } 1100 inline VPRecipeBase &front() { return Recipes.front(); } 1101 inline const VPRecipeBase &back() const { return Recipes.back(); } 1102 inline VPRecipeBase &back() { return Recipes.back(); } 1103 1104 /// Returns a reference to the list of recipes. 1105 RecipeListTy &getRecipeList() { return Recipes; } 1106 1107 /// Returns a pointer to a member of the recipe list. 1108 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1109 return &VPBasicBlock::Recipes; 1110 } 1111 1112 /// Method to support type inquiry through isa, cast, and dyn_cast. 1113 static inline bool classof(const VPBlockBase *V) { 1114 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1115 } 1116 1117 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1118 assert(Recipe && "No recipe to append."); 1119 assert(!Recipe->Parent && "Recipe already in VPlan"); 1120 Recipe->Parent = this; 1121 Recipes.insert(InsertPt, Recipe); 1122 } 1123 1124 /// Augment the existing recipes of a VPBasicBlock with an additional 1125 /// \p Recipe as the last recipe. 1126 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1127 1128 /// The method which generates the output IR instructions that correspond to 1129 /// this VPBasicBlock, thereby "executing" the VPlan. 1130 void execute(struct VPTransformState *State) override; 1131 1132 private: 1133 /// Create an IR BasicBlock to hold the output instructions generated by this 1134 /// VPBasicBlock, and return it. Update the CFGState accordingly. 1135 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1136 }; 1137 1138 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1139 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1140 /// A VPRegionBlock may indicate that its contents are to be replicated several 1141 /// times. This is designed to support predicated scalarization, in which a 1142 /// scalar if-then code structure needs to be generated VF * UF times. Having 1143 /// this replication indicator helps to keep a single model for multiple 1144 /// candidate VF's. The actual replication takes place only once the desired VF 1145 /// and UF have been determined. 1146 class VPRegionBlock : public VPBlockBase { 1147 private: 1148 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1149 VPBlockBase *Entry; 1150 1151 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1152 VPBlockBase *Exit; 1153 1154 /// An indicator whether this region is to generate multiple replicated 1155 /// instances of output IR corresponding to its VPBlockBases. 1156 bool IsReplicator; 1157 1158 public: 1159 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1160 const std::string &Name = "", bool IsReplicator = false) 1161 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1162 IsReplicator(IsReplicator) { 1163 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1164 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1165 Entry->setParent(this); 1166 Exit->setParent(this); 1167 } 1168 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 1169 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1170 IsReplicator(IsReplicator) {} 1171 1172 ~VPRegionBlock() override { 1173 if (Entry) 1174 deleteCFG(Entry); 1175 } 1176 1177 /// Method to support type inquiry through isa, cast, and dyn_cast. 1178 static inline bool classof(const VPBlockBase *V) { 1179 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1180 } 1181 1182 const VPBlockBase *getEntry() const { return Entry; } 1183 VPBlockBase *getEntry() { return Entry; } 1184 1185 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1186 /// EntryBlock must have no predecessors. 1187 void setEntry(VPBlockBase *EntryBlock) { 1188 assert(EntryBlock->getPredecessors().empty() && 1189 "Entry block cannot have predecessors."); 1190 Entry = EntryBlock; 1191 EntryBlock->setParent(this); 1192 } 1193 1194 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1195 // specific interface of llvm::Function, instead of using 1196 // GraphTraints::getEntryNode. We should add a new template parameter to 1197 // DominatorTreeBase representing the Graph type. 1198 VPBlockBase &front() const { return *Entry; } 1199 1200 const VPBlockBase *getExit() const { return Exit; } 1201 VPBlockBase *getExit() { return Exit; } 1202 1203 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1204 /// ExitBlock must have no successors. 1205 void setExit(VPBlockBase *ExitBlock) { 1206 assert(ExitBlock->getSuccessors().empty() && 1207 "Exit block cannot have successors."); 1208 Exit = ExitBlock; 1209 ExitBlock->setParent(this); 1210 } 1211 1212 /// An indicator whether this region is to generate multiple replicated 1213 /// instances of output IR corresponding to its VPBlockBases. 1214 bool isReplicator() const { return IsReplicator; } 1215 1216 /// The method which generates the output IR instructions that correspond to 1217 /// this VPRegionBlock, thereby "executing" the VPlan. 1218 void execute(struct VPTransformState *State) override; 1219 }; 1220 1221 //===----------------------------------------------------------------------===// 1222 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 1223 //===----------------------------------------------------------------------===// 1224 1225 // The following set of template specializations implement GraphTraits to treat 1226 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 1227 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 1228 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 1229 // successors/predecessors but not to the blocks inside the region. 1230 1231 template <> struct GraphTraits<VPBlockBase *> { 1232 using NodeRef = VPBlockBase *; 1233 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1234 1235 static NodeRef getEntryNode(NodeRef N) { return N; } 1236 1237 static inline ChildIteratorType child_begin(NodeRef N) { 1238 return N->getSuccessors().begin(); 1239 } 1240 1241 static inline ChildIteratorType child_end(NodeRef N) { 1242 return N->getSuccessors().end(); 1243 } 1244 }; 1245 1246 template <> struct GraphTraits<const VPBlockBase *> { 1247 using NodeRef = const VPBlockBase *; 1248 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 1249 1250 static NodeRef getEntryNode(NodeRef N) { return N; } 1251 1252 static inline ChildIteratorType child_begin(NodeRef N) { 1253 return N->getSuccessors().begin(); 1254 } 1255 1256 static inline ChildIteratorType child_end(NodeRef N) { 1257 return N->getSuccessors().end(); 1258 } 1259 }; 1260 1261 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 1262 // of successors for the inverse traversal. 1263 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 1264 using NodeRef = VPBlockBase *; 1265 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1266 1267 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 1268 1269 static inline ChildIteratorType child_begin(NodeRef N) { 1270 return N->getPredecessors().begin(); 1271 } 1272 1273 static inline ChildIteratorType child_end(NodeRef N) { 1274 return N->getPredecessors().end(); 1275 } 1276 }; 1277 1278 // The following set of template specializations implement GraphTraits to 1279 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 1280 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 1281 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 1282 // there won't be automatic recursion into other VPBlockBases that turn to be 1283 // VPRegionBlocks. 1284 1285 template <> 1286 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 1287 using GraphRef = VPRegionBlock *; 1288 using nodes_iterator = df_iterator<NodeRef>; 1289 1290 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1291 1292 static nodes_iterator nodes_begin(GraphRef N) { 1293 return nodes_iterator::begin(N->getEntry()); 1294 } 1295 1296 static nodes_iterator nodes_end(GraphRef N) { 1297 // df_iterator::end() returns an empty iterator so the node used doesn't 1298 // matter. 1299 return nodes_iterator::end(N); 1300 } 1301 }; 1302 1303 template <> 1304 struct GraphTraits<const VPRegionBlock *> 1305 : public GraphTraits<const VPBlockBase *> { 1306 using GraphRef = const VPRegionBlock *; 1307 using nodes_iterator = df_iterator<NodeRef>; 1308 1309 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1310 1311 static nodes_iterator nodes_begin(GraphRef N) { 1312 return nodes_iterator::begin(N->getEntry()); 1313 } 1314 1315 static nodes_iterator nodes_end(GraphRef N) { 1316 // df_iterator::end() returns an empty iterator so the node used doesn't 1317 // matter. 1318 return nodes_iterator::end(N); 1319 } 1320 }; 1321 1322 template <> 1323 struct GraphTraits<Inverse<VPRegionBlock *>> 1324 : public GraphTraits<Inverse<VPBlockBase *>> { 1325 using GraphRef = VPRegionBlock *; 1326 using nodes_iterator = df_iterator<NodeRef>; 1327 1328 static NodeRef getEntryNode(Inverse<GraphRef> N) { 1329 return N.Graph->getExit(); 1330 } 1331 1332 static nodes_iterator nodes_begin(GraphRef N) { 1333 return nodes_iterator::begin(N->getExit()); 1334 } 1335 1336 static nodes_iterator nodes_end(GraphRef N) { 1337 // df_iterator::end() returns an empty iterator so the node used doesn't 1338 // matter. 1339 return nodes_iterator::end(N); 1340 } 1341 }; 1342 1343 /// VPlan models a candidate for vectorization, encoding various decisions take 1344 /// to produce efficient output IR, including which branches, basic-blocks and 1345 /// output IR instructions to generate, and their cost. VPlan holds a 1346 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 1347 /// VPBlock. 1348 class VPlan { 1349 friend class VPlanPrinter; 1350 1351 private: 1352 /// Hold the single entry to the Hierarchical CFG of the VPlan. 1353 VPBlockBase *Entry; 1354 1355 /// Holds the VFs applicable to this VPlan. 1356 SmallSet<unsigned, 2> VFs; 1357 1358 /// Holds the name of the VPlan, for printing. 1359 std::string Name; 1360 1361 /// Holds all the external definitions created for this VPlan. 1362 // TODO: Introduce a specific representation for external definitions in 1363 // VPlan. External definitions must be immutable and hold a pointer to its 1364 // underlying IR that will be used to implement its structural comparison 1365 // (operators '==' and '<'). 1366 SmallPtrSet<VPValue *, 16> VPExternalDefs; 1367 1368 /// Represents the backedge taken count of the original loop, for folding 1369 /// the tail. 1370 VPValue *BackedgeTakenCount = nullptr; 1371 1372 /// Holds a mapping between Values and their corresponding VPValue inside 1373 /// VPlan. 1374 Value2VPValueTy Value2VPValue; 1375 1376 /// Holds the VPLoopInfo analysis for this VPlan. 1377 VPLoopInfo VPLInfo; 1378 1379 /// Holds the condition bit values built during VPInstruction to VPRecipe transformation. 1380 SmallVector<VPValue *, 4> VPCBVs; 1381 1382 public: 1383 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} 1384 1385 ~VPlan() { 1386 if (Entry) 1387 VPBlockBase::deleteCFG(Entry); 1388 for (auto &MapEntry : Value2VPValue) 1389 if (MapEntry.second != BackedgeTakenCount) 1390 delete MapEntry.second; 1391 if (BackedgeTakenCount) 1392 delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not. 1393 for (VPValue *Def : VPExternalDefs) 1394 delete Def; 1395 for (VPValue *CBV : VPCBVs) 1396 delete CBV; 1397 } 1398 1399 /// Generate the IR code for this VPlan. 1400 void execute(struct VPTransformState *State); 1401 1402 VPBlockBase *getEntry() { return Entry; } 1403 const VPBlockBase *getEntry() const { return Entry; } 1404 1405 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } 1406 1407 /// The backedge taken count of the original loop. 1408 VPValue *getOrCreateBackedgeTakenCount() { 1409 if (!BackedgeTakenCount) 1410 BackedgeTakenCount = new VPValue(); 1411 return BackedgeTakenCount; 1412 } 1413 1414 void addVF(unsigned VF) { VFs.insert(VF); } 1415 1416 bool hasVF(unsigned VF) { return VFs.count(VF); } 1417 1418 const std::string &getName() const { return Name; } 1419 1420 void setName(const Twine &newName) { Name = newName.str(); } 1421 1422 /// Add \p VPVal to the pool of external definitions if it's not already 1423 /// in the pool. 1424 void addExternalDef(VPValue *VPVal) { 1425 VPExternalDefs.insert(VPVal); 1426 } 1427 1428 /// Add \p CBV to the vector of condition bit values. 1429 void addCBV(VPValue *CBV) { 1430 VPCBVs.push_back(CBV); 1431 } 1432 1433 void addVPValue(Value *V) { 1434 assert(V && "Trying to add a null Value to VPlan"); 1435 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 1436 Value2VPValue[V] = new VPValue(); 1437 } 1438 1439 VPValue *getVPValue(Value *V) { 1440 assert(V && "Trying to get the VPValue of a null Value"); 1441 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 1442 return Value2VPValue[V]; 1443 } 1444 1445 VPValue *getOrAddVPValue(Value *V) { 1446 assert(V && "Trying to get or add the VPValue of a null Value"); 1447 if (!Value2VPValue.count(V)) 1448 addVPValue(V); 1449 return getVPValue(V); 1450 } 1451 1452 /// Return the VPLoopInfo analysis for this VPlan. 1453 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 1454 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 1455 1456 /// Dump the plan to stderr (for debugging). 1457 void dump() const; 1458 1459 private: 1460 /// Add to the given dominator tree the header block and every new basic block 1461 /// that was created between it and the latch block, inclusive. 1462 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 1463 BasicBlock *LoopPreHeaderBB, 1464 BasicBlock *LoopExitBB); 1465 }; 1466 1467 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 1468 /// indented and follows the dot format. 1469 class VPlanPrinter { 1470 friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan); 1471 friend inline raw_ostream &operator<<(raw_ostream &OS, 1472 const struct VPlanIngredient &I); 1473 1474 private: 1475 raw_ostream &OS; 1476 const VPlan &Plan; 1477 unsigned Depth = 0; 1478 unsigned TabWidth = 2; 1479 std::string Indent; 1480 unsigned BID = 0; 1481 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 1482 1483 VPlanPrinter(raw_ostream &O, const VPlan &P) : OS(O), Plan(P) {} 1484 1485 /// Handle indentation. 1486 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 1487 1488 /// Print a given \p Block of the Plan. 1489 void dumpBlock(const VPBlockBase *Block); 1490 1491 /// Print the information related to the CFG edges going out of a given 1492 /// \p Block, followed by printing the successor blocks themselves. 1493 void dumpEdges(const VPBlockBase *Block); 1494 1495 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 1496 /// its successor blocks. 1497 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 1498 1499 /// Print a given \p Region of the Plan. 1500 void dumpRegion(const VPRegionBlock *Region); 1501 1502 unsigned getOrCreateBID(const VPBlockBase *Block) { 1503 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 1504 } 1505 1506 const Twine getOrCreateName(const VPBlockBase *Block); 1507 1508 const Twine getUID(const VPBlockBase *Block); 1509 1510 /// Print the information related to a CFG edge between two VPBlockBases. 1511 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 1512 const Twine &Label); 1513 1514 void dump(); 1515 1516 static void printAsIngredient(raw_ostream &O, Value *V); 1517 }; 1518 1519 struct VPlanIngredient { 1520 Value *V; 1521 1522 VPlanIngredient(Value *V) : V(V) {} 1523 }; 1524 1525 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 1526 VPlanPrinter::printAsIngredient(OS, I.V); 1527 return OS; 1528 } 1529 1530 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 1531 VPlanPrinter Printer(OS, Plan); 1532 Printer.dump(); 1533 return OS; 1534 } 1535 1536 //===----------------------------------------------------------------------===// 1537 // VPlan Utilities 1538 //===----------------------------------------------------------------------===// 1539 1540 /// Class that provides utilities for VPBlockBases in VPlan. 1541 class VPBlockUtils { 1542 public: 1543 VPBlockUtils() = delete; 1544 1545 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 1546 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 1547 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr 1548 /// has more than one successor, its conditional bit is propagated to \p 1549 /// NewBlock. \p NewBlock must have neither successors nor predecessors. 1550 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 1551 assert(NewBlock->getSuccessors().empty() && 1552 "Can't insert new block with successors."); 1553 // TODO: move successors from BlockPtr to NewBlock when this functionality 1554 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr 1555 // already has successors. 1556 BlockPtr->setOneSuccessor(NewBlock); 1557 NewBlock->setPredecessors({BlockPtr}); 1558 NewBlock->setParent(BlockPtr->getParent()); 1559 } 1560 1561 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 1562 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 1563 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 1564 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 1565 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 1566 /// must have neither successors nor predecessors. 1567 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 1568 VPValue *Condition, VPBlockBase *BlockPtr) { 1569 assert(IfTrue->getSuccessors().empty() && 1570 "Can't insert IfTrue with successors."); 1571 assert(IfFalse->getSuccessors().empty() && 1572 "Can't insert IfFalse with successors."); 1573 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 1574 IfTrue->setPredecessors({BlockPtr}); 1575 IfFalse->setPredecessors({BlockPtr}); 1576 IfTrue->setParent(BlockPtr->getParent()); 1577 IfFalse->setParent(BlockPtr->getParent()); 1578 } 1579 1580 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 1581 /// the successors of \p From and \p From to the predecessors of \p To. Both 1582 /// VPBlockBases must have the same parent, which can be null. Both 1583 /// VPBlockBases can be already connected to other VPBlockBases. 1584 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 1585 assert((From->getParent() == To->getParent()) && 1586 "Can't connect two block with different parents"); 1587 assert(From->getNumSuccessors() < 2 && 1588 "Blocks can't have more than two successors."); 1589 From->appendSuccessor(To); 1590 To->appendPredecessor(From); 1591 } 1592 1593 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 1594 /// from the successors of \p From and \p From from the predecessors of \p To. 1595 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 1596 assert(To && "Successor to disconnect is null."); 1597 From->removeSuccessor(To); 1598 To->removePredecessor(From); 1599 } 1600 1601 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 1602 static bool isBackEdge(const VPBlockBase *FromBlock, 1603 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 1604 assert(FromBlock->getParent() == ToBlock->getParent() && 1605 FromBlock->getParent() && "Must be in same region"); 1606 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 1607 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 1608 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 1609 return false; 1610 1611 // A back-edge is a branch from the loop latch to its header. 1612 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 1613 } 1614 1615 /// Returns true if \p Block is a loop latch 1616 static bool blockIsLoopLatch(const VPBlockBase *Block, 1617 const VPLoopInfo *VPLInfo) { 1618 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 1619 return ParentVPL->isLoopLatch(Block); 1620 1621 return false; 1622 } 1623 1624 /// Count and return the number of succesors of \p PredBlock excluding any 1625 /// backedges. 1626 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 1627 VPLoopInfo *VPLI) { 1628 unsigned Count = 0; 1629 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 1630 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 1631 Count++; 1632 } 1633 return Count; 1634 } 1635 }; 1636 1637 class VPInterleavedAccessInfo { 1638 private: 1639 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 1640 InterleaveGroupMap; 1641 1642 /// Type for mapping of instruction based interleave groups to VPInstruction 1643 /// interleave groups 1644 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 1645 InterleaveGroup<VPInstruction> *>; 1646 1647 /// Recursively \p Region and populate VPlan based interleave groups based on 1648 /// \p IAI. 1649 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 1650 InterleavedAccessInfo &IAI); 1651 /// Recursively traverse \p Block and populate VPlan based interleave groups 1652 /// based on \p IAI. 1653 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1654 InterleavedAccessInfo &IAI); 1655 1656 public: 1657 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 1658 1659 ~VPInterleavedAccessInfo() { 1660 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 1661 // Avoid releasing a pointer twice. 1662 for (auto &I : InterleaveGroupMap) 1663 DelSet.insert(I.second); 1664 for (auto *Ptr : DelSet) 1665 delete Ptr; 1666 } 1667 1668 /// Get the interleave group that \p Instr belongs to. 1669 /// 1670 /// \returns nullptr if doesn't have such group. 1671 InterleaveGroup<VPInstruction> * 1672 getInterleaveGroup(VPInstruction *Instr) const { 1673 if (InterleaveGroupMap.count(Instr)) 1674 return InterleaveGroupMap.find(Instr)->second; 1675 return nullptr; 1676 } 1677 }; 1678 1679 /// Class that maps (parts of) an existing VPlan to trees of combined 1680 /// VPInstructions. 1681 class VPlanSlp { 1682 private: 1683 enum class OpMode { Failed, Load, Opcode }; 1684 1685 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 1686 /// DenseMap keys. 1687 struct BundleDenseMapInfo { 1688 static SmallVector<VPValue *, 4> getEmptyKey() { 1689 return {reinterpret_cast<VPValue *>(-1)}; 1690 } 1691 1692 static SmallVector<VPValue *, 4> getTombstoneKey() { 1693 return {reinterpret_cast<VPValue *>(-2)}; 1694 } 1695 1696 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 1697 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1698 } 1699 1700 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 1701 const SmallVector<VPValue *, 4> &RHS) { 1702 return LHS == RHS; 1703 } 1704 }; 1705 1706 /// Mapping of values in the original VPlan to a combined VPInstruction. 1707 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 1708 BundleToCombined; 1709 1710 VPInterleavedAccessInfo &IAI; 1711 1712 /// Basic block to operate on. For now, only instructions in a single BB are 1713 /// considered. 1714 const VPBasicBlock &BB; 1715 1716 /// Indicates whether we managed to combine all visited instructions or not. 1717 bool CompletelySLP = true; 1718 1719 /// Width of the widest combined bundle in bits. 1720 unsigned WidestBundleBits = 0; 1721 1722 using MultiNodeOpTy = 1723 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 1724 1725 // Input operand bundles for the current multi node. Each multi node operand 1726 // bundle contains values not matching the multi node's opcode. They will 1727 // be reordered in reorderMultiNodeOps, once we completed building a 1728 // multi node. 1729 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 1730 1731 /// Indicates whether we are building a multi node currently. 1732 bool MultiNodeActive = false; 1733 1734 /// Check if we can vectorize Operands together. 1735 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 1736 1737 /// Add combined instruction \p New for the bundle \p Operands. 1738 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 1739 1740 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 1741 VPInstruction *markFailed(); 1742 1743 /// Reorder operands in the multi node to maximize sequential memory access 1744 /// and commutative operations. 1745 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 1746 1747 /// Choose the best candidate to use for the lane after \p Last. The set of 1748 /// candidates to choose from are values with an opcode matching \p Last's 1749 /// or loads consecutive to \p Last. 1750 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 1751 SmallPtrSetImpl<VPValue *> &Candidates, 1752 VPInterleavedAccessInfo &IAI); 1753 1754 /// Print bundle \p Values to dbgs(). 1755 void dumpBundle(ArrayRef<VPValue *> Values); 1756 1757 public: 1758 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 1759 1760 ~VPlanSlp() { 1761 for (auto &KV : BundleToCombined) 1762 delete KV.second; 1763 } 1764 1765 /// Tries to build an SLP tree rooted at \p Operands and returns a 1766 /// VPInstruction combining \p Operands, if they can be combined. 1767 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 1768 1769 /// Return the width of the widest combined bundle in bits. 1770 unsigned getWidestBundleBits() const { return WidestBundleBits; } 1771 1772 /// Return true if all visited instruction can be combined. 1773 bool isCompletelySLP() const { return CompletelySLP; } 1774 }; 1775 } // end namespace llvm 1776 1777 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 1778