xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.h (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 ///    VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 ///    treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 ///    within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 ///    instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/ilist.h"
39 #include "llvm/ADT/ilist_node.h"
40 #include "llvm/Analysis/VectorUtils.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <map>
46 #include <string>
47 
48 namespace llvm {
49 
50 class LoopVectorizationLegality;
51 class LoopVectorizationCostModel;
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 template <class T> class InterleaveGroup;
56 class LoopInfo;
57 class raw_ostream;
58 class Value;
59 class VPBasicBlock;
60 class VPRegionBlock;
61 class VPlan;
62 class VPlanSlp;
63 
64 /// A range of powers-of-2 vectorization factors with fixed start and
65 /// adjustable end. The range includes start and excludes end, e.g.,:
66 /// [1, 9) = {1, 2, 4, 8}
67 struct VFRange {
68   // A power of 2.
69   const unsigned Start;
70 
71   // Need not be a power of 2. If End <= Start range is empty.
72   unsigned End;
73 };
74 
75 using VPlanPtr = std::unique_ptr<VPlan>;
76 
77 /// In what follows, the term "input IR" refers to code that is fed into the
78 /// vectorizer whereas the term "output IR" refers to code that is generated by
79 /// the vectorizer.
80 
81 /// VPIteration represents a single point in the iteration space of the output
82 /// (vectorized and/or unrolled) IR loop.
83 struct VPIteration {
84   /// in [0..UF)
85   unsigned Part;
86 
87   /// in [0..VF)
88   unsigned Lane;
89 };
90 
91 /// This is a helper struct for maintaining vectorization state. It's used for
92 /// mapping values from the original loop to their corresponding values in
93 /// the new loop. Two mappings are maintained: one for vectorized values and
94 /// one for scalarized values. Vectorized values are represented with UF
95 /// vector values in the new loop, and scalarized values are represented with
96 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
97 /// vectorization factors, respectively.
98 ///
99 /// Entries can be added to either map with setVectorValue and setScalarValue,
100 /// which assert that an entry was not already added before. If an entry is to
101 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
102 /// currently needed to modify the mapped values during "fix-up" operations that
103 /// occur once the first phase of widening is complete. These operations include
104 /// type truncation and the second phase of recurrence widening.
105 ///
106 /// Entries from either map can be retrieved using the getVectorValue and
107 /// getScalarValue functions, which assert that the desired value exists.
108 struct VectorizerValueMap {
109   friend struct VPTransformState;
110 
111 private:
112   /// The unroll factor. Each entry in the vector map contains UF vector values.
113   unsigned UF;
114 
115   /// The vectorization factor. Each entry in the scalar map contains UF x VF
116   /// scalar values.
117   unsigned VF;
118 
119   /// The vector and scalar map storage. We use std::map and not DenseMap
120   /// because insertions to DenseMap invalidate its iterators.
121   using VectorParts = SmallVector<Value *, 2>;
122   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
123   std::map<Value *, VectorParts> VectorMapStorage;
124   std::map<Value *, ScalarParts> ScalarMapStorage;
125 
126 public:
127   /// Construct an empty map with the given unroll and vectorization factors.
128   VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
129 
130   /// \return True if the map has any vector entry for \p Key.
131   bool hasAnyVectorValue(Value *Key) const {
132     return VectorMapStorage.count(Key);
133   }
134 
135   /// \return True if the map has a vector entry for \p Key and \p Part.
136   bool hasVectorValue(Value *Key, unsigned Part) const {
137     assert(Part < UF && "Queried Vector Part is too large.");
138     if (!hasAnyVectorValue(Key))
139       return false;
140     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
141     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
142     return Entry[Part] != nullptr;
143   }
144 
145   /// \return True if the map has any scalar entry for \p Key.
146   bool hasAnyScalarValue(Value *Key) const {
147     return ScalarMapStorage.count(Key);
148   }
149 
150   /// \return True if the map has a scalar entry for \p Key and \p Instance.
151   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
152     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
153     assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
154     if (!hasAnyScalarValue(Key))
155       return false;
156     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
157     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
158     assert(Entry[Instance.Part].size() == VF &&
159            "ScalarParts has wrong dimensions.");
160     return Entry[Instance.Part][Instance.Lane] != nullptr;
161   }
162 
163   /// Retrieve the existing vector value that corresponds to \p Key and
164   /// \p Part.
165   Value *getVectorValue(Value *Key, unsigned Part) {
166     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
167     return VectorMapStorage[Key][Part];
168   }
169 
170   /// Retrieve the existing scalar value that corresponds to \p Key and
171   /// \p Instance.
172   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
173     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
174     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
175   }
176 
177   /// Set a vector value associated with \p Key and \p Part. Assumes such a
178   /// value is not already set. If it is, use resetVectorValue() instead.
179   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
180     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
181     if (!VectorMapStorage.count(Key)) {
182       VectorParts Entry(UF);
183       VectorMapStorage[Key] = Entry;
184     }
185     VectorMapStorage[Key][Part] = Vector;
186   }
187 
188   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
189   /// value is not already set.
190   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
191     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
192     if (!ScalarMapStorage.count(Key)) {
193       ScalarParts Entry(UF);
194       // TODO: Consider storing uniform values only per-part, as they occupy
195       //       lane 0 only, keeping the other VF-1 redundant entries null.
196       for (unsigned Part = 0; Part < UF; ++Part)
197         Entry[Part].resize(VF, nullptr);
198       ScalarMapStorage[Key] = Entry;
199     }
200     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
201   }
202 
203   /// Reset the vector value associated with \p Key for the given \p Part.
204   /// This function can be used to update values that have already been
205   /// vectorized. This is the case for "fix-up" operations including type
206   /// truncation and the second phase of recurrence vectorization.
207   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
208     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
209     VectorMapStorage[Key][Part] = Vector;
210   }
211 
212   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
213   /// This function can be used to update values that have already been
214   /// scalarized. This is the case for "fix-up" operations including scalar phi
215   /// nodes for scalarized and predicated instructions.
216   void resetScalarValue(Value *Key, const VPIteration &Instance,
217                         Value *Scalar) {
218     assert(hasScalarValue(Key, Instance) &&
219            "Scalar value not set for part and lane");
220     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
221   }
222 };
223 
224 /// This class is used to enable the VPlan to invoke a method of ILV. This is
225 /// needed until the method is refactored out of ILV and becomes reusable.
226 struct VPCallback {
227   virtual ~VPCallback() {}
228   virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
229 };
230 
231 /// VPTransformState holds information passed down when "executing" a VPlan,
232 /// needed for generating the output IR.
233 struct VPTransformState {
234   VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
235                    IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
236                    InnerLoopVectorizer *ILV, VPCallback &Callback)
237       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
238         ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
239 
240   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
241   unsigned VF;
242   unsigned UF;
243 
244   /// Hold the indices to generate specific scalar instructions. Null indicates
245   /// that all instances are to be generated, using either scalar or vector
246   /// instructions.
247   Optional<VPIteration> Instance;
248 
249   struct DataState {
250     /// A type for vectorized values in the new loop. Each value from the
251     /// original loop, when vectorized, is represented by UF vector values in
252     /// the new unrolled loop, where UF is the unroll factor.
253     typedef SmallVector<Value *, 2> PerPartValuesTy;
254 
255     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
256   } Data;
257 
258   /// Get the generated Value for a given VPValue and a given Part. Note that
259   /// as some Defs are still created by ILV and managed in its ValueMap, this
260   /// method will delegate the call to ILV in such cases in order to provide
261   /// callers a consistent API.
262   /// \see set.
263   Value *get(VPValue *Def, unsigned Part) {
264     // If Values have been set for this Def return the one relevant for \p Part.
265     if (Data.PerPartOutput.count(Def))
266       return Data.PerPartOutput[Def][Part];
267     // Def is managed by ILV: bring the Values from ValueMap.
268     return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
269   }
270 
271   /// Set the generated Value for a given VPValue and a given Part.
272   void set(VPValue *Def, Value *V, unsigned Part) {
273     if (!Data.PerPartOutput.count(Def)) {
274       DataState::PerPartValuesTy Entry(UF);
275       Data.PerPartOutput[Def] = Entry;
276     }
277     Data.PerPartOutput[Def][Part] = V;
278   }
279 
280   /// Hold state information used when constructing the CFG of the output IR,
281   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
282   struct CFGState {
283     /// The previous VPBasicBlock visited. Initially set to null.
284     VPBasicBlock *PrevVPBB = nullptr;
285 
286     /// The previous IR BasicBlock created or used. Initially set to the new
287     /// header BasicBlock.
288     BasicBlock *PrevBB = nullptr;
289 
290     /// The last IR BasicBlock in the output IR. Set to the new latch
291     /// BasicBlock, used for placing the newly created BasicBlocks.
292     BasicBlock *LastBB = nullptr;
293 
294     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
295     /// of replication, maps the BasicBlock of the last replica created.
296     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
297 
298     /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
299     /// up at the end of vector code generation.
300     SmallVector<VPBasicBlock *, 8> VPBBsToFix;
301 
302     CFGState() = default;
303   } CFG;
304 
305   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
306   LoopInfo *LI;
307 
308   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
309   DominatorTree *DT;
310 
311   /// Hold a reference to the IRBuilder used to generate output IR code.
312   IRBuilder<> &Builder;
313 
314   /// Hold a reference to the Value state information used when generating the
315   /// Values of the output IR.
316   VectorizerValueMap &ValueMap;
317 
318   /// Hold a reference to a mapping between VPValues in VPlan and original
319   /// Values they correspond to.
320   VPValue2ValueTy VPValue2Value;
321 
322   /// Hold the trip count of the scalar loop.
323   Value *TripCount = nullptr;
324 
325   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
326   InnerLoopVectorizer *ILV;
327 
328   VPCallback &Callback;
329 };
330 
331 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
332 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
333 class VPBlockBase {
334   friend class VPBlockUtils;
335 
336 private:
337   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
338 
339   /// An optional name for the block.
340   std::string Name;
341 
342   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
343   /// it is a topmost VPBlockBase.
344   VPRegionBlock *Parent = nullptr;
345 
346   /// List of predecessor blocks.
347   SmallVector<VPBlockBase *, 1> Predecessors;
348 
349   /// List of successor blocks.
350   SmallVector<VPBlockBase *, 1> Successors;
351 
352   /// Successor selector, null for zero or single successor blocks.
353   VPValue *CondBit = nullptr;
354 
355   /// Current block predicate - null if the block does not need a predicate.
356   VPValue *Predicate = nullptr;
357 
358   /// Add \p Successor as the last successor to this block.
359   void appendSuccessor(VPBlockBase *Successor) {
360     assert(Successor && "Cannot add nullptr successor!");
361     Successors.push_back(Successor);
362   }
363 
364   /// Add \p Predecessor as the last predecessor to this block.
365   void appendPredecessor(VPBlockBase *Predecessor) {
366     assert(Predecessor && "Cannot add nullptr predecessor!");
367     Predecessors.push_back(Predecessor);
368   }
369 
370   /// Remove \p Predecessor from the predecessors of this block.
371   void removePredecessor(VPBlockBase *Predecessor) {
372     auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
373     assert(Pos && "Predecessor does not exist");
374     Predecessors.erase(Pos);
375   }
376 
377   /// Remove \p Successor from the successors of this block.
378   void removeSuccessor(VPBlockBase *Successor) {
379     auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
380     assert(Pos && "Successor does not exist");
381     Successors.erase(Pos);
382   }
383 
384 protected:
385   VPBlockBase(const unsigned char SC, const std::string &N)
386       : SubclassID(SC), Name(N) {}
387 
388 public:
389   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
390   /// that are actually instantiated. Values of this enumeration are kept in the
391   /// SubclassID field of the VPBlockBase objects. They are used for concrete
392   /// type identification.
393   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
394 
395   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
396 
397   virtual ~VPBlockBase() = default;
398 
399   const std::string &getName() const { return Name; }
400 
401   void setName(const Twine &newName) { Name = newName.str(); }
402 
403   /// \return an ID for the concrete type of this object.
404   /// This is used to implement the classof checks. This should not be used
405   /// for any other purpose, as the values may change as LLVM evolves.
406   unsigned getVPBlockID() const { return SubclassID; }
407 
408   VPRegionBlock *getParent() { return Parent; }
409   const VPRegionBlock *getParent() const { return Parent; }
410 
411   void setParent(VPRegionBlock *P) { Parent = P; }
412 
413   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
414   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
415   /// VPBlockBase is a VPBasicBlock, it is returned.
416   const VPBasicBlock *getEntryBasicBlock() const;
417   VPBasicBlock *getEntryBasicBlock();
418 
419   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
420   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
421   /// VPBlockBase is a VPBasicBlock, it is returned.
422   const VPBasicBlock *getExitBasicBlock() const;
423   VPBasicBlock *getExitBasicBlock();
424 
425   const VPBlocksTy &getSuccessors() const { return Successors; }
426   VPBlocksTy &getSuccessors() { return Successors; }
427 
428   const VPBlocksTy &getPredecessors() const { return Predecessors; }
429   VPBlocksTy &getPredecessors() { return Predecessors; }
430 
431   /// \return the successor of this VPBlockBase if it has a single successor.
432   /// Otherwise return a null pointer.
433   VPBlockBase *getSingleSuccessor() const {
434     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
435   }
436 
437   /// \return the predecessor of this VPBlockBase if it has a single
438   /// predecessor. Otherwise return a null pointer.
439   VPBlockBase *getSinglePredecessor() const {
440     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
441   }
442 
443   size_t getNumSuccessors() const { return Successors.size(); }
444   size_t getNumPredecessors() const { return Predecessors.size(); }
445 
446   /// An Enclosing Block of a block B is any block containing B, including B
447   /// itself. \return the closest enclosing block starting from "this", which
448   /// has successors. \return the root enclosing block if all enclosing blocks
449   /// have no successors.
450   VPBlockBase *getEnclosingBlockWithSuccessors();
451 
452   /// \return the closest enclosing block starting from "this", which has
453   /// predecessors. \return the root enclosing block if all enclosing blocks
454   /// have no predecessors.
455   VPBlockBase *getEnclosingBlockWithPredecessors();
456 
457   /// \return the successors either attached directly to this VPBlockBase or, if
458   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
459   /// successors of its own, search recursively for the first enclosing
460   /// VPRegionBlock that has successors and return them. If no such
461   /// VPRegionBlock exists, return the (empty) successors of the topmost
462   /// VPBlockBase reached.
463   const VPBlocksTy &getHierarchicalSuccessors() {
464     return getEnclosingBlockWithSuccessors()->getSuccessors();
465   }
466 
467   /// \return the hierarchical successor of this VPBlockBase if it has a single
468   /// hierarchical successor. Otherwise return a null pointer.
469   VPBlockBase *getSingleHierarchicalSuccessor() {
470     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
471   }
472 
473   /// \return the predecessors either attached directly to this VPBlockBase or,
474   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
475   /// predecessors of its own, search recursively for the first enclosing
476   /// VPRegionBlock that has predecessors and return them. If no such
477   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
478   /// VPBlockBase reached.
479   const VPBlocksTy &getHierarchicalPredecessors() {
480     return getEnclosingBlockWithPredecessors()->getPredecessors();
481   }
482 
483   /// \return the hierarchical predecessor of this VPBlockBase if it has a
484   /// single hierarchical predecessor. Otherwise return a null pointer.
485   VPBlockBase *getSingleHierarchicalPredecessor() {
486     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
487   }
488 
489   /// \return the condition bit selecting the successor.
490   VPValue *getCondBit() { return CondBit; }
491 
492   const VPValue *getCondBit() const { return CondBit; }
493 
494   void setCondBit(VPValue *CV) { CondBit = CV; }
495 
496   VPValue *getPredicate() { return Predicate; }
497 
498   const VPValue *getPredicate() const { return Predicate; }
499 
500   void setPredicate(VPValue *Pred) { Predicate = Pred; }
501 
502   /// Set a given VPBlockBase \p Successor as the single successor of this
503   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
504   /// This VPBlockBase must have no successors.
505   void setOneSuccessor(VPBlockBase *Successor) {
506     assert(Successors.empty() && "Setting one successor when others exist.");
507     appendSuccessor(Successor);
508   }
509 
510   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
511   /// successors of this VPBlockBase. \p Condition is set as the successor
512   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
513   /// IfFalse. This VPBlockBase must have no successors.
514   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
515                         VPValue *Condition) {
516     assert(Successors.empty() && "Setting two successors when others exist.");
517     assert(Condition && "Setting two successors without condition!");
518     CondBit = Condition;
519     appendSuccessor(IfTrue);
520     appendSuccessor(IfFalse);
521   }
522 
523   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
524   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
525   /// as successor of any VPBasicBlock in \p NewPreds.
526   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
527     assert(Predecessors.empty() && "Block predecessors already set.");
528     for (auto *Pred : NewPreds)
529       appendPredecessor(Pred);
530   }
531 
532   /// Remove all the predecessor of this block.
533   void clearPredecessors() { Predecessors.clear(); }
534 
535   /// Remove all the successors of this block and set to null its condition bit
536   void clearSuccessors() {
537     Successors.clear();
538     CondBit = nullptr;
539   }
540 
541   /// The method which generates the output IR that correspond to this
542   /// VPBlockBase, thereby "executing" the VPlan.
543   virtual void execute(struct VPTransformState *State) = 0;
544 
545   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
546   static void deleteCFG(VPBlockBase *Entry);
547 
548   void printAsOperand(raw_ostream &OS, bool PrintType) const {
549     OS << getName();
550   }
551 
552   void print(raw_ostream &OS) const {
553     // TODO: Only printing VPBB name for now since we only have dot printing
554     // support for VPInstructions/Recipes.
555     printAsOperand(OS, false);
556   }
557 
558   /// Return true if it is legal to hoist instructions into this block.
559   bool isLegalToHoistInto() {
560     // There are currently no constraints that prevent an instruction to be
561     // hoisted into a VPBlockBase.
562     return true;
563   }
564 };
565 
566 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
567 /// instructions.
568 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
569   friend VPBasicBlock;
570 
571 private:
572   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
573 
574   /// Each VPRecipe belongs to a single VPBasicBlock.
575   VPBasicBlock *Parent = nullptr;
576 
577 public:
578   /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
579   /// that is actually instantiated. Values of this enumeration are kept in the
580   /// SubclassID field of the VPRecipeBase objects. They are used for concrete
581   /// type identification.
582   using VPRecipeTy = enum {
583     VPBlendSC,
584     VPBranchOnMaskSC,
585     VPInstructionSC,
586     VPInterleaveSC,
587     VPPredInstPHISC,
588     VPReplicateSC,
589     VPWidenIntOrFpInductionSC,
590     VPWidenMemoryInstructionSC,
591     VPWidenPHISC,
592     VPWidenSC,
593   };
594 
595   VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
596   virtual ~VPRecipeBase() = default;
597 
598   /// \return an ID for the concrete type of this object.
599   /// This is used to implement the classof checks. This should not be used
600   /// for any other purpose, as the values may change as LLVM evolves.
601   unsigned getVPRecipeID() const { return SubclassID; }
602 
603   /// \return the VPBasicBlock which this VPRecipe belongs to.
604   VPBasicBlock *getParent() { return Parent; }
605   const VPBasicBlock *getParent() const { return Parent; }
606 
607   /// The method which generates the output IR instructions that correspond to
608   /// this VPRecipe, thereby "executing" the VPlan.
609   virtual void execute(struct VPTransformState &State) = 0;
610 
611   /// Each recipe prints itself.
612   virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
613 
614   /// Insert an unlinked recipe into a basic block immediately before
615   /// the specified recipe.
616   void insertBefore(VPRecipeBase *InsertPos);
617 
618   /// Unlink this recipe from its current VPBasicBlock and insert it into
619   /// the VPBasicBlock that MovePos lives in, right after MovePos.
620   void moveAfter(VPRecipeBase *MovePos);
621 
622   /// This method unlinks 'this' from the containing basic block and deletes it.
623   ///
624   /// \returns an iterator pointing to the element after the erased one
625   iplist<VPRecipeBase>::iterator eraseFromParent();
626 };
627 
628 /// This is a concrete Recipe that models a single VPlan-level instruction.
629 /// While as any Recipe it may generate a sequence of IR instructions when
630 /// executed, these instructions would always form a single-def expression as
631 /// the VPInstruction is also a single def-use vertex.
632 class VPInstruction : public VPUser, public VPRecipeBase {
633   friend class VPlanHCFGTransforms;
634   friend class VPlanSlp;
635 
636 public:
637   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
638   enum {
639     Not = Instruction::OtherOpsEnd + 1,
640     ICmpULE,
641     SLPLoad,
642     SLPStore,
643   };
644 
645 private:
646   typedef unsigned char OpcodeTy;
647   OpcodeTy Opcode;
648 
649   /// Utility method serving execute(): generates a single instance of the
650   /// modeled instruction.
651   void generateInstruction(VPTransformState &State, unsigned Part);
652 
653 protected:
654   Instruction *getUnderlyingInstr() {
655     return cast_or_null<Instruction>(getUnderlyingValue());
656   }
657 
658   void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
659 
660 public:
661   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
662       : VPUser(VPValue::VPInstructionSC, Operands),
663         VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
664 
665   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
666       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
667 
668   /// Method to support type inquiry through isa, cast, and dyn_cast.
669   static inline bool classof(const VPValue *V) {
670     return V->getVPValueID() == VPValue::VPInstructionSC;
671   }
672 
673   VPInstruction *clone() const {
674     SmallVector<VPValue *, 2> Operands(operands());
675     return new VPInstruction(Opcode, Operands);
676   }
677 
678   /// Method to support type inquiry through isa, cast, and dyn_cast.
679   static inline bool classof(const VPRecipeBase *R) {
680     return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
681   }
682 
683   unsigned getOpcode() const { return Opcode; }
684 
685   /// Generate the instruction.
686   /// TODO: We currently execute only per-part unless a specific instance is
687   /// provided.
688   void execute(VPTransformState &State) override;
689 
690   /// Print the Recipe.
691   void print(raw_ostream &O, const Twine &Indent) const override;
692 
693   /// Print the VPInstruction.
694   void print(raw_ostream &O) const;
695 
696   /// Return true if this instruction may modify memory.
697   bool mayWriteToMemory() const {
698     // TODO: we can use attributes of the called function to rule out memory
699     //       modifications.
700     return Opcode == Instruction::Store || Opcode == Instruction::Call ||
701            Opcode == Instruction::Invoke || Opcode == SLPStore;
702   }
703 };
704 
705 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
706 /// Instruction in its ingredients independently, in order. This recipe covers
707 /// most of the traditional vectorization cases where each ingredient transforms
708 /// into a vectorized version of itself.
709 class VPWidenRecipe : public VPRecipeBase {
710 private:
711   /// Hold the ingredients by pointing to their original BasicBlock location.
712   BasicBlock::iterator Begin;
713   BasicBlock::iterator End;
714 
715 public:
716   VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
717     End = I->getIterator();
718     Begin = End++;
719   }
720 
721   ~VPWidenRecipe() override = default;
722 
723   /// Method to support type inquiry through isa, cast, and dyn_cast.
724   static inline bool classof(const VPRecipeBase *V) {
725     return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
726   }
727 
728   /// Produce widened copies of all Ingredients.
729   void execute(VPTransformState &State) override;
730 
731   /// Augment the recipe to include Instr, if it lies at its End.
732   bool appendInstruction(Instruction *Instr) {
733     if (End != Instr->getIterator())
734       return false;
735     End++;
736     return true;
737   }
738 
739   /// Print the recipe.
740   void print(raw_ostream &O, const Twine &Indent) const override;
741 };
742 
743 /// A recipe for handling phi nodes of integer and floating-point inductions,
744 /// producing their vector and scalar values.
745 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
746 private:
747   PHINode *IV;
748   TruncInst *Trunc;
749 
750 public:
751   VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
752       : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
753   ~VPWidenIntOrFpInductionRecipe() override = default;
754 
755   /// Method to support type inquiry through isa, cast, and dyn_cast.
756   static inline bool classof(const VPRecipeBase *V) {
757     return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
758   }
759 
760   /// Generate the vectorized and scalarized versions of the phi node as
761   /// needed by their users.
762   void execute(VPTransformState &State) override;
763 
764   /// Print the recipe.
765   void print(raw_ostream &O, const Twine &Indent) const override;
766 };
767 
768 /// A recipe for handling all phi nodes except for integer and FP inductions.
769 class VPWidenPHIRecipe : public VPRecipeBase {
770 private:
771   PHINode *Phi;
772 
773 public:
774   VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
775   ~VPWidenPHIRecipe() override = default;
776 
777   /// Method to support type inquiry through isa, cast, and dyn_cast.
778   static inline bool classof(const VPRecipeBase *V) {
779     return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
780   }
781 
782   /// Generate the phi/select nodes.
783   void execute(VPTransformState &State) override;
784 
785   /// Print the recipe.
786   void print(raw_ostream &O, const Twine &Indent) const override;
787 };
788 
789 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
790 /// instructions.
791 class VPBlendRecipe : public VPRecipeBase {
792 private:
793   PHINode *Phi;
794 
795   /// The blend operation is a User of a mask, if not null.
796   std::unique_ptr<VPUser> User;
797 
798 public:
799   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
800       : VPRecipeBase(VPBlendSC), Phi(Phi) {
801     assert((Phi->getNumIncomingValues() == 1 ||
802             Phi->getNumIncomingValues() == Masks.size()) &&
803            "Expected the same number of incoming values and masks");
804     if (!Masks.empty())
805       User.reset(new VPUser(Masks));
806   }
807 
808   /// Method to support type inquiry through isa, cast, and dyn_cast.
809   static inline bool classof(const VPRecipeBase *V) {
810     return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
811   }
812 
813   /// Generate the phi/select nodes.
814   void execute(VPTransformState &State) override;
815 
816   /// Print the recipe.
817   void print(raw_ostream &O, const Twine &Indent) const override;
818 };
819 
820 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
821 /// or stores into one wide load/store and shuffles.
822 class VPInterleaveRecipe : public VPRecipeBase {
823 private:
824   const InterleaveGroup<Instruction> *IG;
825   std::unique_ptr<VPUser> User;
826 
827 public:
828   VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
829       : VPRecipeBase(VPInterleaveSC), IG(IG) {
830     if (Mask) // Create a VPInstruction to register as a user of the mask.
831       User.reset(new VPUser({Mask}));
832   }
833   ~VPInterleaveRecipe() override = default;
834 
835   /// Method to support type inquiry through isa, cast, and dyn_cast.
836   static inline bool classof(const VPRecipeBase *V) {
837     return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
838   }
839 
840   /// Generate the wide load or store, and shuffles.
841   void execute(VPTransformState &State) override;
842 
843   /// Print the recipe.
844   void print(raw_ostream &O, const Twine &Indent) const override;
845 
846   const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
847 };
848 
849 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
850 /// copies of the original scalar type, one per lane, instead of producing a
851 /// single copy of widened type for all lanes. If the instruction is known to be
852 /// uniform only one copy, per lane zero, will be generated.
853 class VPReplicateRecipe : public VPRecipeBase {
854 private:
855   /// The instruction being replicated.
856   Instruction *Ingredient;
857 
858   /// Indicator if only a single replica per lane is needed.
859   bool IsUniform;
860 
861   /// Indicator if the replicas are also predicated.
862   bool IsPredicated;
863 
864   /// Indicator if the scalar values should also be packed into a vector.
865   bool AlsoPack;
866 
867 public:
868   VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
869       : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
870         IsPredicated(IsPredicated) {
871     // Retain the previous behavior of predicateInstructions(), where an
872     // insert-element of a predicated instruction got hoisted into the
873     // predicated basic block iff it was its only user. This is achieved by
874     // having predicated instructions also pack their values into a vector by
875     // default unless they have a replicated user which uses their scalar value.
876     AlsoPack = IsPredicated && !I->use_empty();
877   }
878 
879   ~VPReplicateRecipe() override = default;
880 
881   /// Method to support type inquiry through isa, cast, and dyn_cast.
882   static inline bool classof(const VPRecipeBase *V) {
883     return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
884   }
885 
886   /// Generate replicas of the desired Ingredient. Replicas will be generated
887   /// for all parts and lanes unless a specific part and lane are specified in
888   /// the \p State.
889   void execute(VPTransformState &State) override;
890 
891   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
892 
893   /// Print the recipe.
894   void print(raw_ostream &O, const Twine &Indent) const override;
895 };
896 
897 /// A recipe for generating conditional branches on the bits of a mask.
898 class VPBranchOnMaskRecipe : public VPRecipeBase {
899 private:
900   std::unique_ptr<VPUser> User;
901 
902 public:
903   VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
904     if (BlockInMask) // nullptr means all-one mask.
905       User.reset(new VPUser({BlockInMask}));
906   }
907 
908   /// Method to support type inquiry through isa, cast, and dyn_cast.
909   static inline bool classof(const VPRecipeBase *V) {
910     return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
911   }
912 
913   /// Generate the extraction of the appropriate bit from the block mask and the
914   /// conditional branch.
915   void execute(VPTransformState &State) override;
916 
917   /// Print the recipe.
918   void print(raw_ostream &O, const Twine &Indent) const override {
919     O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
920     if (User)
921       O << *User->getOperand(0);
922     else
923       O << " All-One";
924     O << "\\l\"";
925   }
926 };
927 
928 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
929 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
930 /// order to merge values that are set under such a branch and feed their uses.
931 /// The phi nodes can be scalar or vector depending on the users of the value.
932 /// This recipe works in concert with VPBranchOnMaskRecipe.
933 class VPPredInstPHIRecipe : public VPRecipeBase {
934 private:
935   Instruction *PredInst;
936 
937 public:
938   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
939   /// nodes after merging back from a Branch-on-Mask.
940   VPPredInstPHIRecipe(Instruction *PredInst)
941       : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
942   ~VPPredInstPHIRecipe() override = default;
943 
944   /// Method to support type inquiry through isa, cast, and dyn_cast.
945   static inline bool classof(const VPRecipeBase *V) {
946     return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
947   }
948 
949   /// Generates phi nodes for live-outs as needed to retain SSA form.
950   void execute(VPTransformState &State) override;
951 
952   /// Print the recipe.
953   void print(raw_ostream &O, const Twine &Indent) const override;
954 };
955 
956 /// A Recipe for widening load/store operations.
957 /// TODO: We currently execute only per-part unless a specific instance is
958 /// provided.
959 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
960 private:
961   Instruction &Instr;
962   std::unique_ptr<VPUser> User;
963 
964 public:
965   VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
966       : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
967     if (Mask) // Create a VPInstruction to register as a user of the mask.
968       User.reset(new VPUser({Mask}));
969   }
970 
971   /// Method to support type inquiry through isa, cast, and dyn_cast.
972   static inline bool classof(const VPRecipeBase *V) {
973     return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
974   }
975 
976   /// Generate the wide load/store.
977   void execute(VPTransformState &State) override;
978 
979   /// Print the recipe.
980   void print(raw_ostream &O, const Twine &Indent) const override;
981 };
982 
983 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
984 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
985 /// output IR instructions.
986 class VPBasicBlock : public VPBlockBase {
987 public:
988   using RecipeListTy = iplist<VPRecipeBase>;
989 
990 private:
991   /// The VPRecipes held in the order of output instructions to generate.
992   RecipeListTy Recipes;
993 
994 public:
995   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
996       : VPBlockBase(VPBasicBlockSC, Name.str()) {
997     if (Recipe)
998       appendRecipe(Recipe);
999   }
1000 
1001   ~VPBasicBlock() override { Recipes.clear(); }
1002 
1003   /// Instruction iterators...
1004   using iterator = RecipeListTy::iterator;
1005   using const_iterator = RecipeListTy::const_iterator;
1006   using reverse_iterator = RecipeListTy::reverse_iterator;
1007   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1008 
1009   //===--------------------------------------------------------------------===//
1010   /// Recipe iterator methods
1011   ///
1012   inline iterator begin() { return Recipes.begin(); }
1013   inline const_iterator begin() const { return Recipes.begin(); }
1014   inline iterator end() { return Recipes.end(); }
1015   inline const_iterator end() const { return Recipes.end(); }
1016 
1017   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
1018   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
1019   inline reverse_iterator rend() { return Recipes.rend(); }
1020   inline const_reverse_iterator rend() const { return Recipes.rend(); }
1021 
1022   inline size_t size() const { return Recipes.size(); }
1023   inline bool empty() const { return Recipes.empty(); }
1024   inline const VPRecipeBase &front() const { return Recipes.front(); }
1025   inline VPRecipeBase &front() { return Recipes.front(); }
1026   inline const VPRecipeBase &back() const { return Recipes.back(); }
1027   inline VPRecipeBase &back() { return Recipes.back(); }
1028 
1029   /// Returns a reference to the list of recipes.
1030   RecipeListTy &getRecipeList() { return Recipes; }
1031 
1032   /// Returns a pointer to a member of the recipe list.
1033   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1034     return &VPBasicBlock::Recipes;
1035   }
1036 
1037   /// Method to support type inquiry through isa, cast, and dyn_cast.
1038   static inline bool classof(const VPBlockBase *V) {
1039     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1040   }
1041 
1042   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1043     assert(Recipe && "No recipe to append.");
1044     assert(!Recipe->Parent && "Recipe already in VPlan");
1045     Recipe->Parent = this;
1046     Recipes.insert(InsertPt, Recipe);
1047   }
1048 
1049   /// Augment the existing recipes of a VPBasicBlock with an additional
1050   /// \p Recipe as the last recipe.
1051   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1052 
1053   /// The method which generates the output IR instructions that correspond to
1054   /// this VPBasicBlock, thereby "executing" the VPlan.
1055   void execute(struct VPTransformState *State) override;
1056 
1057 private:
1058   /// Create an IR BasicBlock to hold the output instructions generated by this
1059   /// VPBasicBlock, and return it. Update the CFGState accordingly.
1060   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1061 };
1062 
1063 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1064 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1065 /// A VPRegionBlock may indicate that its contents are to be replicated several
1066 /// times. This is designed to support predicated scalarization, in which a
1067 /// scalar if-then code structure needs to be generated VF * UF times. Having
1068 /// this replication indicator helps to keep a single model for multiple
1069 /// candidate VF's. The actual replication takes place only once the desired VF
1070 /// and UF have been determined.
1071 class VPRegionBlock : public VPBlockBase {
1072 private:
1073   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1074   VPBlockBase *Entry;
1075 
1076   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1077   VPBlockBase *Exit;
1078 
1079   /// An indicator whether this region is to generate multiple replicated
1080   /// instances of output IR corresponding to its VPBlockBases.
1081   bool IsReplicator;
1082 
1083 public:
1084   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1085                 const std::string &Name = "", bool IsReplicator = false)
1086       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1087         IsReplicator(IsReplicator) {
1088     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1089     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1090     Entry->setParent(this);
1091     Exit->setParent(this);
1092   }
1093   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1094       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1095         IsReplicator(IsReplicator) {}
1096 
1097   ~VPRegionBlock() override {
1098     if (Entry)
1099       deleteCFG(Entry);
1100   }
1101 
1102   /// Method to support type inquiry through isa, cast, and dyn_cast.
1103   static inline bool classof(const VPBlockBase *V) {
1104     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1105   }
1106 
1107   const VPBlockBase *getEntry() const { return Entry; }
1108   VPBlockBase *getEntry() { return Entry; }
1109 
1110   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1111   /// EntryBlock must have no predecessors.
1112   void setEntry(VPBlockBase *EntryBlock) {
1113     assert(EntryBlock->getPredecessors().empty() &&
1114            "Entry block cannot have predecessors.");
1115     Entry = EntryBlock;
1116     EntryBlock->setParent(this);
1117   }
1118 
1119   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1120   // specific interface of llvm::Function, instead of using
1121   // GraphTraints::getEntryNode. We should add a new template parameter to
1122   // DominatorTreeBase representing the Graph type.
1123   VPBlockBase &front() const { return *Entry; }
1124 
1125   const VPBlockBase *getExit() const { return Exit; }
1126   VPBlockBase *getExit() { return Exit; }
1127 
1128   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1129   /// ExitBlock must have no successors.
1130   void setExit(VPBlockBase *ExitBlock) {
1131     assert(ExitBlock->getSuccessors().empty() &&
1132            "Exit block cannot have successors.");
1133     Exit = ExitBlock;
1134     ExitBlock->setParent(this);
1135   }
1136 
1137   /// An indicator whether this region is to generate multiple replicated
1138   /// instances of output IR corresponding to its VPBlockBases.
1139   bool isReplicator() const { return IsReplicator; }
1140 
1141   /// The method which generates the output IR instructions that correspond to
1142   /// this VPRegionBlock, thereby "executing" the VPlan.
1143   void execute(struct VPTransformState *State) override;
1144 };
1145 
1146 /// VPlan models a candidate for vectorization, encoding various decisions take
1147 /// to produce efficient output IR, including which branches, basic-blocks and
1148 /// output IR instructions to generate, and their cost. VPlan holds a
1149 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1150 /// VPBlock.
1151 class VPlan {
1152   friend class VPlanPrinter;
1153 
1154 private:
1155   /// Hold the single entry to the Hierarchical CFG of the VPlan.
1156   VPBlockBase *Entry;
1157 
1158   /// Holds the VFs applicable to this VPlan.
1159   SmallSet<unsigned, 2> VFs;
1160 
1161   /// Holds the name of the VPlan, for printing.
1162   std::string Name;
1163 
1164   /// Holds all the external definitions created for this VPlan.
1165   // TODO: Introduce a specific representation for external definitions in
1166   // VPlan. External definitions must be immutable and hold a pointer to its
1167   // underlying IR that will be used to implement its structural comparison
1168   // (operators '==' and '<').
1169   SmallPtrSet<VPValue *, 16> VPExternalDefs;
1170 
1171   /// Represents the backedge taken count of the original loop, for folding
1172   /// the tail.
1173   VPValue *BackedgeTakenCount = nullptr;
1174 
1175   /// Holds a mapping between Values and their corresponding VPValue inside
1176   /// VPlan.
1177   Value2VPValueTy Value2VPValue;
1178 
1179   /// Holds the VPLoopInfo analysis for this VPlan.
1180   VPLoopInfo VPLInfo;
1181 
1182   /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1183   SmallVector<VPValue *, 4> VPCBVs;
1184 
1185 public:
1186   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1187 
1188   ~VPlan() {
1189     if (Entry)
1190       VPBlockBase::deleteCFG(Entry);
1191     for (auto &MapEntry : Value2VPValue)
1192       if (MapEntry.second != BackedgeTakenCount)
1193         delete MapEntry.second;
1194     if (BackedgeTakenCount)
1195       delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
1196     for (VPValue *Def : VPExternalDefs)
1197       delete Def;
1198     for (VPValue *CBV : VPCBVs)
1199       delete CBV;
1200   }
1201 
1202   /// Generate the IR code for this VPlan.
1203   void execute(struct VPTransformState *State);
1204 
1205   VPBlockBase *getEntry() { return Entry; }
1206   const VPBlockBase *getEntry() const { return Entry; }
1207 
1208   VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1209 
1210   /// The backedge taken count of the original loop.
1211   VPValue *getOrCreateBackedgeTakenCount() {
1212     if (!BackedgeTakenCount)
1213       BackedgeTakenCount = new VPValue();
1214     return BackedgeTakenCount;
1215   }
1216 
1217   void addVF(unsigned VF) { VFs.insert(VF); }
1218 
1219   bool hasVF(unsigned VF) { return VFs.count(VF); }
1220 
1221   const std::string &getName() const { return Name; }
1222 
1223   void setName(const Twine &newName) { Name = newName.str(); }
1224 
1225   /// Add \p VPVal to the pool of external definitions if it's not already
1226   /// in the pool.
1227   void addExternalDef(VPValue *VPVal) {
1228     VPExternalDefs.insert(VPVal);
1229   }
1230 
1231   /// Add \p CBV to the vector of condition bit values.
1232   void addCBV(VPValue *CBV) {
1233     VPCBVs.push_back(CBV);
1234   }
1235 
1236   void addVPValue(Value *V) {
1237     assert(V && "Trying to add a null Value to VPlan");
1238     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1239     Value2VPValue[V] = new VPValue();
1240   }
1241 
1242   VPValue *getVPValue(Value *V) {
1243     assert(V && "Trying to get the VPValue of a null Value");
1244     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1245     return Value2VPValue[V];
1246   }
1247 
1248   /// Return the VPLoopInfo analysis for this VPlan.
1249   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1250   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1251 
1252 private:
1253   /// Add to the given dominator tree the header block and every new basic block
1254   /// that was created between it and the latch block, inclusive.
1255   static void updateDominatorTree(DominatorTree *DT,
1256                                   BasicBlock *LoopPreHeaderBB,
1257                                   BasicBlock *LoopLatchBB);
1258 };
1259 
1260 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1261 /// indented and follows the dot format.
1262 class VPlanPrinter {
1263   friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1264   friend inline raw_ostream &operator<<(raw_ostream &OS,
1265                                         const struct VPlanIngredient &I);
1266 
1267 private:
1268   raw_ostream &OS;
1269   VPlan &Plan;
1270   unsigned Depth;
1271   unsigned TabWidth = 2;
1272   std::string Indent;
1273   unsigned BID = 0;
1274   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1275 
1276   VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1277 
1278   /// Handle indentation.
1279   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1280 
1281   /// Print a given \p Block of the Plan.
1282   void dumpBlock(const VPBlockBase *Block);
1283 
1284   /// Print the information related to the CFG edges going out of a given
1285   /// \p Block, followed by printing the successor blocks themselves.
1286   void dumpEdges(const VPBlockBase *Block);
1287 
1288   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1289   /// its successor blocks.
1290   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1291 
1292   /// Print a given \p Region of the Plan.
1293   void dumpRegion(const VPRegionBlock *Region);
1294 
1295   unsigned getOrCreateBID(const VPBlockBase *Block) {
1296     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1297   }
1298 
1299   const Twine getOrCreateName(const VPBlockBase *Block);
1300 
1301   const Twine getUID(const VPBlockBase *Block);
1302 
1303   /// Print the information related to a CFG edge between two VPBlockBases.
1304   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1305                 const Twine &Label);
1306 
1307   void dump();
1308 
1309   static void printAsIngredient(raw_ostream &O, Value *V);
1310 };
1311 
1312 struct VPlanIngredient {
1313   Value *V;
1314 
1315   VPlanIngredient(Value *V) : V(V) {}
1316 };
1317 
1318 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1319   VPlanPrinter::printAsIngredient(OS, I.V);
1320   return OS;
1321 }
1322 
1323 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1324   VPlanPrinter Printer(OS, Plan);
1325   Printer.dump();
1326   return OS;
1327 }
1328 
1329 //===----------------------------------------------------------------------===//
1330 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
1331 //===----------------------------------------------------------------------===//
1332 
1333 // The following set of template specializations implement GraphTraits to treat
1334 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1335 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1336 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1337 // successors/predecessors but not to the blocks inside the region.
1338 
1339 template <> struct GraphTraits<VPBlockBase *> {
1340   using NodeRef = VPBlockBase *;
1341   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1342 
1343   static NodeRef getEntryNode(NodeRef N) { return N; }
1344 
1345   static inline ChildIteratorType child_begin(NodeRef N) {
1346     return N->getSuccessors().begin();
1347   }
1348 
1349   static inline ChildIteratorType child_end(NodeRef N) {
1350     return N->getSuccessors().end();
1351   }
1352 };
1353 
1354 template <> struct GraphTraits<const VPBlockBase *> {
1355   using NodeRef = const VPBlockBase *;
1356   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1357 
1358   static NodeRef getEntryNode(NodeRef N) { return N; }
1359 
1360   static inline ChildIteratorType child_begin(NodeRef N) {
1361     return N->getSuccessors().begin();
1362   }
1363 
1364   static inline ChildIteratorType child_end(NodeRef N) {
1365     return N->getSuccessors().end();
1366   }
1367 };
1368 
1369 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1370 // of successors for the inverse traversal.
1371 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1372   using NodeRef = VPBlockBase *;
1373   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1374 
1375   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1376 
1377   static inline ChildIteratorType child_begin(NodeRef N) {
1378     return N->getPredecessors().begin();
1379   }
1380 
1381   static inline ChildIteratorType child_end(NodeRef N) {
1382     return N->getPredecessors().end();
1383   }
1384 };
1385 
1386 // The following set of template specializations implement GraphTraits to
1387 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1388 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1389 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1390 // there won't be automatic recursion into other VPBlockBases that turn to be
1391 // VPRegionBlocks.
1392 
1393 template <>
1394 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1395   using GraphRef = VPRegionBlock *;
1396   using nodes_iterator = df_iterator<NodeRef>;
1397 
1398   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1399 
1400   static nodes_iterator nodes_begin(GraphRef N) {
1401     return nodes_iterator::begin(N->getEntry());
1402   }
1403 
1404   static nodes_iterator nodes_end(GraphRef N) {
1405     // df_iterator::end() returns an empty iterator so the node used doesn't
1406     // matter.
1407     return nodes_iterator::end(N);
1408   }
1409 };
1410 
1411 template <>
1412 struct GraphTraits<const VPRegionBlock *>
1413     : public GraphTraits<const VPBlockBase *> {
1414   using GraphRef = const VPRegionBlock *;
1415   using nodes_iterator = df_iterator<NodeRef>;
1416 
1417   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1418 
1419   static nodes_iterator nodes_begin(GraphRef N) {
1420     return nodes_iterator::begin(N->getEntry());
1421   }
1422 
1423   static nodes_iterator nodes_end(GraphRef N) {
1424     // df_iterator::end() returns an empty iterator so the node used doesn't
1425     // matter.
1426     return nodes_iterator::end(N);
1427   }
1428 };
1429 
1430 template <>
1431 struct GraphTraits<Inverse<VPRegionBlock *>>
1432     : public GraphTraits<Inverse<VPBlockBase *>> {
1433   using GraphRef = VPRegionBlock *;
1434   using nodes_iterator = df_iterator<NodeRef>;
1435 
1436   static NodeRef getEntryNode(Inverse<GraphRef> N) {
1437     return N.Graph->getExit();
1438   }
1439 
1440   static nodes_iterator nodes_begin(GraphRef N) {
1441     return nodes_iterator::begin(N->getExit());
1442   }
1443 
1444   static nodes_iterator nodes_end(GraphRef N) {
1445     // df_iterator::end() returns an empty iterator so the node used doesn't
1446     // matter.
1447     return nodes_iterator::end(N);
1448   }
1449 };
1450 
1451 //===----------------------------------------------------------------------===//
1452 // VPlan Utilities
1453 //===----------------------------------------------------------------------===//
1454 
1455 /// Class that provides utilities for VPBlockBases in VPlan.
1456 class VPBlockUtils {
1457 public:
1458   VPBlockUtils() = delete;
1459 
1460   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1461   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1462   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1463   /// has more than one successor, its conditional bit is propagated to \p
1464   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1465   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1466     assert(NewBlock->getSuccessors().empty() &&
1467            "Can't insert new block with successors.");
1468     // TODO: move successors from BlockPtr to NewBlock when this functionality
1469     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1470     // already has successors.
1471     BlockPtr->setOneSuccessor(NewBlock);
1472     NewBlock->setPredecessors({BlockPtr});
1473     NewBlock->setParent(BlockPtr->getParent());
1474   }
1475 
1476   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1477   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1478   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1479   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1480   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1481   /// must have neither successors nor predecessors.
1482   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1483                                    VPValue *Condition, VPBlockBase *BlockPtr) {
1484     assert(IfTrue->getSuccessors().empty() &&
1485            "Can't insert IfTrue with successors.");
1486     assert(IfFalse->getSuccessors().empty() &&
1487            "Can't insert IfFalse with successors.");
1488     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1489     IfTrue->setPredecessors({BlockPtr});
1490     IfFalse->setPredecessors({BlockPtr});
1491     IfTrue->setParent(BlockPtr->getParent());
1492     IfFalse->setParent(BlockPtr->getParent());
1493   }
1494 
1495   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1496   /// the successors of \p From and \p From to the predecessors of \p To. Both
1497   /// VPBlockBases must have the same parent, which can be null. Both
1498   /// VPBlockBases can be already connected to other VPBlockBases.
1499   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1500     assert((From->getParent() == To->getParent()) &&
1501            "Can't connect two block with different parents");
1502     assert(From->getNumSuccessors() < 2 &&
1503            "Blocks can't have more than two successors.");
1504     From->appendSuccessor(To);
1505     To->appendPredecessor(From);
1506   }
1507 
1508   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1509   /// from the successors of \p From and \p From from the predecessors of \p To.
1510   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1511     assert(To && "Successor to disconnect is null.");
1512     From->removeSuccessor(To);
1513     To->removePredecessor(From);
1514   }
1515 
1516   /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
1517   static bool isBackEdge(const VPBlockBase *FromBlock,
1518                          const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
1519     assert(FromBlock->getParent() == ToBlock->getParent() &&
1520            FromBlock->getParent() && "Must be in same region");
1521     const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
1522     const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
1523     if (!FromLoop || !ToLoop || FromLoop != ToLoop)
1524       return false;
1525 
1526     // A back-edge is a branch from the loop latch to its header.
1527     return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
1528   }
1529 
1530   /// Returns true if \p Block is a loop latch
1531   static bool blockIsLoopLatch(const VPBlockBase *Block,
1532                                const VPLoopInfo *VPLInfo) {
1533     if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
1534       return ParentVPL->isLoopLatch(Block);
1535 
1536     return false;
1537   }
1538 
1539   /// Count and return the number of succesors of \p PredBlock excluding any
1540   /// backedges.
1541   static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
1542                                       VPLoopInfo *VPLI) {
1543     unsigned Count = 0;
1544     for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
1545       if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
1546         Count++;
1547     }
1548     return Count;
1549   }
1550 };
1551 
1552 class VPInterleavedAccessInfo {
1553 private:
1554   DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
1555       InterleaveGroupMap;
1556 
1557   /// Type for mapping of instruction based interleave groups to VPInstruction
1558   /// interleave groups
1559   using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
1560                              InterleaveGroup<VPInstruction> *>;
1561 
1562   /// Recursively \p Region and populate VPlan based interleave groups based on
1563   /// \p IAI.
1564   void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1565                    InterleavedAccessInfo &IAI);
1566   /// Recursively traverse \p Block and populate VPlan based interleave groups
1567   /// based on \p IAI.
1568   void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1569                   InterleavedAccessInfo &IAI);
1570 
1571 public:
1572   VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
1573 
1574   ~VPInterleavedAccessInfo() {
1575     SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
1576     // Avoid releasing a pointer twice.
1577     for (auto &I : InterleaveGroupMap)
1578       DelSet.insert(I.second);
1579     for (auto *Ptr : DelSet)
1580       delete Ptr;
1581   }
1582 
1583   /// Get the interleave group that \p Instr belongs to.
1584   ///
1585   /// \returns nullptr if doesn't have such group.
1586   InterleaveGroup<VPInstruction> *
1587   getInterleaveGroup(VPInstruction *Instr) const {
1588     if (InterleaveGroupMap.count(Instr))
1589       return InterleaveGroupMap.find(Instr)->second;
1590     return nullptr;
1591   }
1592 };
1593 
1594 /// Class that maps (parts of) an existing VPlan to trees of combined
1595 /// VPInstructions.
1596 class VPlanSlp {
1597 private:
1598   enum class OpMode { Failed, Load, Opcode };
1599 
1600   /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1601   /// DenseMap keys.
1602   struct BundleDenseMapInfo {
1603     static SmallVector<VPValue *, 4> getEmptyKey() {
1604       return {reinterpret_cast<VPValue *>(-1)};
1605     }
1606 
1607     static SmallVector<VPValue *, 4> getTombstoneKey() {
1608       return {reinterpret_cast<VPValue *>(-2)};
1609     }
1610 
1611     static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1612       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1613     }
1614 
1615     static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1616                         const SmallVector<VPValue *, 4> &RHS) {
1617       return LHS == RHS;
1618     }
1619   };
1620 
1621   /// Mapping of values in the original VPlan to a combined VPInstruction.
1622   DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1623       BundleToCombined;
1624 
1625   VPInterleavedAccessInfo &IAI;
1626 
1627   /// Basic block to operate on. For now, only instructions in a single BB are
1628   /// considered.
1629   const VPBasicBlock &BB;
1630 
1631   /// Indicates whether we managed to combine all visited instructions or not.
1632   bool CompletelySLP = true;
1633 
1634   /// Width of the widest combined bundle in bits.
1635   unsigned WidestBundleBits = 0;
1636 
1637   using MultiNodeOpTy =
1638       typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1639 
1640   // Input operand bundles for the current multi node. Each multi node operand
1641   // bundle contains values not matching the multi node's opcode. They will
1642   // be reordered in reorderMultiNodeOps, once we completed building a
1643   // multi node.
1644   SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1645 
1646   /// Indicates whether we are building a multi node currently.
1647   bool MultiNodeActive = false;
1648 
1649   /// Check if we can vectorize Operands together.
1650   bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1651 
1652   /// Add combined instruction \p New for the bundle \p Operands.
1653   void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1654 
1655   /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1656   VPInstruction *markFailed();
1657 
1658   /// Reorder operands in the multi node to maximize sequential memory access
1659   /// and commutative operations.
1660   SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1661 
1662   /// Choose the best candidate to use for the lane after \p Last. The set of
1663   /// candidates to choose from are values with an opcode matching \p Last's
1664   /// or loads consecutive to \p Last.
1665   std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
1666                                        SmallPtrSetImpl<VPValue *> &Candidates,
1667                                        VPInterleavedAccessInfo &IAI);
1668 
1669   /// Print bundle \p Values to dbgs().
1670   void dumpBundle(ArrayRef<VPValue *> Values);
1671 
1672 public:
1673   VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1674 
1675   ~VPlanSlp() {
1676     for (auto &KV : BundleToCombined)
1677       delete KV.second;
1678   }
1679 
1680   /// Tries to build an SLP tree rooted at \p Operands and returns a
1681   /// VPInstruction combining \p Operands, if they can be combined.
1682   VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1683 
1684   /// Return the width of the widest combined bundle in bits.
1685   unsigned getWidestBundleBits() const { return WidestBundleBits; }
1686 
1687   /// Return true if all visited instruction can be combined.
1688   bool isCompletelySLP() const { return CompletelySLP; }
1689 };
1690 } // end namespace llvm
1691 
1692 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
1693