xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.h (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file contains the declarations of the Vectorization Plan base classes:
11 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
12 ///    VPBlockBase, together implementing a Hierarchical CFG;
13 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
14 ///    treated as proper graphs for generic algorithms;
15 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
16 ///    within VPBasicBlocks;
17 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
18 ///    instruction;
19 /// 5. The VPlan class holding a candidate for vectorization;
20 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
21 /// These are documented in docs/VectorizationPlan.rst.
22 //
23 //===----------------------------------------------------------------------===//
24 
25 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
26 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 
28 #include "VPlanLoopInfo.h"
29 #include "VPlanValue.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/GraphTraits.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Twine.h"
38 #include "llvm/ADT/ilist.h"
39 #include "llvm/ADT/ilist_node.h"
40 #include "llvm/Analysis/VectorUtils.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <map>
46 #include <string>
47 
48 namespace llvm {
49 
50 class LoopVectorizationLegality;
51 class LoopVectorizationCostModel;
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 template <class T> class InterleaveGroup;
56 class LoopInfo;
57 class raw_ostream;
58 class Value;
59 class VPBasicBlock;
60 class VPRegionBlock;
61 class VPlan;
62 class VPlanSlp;
63 
64 /// A range of powers-of-2 vectorization factors with fixed start and
65 /// adjustable end. The range includes start and excludes end, e.g.,:
66 /// [1, 9) = {1, 2, 4, 8}
67 struct VFRange {
68   // A power of 2.
69   const unsigned Start;
70 
71   // Need not be a power of 2. If End <= Start range is empty.
72   unsigned End;
73 };
74 
75 using VPlanPtr = std::unique_ptr<VPlan>;
76 
77 /// In what follows, the term "input IR" refers to code that is fed into the
78 /// vectorizer whereas the term "output IR" refers to code that is generated by
79 /// the vectorizer.
80 
81 /// VPIteration represents a single point in the iteration space of the output
82 /// (vectorized and/or unrolled) IR loop.
83 struct VPIteration {
84   /// in [0..UF)
85   unsigned Part;
86 
87   /// in [0..VF)
88   unsigned Lane;
89 };
90 
91 /// This is a helper struct for maintaining vectorization state. It's used for
92 /// mapping values from the original loop to their corresponding values in
93 /// the new loop. Two mappings are maintained: one for vectorized values and
94 /// one for scalarized values. Vectorized values are represented with UF
95 /// vector values in the new loop, and scalarized values are represented with
96 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
97 /// vectorization factors, respectively.
98 ///
99 /// Entries can be added to either map with setVectorValue and setScalarValue,
100 /// which assert that an entry was not already added before. If an entry is to
101 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
102 /// currently needed to modify the mapped values during "fix-up" operations that
103 /// occur once the first phase of widening is complete. These operations include
104 /// type truncation and the second phase of recurrence widening.
105 ///
106 /// Entries from either map can be retrieved using the getVectorValue and
107 /// getScalarValue functions, which assert that the desired value exists.
108 struct VectorizerValueMap {
109   friend struct VPTransformState;
110 
111 private:
112   /// The unroll factor. Each entry in the vector map contains UF vector values.
113   unsigned UF;
114 
115   /// The vectorization factor. Each entry in the scalar map contains UF x VF
116   /// scalar values.
117   unsigned VF;
118 
119   /// The vector and scalar map storage. We use std::map and not DenseMap
120   /// because insertions to DenseMap invalidate its iterators.
121   using VectorParts = SmallVector<Value *, 2>;
122   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
123   std::map<Value *, VectorParts> VectorMapStorage;
124   std::map<Value *, ScalarParts> ScalarMapStorage;
125 
126 public:
127   /// Construct an empty map with the given unroll and vectorization factors.
128   VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
129 
130   /// \return True if the map has any vector entry for \p Key.
131   bool hasAnyVectorValue(Value *Key) const {
132     return VectorMapStorage.count(Key);
133   }
134 
135   /// \return True if the map has a vector entry for \p Key and \p Part.
136   bool hasVectorValue(Value *Key, unsigned Part) const {
137     assert(Part < UF && "Queried Vector Part is too large.");
138     if (!hasAnyVectorValue(Key))
139       return false;
140     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
141     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
142     return Entry[Part] != nullptr;
143   }
144 
145   /// \return True if the map has any scalar entry for \p Key.
146   bool hasAnyScalarValue(Value *Key) const {
147     return ScalarMapStorage.count(Key);
148   }
149 
150   /// \return True if the map has a scalar entry for \p Key and \p Instance.
151   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
152     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
153     assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
154     if (!hasAnyScalarValue(Key))
155       return false;
156     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
157     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
158     assert(Entry[Instance.Part].size() == VF &&
159            "ScalarParts has wrong dimensions.");
160     return Entry[Instance.Part][Instance.Lane] != nullptr;
161   }
162 
163   /// Retrieve the existing vector value that corresponds to \p Key and
164   /// \p Part.
165   Value *getVectorValue(Value *Key, unsigned Part) {
166     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
167     return VectorMapStorage[Key][Part];
168   }
169 
170   /// Retrieve the existing scalar value that corresponds to \p Key and
171   /// \p Instance.
172   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
173     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
174     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
175   }
176 
177   /// Set a vector value associated with \p Key and \p Part. Assumes such a
178   /// value is not already set. If it is, use resetVectorValue() instead.
179   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
180     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
181     if (!VectorMapStorage.count(Key)) {
182       VectorParts Entry(UF);
183       VectorMapStorage[Key] = Entry;
184     }
185     VectorMapStorage[Key][Part] = Vector;
186   }
187 
188   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
189   /// value is not already set.
190   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
191     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
192     if (!ScalarMapStorage.count(Key)) {
193       ScalarParts Entry(UF);
194       // TODO: Consider storing uniform values only per-part, as they occupy
195       //       lane 0 only, keeping the other VF-1 redundant entries null.
196       for (unsigned Part = 0; Part < UF; ++Part)
197         Entry[Part].resize(VF, nullptr);
198       ScalarMapStorage[Key] = Entry;
199     }
200     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
201   }
202 
203   /// Reset the vector value associated with \p Key for the given \p Part.
204   /// This function can be used to update values that have already been
205   /// vectorized. This is the case for "fix-up" operations including type
206   /// truncation and the second phase of recurrence vectorization.
207   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
208     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
209     VectorMapStorage[Key][Part] = Vector;
210   }
211 
212   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
213   /// This function can be used to update values that have already been
214   /// scalarized. This is the case for "fix-up" operations including scalar phi
215   /// nodes for scalarized and predicated instructions.
216   void resetScalarValue(Value *Key, const VPIteration &Instance,
217                         Value *Scalar) {
218     assert(hasScalarValue(Key, Instance) &&
219            "Scalar value not set for part and lane");
220     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
221   }
222 };
223 
224 /// This class is used to enable the VPlan to invoke a method of ILV. This is
225 /// needed until the method is refactored out of ILV and becomes reusable.
226 struct VPCallback {
227   virtual ~VPCallback() {}
228   virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
229 };
230 
231 /// VPTransformState holds information passed down when "executing" a VPlan,
232 /// needed for generating the output IR.
233 struct VPTransformState {
234   VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
235                    IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
236                    InnerLoopVectorizer *ILV, VPCallback &Callback)
237       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
238         ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
239 
240   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
241   unsigned VF;
242   unsigned UF;
243 
244   /// Hold the indices to generate specific scalar instructions. Null indicates
245   /// that all instances are to be generated, using either scalar or vector
246   /// instructions.
247   Optional<VPIteration> Instance;
248 
249   struct DataState {
250     /// A type for vectorized values in the new loop. Each value from the
251     /// original loop, when vectorized, is represented by UF vector values in
252     /// the new unrolled loop, where UF is the unroll factor.
253     typedef SmallVector<Value *, 2> PerPartValuesTy;
254 
255     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
256   } Data;
257 
258   /// Get the generated Value for a given VPValue and a given Part. Note that
259   /// as some Defs are still created by ILV and managed in its ValueMap, this
260   /// method will delegate the call to ILV in such cases in order to provide
261   /// callers a consistent API.
262   /// \see set.
263   Value *get(VPValue *Def, unsigned Part) {
264     // If Values have been set for this Def return the one relevant for \p Part.
265     if (Data.PerPartOutput.count(Def))
266       return Data.PerPartOutput[Def][Part];
267     // Def is managed by ILV: bring the Values from ValueMap.
268     return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
269   }
270 
271   /// Set the generated Value for a given VPValue and a given Part.
272   void set(VPValue *Def, Value *V, unsigned Part) {
273     if (!Data.PerPartOutput.count(Def)) {
274       DataState::PerPartValuesTy Entry(UF);
275       Data.PerPartOutput[Def] = Entry;
276     }
277     Data.PerPartOutput[Def][Part] = V;
278   }
279 
280   /// Hold state information used when constructing the CFG of the output IR,
281   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
282   struct CFGState {
283     /// The previous VPBasicBlock visited. Initially set to null.
284     VPBasicBlock *PrevVPBB = nullptr;
285 
286     /// The previous IR BasicBlock created or used. Initially set to the new
287     /// header BasicBlock.
288     BasicBlock *PrevBB = nullptr;
289 
290     /// The last IR BasicBlock in the output IR. Set to the new latch
291     /// BasicBlock, used for placing the newly created BasicBlocks.
292     BasicBlock *LastBB = nullptr;
293 
294     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
295     /// of replication, maps the BasicBlock of the last replica created.
296     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
297 
298     /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
299     /// up at the end of vector code generation.
300     SmallVector<VPBasicBlock *, 8> VPBBsToFix;
301 
302     CFGState() = default;
303   } CFG;
304 
305   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
306   LoopInfo *LI;
307 
308   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
309   DominatorTree *DT;
310 
311   /// Hold a reference to the IRBuilder used to generate output IR code.
312   IRBuilder<> &Builder;
313 
314   /// Hold a reference to the Value state information used when generating the
315   /// Values of the output IR.
316   VectorizerValueMap &ValueMap;
317 
318   /// Hold a reference to a mapping between VPValues in VPlan and original
319   /// Values they correspond to.
320   VPValue2ValueTy VPValue2Value;
321 
322   /// Hold the trip count of the scalar loop.
323   Value *TripCount = nullptr;
324 
325   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
326   InnerLoopVectorizer *ILV;
327 
328   VPCallback &Callback;
329 };
330 
331 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
332 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
333 class VPBlockBase {
334   friend class VPBlockUtils;
335 
336 private:
337   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
338 
339   /// An optional name for the block.
340   std::string Name;
341 
342   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
343   /// it is a topmost VPBlockBase.
344   VPRegionBlock *Parent = nullptr;
345 
346   /// List of predecessor blocks.
347   SmallVector<VPBlockBase *, 1> Predecessors;
348 
349   /// List of successor blocks.
350   SmallVector<VPBlockBase *, 1> Successors;
351 
352   /// Successor selector, null for zero or single successor blocks.
353   VPValue *CondBit = nullptr;
354 
355   /// Current block predicate - null if the block does not need a predicate.
356   VPValue *Predicate = nullptr;
357 
358   /// Add \p Successor as the last successor to this block.
359   void appendSuccessor(VPBlockBase *Successor) {
360     assert(Successor && "Cannot add nullptr successor!");
361     Successors.push_back(Successor);
362   }
363 
364   /// Add \p Predecessor as the last predecessor to this block.
365   void appendPredecessor(VPBlockBase *Predecessor) {
366     assert(Predecessor && "Cannot add nullptr predecessor!");
367     Predecessors.push_back(Predecessor);
368   }
369 
370   /// Remove \p Predecessor from the predecessors of this block.
371   void removePredecessor(VPBlockBase *Predecessor) {
372     auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
373     assert(Pos && "Predecessor does not exist");
374     Predecessors.erase(Pos);
375   }
376 
377   /// Remove \p Successor from the successors of this block.
378   void removeSuccessor(VPBlockBase *Successor) {
379     auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
380     assert(Pos && "Successor does not exist");
381     Successors.erase(Pos);
382   }
383 
384 protected:
385   VPBlockBase(const unsigned char SC, const std::string &N)
386       : SubclassID(SC), Name(N) {}
387 
388 public:
389   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
390   /// that are actually instantiated. Values of this enumeration are kept in the
391   /// SubclassID field of the VPBlockBase objects. They are used for concrete
392   /// type identification.
393   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
394 
395   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
396 
397   virtual ~VPBlockBase() = default;
398 
399   const std::string &getName() const { return Name; }
400 
401   void setName(const Twine &newName) { Name = newName.str(); }
402 
403   /// \return an ID for the concrete type of this object.
404   /// This is used to implement the classof checks. This should not be used
405   /// for any other purpose, as the values may change as LLVM evolves.
406   unsigned getVPBlockID() const { return SubclassID; }
407 
408   VPRegionBlock *getParent() { return Parent; }
409   const VPRegionBlock *getParent() const { return Parent; }
410 
411   void setParent(VPRegionBlock *P) { Parent = P; }
412 
413   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
414   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
415   /// VPBlockBase is a VPBasicBlock, it is returned.
416   const VPBasicBlock *getEntryBasicBlock() const;
417   VPBasicBlock *getEntryBasicBlock();
418 
419   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
420   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
421   /// VPBlockBase is a VPBasicBlock, it is returned.
422   const VPBasicBlock *getExitBasicBlock() const;
423   VPBasicBlock *getExitBasicBlock();
424 
425   const VPBlocksTy &getSuccessors() const { return Successors; }
426   VPBlocksTy &getSuccessors() { return Successors; }
427 
428   const VPBlocksTy &getPredecessors() const { return Predecessors; }
429   VPBlocksTy &getPredecessors() { return Predecessors; }
430 
431   /// \return the successor of this VPBlockBase if it has a single successor.
432   /// Otherwise return a null pointer.
433   VPBlockBase *getSingleSuccessor() const {
434     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
435   }
436 
437   /// \return the predecessor of this VPBlockBase if it has a single
438   /// predecessor. Otherwise return a null pointer.
439   VPBlockBase *getSinglePredecessor() const {
440     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
441   }
442 
443   size_t getNumSuccessors() const { return Successors.size(); }
444   size_t getNumPredecessors() const { return Predecessors.size(); }
445 
446   /// An Enclosing Block of a block B is any block containing B, including B
447   /// itself. \return the closest enclosing block starting from "this", which
448   /// has successors. \return the root enclosing block if all enclosing blocks
449   /// have no successors.
450   VPBlockBase *getEnclosingBlockWithSuccessors();
451 
452   /// \return the closest enclosing block starting from "this", which has
453   /// predecessors. \return the root enclosing block if all enclosing blocks
454   /// have no predecessors.
455   VPBlockBase *getEnclosingBlockWithPredecessors();
456 
457   /// \return the successors either attached directly to this VPBlockBase or, if
458   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
459   /// successors of its own, search recursively for the first enclosing
460   /// VPRegionBlock that has successors and return them. If no such
461   /// VPRegionBlock exists, return the (empty) successors of the topmost
462   /// VPBlockBase reached.
463   const VPBlocksTy &getHierarchicalSuccessors() {
464     return getEnclosingBlockWithSuccessors()->getSuccessors();
465   }
466 
467   /// \return the hierarchical successor of this VPBlockBase if it has a single
468   /// hierarchical successor. Otherwise return a null pointer.
469   VPBlockBase *getSingleHierarchicalSuccessor() {
470     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
471   }
472 
473   /// \return the predecessors either attached directly to this VPBlockBase or,
474   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
475   /// predecessors of its own, search recursively for the first enclosing
476   /// VPRegionBlock that has predecessors and return them. If no such
477   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
478   /// VPBlockBase reached.
479   const VPBlocksTy &getHierarchicalPredecessors() {
480     return getEnclosingBlockWithPredecessors()->getPredecessors();
481   }
482 
483   /// \return the hierarchical predecessor of this VPBlockBase if it has a
484   /// single hierarchical predecessor. Otherwise return a null pointer.
485   VPBlockBase *getSingleHierarchicalPredecessor() {
486     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
487   }
488 
489   /// \return the condition bit selecting the successor.
490   VPValue *getCondBit() { return CondBit; }
491 
492   const VPValue *getCondBit() const { return CondBit; }
493 
494   void setCondBit(VPValue *CV) { CondBit = CV; }
495 
496   VPValue *getPredicate() { return Predicate; }
497 
498   const VPValue *getPredicate() const { return Predicate; }
499 
500   void setPredicate(VPValue *Pred) { Predicate = Pred; }
501 
502   /// Set a given VPBlockBase \p Successor as the single successor of this
503   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
504   /// This VPBlockBase must have no successors.
505   void setOneSuccessor(VPBlockBase *Successor) {
506     assert(Successors.empty() && "Setting one successor when others exist.");
507     appendSuccessor(Successor);
508   }
509 
510   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
511   /// successors of this VPBlockBase. \p Condition is set as the successor
512   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
513   /// IfFalse. This VPBlockBase must have no successors.
514   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
515                         VPValue *Condition) {
516     assert(Successors.empty() && "Setting two successors when others exist.");
517     assert(Condition && "Setting two successors without condition!");
518     CondBit = Condition;
519     appendSuccessor(IfTrue);
520     appendSuccessor(IfFalse);
521   }
522 
523   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
524   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
525   /// as successor of any VPBasicBlock in \p NewPreds.
526   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
527     assert(Predecessors.empty() && "Block predecessors already set.");
528     for (auto *Pred : NewPreds)
529       appendPredecessor(Pred);
530   }
531 
532   /// Remove all the predecessor of this block.
533   void clearPredecessors() { Predecessors.clear(); }
534 
535   /// Remove all the successors of this block and set to null its condition bit
536   void clearSuccessors() {
537     Successors.clear();
538     CondBit = nullptr;
539   }
540 
541   /// The method which generates the output IR that correspond to this
542   /// VPBlockBase, thereby "executing" the VPlan.
543   virtual void execute(struct VPTransformState *State) = 0;
544 
545   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
546   static void deleteCFG(VPBlockBase *Entry);
547 
548   void printAsOperand(raw_ostream &OS, bool PrintType) const {
549     OS << getName();
550   }
551 
552   void print(raw_ostream &OS) const {
553     // TODO: Only printing VPBB name for now since we only have dot printing
554     // support for VPInstructions/Recipes.
555     printAsOperand(OS, false);
556   }
557 
558   /// Return true if it is legal to hoist instructions into this block.
559   bool isLegalToHoistInto() {
560     // There are currently no constraints that prevent an instruction to be
561     // hoisted into a VPBlockBase.
562     return true;
563   }
564 };
565 
566 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
567 /// instructions.
568 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
569   friend VPBasicBlock;
570 
571 private:
572   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
573 
574   /// Each VPRecipe belongs to a single VPBasicBlock.
575   VPBasicBlock *Parent = nullptr;
576 
577 public:
578   /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
579   /// that is actually instantiated. Values of this enumeration are kept in the
580   /// SubclassID field of the VPRecipeBase objects. They are used for concrete
581   /// type identification.
582   using VPRecipeTy = enum {
583     VPBlendSC,
584     VPBranchOnMaskSC,
585     VPInstructionSC,
586     VPInterleaveSC,
587     VPPredInstPHISC,
588     VPReplicateSC,
589     VPWidenIntOrFpInductionSC,
590     VPWidenMemoryInstructionSC,
591     VPWidenPHISC,
592     VPWidenSC,
593   };
594 
595   VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
596   virtual ~VPRecipeBase() = default;
597 
598   /// \return an ID for the concrete type of this object.
599   /// This is used to implement the classof checks. This should not be used
600   /// for any other purpose, as the values may change as LLVM evolves.
601   unsigned getVPRecipeID() const { return SubclassID; }
602 
603   /// \return the VPBasicBlock which this VPRecipe belongs to.
604   VPBasicBlock *getParent() { return Parent; }
605   const VPBasicBlock *getParent() const { return Parent; }
606 
607   /// The method which generates the output IR instructions that correspond to
608   /// this VPRecipe, thereby "executing" the VPlan.
609   virtual void execute(struct VPTransformState &State) = 0;
610 
611   /// Each recipe prints itself.
612   virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
613 
614   /// Insert an unlinked recipe into a basic block immediately before
615   /// the specified recipe.
616   void insertBefore(VPRecipeBase *InsertPos);
617 
618   /// This method unlinks 'this' from the containing basic block and deletes it.
619   ///
620   /// \returns an iterator pointing to the element after the erased one
621   iplist<VPRecipeBase>::iterator eraseFromParent();
622 };
623 
624 /// This is a concrete Recipe that models a single VPlan-level instruction.
625 /// While as any Recipe it may generate a sequence of IR instructions when
626 /// executed, these instructions would always form a single-def expression as
627 /// the VPInstruction is also a single def-use vertex.
628 class VPInstruction : public VPUser, public VPRecipeBase {
629   friend class VPlanHCFGTransforms;
630   friend class VPlanSlp;
631 
632 public:
633   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
634   enum {
635     Not = Instruction::OtherOpsEnd + 1,
636     ICmpULE,
637     SLPLoad,
638     SLPStore,
639   };
640 
641 private:
642   typedef unsigned char OpcodeTy;
643   OpcodeTy Opcode;
644 
645   /// Utility method serving execute(): generates a single instance of the
646   /// modeled instruction.
647   void generateInstruction(VPTransformState &State, unsigned Part);
648 
649 protected:
650   Instruction *getUnderlyingInstr() {
651     return cast_or_null<Instruction>(getUnderlyingValue());
652   }
653 
654   void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
655 
656 public:
657   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
658       : VPUser(VPValue::VPInstructionSC, Operands),
659         VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
660 
661   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
662       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
663 
664   /// Method to support type inquiry through isa, cast, and dyn_cast.
665   static inline bool classof(const VPValue *V) {
666     return V->getVPValueID() == VPValue::VPInstructionSC;
667   }
668 
669   VPInstruction *clone() const {
670     SmallVector<VPValue *, 2> Operands(operands());
671     return new VPInstruction(Opcode, Operands);
672   }
673 
674   /// Method to support type inquiry through isa, cast, and dyn_cast.
675   static inline bool classof(const VPRecipeBase *R) {
676     return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
677   }
678 
679   unsigned getOpcode() const { return Opcode; }
680 
681   /// Generate the instruction.
682   /// TODO: We currently execute only per-part unless a specific instance is
683   /// provided.
684   void execute(VPTransformState &State) override;
685 
686   /// Print the Recipe.
687   void print(raw_ostream &O, const Twine &Indent) const override;
688 
689   /// Print the VPInstruction.
690   void print(raw_ostream &O) const;
691 
692   /// Return true if this instruction may modify memory.
693   bool mayWriteToMemory() const {
694     // TODO: we can use attributes of the called function to rule out memory
695     //       modifications.
696     return Opcode == Instruction::Store || Opcode == Instruction::Call ||
697            Opcode == Instruction::Invoke || Opcode == SLPStore;
698   }
699 };
700 
701 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
702 /// Instruction in its ingredients independently, in order. This recipe covers
703 /// most of the traditional vectorization cases where each ingredient transforms
704 /// into a vectorized version of itself.
705 class VPWidenRecipe : public VPRecipeBase {
706 private:
707   /// Hold the ingredients by pointing to their original BasicBlock location.
708   BasicBlock::iterator Begin;
709   BasicBlock::iterator End;
710 
711 public:
712   VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
713     End = I->getIterator();
714     Begin = End++;
715   }
716 
717   ~VPWidenRecipe() override = default;
718 
719   /// Method to support type inquiry through isa, cast, and dyn_cast.
720   static inline bool classof(const VPRecipeBase *V) {
721     return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
722   }
723 
724   /// Produce widened copies of all Ingredients.
725   void execute(VPTransformState &State) override;
726 
727   /// Augment the recipe to include Instr, if it lies at its End.
728   bool appendInstruction(Instruction *Instr) {
729     if (End != Instr->getIterator())
730       return false;
731     End++;
732     return true;
733   }
734 
735   /// Print the recipe.
736   void print(raw_ostream &O, const Twine &Indent) const override;
737 };
738 
739 /// A recipe for handling phi nodes of integer and floating-point inductions,
740 /// producing their vector and scalar values.
741 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
742 private:
743   PHINode *IV;
744   TruncInst *Trunc;
745 
746 public:
747   VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
748       : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
749   ~VPWidenIntOrFpInductionRecipe() override = default;
750 
751   /// Method to support type inquiry through isa, cast, and dyn_cast.
752   static inline bool classof(const VPRecipeBase *V) {
753     return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
754   }
755 
756   /// Generate the vectorized and scalarized versions of the phi node as
757   /// needed by their users.
758   void execute(VPTransformState &State) override;
759 
760   /// Print the recipe.
761   void print(raw_ostream &O, const Twine &Indent) const override;
762 };
763 
764 /// A recipe for handling all phi nodes except for integer and FP inductions.
765 class VPWidenPHIRecipe : public VPRecipeBase {
766 private:
767   PHINode *Phi;
768 
769 public:
770   VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
771   ~VPWidenPHIRecipe() override = default;
772 
773   /// Method to support type inquiry through isa, cast, and dyn_cast.
774   static inline bool classof(const VPRecipeBase *V) {
775     return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
776   }
777 
778   /// Generate the phi/select nodes.
779   void execute(VPTransformState &State) override;
780 
781   /// Print the recipe.
782   void print(raw_ostream &O, const Twine &Indent) const override;
783 };
784 
785 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
786 /// instructions.
787 class VPBlendRecipe : public VPRecipeBase {
788 private:
789   PHINode *Phi;
790 
791   /// The blend operation is a User of a mask, if not null.
792   std::unique_ptr<VPUser> User;
793 
794 public:
795   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
796       : VPRecipeBase(VPBlendSC), Phi(Phi) {
797     assert((Phi->getNumIncomingValues() == 1 ||
798             Phi->getNumIncomingValues() == Masks.size()) &&
799            "Expected the same number of incoming values and masks");
800     if (!Masks.empty())
801       User.reset(new VPUser(Masks));
802   }
803 
804   /// Method to support type inquiry through isa, cast, and dyn_cast.
805   static inline bool classof(const VPRecipeBase *V) {
806     return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
807   }
808 
809   /// Generate the phi/select nodes.
810   void execute(VPTransformState &State) override;
811 
812   /// Print the recipe.
813   void print(raw_ostream &O, const Twine &Indent) const override;
814 };
815 
816 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
817 /// or stores into one wide load/store and shuffles.
818 class VPInterleaveRecipe : public VPRecipeBase {
819 private:
820   const InterleaveGroup<Instruction> *IG;
821   std::unique_ptr<VPUser> User;
822 
823 public:
824   VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
825       : VPRecipeBase(VPInterleaveSC), IG(IG) {
826     if (Mask) // Create a VPInstruction to register as a user of the mask.
827       User.reset(new VPUser({Mask}));
828   }
829   ~VPInterleaveRecipe() override = default;
830 
831   /// Method to support type inquiry through isa, cast, and dyn_cast.
832   static inline bool classof(const VPRecipeBase *V) {
833     return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
834   }
835 
836   /// Generate the wide load or store, and shuffles.
837   void execute(VPTransformState &State) override;
838 
839   /// Print the recipe.
840   void print(raw_ostream &O, const Twine &Indent) const override;
841 
842   const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
843 };
844 
845 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
846 /// copies of the original scalar type, one per lane, instead of producing a
847 /// single copy of widened type for all lanes. If the instruction is known to be
848 /// uniform only one copy, per lane zero, will be generated.
849 class VPReplicateRecipe : public VPRecipeBase {
850 private:
851   /// The instruction being replicated.
852   Instruction *Ingredient;
853 
854   /// Indicator if only a single replica per lane is needed.
855   bool IsUniform;
856 
857   /// Indicator if the replicas are also predicated.
858   bool IsPredicated;
859 
860   /// Indicator if the scalar values should also be packed into a vector.
861   bool AlsoPack;
862 
863 public:
864   VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
865       : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
866         IsPredicated(IsPredicated) {
867     // Retain the previous behavior of predicateInstructions(), where an
868     // insert-element of a predicated instruction got hoisted into the
869     // predicated basic block iff it was its only user. This is achieved by
870     // having predicated instructions also pack their values into a vector by
871     // default unless they have a replicated user which uses their scalar value.
872     AlsoPack = IsPredicated && !I->use_empty();
873   }
874 
875   ~VPReplicateRecipe() override = default;
876 
877   /// Method to support type inquiry through isa, cast, and dyn_cast.
878   static inline bool classof(const VPRecipeBase *V) {
879     return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
880   }
881 
882   /// Generate replicas of the desired Ingredient. Replicas will be generated
883   /// for all parts and lanes unless a specific part and lane are specified in
884   /// the \p State.
885   void execute(VPTransformState &State) override;
886 
887   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
888 
889   /// Print the recipe.
890   void print(raw_ostream &O, const Twine &Indent) const override;
891 };
892 
893 /// A recipe for generating conditional branches on the bits of a mask.
894 class VPBranchOnMaskRecipe : public VPRecipeBase {
895 private:
896   std::unique_ptr<VPUser> User;
897 
898 public:
899   VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
900     if (BlockInMask) // nullptr means all-one mask.
901       User.reset(new VPUser({BlockInMask}));
902   }
903 
904   /// Method to support type inquiry through isa, cast, and dyn_cast.
905   static inline bool classof(const VPRecipeBase *V) {
906     return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
907   }
908 
909   /// Generate the extraction of the appropriate bit from the block mask and the
910   /// conditional branch.
911   void execute(VPTransformState &State) override;
912 
913   /// Print the recipe.
914   void print(raw_ostream &O, const Twine &Indent) const override {
915     O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
916     if (User)
917       O << *User->getOperand(0);
918     else
919       O << " All-One";
920     O << "\\l\"";
921   }
922 };
923 
924 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
925 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
926 /// order to merge values that are set under such a branch and feed their uses.
927 /// The phi nodes can be scalar or vector depending on the users of the value.
928 /// This recipe works in concert with VPBranchOnMaskRecipe.
929 class VPPredInstPHIRecipe : public VPRecipeBase {
930 private:
931   Instruction *PredInst;
932 
933 public:
934   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
935   /// nodes after merging back from a Branch-on-Mask.
936   VPPredInstPHIRecipe(Instruction *PredInst)
937       : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
938   ~VPPredInstPHIRecipe() override = default;
939 
940   /// Method to support type inquiry through isa, cast, and dyn_cast.
941   static inline bool classof(const VPRecipeBase *V) {
942     return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
943   }
944 
945   /// Generates phi nodes for live-outs as needed to retain SSA form.
946   void execute(VPTransformState &State) override;
947 
948   /// Print the recipe.
949   void print(raw_ostream &O, const Twine &Indent) const override;
950 };
951 
952 /// A Recipe for widening load/store operations.
953 /// TODO: We currently execute only per-part unless a specific instance is
954 /// provided.
955 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
956 private:
957   Instruction &Instr;
958   std::unique_ptr<VPUser> User;
959 
960 public:
961   VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
962       : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
963     if (Mask) // Create a VPInstruction to register as a user of the mask.
964       User.reset(new VPUser({Mask}));
965   }
966 
967   /// Method to support type inquiry through isa, cast, and dyn_cast.
968   static inline bool classof(const VPRecipeBase *V) {
969     return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
970   }
971 
972   /// Generate the wide load/store.
973   void execute(VPTransformState &State) override;
974 
975   /// Print the recipe.
976   void print(raw_ostream &O, const Twine &Indent) const override;
977 };
978 
979 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
980 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
981 /// output IR instructions.
982 class VPBasicBlock : public VPBlockBase {
983 public:
984   using RecipeListTy = iplist<VPRecipeBase>;
985 
986 private:
987   /// The VPRecipes held in the order of output instructions to generate.
988   RecipeListTy Recipes;
989 
990 public:
991   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
992       : VPBlockBase(VPBasicBlockSC, Name.str()) {
993     if (Recipe)
994       appendRecipe(Recipe);
995   }
996 
997   ~VPBasicBlock() override { Recipes.clear(); }
998 
999   /// Instruction iterators...
1000   using iterator = RecipeListTy::iterator;
1001   using const_iterator = RecipeListTy::const_iterator;
1002   using reverse_iterator = RecipeListTy::reverse_iterator;
1003   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
1004 
1005   //===--------------------------------------------------------------------===//
1006   /// Recipe iterator methods
1007   ///
1008   inline iterator begin() { return Recipes.begin(); }
1009   inline const_iterator begin() const { return Recipes.begin(); }
1010   inline iterator end() { return Recipes.end(); }
1011   inline const_iterator end() const { return Recipes.end(); }
1012 
1013   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
1014   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
1015   inline reverse_iterator rend() { return Recipes.rend(); }
1016   inline const_reverse_iterator rend() const { return Recipes.rend(); }
1017 
1018   inline size_t size() const { return Recipes.size(); }
1019   inline bool empty() const { return Recipes.empty(); }
1020   inline const VPRecipeBase &front() const { return Recipes.front(); }
1021   inline VPRecipeBase &front() { return Recipes.front(); }
1022   inline const VPRecipeBase &back() const { return Recipes.back(); }
1023   inline VPRecipeBase &back() { return Recipes.back(); }
1024 
1025   /// Returns a reference to the list of recipes.
1026   RecipeListTy &getRecipeList() { return Recipes; }
1027 
1028   /// Returns a pointer to a member of the recipe list.
1029   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
1030     return &VPBasicBlock::Recipes;
1031   }
1032 
1033   /// Method to support type inquiry through isa, cast, and dyn_cast.
1034   static inline bool classof(const VPBlockBase *V) {
1035     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
1036   }
1037 
1038   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
1039     assert(Recipe && "No recipe to append.");
1040     assert(!Recipe->Parent && "Recipe already in VPlan");
1041     Recipe->Parent = this;
1042     Recipes.insert(InsertPt, Recipe);
1043   }
1044 
1045   /// Augment the existing recipes of a VPBasicBlock with an additional
1046   /// \p Recipe as the last recipe.
1047   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
1048 
1049   /// The method which generates the output IR instructions that correspond to
1050   /// this VPBasicBlock, thereby "executing" the VPlan.
1051   void execute(struct VPTransformState *State) override;
1052 
1053 private:
1054   /// Create an IR BasicBlock to hold the output instructions generated by this
1055   /// VPBasicBlock, and return it. Update the CFGState accordingly.
1056   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1057 };
1058 
1059 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1060 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1061 /// A VPRegionBlock may indicate that its contents are to be replicated several
1062 /// times. This is designed to support predicated scalarization, in which a
1063 /// scalar if-then code structure needs to be generated VF * UF times. Having
1064 /// this replication indicator helps to keep a single model for multiple
1065 /// candidate VF's. The actual replication takes place only once the desired VF
1066 /// and UF have been determined.
1067 class VPRegionBlock : public VPBlockBase {
1068 private:
1069   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1070   VPBlockBase *Entry;
1071 
1072   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1073   VPBlockBase *Exit;
1074 
1075   /// An indicator whether this region is to generate multiple replicated
1076   /// instances of output IR corresponding to its VPBlockBases.
1077   bool IsReplicator;
1078 
1079 public:
1080   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1081                 const std::string &Name = "", bool IsReplicator = false)
1082       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1083         IsReplicator(IsReplicator) {
1084     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1085     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1086     Entry->setParent(this);
1087     Exit->setParent(this);
1088   }
1089   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
1090       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1091         IsReplicator(IsReplicator) {}
1092 
1093   ~VPRegionBlock() override {
1094     if (Entry)
1095       deleteCFG(Entry);
1096   }
1097 
1098   /// Method to support type inquiry through isa, cast, and dyn_cast.
1099   static inline bool classof(const VPBlockBase *V) {
1100     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1101   }
1102 
1103   const VPBlockBase *getEntry() const { return Entry; }
1104   VPBlockBase *getEntry() { return Entry; }
1105 
1106   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1107   /// EntryBlock must have no predecessors.
1108   void setEntry(VPBlockBase *EntryBlock) {
1109     assert(EntryBlock->getPredecessors().empty() &&
1110            "Entry block cannot have predecessors.");
1111     Entry = EntryBlock;
1112     EntryBlock->setParent(this);
1113   }
1114 
1115   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1116   // specific interface of llvm::Function, instead of using
1117   // GraphTraints::getEntryNode. We should add a new template parameter to
1118   // DominatorTreeBase representing the Graph type.
1119   VPBlockBase &front() const { return *Entry; }
1120 
1121   const VPBlockBase *getExit() const { return Exit; }
1122   VPBlockBase *getExit() { return Exit; }
1123 
1124   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1125   /// ExitBlock must have no successors.
1126   void setExit(VPBlockBase *ExitBlock) {
1127     assert(ExitBlock->getSuccessors().empty() &&
1128            "Exit block cannot have successors.");
1129     Exit = ExitBlock;
1130     ExitBlock->setParent(this);
1131   }
1132 
1133   /// An indicator whether this region is to generate multiple replicated
1134   /// instances of output IR corresponding to its VPBlockBases.
1135   bool isReplicator() const { return IsReplicator; }
1136 
1137   /// The method which generates the output IR instructions that correspond to
1138   /// this VPRegionBlock, thereby "executing" the VPlan.
1139   void execute(struct VPTransformState *State) override;
1140 };
1141 
1142 /// VPlan models a candidate for vectorization, encoding various decisions take
1143 /// to produce efficient output IR, including which branches, basic-blocks and
1144 /// output IR instructions to generate, and their cost. VPlan holds a
1145 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1146 /// VPBlock.
1147 class VPlan {
1148   friend class VPlanPrinter;
1149 
1150 private:
1151   /// Hold the single entry to the Hierarchical CFG of the VPlan.
1152   VPBlockBase *Entry;
1153 
1154   /// Holds the VFs applicable to this VPlan.
1155   SmallSet<unsigned, 2> VFs;
1156 
1157   /// Holds the name of the VPlan, for printing.
1158   std::string Name;
1159 
1160   /// Holds all the external definitions created for this VPlan.
1161   // TODO: Introduce a specific representation for external definitions in
1162   // VPlan. External definitions must be immutable and hold a pointer to its
1163   // underlying IR that will be used to implement its structural comparison
1164   // (operators '==' and '<').
1165   SmallPtrSet<VPValue *, 16> VPExternalDefs;
1166 
1167   /// Represents the backedge taken count of the original loop, for folding
1168   /// the tail.
1169   VPValue *BackedgeTakenCount = nullptr;
1170 
1171   /// Holds a mapping between Values and their corresponding VPValue inside
1172   /// VPlan.
1173   Value2VPValueTy Value2VPValue;
1174 
1175   /// Holds the VPLoopInfo analysis for this VPlan.
1176   VPLoopInfo VPLInfo;
1177 
1178   /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
1179   SmallVector<VPValue *, 4> VPCBVs;
1180 
1181 public:
1182   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1183 
1184   ~VPlan() {
1185     if (Entry)
1186       VPBlockBase::deleteCFG(Entry);
1187     for (auto &MapEntry : Value2VPValue)
1188       if (MapEntry.second != BackedgeTakenCount)
1189         delete MapEntry.second;
1190     if (BackedgeTakenCount)
1191       delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
1192     for (VPValue *Def : VPExternalDefs)
1193       delete Def;
1194     for (VPValue *CBV : VPCBVs)
1195       delete CBV;
1196   }
1197 
1198   /// Generate the IR code for this VPlan.
1199   void execute(struct VPTransformState *State);
1200 
1201   VPBlockBase *getEntry() { return Entry; }
1202   const VPBlockBase *getEntry() const { return Entry; }
1203 
1204   VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1205 
1206   /// The backedge taken count of the original loop.
1207   VPValue *getOrCreateBackedgeTakenCount() {
1208     if (!BackedgeTakenCount)
1209       BackedgeTakenCount = new VPValue();
1210     return BackedgeTakenCount;
1211   }
1212 
1213   void addVF(unsigned VF) { VFs.insert(VF); }
1214 
1215   bool hasVF(unsigned VF) { return VFs.count(VF); }
1216 
1217   const std::string &getName() const { return Name; }
1218 
1219   void setName(const Twine &newName) { Name = newName.str(); }
1220 
1221   /// Add \p VPVal to the pool of external definitions if it's not already
1222   /// in the pool.
1223   void addExternalDef(VPValue *VPVal) {
1224     VPExternalDefs.insert(VPVal);
1225   }
1226 
1227   /// Add \p CBV to the vector of condition bit values.
1228   void addCBV(VPValue *CBV) {
1229     VPCBVs.push_back(CBV);
1230   }
1231 
1232   void addVPValue(Value *V) {
1233     assert(V && "Trying to add a null Value to VPlan");
1234     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1235     Value2VPValue[V] = new VPValue();
1236   }
1237 
1238   VPValue *getVPValue(Value *V) {
1239     assert(V && "Trying to get the VPValue of a null Value");
1240     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1241     return Value2VPValue[V];
1242   }
1243 
1244   /// Return the VPLoopInfo analysis for this VPlan.
1245   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
1246   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1247 
1248 private:
1249   /// Add to the given dominator tree the header block and every new basic block
1250   /// that was created between it and the latch block, inclusive.
1251   static void updateDominatorTree(DominatorTree *DT,
1252                                   BasicBlock *LoopPreHeaderBB,
1253                                   BasicBlock *LoopLatchBB);
1254 };
1255 
1256 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1257 /// indented and follows the dot format.
1258 class VPlanPrinter {
1259   friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1260   friend inline raw_ostream &operator<<(raw_ostream &OS,
1261                                         const struct VPlanIngredient &I);
1262 
1263 private:
1264   raw_ostream &OS;
1265   VPlan &Plan;
1266   unsigned Depth;
1267   unsigned TabWidth = 2;
1268   std::string Indent;
1269   unsigned BID = 0;
1270   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1271 
1272   VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1273 
1274   /// Handle indentation.
1275   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1276 
1277   /// Print a given \p Block of the Plan.
1278   void dumpBlock(const VPBlockBase *Block);
1279 
1280   /// Print the information related to the CFG edges going out of a given
1281   /// \p Block, followed by printing the successor blocks themselves.
1282   void dumpEdges(const VPBlockBase *Block);
1283 
1284   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1285   /// its successor blocks.
1286   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1287 
1288   /// Print a given \p Region of the Plan.
1289   void dumpRegion(const VPRegionBlock *Region);
1290 
1291   unsigned getOrCreateBID(const VPBlockBase *Block) {
1292     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1293   }
1294 
1295   const Twine getOrCreateName(const VPBlockBase *Block);
1296 
1297   const Twine getUID(const VPBlockBase *Block);
1298 
1299   /// Print the information related to a CFG edge between two VPBlockBases.
1300   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1301                 const Twine &Label);
1302 
1303   void dump();
1304 
1305   static void printAsIngredient(raw_ostream &O, Value *V);
1306 };
1307 
1308 struct VPlanIngredient {
1309   Value *V;
1310 
1311   VPlanIngredient(Value *V) : V(V) {}
1312 };
1313 
1314 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1315   VPlanPrinter::printAsIngredient(OS, I.V);
1316   return OS;
1317 }
1318 
1319 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1320   VPlanPrinter Printer(OS, Plan);
1321   Printer.dump();
1322   return OS;
1323 }
1324 
1325 //===----------------------------------------------------------------------===//
1326 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
1327 //===----------------------------------------------------------------------===//
1328 
1329 // The following set of template specializations implement GraphTraits to treat
1330 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1331 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1332 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1333 // successors/predecessors but not to the blocks inside the region.
1334 
1335 template <> struct GraphTraits<VPBlockBase *> {
1336   using NodeRef = VPBlockBase *;
1337   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1338 
1339   static NodeRef getEntryNode(NodeRef N) { return N; }
1340 
1341   static inline ChildIteratorType child_begin(NodeRef N) {
1342     return N->getSuccessors().begin();
1343   }
1344 
1345   static inline ChildIteratorType child_end(NodeRef N) {
1346     return N->getSuccessors().end();
1347   }
1348 };
1349 
1350 template <> struct GraphTraits<const VPBlockBase *> {
1351   using NodeRef = const VPBlockBase *;
1352   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1353 
1354   static NodeRef getEntryNode(NodeRef N) { return N; }
1355 
1356   static inline ChildIteratorType child_begin(NodeRef N) {
1357     return N->getSuccessors().begin();
1358   }
1359 
1360   static inline ChildIteratorType child_end(NodeRef N) {
1361     return N->getSuccessors().end();
1362   }
1363 };
1364 
1365 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1366 // of successors for the inverse traversal.
1367 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1368   using NodeRef = VPBlockBase *;
1369   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1370 
1371   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1372 
1373   static inline ChildIteratorType child_begin(NodeRef N) {
1374     return N->getPredecessors().begin();
1375   }
1376 
1377   static inline ChildIteratorType child_end(NodeRef N) {
1378     return N->getPredecessors().end();
1379   }
1380 };
1381 
1382 // The following set of template specializations implement GraphTraits to
1383 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1384 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1385 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1386 // there won't be automatic recursion into other VPBlockBases that turn to be
1387 // VPRegionBlocks.
1388 
1389 template <>
1390 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1391   using GraphRef = VPRegionBlock *;
1392   using nodes_iterator = df_iterator<NodeRef>;
1393 
1394   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1395 
1396   static nodes_iterator nodes_begin(GraphRef N) {
1397     return nodes_iterator::begin(N->getEntry());
1398   }
1399 
1400   static nodes_iterator nodes_end(GraphRef N) {
1401     // df_iterator::end() returns an empty iterator so the node used doesn't
1402     // matter.
1403     return nodes_iterator::end(N);
1404   }
1405 };
1406 
1407 template <>
1408 struct GraphTraits<const VPRegionBlock *>
1409     : public GraphTraits<const VPBlockBase *> {
1410   using GraphRef = const VPRegionBlock *;
1411   using nodes_iterator = df_iterator<NodeRef>;
1412 
1413   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1414 
1415   static nodes_iterator nodes_begin(GraphRef N) {
1416     return nodes_iterator::begin(N->getEntry());
1417   }
1418 
1419   static nodes_iterator nodes_end(GraphRef N) {
1420     // df_iterator::end() returns an empty iterator so the node used doesn't
1421     // matter.
1422     return nodes_iterator::end(N);
1423   }
1424 };
1425 
1426 template <>
1427 struct GraphTraits<Inverse<VPRegionBlock *>>
1428     : public GraphTraits<Inverse<VPBlockBase *>> {
1429   using GraphRef = VPRegionBlock *;
1430   using nodes_iterator = df_iterator<NodeRef>;
1431 
1432   static NodeRef getEntryNode(Inverse<GraphRef> N) {
1433     return N.Graph->getExit();
1434   }
1435 
1436   static nodes_iterator nodes_begin(GraphRef N) {
1437     return nodes_iterator::begin(N->getExit());
1438   }
1439 
1440   static nodes_iterator nodes_end(GraphRef N) {
1441     // df_iterator::end() returns an empty iterator so the node used doesn't
1442     // matter.
1443     return nodes_iterator::end(N);
1444   }
1445 };
1446 
1447 //===----------------------------------------------------------------------===//
1448 // VPlan Utilities
1449 //===----------------------------------------------------------------------===//
1450 
1451 /// Class that provides utilities for VPBlockBases in VPlan.
1452 class VPBlockUtils {
1453 public:
1454   VPBlockUtils() = delete;
1455 
1456   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1457   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1458   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1459   /// has more than one successor, its conditional bit is propagated to \p
1460   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1461   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1462     assert(NewBlock->getSuccessors().empty() &&
1463            "Can't insert new block with successors.");
1464     // TODO: move successors from BlockPtr to NewBlock when this functionality
1465     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1466     // already has successors.
1467     BlockPtr->setOneSuccessor(NewBlock);
1468     NewBlock->setPredecessors({BlockPtr});
1469     NewBlock->setParent(BlockPtr->getParent());
1470   }
1471 
1472   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1473   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1474   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1475   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1476   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1477   /// must have neither successors nor predecessors.
1478   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1479                                    VPValue *Condition, VPBlockBase *BlockPtr) {
1480     assert(IfTrue->getSuccessors().empty() &&
1481            "Can't insert IfTrue with successors.");
1482     assert(IfFalse->getSuccessors().empty() &&
1483            "Can't insert IfFalse with successors.");
1484     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1485     IfTrue->setPredecessors({BlockPtr});
1486     IfFalse->setPredecessors({BlockPtr});
1487     IfTrue->setParent(BlockPtr->getParent());
1488     IfFalse->setParent(BlockPtr->getParent());
1489   }
1490 
1491   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1492   /// the successors of \p From and \p From to the predecessors of \p To. Both
1493   /// VPBlockBases must have the same parent, which can be null. Both
1494   /// VPBlockBases can be already connected to other VPBlockBases.
1495   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1496     assert((From->getParent() == To->getParent()) &&
1497            "Can't connect two block with different parents");
1498     assert(From->getNumSuccessors() < 2 &&
1499            "Blocks can't have more than two successors.");
1500     From->appendSuccessor(To);
1501     To->appendPredecessor(From);
1502   }
1503 
1504   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1505   /// from the successors of \p From and \p From from the predecessors of \p To.
1506   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1507     assert(To && "Successor to disconnect is null.");
1508     From->removeSuccessor(To);
1509     To->removePredecessor(From);
1510   }
1511 
1512   /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
1513   static bool isBackEdge(const VPBlockBase *FromBlock,
1514                          const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
1515     assert(FromBlock->getParent() == ToBlock->getParent() &&
1516            FromBlock->getParent() && "Must be in same region");
1517     const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
1518     const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
1519     if (!FromLoop || !ToLoop || FromLoop != ToLoop)
1520       return false;
1521 
1522     // A back-edge is a branch from the loop latch to its header.
1523     return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
1524   }
1525 
1526   /// Returns true if \p Block is a loop latch
1527   static bool blockIsLoopLatch(const VPBlockBase *Block,
1528                                const VPLoopInfo *VPLInfo) {
1529     if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
1530       return ParentVPL->isLoopLatch(Block);
1531 
1532     return false;
1533   }
1534 
1535   /// Count and return the number of succesors of \p PredBlock excluding any
1536   /// backedges.
1537   static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
1538                                       VPLoopInfo *VPLI) {
1539     unsigned Count = 0;
1540     for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
1541       if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
1542         Count++;
1543     }
1544     return Count;
1545   }
1546 };
1547 
1548 class VPInterleavedAccessInfo {
1549 private:
1550   DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
1551       InterleaveGroupMap;
1552 
1553   /// Type for mapping of instruction based interleave groups to VPInstruction
1554   /// interleave groups
1555   using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
1556                              InterleaveGroup<VPInstruction> *>;
1557 
1558   /// Recursively \p Region and populate VPlan based interleave groups based on
1559   /// \p IAI.
1560   void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
1561                    InterleavedAccessInfo &IAI);
1562   /// Recursively traverse \p Block and populate VPlan based interleave groups
1563   /// based on \p IAI.
1564   void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1565                   InterleavedAccessInfo &IAI);
1566 
1567 public:
1568   VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
1569 
1570   ~VPInterleavedAccessInfo() {
1571     SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
1572     // Avoid releasing a pointer twice.
1573     for (auto &I : InterleaveGroupMap)
1574       DelSet.insert(I.second);
1575     for (auto *Ptr : DelSet)
1576       delete Ptr;
1577   }
1578 
1579   /// Get the interleave group that \p Instr belongs to.
1580   ///
1581   /// \returns nullptr if doesn't have such group.
1582   InterleaveGroup<VPInstruction> *
1583   getInterleaveGroup(VPInstruction *Instr) const {
1584     if (InterleaveGroupMap.count(Instr))
1585       return InterleaveGroupMap.find(Instr)->second;
1586     return nullptr;
1587   }
1588 };
1589 
1590 /// Class that maps (parts of) an existing VPlan to trees of combined
1591 /// VPInstructions.
1592 class VPlanSlp {
1593 private:
1594   enum class OpMode { Failed, Load, Opcode };
1595 
1596   /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
1597   /// DenseMap keys.
1598   struct BundleDenseMapInfo {
1599     static SmallVector<VPValue *, 4> getEmptyKey() {
1600       return {reinterpret_cast<VPValue *>(-1)};
1601     }
1602 
1603     static SmallVector<VPValue *, 4> getTombstoneKey() {
1604       return {reinterpret_cast<VPValue *>(-2)};
1605     }
1606 
1607     static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
1608       return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1609     }
1610 
1611     static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
1612                         const SmallVector<VPValue *, 4> &RHS) {
1613       return LHS == RHS;
1614     }
1615   };
1616 
1617   /// Mapping of values in the original VPlan to a combined VPInstruction.
1618   DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
1619       BundleToCombined;
1620 
1621   VPInterleavedAccessInfo &IAI;
1622 
1623   /// Basic block to operate on. For now, only instructions in a single BB are
1624   /// considered.
1625   const VPBasicBlock &BB;
1626 
1627   /// Indicates whether we managed to combine all visited instructions or not.
1628   bool CompletelySLP = true;
1629 
1630   /// Width of the widest combined bundle in bits.
1631   unsigned WidestBundleBits = 0;
1632 
1633   using MultiNodeOpTy =
1634       typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
1635 
1636   // Input operand bundles for the current multi node. Each multi node operand
1637   // bundle contains values not matching the multi node's opcode. They will
1638   // be reordered in reorderMultiNodeOps, once we completed building a
1639   // multi node.
1640   SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
1641 
1642   /// Indicates whether we are building a multi node currently.
1643   bool MultiNodeActive = false;
1644 
1645   /// Check if we can vectorize Operands together.
1646   bool areVectorizable(ArrayRef<VPValue *> Operands) const;
1647 
1648   /// Add combined instruction \p New for the bundle \p Operands.
1649   void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
1650 
1651   /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
1652   VPInstruction *markFailed();
1653 
1654   /// Reorder operands in the multi node to maximize sequential memory access
1655   /// and commutative operations.
1656   SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
1657 
1658   /// Choose the best candidate to use for the lane after \p Last. The set of
1659   /// candidates to choose from are values with an opcode matching \p Last's
1660   /// or loads consecutive to \p Last.
1661   std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
1662                                        SmallPtrSetImpl<VPValue *> &Candidates,
1663                                        VPInterleavedAccessInfo &IAI);
1664 
1665   /// Print bundle \p Values to dbgs().
1666   void dumpBundle(ArrayRef<VPValue *> Values);
1667 
1668 public:
1669   VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
1670 
1671   ~VPlanSlp() {
1672     for (auto &KV : BundleToCombined)
1673       delete KV.second;
1674   }
1675 
1676   /// Tries to build an SLP tree rooted at \p Operands and returns a
1677   /// VPInstruction combining \p Operands, if they can be combined.
1678   VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
1679 
1680   /// Return the width of the widest combined bundle in bits.
1681   unsigned getWidestBundleBits() const { return WidestBundleBits; }
1682 
1683   /// Return true if all visited instruction can be combined.
1684   bool isCompletelySLP() const { return CompletelySLP; }
1685 };
1686 } // end namespace llvm
1687 
1688 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
1689