1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 14 /// treated as proper graphs for generic algorithms; 15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 16 /// within VPBasicBlocks; 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanLoopInfo.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/DepthFirstIterator.h" 32 #include "llvm/ADT/GraphTraits.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Twine.h" 38 #include "llvm/ADT/ilist.h" 39 #include "llvm/ADT/ilist_node.h" 40 #include "llvm/Analysis/VectorUtils.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstddef> 45 #include <map> 46 #include <string> 47 48 namespace llvm { 49 50 class LoopVectorizationLegality; 51 class LoopVectorizationCostModel; 52 class BasicBlock; 53 class DominatorTree; 54 class InnerLoopVectorizer; 55 template <class T> class InterleaveGroup; 56 class LoopInfo; 57 class raw_ostream; 58 class Value; 59 class VPBasicBlock; 60 class VPRegionBlock; 61 class VPlan; 62 class VPlanSlp; 63 64 /// A range of powers-of-2 vectorization factors with fixed start and 65 /// adjustable end. The range includes start and excludes end, e.g.,: 66 /// [1, 9) = {1, 2, 4, 8} 67 struct VFRange { 68 // A power of 2. 69 const unsigned Start; 70 71 // Need not be a power of 2. If End <= Start range is empty. 72 unsigned End; 73 }; 74 75 using VPlanPtr = std::unique_ptr<VPlan>; 76 77 /// In what follows, the term "input IR" refers to code that is fed into the 78 /// vectorizer whereas the term "output IR" refers to code that is generated by 79 /// the vectorizer. 80 81 /// VPIteration represents a single point in the iteration space of the output 82 /// (vectorized and/or unrolled) IR loop. 83 struct VPIteration { 84 /// in [0..UF) 85 unsigned Part; 86 87 /// in [0..VF) 88 unsigned Lane; 89 }; 90 91 /// This is a helper struct for maintaining vectorization state. It's used for 92 /// mapping values from the original loop to their corresponding values in 93 /// the new loop. Two mappings are maintained: one for vectorized values and 94 /// one for scalarized values. Vectorized values are represented with UF 95 /// vector values in the new loop, and scalarized values are represented with 96 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 97 /// vectorization factors, respectively. 98 /// 99 /// Entries can be added to either map with setVectorValue and setScalarValue, 100 /// which assert that an entry was not already added before. If an entry is to 101 /// replace an existing one, call resetVectorValue and resetScalarValue. This is 102 /// currently needed to modify the mapped values during "fix-up" operations that 103 /// occur once the first phase of widening is complete. These operations include 104 /// type truncation and the second phase of recurrence widening. 105 /// 106 /// Entries from either map can be retrieved using the getVectorValue and 107 /// getScalarValue functions, which assert that the desired value exists. 108 struct VectorizerValueMap { 109 friend struct VPTransformState; 110 111 private: 112 /// The unroll factor. Each entry in the vector map contains UF vector values. 113 unsigned UF; 114 115 /// The vectorization factor. Each entry in the scalar map contains UF x VF 116 /// scalar values. 117 unsigned VF; 118 119 /// The vector and scalar map storage. We use std::map and not DenseMap 120 /// because insertions to DenseMap invalidate its iterators. 121 using VectorParts = SmallVector<Value *, 2>; 122 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 123 std::map<Value *, VectorParts> VectorMapStorage; 124 std::map<Value *, ScalarParts> ScalarMapStorage; 125 126 public: 127 /// Construct an empty map with the given unroll and vectorization factors. 128 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} 129 130 /// \return True if the map has any vector entry for \p Key. 131 bool hasAnyVectorValue(Value *Key) const { 132 return VectorMapStorage.count(Key); 133 } 134 135 /// \return True if the map has a vector entry for \p Key and \p Part. 136 bool hasVectorValue(Value *Key, unsigned Part) const { 137 assert(Part < UF && "Queried Vector Part is too large."); 138 if (!hasAnyVectorValue(Key)) 139 return false; 140 const VectorParts &Entry = VectorMapStorage.find(Key)->second; 141 assert(Entry.size() == UF && "VectorParts has wrong dimensions."); 142 return Entry[Part] != nullptr; 143 } 144 145 /// \return True if the map has any scalar entry for \p Key. 146 bool hasAnyScalarValue(Value *Key) const { 147 return ScalarMapStorage.count(Key); 148 } 149 150 /// \return True if the map has a scalar entry for \p Key and \p Instance. 151 bool hasScalarValue(Value *Key, const VPIteration &Instance) const { 152 assert(Instance.Part < UF && "Queried Scalar Part is too large."); 153 assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); 154 if (!hasAnyScalarValue(Key)) 155 return false; 156 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; 157 assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); 158 assert(Entry[Instance.Part].size() == VF && 159 "ScalarParts has wrong dimensions."); 160 return Entry[Instance.Part][Instance.Lane] != nullptr; 161 } 162 163 /// Retrieve the existing vector value that corresponds to \p Key and 164 /// \p Part. 165 Value *getVectorValue(Value *Key, unsigned Part) { 166 assert(hasVectorValue(Key, Part) && "Getting non-existent value."); 167 return VectorMapStorage[Key][Part]; 168 } 169 170 /// Retrieve the existing scalar value that corresponds to \p Key and 171 /// \p Instance. 172 Value *getScalarValue(Value *Key, const VPIteration &Instance) { 173 assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); 174 return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; 175 } 176 177 /// Set a vector value associated with \p Key and \p Part. Assumes such a 178 /// value is not already set. If it is, use resetVectorValue() instead. 179 void setVectorValue(Value *Key, unsigned Part, Value *Vector) { 180 assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); 181 if (!VectorMapStorage.count(Key)) { 182 VectorParts Entry(UF); 183 VectorMapStorage[Key] = Entry; 184 } 185 VectorMapStorage[Key][Part] = Vector; 186 } 187 188 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a 189 /// value is not already set. 190 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { 191 assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); 192 if (!ScalarMapStorage.count(Key)) { 193 ScalarParts Entry(UF); 194 // TODO: Consider storing uniform values only per-part, as they occupy 195 // lane 0 only, keeping the other VF-1 redundant entries null. 196 for (unsigned Part = 0; Part < UF; ++Part) 197 Entry[Part].resize(VF, nullptr); 198 ScalarMapStorage[Key] = Entry; 199 } 200 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; 201 } 202 203 /// Reset the vector value associated with \p Key for the given \p Part. 204 /// This function can be used to update values that have already been 205 /// vectorized. This is the case for "fix-up" operations including type 206 /// truncation and the second phase of recurrence vectorization. 207 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { 208 assert(hasVectorValue(Key, Part) && "Vector value not set for part"); 209 VectorMapStorage[Key][Part] = Vector; 210 } 211 212 /// Reset the scalar value associated with \p Key for \p Part and \p Lane. 213 /// This function can be used to update values that have already been 214 /// scalarized. This is the case for "fix-up" operations including scalar phi 215 /// nodes for scalarized and predicated instructions. 216 void resetScalarValue(Value *Key, const VPIteration &Instance, 217 Value *Scalar) { 218 assert(hasScalarValue(Key, Instance) && 219 "Scalar value not set for part and lane"); 220 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; 221 } 222 }; 223 224 /// This class is used to enable the VPlan to invoke a method of ILV. This is 225 /// needed until the method is refactored out of ILV and becomes reusable. 226 struct VPCallback { 227 virtual ~VPCallback() {} 228 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; 229 }; 230 231 /// VPTransformState holds information passed down when "executing" a VPlan, 232 /// needed for generating the output IR. 233 struct VPTransformState { 234 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, 235 IRBuilder<> &Builder, VectorizerValueMap &ValueMap, 236 InnerLoopVectorizer *ILV, VPCallback &Callback) 237 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), 238 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} 239 240 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 241 unsigned VF; 242 unsigned UF; 243 244 /// Hold the indices to generate specific scalar instructions. Null indicates 245 /// that all instances are to be generated, using either scalar or vector 246 /// instructions. 247 Optional<VPIteration> Instance; 248 249 struct DataState { 250 /// A type for vectorized values in the new loop. Each value from the 251 /// original loop, when vectorized, is represented by UF vector values in 252 /// the new unrolled loop, where UF is the unroll factor. 253 typedef SmallVector<Value *, 2> PerPartValuesTy; 254 255 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 256 } Data; 257 258 /// Get the generated Value for a given VPValue and a given Part. Note that 259 /// as some Defs are still created by ILV and managed in its ValueMap, this 260 /// method will delegate the call to ILV in such cases in order to provide 261 /// callers a consistent API. 262 /// \see set. 263 Value *get(VPValue *Def, unsigned Part) { 264 // If Values have been set for this Def return the one relevant for \p Part. 265 if (Data.PerPartOutput.count(Def)) 266 return Data.PerPartOutput[Def][Part]; 267 // Def is managed by ILV: bring the Values from ValueMap. 268 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); 269 } 270 271 /// Set the generated Value for a given VPValue and a given Part. 272 void set(VPValue *Def, Value *V, unsigned Part) { 273 if (!Data.PerPartOutput.count(Def)) { 274 DataState::PerPartValuesTy Entry(UF); 275 Data.PerPartOutput[Def] = Entry; 276 } 277 Data.PerPartOutput[Def][Part] = V; 278 } 279 280 /// Hold state information used when constructing the CFG of the output IR, 281 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 282 struct CFGState { 283 /// The previous VPBasicBlock visited. Initially set to null. 284 VPBasicBlock *PrevVPBB = nullptr; 285 286 /// The previous IR BasicBlock created or used. Initially set to the new 287 /// header BasicBlock. 288 BasicBlock *PrevBB = nullptr; 289 290 /// The last IR BasicBlock in the output IR. Set to the new latch 291 /// BasicBlock, used for placing the newly created BasicBlocks. 292 BasicBlock *LastBB = nullptr; 293 294 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 295 /// of replication, maps the BasicBlock of the last replica created. 296 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 297 298 /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed 299 /// up at the end of vector code generation. 300 SmallVector<VPBasicBlock *, 8> VPBBsToFix; 301 302 CFGState() = default; 303 } CFG; 304 305 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 306 LoopInfo *LI; 307 308 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 309 DominatorTree *DT; 310 311 /// Hold a reference to the IRBuilder used to generate output IR code. 312 IRBuilder<> &Builder; 313 314 /// Hold a reference to the Value state information used when generating the 315 /// Values of the output IR. 316 VectorizerValueMap &ValueMap; 317 318 /// Hold a reference to a mapping between VPValues in VPlan and original 319 /// Values they correspond to. 320 VPValue2ValueTy VPValue2Value; 321 322 /// Hold the trip count of the scalar loop. 323 Value *TripCount = nullptr; 324 325 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 326 InnerLoopVectorizer *ILV; 327 328 VPCallback &Callback; 329 }; 330 331 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 332 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 333 class VPBlockBase { 334 friend class VPBlockUtils; 335 336 private: 337 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 338 339 /// An optional name for the block. 340 std::string Name; 341 342 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 343 /// it is a topmost VPBlockBase. 344 VPRegionBlock *Parent = nullptr; 345 346 /// List of predecessor blocks. 347 SmallVector<VPBlockBase *, 1> Predecessors; 348 349 /// List of successor blocks. 350 SmallVector<VPBlockBase *, 1> Successors; 351 352 /// Successor selector, null for zero or single successor blocks. 353 VPValue *CondBit = nullptr; 354 355 /// Current block predicate - null if the block does not need a predicate. 356 VPValue *Predicate = nullptr; 357 358 /// Add \p Successor as the last successor to this block. 359 void appendSuccessor(VPBlockBase *Successor) { 360 assert(Successor && "Cannot add nullptr successor!"); 361 Successors.push_back(Successor); 362 } 363 364 /// Add \p Predecessor as the last predecessor to this block. 365 void appendPredecessor(VPBlockBase *Predecessor) { 366 assert(Predecessor && "Cannot add nullptr predecessor!"); 367 Predecessors.push_back(Predecessor); 368 } 369 370 /// Remove \p Predecessor from the predecessors of this block. 371 void removePredecessor(VPBlockBase *Predecessor) { 372 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); 373 assert(Pos && "Predecessor does not exist"); 374 Predecessors.erase(Pos); 375 } 376 377 /// Remove \p Successor from the successors of this block. 378 void removeSuccessor(VPBlockBase *Successor) { 379 auto Pos = std::find(Successors.begin(), Successors.end(), Successor); 380 assert(Pos && "Successor does not exist"); 381 Successors.erase(Pos); 382 } 383 384 protected: 385 VPBlockBase(const unsigned char SC, const std::string &N) 386 : SubclassID(SC), Name(N) {} 387 388 public: 389 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 390 /// that are actually instantiated. Values of this enumeration are kept in the 391 /// SubclassID field of the VPBlockBase objects. They are used for concrete 392 /// type identification. 393 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 394 395 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 396 397 virtual ~VPBlockBase() = default; 398 399 const std::string &getName() const { return Name; } 400 401 void setName(const Twine &newName) { Name = newName.str(); } 402 403 /// \return an ID for the concrete type of this object. 404 /// This is used to implement the classof checks. This should not be used 405 /// for any other purpose, as the values may change as LLVM evolves. 406 unsigned getVPBlockID() const { return SubclassID; } 407 408 VPRegionBlock *getParent() { return Parent; } 409 const VPRegionBlock *getParent() const { return Parent; } 410 411 void setParent(VPRegionBlock *P) { Parent = P; } 412 413 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 414 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 415 /// VPBlockBase is a VPBasicBlock, it is returned. 416 const VPBasicBlock *getEntryBasicBlock() const; 417 VPBasicBlock *getEntryBasicBlock(); 418 419 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 420 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 421 /// VPBlockBase is a VPBasicBlock, it is returned. 422 const VPBasicBlock *getExitBasicBlock() const; 423 VPBasicBlock *getExitBasicBlock(); 424 425 const VPBlocksTy &getSuccessors() const { return Successors; } 426 VPBlocksTy &getSuccessors() { return Successors; } 427 428 const VPBlocksTy &getPredecessors() const { return Predecessors; } 429 VPBlocksTy &getPredecessors() { return Predecessors; } 430 431 /// \return the successor of this VPBlockBase if it has a single successor. 432 /// Otherwise return a null pointer. 433 VPBlockBase *getSingleSuccessor() const { 434 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 435 } 436 437 /// \return the predecessor of this VPBlockBase if it has a single 438 /// predecessor. Otherwise return a null pointer. 439 VPBlockBase *getSinglePredecessor() const { 440 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 441 } 442 443 size_t getNumSuccessors() const { return Successors.size(); } 444 size_t getNumPredecessors() const { return Predecessors.size(); } 445 446 /// An Enclosing Block of a block B is any block containing B, including B 447 /// itself. \return the closest enclosing block starting from "this", which 448 /// has successors. \return the root enclosing block if all enclosing blocks 449 /// have no successors. 450 VPBlockBase *getEnclosingBlockWithSuccessors(); 451 452 /// \return the closest enclosing block starting from "this", which has 453 /// predecessors. \return the root enclosing block if all enclosing blocks 454 /// have no predecessors. 455 VPBlockBase *getEnclosingBlockWithPredecessors(); 456 457 /// \return the successors either attached directly to this VPBlockBase or, if 458 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 459 /// successors of its own, search recursively for the first enclosing 460 /// VPRegionBlock that has successors and return them. If no such 461 /// VPRegionBlock exists, return the (empty) successors of the topmost 462 /// VPBlockBase reached. 463 const VPBlocksTy &getHierarchicalSuccessors() { 464 return getEnclosingBlockWithSuccessors()->getSuccessors(); 465 } 466 467 /// \return the hierarchical successor of this VPBlockBase if it has a single 468 /// hierarchical successor. Otherwise return a null pointer. 469 VPBlockBase *getSingleHierarchicalSuccessor() { 470 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 471 } 472 473 /// \return the predecessors either attached directly to this VPBlockBase or, 474 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 475 /// predecessors of its own, search recursively for the first enclosing 476 /// VPRegionBlock that has predecessors and return them. If no such 477 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 478 /// VPBlockBase reached. 479 const VPBlocksTy &getHierarchicalPredecessors() { 480 return getEnclosingBlockWithPredecessors()->getPredecessors(); 481 } 482 483 /// \return the hierarchical predecessor of this VPBlockBase if it has a 484 /// single hierarchical predecessor. Otherwise return a null pointer. 485 VPBlockBase *getSingleHierarchicalPredecessor() { 486 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 487 } 488 489 /// \return the condition bit selecting the successor. 490 VPValue *getCondBit() { return CondBit; } 491 492 const VPValue *getCondBit() const { return CondBit; } 493 494 void setCondBit(VPValue *CV) { CondBit = CV; } 495 496 VPValue *getPredicate() { return Predicate; } 497 498 const VPValue *getPredicate() const { return Predicate; } 499 500 void setPredicate(VPValue *Pred) { Predicate = Pred; } 501 502 /// Set a given VPBlockBase \p Successor as the single successor of this 503 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 504 /// This VPBlockBase must have no successors. 505 void setOneSuccessor(VPBlockBase *Successor) { 506 assert(Successors.empty() && "Setting one successor when others exist."); 507 appendSuccessor(Successor); 508 } 509 510 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 511 /// successors of this VPBlockBase. \p Condition is set as the successor 512 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 513 /// IfFalse. This VPBlockBase must have no successors. 514 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 515 VPValue *Condition) { 516 assert(Successors.empty() && "Setting two successors when others exist."); 517 assert(Condition && "Setting two successors without condition!"); 518 CondBit = Condition; 519 appendSuccessor(IfTrue); 520 appendSuccessor(IfFalse); 521 } 522 523 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 524 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 525 /// as successor of any VPBasicBlock in \p NewPreds. 526 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 527 assert(Predecessors.empty() && "Block predecessors already set."); 528 for (auto *Pred : NewPreds) 529 appendPredecessor(Pred); 530 } 531 532 /// Remove all the predecessor of this block. 533 void clearPredecessors() { Predecessors.clear(); } 534 535 /// Remove all the successors of this block and set to null its condition bit 536 void clearSuccessors() { 537 Successors.clear(); 538 CondBit = nullptr; 539 } 540 541 /// The method which generates the output IR that correspond to this 542 /// VPBlockBase, thereby "executing" the VPlan. 543 virtual void execute(struct VPTransformState *State) = 0; 544 545 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 546 static void deleteCFG(VPBlockBase *Entry); 547 548 void printAsOperand(raw_ostream &OS, bool PrintType) const { 549 OS << getName(); 550 } 551 552 void print(raw_ostream &OS) const { 553 // TODO: Only printing VPBB name for now since we only have dot printing 554 // support for VPInstructions/Recipes. 555 printAsOperand(OS, false); 556 } 557 558 /// Return true if it is legal to hoist instructions into this block. 559 bool isLegalToHoistInto() { 560 // There are currently no constraints that prevent an instruction to be 561 // hoisted into a VPBlockBase. 562 return true; 563 } 564 }; 565 566 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 567 /// instructions. 568 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { 569 friend VPBasicBlock; 570 571 private: 572 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 573 574 /// Each VPRecipe belongs to a single VPBasicBlock. 575 VPBasicBlock *Parent = nullptr; 576 577 public: 578 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase 579 /// that is actually instantiated. Values of this enumeration are kept in the 580 /// SubclassID field of the VPRecipeBase objects. They are used for concrete 581 /// type identification. 582 using VPRecipeTy = enum { 583 VPBlendSC, 584 VPBranchOnMaskSC, 585 VPInstructionSC, 586 VPInterleaveSC, 587 VPPredInstPHISC, 588 VPReplicateSC, 589 VPWidenIntOrFpInductionSC, 590 VPWidenMemoryInstructionSC, 591 VPWidenPHISC, 592 VPWidenSC, 593 }; 594 595 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} 596 virtual ~VPRecipeBase() = default; 597 598 /// \return an ID for the concrete type of this object. 599 /// This is used to implement the classof checks. This should not be used 600 /// for any other purpose, as the values may change as LLVM evolves. 601 unsigned getVPRecipeID() const { return SubclassID; } 602 603 /// \return the VPBasicBlock which this VPRecipe belongs to. 604 VPBasicBlock *getParent() { return Parent; } 605 const VPBasicBlock *getParent() const { return Parent; } 606 607 /// The method which generates the output IR instructions that correspond to 608 /// this VPRecipe, thereby "executing" the VPlan. 609 virtual void execute(struct VPTransformState &State) = 0; 610 611 /// Each recipe prints itself. 612 virtual void print(raw_ostream &O, const Twine &Indent) const = 0; 613 614 /// Insert an unlinked recipe into a basic block immediately before 615 /// the specified recipe. 616 void insertBefore(VPRecipeBase *InsertPos); 617 618 /// Unlink this recipe from its current VPBasicBlock and insert it into 619 /// the VPBasicBlock that MovePos lives in, right after MovePos. 620 void moveAfter(VPRecipeBase *MovePos); 621 622 /// This method unlinks 'this' from the containing basic block and deletes it. 623 /// 624 /// \returns an iterator pointing to the element after the erased one 625 iplist<VPRecipeBase>::iterator eraseFromParent(); 626 }; 627 628 /// This is a concrete Recipe that models a single VPlan-level instruction. 629 /// While as any Recipe it may generate a sequence of IR instructions when 630 /// executed, these instructions would always form a single-def expression as 631 /// the VPInstruction is also a single def-use vertex. 632 class VPInstruction : public VPUser, public VPRecipeBase { 633 friend class VPlanHCFGTransforms; 634 friend class VPlanSlp; 635 636 public: 637 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 638 enum { 639 Not = Instruction::OtherOpsEnd + 1, 640 ICmpULE, 641 SLPLoad, 642 SLPStore, 643 }; 644 645 private: 646 typedef unsigned char OpcodeTy; 647 OpcodeTy Opcode; 648 649 /// Utility method serving execute(): generates a single instance of the 650 /// modeled instruction. 651 void generateInstruction(VPTransformState &State, unsigned Part); 652 653 protected: 654 Instruction *getUnderlyingInstr() { 655 return cast_or_null<Instruction>(getUnderlyingValue()); 656 } 657 658 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 659 660 public: 661 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) 662 : VPUser(VPValue::VPInstructionSC, Operands), 663 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} 664 665 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) 666 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} 667 668 /// Method to support type inquiry through isa, cast, and dyn_cast. 669 static inline bool classof(const VPValue *V) { 670 return V->getVPValueID() == VPValue::VPInstructionSC; 671 } 672 673 VPInstruction *clone() const { 674 SmallVector<VPValue *, 2> Operands(operands()); 675 return new VPInstruction(Opcode, Operands); 676 } 677 678 /// Method to support type inquiry through isa, cast, and dyn_cast. 679 static inline bool classof(const VPRecipeBase *R) { 680 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; 681 } 682 683 unsigned getOpcode() const { return Opcode; } 684 685 /// Generate the instruction. 686 /// TODO: We currently execute only per-part unless a specific instance is 687 /// provided. 688 void execute(VPTransformState &State) override; 689 690 /// Print the Recipe. 691 void print(raw_ostream &O, const Twine &Indent) const override; 692 693 /// Print the VPInstruction. 694 void print(raw_ostream &O) const; 695 696 /// Return true if this instruction may modify memory. 697 bool mayWriteToMemory() const { 698 // TODO: we can use attributes of the called function to rule out memory 699 // modifications. 700 return Opcode == Instruction::Store || Opcode == Instruction::Call || 701 Opcode == Instruction::Invoke || Opcode == SLPStore; 702 } 703 }; 704 705 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 706 /// Instruction in its ingredients independently, in order. This recipe covers 707 /// most of the traditional vectorization cases where each ingredient transforms 708 /// into a vectorized version of itself. 709 class VPWidenRecipe : public VPRecipeBase { 710 private: 711 /// Hold the ingredients by pointing to their original BasicBlock location. 712 BasicBlock::iterator Begin; 713 BasicBlock::iterator End; 714 715 public: 716 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 717 End = I->getIterator(); 718 Begin = End++; 719 } 720 721 ~VPWidenRecipe() override = default; 722 723 /// Method to support type inquiry through isa, cast, and dyn_cast. 724 static inline bool classof(const VPRecipeBase *V) { 725 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 726 } 727 728 /// Produce widened copies of all Ingredients. 729 void execute(VPTransformState &State) override; 730 731 /// Augment the recipe to include Instr, if it lies at its End. 732 bool appendInstruction(Instruction *Instr) { 733 if (End != Instr->getIterator()) 734 return false; 735 End++; 736 return true; 737 } 738 739 /// Print the recipe. 740 void print(raw_ostream &O, const Twine &Indent) const override; 741 }; 742 743 /// A recipe for handling phi nodes of integer and floating-point inductions, 744 /// producing their vector and scalar values. 745 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 746 private: 747 PHINode *IV; 748 TruncInst *Trunc; 749 750 public: 751 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) 752 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 753 ~VPWidenIntOrFpInductionRecipe() override = default; 754 755 /// Method to support type inquiry through isa, cast, and dyn_cast. 756 static inline bool classof(const VPRecipeBase *V) { 757 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 758 } 759 760 /// Generate the vectorized and scalarized versions of the phi node as 761 /// needed by their users. 762 void execute(VPTransformState &State) override; 763 764 /// Print the recipe. 765 void print(raw_ostream &O, const Twine &Indent) const override; 766 }; 767 768 /// A recipe for handling all phi nodes except for integer and FP inductions. 769 class VPWidenPHIRecipe : public VPRecipeBase { 770 private: 771 PHINode *Phi; 772 773 public: 774 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 775 ~VPWidenPHIRecipe() override = default; 776 777 /// Method to support type inquiry through isa, cast, and dyn_cast. 778 static inline bool classof(const VPRecipeBase *V) { 779 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 780 } 781 782 /// Generate the phi/select nodes. 783 void execute(VPTransformState &State) override; 784 785 /// Print the recipe. 786 void print(raw_ostream &O, const Twine &Indent) const override; 787 }; 788 789 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 790 /// instructions. 791 class VPBlendRecipe : public VPRecipeBase { 792 private: 793 PHINode *Phi; 794 795 /// The blend operation is a User of a mask, if not null. 796 std::unique_ptr<VPUser> User; 797 798 public: 799 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) 800 : VPRecipeBase(VPBlendSC), Phi(Phi) { 801 assert((Phi->getNumIncomingValues() == 1 || 802 Phi->getNumIncomingValues() == Masks.size()) && 803 "Expected the same number of incoming values and masks"); 804 if (!Masks.empty()) 805 User.reset(new VPUser(Masks)); 806 } 807 808 /// Method to support type inquiry through isa, cast, and dyn_cast. 809 static inline bool classof(const VPRecipeBase *V) { 810 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; 811 } 812 813 /// Generate the phi/select nodes. 814 void execute(VPTransformState &State) override; 815 816 /// Print the recipe. 817 void print(raw_ostream &O, const Twine &Indent) const override; 818 }; 819 820 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 821 /// or stores into one wide load/store and shuffles. 822 class VPInterleaveRecipe : public VPRecipeBase { 823 private: 824 const InterleaveGroup<Instruction> *IG; 825 std::unique_ptr<VPUser> User; 826 827 public: 828 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask) 829 : VPRecipeBase(VPInterleaveSC), IG(IG) { 830 if (Mask) // Create a VPInstruction to register as a user of the mask. 831 User.reset(new VPUser({Mask})); 832 } 833 ~VPInterleaveRecipe() override = default; 834 835 /// Method to support type inquiry through isa, cast, and dyn_cast. 836 static inline bool classof(const VPRecipeBase *V) { 837 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 838 } 839 840 /// Generate the wide load or store, and shuffles. 841 void execute(VPTransformState &State) override; 842 843 /// Print the recipe. 844 void print(raw_ostream &O, const Twine &Indent) const override; 845 846 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 847 }; 848 849 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 850 /// copies of the original scalar type, one per lane, instead of producing a 851 /// single copy of widened type for all lanes. If the instruction is known to be 852 /// uniform only one copy, per lane zero, will be generated. 853 class VPReplicateRecipe : public VPRecipeBase { 854 private: 855 /// The instruction being replicated. 856 Instruction *Ingredient; 857 858 /// Indicator if only a single replica per lane is needed. 859 bool IsUniform; 860 861 /// Indicator if the replicas are also predicated. 862 bool IsPredicated; 863 864 /// Indicator if the scalar values should also be packed into a vector. 865 bool AlsoPack; 866 867 public: 868 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) 869 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 870 IsPredicated(IsPredicated) { 871 // Retain the previous behavior of predicateInstructions(), where an 872 // insert-element of a predicated instruction got hoisted into the 873 // predicated basic block iff it was its only user. This is achieved by 874 // having predicated instructions also pack their values into a vector by 875 // default unless they have a replicated user which uses their scalar value. 876 AlsoPack = IsPredicated && !I->use_empty(); 877 } 878 879 ~VPReplicateRecipe() override = default; 880 881 /// Method to support type inquiry through isa, cast, and dyn_cast. 882 static inline bool classof(const VPRecipeBase *V) { 883 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 884 } 885 886 /// Generate replicas of the desired Ingredient. Replicas will be generated 887 /// for all parts and lanes unless a specific part and lane are specified in 888 /// the \p State. 889 void execute(VPTransformState &State) override; 890 891 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 892 893 /// Print the recipe. 894 void print(raw_ostream &O, const Twine &Indent) const override; 895 }; 896 897 /// A recipe for generating conditional branches on the bits of a mask. 898 class VPBranchOnMaskRecipe : public VPRecipeBase { 899 private: 900 std::unique_ptr<VPUser> User; 901 902 public: 903 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { 904 if (BlockInMask) // nullptr means all-one mask. 905 User.reset(new VPUser({BlockInMask})); 906 } 907 908 /// Method to support type inquiry through isa, cast, and dyn_cast. 909 static inline bool classof(const VPRecipeBase *V) { 910 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 911 } 912 913 /// Generate the extraction of the appropriate bit from the block mask and the 914 /// conditional branch. 915 void execute(VPTransformState &State) override; 916 917 /// Print the recipe. 918 void print(raw_ostream &O, const Twine &Indent) const override { 919 O << " +\n" << Indent << "\"BRANCH-ON-MASK "; 920 if (User) 921 O << *User->getOperand(0); 922 else 923 O << " All-One"; 924 O << "\\l\""; 925 } 926 }; 927 928 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 929 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 930 /// order to merge values that are set under such a branch and feed their uses. 931 /// The phi nodes can be scalar or vector depending on the users of the value. 932 /// This recipe works in concert with VPBranchOnMaskRecipe. 933 class VPPredInstPHIRecipe : public VPRecipeBase { 934 private: 935 Instruction *PredInst; 936 937 public: 938 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 939 /// nodes after merging back from a Branch-on-Mask. 940 VPPredInstPHIRecipe(Instruction *PredInst) 941 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 942 ~VPPredInstPHIRecipe() override = default; 943 944 /// Method to support type inquiry through isa, cast, and dyn_cast. 945 static inline bool classof(const VPRecipeBase *V) { 946 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 947 } 948 949 /// Generates phi nodes for live-outs as needed to retain SSA form. 950 void execute(VPTransformState &State) override; 951 952 /// Print the recipe. 953 void print(raw_ostream &O, const Twine &Indent) const override; 954 }; 955 956 /// A Recipe for widening load/store operations. 957 /// TODO: We currently execute only per-part unless a specific instance is 958 /// provided. 959 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 960 private: 961 Instruction &Instr; 962 std::unique_ptr<VPUser> User; 963 964 public: 965 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) 966 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { 967 if (Mask) // Create a VPInstruction to register as a user of the mask. 968 User.reset(new VPUser({Mask})); 969 } 970 971 /// Method to support type inquiry through isa, cast, and dyn_cast. 972 static inline bool classof(const VPRecipeBase *V) { 973 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; 974 } 975 976 /// Generate the wide load/store. 977 void execute(VPTransformState &State) override; 978 979 /// Print the recipe. 980 void print(raw_ostream &O, const Twine &Indent) const override; 981 }; 982 983 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 984 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 985 /// output IR instructions. 986 class VPBasicBlock : public VPBlockBase { 987 public: 988 using RecipeListTy = iplist<VPRecipeBase>; 989 990 private: 991 /// The VPRecipes held in the order of output instructions to generate. 992 RecipeListTy Recipes; 993 994 public: 995 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 996 : VPBlockBase(VPBasicBlockSC, Name.str()) { 997 if (Recipe) 998 appendRecipe(Recipe); 999 } 1000 1001 ~VPBasicBlock() override { Recipes.clear(); } 1002 1003 /// Instruction iterators... 1004 using iterator = RecipeListTy::iterator; 1005 using const_iterator = RecipeListTy::const_iterator; 1006 using reverse_iterator = RecipeListTy::reverse_iterator; 1007 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 1008 1009 //===--------------------------------------------------------------------===// 1010 /// Recipe iterator methods 1011 /// 1012 inline iterator begin() { return Recipes.begin(); } 1013 inline const_iterator begin() const { return Recipes.begin(); } 1014 inline iterator end() { return Recipes.end(); } 1015 inline const_iterator end() const { return Recipes.end(); } 1016 1017 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 1018 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 1019 inline reverse_iterator rend() { return Recipes.rend(); } 1020 inline const_reverse_iterator rend() const { return Recipes.rend(); } 1021 1022 inline size_t size() const { return Recipes.size(); } 1023 inline bool empty() const { return Recipes.empty(); } 1024 inline const VPRecipeBase &front() const { return Recipes.front(); } 1025 inline VPRecipeBase &front() { return Recipes.front(); } 1026 inline const VPRecipeBase &back() const { return Recipes.back(); } 1027 inline VPRecipeBase &back() { return Recipes.back(); } 1028 1029 /// Returns a reference to the list of recipes. 1030 RecipeListTy &getRecipeList() { return Recipes; } 1031 1032 /// Returns a pointer to a member of the recipe list. 1033 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 1034 return &VPBasicBlock::Recipes; 1035 } 1036 1037 /// Method to support type inquiry through isa, cast, and dyn_cast. 1038 static inline bool classof(const VPBlockBase *V) { 1039 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 1040 } 1041 1042 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 1043 assert(Recipe && "No recipe to append."); 1044 assert(!Recipe->Parent && "Recipe already in VPlan"); 1045 Recipe->Parent = this; 1046 Recipes.insert(InsertPt, Recipe); 1047 } 1048 1049 /// Augment the existing recipes of a VPBasicBlock with an additional 1050 /// \p Recipe as the last recipe. 1051 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 1052 1053 /// The method which generates the output IR instructions that correspond to 1054 /// this VPBasicBlock, thereby "executing" the VPlan. 1055 void execute(struct VPTransformState *State) override; 1056 1057 private: 1058 /// Create an IR BasicBlock to hold the output instructions generated by this 1059 /// VPBasicBlock, and return it. Update the CFGState accordingly. 1060 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1061 }; 1062 1063 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1064 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1065 /// A VPRegionBlock may indicate that its contents are to be replicated several 1066 /// times. This is designed to support predicated scalarization, in which a 1067 /// scalar if-then code structure needs to be generated VF * UF times. Having 1068 /// this replication indicator helps to keep a single model for multiple 1069 /// candidate VF's. The actual replication takes place only once the desired VF 1070 /// and UF have been determined. 1071 class VPRegionBlock : public VPBlockBase { 1072 private: 1073 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1074 VPBlockBase *Entry; 1075 1076 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1077 VPBlockBase *Exit; 1078 1079 /// An indicator whether this region is to generate multiple replicated 1080 /// instances of output IR corresponding to its VPBlockBases. 1081 bool IsReplicator; 1082 1083 public: 1084 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1085 const std::string &Name = "", bool IsReplicator = false) 1086 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1087 IsReplicator(IsReplicator) { 1088 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1089 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1090 Entry->setParent(this); 1091 Exit->setParent(this); 1092 } 1093 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 1094 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1095 IsReplicator(IsReplicator) {} 1096 1097 ~VPRegionBlock() override { 1098 if (Entry) 1099 deleteCFG(Entry); 1100 } 1101 1102 /// Method to support type inquiry through isa, cast, and dyn_cast. 1103 static inline bool classof(const VPBlockBase *V) { 1104 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1105 } 1106 1107 const VPBlockBase *getEntry() const { return Entry; } 1108 VPBlockBase *getEntry() { return Entry; } 1109 1110 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1111 /// EntryBlock must have no predecessors. 1112 void setEntry(VPBlockBase *EntryBlock) { 1113 assert(EntryBlock->getPredecessors().empty() && 1114 "Entry block cannot have predecessors."); 1115 Entry = EntryBlock; 1116 EntryBlock->setParent(this); 1117 } 1118 1119 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1120 // specific interface of llvm::Function, instead of using 1121 // GraphTraints::getEntryNode. We should add a new template parameter to 1122 // DominatorTreeBase representing the Graph type. 1123 VPBlockBase &front() const { return *Entry; } 1124 1125 const VPBlockBase *getExit() const { return Exit; } 1126 VPBlockBase *getExit() { return Exit; } 1127 1128 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1129 /// ExitBlock must have no successors. 1130 void setExit(VPBlockBase *ExitBlock) { 1131 assert(ExitBlock->getSuccessors().empty() && 1132 "Exit block cannot have successors."); 1133 Exit = ExitBlock; 1134 ExitBlock->setParent(this); 1135 } 1136 1137 /// An indicator whether this region is to generate multiple replicated 1138 /// instances of output IR corresponding to its VPBlockBases. 1139 bool isReplicator() const { return IsReplicator; } 1140 1141 /// The method which generates the output IR instructions that correspond to 1142 /// this VPRegionBlock, thereby "executing" the VPlan. 1143 void execute(struct VPTransformState *State) override; 1144 }; 1145 1146 /// VPlan models a candidate for vectorization, encoding various decisions take 1147 /// to produce efficient output IR, including which branches, basic-blocks and 1148 /// output IR instructions to generate, and their cost. VPlan holds a 1149 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 1150 /// VPBlock. 1151 class VPlan { 1152 friend class VPlanPrinter; 1153 1154 private: 1155 /// Hold the single entry to the Hierarchical CFG of the VPlan. 1156 VPBlockBase *Entry; 1157 1158 /// Holds the VFs applicable to this VPlan. 1159 SmallSet<unsigned, 2> VFs; 1160 1161 /// Holds the name of the VPlan, for printing. 1162 std::string Name; 1163 1164 /// Holds all the external definitions created for this VPlan. 1165 // TODO: Introduce a specific representation for external definitions in 1166 // VPlan. External definitions must be immutable and hold a pointer to its 1167 // underlying IR that will be used to implement its structural comparison 1168 // (operators '==' and '<'). 1169 SmallPtrSet<VPValue *, 16> VPExternalDefs; 1170 1171 /// Represents the backedge taken count of the original loop, for folding 1172 /// the tail. 1173 VPValue *BackedgeTakenCount = nullptr; 1174 1175 /// Holds a mapping between Values and their corresponding VPValue inside 1176 /// VPlan. 1177 Value2VPValueTy Value2VPValue; 1178 1179 /// Holds the VPLoopInfo analysis for this VPlan. 1180 VPLoopInfo VPLInfo; 1181 1182 /// Holds the condition bit values built during VPInstruction to VPRecipe transformation. 1183 SmallVector<VPValue *, 4> VPCBVs; 1184 1185 public: 1186 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} 1187 1188 ~VPlan() { 1189 if (Entry) 1190 VPBlockBase::deleteCFG(Entry); 1191 for (auto &MapEntry : Value2VPValue) 1192 if (MapEntry.second != BackedgeTakenCount) 1193 delete MapEntry.second; 1194 if (BackedgeTakenCount) 1195 delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not. 1196 for (VPValue *Def : VPExternalDefs) 1197 delete Def; 1198 for (VPValue *CBV : VPCBVs) 1199 delete CBV; 1200 } 1201 1202 /// Generate the IR code for this VPlan. 1203 void execute(struct VPTransformState *State); 1204 1205 VPBlockBase *getEntry() { return Entry; } 1206 const VPBlockBase *getEntry() const { return Entry; } 1207 1208 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } 1209 1210 /// The backedge taken count of the original loop. 1211 VPValue *getOrCreateBackedgeTakenCount() { 1212 if (!BackedgeTakenCount) 1213 BackedgeTakenCount = new VPValue(); 1214 return BackedgeTakenCount; 1215 } 1216 1217 void addVF(unsigned VF) { VFs.insert(VF); } 1218 1219 bool hasVF(unsigned VF) { return VFs.count(VF); } 1220 1221 const std::string &getName() const { return Name; } 1222 1223 void setName(const Twine &newName) { Name = newName.str(); } 1224 1225 /// Add \p VPVal to the pool of external definitions if it's not already 1226 /// in the pool. 1227 void addExternalDef(VPValue *VPVal) { 1228 VPExternalDefs.insert(VPVal); 1229 } 1230 1231 /// Add \p CBV to the vector of condition bit values. 1232 void addCBV(VPValue *CBV) { 1233 VPCBVs.push_back(CBV); 1234 } 1235 1236 void addVPValue(Value *V) { 1237 assert(V && "Trying to add a null Value to VPlan"); 1238 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 1239 Value2VPValue[V] = new VPValue(); 1240 } 1241 1242 VPValue *getVPValue(Value *V) { 1243 assert(V && "Trying to get the VPValue of a null Value"); 1244 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 1245 return Value2VPValue[V]; 1246 } 1247 1248 /// Return the VPLoopInfo analysis for this VPlan. 1249 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } 1250 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 1251 1252 private: 1253 /// Add to the given dominator tree the header block and every new basic block 1254 /// that was created between it and the latch block, inclusive. 1255 static void updateDominatorTree(DominatorTree *DT, 1256 BasicBlock *LoopPreHeaderBB, 1257 BasicBlock *LoopLatchBB); 1258 }; 1259 1260 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 1261 /// indented and follows the dot format. 1262 class VPlanPrinter { 1263 friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); 1264 friend inline raw_ostream &operator<<(raw_ostream &OS, 1265 const struct VPlanIngredient &I); 1266 1267 private: 1268 raw_ostream &OS; 1269 VPlan &Plan; 1270 unsigned Depth; 1271 unsigned TabWidth = 2; 1272 std::string Indent; 1273 unsigned BID = 0; 1274 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 1275 1276 VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} 1277 1278 /// Handle indentation. 1279 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 1280 1281 /// Print a given \p Block of the Plan. 1282 void dumpBlock(const VPBlockBase *Block); 1283 1284 /// Print the information related to the CFG edges going out of a given 1285 /// \p Block, followed by printing the successor blocks themselves. 1286 void dumpEdges(const VPBlockBase *Block); 1287 1288 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 1289 /// its successor blocks. 1290 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 1291 1292 /// Print a given \p Region of the Plan. 1293 void dumpRegion(const VPRegionBlock *Region); 1294 1295 unsigned getOrCreateBID(const VPBlockBase *Block) { 1296 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 1297 } 1298 1299 const Twine getOrCreateName(const VPBlockBase *Block); 1300 1301 const Twine getUID(const VPBlockBase *Block); 1302 1303 /// Print the information related to a CFG edge between two VPBlockBases. 1304 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 1305 const Twine &Label); 1306 1307 void dump(); 1308 1309 static void printAsIngredient(raw_ostream &O, Value *V); 1310 }; 1311 1312 struct VPlanIngredient { 1313 Value *V; 1314 1315 VPlanIngredient(Value *V) : V(V) {} 1316 }; 1317 1318 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 1319 VPlanPrinter::printAsIngredient(OS, I.V); 1320 return OS; 1321 } 1322 1323 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { 1324 VPlanPrinter Printer(OS, Plan); 1325 Printer.dump(); 1326 return OS; 1327 } 1328 1329 //===----------------------------------------------------------------------===// 1330 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 1331 //===----------------------------------------------------------------------===// 1332 1333 // The following set of template specializations implement GraphTraits to treat 1334 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 1335 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 1336 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 1337 // successors/predecessors but not to the blocks inside the region. 1338 1339 template <> struct GraphTraits<VPBlockBase *> { 1340 using NodeRef = VPBlockBase *; 1341 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1342 1343 static NodeRef getEntryNode(NodeRef N) { return N; } 1344 1345 static inline ChildIteratorType child_begin(NodeRef N) { 1346 return N->getSuccessors().begin(); 1347 } 1348 1349 static inline ChildIteratorType child_end(NodeRef N) { 1350 return N->getSuccessors().end(); 1351 } 1352 }; 1353 1354 template <> struct GraphTraits<const VPBlockBase *> { 1355 using NodeRef = const VPBlockBase *; 1356 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 1357 1358 static NodeRef getEntryNode(NodeRef N) { return N; } 1359 1360 static inline ChildIteratorType child_begin(NodeRef N) { 1361 return N->getSuccessors().begin(); 1362 } 1363 1364 static inline ChildIteratorType child_end(NodeRef N) { 1365 return N->getSuccessors().end(); 1366 } 1367 }; 1368 1369 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 1370 // of successors for the inverse traversal. 1371 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 1372 using NodeRef = VPBlockBase *; 1373 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1374 1375 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 1376 1377 static inline ChildIteratorType child_begin(NodeRef N) { 1378 return N->getPredecessors().begin(); 1379 } 1380 1381 static inline ChildIteratorType child_end(NodeRef N) { 1382 return N->getPredecessors().end(); 1383 } 1384 }; 1385 1386 // The following set of template specializations implement GraphTraits to 1387 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 1388 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 1389 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 1390 // there won't be automatic recursion into other VPBlockBases that turn to be 1391 // VPRegionBlocks. 1392 1393 template <> 1394 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 1395 using GraphRef = VPRegionBlock *; 1396 using nodes_iterator = df_iterator<NodeRef>; 1397 1398 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1399 1400 static nodes_iterator nodes_begin(GraphRef N) { 1401 return nodes_iterator::begin(N->getEntry()); 1402 } 1403 1404 static nodes_iterator nodes_end(GraphRef N) { 1405 // df_iterator::end() returns an empty iterator so the node used doesn't 1406 // matter. 1407 return nodes_iterator::end(N); 1408 } 1409 }; 1410 1411 template <> 1412 struct GraphTraits<const VPRegionBlock *> 1413 : public GraphTraits<const VPBlockBase *> { 1414 using GraphRef = const VPRegionBlock *; 1415 using nodes_iterator = df_iterator<NodeRef>; 1416 1417 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1418 1419 static nodes_iterator nodes_begin(GraphRef N) { 1420 return nodes_iterator::begin(N->getEntry()); 1421 } 1422 1423 static nodes_iterator nodes_end(GraphRef N) { 1424 // df_iterator::end() returns an empty iterator so the node used doesn't 1425 // matter. 1426 return nodes_iterator::end(N); 1427 } 1428 }; 1429 1430 template <> 1431 struct GraphTraits<Inverse<VPRegionBlock *>> 1432 : public GraphTraits<Inverse<VPBlockBase *>> { 1433 using GraphRef = VPRegionBlock *; 1434 using nodes_iterator = df_iterator<NodeRef>; 1435 1436 static NodeRef getEntryNode(Inverse<GraphRef> N) { 1437 return N.Graph->getExit(); 1438 } 1439 1440 static nodes_iterator nodes_begin(GraphRef N) { 1441 return nodes_iterator::begin(N->getExit()); 1442 } 1443 1444 static nodes_iterator nodes_end(GraphRef N) { 1445 // df_iterator::end() returns an empty iterator so the node used doesn't 1446 // matter. 1447 return nodes_iterator::end(N); 1448 } 1449 }; 1450 1451 //===----------------------------------------------------------------------===// 1452 // VPlan Utilities 1453 //===----------------------------------------------------------------------===// 1454 1455 /// Class that provides utilities for VPBlockBases in VPlan. 1456 class VPBlockUtils { 1457 public: 1458 VPBlockUtils() = delete; 1459 1460 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 1461 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 1462 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr 1463 /// has more than one successor, its conditional bit is propagated to \p 1464 /// NewBlock. \p NewBlock must have neither successors nor predecessors. 1465 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 1466 assert(NewBlock->getSuccessors().empty() && 1467 "Can't insert new block with successors."); 1468 // TODO: move successors from BlockPtr to NewBlock when this functionality 1469 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr 1470 // already has successors. 1471 BlockPtr->setOneSuccessor(NewBlock); 1472 NewBlock->setPredecessors({BlockPtr}); 1473 NewBlock->setParent(BlockPtr->getParent()); 1474 } 1475 1476 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 1477 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 1478 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 1479 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 1480 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 1481 /// must have neither successors nor predecessors. 1482 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 1483 VPValue *Condition, VPBlockBase *BlockPtr) { 1484 assert(IfTrue->getSuccessors().empty() && 1485 "Can't insert IfTrue with successors."); 1486 assert(IfFalse->getSuccessors().empty() && 1487 "Can't insert IfFalse with successors."); 1488 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 1489 IfTrue->setPredecessors({BlockPtr}); 1490 IfFalse->setPredecessors({BlockPtr}); 1491 IfTrue->setParent(BlockPtr->getParent()); 1492 IfFalse->setParent(BlockPtr->getParent()); 1493 } 1494 1495 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 1496 /// the successors of \p From and \p From to the predecessors of \p To. Both 1497 /// VPBlockBases must have the same parent, which can be null. Both 1498 /// VPBlockBases can be already connected to other VPBlockBases. 1499 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 1500 assert((From->getParent() == To->getParent()) && 1501 "Can't connect two block with different parents"); 1502 assert(From->getNumSuccessors() < 2 && 1503 "Blocks can't have more than two successors."); 1504 From->appendSuccessor(To); 1505 To->appendPredecessor(From); 1506 } 1507 1508 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 1509 /// from the successors of \p From and \p From from the predecessors of \p To. 1510 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 1511 assert(To && "Successor to disconnect is null."); 1512 From->removeSuccessor(To); 1513 To->removePredecessor(From); 1514 } 1515 1516 /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge. 1517 static bool isBackEdge(const VPBlockBase *FromBlock, 1518 const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) { 1519 assert(FromBlock->getParent() == ToBlock->getParent() && 1520 FromBlock->getParent() && "Must be in same region"); 1521 const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock); 1522 const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock); 1523 if (!FromLoop || !ToLoop || FromLoop != ToLoop) 1524 return false; 1525 1526 // A back-edge is a branch from the loop latch to its header. 1527 return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader(); 1528 } 1529 1530 /// Returns true if \p Block is a loop latch 1531 static bool blockIsLoopLatch(const VPBlockBase *Block, 1532 const VPLoopInfo *VPLInfo) { 1533 if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block)) 1534 return ParentVPL->isLoopLatch(Block); 1535 1536 return false; 1537 } 1538 1539 /// Count and return the number of succesors of \p PredBlock excluding any 1540 /// backedges. 1541 static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock, 1542 VPLoopInfo *VPLI) { 1543 unsigned Count = 0; 1544 for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) { 1545 if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI)) 1546 Count++; 1547 } 1548 return Count; 1549 } 1550 }; 1551 1552 class VPInterleavedAccessInfo { 1553 private: 1554 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 1555 InterleaveGroupMap; 1556 1557 /// Type for mapping of instruction based interleave groups to VPInstruction 1558 /// interleave groups 1559 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 1560 InterleaveGroup<VPInstruction> *>; 1561 1562 /// Recursively \p Region and populate VPlan based interleave groups based on 1563 /// \p IAI. 1564 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 1565 InterleavedAccessInfo &IAI); 1566 /// Recursively traverse \p Block and populate VPlan based interleave groups 1567 /// based on \p IAI. 1568 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1569 InterleavedAccessInfo &IAI); 1570 1571 public: 1572 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 1573 1574 ~VPInterleavedAccessInfo() { 1575 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 1576 // Avoid releasing a pointer twice. 1577 for (auto &I : InterleaveGroupMap) 1578 DelSet.insert(I.second); 1579 for (auto *Ptr : DelSet) 1580 delete Ptr; 1581 } 1582 1583 /// Get the interleave group that \p Instr belongs to. 1584 /// 1585 /// \returns nullptr if doesn't have such group. 1586 InterleaveGroup<VPInstruction> * 1587 getInterleaveGroup(VPInstruction *Instr) const { 1588 if (InterleaveGroupMap.count(Instr)) 1589 return InterleaveGroupMap.find(Instr)->second; 1590 return nullptr; 1591 } 1592 }; 1593 1594 /// Class that maps (parts of) an existing VPlan to trees of combined 1595 /// VPInstructions. 1596 class VPlanSlp { 1597 private: 1598 enum class OpMode { Failed, Load, Opcode }; 1599 1600 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 1601 /// DenseMap keys. 1602 struct BundleDenseMapInfo { 1603 static SmallVector<VPValue *, 4> getEmptyKey() { 1604 return {reinterpret_cast<VPValue *>(-1)}; 1605 } 1606 1607 static SmallVector<VPValue *, 4> getTombstoneKey() { 1608 return {reinterpret_cast<VPValue *>(-2)}; 1609 } 1610 1611 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 1612 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1613 } 1614 1615 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 1616 const SmallVector<VPValue *, 4> &RHS) { 1617 return LHS == RHS; 1618 } 1619 }; 1620 1621 /// Mapping of values in the original VPlan to a combined VPInstruction. 1622 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 1623 BundleToCombined; 1624 1625 VPInterleavedAccessInfo &IAI; 1626 1627 /// Basic block to operate on. For now, only instructions in a single BB are 1628 /// considered. 1629 const VPBasicBlock &BB; 1630 1631 /// Indicates whether we managed to combine all visited instructions or not. 1632 bool CompletelySLP = true; 1633 1634 /// Width of the widest combined bundle in bits. 1635 unsigned WidestBundleBits = 0; 1636 1637 using MultiNodeOpTy = 1638 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 1639 1640 // Input operand bundles for the current multi node. Each multi node operand 1641 // bundle contains values not matching the multi node's opcode. They will 1642 // be reordered in reorderMultiNodeOps, once we completed building a 1643 // multi node. 1644 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 1645 1646 /// Indicates whether we are building a multi node currently. 1647 bool MultiNodeActive = false; 1648 1649 /// Check if we can vectorize Operands together. 1650 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 1651 1652 /// Add combined instruction \p New for the bundle \p Operands. 1653 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 1654 1655 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 1656 VPInstruction *markFailed(); 1657 1658 /// Reorder operands in the multi node to maximize sequential memory access 1659 /// and commutative operations. 1660 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 1661 1662 /// Choose the best candidate to use for the lane after \p Last. The set of 1663 /// candidates to choose from are values with an opcode matching \p Last's 1664 /// or loads consecutive to \p Last. 1665 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 1666 SmallPtrSetImpl<VPValue *> &Candidates, 1667 VPInterleavedAccessInfo &IAI); 1668 1669 /// Print bundle \p Values to dbgs(). 1670 void dumpBundle(ArrayRef<VPValue *> Values); 1671 1672 public: 1673 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 1674 1675 ~VPlanSlp() { 1676 for (auto &KV : BundleToCombined) 1677 delete KV.second; 1678 } 1679 1680 /// Tries to build an SLP tree rooted at \p Operands and returns a 1681 /// VPInstruction combining \p Operands, if they can be combined. 1682 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 1683 1684 /// Return the width of the widest combined bundle in bits. 1685 unsigned getWidestBundleBits() const { return WidestBundleBits; } 1686 1687 /// Return true if all visited instruction can be combined. 1688 bool isCompletelySLP() const { return CompletelySLP; } 1689 }; 1690 } // end namespace llvm 1691 1692 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 1693