1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file contains the declarations of the Vectorization Plan base classes: 11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 12 /// VPBlockBase, together implementing a Hierarchical CFG; 13 /// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained 14 /// within VPBasicBlocks; 15 /// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that 16 /// also inherit from VPValue. 17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 18 /// instruction; 19 /// 5. The VPlan class holding a candidate for vectorization; 20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 21 /// These are documented in docs/VectorizationPlan.rst. 22 // 23 //===----------------------------------------------------------------------===// 24 25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 28 #include "VPlanAnalysis.h" 29 #include "VPlanValue.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/MapVector.h" 32 #include "llvm/ADT/SmallBitVector.h" 33 #include "llvm/ADT/SmallPtrSet.h" 34 #include "llvm/ADT/SmallVector.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/ADT/ilist.h" 37 #include "llvm/ADT/ilist_node.h" 38 #include "llvm/Analysis/IVDescriptors.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/VectorUtils.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/FMF.h" 43 #include "llvm/IR/Operator.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstddef> 47 #include <string> 48 49 namespace llvm { 50 51 class BasicBlock; 52 class DominatorTree; 53 class InnerLoopVectorizer; 54 class IRBuilderBase; 55 class LoopInfo; 56 class raw_ostream; 57 class RecurrenceDescriptor; 58 class SCEV; 59 class Type; 60 class VPBasicBlock; 61 class VPRegionBlock; 62 class VPlan; 63 class VPReplicateRecipe; 64 class VPlanSlp; 65 class Value; 66 class LoopVersioning; 67 68 namespace Intrinsic { 69 typedef unsigned ID; 70 } 71 72 /// Returns a calculation for the total number of elements for a given \p VF. 73 /// For fixed width vectors this value is a constant, whereas for scalable 74 /// vectors it is an expression determined at runtime. 75 Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF); 76 77 /// Return a value for Step multiplied by VF. 78 Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, 79 int64_t Step); 80 81 const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE, 82 Loop *CurLoop = nullptr); 83 84 /// A range of powers-of-2 vectorization factors with fixed start and 85 /// adjustable end. The range includes start and excludes end, e.g.,: 86 /// [1, 16) = {1, 2, 4, 8} 87 struct VFRange { 88 // A power of 2. 89 const ElementCount Start; 90 91 // A power of 2. If End <= Start range is empty. 92 ElementCount End; 93 94 bool isEmpty() const { 95 return End.getKnownMinValue() <= Start.getKnownMinValue(); 96 } 97 98 VFRange(const ElementCount &Start, const ElementCount &End) 99 : Start(Start), End(End) { 100 assert(Start.isScalable() == End.isScalable() && 101 "Both Start and End should have the same scalable flag"); 102 assert(isPowerOf2_32(Start.getKnownMinValue()) && 103 "Expected Start to be a power of 2"); 104 assert(isPowerOf2_32(End.getKnownMinValue()) && 105 "Expected End to be a power of 2"); 106 } 107 108 /// Iterator to iterate over vectorization factors in a VFRange. 109 class iterator 110 : public iterator_facade_base<iterator, std::forward_iterator_tag, 111 ElementCount> { 112 ElementCount VF; 113 114 public: 115 iterator(ElementCount VF) : VF(VF) {} 116 117 bool operator==(const iterator &Other) const { return VF == Other.VF; } 118 119 ElementCount operator*() const { return VF; } 120 121 iterator &operator++() { 122 VF *= 2; 123 return *this; 124 } 125 }; 126 127 iterator begin() { return iterator(Start); } 128 iterator end() { 129 assert(isPowerOf2_32(End.getKnownMinValue())); 130 return iterator(End); 131 } 132 }; 133 134 using VPlanPtr = std::unique_ptr<VPlan>; 135 136 /// In what follows, the term "input IR" refers to code that is fed into the 137 /// vectorizer whereas the term "output IR" refers to code that is generated by 138 /// the vectorizer. 139 140 /// VPLane provides a way to access lanes in both fixed width and scalable 141 /// vectors, where for the latter the lane index sometimes needs calculating 142 /// as a runtime expression. 143 class VPLane { 144 public: 145 /// Kind describes how to interpret Lane. 146 enum class Kind : uint8_t { 147 /// For First, Lane is the index into the first N elements of a 148 /// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>. 149 First, 150 /// For ScalableLast, Lane is the offset from the start of the last 151 /// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For 152 /// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of 153 /// 1 corresponds to `((vscale - 1) * N) + 1`, etc. 154 ScalableLast 155 }; 156 157 private: 158 /// in [0..VF) 159 unsigned Lane; 160 161 /// Indicates how the Lane should be interpreted, as described above. 162 Kind LaneKind; 163 164 public: 165 VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {} 166 167 static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); } 168 169 static VPLane getLastLaneForVF(const ElementCount &VF) { 170 unsigned LaneOffset = VF.getKnownMinValue() - 1; 171 Kind LaneKind; 172 if (VF.isScalable()) 173 // In this case 'LaneOffset' refers to the offset from the start of the 174 // last subvector with VF.getKnownMinValue() elements. 175 LaneKind = VPLane::Kind::ScalableLast; 176 else 177 LaneKind = VPLane::Kind::First; 178 return VPLane(LaneOffset, LaneKind); 179 } 180 181 /// Returns a compile-time known value for the lane index and asserts if the 182 /// lane can only be calculated at runtime. 183 unsigned getKnownLane() const { 184 assert(LaneKind == Kind::First); 185 return Lane; 186 } 187 188 /// Returns an expression describing the lane index that can be used at 189 /// runtime. 190 Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const; 191 192 /// Returns the Kind of lane offset. 193 Kind getKind() const { return LaneKind; } 194 195 /// Returns true if this is the first lane of the whole vector. 196 bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; } 197 198 /// Maps the lane to a cache index based on \p VF. 199 unsigned mapToCacheIndex(const ElementCount &VF) const { 200 switch (LaneKind) { 201 case VPLane::Kind::ScalableLast: 202 assert(VF.isScalable() && Lane < VF.getKnownMinValue()); 203 return VF.getKnownMinValue() + Lane; 204 default: 205 assert(Lane < VF.getKnownMinValue()); 206 return Lane; 207 } 208 } 209 210 /// Returns the maxmimum number of lanes that we are able to consider 211 /// caching for \p VF. 212 static unsigned getNumCachedLanes(const ElementCount &VF) { 213 return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1); 214 } 215 }; 216 217 /// VPIteration represents a single point in the iteration space of the output 218 /// (vectorized and/or unrolled) IR loop. 219 struct VPIteration { 220 /// in [0..UF) 221 unsigned Part; 222 223 VPLane Lane; 224 225 VPIteration(unsigned Part, unsigned Lane, 226 VPLane::Kind Kind = VPLane::Kind::First) 227 : Part(Part), Lane(Lane, Kind) {} 228 229 VPIteration(unsigned Part, const VPLane &Lane) : Part(Part), Lane(Lane) {} 230 231 bool isFirstIteration() const { return Part == 0 && Lane.isFirstLane(); } 232 }; 233 234 /// VPTransformState holds information passed down when "executing" a VPlan, 235 /// needed for generating the output IR. 236 struct VPTransformState { 237 VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 238 DominatorTree *DT, IRBuilderBase &Builder, 239 InnerLoopVectorizer *ILV, VPlan *Plan, LLVMContext &Ctx) 240 : VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan), 241 LVer(nullptr), TypeAnalysis(Ctx) {} 242 243 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 244 ElementCount VF; 245 unsigned UF; 246 247 /// Hold the indices to generate specific scalar instructions. Null indicates 248 /// that all instances are to be generated, using either scalar or vector 249 /// instructions. 250 std::optional<VPIteration> Instance; 251 252 struct DataState { 253 /// A type for vectorized values in the new loop. Each value from the 254 /// original loop, when vectorized, is represented by UF vector values in 255 /// the new unrolled loop, where UF is the unroll factor. 256 typedef SmallVector<Value *, 2> PerPartValuesTy; 257 258 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 259 260 using ScalarsPerPartValuesTy = SmallVector<SmallVector<Value *, 4>, 2>; 261 DenseMap<VPValue *, ScalarsPerPartValuesTy> PerPartScalars; 262 } Data; 263 264 /// Get the generated Value for a given VPValue and a given Part. Note that 265 /// as some Defs are still created by ILV and managed in its ValueMap, this 266 /// method will delegate the call to ILV in such cases in order to provide 267 /// callers a consistent API. 268 /// \see set. 269 Value *get(VPValue *Def, unsigned Part); 270 271 /// Get the generated Value for a given VPValue and given Part and Lane. 272 Value *get(VPValue *Def, const VPIteration &Instance); 273 274 bool hasVectorValue(VPValue *Def, unsigned Part) { 275 auto I = Data.PerPartOutput.find(Def); 276 return I != Data.PerPartOutput.end() && Part < I->second.size() && 277 I->second[Part]; 278 } 279 280 bool hasScalarValue(VPValue *Def, VPIteration Instance) { 281 auto I = Data.PerPartScalars.find(Def); 282 if (I == Data.PerPartScalars.end()) 283 return false; 284 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 285 return Instance.Part < I->second.size() && 286 CacheIdx < I->second[Instance.Part].size() && 287 I->second[Instance.Part][CacheIdx]; 288 } 289 290 /// Set the generated Value for a given VPValue and a given Part. 291 void set(VPValue *Def, Value *V, unsigned Part) { 292 if (!Data.PerPartOutput.count(Def)) { 293 DataState::PerPartValuesTy Entry(UF); 294 Data.PerPartOutput[Def] = Entry; 295 } 296 Data.PerPartOutput[Def][Part] = V; 297 } 298 /// Reset an existing vector value for \p Def and a given \p Part. 299 void reset(VPValue *Def, Value *V, unsigned Part) { 300 auto Iter = Data.PerPartOutput.find(Def); 301 assert(Iter != Data.PerPartOutput.end() && 302 "need to overwrite existing value"); 303 Iter->second[Part] = V; 304 } 305 306 /// Set the generated scalar \p V for \p Def and the given \p Instance. 307 void set(VPValue *Def, Value *V, const VPIteration &Instance) { 308 auto Iter = Data.PerPartScalars.insert({Def, {}}); 309 auto &PerPartVec = Iter.first->second; 310 while (PerPartVec.size() <= Instance.Part) 311 PerPartVec.emplace_back(); 312 auto &Scalars = PerPartVec[Instance.Part]; 313 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 314 while (Scalars.size() <= CacheIdx) 315 Scalars.push_back(nullptr); 316 assert(!Scalars[CacheIdx] && "should overwrite existing value"); 317 Scalars[CacheIdx] = V; 318 } 319 320 /// Reset an existing scalar value for \p Def and a given \p Instance. 321 void reset(VPValue *Def, Value *V, const VPIteration &Instance) { 322 auto Iter = Data.PerPartScalars.find(Def); 323 assert(Iter != Data.PerPartScalars.end() && 324 "need to overwrite existing value"); 325 assert(Instance.Part < Iter->second.size() && 326 "need to overwrite existing value"); 327 unsigned CacheIdx = Instance.Lane.mapToCacheIndex(VF); 328 assert(CacheIdx < Iter->second[Instance.Part].size() && 329 "need to overwrite existing value"); 330 Iter->second[Instance.Part][CacheIdx] = V; 331 } 332 333 /// Add additional metadata to \p To that was not present on \p Orig. 334 /// 335 /// Currently this is used to add the noalias annotations based on the 336 /// inserted memchecks. Use this for instructions that are *cloned* into the 337 /// vector loop. 338 void addNewMetadata(Instruction *To, const Instruction *Orig); 339 340 /// Add metadata from one instruction to another. 341 /// 342 /// This includes both the original MDs from \p From and additional ones (\see 343 /// addNewMetadata). Use this for *newly created* instructions in the vector 344 /// loop. 345 void addMetadata(Instruction *To, Instruction *From); 346 347 /// Similar to the previous function but it adds the metadata to a 348 /// vector of instructions. 349 void addMetadata(ArrayRef<Value *> To, Instruction *From); 350 351 /// Set the debug location in the builder using the debug location \p DL. 352 void setDebugLocFrom(DebugLoc DL); 353 354 /// Construct the vector value of a scalarized value \p V one lane at a time. 355 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance); 356 357 /// Hold state information used when constructing the CFG of the output IR, 358 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 359 struct CFGState { 360 /// The previous VPBasicBlock visited. Initially set to null. 361 VPBasicBlock *PrevVPBB = nullptr; 362 363 /// The previous IR BasicBlock created or used. Initially set to the new 364 /// header BasicBlock. 365 BasicBlock *PrevBB = nullptr; 366 367 /// The last IR BasicBlock in the output IR. Set to the exit block of the 368 /// vector loop. 369 BasicBlock *ExitBB = nullptr; 370 371 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 372 /// of replication, maps the BasicBlock of the last replica created. 373 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 374 375 CFGState() = default; 376 377 /// Returns the BasicBlock* mapped to the pre-header of the loop region 378 /// containing \p R. 379 BasicBlock *getPreheaderBBFor(VPRecipeBase *R); 380 } CFG; 381 382 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 383 LoopInfo *LI; 384 385 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 386 DominatorTree *DT; 387 388 /// Hold a reference to the IRBuilder used to generate output IR code. 389 IRBuilderBase &Builder; 390 391 VPValue2ValueTy VPValue2Value; 392 393 /// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF). 394 Value *CanonicalIV = nullptr; 395 396 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 397 InnerLoopVectorizer *ILV; 398 399 /// Pointer to the VPlan code is generated for. 400 VPlan *Plan; 401 402 /// The loop object for the current parent region, or nullptr. 403 Loop *CurrentVectorLoop = nullptr; 404 405 /// LoopVersioning. It's only set up (non-null) if memchecks were 406 /// used. 407 /// 408 /// This is currently only used to add no-alias metadata based on the 409 /// memchecks. The actually versioning is performed manually. 410 LoopVersioning *LVer = nullptr; 411 412 /// Map SCEVs to their expanded values. Populated when executing 413 /// VPExpandSCEVRecipes. 414 DenseMap<const SCEV *, Value *> ExpandedSCEVs; 415 416 /// VPlan-based type analysis. 417 VPTypeAnalysis TypeAnalysis; 418 }; 419 420 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 421 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 422 class VPBlockBase { 423 friend class VPBlockUtils; 424 425 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 426 427 /// An optional name for the block. 428 std::string Name; 429 430 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 431 /// it is a topmost VPBlockBase. 432 VPRegionBlock *Parent = nullptr; 433 434 /// List of predecessor blocks. 435 SmallVector<VPBlockBase *, 1> Predecessors; 436 437 /// List of successor blocks. 438 SmallVector<VPBlockBase *, 1> Successors; 439 440 /// VPlan containing the block. Can only be set on the entry block of the 441 /// plan. 442 VPlan *Plan = nullptr; 443 444 /// Add \p Successor as the last successor to this block. 445 void appendSuccessor(VPBlockBase *Successor) { 446 assert(Successor && "Cannot add nullptr successor!"); 447 Successors.push_back(Successor); 448 } 449 450 /// Add \p Predecessor as the last predecessor to this block. 451 void appendPredecessor(VPBlockBase *Predecessor) { 452 assert(Predecessor && "Cannot add nullptr predecessor!"); 453 Predecessors.push_back(Predecessor); 454 } 455 456 /// Remove \p Predecessor from the predecessors of this block. 457 void removePredecessor(VPBlockBase *Predecessor) { 458 auto Pos = find(Predecessors, Predecessor); 459 assert(Pos && "Predecessor does not exist"); 460 Predecessors.erase(Pos); 461 } 462 463 /// Remove \p Successor from the successors of this block. 464 void removeSuccessor(VPBlockBase *Successor) { 465 auto Pos = find(Successors, Successor); 466 assert(Pos && "Successor does not exist"); 467 Successors.erase(Pos); 468 } 469 470 protected: 471 VPBlockBase(const unsigned char SC, const std::string &N) 472 : SubclassID(SC), Name(N) {} 473 474 public: 475 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 476 /// that are actually instantiated. Values of this enumeration are kept in the 477 /// SubclassID field of the VPBlockBase objects. They are used for concrete 478 /// type identification. 479 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 480 481 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 482 483 virtual ~VPBlockBase() = default; 484 485 const std::string &getName() const { return Name; } 486 487 void setName(const Twine &newName) { Name = newName.str(); } 488 489 /// \return an ID for the concrete type of this object. 490 /// This is used to implement the classof checks. This should not be used 491 /// for any other purpose, as the values may change as LLVM evolves. 492 unsigned getVPBlockID() const { return SubclassID; } 493 494 VPRegionBlock *getParent() { return Parent; } 495 const VPRegionBlock *getParent() const { return Parent; } 496 497 /// \return A pointer to the plan containing the current block. 498 VPlan *getPlan(); 499 const VPlan *getPlan() const; 500 501 /// Sets the pointer of the plan containing the block. The block must be the 502 /// entry block into the VPlan. 503 void setPlan(VPlan *ParentPlan); 504 505 void setParent(VPRegionBlock *P) { Parent = P; } 506 507 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 508 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 509 /// VPBlockBase is a VPBasicBlock, it is returned. 510 const VPBasicBlock *getEntryBasicBlock() const; 511 VPBasicBlock *getEntryBasicBlock(); 512 513 /// \return the VPBasicBlock that is the exiting this VPBlockBase, 514 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 515 /// VPBlockBase is a VPBasicBlock, it is returned. 516 const VPBasicBlock *getExitingBasicBlock() const; 517 VPBasicBlock *getExitingBasicBlock(); 518 519 const VPBlocksTy &getSuccessors() const { return Successors; } 520 VPBlocksTy &getSuccessors() { return Successors; } 521 522 iterator_range<VPBlockBase **> successors() { return Successors; } 523 524 const VPBlocksTy &getPredecessors() const { return Predecessors; } 525 VPBlocksTy &getPredecessors() { return Predecessors; } 526 527 /// \return the successor of this VPBlockBase if it has a single successor. 528 /// Otherwise return a null pointer. 529 VPBlockBase *getSingleSuccessor() const { 530 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 531 } 532 533 /// \return the predecessor of this VPBlockBase if it has a single 534 /// predecessor. Otherwise return a null pointer. 535 VPBlockBase *getSinglePredecessor() const { 536 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 537 } 538 539 size_t getNumSuccessors() const { return Successors.size(); } 540 size_t getNumPredecessors() const { return Predecessors.size(); } 541 542 /// An Enclosing Block of a block B is any block containing B, including B 543 /// itself. \return the closest enclosing block starting from "this", which 544 /// has successors. \return the root enclosing block if all enclosing blocks 545 /// have no successors. 546 VPBlockBase *getEnclosingBlockWithSuccessors(); 547 548 /// \return the closest enclosing block starting from "this", which has 549 /// predecessors. \return the root enclosing block if all enclosing blocks 550 /// have no predecessors. 551 VPBlockBase *getEnclosingBlockWithPredecessors(); 552 553 /// \return the successors either attached directly to this VPBlockBase or, if 554 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 555 /// successors of its own, search recursively for the first enclosing 556 /// VPRegionBlock that has successors and return them. If no such 557 /// VPRegionBlock exists, return the (empty) successors of the topmost 558 /// VPBlockBase reached. 559 const VPBlocksTy &getHierarchicalSuccessors() { 560 return getEnclosingBlockWithSuccessors()->getSuccessors(); 561 } 562 563 /// \return the hierarchical successor of this VPBlockBase if it has a single 564 /// hierarchical successor. Otherwise return a null pointer. 565 VPBlockBase *getSingleHierarchicalSuccessor() { 566 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 567 } 568 569 /// \return the predecessors either attached directly to this VPBlockBase or, 570 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 571 /// predecessors of its own, search recursively for the first enclosing 572 /// VPRegionBlock that has predecessors and return them. If no such 573 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 574 /// VPBlockBase reached. 575 const VPBlocksTy &getHierarchicalPredecessors() { 576 return getEnclosingBlockWithPredecessors()->getPredecessors(); 577 } 578 579 /// \return the hierarchical predecessor of this VPBlockBase if it has a 580 /// single hierarchical predecessor. Otherwise return a null pointer. 581 VPBlockBase *getSingleHierarchicalPredecessor() { 582 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 583 } 584 585 /// Set a given VPBlockBase \p Successor as the single successor of this 586 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 587 /// This VPBlockBase must have no successors. 588 void setOneSuccessor(VPBlockBase *Successor) { 589 assert(Successors.empty() && "Setting one successor when others exist."); 590 assert(Successor->getParent() == getParent() && 591 "connected blocks must have the same parent"); 592 appendSuccessor(Successor); 593 } 594 595 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 596 /// successors of this VPBlockBase. This VPBlockBase is not added as 597 /// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no 598 /// successors. 599 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) { 600 assert(Successors.empty() && "Setting two successors when others exist."); 601 appendSuccessor(IfTrue); 602 appendSuccessor(IfFalse); 603 } 604 605 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 606 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 607 /// as successor of any VPBasicBlock in \p NewPreds. 608 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 609 assert(Predecessors.empty() && "Block predecessors already set."); 610 for (auto *Pred : NewPreds) 611 appendPredecessor(Pred); 612 } 613 614 /// Remove all the predecessor of this block. 615 void clearPredecessors() { Predecessors.clear(); } 616 617 /// Remove all the successors of this block. 618 void clearSuccessors() { Successors.clear(); } 619 620 /// The method which generates the output IR that correspond to this 621 /// VPBlockBase, thereby "executing" the VPlan. 622 virtual void execute(VPTransformState *State) = 0; 623 624 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 625 static void deleteCFG(VPBlockBase *Entry); 626 627 /// Return true if it is legal to hoist instructions into this block. 628 bool isLegalToHoistInto() { 629 // There are currently no constraints that prevent an instruction to be 630 // hoisted into a VPBlockBase. 631 return true; 632 } 633 634 /// Replace all operands of VPUsers in the block with \p NewValue and also 635 /// replaces all uses of VPValues defined in the block with NewValue. 636 virtual void dropAllReferences(VPValue *NewValue) = 0; 637 638 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 639 void printAsOperand(raw_ostream &OS, bool PrintType) const { 640 OS << getName(); 641 } 642 643 /// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines 644 /// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using 645 /// consequtive numbers. 646 /// 647 /// Note that the numbering is applied to the whole VPlan, so printing 648 /// individual blocks is consistent with the whole VPlan printing. 649 virtual void print(raw_ostream &O, const Twine &Indent, 650 VPSlotTracker &SlotTracker) const = 0; 651 652 /// Print plain-text dump of this VPlan to \p O. 653 void print(raw_ostream &O) const { 654 VPSlotTracker SlotTracker(getPlan()); 655 print(O, "", SlotTracker); 656 } 657 658 /// Print the successors of this block to \p O, prefixing all lines with \p 659 /// Indent. 660 void printSuccessors(raw_ostream &O, const Twine &Indent) const; 661 662 /// Dump this VPBlockBase to dbgs(). 663 LLVM_DUMP_METHOD void dump() const { print(dbgs()); } 664 #endif 665 }; 666 667 /// A value that is used outside the VPlan. The operand of the user needs to be 668 /// added to the associated LCSSA phi node. 669 class VPLiveOut : public VPUser { 670 PHINode *Phi; 671 672 public: 673 VPLiveOut(PHINode *Phi, VPValue *Op) 674 : VPUser({Op}, VPUser::VPUserID::LiveOut), Phi(Phi) {} 675 676 static inline bool classof(const VPUser *U) { 677 return U->getVPUserID() == VPUser::VPUserID::LiveOut; 678 } 679 680 /// Fixup the wrapped LCSSA phi node in the unique exit block. This simply 681 /// means we need to add the appropriate incoming value from the middle 682 /// block as exiting edges from the scalar epilogue loop (if present) are 683 /// already in place, and we exit the vector loop exclusively to the middle 684 /// block. 685 void fixPhi(VPlan &Plan, VPTransformState &State); 686 687 /// Returns true if the VPLiveOut uses scalars of operand \p Op. 688 bool usesScalars(const VPValue *Op) const override { 689 assert(is_contained(operands(), Op) && 690 "Op must be an operand of the recipe"); 691 return true; 692 } 693 694 PHINode *getPhi() const { return Phi; } 695 696 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 697 /// Print the VPLiveOut to \p O. 698 void print(raw_ostream &O, VPSlotTracker &SlotTracker) const; 699 #endif 700 }; 701 702 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 703 /// instructions. VPRecipeBase owns the VPValues it defines through VPDef 704 /// and is responsible for deleting its defined values. Single-value 705 /// recipes must inherit from VPSingleDef instead of inheriting from both 706 /// VPRecipeBase and VPValue separately. 707 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>, 708 public VPDef, 709 public VPUser { 710 friend VPBasicBlock; 711 friend class VPBlockUtils; 712 713 /// Each VPRecipe belongs to a single VPBasicBlock. 714 VPBasicBlock *Parent = nullptr; 715 716 /// The debug location for the recipe. 717 DebugLoc DL; 718 719 public: 720 VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands, 721 DebugLoc DL = {}) 722 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {} 723 724 template <typename IterT> 725 VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands, 726 DebugLoc DL = {}) 727 : VPDef(SC), VPUser(Operands, VPUser::VPUserID::Recipe), DL(DL) {} 728 virtual ~VPRecipeBase() = default; 729 730 /// \return the VPBasicBlock which this VPRecipe belongs to. 731 VPBasicBlock *getParent() { return Parent; } 732 const VPBasicBlock *getParent() const { return Parent; } 733 734 /// The method which generates the output IR instructions that correspond to 735 /// this VPRecipe, thereby "executing" the VPlan. 736 virtual void execute(VPTransformState &State) = 0; 737 738 /// Insert an unlinked recipe into a basic block immediately before 739 /// the specified recipe. 740 void insertBefore(VPRecipeBase *InsertPos); 741 /// Insert an unlinked recipe into \p BB immediately before the insertion 742 /// point \p IP; 743 void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP); 744 745 /// Insert an unlinked Recipe into a basic block immediately after 746 /// the specified Recipe. 747 void insertAfter(VPRecipeBase *InsertPos); 748 749 /// Unlink this recipe from its current VPBasicBlock and insert it into 750 /// the VPBasicBlock that MovePos lives in, right after MovePos. 751 void moveAfter(VPRecipeBase *MovePos); 752 753 /// Unlink this recipe and insert into BB before I. 754 /// 755 /// \pre I is a valid iterator into BB. 756 void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I); 757 758 /// This method unlinks 'this' from the containing basic block, but does not 759 /// delete it. 760 void removeFromParent(); 761 762 /// This method unlinks 'this' from the containing basic block and deletes it. 763 /// 764 /// \returns an iterator pointing to the element after the erased one 765 iplist<VPRecipeBase>::iterator eraseFromParent(); 766 767 /// Method to support type inquiry through isa, cast, and dyn_cast. 768 static inline bool classof(const VPDef *D) { 769 // All VPDefs are also VPRecipeBases. 770 return true; 771 } 772 773 static inline bool classof(const VPUser *U) { 774 return U->getVPUserID() == VPUser::VPUserID::Recipe; 775 } 776 777 /// Returns true if the recipe may have side-effects. 778 bool mayHaveSideEffects() const; 779 780 /// Returns true for PHI-like recipes. 781 bool isPhi() const { 782 return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC; 783 } 784 785 /// Returns true if the recipe may read from memory. 786 bool mayReadFromMemory() const; 787 788 /// Returns true if the recipe may write to memory. 789 bool mayWriteToMemory() const; 790 791 /// Returns true if the recipe may read from or write to memory. 792 bool mayReadOrWriteMemory() const { 793 return mayReadFromMemory() || mayWriteToMemory(); 794 } 795 796 /// Returns the debug location of the recipe. 797 DebugLoc getDebugLoc() const { return DL; } 798 }; 799 800 // Helper macro to define common classof implementations for recipes. 801 #define VP_CLASSOF_IMPL(VPDefID) \ 802 static inline bool classof(const VPDef *D) { \ 803 return D->getVPDefID() == VPDefID; \ 804 } \ 805 static inline bool classof(const VPValue *V) { \ 806 auto *R = V->getDefiningRecipe(); \ 807 return R && R->getVPDefID() == VPDefID; \ 808 } \ 809 static inline bool classof(const VPUser *U) { \ 810 auto *R = dyn_cast<VPRecipeBase>(U); \ 811 return R && R->getVPDefID() == VPDefID; \ 812 } \ 813 static inline bool classof(const VPRecipeBase *R) { \ 814 return R->getVPDefID() == VPDefID; \ 815 } \ 816 static inline bool classof(const VPSingleDefRecipe *R) { \ 817 return R->getVPDefID() == VPDefID; \ 818 } 819 820 /// VPSingleDef is a base class for recipes for modeling a sequence of one or 821 /// more output IR that define a single result VPValue. 822 /// Note that VPRecipeBase must be inherited from before VPValue. 823 class VPSingleDefRecipe : public VPRecipeBase, public VPValue { 824 public: 825 template <typename IterT> 826 VPSingleDefRecipe(const unsigned char SC, IterT Operands, DebugLoc DL = {}) 827 : VPRecipeBase(SC, Operands, DL), VPValue(this) {} 828 829 VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands, 830 DebugLoc DL = {}) 831 : VPRecipeBase(SC, Operands, DL), VPValue(this) {} 832 833 template <typename IterT> 834 VPSingleDefRecipe(const unsigned char SC, IterT Operands, Value *UV, 835 DebugLoc DL = {}) 836 : VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {} 837 838 static inline bool classof(const VPRecipeBase *R) { 839 switch (R->getVPDefID()) { 840 case VPRecipeBase::VPDerivedIVSC: 841 case VPRecipeBase::VPExpandSCEVSC: 842 case VPRecipeBase::VPInstructionSC: 843 case VPRecipeBase::VPReductionSC: 844 case VPRecipeBase::VPReplicateSC: 845 case VPRecipeBase::VPScalarIVStepsSC: 846 case VPRecipeBase::VPVectorPointerSC: 847 case VPRecipeBase::VPWidenCallSC: 848 case VPRecipeBase::VPWidenCanonicalIVSC: 849 case VPRecipeBase::VPWidenCastSC: 850 case VPRecipeBase::VPWidenGEPSC: 851 case VPRecipeBase::VPWidenSC: 852 case VPRecipeBase::VPWidenSelectSC: 853 case VPRecipeBase::VPBlendSC: 854 case VPRecipeBase::VPPredInstPHISC: 855 case VPRecipeBase::VPCanonicalIVPHISC: 856 case VPRecipeBase::VPActiveLaneMaskPHISC: 857 case VPRecipeBase::VPFirstOrderRecurrencePHISC: 858 case VPRecipeBase::VPWidenPHISC: 859 case VPRecipeBase::VPWidenIntOrFpInductionSC: 860 case VPRecipeBase::VPWidenPointerInductionSC: 861 case VPRecipeBase::VPReductionPHISC: 862 return true; 863 case VPRecipeBase::VPInterleaveSC: 864 case VPRecipeBase::VPBranchOnMaskSC: 865 case VPRecipeBase::VPWidenMemoryInstructionSC: 866 // TODO: Widened stores don't define a value, but widened loads do. Split 867 // the recipes to be able to make widened loads VPSingleDefRecipes. 868 return false; 869 } 870 llvm_unreachable("Unhandled VPDefID"); 871 } 872 873 static inline bool classof(const VPUser *U) { 874 auto *R = dyn_cast<VPRecipeBase>(U); 875 return R && classof(R); 876 } 877 878 /// Returns the underlying instruction. 879 Instruction *getUnderlyingInstr() { 880 return cast<Instruction>(getUnderlyingValue()); 881 } 882 const Instruction *getUnderlyingInstr() const { 883 return cast<Instruction>(getUnderlyingValue()); 884 } 885 }; 886 887 /// Class to record LLVM IR flag for a recipe along with it. 888 class VPRecipeWithIRFlags : public VPSingleDefRecipe { 889 enum class OperationType : unsigned char { 890 Cmp, 891 OverflowingBinOp, 892 DisjointOp, 893 PossiblyExactOp, 894 GEPOp, 895 FPMathOp, 896 NonNegOp, 897 Other 898 }; 899 900 public: 901 struct WrapFlagsTy { 902 char HasNUW : 1; 903 char HasNSW : 1; 904 905 WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {} 906 }; 907 908 protected: 909 struct GEPFlagsTy { 910 char IsInBounds : 1; 911 GEPFlagsTy(bool IsInBounds) : IsInBounds(IsInBounds) {} 912 }; 913 914 private: 915 struct DisjointFlagsTy { 916 char IsDisjoint : 1; 917 }; 918 struct ExactFlagsTy { 919 char IsExact : 1; 920 }; 921 struct NonNegFlagsTy { 922 char NonNeg : 1; 923 }; 924 struct FastMathFlagsTy { 925 char AllowReassoc : 1; 926 char NoNaNs : 1; 927 char NoInfs : 1; 928 char NoSignedZeros : 1; 929 char AllowReciprocal : 1; 930 char AllowContract : 1; 931 char ApproxFunc : 1; 932 933 FastMathFlagsTy(const FastMathFlags &FMF); 934 }; 935 936 OperationType OpType; 937 938 union { 939 CmpInst::Predicate CmpPredicate; 940 WrapFlagsTy WrapFlags; 941 DisjointFlagsTy DisjointFlags; 942 ExactFlagsTy ExactFlags; 943 GEPFlagsTy GEPFlags; 944 NonNegFlagsTy NonNegFlags; 945 FastMathFlagsTy FMFs; 946 unsigned AllFlags; 947 }; 948 949 public: 950 template <typename IterT> 951 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {}) 952 : VPSingleDefRecipe(SC, Operands, DL) { 953 OpType = OperationType::Other; 954 AllFlags = 0; 955 } 956 957 template <typename IterT> 958 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I) 959 : VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) { 960 if (auto *Op = dyn_cast<CmpInst>(&I)) { 961 OpType = OperationType::Cmp; 962 CmpPredicate = Op->getPredicate(); 963 } else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) { 964 OpType = OperationType::DisjointOp; 965 DisjointFlags.IsDisjoint = Op->isDisjoint(); 966 } else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) { 967 OpType = OperationType::OverflowingBinOp; 968 WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()}; 969 } else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) { 970 OpType = OperationType::PossiblyExactOp; 971 ExactFlags.IsExact = Op->isExact(); 972 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 973 OpType = OperationType::GEPOp; 974 GEPFlags.IsInBounds = GEP->isInBounds(); 975 } else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) { 976 OpType = OperationType::NonNegOp; 977 NonNegFlags.NonNeg = PNNI->hasNonNeg(); 978 } else if (auto *Op = dyn_cast<FPMathOperator>(&I)) { 979 OpType = OperationType::FPMathOp; 980 FMFs = Op->getFastMathFlags(); 981 } else { 982 OpType = OperationType::Other; 983 AllFlags = 0; 984 } 985 } 986 987 template <typename IterT> 988 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 989 CmpInst::Predicate Pred, DebugLoc DL = {}) 990 : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp), 991 CmpPredicate(Pred) {} 992 993 template <typename IterT> 994 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 995 WrapFlagsTy WrapFlags, DebugLoc DL = {}) 996 : VPSingleDefRecipe(SC, Operands, DL), 997 OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {} 998 999 template <typename IterT> 1000 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 1001 FastMathFlags FMFs, DebugLoc DL = {}) 1002 : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp), 1003 FMFs(FMFs) {} 1004 1005 protected: 1006 template <typename IterT> 1007 VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, 1008 GEPFlagsTy GEPFlags, DebugLoc DL = {}) 1009 : VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp), 1010 GEPFlags(GEPFlags) {} 1011 1012 public: 1013 static inline bool classof(const VPRecipeBase *R) { 1014 return R->getVPDefID() == VPRecipeBase::VPInstructionSC || 1015 R->getVPDefID() == VPRecipeBase::VPWidenSC || 1016 R->getVPDefID() == VPRecipeBase::VPWidenGEPSC || 1017 R->getVPDefID() == VPRecipeBase::VPWidenCastSC || 1018 R->getVPDefID() == VPRecipeBase::VPReplicateSC || 1019 R->getVPDefID() == VPRecipeBase::VPVectorPointerSC; 1020 } 1021 1022 /// Drop all poison-generating flags. 1023 void dropPoisonGeneratingFlags() { 1024 // NOTE: This needs to be kept in-sync with 1025 // Instruction::dropPoisonGeneratingFlags. 1026 switch (OpType) { 1027 case OperationType::OverflowingBinOp: 1028 WrapFlags.HasNUW = false; 1029 WrapFlags.HasNSW = false; 1030 break; 1031 case OperationType::DisjointOp: 1032 DisjointFlags.IsDisjoint = false; 1033 break; 1034 case OperationType::PossiblyExactOp: 1035 ExactFlags.IsExact = false; 1036 break; 1037 case OperationType::GEPOp: 1038 GEPFlags.IsInBounds = false; 1039 break; 1040 case OperationType::FPMathOp: 1041 FMFs.NoNaNs = false; 1042 FMFs.NoInfs = false; 1043 break; 1044 case OperationType::NonNegOp: 1045 NonNegFlags.NonNeg = false; 1046 break; 1047 case OperationType::Cmp: 1048 case OperationType::Other: 1049 break; 1050 } 1051 } 1052 1053 /// Set the IR flags for \p I. 1054 void setFlags(Instruction *I) const { 1055 switch (OpType) { 1056 case OperationType::OverflowingBinOp: 1057 I->setHasNoUnsignedWrap(WrapFlags.HasNUW); 1058 I->setHasNoSignedWrap(WrapFlags.HasNSW); 1059 break; 1060 case OperationType::DisjointOp: 1061 cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint); 1062 break; 1063 case OperationType::PossiblyExactOp: 1064 I->setIsExact(ExactFlags.IsExact); 1065 break; 1066 case OperationType::GEPOp: 1067 cast<GetElementPtrInst>(I)->setIsInBounds(GEPFlags.IsInBounds); 1068 break; 1069 case OperationType::FPMathOp: 1070 I->setHasAllowReassoc(FMFs.AllowReassoc); 1071 I->setHasNoNaNs(FMFs.NoNaNs); 1072 I->setHasNoInfs(FMFs.NoInfs); 1073 I->setHasNoSignedZeros(FMFs.NoSignedZeros); 1074 I->setHasAllowReciprocal(FMFs.AllowReciprocal); 1075 I->setHasAllowContract(FMFs.AllowContract); 1076 I->setHasApproxFunc(FMFs.ApproxFunc); 1077 break; 1078 case OperationType::NonNegOp: 1079 I->setNonNeg(NonNegFlags.NonNeg); 1080 break; 1081 case OperationType::Cmp: 1082 case OperationType::Other: 1083 break; 1084 } 1085 } 1086 1087 CmpInst::Predicate getPredicate() const { 1088 assert(OpType == OperationType::Cmp && 1089 "recipe doesn't have a compare predicate"); 1090 return CmpPredicate; 1091 } 1092 1093 bool isInBounds() const { 1094 assert(OpType == OperationType::GEPOp && 1095 "recipe doesn't have inbounds flag"); 1096 return GEPFlags.IsInBounds; 1097 } 1098 1099 /// Returns true if the recipe has fast-math flags. 1100 bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; } 1101 1102 FastMathFlags getFastMathFlags() const; 1103 1104 bool hasNoUnsignedWrap() const { 1105 assert(OpType == OperationType::OverflowingBinOp && 1106 "recipe doesn't have a NUW flag"); 1107 return WrapFlags.HasNUW; 1108 } 1109 1110 bool hasNoSignedWrap() const { 1111 assert(OpType == OperationType::OverflowingBinOp && 1112 "recipe doesn't have a NSW flag"); 1113 return WrapFlags.HasNSW; 1114 } 1115 1116 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1117 void printFlags(raw_ostream &O) const; 1118 #endif 1119 }; 1120 1121 /// This is a concrete Recipe that models a single VPlan-level instruction. 1122 /// While as any Recipe it may generate a sequence of IR instructions when 1123 /// executed, these instructions would always form a single-def expression as 1124 /// the VPInstruction is also a single def-use vertex. 1125 class VPInstruction : public VPRecipeWithIRFlags { 1126 friend class VPlanSlp; 1127 1128 public: 1129 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 1130 enum { 1131 FirstOrderRecurrenceSplice = 1132 Instruction::OtherOpsEnd + 1, // Combines the incoming and previous 1133 // values of a first-order recurrence. 1134 Not, 1135 SLPLoad, 1136 SLPStore, 1137 ActiveLaneMask, 1138 CalculateTripCountMinusVF, 1139 // Increment the canonical IV separately for each unrolled part. 1140 CanonicalIVIncrementForPart, 1141 BranchOnCount, 1142 BranchOnCond, 1143 ComputeReductionResult, 1144 }; 1145 1146 private: 1147 typedef unsigned char OpcodeTy; 1148 OpcodeTy Opcode; 1149 1150 /// An optional name that can be used for the generated IR instruction. 1151 const std::string Name; 1152 1153 /// Utility method serving execute(): generates a single instance of the 1154 /// modeled instruction. \returns the generated value for \p Part. 1155 /// In some cases an existing value is returned rather than a generated 1156 /// one. 1157 Value *generateInstruction(VPTransformState &State, unsigned Part); 1158 1159 #if !defined(NDEBUG) 1160 /// Return true if the VPInstruction is a floating point math operation, i.e. 1161 /// has fast-math flags. 1162 bool isFPMathOp() const; 1163 #endif 1164 1165 protected: 1166 void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); } 1167 1168 public: 1169 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL, 1170 const Twine &Name = "") 1171 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL), 1172 Opcode(Opcode), Name(Name.str()) {} 1173 1174 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 1175 DebugLoc DL = {}, const Twine &Name = "") 1176 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {} 1177 1178 VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A, 1179 VPValue *B, DebugLoc DL = {}, const Twine &Name = ""); 1180 1181 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 1182 WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "") 1183 : VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL), 1184 Opcode(Opcode), Name(Name.str()) {} 1185 1186 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands, 1187 FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = ""); 1188 1189 VP_CLASSOF_IMPL(VPDef::VPInstructionSC) 1190 1191 unsigned getOpcode() const { return Opcode; } 1192 1193 /// Generate the instruction. 1194 /// TODO: We currently execute only per-part unless a specific instance is 1195 /// provided. 1196 void execute(VPTransformState &State) override; 1197 1198 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1199 /// Print the VPInstruction to \p O. 1200 void print(raw_ostream &O, const Twine &Indent, 1201 VPSlotTracker &SlotTracker) const override; 1202 1203 /// Print the VPInstruction to dbgs() (for debugging). 1204 LLVM_DUMP_METHOD void dump() const; 1205 #endif 1206 1207 /// Return true if this instruction may modify memory. 1208 bool mayWriteToMemory() const { 1209 // TODO: we can use attributes of the called function to rule out memory 1210 // modifications. 1211 return Opcode == Instruction::Store || Opcode == Instruction::Call || 1212 Opcode == Instruction::Invoke || Opcode == SLPStore; 1213 } 1214 1215 bool hasResult() const { 1216 // CallInst may or may not have a result, depending on the called function. 1217 // Conservatively return calls have results for now. 1218 switch (getOpcode()) { 1219 case Instruction::Ret: 1220 case Instruction::Br: 1221 case Instruction::Store: 1222 case Instruction::Switch: 1223 case Instruction::IndirectBr: 1224 case Instruction::Resume: 1225 case Instruction::CatchRet: 1226 case Instruction::Unreachable: 1227 case Instruction::Fence: 1228 case Instruction::AtomicRMW: 1229 case VPInstruction::BranchOnCond: 1230 case VPInstruction::BranchOnCount: 1231 return false; 1232 default: 1233 return true; 1234 } 1235 } 1236 1237 /// Returns true if the recipe only uses the first lane of operand \p Op. 1238 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1239 assert(is_contained(operands(), Op) && 1240 "Op must be an operand of the recipe"); 1241 if (getOperand(0) != Op) 1242 return false; 1243 switch (getOpcode()) { 1244 default: 1245 return false; 1246 case VPInstruction::ActiveLaneMask: 1247 case VPInstruction::CalculateTripCountMinusVF: 1248 case VPInstruction::CanonicalIVIncrementForPart: 1249 case VPInstruction::BranchOnCount: 1250 return true; 1251 }; 1252 llvm_unreachable("switch should return"); 1253 } 1254 1255 /// Returns true if the recipe only uses the first part of operand \p Op. 1256 bool onlyFirstPartUsed(const VPValue *Op) const override { 1257 assert(is_contained(operands(), Op) && 1258 "Op must be an operand of the recipe"); 1259 if (getOperand(0) != Op) 1260 return false; 1261 switch (getOpcode()) { 1262 default: 1263 return false; 1264 case VPInstruction::BranchOnCount: 1265 return true; 1266 }; 1267 llvm_unreachable("switch should return"); 1268 } 1269 }; 1270 1271 /// VPWidenRecipe is a recipe for producing a copy of vector type its 1272 /// ingredient. This recipe covers most of the traditional vectorization cases 1273 /// where each ingredient transforms into a vectorized version of itself. 1274 class VPWidenRecipe : public VPRecipeWithIRFlags { 1275 unsigned Opcode; 1276 1277 public: 1278 template <typename IterT> 1279 VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands) 1280 : VPRecipeWithIRFlags(VPDef::VPWidenSC, Operands, I), 1281 Opcode(I.getOpcode()) {} 1282 1283 ~VPWidenRecipe() override = default; 1284 1285 VP_CLASSOF_IMPL(VPDef::VPWidenSC) 1286 1287 /// Produce widened copies of all Ingredients. 1288 void execute(VPTransformState &State) override; 1289 1290 unsigned getOpcode() const { return Opcode; } 1291 1292 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1293 /// Print the recipe. 1294 void print(raw_ostream &O, const Twine &Indent, 1295 VPSlotTracker &SlotTracker) const override; 1296 #endif 1297 }; 1298 1299 /// VPWidenCastRecipe is a recipe to create vector cast instructions. 1300 class VPWidenCastRecipe : public VPRecipeWithIRFlags { 1301 /// Cast instruction opcode. 1302 Instruction::CastOps Opcode; 1303 1304 /// Result type for the cast. 1305 Type *ResultTy; 1306 1307 public: 1308 VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy, 1309 CastInst &UI) 1310 : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), Opcode(Opcode), 1311 ResultTy(ResultTy) { 1312 assert(UI.getOpcode() == Opcode && 1313 "opcode of underlying cast doesn't match"); 1314 assert(UI.getType() == ResultTy && 1315 "result type of underlying cast doesn't match"); 1316 } 1317 1318 VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy) 1319 : VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), Opcode(Opcode), 1320 ResultTy(ResultTy) {} 1321 1322 ~VPWidenCastRecipe() override = default; 1323 1324 VP_CLASSOF_IMPL(VPDef::VPWidenCastSC) 1325 1326 /// Produce widened copies of the cast. 1327 void execute(VPTransformState &State) override; 1328 1329 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1330 /// Print the recipe. 1331 void print(raw_ostream &O, const Twine &Indent, 1332 VPSlotTracker &SlotTracker) const override; 1333 #endif 1334 1335 Instruction::CastOps getOpcode() const { return Opcode; } 1336 1337 /// Returns the result type of the cast. 1338 Type *getResultType() const { return ResultTy; } 1339 }; 1340 1341 /// A recipe for widening Call instructions. 1342 class VPWidenCallRecipe : public VPSingleDefRecipe { 1343 /// ID of the vector intrinsic to call when widening the call. If set the 1344 /// Intrinsic::not_intrinsic, a library call will be used instead. 1345 Intrinsic::ID VectorIntrinsicID; 1346 /// If this recipe represents a library call, Variant stores a pointer to 1347 /// the chosen function. There is a 1:1 mapping between a given VF and the 1348 /// chosen vectorized variant, so there will be a different vplan for each 1349 /// VF with a valid variant. 1350 Function *Variant; 1351 1352 public: 1353 template <typename IterT> 1354 VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments, 1355 Intrinsic::ID VectorIntrinsicID, DebugLoc DL = {}, 1356 Function *Variant = nullptr) 1357 : VPSingleDefRecipe(VPDef::VPWidenCallSC, CallArguments, &I, DL), 1358 VectorIntrinsicID(VectorIntrinsicID), Variant(Variant) {} 1359 1360 ~VPWidenCallRecipe() override = default; 1361 1362 VP_CLASSOF_IMPL(VPDef::VPWidenCallSC) 1363 1364 /// Produce a widened version of the call instruction. 1365 void execute(VPTransformState &State) override; 1366 1367 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1368 /// Print the recipe. 1369 void print(raw_ostream &O, const Twine &Indent, 1370 VPSlotTracker &SlotTracker) const override; 1371 #endif 1372 }; 1373 1374 /// A recipe for widening select instructions. 1375 struct VPWidenSelectRecipe : public VPSingleDefRecipe { 1376 template <typename IterT> 1377 VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands) 1378 : VPSingleDefRecipe(VPDef::VPWidenSelectSC, Operands, &I, 1379 I.getDebugLoc()) {} 1380 1381 ~VPWidenSelectRecipe() override = default; 1382 1383 VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC) 1384 1385 /// Produce a widened version of the select instruction. 1386 void execute(VPTransformState &State) override; 1387 1388 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1389 /// Print the recipe. 1390 void print(raw_ostream &O, const Twine &Indent, 1391 VPSlotTracker &SlotTracker) const override; 1392 #endif 1393 1394 VPValue *getCond() const { 1395 return getOperand(0); 1396 } 1397 1398 bool isInvariantCond() const { 1399 return getCond()->isDefinedOutsideVectorRegions(); 1400 } 1401 }; 1402 1403 /// A recipe for handling GEP instructions. 1404 class VPWidenGEPRecipe : public VPRecipeWithIRFlags { 1405 bool isPointerLoopInvariant() const { 1406 return getOperand(0)->isDefinedOutsideVectorRegions(); 1407 } 1408 1409 bool isIndexLoopInvariant(unsigned I) const { 1410 return getOperand(I + 1)->isDefinedOutsideVectorRegions(); 1411 } 1412 1413 bool areAllOperandsInvariant() const { 1414 return all_of(operands(), [](VPValue *Op) { 1415 return Op->isDefinedOutsideVectorRegions(); 1416 }); 1417 } 1418 1419 public: 1420 template <typename IterT> 1421 VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands) 1422 : VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) {} 1423 1424 ~VPWidenGEPRecipe() override = default; 1425 1426 VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC) 1427 1428 /// Generate the gep nodes. 1429 void execute(VPTransformState &State) override; 1430 1431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1432 /// Print the recipe. 1433 void print(raw_ostream &O, const Twine &Indent, 1434 VPSlotTracker &SlotTracker) const override; 1435 #endif 1436 }; 1437 1438 /// A recipe to compute the pointers for widened memory accesses of IndexTy for 1439 /// all parts. If IsReverse is true, compute pointers for accessing the input in 1440 /// reverse order per part. 1441 class VPVectorPointerRecipe : public VPRecipeWithIRFlags { 1442 Type *IndexedTy; 1443 bool IsReverse; 1444 1445 public: 1446 VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, bool IsReverse, 1447 bool IsInBounds, DebugLoc DL) 1448 : VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr), 1449 GEPFlagsTy(IsInBounds), DL), 1450 IndexedTy(IndexedTy), IsReverse(IsReverse) {} 1451 1452 VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC) 1453 1454 void execute(VPTransformState &State) override; 1455 1456 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1457 assert(is_contained(operands(), Op) && 1458 "Op must be an operand of the recipe"); 1459 return true; 1460 } 1461 1462 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1463 /// Print the recipe. 1464 void print(raw_ostream &O, const Twine &Indent, 1465 VPSlotTracker &SlotTracker) const override; 1466 #endif 1467 }; 1468 1469 /// A pure virtual base class for all recipes modeling header phis, including 1470 /// phis for first order recurrences, pointer inductions and reductions. The 1471 /// start value is the first operand of the recipe and the incoming value from 1472 /// the backedge is the second operand. 1473 /// 1474 /// Inductions are modeled using the following sub-classes: 1475 /// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop, 1476 /// starting at a specified value (zero for the main vector loop, the resume 1477 /// value for the epilogue vector loop) and stepping by 1. The induction 1478 /// controls exiting of the vector loop by comparing against the vector trip 1479 /// count. Produces a single scalar PHI for the induction value per 1480 /// iteration. 1481 /// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and 1482 /// floating point inductions with arbitrary start and step values. Produces 1483 /// a vector PHI per-part. 1484 /// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding 1485 /// value of an IV with different start and step values. Produces a single 1486 /// scalar value per iteration 1487 /// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a 1488 /// canonical or derived induction. 1489 /// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a 1490 /// pointer induction. Produces either a vector PHI per-part or scalar values 1491 /// per-lane based on the canonical induction. 1492 class VPHeaderPHIRecipe : public VPSingleDefRecipe { 1493 protected: 1494 VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr, 1495 VPValue *Start = nullptr, DebugLoc DL = {}) 1496 : VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>(), UnderlyingInstr, DL) { 1497 if (Start) 1498 addOperand(Start); 1499 } 1500 1501 public: 1502 ~VPHeaderPHIRecipe() override = default; 1503 1504 /// Method to support type inquiry through isa, cast, and dyn_cast. 1505 static inline bool classof(const VPRecipeBase *B) { 1506 return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC && 1507 B->getVPDefID() <= VPDef::VPLastHeaderPHISC; 1508 } 1509 static inline bool classof(const VPValue *V) { 1510 auto *B = V->getDefiningRecipe(); 1511 return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC && 1512 B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC; 1513 } 1514 1515 /// Generate the phi nodes. 1516 void execute(VPTransformState &State) override = 0; 1517 1518 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1519 /// Print the recipe. 1520 void print(raw_ostream &O, const Twine &Indent, 1521 VPSlotTracker &SlotTracker) const override = 0; 1522 #endif 1523 1524 /// Returns the start value of the phi, if one is set. 1525 VPValue *getStartValue() { 1526 return getNumOperands() == 0 ? nullptr : getOperand(0); 1527 } 1528 VPValue *getStartValue() const { 1529 return getNumOperands() == 0 ? nullptr : getOperand(0); 1530 } 1531 1532 /// Update the start value of the recipe. 1533 void setStartValue(VPValue *V) { setOperand(0, V); } 1534 1535 /// Returns the incoming value from the loop backedge. 1536 virtual VPValue *getBackedgeValue() { 1537 return getOperand(1); 1538 } 1539 1540 /// Returns the backedge value as a recipe. The backedge value is guaranteed 1541 /// to be a recipe. 1542 virtual VPRecipeBase &getBackedgeRecipe() { 1543 return *getBackedgeValue()->getDefiningRecipe(); 1544 } 1545 }; 1546 1547 /// A recipe for handling phi nodes of integer and floating-point inductions, 1548 /// producing their vector values. 1549 class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe { 1550 PHINode *IV; 1551 TruncInst *Trunc; 1552 const InductionDescriptor &IndDesc; 1553 1554 public: 1555 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, 1556 const InductionDescriptor &IndDesc) 1557 : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV), 1558 Trunc(nullptr), IndDesc(IndDesc) { 1559 addOperand(Step); 1560 } 1561 1562 VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step, 1563 const InductionDescriptor &IndDesc, 1564 TruncInst *Trunc) 1565 : VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start), 1566 IV(IV), Trunc(Trunc), IndDesc(IndDesc) { 1567 addOperand(Step); 1568 } 1569 1570 ~VPWidenIntOrFpInductionRecipe() override = default; 1571 1572 VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC) 1573 1574 /// Generate the vectorized and scalarized versions of the phi node as 1575 /// needed by their users. 1576 void execute(VPTransformState &State) override; 1577 1578 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1579 /// Print the recipe. 1580 void print(raw_ostream &O, const Twine &Indent, 1581 VPSlotTracker &SlotTracker) const override; 1582 #endif 1583 1584 VPValue *getBackedgeValue() override { 1585 // TODO: All operands of base recipe must exist and be at same index in 1586 // derived recipe. 1587 llvm_unreachable( 1588 "VPWidenIntOrFpInductionRecipe generates its own backedge value"); 1589 } 1590 1591 VPRecipeBase &getBackedgeRecipe() override { 1592 // TODO: All operands of base recipe must exist and be at same index in 1593 // derived recipe. 1594 llvm_unreachable( 1595 "VPWidenIntOrFpInductionRecipe generates its own backedge value"); 1596 } 1597 1598 /// Returns the step value of the induction. 1599 VPValue *getStepValue() { return getOperand(1); } 1600 const VPValue *getStepValue() const { return getOperand(1); } 1601 1602 /// Returns the first defined value as TruncInst, if it is one or nullptr 1603 /// otherwise. 1604 TruncInst *getTruncInst() { return Trunc; } 1605 const TruncInst *getTruncInst() const { return Trunc; } 1606 1607 PHINode *getPHINode() { return IV; } 1608 1609 /// Returns the induction descriptor for the recipe. 1610 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1611 1612 /// Returns true if the induction is canonical, i.e. starting at 0 and 1613 /// incremented by UF * VF (= the original IV is incremented by 1). 1614 bool isCanonical() const; 1615 1616 /// Returns the scalar type of the induction. 1617 Type *getScalarType() const { 1618 return Trunc ? Trunc->getType() : IV->getType(); 1619 } 1620 }; 1621 1622 class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe { 1623 const InductionDescriptor &IndDesc; 1624 1625 bool IsScalarAfterVectorization; 1626 1627 public: 1628 /// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p 1629 /// Start. 1630 VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step, 1631 const InductionDescriptor &IndDesc, 1632 bool IsScalarAfterVectorization) 1633 : VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi), 1634 IndDesc(IndDesc), 1635 IsScalarAfterVectorization(IsScalarAfterVectorization) { 1636 addOperand(Start); 1637 addOperand(Step); 1638 } 1639 1640 ~VPWidenPointerInductionRecipe() override = default; 1641 1642 VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC) 1643 1644 /// Generate vector values for the pointer induction. 1645 void execute(VPTransformState &State) override; 1646 1647 /// Returns true if only scalar values will be generated. 1648 bool onlyScalarsGenerated(ElementCount VF); 1649 1650 /// Returns the induction descriptor for the recipe. 1651 const InductionDescriptor &getInductionDescriptor() const { return IndDesc; } 1652 1653 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1654 /// Print the recipe. 1655 void print(raw_ostream &O, const Twine &Indent, 1656 VPSlotTracker &SlotTracker) const override; 1657 #endif 1658 }; 1659 1660 /// A recipe for handling header phis that are widened in the vector loop. 1661 /// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are 1662 /// managed in the recipe directly. 1663 class VPWidenPHIRecipe : public VPHeaderPHIRecipe { 1664 /// List of incoming blocks. Only used in the VPlan native path. 1665 SmallVector<VPBasicBlock *, 2> IncomingBlocks; 1666 1667 public: 1668 /// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start. 1669 VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr) 1670 : VPHeaderPHIRecipe(VPDef::VPWidenPHISC, Phi) { 1671 if (Start) 1672 addOperand(Start); 1673 } 1674 1675 ~VPWidenPHIRecipe() override = default; 1676 1677 VP_CLASSOF_IMPL(VPDef::VPWidenPHISC) 1678 1679 /// Generate the phi/select nodes. 1680 void execute(VPTransformState &State) override; 1681 1682 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1683 /// Print the recipe. 1684 void print(raw_ostream &O, const Twine &Indent, 1685 VPSlotTracker &SlotTracker) const override; 1686 #endif 1687 1688 /// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi. 1689 void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) { 1690 addOperand(IncomingV); 1691 IncomingBlocks.push_back(IncomingBlock); 1692 } 1693 1694 /// Returns the \p I th incoming VPBasicBlock. 1695 VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; } 1696 1697 /// Returns the \p I th incoming VPValue. 1698 VPValue *getIncomingValue(unsigned I) { return getOperand(I); } 1699 }; 1700 1701 /// A recipe for handling first-order recurrence phis. The start value is the 1702 /// first operand of the recipe and the incoming value from the backedge is the 1703 /// second operand. 1704 struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe { 1705 VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start) 1706 : VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {} 1707 1708 VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC) 1709 1710 static inline bool classof(const VPHeaderPHIRecipe *R) { 1711 return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC; 1712 } 1713 1714 void execute(VPTransformState &State) override; 1715 1716 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1717 /// Print the recipe. 1718 void print(raw_ostream &O, const Twine &Indent, 1719 VPSlotTracker &SlotTracker) const override; 1720 #endif 1721 }; 1722 1723 /// A recipe for handling reduction phis. The start value is the first operand 1724 /// of the recipe and the incoming value from the backedge is the second 1725 /// operand. 1726 class VPReductionPHIRecipe : public VPHeaderPHIRecipe { 1727 /// Descriptor for the reduction. 1728 const RecurrenceDescriptor &RdxDesc; 1729 1730 /// The phi is part of an in-loop reduction. 1731 bool IsInLoop; 1732 1733 /// The phi is part of an ordered reduction. Requires IsInLoop to be true. 1734 bool IsOrdered; 1735 1736 public: 1737 /// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p 1738 /// RdxDesc. 1739 VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc, 1740 VPValue &Start, bool IsInLoop = false, 1741 bool IsOrdered = false) 1742 : VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start), 1743 RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) { 1744 assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop"); 1745 } 1746 1747 ~VPReductionPHIRecipe() override = default; 1748 1749 VP_CLASSOF_IMPL(VPDef::VPReductionPHISC) 1750 1751 static inline bool classof(const VPHeaderPHIRecipe *R) { 1752 return R->getVPDefID() == VPDef::VPReductionPHISC; 1753 } 1754 1755 /// Generate the phi/select nodes. 1756 void execute(VPTransformState &State) override; 1757 1758 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1759 /// Print the recipe. 1760 void print(raw_ostream &O, const Twine &Indent, 1761 VPSlotTracker &SlotTracker) const override; 1762 #endif 1763 1764 const RecurrenceDescriptor &getRecurrenceDescriptor() const { 1765 return RdxDesc; 1766 } 1767 1768 /// Returns true, if the phi is part of an ordered reduction. 1769 bool isOrdered() const { return IsOrdered; } 1770 1771 /// Returns true, if the phi is part of an in-loop reduction. 1772 bool isInLoop() const { return IsInLoop; } 1773 }; 1774 1775 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 1776 /// instructions. 1777 class VPBlendRecipe : public VPSingleDefRecipe { 1778 public: 1779 /// The blend operation is a User of the incoming values and of their 1780 /// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value 1781 /// might be incoming with a full mask for which there is no VPValue. 1782 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands) 1783 : VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) { 1784 assert(Operands.size() > 0 && 1785 ((Operands.size() == 1) || (Operands.size() % 2 == 0)) && 1786 "Expected either a single incoming value or a positive even number " 1787 "of operands"); 1788 } 1789 1790 VP_CLASSOF_IMPL(VPDef::VPBlendSC) 1791 1792 /// Return the number of incoming values, taking into account that a single 1793 /// incoming value has no mask. 1794 unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; } 1795 1796 /// Return incoming value number \p Idx. 1797 VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); } 1798 1799 /// Return mask number \p Idx. 1800 VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); } 1801 1802 /// Generate the phi/select nodes. 1803 void execute(VPTransformState &State) override; 1804 1805 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1806 /// Print the recipe. 1807 void print(raw_ostream &O, const Twine &Indent, 1808 VPSlotTracker &SlotTracker) const override; 1809 #endif 1810 1811 /// Returns true if the recipe only uses the first lane of operand \p Op. 1812 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1813 assert(is_contained(operands(), Op) && 1814 "Op must be an operand of the recipe"); 1815 // Recursing through Blend recipes only, must terminate at header phi's the 1816 // latest. 1817 return all_of(users(), 1818 [this](VPUser *U) { return U->onlyFirstLaneUsed(this); }); 1819 } 1820 }; 1821 1822 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 1823 /// or stores into one wide load/store and shuffles. The first operand of a 1824 /// VPInterleave recipe is the address, followed by the stored values, followed 1825 /// by an optional mask. 1826 class VPInterleaveRecipe : public VPRecipeBase { 1827 const InterleaveGroup<Instruction> *IG; 1828 1829 /// Indicates if the interleave group is in a conditional block and requires a 1830 /// mask. 1831 bool HasMask = false; 1832 1833 /// Indicates if gaps between members of the group need to be masked out or if 1834 /// unusued gaps can be loaded speculatively. 1835 bool NeedsMaskForGaps = false; 1836 1837 public: 1838 VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr, 1839 ArrayRef<VPValue *> StoredValues, VPValue *Mask, 1840 bool NeedsMaskForGaps) 1841 : VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG), 1842 NeedsMaskForGaps(NeedsMaskForGaps) { 1843 for (unsigned i = 0; i < IG->getFactor(); ++i) 1844 if (Instruction *I = IG->getMember(i)) { 1845 if (I->getType()->isVoidTy()) 1846 continue; 1847 new VPValue(I, this); 1848 } 1849 1850 for (auto *SV : StoredValues) 1851 addOperand(SV); 1852 if (Mask) { 1853 HasMask = true; 1854 addOperand(Mask); 1855 } 1856 } 1857 ~VPInterleaveRecipe() override = default; 1858 1859 VP_CLASSOF_IMPL(VPDef::VPInterleaveSC) 1860 1861 /// Return the address accessed by this recipe. 1862 VPValue *getAddr() const { 1863 return getOperand(0); // Address is the 1st, mandatory operand. 1864 } 1865 1866 /// Return the mask used by this recipe. Note that a full mask is represented 1867 /// by a nullptr. 1868 VPValue *getMask() const { 1869 // Mask is optional and therefore the last, currently 2nd operand. 1870 return HasMask ? getOperand(getNumOperands() - 1) : nullptr; 1871 } 1872 1873 /// Return the VPValues stored by this interleave group. If it is a load 1874 /// interleave group, return an empty ArrayRef. 1875 ArrayRef<VPValue *> getStoredValues() const { 1876 // The first operand is the address, followed by the stored values, followed 1877 // by an optional mask. 1878 return ArrayRef<VPValue *>(op_begin(), getNumOperands()) 1879 .slice(1, getNumStoreOperands()); 1880 } 1881 1882 /// Generate the wide load or store, and shuffles. 1883 void execute(VPTransformState &State) override; 1884 1885 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1886 /// Print the recipe. 1887 void print(raw_ostream &O, const Twine &Indent, 1888 VPSlotTracker &SlotTracker) const override; 1889 #endif 1890 1891 const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; } 1892 1893 /// Returns the number of stored operands of this interleave group. Returns 0 1894 /// for load interleave groups. 1895 unsigned getNumStoreOperands() const { 1896 return getNumOperands() - (HasMask ? 2 : 1); 1897 } 1898 1899 /// The recipe only uses the first lane of the address. 1900 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1901 assert(is_contained(operands(), Op) && 1902 "Op must be an operand of the recipe"); 1903 return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op); 1904 } 1905 }; 1906 1907 /// A recipe to represent inloop reduction operations, performing a reduction on 1908 /// a vector operand into a scalar value, and adding the result to a chain. 1909 /// The Operands are {ChainOp, VecOp, [Condition]}. 1910 class VPReductionRecipe : public VPSingleDefRecipe { 1911 /// The recurrence decriptor for the reduction in question. 1912 const RecurrenceDescriptor &RdxDesc; 1913 1914 public: 1915 VPReductionRecipe(const RecurrenceDescriptor &R, Instruction *I, 1916 VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp) 1917 : VPSingleDefRecipe(VPDef::VPReductionSC, 1918 ArrayRef<VPValue *>({ChainOp, VecOp}), I), 1919 RdxDesc(R) { 1920 if (CondOp) 1921 addOperand(CondOp); 1922 } 1923 1924 ~VPReductionRecipe() override = default; 1925 1926 VP_CLASSOF_IMPL(VPDef::VPReductionSC) 1927 1928 /// Generate the reduction in the loop 1929 void execute(VPTransformState &State) override; 1930 1931 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1932 /// Print the recipe. 1933 void print(raw_ostream &O, const Twine &Indent, 1934 VPSlotTracker &SlotTracker) const override; 1935 #endif 1936 1937 /// The VPValue of the scalar Chain being accumulated. 1938 VPValue *getChainOp() const { return getOperand(0); } 1939 /// The VPValue of the vector value to be reduced. 1940 VPValue *getVecOp() const { return getOperand(1); } 1941 /// The VPValue of the condition for the block. 1942 VPValue *getCondOp() const { 1943 return getNumOperands() > 2 ? getOperand(2) : nullptr; 1944 } 1945 }; 1946 1947 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 1948 /// copies of the original scalar type, one per lane, instead of producing a 1949 /// single copy of widened type for all lanes. If the instruction is known to be 1950 /// uniform only one copy, per lane zero, will be generated. 1951 class VPReplicateRecipe : public VPRecipeWithIRFlags { 1952 /// Indicator if only a single replica per lane is needed. 1953 bool IsUniform; 1954 1955 /// Indicator if the replicas are also predicated. 1956 bool IsPredicated; 1957 1958 public: 1959 template <typename IterT> 1960 VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands, 1961 bool IsUniform, VPValue *Mask = nullptr) 1962 : VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I), 1963 IsUniform(IsUniform), IsPredicated(Mask) { 1964 if (Mask) 1965 addOperand(Mask); 1966 } 1967 1968 ~VPReplicateRecipe() override = default; 1969 1970 VP_CLASSOF_IMPL(VPDef::VPReplicateSC) 1971 1972 /// Generate replicas of the desired Ingredient. Replicas will be generated 1973 /// for all parts and lanes unless a specific part and lane are specified in 1974 /// the \p State. 1975 void execute(VPTransformState &State) override; 1976 1977 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1978 /// Print the recipe. 1979 void print(raw_ostream &O, const Twine &Indent, 1980 VPSlotTracker &SlotTracker) const override; 1981 #endif 1982 1983 bool isUniform() const { return IsUniform; } 1984 1985 bool isPredicated() const { return IsPredicated; } 1986 1987 /// Returns true if the recipe only uses the first lane of operand \p Op. 1988 bool onlyFirstLaneUsed(const VPValue *Op) const override { 1989 assert(is_contained(operands(), Op) && 1990 "Op must be an operand of the recipe"); 1991 return isUniform(); 1992 } 1993 1994 /// Returns true if the recipe uses scalars of operand \p Op. 1995 bool usesScalars(const VPValue *Op) const override { 1996 assert(is_contained(operands(), Op) && 1997 "Op must be an operand of the recipe"); 1998 return true; 1999 } 2000 2001 /// Returns true if the recipe is used by a widened recipe via an intervening 2002 /// VPPredInstPHIRecipe. In this case, the scalar values should also be packed 2003 /// in a vector. 2004 bool shouldPack() const; 2005 2006 /// Return the mask of a predicated VPReplicateRecipe. 2007 VPValue *getMask() { 2008 assert(isPredicated() && "Trying to get the mask of a unpredicated recipe"); 2009 return getOperand(getNumOperands() - 1); 2010 } 2011 }; 2012 2013 /// A recipe for generating conditional branches on the bits of a mask. 2014 class VPBranchOnMaskRecipe : public VPRecipeBase { 2015 public: 2016 VPBranchOnMaskRecipe(VPValue *BlockInMask) 2017 : VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) { 2018 if (BlockInMask) // nullptr means all-one mask. 2019 addOperand(BlockInMask); 2020 } 2021 2022 VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC) 2023 2024 /// Generate the extraction of the appropriate bit from the block mask and the 2025 /// conditional branch. 2026 void execute(VPTransformState &State) override; 2027 2028 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2029 /// Print the recipe. 2030 void print(raw_ostream &O, const Twine &Indent, 2031 VPSlotTracker &SlotTracker) const override { 2032 O << Indent << "BRANCH-ON-MASK "; 2033 if (VPValue *Mask = getMask()) 2034 Mask->printAsOperand(O, SlotTracker); 2035 else 2036 O << " All-One"; 2037 } 2038 #endif 2039 2040 /// Return the mask used by this recipe. Note that a full mask is represented 2041 /// by a nullptr. 2042 VPValue *getMask() const { 2043 assert(getNumOperands() <= 1 && "should have either 0 or 1 operands"); 2044 // Mask is optional. 2045 return getNumOperands() == 1 ? getOperand(0) : nullptr; 2046 } 2047 2048 /// Returns true if the recipe uses scalars of operand \p Op. 2049 bool usesScalars(const VPValue *Op) const override { 2050 assert(is_contained(operands(), Op) && 2051 "Op must be an operand of the recipe"); 2052 return true; 2053 } 2054 }; 2055 2056 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 2057 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 2058 /// order to merge values that are set under such a branch and feed their uses. 2059 /// The phi nodes can be scalar or vector depending on the users of the value. 2060 /// This recipe works in concert with VPBranchOnMaskRecipe. 2061 class VPPredInstPHIRecipe : public VPSingleDefRecipe { 2062 public: 2063 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 2064 /// nodes after merging back from a Branch-on-Mask. 2065 VPPredInstPHIRecipe(VPValue *PredV) 2066 : VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV) {} 2067 ~VPPredInstPHIRecipe() override = default; 2068 2069 VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC) 2070 2071 /// Generates phi nodes for live-outs as needed to retain SSA form. 2072 void execute(VPTransformState &State) override; 2073 2074 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2075 /// Print the recipe. 2076 void print(raw_ostream &O, const Twine &Indent, 2077 VPSlotTracker &SlotTracker) const override; 2078 #endif 2079 2080 /// Returns true if the recipe uses scalars of operand \p Op. 2081 bool usesScalars(const VPValue *Op) const override { 2082 assert(is_contained(operands(), Op) && 2083 "Op must be an operand of the recipe"); 2084 return true; 2085 } 2086 }; 2087 2088 /// A Recipe for widening load/store operations. 2089 /// The recipe uses the following VPValues: 2090 /// - For load: Address, optional mask 2091 /// - For store: Address, stored value, optional mask 2092 /// TODO: We currently execute only per-part unless a specific instance is 2093 /// provided. 2094 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 2095 Instruction &Ingredient; 2096 2097 // Whether the loaded-from / stored-to addresses are consecutive. 2098 bool Consecutive; 2099 2100 // Whether the consecutive loaded/stored addresses are in reverse order. 2101 bool Reverse; 2102 2103 void setMask(VPValue *Mask) { 2104 if (!Mask) 2105 return; 2106 addOperand(Mask); 2107 } 2108 2109 bool isMasked() const { 2110 return isStore() ? getNumOperands() == 3 : getNumOperands() == 2; 2111 } 2112 2113 public: 2114 VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask, 2115 bool Consecutive, bool Reverse) 2116 : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr}), 2117 Ingredient(Load), Consecutive(Consecutive), Reverse(Reverse) { 2118 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 2119 new VPValue(this, &Load); 2120 setMask(Mask); 2121 } 2122 2123 VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr, 2124 VPValue *StoredValue, VPValue *Mask, 2125 bool Consecutive, bool Reverse) 2126 : VPRecipeBase(VPDef::VPWidenMemoryInstructionSC, {Addr, StoredValue}), 2127 Ingredient(Store), Consecutive(Consecutive), Reverse(Reverse) { 2128 assert((Consecutive || !Reverse) && "Reverse implies consecutive"); 2129 setMask(Mask); 2130 } 2131 2132 VP_CLASSOF_IMPL(VPDef::VPWidenMemoryInstructionSC) 2133 2134 /// Return the address accessed by this recipe. 2135 VPValue *getAddr() const { 2136 return getOperand(0); // Address is the 1st, mandatory operand. 2137 } 2138 2139 /// Return the mask used by this recipe. Note that a full mask is represented 2140 /// by a nullptr. 2141 VPValue *getMask() const { 2142 // Mask is optional and therefore the last operand. 2143 return isMasked() ? getOperand(getNumOperands() - 1) : nullptr; 2144 } 2145 2146 /// Returns true if this recipe is a store. 2147 bool isStore() const { return isa<StoreInst>(Ingredient); } 2148 2149 /// Return the address accessed by this recipe. 2150 VPValue *getStoredValue() const { 2151 assert(isStore() && "Stored value only available for store instructions"); 2152 return getOperand(1); // Stored value is the 2nd, mandatory operand. 2153 } 2154 2155 // Return whether the loaded-from / stored-to addresses are consecutive. 2156 bool isConsecutive() const { return Consecutive; } 2157 2158 // Return whether the consecutive loaded/stored addresses are in reverse 2159 // order. 2160 bool isReverse() const { return Reverse; } 2161 2162 /// Generate the wide load/store. 2163 void execute(VPTransformState &State) override; 2164 2165 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2166 /// Print the recipe. 2167 void print(raw_ostream &O, const Twine &Indent, 2168 VPSlotTracker &SlotTracker) const override; 2169 #endif 2170 2171 /// Returns true if the recipe only uses the first lane of operand \p Op. 2172 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2173 assert(is_contained(operands(), Op) && 2174 "Op must be an operand of the recipe"); 2175 2176 // Widened, consecutive memory operations only demand the first lane of 2177 // their address, unless the same operand is also stored. That latter can 2178 // happen with opaque pointers. 2179 return Op == getAddr() && isConsecutive() && 2180 (!isStore() || Op != getStoredValue()); 2181 } 2182 2183 Instruction &getIngredient() const { return Ingredient; } 2184 }; 2185 2186 /// Recipe to expand a SCEV expression. 2187 class VPExpandSCEVRecipe : public VPSingleDefRecipe { 2188 const SCEV *Expr; 2189 ScalarEvolution &SE; 2190 2191 public: 2192 VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE) 2193 : VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {} 2194 2195 ~VPExpandSCEVRecipe() override = default; 2196 2197 VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC) 2198 2199 /// Generate a canonical vector induction variable of the vector loop, with 2200 void execute(VPTransformState &State) override; 2201 2202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2203 /// Print the recipe. 2204 void print(raw_ostream &O, const Twine &Indent, 2205 VPSlotTracker &SlotTracker) const override; 2206 #endif 2207 2208 const SCEV *getSCEV() const { return Expr; } 2209 }; 2210 2211 /// Canonical scalar induction phi of the vector loop. Starting at the specified 2212 /// start value (either 0 or the resume value when vectorizing the epilogue 2213 /// loop). VPWidenCanonicalIVRecipe represents the vector version of the 2214 /// canonical induction variable. 2215 class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe { 2216 public: 2217 VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL) 2218 : VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {} 2219 2220 ~VPCanonicalIVPHIRecipe() override = default; 2221 2222 VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC) 2223 2224 static inline bool classof(const VPHeaderPHIRecipe *D) { 2225 return D->getVPDefID() == VPDef::VPCanonicalIVPHISC; 2226 } 2227 2228 /// Generate the canonical scalar induction phi of the vector loop. 2229 void execute(VPTransformState &State) override; 2230 2231 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2232 /// Print the recipe. 2233 void print(raw_ostream &O, const Twine &Indent, 2234 VPSlotTracker &SlotTracker) const override; 2235 #endif 2236 2237 /// Returns the scalar type of the induction. 2238 Type *getScalarType() const { 2239 return getStartValue()->getLiveInIRValue()->getType(); 2240 } 2241 2242 /// Returns true if the recipe only uses the first lane of operand \p Op. 2243 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2244 assert(is_contained(operands(), Op) && 2245 "Op must be an operand of the recipe"); 2246 return true; 2247 } 2248 2249 /// Returns true if the recipe only uses the first part of operand \p Op. 2250 bool onlyFirstPartUsed(const VPValue *Op) const override { 2251 assert(is_contained(operands(), Op) && 2252 "Op must be an operand of the recipe"); 2253 return true; 2254 } 2255 2256 /// Check if the induction described by \p Kind, /p Start and \p Step is 2257 /// canonical, i.e. has the same start, step (of 1), and type as the 2258 /// canonical IV. 2259 bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start, 2260 VPValue *Step, Type *Ty) const; 2261 }; 2262 2263 /// A recipe for generating the active lane mask for the vector loop that is 2264 /// used to predicate the vector operations. 2265 /// TODO: It would be good to use the existing VPWidenPHIRecipe instead and 2266 /// remove VPActiveLaneMaskPHIRecipe. 2267 class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe { 2268 public: 2269 VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL) 2270 : VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask, 2271 DL) {} 2272 2273 ~VPActiveLaneMaskPHIRecipe() override = default; 2274 2275 VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC) 2276 2277 static inline bool classof(const VPHeaderPHIRecipe *D) { 2278 return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC; 2279 } 2280 2281 /// Generate the active lane mask phi of the vector loop. 2282 void execute(VPTransformState &State) override; 2283 2284 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2285 /// Print the recipe. 2286 void print(raw_ostream &O, const Twine &Indent, 2287 VPSlotTracker &SlotTracker) const override; 2288 #endif 2289 }; 2290 2291 /// A Recipe for widening the canonical induction variable of the vector loop. 2292 class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe { 2293 public: 2294 VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV) 2295 : VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {} 2296 2297 ~VPWidenCanonicalIVRecipe() override = default; 2298 2299 VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC) 2300 2301 /// Generate a canonical vector induction variable of the vector loop, with 2302 /// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and 2303 /// step = <VF*UF, VF*UF, ..., VF*UF>. 2304 void execute(VPTransformState &State) override; 2305 2306 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2307 /// Print the recipe. 2308 void print(raw_ostream &O, const Twine &Indent, 2309 VPSlotTracker &SlotTracker) const override; 2310 #endif 2311 2312 /// Returns the scalar type of the induction. 2313 const Type *getScalarType() const { 2314 return cast<VPCanonicalIVPHIRecipe>(getOperand(0)->getDefiningRecipe()) 2315 ->getScalarType(); 2316 } 2317 }; 2318 2319 /// A recipe for converting the canonical IV value to the corresponding value of 2320 /// an IV with different start and step values, using Start + CanonicalIV * 2321 /// Step. 2322 class VPDerivedIVRecipe : public VPSingleDefRecipe { 2323 /// If not nullptr, the result of the induction will get truncated to 2324 /// TruncResultTy. 2325 Type *TruncResultTy; 2326 2327 /// Kind of the induction. 2328 const InductionDescriptor::InductionKind Kind; 2329 /// If not nullptr, the floating point induction binary operator. Must be set 2330 /// for floating point inductions. 2331 const FPMathOperator *FPBinOp; 2332 2333 public: 2334 VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start, 2335 VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step, 2336 Type *TruncResultTy) 2337 : VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, CanonicalIV, Step}), 2338 TruncResultTy(TruncResultTy), Kind(IndDesc.getKind()), 2339 FPBinOp(dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())) { 2340 } 2341 2342 ~VPDerivedIVRecipe() override = default; 2343 2344 VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC) 2345 2346 /// Generate the transformed value of the induction at offset StartValue (1. 2347 /// operand) + IV (2. operand) * StepValue (3, operand). 2348 void execute(VPTransformState &State) override; 2349 2350 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2351 /// Print the recipe. 2352 void print(raw_ostream &O, const Twine &Indent, 2353 VPSlotTracker &SlotTracker) const override; 2354 #endif 2355 2356 Type *getScalarType() const { 2357 return TruncResultTy ? TruncResultTy 2358 : getStartValue()->getLiveInIRValue()->getType(); 2359 } 2360 2361 VPValue *getStartValue() const { return getOperand(0); } 2362 VPValue *getCanonicalIV() const { return getOperand(1); } 2363 VPValue *getStepValue() const { return getOperand(2); } 2364 2365 /// Returns true if the recipe only uses the first lane of operand \p Op. 2366 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2367 assert(is_contained(operands(), Op) && 2368 "Op must be an operand of the recipe"); 2369 return true; 2370 } 2371 }; 2372 2373 /// A recipe for handling phi nodes of integer and floating-point inductions, 2374 /// producing their scalar values. 2375 class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags { 2376 Instruction::BinaryOps InductionOpcode; 2377 2378 public: 2379 VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step, 2380 Instruction::BinaryOps Opcode, FastMathFlags FMFs) 2381 : VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC, 2382 ArrayRef<VPValue *>({IV, Step}), FMFs), 2383 InductionOpcode(Opcode) {} 2384 2385 VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV, 2386 VPValue *Step) 2387 : VPScalarIVStepsRecipe( 2388 IV, Step, IndDesc.getInductionOpcode(), 2389 dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()) 2390 ? IndDesc.getInductionBinOp()->getFastMathFlags() 2391 : FastMathFlags()) {} 2392 2393 ~VPScalarIVStepsRecipe() override = default; 2394 2395 VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC) 2396 2397 /// Generate the scalarized versions of the phi node as needed by their users. 2398 void execute(VPTransformState &State) override; 2399 2400 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2401 /// Print the recipe. 2402 void print(raw_ostream &O, const Twine &Indent, 2403 VPSlotTracker &SlotTracker) const override; 2404 #endif 2405 2406 VPValue *getStepValue() const { return getOperand(1); } 2407 2408 /// Returns true if the recipe only uses the first lane of operand \p Op. 2409 bool onlyFirstLaneUsed(const VPValue *Op) const override { 2410 assert(is_contained(operands(), Op) && 2411 "Op must be an operand of the recipe"); 2412 return true; 2413 } 2414 }; 2415 2416 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 2417 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 2418 /// output IR instructions. All PHI-like recipes must come before any non-PHI recipes. 2419 class VPBasicBlock : public VPBlockBase { 2420 public: 2421 using RecipeListTy = iplist<VPRecipeBase>; 2422 2423 private: 2424 /// The VPRecipes held in the order of output instructions to generate. 2425 RecipeListTy Recipes; 2426 2427 public: 2428 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 2429 : VPBlockBase(VPBasicBlockSC, Name.str()) { 2430 if (Recipe) 2431 appendRecipe(Recipe); 2432 } 2433 2434 ~VPBasicBlock() override { 2435 while (!Recipes.empty()) 2436 Recipes.pop_back(); 2437 } 2438 2439 /// Instruction iterators... 2440 using iterator = RecipeListTy::iterator; 2441 using const_iterator = RecipeListTy::const_iterator; 2442 using reverse_iterator = RecipeListTy::reverse_iterator; 2443 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 2444 2445 //===--------------------------------------------------------------------===// 2446 /// Recipe iterator methods 2447 /// 2448 inline iterator begin() { return Recipes.begin(); } 2449 inline const_iterator begin() const { return Recipes.begin(); } 2450 inline iterator end() { return Recipes.end(); } 2451 inline const_iterator end() const { return Recipes.end(); } 2452 2453 inline reverse_iterator rbegin() { return Recipes.rbegin(); } 2454 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } 2455 inline reverse_iterator rend() { return Recipes.rend(); } 2456 inline const_reverse_iterator rend() const { return Recipes.rend(); } 2457 2458 inline size_t size() const { return Recipes.size(); } 2459 inline bool empty() const { return Recipes.empty(); } 2460 inline const VPRecipeBase &front() const { return Recipes.front(); } 2461 inline VPRecipeBase &front() { return Recipes.front(); } 2462 inline const VPRecipeBase &back() const { return Recipes.back(); } 2463 inline VPRecipeBase &back() { return Recipes.back(); } 2464 2465 /// Returns a reference to the list of recipes. 2466 RecipeListTy &getRecipeList() { return Recipes; } 2467 2468 /// Returns a pointer to a member of the recipe list. 2469 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 2470 return &VPBasicBlock::Recipes; 2471 } 2472 2473 /// Method to support type inquiry through isa, cast, and dyn_cast. 2474 static inline bool classof(const VPBlockBase *V) { 2475 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 2476 } 2477 2478 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 2479 assert(Recipe && "No recipe to append."); 2480 assert(!Recipe->Parent && "Recipe already in VPlan"); 2481 Recipe->Parent = this; 2482 Recipes.insert(InsertPt, Recipe); 2483 } 2484 2485 /// Augment the existing recipes of a VPBasicBlock with an additional 2486 /// \p Recipe as the last recipe. 2487 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 2488 2489 /// The method which generates the output IR instructions that correspond to 2490 /// this VPBasicBlock, thereby "executing" the VPlan. 2491 void execute(VPTransformState *State) override; 2492 2493 /// Return the position of the first non-phi node recipe in the block. 2494 iterator getFirstNonPhi(); 2495 2496 /// Returns an iterator range over the PHI-like recipes in the block. 2497 iterator_range<iterator> phis() { 2498 return make_range(begin(), getFirstNonPhi()); 2499 } 2500 2501 void dropAllReferences(VPValue *NewValue) override; 2502 2503 /// Split current block at \p SplitAt by inserting a new block between the 2504 /// current block and its successors and moving all recipes starting at 2505 /// SplitAt to the new block. Returns the new block. 2506 VPBasicBlock *splitAt(iterator SplitAt); 2507 2508 VPRegionBlock *getEnclosingLoopRegion(); 2509 2510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2511 /// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p 2512 /// SlotTracker is used to print unnamed VPValue's using consequtive numbers. 2513 /// 2514 /// Note that the numbering is applied to the whole VPlan, so printing 2515 /// individual blocks is consistent with the whole VPlan printing. 2516 void print(raw_ostream &O, const Twine &Indent, 2517 VPSlotTracker &SlotTracker) const override; 2518 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2519 #endif 2520 2521 /// If the block has multiple successors, return the branch recipe terminating 2522 /// the block. If there are no or only a single successor, return nullptr; 2523 VPRecipeBase *getTerminator(); 2524 const VPRecipeBase *getTerminator() const; 2525 2526 /// Returns true if the block is exiting it's parent region. 2527 bool isExiting() const; 2528 2529 private: 2530 /// Create an IR BasicBlock to hold the output instructions generated by this 2531 /// VPBasicBlock, and return it. Update the CFGState accordingly. 2532 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 2533 }; 2534 2535 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 2536 /// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG. 2537 /// A VPRegionBlock may indicate that its contents are to be replicated several 2538 /// times. This is designed to support predicated scalarization, in which a 2539 /// scalar if-then code structure needs to be generated VF * UF times. Having 2540 /// this replication indicator helps to keep a single model for multiple 2541 /// candidate VF's. The actual replication takes place only once the desired VF 2542 /// and UF have been determined. 2543 class VPRegionBlock : public VPBlockBase { 2544 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 2545 VPBlockBase *Entry; 2546 2547 /// Hold the Single Exiting block of the SESE region modelled by the 2548 /// VPRegionBlock. 2549 VPBlockBase *Exiting; 2550 2551 /// An indicator whether this region is to generate multiple replicated 2552 /// instances of output IR corresponding to its VPBlockBases. 2553 bool IsReplicator; 2554 2555 public: 2556 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting, 2557 const std::string &Name = "", bool IsReplicator = false) 2558 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting), 2559 IsReplicator(IsReplicator) { 2560 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 2561 assert(Exiting->getSuccessors().empty() && "Exit block has successors."); 2562 Entry->setParent(this); 2563 Exiting->setParent(this); 2564 } 2565 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) 2566 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr), 2567 IsReplicator(IsReplicator) {} 2568 2569 ~VPRegionBlock() override { 2570 if (Entry) { 2571 VPValue DummyValue; 2572 Entry->dropAllReferences(&DummyValue); 2573 deleteCFG(Entry); 2574 } 2575 } 2576 2577 /// Method to support type inquiry through isa, cast, and dyn_cast. 2578 static inline bool classof(const VPBlockBase *V) { 2579 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 2580 } 2581 2582 const VPBlockBase *getEntry() const { return Entry; } 2583 VPBlockBase *getEntry() { return Entry; } 2584 2585 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 2586 /// EntryBlock must have no predecessors. 2587 void setEntry(VPBlockBase *EntryBlock) { 2588 assert(EntryBlock->getPredecessors().empty() && 2589 "Entry block cannot have predecessors."); 2590 Entry = EntryBlock; 2591 EntryBlock->setParent(this); 2592 } 2593 2594 const VPBlockBase *getExiting() const { return Exiting; } 2595 VPBlockBase *getExiting() { return Exiting; } 2596 2597 /// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p 2598 /// ExitingBlock must have no successors. 2599 void setExiting(VPBlockBase *ExitingBlock) { 2600 assert(ExitingBlock->getSuccessors().empty() && 2601 "Exit block cannot have successors."); 2602 Exiting = ExitingBlock; 2603 ExitingBlock->setParent(this); 2604 } 2605 2606 /// Returns the pre-header VPBasicBlock of the loop region. 2607 VPBasicBlock *getPreheaderVPBB() { 2608 assert(!isReplicator() && "should only get pre-header of loop regions"); 2609 return getSinglePredecessor()->getExitingBasicBlock(); 2610 } 2611 2612 /// An indicator whether this region is to generate multiple replicated 2613 /// instances of output IR corresponding to its VPBlockBases. 2614 bool isReplicator() const { return IsReplicator; } 2615 2616 /// The method which generates the output IR instructions that correspond to 2617 /// this VPRegionBlock, thereby "executing" the VPlan. 2618 void execute(VPTransformState *State) override; 2619 2620 void dropAllReferences(VPValue *NewValue) override; 2621 2622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2623 /// Print this VPRegionBlock to \p O (recursively), prefixing all lines with 2624 /// \p Indent. \p SlotTracker is used to print unnamed VPValue's using 2625 /// consequtive numbers. 2626 /// 2627 /// Note that the numbering is applied to the whole VPlan, so printing 2628 /// individual regions is consistent with the whole VPlan printing. 2629 void print(raw_ostream &O, const Twine &Indent, 2630 VPSlotTracker &SlotTracker) const override; 2631 using VPBlockBase::print; // Get the print(raw_stream &O) version. 2632 #endif 2633 }; 2634 2635 /// VPlan models a candidate for vectorization, encoding various decisions take 2636 /// to produce efficient output IR, including which branches, basic-blocks and 2637 /// output IR instructions to generate, and their cost. VPlan holds a 2638 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 2639 /// VPBasicBlock. 2640 class VPlan { 2641 friend class VPlanPrinter; 2642 friend class VPSlotTracker; 2643 2644 /// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the 2645 /// preheader of the vector loop. 2646 VPBasicBlock *Entry; 2647 2648 /// VPBasicBlock corresponding to the original preheader. Used to place 2649 /// VPExpandSCEV recipes for expressions used during skeleton creation and the 2650 /// rest of VPlan execution. 2651 VPBasicBlock *Preheader; 2652 2653 /// Holds the VFs applicable to this VPlan. 2654 SmallSetVector<ElementCount, 2> VFs; 2655 2656 /// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for 2657 /// any UF. 2658 SmallSetVector<unsigned, 2> UFs; 2659 2660 /// Holds the name of the VPlan, for printing. 2661 std::string Name; 2662 2663 /// Represents the trip count of the original loop, for folding 2664 /// the tail. 2665 VPValue *TripCount = nullptr; 2666 2667 /// Represents the backedge taken count of the original loop, for folding 2668 /// the tail. It equals TripCount - 1. 2669 VPValue *BackedgeTakenCount = nullptr; 2670 2671 /// Represents the vector trip count. 2672 VPValue VectorTripCount; 2673 2674 /// Represents the loop-invariant VF * UF of the vector loop region. 2675 VPValue VFxUF; 2676 2677 /// Holds a mapping between Values and their corresponding VPValue inside 2678 /// VPlan. 2679 Value2VPValueTy Value2VPValue; 2680 2681 /// Contains all the external definitions created for this VPlan. External 2682 /// definitions are VPValues that hold a pointer to their underlying IR. 2683 SmallVector<VPValue *, 16> VPLiveInsToFree; 2684 2685 /// Indicates whether it is safe use the Value2VPValue mapping or if the 2686 /// mapping cannot be used any longer, because it is stale. 2687 bool Value2VPValueEnabled = true; 2688 2689 /// Values used outside the plan. 2690 MapVector<PHINode *, VPLiveOut *> LiveOuts; 2691 2692 /// Mapping from SCEVs to the VPValues representing their expansions. 2693 /// NOTE: This mapping is temporary and will be removed once all users have 2694 /// been modeled in VPlan directly. 2695 DenseMap<const SCEV *, VPValue *> SCEVToExpansion; 2696 2697 public: 2698 /// Construct a VPlan with original preheader \p Preheader, trip count \p TC 2699 /// and \p Entry to the plan. At the moment, \p Preheader and \p Entry need to 2700 /// be disconnected, as the bypass blocks between them are not yet modeled in 2701 /// VPlan. 2702 VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry) 2703 : VPlan(Preheader, Entry) { 2704 TripCount = TC; 2705 } 2706 2707 /// Construct a VPlan with original preheader \p Preheader and \p Entry to 2708 /// the plan. At the moment, \p Preheader and \p Entry need to be 2709 /// disconnected, as the bypass blocks between them are not yet modeled in 2710 /// VPlan. 2711 VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry) 2712 : Entry(Entry), Preheader(Preheader) { 2713 Entry->setPlan(this); 2714 Preheader->setPlan(this); 2715 assert(Preheader->getNumSuccessors() == 0 && 2716 Preheader->getNumPredecessors() == 0 && 2717 "preheader must be disconnected"); 2718 } 2719 2720 ~VPlan(); 2721 2722 /// Create initial VPlan skeleton, having an "entry" VPBasicBlock (wrapping 2723 /// original scalar pre-header) which contains SCEV expansions that need to 2724 /// happen before the CFG is modified; a VPBasicBlock for the vector 2725 /// pre-header, followed by a region for the vector loop, followed by the 2726 /// middle VPBasicBlock. 2727 static VPlanPtr createInitialVPlan(const SCEV *TripCount, 2728 ScalarEvolution &PSE); 2729 2730 /// Prepare the plan for execution, setting up the required live-in values. 2731 void prepareToExecute(Value *TripCount, Value *VectorTripCount, 2732 Value *CanonicalIVStartValue, VPTransformState &State); 2733 2734 /// Generate the IR code for this VPlan. 2735 void execute(VPTransformState *State); 2736 2737 VPBasicBlock *getEntry() { return Entry; } 2738 const VPBasicBlock *getEntry() const { return Entry; } 2739 2740 /// The trip count of the original loop. 2741 VPValue *getTripCount() const { 2742 assert(TripCount && "trip count needs to be set before accessing it"); 2743 return TripCount; 2744 } 2745 2746 /// The backedge taken count of the original loop. 2747 VPValue *getOrCreateBackedgeTakenCount() { 2748 if (!BackedgeTakenCount) 2749 BackedgeTakenCount = new VPValue(); 2750 return BackedgeTakenCount; 2751 } 2752 2753 /// The vector trip count. 2754 VPValue &getVectorTripCount() { return VectorTripCount; } 2755 2756 /// Returns VF * UF of the vector loop region. 2757 VPValue &getVFxUF() { return VFxUF; } 2758 2759 /// Mark the plan to indicate that using Value2VPValue is not safe any 2760 /// longer, because it may be stale. 2761 void disableValue2VPValue() { Value2VPValueEnabled = false; } 2762 2763 void addVF(ElementCount VF) { VFs.insert(VF); } 2764 2765 void setVF(ElementCount VF) { 2766 assert(hasVF(VF) && "Cannot set VF not already in plan"); 2767 VFs.clear(); 2768 VFs.insert(VF); 2769 } 2770 2771 bool hasVF(ElementCount VF) { return VFs.count(VF); } 2772 2773 bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); } 2774 2775 bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); } 2776 2777 void setUF(unsigned UF) { 2778 assert(hasUF(UF) && "Cannot set the UF not already in plan"); 2779 UFs.clear(); 2780 UFs.insert(UF); 2781 } 2782 2783 /// Return a string with the name of the plan and the applicable VFs and UFs. 2784 std::string getName() const; 2785 2786 void setName(const Twine &newName) { Name = newName.str(); } 2787 2788 void addVPValue(Value *V, VPValue *VPV) { 2789 assert((Value2VPValueEnabled || VPV->isLiveIn()) && 2790 "Value2VPValue mapping may be out of date!"); 2791 assert(V && "Trying to add a null Value to VPlan"); 2792 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 2793 Value2VPValue[V] = VPV; 2794 } 2795 2796 /// Returns the VPValue for \p V. \p OverrideAllowed can be used to disable 2797 /// /// checking whether it is safe to query VPValues using IR Values. 2798 VPValue *getVPValue(Value *V, bool OverrideAllowed = false) { 2799 assert(V && "Trying to get the VPValue of a null Value"); 2800 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 2801 assert((Value2VPValueEnabled || OverrideAllowed || 2802 Value2VPValue[V]->isLiveIn()) && 2803 "Value2VPValue mapping may be out of date!"); 2804 return Value2VPValue[V]; 2805 } 2806 2807 /// Gets the VPValue for \p V or adds a new live-in (if none exists yet) for 2808 /// \p V. 2809 VPValue *getVPValueOrAddLiveIn(Value *V) { 2810 assert(V && "Trying to get or add the VPValue of a null Value"); 2811 if (!Value2VPValue.count(V)) { 2812 VPValue *VPV = new VPValue(V); 2813 VPLiveInsToFree.push_back(VPV); 2814 addVPValue(V, VPV); 2815 } 2816 2817 return getVPValue(V); 2818 } 2819 2820 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2821 /// Print the live-ins of this VPlan to \p O. 2822 void printLiveIns(raw_ostream &O) const; 2823 2824 /// Print this VPlan to \p O. 2825 void print(raw_ostream &O) const; 2826 2827 /// Print this VPlan in DOT format to \p O. 2828 void printDOT(raw_ostream &O) const; 2829 2830 /// Dump the plan to stderr (for debugging). 2831 LLVM_DUMP_METHOD void dump() const; 2832 #endif 2833 2834 /// Returns a range mapping the values the range \p Operands to their 2835 /// corresponding VPValues. 2836 iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>> 2837 mapToVPValues(User::op_range Operands) { 2838 std::function<VPValue *(Value *)> Fn = [this](Value *Op) { 2839 return getVPValueOrAddLiveIn(Op); 2840 }; 2841 return map_range(Operands, Fn); 2842 } 2843 2844 /// Returns the VPRegionBlock of the vector loop. 2845 VPRegionBlock *getVectorLoopRegion() { 2846 return cast<VPRegionBlock>(getEntry()->getSingleSuccessor()); 2847 } 2848 const VPRegionBlock *getVectorLoopRegion() const { 2849 return cast<VPRegionBlock>(getEntry()->getSingleSuccessor()); 2850 } 2851 2852 /// Returns the canonical induction recipe of the vector loop. 2853 VPCanonicalIVPHIRecipe *getCanonicalIV() { 2854 VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock(); 2855 if (EntryVPBB->empty()) { 2856 // VPlan native path. 2857 EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor()); 2858 } 2859 return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin()); 2860 } 2861 2862 void addLiveOut(PHINode *PN, VPValue *V); 2863 2864 void removeLiveOut(PHINode *PN) { 2865 delete LiveOuts[PN]; 2866 LiveOuts.erase(PN); 2867 } 2868 2869 const MapVector<PHINode *, VPLiveOut *> &getLiveOuts() const { 2870 return LiveOuts; 2871 } 2872 2873 VPValue *getSCEVExpansion(const SCEV *S) const { 2874 return SCEVToExpansion.lookup(S); 2875 } 2876 2877 void addSCEVExpansion(const SCEV *S, VPValue *V) { 2878 assert(!SCEVToExpansion.contains(S) && "SCEV already expanded"); 2879 SCEVToExpansion[S] = V; 2880 } 2881 2882 /// \return The block corresponding to the original preheader. 2883 VPBasicBlock *getPreheader() { return Preheader; } 2884 const VPBasicBlock *getPreheader() const { return Preheader; } 2885 2886 private: 2887 /// Add to the given dominator tree the header block and every new basic block 2888 /// that was created between it and the latch block, inclusive. 2889 static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB, 2890 BasicBlock *LoopPreHeaderBB, 2891 BasicBlock *LoopExitBB); 2892 }; 2893 2894 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2895 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 2896 /// indented and follows the dot format. 2897 class VPlanPrinter { 2898 raw_ostream &OS; 2899 const VPlan &Plan; 2900 unsigned Depth = 0; 2901 unsigned TabWidth = 2; 2902 std::string Indent; 2903 unsigned BID = 0; 2904 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 2905 2906 VPSlotTracker SlotTracker; 2907 2908 /// Handle indentation. 2909 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 2910 2911 /// Print a given \p Block of the Plan. 2912 void dumpBlock(const VPBlockBase *Block); 2913 2914 /// Print the information related to the CFG edges going out of a given 2915 /// \p Block, followed by printing the successor blocks themselves. 2916 void dumpEdges(const VPBlockBase *Block); 2917 2918 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 2919 /// its successor blocks. 2920 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 2921 2922 /// Print a given \p Region of the Plan. 2923 void dumpRegion(const VPRegionBlock *Region); 2924 2925 unsigned getOrCreateBID(const VPBlockBase *Block) { 2926 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 2927 } 2928 2929 Twine getOrCreateName(const VPBlockBase *Block); 2930 2931 Twine getUID(const VPBlockBase *Block); 2932 2933 /// Print the information related to a CFG edge between two VPBlockBases. 2934 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 2935 const Twine &Label); 2936 2937 public: 2938 VPlanPrinter(raw_ostream &O, const VPlan &P) 2939 : OS(O), Plan(P), SlotTracker(&P) {} 2940 2941 LLVM_DUMP_METHOD void dump(); 2942 }; 2943 2944 struct VPlanIngredient { 2945 const Value *V; 2946 2947 VPlanIngredient(const Value *V) : V(V) {} 2948 2949 void print(raw_ostream &O) const; 2950 }; 2951 2952 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 2953 I.print(OS); 2954 return OS; 2955 } 2956 2957 inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) { 2958 Plan.print(OS); 2959 return OS; 2960 } 2961 #endif 2962 2963 //===----------------------------------------------------------------------===// 2964 // VPlan Utilities 2965 //===----------------------------------------------------------------------===// 2966 2967 /// Class that provides utilities for VPBlockBases in VPlan. 2968 class VPBlockUtils { 2969 public: 2970 VPBlockUtils() = delete; 2971 2972 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 2973 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 2974 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's 2975 /// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must 2976 /// have neither successors nor predecessors. 2977 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 2978 assert(NewBlock->getSuccessors().empty() && 2979 NewBlock->getPredecessors().empty() && 2980 "Can't insert new block with predecessors or successors."); 2981 NewBlock->setParent(BlockPtr->getParent()); 2982 SmallVector<VPBlockBase *> Succs(BlockPtr->successors()); 2983 for (VPBlockBase *Succ : Succs) { 2984 disconnectBlocks(BlockPtr, Succ); 2985 connectBlocks(NewBlock, Succ); 2986 } 2987 connectBlocks(BlockPtr, NewBlock); 2988 } 2989 2990 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 2991 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 2992 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 2993 /// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors 2994 /// and \p IfTrue and \p IfFalse must have neither successors nor 2995 /// predecessors. 2996 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 2997 VPBlockBase *BlockPtr) { 2998 assert(IfTrue->getSuccessors().empty() && 2999 "Can't insert IfTrue with successors."); 3000 assert(IfFalse->getSuccessors().empty() && 3001 "Can't insert IfFalse with successors."); 3002 BlockPtr->setTwoSuccessors(IfTrue, IfFalse); 3003 IfTrue->setPredecessors({BlockPtr}); 3004 IfFalse->setPredecessors({BlockPtr}); 3005 IfTrue->setParent(BlockPtr->getParent()); 3006 IfFalse->setParent(BlockPtr->getParent()); 3007 } 3008 3009 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 3010 /// the successors of \p From and \p From to the predecessors of \p To. Both 3011 /// VPBlockBases must have the same parent, which can be null. Both 3012 /// VPBlockBases can be already connected to other VPBlockBases. 3013 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 3014 assert((From->getParent() == To->getParent()) && 3015 "Can't connect two block with different parents"); 3016 assert(From->getNumSuccessors() < 2 && 3017 "Blocks can't have more than two successors."); 3018 From->appendSuccessor(To); 3019 To->appendPredecessor(From); 3020 } 3021 3022 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 3023 /// from the successors of \p From and \p From from the predecessors of \p To. 3024 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 3025 assert(To && "Successor to disconnect is null."); 3026 From->removeSuccessor(To); 3027 To->removePredecessor(From); 3028 } 3029 3030 /// Return an iterator range over \p Range which only includes \p BlockTy 3031 /// blocks. The accesses are casted to \p BlockTy. 3032 template <typename BlockTy, typename T> 3033 static auto blocksOnly(const T &Range) { 3034 // Create BaseTy with correct const-ness based on BlockTy. 3035 using BaseTy = std::conditional_t<std::is_const<BlockTy>::value, 3036 const VPBlockBase, VPBlockBase>; 3037 3038 // We need to first create an iterator range over (const) BlocktTy & instead 3039 // of (const) BlockTy * for filter_range to work properly. 3040 auto Mapped = 3041 map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; }); 3042 auto Filter = make_filter_range( 3043 Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); }); 3044 return map_range(Filter, [](BaseTy &Block) -> BlockTy * { 3045 return cast<BlockTy>(&Block); 3046 }); 3047 } 3048 }; 3049 3050 class VPInterleavedAccessInfo { 3051 DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *> 3052 InterleaveGroupMap; 3053 3054 /// Type for mapping of instruction based interleave groups to VPInstruction 3055 /// interleave groups 3056 using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *, 3057 InterleaveGroup<VPInstruction> *>; 3058 3059 /// Recursively \p Region and populate VPlan based interleave groups based on 3060 /// \p IAI. 3061 void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New, 3062 InterleavedAccessInfo &IAI); 3063 /// Recursively traverse \p Block and populate VPlan based interleave groups 3064 /// based on \p IAI. 3065 void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 3066 InterleavedAccessInfo &IAI); 3067 3068 public: 3069 VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI); 3070 3071 ~VPInterleavedAccessInfo() { 3072 SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet; 3073 // Avoid releasing a pointer twice. 3074 for (auto &I : InterleaveGroupMap) 3075 DelSet.insert(I.second); 3076 for (auto *Ptr : DelSet) 3077 delete Ptr; 3078 } 3079 3080 /// Get the interleave group that \p Instr belongs to. 3081 /// 3082 /// \returns nullptr if doesn't have such group. 3083 InterleaveGroup<VPInstruction> * 3084 getInterleaveGroup(VPInstruction *Instr) const { 3085 return InterleaveGroupMap.lookup(Instr); 3086 } 3087 }; 3088 3089 /// Class that maps (parts of) an existing VPlan to trees of combined 3090 /// VPInstructions. 3091 class VPlanSlp { 3092 enum class OpMode { Failed, Load, Opcode }; 3093 3094 /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as 3095 /// DenseMap keys. 3096 struct BundleDenseMapInfo { 3097 static SmallVector<VPValue *, 4> getEmptyKey() { 3098 return {reinterpret_cast<VPValue *>(-1)}; 3099 } 3100 3101 static SmallVector<VPValue *, 4> getTombstoneKey() { 3102 return {reinterpret_cast<VPValue *>(-2)}; 3103 } 3104 3105 static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) { 3106 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 3107 } 3108 3109 static bool isEqual(const SmallVector<VPValue *, 4> &LHS, 3110 const SmallVector<VPValue *, 4> &RHS) { 3111 return LHS == RHS; 3112 } 3113 }; 3114 3115 /// Mapping of values in the original VPlan to a combined VPInstruction. 3116 DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo> 3117 BundleToCombined; 3118 3119 VPInterleavedAccessInfo &IAI; 3120 3121 /// Basic block to operate on. For now, only instructions in a single BB are 3122 /// considered. 3123 const VPBasicBlock &BB; 3124 3125 /// Indicates whether we managed to combine all visited instructions or not. 3126 bool CompletelySLP = true; 3127 3128 /// Width of the widest combined bundle in bits. 3129 unsigned WidestBundleBits = 0; 3130 3131 using MultiNodeOpTy = 3132 typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>; 3133 3134 // Input operand bundles for the current multi node. Each multi node operand 3135 // bundle contains values not matching the multi node's opcode. They will 3136 // be reordered in reorderMultiNodeOps, once we completed building a 3137 // multi node. 3138 SmallVector<MultiNodeOpTy, 4> MultiNodeOps; 3139 3140 /// Indicates whether we are building a multi node currently. 3141 bool MultiNodeActive = false; 3142 3143 /// Check if we can vectorize Operands together. 3144 bool areVectorizable(ArrayRef<VPValue *> Operands) const; 3145 3146 /// Add combined instruction \p New for the bundle \p Operands. 3147 void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New); 3148 3149 /// Indicate we hit a bundle we failed to combine. Returns nullptr for now. 3150 VPInstruction *markFailed(); 3151 3152 /// Reorder operands in the multi node to maximize sequential memory access 3153 /// and commutative operations. 3154 SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps(); 3155 3156 /// Choose the best candidate to use for the lane after \p Last. The set of 3157 /// candidates to choose from are values with an opcode matching \p Last's 3158 /// or loads consecutive to \p Last. 3159 std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last, 3160 SmallPtrSetImpl<VPValue *> &Candidates, 3161 VPInterleavedAccessInfo &IAI); 3162 3163 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3164 /// Print bundle \p Values to dbgs(). 3165 void dumpBundle(ArrayRef<VPValue *> Values); 3166 #endif 3167 3168 public: 3169 VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {} 3170 3171 ~VPlanSlp() = default; 3172 3173 /// Tries to build an SLP tree rooted at \p Operands and returns a 3174 /// VPInstruction combining \p Operands, if they can be combined. 3175 VPInstruction *buildGraph(ArrayRef<VPValue *> Operands); 3176 3177 /// Return the width of the widest combined bundle in bits. 3178 unsigned getWidestBundleBits() const { return WidestBundleBits; } 3179 3180 /// Return true if all visited instruction can be combined. 3181 bool isCompletelySLP() const { return CompletelySLP; } 3182 }; 3183 3184 namespace vputils { 3185 3186 /// Returns true if only the first lane of \p Def is used. 3187 bool onlyFirstLaneUsed(VPValue *Def); 3188 3189 /// Returns true if only the first part of \p Def is used. 3190 bool onlyFirstPartUsed(VPValue *Def); 3191 3192 /// Get or create a VPValue that corresponds to the expansion of \p Expr. If \p 3193 /// Expr is a SCEVConstant or SCEVUnknown, return a VPValue wrapping the live-in 3194 /// value. Otherwise return a VPExpandSCEVRecipe to expand \p Expr. If \p Plan's 3195 /// pre-header already contains a recipe expanding \p Expr, return it. If not, 3196 /// create a new one. 3197 VPValue *getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 3198 ScalarEvolution &SE); 3199 3200 /// Returns true if \p VPV is uniform after vectorization. 3201 inline bool isUniformAfterVectorization(VPValue *VPV) { 3202 // A value defined outside the vector region must be uniform after 3203 // vectorization inside a vector region. 3204 if (VPV->isDefinedOutsideVectorRegions()) 3205 return true; 3206 VPRecipeBase *Def = VPV->getDefiningRecipe(); 3207 assert(Def && "Must have definition for value defined inside vector region"); 3208 if (auto Rep = dyn_cast<VPReplicateRecipe>(Def)) 3209 return Rep->isUniform(); 3210 if (auto *GEP = dyn_cast<VPWidenGEPRecipe>(Def)) 3211 return all_of(GEP->operands(), isUniformAfterVectorization); 3212 if (auto *VPI = dyn_cast<VPInstruction>(Def)) 3213 return VPI->getOpcode() == VPInstruction::ComputeReductionResult; 3214 return false; 3215 } 3216 } // end namespace vputils 3217 3218 } // end namespace llvm 3219 3220 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 3221