1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "LoopVectorizationPlanner.h" 21 #include "VPlanCFG.h" 22 #include "VPlanDominatorTree.h" 23 #include "VPlanPatternMatch.h" 24 #include "llvm/ADT/PostOrderIterator.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/DomTreeUpdater.h" 30 #include "llvm/Analysis/LoopInfo.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CFG.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/GenericDomTreeConstruction.h" 42 #include "llvm/Support/GraphWriter.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/LoopVersioning.h" 46 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 47 #include <cassert> 48 #include <string> 49 #include <vector> 50 51 using namespace llvm; 52 using namespace llvm::VPlanPatternMatch; 53 54 namespace llvm { 55 extern cl::opt<bool> EnableVPlanNativePath; 56 } 57 58 #define DEBUG_TYPE "vplan" 59 60 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 61 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 62 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 63 VPSlotTracker SlotTracker( 64 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 65 V.print(OS, SlotTracker); 66 return OS; 67 } 68 #endif 69 70 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 71 const ElementCount &VF) const { 72 switch (LaneKind) { 73 case VPLane::Kind::ScalableLast: 74 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 75 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 76 Builder.getInt32(VF.getKnownMinValue() - Lane)); 77 case VPLane::Kind::First: 78 return Builder.getInt32(Lane); 79 } 80 llvm_unreachable("Unknown lane kind"); 81 } 82 83 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 84 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 85 if (Def) 86 Def->addDefinedValue(this); 87 } 88 89 VPValue::~VPValue() { 90 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 91 if (Def) 92 Def->removeDefinedValue(this); 93 } 94 95 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 96 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 97 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 98 R->print(OS, "", SlotTracker); 99 else 100 printAsOperand(OS, SlotTracker); 101 } 102 103 void VPValue::dump() const { 104 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 105 VPSlotTracker SlotTracker( 106 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 107 print(dbgs(), SlotTracker); 108 dbgs() << "\n"; 109 } 110 111 void VPDef::dump() const { 112 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 113 VPSlotTracker SlotTracker( 114 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 115 print(dbgs(), "", SlotTracker); 116 dbgs() << "\n"; 117 } 118 #endif 119 120 VPRecipeBase *VPValue::getDefiningRecipe() { 121 return cast_or_null<VPRecipeBase>(Def); 122 } 123 124 const VPRecipeBase *VPValue::getDefiningRecipe() const { 125 return cast_or_null<VPRecipeBase>(Def); 126 } 127 128 // Get the top-most entry block of \p Start. This is the entry block of the 129 // containing VPlan. This function is templated to support both const and non-const blocks 130 template <typename T> static T *getPlanEntry(T *Start) { 131 T *Next = Start; 132 T *Current = Start; 133 while ((Next = Next->getParent())) 134 Current = Next; 135 136 SmallSetVector<T *, 8> WorkList; 137 WorkList.insert(Current); 138 139 for (unsigned i = 0; i < WorkList.size(); i++) { 140 T *Current = WorkList[i]; 141 if (Current->getNumPredecessors() == 0) 142 return Current; 143 auto &Predecessors = Current->getPredecessors(); 144 WorkList.insert(Predecessors.begin(), Predecessors.end()); 145 } 146 147 llvm_unreachable("VPlan without any entry node without predecessors"); 148 } 149 150 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 151 152 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 153 154 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 155 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 156 const VPBlockBase *Block = this; 157 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 158 Block = Region->getEntry(); 159 return cast<VPBasicBlock>(Block); 160 } 161 162 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 163 VPBlockBase *Block = this; 164 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 165 Block = Region->getEntry(); 166 return cast<VPBasicBlock>(Block); 167 } 168 169 void VPBlockBase::setPlan(VPlan *ParentPlan) { 170 assert( 171 (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && 172 "Can only set plan on its entry or preheader block."); 173 Plan = ParentPlan; 174 } 175 176 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 177 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 178 const VPBlockBase *Block = this; 179 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 180 Block = Region->getExiting(); 181 return cast<VPBasicBlock>(Block); 182 } 183 184 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 185 VPBlockBase *Block = this; 186 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 187 Block = Region->getExiting(); 188 return cast<VPBasicBlock>(Block); 189 } 190 191 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 192 if (!Successors.empty() || !Parent) 193 return this; 194 assert(Parent->getExiting() == this && 195 "Block w/o successors not the exiting block of its parent."); 196 return Parent->getEnclosingBlockWithSuccessors(); 197 } 198 199 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 200 if (!Predecessors.empty() || !Parent) 201 return this; 202 assert(Parent->getEntry() == this && 203 "Block w/o predecessors not the entry of its parent."); 204 return Parent->getEnclosingBlockWithPredecessors(); 205 } 206 207 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 208 for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) 209 delete Block; 210 } 211 212 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 213 iterator It = begin(); 214 while (It != end() && It->isPhi()) 215 It++; 216 return It; 217 } 218 219 VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, 220 DominatorTree *DT, IRBuilderBase &Builder, 221 InnerLoopVectorizer *ILV, VPlan *Plan, 222 LLVMContext &Ctx) 223 : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), 224 LVer(nullptr), 225 TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} 226 227 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 228 if (Def->isLiveIn()) 229 return Def->getLiveInIRValue(); 230 231 if (hasScalarValue(Def, Instance)) { 232 return Data 233 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 234 } 235 if (!Instance.Lane.isFirstLane() && 236 vputils::isUniformAfterVectorization(Def) && 237 hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) { 238 return Data.PerPartScalars[Def][Instance.Part][0]; 239 } 240 241 assert(hasVectorValue(Def, Instance.Part)); 242 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 243 if (!VecPart->getType()->isVectorTy()) { 244 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 245 return VecPart; 246 } 247 // TODO: Cache created scalar values. 248 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 249 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 250 // set(Def, Extract, Instance); 251 return Extract; 252 } 253 254 Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { 255 if (NeedsScalar) { 256 assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || 257 !vputils::onlyFirstLaneUsed(Def) || 258 (hasScalarValue(Def, VPIteration(Part, 0)) && 259 Data.PerPartScalars[Def][Part].size() == 1)) && 260 "Trying to access a single scalar per part but has multiple scalars " 261 "per part."); 262 return get(Def, VPIteration(Part, 0)); 263 } 264 265 // If Values have been set for this Def return the one relevant for \p Part. 266 if (hasVectorValue(Def, Part)) 267 return Data.PerPartOutput[Def][Part]; 268 269 auto GetBroadcastInstrs = [this, Def](Value *V) { 270 bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); 271 if (VF.isScalar()) 272 return V; 273 // Place the code for broadcasting invariant variables in the new preheader. 274 IRBuilder<>::InsertPointGuard Guard(Builder); 275 if (SafeToHoist) { 276 BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>( 277 Plan->getVectorLoopRegion()->getSinglePredecessor())]; 278 if (LoopVectorPreHeader) 279 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 280 } 281 282 // Place the code for broadcasting invariant variables in the new preheader. 283 // Broadcast the scalar into all locations in the vector. 284 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 285 286 return Shuf; 287 }; 288 289 if (!hasScalarValue(Def, {Part, 0})) { 290 assert(Def->isLiveIn() && "expected a live-in"); 291 if (Part != 0) 292 return get(Def, 0); 293 Value *IRV = Def->getLiveInIRValue(); 294 Value *B = GetBroadcastInstrs(IRV); 295 set(Def, B, Part); 296 return B; 297 } 298 299 Value *ScalarValue = get(Def, {Part, 0}); 300 // If we aren't vectorizing, we can just copy the scalar map values over 301 // to the vector map. 302 if (VF.isScalar()) { 303 set(Def, ScalarValue, Part); 304 return ScalarValue; 305 } 306 307 bool IsUniform = vputils::isUniformAfterVectorization(Def); 308 309 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 310 // Check if there is a scalar value for the selected lane. 311 if (!hasScalarValue(Def, {Part, LastLane})) { 312 // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and 313 // VPExpandSCEVRecipes can also be uniform. 314 assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || 315 isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || 316 isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && 317 "unexpected recipe found to be invariant"); 318 IsUniform = true; 319 LastLane = 0; 320 } 321 322 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 323 // Set the insert point after the last scalarized instruction or after the 324 // last PHI, if LastInst is a PHI. This ensures the insertelement sequence 325 // will directly follow the scalar definitions. 326 auto OldIP = Builder.saveIP(); 327 auto NewIP = 328 isa<PHINode>(LastInst) 329 ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) 330 : std::next(BasicBlock::iterator(LastInst)); 331 Builder.SetInsertPoint(&*NewIP); 332 333 // However, if we are vectorizing, we need to construct the vector values. 334 // If the value is known to be uniform after vectorization, we can just 335 // broadcast the scalar value corresponding to lane zero for each unroll 336 // iteration. Otherwise, we construct the vector values using 337 // insertelement instructions. Since the resulting vectors are stored in 338 // State, we will only generate the insertelements once. 339 Value *VectorValue = nullptr; 340 if (IsUniform) { 341 VectorValue = GetBroadcastInstrs(ScalarValue); 342 set(Def, VectorValue, Part); 343 } else { 344 // Initialize packing with insertelements to start from undef. 345 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 346 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 347 set(Def, Undef, Part); 348 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 349 packScalarIntoVectorValue(Def, {Part, Lane}); 350 VectorValue = get(Def, Part); 351 } 352 Builder.restoreIP(OldIP); 353 return VectorValue; 354 } 355 356 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 357 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 358 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 359 } 360 361 void VPTransformState::addNewMetadata(Instruction *To, 362 const Instruction *Orig) { 363 // If the loop was versioned with memchecks, add the corresponding no-alias 364 // metadata. 365 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 366 LVer->annotateInstWithNoAlias(To, Orig); 367 } 368 369 void VPTransformState::addMetadata(Value *To, Instruction *From) { 370 // No source instruction to transfer metadata from? 371 if (!From) 372 return; 373 374 if (Instruction *ToI = dyn_cast<Instruction>(To)) { 375 propagateMetadata(ToI, From); 376 addNewMetadata(ToI, From); 377 } 378 } 379 380 void VPTransformState::setDebugLocFrom(DebugLoc DL) { 381 const DILocation *DIL = DL; 382 // When a FSDiscriminator is enabled, we don't need to add the multiply 383 // factors to the discriminators. 384 if (DIL && 385 Builder.GetInsertBlock() 386 ->getParent() 387 ->shouldEmitDebugInfoForProfiling() && 388 !EnableFSDiscriminator) { 389 // FIXME: For scalable vectors, assume vscale=1. 390 auto NewDIL = 391 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 392 if (NewDIL) 393 Builder.SetCurrentDebugLocation(*NewDIL); 394 else 395 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 396 << DIL->getFilename() << " Line: " << DIL->getLine()); 397 } else 398 Builder.SetCurrentDebugLocation(DIL); 399 } 400 401 void VPTransformState::packScalarIntoVectorValue(VPValue *Def, 402 const VPIteration &Instance) { 403 Value *ScalarInst = get(Def, Instance); 404 Value *VectorValue = get(Def, Instance.Part); 405 VectorValue = Builder.CreateInsertElement( 406 VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF)); 407 set(Def, VectorValue, Instance.Part); 408 } 409 410 BasicBlock * 411 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 412 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 413 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 414 BasicBlock *PrevBB = CFG.PrevBB; 415 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 416 PrevBB->getParent(), CFG.ExitBB); 417 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 418 419 // Hook up the new basic block to its predecessors. 420 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 421 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 422 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 423 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 424 425 assert(PredBB && "Predecessor basic-block not found building successor."); 426 auto *PredBBTerminator = PredBB->getTerminator(); 427 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 428 429 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 430 if (isa<UnreachableInst>(PredBBTerminator)) { 431 assert(PredVPSuccessors.size() == 1 && 432 "Predecessor ending w/o branch must have single successor."); 433 DebugLoc DL = PredBBTerminator->getDebugLoc(); 434 PredBBTerminator->eraseFromParent(); 435 auto *Br = BranchInst::Create(NewBB, PredBB); 436 Br->setDebugLoc(DL); 437 } else if (TermBr && !TermBr->isConditional()) { 438 TermBr->setSuccessor(0, NewBB); 439 } else { 440 // Set each forward successor here when it is created, excluding 441 // backedges. A backward successor is set when the branch is created. 442 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 443 assert(!TermBr->getSuccessor(idx) && 444 "Trying to reset an existing successor block."); 445 TermBr->setSuccessor(idx, NewBB); 446 } 447 CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}}); 448 } 449 return NewBB; 450 } 451 452 void VPIRBasicBlock::execute(VPTransformState *State) { 453 assert(getHierarchicalSuccessors().size() <= 2 && 454 "VPIRBasicBlock can have at most two successors at the moment!"); 455 State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); 456 executeRecipes(State, getIRBasicBlock()); 457 if (getSingleSuccessor()) { 458 assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); 459 auto *Br = State->Builder.CreateBr(getIRBasicBlock()); 460 Br->setOperand(0, nullptr); 461 getIRBasicBlock()->getTerminator()->eraseFromParent(); 462 } 463 464 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 465 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 466 BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; 467 assert(PredBB && "Predecessor basic-block not found building successor."); 468 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 469 470 auto *PredBBTerminator = PredBB->getTerminator(); 471 auto *TermBr = cast<BranchInst>(PredBBTerminator); 472 // Set each forward successor here when it is created, excluding 473 // backedges. A backward successor is set when the branch is created. 474 const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 475 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 476 assert(!TermBr->getSuccessor(idx) && 477 "Trying to reset an existing successor block."); 478 TermBr->setSuccessor(idx, IRBB); 479 State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}}); 480 } 481 } 482 483 void VPBasicBlock::execute(VPTransformState *State) { 484 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 485 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 486 VPBlockBase *SingleHPred = nullptr; 487 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 488 489 auto IsLoopRegion = [](VPBlockBase *BB) { 490 auto *R = dyn_cast<VPRegionBlock>(BB); 491 return R && !R->isReplicator(); 492 }; 493 494 // 1. Create an IR basic block. 495 if (PrevVPBB && /* A */ 496 !((SingleHPred = getSingleHierarchicalPredecessor()) && 497 SingleHPred->getExitingBasicBlock() == PrevVPBB && 498 PrevVPBB->getSingleHierarchicalSuccessor() && 499 (SingleHPred->getParent() == getEnclosingLoopRegion() && 500 !IsLoopRegion(SingleHPred))) && /* B */ 501 !(Replica && getPredecessors().empty())) { /* C */ 502 // The last IR basic block is reused, as an optimization, in three cases: 503 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 504 // B. when the current VPBB has a single (hierarchical) predecessor which 505 // is PrevVPBB and the latter has a single (hierarchical) successor which 506 // both are in the same non-replicator region; and 507 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 508 // is the exiting VPBB of this region from a previous instance, or the 509 // predecessor of this region. 510 511 NewBB = createEmptyBasicBlock(State->CFG); 512 State->Builder.SetInsertPoint(NewBB); 513 // Temporarily terminate with unreachable until CFG is rewired. 514 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 515 // Register NewBB in its loop. In innermost loops its the same for all 516 // BB's. 517 if (State->CurrentVectorLoop) 518 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 519 State->Builder.SetInsertPoint(Terminator); 520 State->CFG.PrevBB = NewBB; 521 } 522 523 // 2. Fill the IR basic block with IR instructions. 524 executeRecipes(State, NewBB); 525 } 526 527 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 528 for (VPRecipeBase &R : Recipes) { 529 for (auto *Def : R.definedValues()) 530 Def->replaceAllUsesWith(NewValue); 531 532 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 533 R.setOperand(I, NewValue); 534 } 535 } 536 537 void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { 538 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 539 << " in BB:" << BB->getName() << '\n'); 540 541 State->CFG.VPBB2IRBB[this] = BB; 542 State->CFG.PrevVPBB = this; 543 544 for (VPRecipeBase &Recipe : Recipes) 545 Recipe.execute(*State); 546 547 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); 548 } 549 550 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 551 assert((SplitAt == end() || SplitAt->getParent() == this) && 552 "can only split at a position in the same block"); 553 554 SmallVector<VPBlockBase *, 2> Succs(successors()); 555 // First, disconnect the current block from its successors. 556 for (VPBlockBase *Succ : Succs) 557 VPBlockUtils::disconnectBlocks(this, Succ); 558 559 // Create new empty block after the block to split. 560 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 561 VPBlockUtils::insertBlockAfter(SplitBlock, this); 562 563 // Add successors for block to split to new block. 564 for (VPBlockBase *Succ : Succs) 565 VPBlockUtils::connectBlocks(SplitBlock, Succ); 566 567 // Finally, move the recipes starting at SplitAt to new block. 568 for (VPRecipeBase &ToMove : 569 make_early_inc_range(make_range(SplitAt, this->end()))) 570 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 571 572 return SplitBlock; 573 } 574 575 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 576 VPRegionBlock *P = getParent(); 577 if (P && P->isReplicator()) { 578 P = P->getParent(); 579 assert(!cast<VPRegionBlock>(P)->isReplicator() && 580 "unexpected nested replicate regions"); 581 } 582 return P; 583 } 584 585 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 586 if (VPBB->empty()) { 587 assert( 588 VPBB->getNumSuccessors() < 2 && 589 "block with multiple successors doesn't have a recipe as terminator"); 590 return false; 591 } 592 593 const VPRecipeBase *R = &VPBB->back(); 594 bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) || 595 match(R, m_BranchOnCond(m_VPValue())) || 596 match(R, m_BranchOnCount(m_VPValue(), m_VPValue())); 597 (void)IsCondBranch; 598 599 if (VPBB->getNumSuccessors() >= 2 || 600 (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { 601 assert(IsCondBranch && "block with multiple successors not terminated by " 602 "conditional branch recipe"); 603 604 return true; 605 } 606 607 assert( 608 !IsCondBranch && 609 "block with 0 or 1 successors terminated by conditional branch recipe"); 610 return false; 611 } 612 613 VPRecipeBase *VPBasicBlock::getTerminator() { 614 if (hasConditionalTerminator(this)) 615 return &back(); 616 return nullptr; 617 } 618 619 const VPRecipeBase *VPBasicBlock::getTerminator() const { 620 if (hasConditionalTerminator(this)) 621 return &back(); 622 return nullptr; 623 } 624 625 bool VPBasicBlock::isExiting() const { 626 return getParent() && getParent()->getExitingBasicBlock() == this; 627 } 628 629 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 630 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 631 if (getSuccessors().empty()) { 632 O << Indent << "No successors\n"; 633 } else { 634 O << Indent << "Successor(s): "; 635 ListSeparator LS; 636 for (auto *Succ : getSuccessors()) 637 O << LS << Succ->getName(); 638 O << '\n'; 639 } 640 } 641 642 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 643 VPSlotTracker &SlotTracker) const { 644 O << Indent << getName() << ":\n"; 645 646 auto RecipeIndent = Indent + " "; 647 for (const VPRecipeBase &Recipe : *this) { 648 Recipe.print(O, RecipeIndent, SlotTracker); 649 O << '\n'; 650 } 651 652 printSuccessors(O, Indent); 653 } 654 #endif 655 656 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); 657 658 // Clone the CFG for all nodes reachable from \p Entry, this includes cloning 659 // the blocks and their recipes. Operands of cloned recipes will NOT be updated. 660 // Remapping of operands must be done separately. Returns a pair with the new 661 // entry and exiting blocks of the cloned region. If \p Entry isn't part of a 662 // region, return nullptr for the exiting block. 663 static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { 664 DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; 665 VPBlockBase *Exiting = nullptr; 666 bool InRegion = Entry->getParent(); 667 // First, clone blocks reachable from Entry. 668 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 669 VPBlockBase *NewBB = BB->clone(); 670 Old2NewVPBlocks[BB] = NewBB; 671 if (InRegion && BB->getNumSuccessors() == 0) { 672 assert(!Exiting && "Multiple exiting blocks?"); 673 Exiting = BB; 674 } 675 } 676 assert((!InRegion || Exiting) && "regions must have a single exiting block"); 677 678 // Second, update the predecessors & successors of the cloned blocks. 679 for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) { 680 VPBlockBase *NewBB = Old2NewVPBlocks[BB]; 681 SmallVector<VPBlockBase *> NewPreds; 682 for (VPBlockBase *Pred : BB->getPredecessors()) { 683 NewPreds.push_back(Old2NewVPBlocks[Pred]); 684 } 685 NewBB->setPredecessors(NewPreds); 686 SmallVector<VPBlockBase *> NewSuccs; 687 for (VPBlockBase *Succ : BB->successors()) { 688 NewSuccs.push_back(Old2NewVPBlocks[Succ]); 689 } 690 NewBB->setSuccessors(NewSuccs); 691 } 692 693 #if !defined(NDEBUG) 694 // Verify that the order of predecessors and successors matches in the cloned 695 // version. 696 for (const auto &[OldBB, NewBB] : 697 zip(vp_depth_first_shallow(Entry), 698 vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { 699 for (const auto &[OldPred, NewPred] : 700 zip(OldBB->getPredecessors(), NewBB->getPredecessors())) 701 assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors"); 702 703 for (const auto &[OldSucc, NewSucc] : 704 zip(OldBB->successors(), NewBB->successors())) 705 assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors"); 706 } 707 #endif 708 709 return std::make_pair(Old2NewVPBlocks[Entry], 710 Exiting ? Old2NewVPBlocks[Exiting] : nullptr); 711 } 712 713 VPRegionBlock *VPRegionBlock::clone() { 714 const auto &[NewEntry, NewExiting] = cloneFrom(getEntry()); 715 auto *NewRegion = 716 new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); 717 for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry)) 718 Block->setParent(NewRegion); 719 return NewRegion; 720 } 721 722 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 723 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 724 // Drop all references in VPBasicBlocks and replace all uses with 725 // DummyValue. 726 Block->dropAllReferences(NewValue); 727 } 728 729 void VPRegionBlock::execute(VPTransformState *State) { 730 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 731 RPOT(Entry); 732 733 if (!isReplicator()) { 734 // Create and register the new vector loop. 735 Loop *PrevLoop = State->CurrentVectorLoop; 736 State->CurrentVectorLoop = State->LI->AllocateLoop(); 737 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 738 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 739 740 // Insert the new loop into the loop nest and register the new basic blocks 741 // before calling any utilities such as SCEV that require valid LoopInfo. 742 if (ParentLoop) 743 ParentLoop->addChildLoop(State->CurrentVectorLoop); 744 else 745 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 746 747 // Visit the VPBlocks connected to "this", starting from it. 748 for (VPBlockBase *Block : RPOT) { 749 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 750 Block->execute(State); 751 } 752 753 State->CurrentVectorLoop = PrevLoop; 754 return; 755 } 756 757 assert(!State->Instance && "Replicating a Region with non-null instance."); 758 759 // Enter replicating mode. 760 State->Instance = VPIteration(0, 0); 761 762 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 763 State->Instance->Part = Part; 764 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 765 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 766 ++Lane) { 767 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 768 // Visit the VPBlocks connected to \p this, starting from it. 769 for (VPBlockBase *Block : RPOT) { 770 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 771 Block->execute(State); 772 } 773 } 774 } 775 776 // Exit replicating mode. 777 State->Instance.reset(); 778 } 779 780 InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { 781 InstructionCost Cost = 0; 782 for (VPRecipeBase &R : Recipes) 783 Cost += R.cost(VF, Ctx); 784 return Cost; 785 } 786 787 InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { 788 if (!isReplicator()) { 789 InstructionCost Cost = 0; 790 for (VPBlockBase *Block : vp_depth_first_shallow(getEntry())) 791 Cost += Block->cost(VF, Ctx); 792 InstructionCost BackedgeCost = 793 Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput); 794 LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF 795 << ": vector loop backedge\n"); 796 Cost += BackedgeCost; 797 return Cost; 798 } 799 800 // Compute the cost of a replicate region. Replicating isn't supported for 801 // scalable vectors, return an invalid cost for them. 802 // TODO: Discard scalable VPlans with replicate recipes earlier after 803 // construction. 804 if (VF.isScalable()) 805 return InstructionCost::getInvalid(); 806 807 // First compute the cost of the conditionally executed recipes, followed by 808 // account for the branching cost, except if the mask is a header mask or 809 // uniform condition. 810 using namespace llvm::VPlanPatternMatch; 811 VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]); 812 InstructionCost ThenCost = Then->cost(VF, Ctx); 813 814 // For the scalar case, we may not always execute the original predicated 815 // block, Thus, scale the block's cost by the probability of executing it. 816 if (VF.isScalar()) 817 return ThenCost / getReciprocalPredBlockProb(); 818 819 return ThenCost; 820 } 821 822 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 823 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 824 VPSlotTracker &SlotTracker) const { 825 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 826 auto NewIndent = Indent + " "; 827 for (auto *BlockBase : vp_depth_first_shallow(Entry)) { 828 O << '\n'; 829 BlockBase->print(O, NewIndent, SlotTracker); 830 } 831 O << Indent << "}\n"; 832 833 printSuccessors(O, Indent); 834 } 835 #endif 836 837 VPlan::~VPlan() { 838 for (auto &KV : LiveOuts) 839 delete KV.second; 840 LiveOuts.clear(); 841 842 if (Entry) { 843 VPValue DummyValue; 844 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 845 Block->dropAllReferences(&DummyValue); 846 847 VPBlockBase::deleteCFG(Entry); 848 849 Preheader->dropAllReferences(&DummyValue); 850 delete Preheader; 851 } 852 for (VPValue *VPV : VPLiveInsToFree) 853 delete VPV; 854 if (BackedgeTakenCount) 855 delete BackedgeTakenCount; 856 } 857 858 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE, 859 bool RequiresScalarEpilogueCheck, 860 bool TailFolded, Loop *TheLoop) { 861 VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader()); 862 VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); 863 auto Plan = std::make_unique<VPlan>(Entry, VecPreheader); 864 Plan->TripCount = 865 vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); 866 // Create VPRegionBlock, with empty header and latch blocks, to be filled 867 // during processing later. 868 VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); 869 VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); 870 VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); 871 auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop", 872 false /*isReplicator*/); 873 874 VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader); 875 VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); 876 VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); 877 878 VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph"); 879 if (!RequiresScalarEpilogueCheck) { 880 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 881 return Plan; 882 } 883 884 // If needed, add a check in the middle block to see if we have completed 885 // all of the iterations in the first vector loop. Three cases: 886 // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. 887 // Thus if tail is to be folded, we know we don't need to run the 888 // remainder and we can set the condition to true. 889 // 2) If we require a scalar epilogue, there is no conditional branch as 890 // we unconditionally branch to the scalar preheader. Do nothing. 891 // 3) Otherwise, construct a runtime check. 892 BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); 893 auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock); 894 // The connection order corresponds to the operands of the conditional branch. 895 VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB); 896 VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH); 897 898 auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); 899 // Here we use the same DebugLoc as the scalar loop latch terminator instead 900 // of the corresponding compare because they may have ended up with 901 // different line numbers and we want to avoid awkward line stepping while 902 // debugging. Eg. if the compare has got a line number inside the loop. 903 VPBuilder Builder(MiddleVPBB); 904 VPValue *Cmp = 905 TailFolded 906 ? Plan->getOrAddLiveIn(ConstantInt::getTrue( 907 IntegerType::getInt1Ty(TripCount->getType()->getContext()))) 908 : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(), 909 &Plan->getVectorTripCount(), 910 ScalarLatchTerm->getDebugLoc(), "cmp.n"); 911 Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, 912 ScalarLatchTerm->getDebugLoc()); 913 return Plan; 914 } 915 916 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 917 Value *CanonicalIVStartValue, 918 VPTransformState &State) { 919 // Check if the backedge taken count is needed, and if so build it. 920 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 921 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 922 auto *TCMO = Builder.CreateSub(TripCountV, 923 ConstantInt::get(TripCountV->getType(), 1), 924 "trip.count.minus.1"); 925 BackedgeTakenCount->setUnderlyingValue(TCMO); 926 } 927 928 VectorTripCount.setUnderlyingValue(VectorTripCountV); 929 930 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 931 // FIXME: Model VF * UF computation completely in VPlan. 932 VFxUF.setUnderlyingValue( 933 createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF)); 934 935 // When vectorizing the epilogue loop, the canonical induction start value 936 // needs to be changed from zero to the value after the main vector loop. 937 // FIXME: Improve modeling for canonical IV start values in the epilogue loop. 938 if (CanonicalIVStartValue) { 939 VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue); 940 auto *IV = getCanonicalIV(); 941 assert(all_of(IV->users(), 942 [](const VPUser *U) { 943 return isa<VPScalarIVStepsRecipe>(U) || 944 isa<VPScalarCastRecipe>(U) || 945 isa<VPDerivedIVRecipe>(U) || 946 cast<VPInstruction>(U)->getOpcode() == 947 Instruction::Add; 948 }) && 949 "the canonical IV should only be used by its increment or " 950 "ScalarIVSteps when resetting the start value"); 951 IV->setOperand(0, VPV); 952 } 953 } 954 955 /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p 956 /// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single 957 /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of 958 /// VPBB, if any, are rewired to the new VPIRBasicBlock. 959 static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { 960 VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB); 961 for (auto &R : make_early_inc_range(*VPBB)) 962 R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end()); 963 VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); 964 VPBlockUtils::disconnectBlocks(PredVPBB, VPBB); 965 VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB); 966 for (auto *Succ : to_vector(VPBB->getSuccessors())) { 967 VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ); 968 VPBlockUtils::disconnectBlocks(VPBB, Succ); 969 } 970 delete VPBB; 971 } 972 973 /// Generate the code inside the preheader and body of the vectorized loop. 974 /// Assumes a single pre-header basic-block was created for this. Introduce 975 /// additional basic-blocks as needed, and fill them all. 976 void VPlan::execute(VPTransformState *State) { 977 // Initialize CFG state. 978 State->CFG.PrevVPBB = nullptr; 979 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 980 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 981 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 982 983 // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. 984 cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr); 985 State->CFG.DTU.applyUpdates( 986 {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); 987 988 // Replace regular VPBB's for the middle and scalar preheader blocks with 989 // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during 990 // skeleton creation, so we can only create the VPIRBasicBlocks now during 991 // VPlan execution rather than earlier during VPlan construction. 992 BasicBlock *MiddleBB = State->CFG.ExitBB; 993 VPBasicBlock *MiddleVPBB = 994 cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor()); 995 // Find the VPBB for the scalar preheader, relying on the current structure 996 // when creating the middle block and its successrs: if there's a single 997 // predecessor, it must be the scalar preheader. Otherwise, the second 998 // successor is the scalar preheader. 999 BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); 1000 auto &MiddleSuccs = MiddleVPBB->getSuccessors(); 1001 assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && 1002 "middle block has unexpected successors"); 1003 VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( 1004 MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); 1005 assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && 1006 "scalar preheader cannot be wrapped already"); 1007 replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh); 1008 replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB); 1009 1010 // Disconnect the middle block from its single successor (the scalar loop 1011 // header) in both the CFG and DT. The branch will be recreated during VPlan 1012 // execution. 1013 auto *BrInst = new UnreachableInst(MiddleBB->getContext()); 1014 BrInst->insertBefore(MiddleBB->getTerminator()); 1015 MiddleBB->getTerminator()->eraseFromParent(); 1016 State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}}); 1017 1018 // Generate code in the loop pre-header and body. 1019 for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) 1020 Block->execute(State); 1021 1022 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 1023 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 1024 1025 // Fix the latch value of canonical, reduction and first-order recurrences 1026 // phis in the vector loop. 1027 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 1028 for (VPRecipeBase &R : Header->phis()) { 1029 // Skip phi-like recipes that generate their backedege values themselves. 1030 if (isa<VPWidenPHIRecipe>(&R)) 1031 continue; 1032 1033 if (isa<VPWidenPointerInductionRecipe>(&R) || 1034 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1035 PHINode *Phi = nullptr; 1036 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 1037 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 1038 } else { 1039 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 1040 assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && 1041 "recipe generating only scalars should have been replaced"); 1042 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 1043 Phi = cast<PHINode>(GEP->getPointerOperand()); 1044 } 1045 1046 Phi->setIncomingBlock(1, VectorLatchBB); 1047 1048 // Move the last step to the end of the latch block. This ensures 1049 // consistent placement of all induction updates. 1050 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 1051 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 1052 continue; 1053 } 1054 1055 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 1056 // For canonical IV, first-order recurrences and in-order reduction phis, 1057 // only a single part is generated, which provides the last part from the 1058 // previous iteration. For non-ordered reductions all UF parts are 1059 // generated. 1060 bool SinglePartNeeded = 1061 isa<VPCanonicalIVPHIRecipe>(PhiR) || 1062 isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1063 (isa<VPReductionPHIRecipe>(PhiR) && 1064 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 1065 bool NeedsScalar = 1066 isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) || 1067 (isa<VPReductionPHIRecipe>(PhiR) && 1068 cast<VPReductionPHIRecipe>(PhiR)->isInLoop()); 1069 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 1070 1071 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 1072 Value *Phi = State->get(PhiR, Part, NeedsScalar); 1073 Value *Val = 1074 State->get(PhiR->getBackedgeValue(), 1075 SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); 1076 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 1077 } 1078 } 1079 1080 State->CFG.DTU.flush(); 1081 assert(State->CFG.DTU.getDomTree().verify( 1082 DominatorTree::VerificationLevel::Fast) && 1083 "DT not preserved correctly"); 1084 } 1085 1086 InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { 1087 // For now only return the cost of the vector loop region, ignoring any other 1088 // blocks, like the preheader or middle blocks. 1089 return getVectorLoopRegion()->cost(VF, Ctx); 1090 } 1091 1092 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1093 void VPlan::printLiveIns(raw_ostream &O) const { 1094 VPSlotTracker SlotTracker(this); 1095 1096 if (VFxUF.getNumUsers() > 0) { 1097 O << "\nLive-in "; 1098 VFxUF.printAsOperand(O, SlotTracker); 1099 O << " = VF * UF"; 1100 } 1101 1102 if (VectorTripCount.getNumUsers() > 0) { 1103 O << "\nLive-in "; 1104 VectorTripCount.printAsOperand(O, SlotTracker); 1105 O << " = vector-trip-count"; 1106 } 1107 1108 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 1109 O << "\nLive-in "; 1110 BackedgeTakenCount->printAsOperand(O, SlotTracker); 1111 O << " = backedge-taken count"; 1112 } 1113 1114 O << "\n"; 1115 if (TripCount->isLiveIn()) 1116 O << "Live-in "; 1117 TripCount->printAsOperand(O, SlotTracker); 1118 O << " = original trip-count"; 1119 O << "\n"; 1120 } 1121 1122 LLVM_DUMP_METHOD 1123 void VPlan::print(raw_ostream &O) const { 1124 VPSlotTracker SlotTracker(this); 1125 1126 O << "VPlan '" << getName() << "' {"; 1127 1128 printLiveIns(O); 1129 1130 if (!getPreheader()->empty()) { 1131 O << "\n"; 1132 getPreheader()->print(O, "", SlotTracker); 1133 } 1134 1135 for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { 1136 O << '\n'; 1137 Block->print(O, "", SlotTracker); 1138 } 1139 1140 if (!LiveOuts.empty()) 1141 O << "\n"; 1142 for (const auto &KV : LiveOuts) { 1143 KV.second->print(O, SlotTracker); 1144 } 1145 1146 O << "}\n"; 1147 } 1148 1149 std::string VPlan::getName() const { 1150 std::string Out; 1151 raw_string_ostream RSO(Out); 1152 RSO << Name << " for "; 1153 if (!VFs.empty()) { 1154 RSO << "VF={" << VFs[0]; 1155 for (ElementCount VF : drop_begin(VFs)) 1156 RSO << "," << VF; 1157 RSO << "},"; 1158 } 1159 1160 if (UFs.empty()) { 1161 RSO << "UF>=1"; 1162 } else { 1163 RSO << "UF={" << UFs[0]; 1164 for (unsigned UF : drop_begin(UFs)) 1165 RSO << "," << UF; 1166 RSO << "}"; 1167 } 1168 1169 return Out; 1170 } 1171 1172 LLVM_DUMP_METHOD 1173 void VPlan::printDOT(raw_ostream &O) const { 1174 VPlanPrinter Printer(O, *this); 1175 Printer.dump(); 1176 } 1177 1178 LLVM_DUMP_METHOD 1179 void VPlan::dump() const { print(dbgs()); } 1180 #endif 1181 1182 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 1183 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 1184 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 1185 } 1186 1187 static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, 1188 DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { 1189 // Update the operands of all cloned recipes starting at NewEntry. This 1190 // traverses all reachable blocks. This is done in two steps, to handle cycles 1191 // in PHI recipes. 1192 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1193 OldDeepRPOT(Entry); 1194 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> 1195 NewDeepRPOT(NewEntry); 1196 // First, collect all mappings from old to new VPValues defined by cloned 1197 // recipes. 1198 for (const auto &[OldBB, NewBB] : 1199 zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT), 1200 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) { 1201 assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && 1202 "blocks must have the same number of recipes"); 1203 for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) { 1204 assert(OldR.getNumOperands() == NewR.getNumOperands() && 1205 "recipes must have the same number of operands"); 1206 assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && 1207 "recipes must define the same number of operands"); 1208 for (const auto &[OldV, NewV] : 1209 zip(OldR.definedValues(), NewR.definedValues())) 1210 Old2NewVPValues[OldV] = NewV; 1211 } 1212 } 1213 1214 // Update all operands to use cloned VPValues. 1215 for (VPBasicBlock *NewBB : 1216 VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) { 1217 for (VPRecipeBase &NewR : *NewBB) 1218 for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { 1219 VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I)); 1220 NewR.setOperand(I, NewOp); 1221 } 1222 } 1223 } 1224 1225 VPlan *VPlan::duplicate() { 1226 // Clone blocks. 1227 VPBasicBlock *NewPreheader = Preheader->clone(); 1228 const auto &[NewEntry, __] = cloneFrom(Entry); 1229 1230 // Create VPlan, clone live-ins and remap operands in the cloned blocks. 1231 auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry)); 1232 DenseMap<VPValue *, VPValue *> Old2NewVPValues; 1233 for (VPValue *OldLiveIn : VPLiveInsToFree) { 1234 Old2NewVPValues[OldLiveIn] = 1235 NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue()); 1236 } 1237 Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; 1238 Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; 1239 if (BackedgeTakenCount) { 1240 NewPlan->BackedgeTakenCount = new VPValue(); 1241 Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; 1242 } 1243 assert(TripCount && "trip count must be set"); 1244 if (TripCount->isLiveIn()) 1245 Old2NewVPValues[TripCount] = 1246 NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue()); 1247 // else NewTripCount will be created and inserted into Old2NewVPValues when 1248 // TripCount is cloned. In any case NewPlan->TripCount is updated below. 1249 1250 remapOperands(Preheader, NewPreheader, Old2NewVPValues); 1251 remapOperands(Entry, NewEntry, Old2NewVPValues); 1252 1253 // Clone live-outs. 1254 for (const auto &[_, LO] : LiveOuts) 1255 NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]); 1256 1257 // Initialize remaining fields of cloned VPlan. 1258 NewPlan->VFs = VFs; 1259 NewPlan->UFs = UFs; 1260 // TODO: Adjust names. 1261 NewPlan->Name = Name; 1262 assert(Old2NewVPValues.contains(TripCount) && 1263 "TripCount must have been added to Old2NewVPValues"); 1264 NewPlan->TripCount = Old2NewVPValues[TripCount]; 1265 return NewPlan; 1266 } 1267 1268 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1269 1270 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 1271 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 1272 Twine(getOrCreateBID(Block)); 1273 } 1274 1275 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 1276 const std::string &Name = Block->getName(); 1277 if (!Name.empty()) 1278 return Name; 1279 return "VPB" + Twine(getOrCreateBID(Block)); 1280 } 1281 1282 void VPlanPrinter::dump() { 1283 Depth = 1; 1284 bumpIndent(0); 1285 OS << "digraph VPlan {\n"; 1286 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 1287 if (!Plan.getName().empty()) 1288 OS << "\\n" << DOT::EscapeString(Plan.getName()); 1289 1290 { 1291 // Print live-ins. 1292 std::string Str; 1293 raw_string_ostream SS(Str); 1294 Plan.printLiveIns(SS); 1295 SmallVector<StringRef, 0> Lines; 1296 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1297 for (auto Line : Lines) 1298 OS << DOT::EscapeString(Line.str()) << "\\n"; 1299 } 1300 1301 OS << "\"]\n"; 1302 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 1303 OS << "edge [fontname=Courier, fontsize=30]\n"; 1304 OS << "compound=true\n"; 1305 1306 dumpBlock(Plan.getPreheader()); 1307 1308 for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) 1309 dumpBlock(Block); 1310 1311 OS << "}\n"; 1312 } 1313 1314 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 1315 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 1316 dumpBasicBlock(BasicBlock); 1317 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1318 dumpRegion(Region); 1319 else 1320 llvm_unreachable("Unsupported kind of VPBlock."); 1321 } 1322 1323 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 1324 bool Hidden, const Twine &Label) { 1325 // Due to "dot" we print an edge between two regions as an edge between the 1326 // exiting basic block and the entry basic of the respective regions. 1327 const VPBlockBase *Tail = From->getExitingBasicBlock(); 1328 const VPBlockBase *Head = To->getEntryBasicBlock(); 1329 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 1330 OS << " [ label=\"" << Label << '\"'; 1331 if (Tail != From) 1332 OS << " ltail=" << getUID(From); 1333 if (Head != To) 1334 OS << " lhead=" << getUID(To); 1335 if (Hidden) 1336 OS << "; splines=none"; 1337 OS << "]\n"; 1338 } 1339 1340 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 1341 auto &Successors = Block->getSuccessors(); 1342 if (Successors.size() == 1) 1343 drawEdge(Block, Successors.front(), false, ""); 1344 else if (Successors.size() == 2) { 1345 drawEdge(Block, Successors.front(), false, "T"); 1346 drawEdge(Block, Successors.back(), false, "F"); 1347 } else { 1348 unsigned SuccessorNumber = 0; 1349 for (auto *Successor : Successors) 1350 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 1351 } 1352 } 1353 1354 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 1355 // Implement dot-formatted dump by performing plain-text dump into the 1356 // temporary storage followed by some post-processing. 1357 OS << Indent << getUID(BasicBlock) << " [label =\n"; 1358 bumpIndent(1); 1359 std::string Str; 1360 raw_string_ostream SS(Str); 1361 // Use no indentation as we need to wrap the lines into quotes ourselves. 1362 BasicBlock->print(SS, "", SlotTracker); 1363 1364 // We need to process each line of the output separately, so split 1365 // single-string plain-text dump. 1366 SmallVector<StringRef, 0> Lines; 1367 StringRef(Str).rtrim('\n').split(Lines, "\n"); 1368 1369 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 1370 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 1371 }; 1372 1373 // Don't need the "+" after the last line. 1374 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 1375 EmitLine(Line, " +\n"); 1376 EmitLine(Lines.back(), "\n"); 1377 1378 bumpIndent(-1); 1379 OS << Indent << "]\n"; 1380 1381 dumpEdges(BasicBlock); 1382 } 1383 1384 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 1385 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 1386 bumpIndent(1); 1387 OS << Indent << "fontname=Courier\n" 1388 << Indent << "label=\"" 1389 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 1390 << DOT::EscapeString(Region->getName()) << "\"\n"; 1391 // Dump the blocks of the region. 1392 assert(Region->getEntry() && "Region contains no inner blocks."); 1393 for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) 1394 dumpBlock(Block); 1395 bumpIndent(-1); 1396 OS << Indent << "}\n"; 1397 dumpEdges(Region); 1398 } 1399 1400 void VPlanIngredient::print(raw_ostream &O) const { 1401 if (auto *Inst = dyn_cast<Instruction>(V)) { 1402 if (!Inst->getType()->isVoidTy()) { 1403 Inst->printAsOperand(O, false); 1404 O << " = "; 1405 } 1406 O << Inst->getOpcodeName() << " "; 1407 unsigned E = Inst->getNumOperands(); 1408 if (E > 0) { 1409 Inst->getOperand(0)->printAsOperand(O, false); 1410 for (unsigned I = 1; I < E; ++I) 1411 Inst->getOperand(I)->printAsOperand(O << ", ", false); 1412 } 1413 } else // !Inst 1414 V->printAsOperand(O, false); 1415 } 1416 1417 #endif 1418 1419 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1420 1421 void VPValue::replaceAllUsesWith(VPValue *New) { 1422 replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; }); 1423 } 1424 1425 void VPValue::replaceUsesWithIf( 1426 VPValue *New, 1427 llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { 1428 // Note that this early exit is required for correctness; the implementation 1429 // below relies on the number of users for this VPValue to decrease, which 1430 // isn't the case if this == New. 1431 if (this == New) 1432 return; 1433 1434 for (unsigned J = 0; J < getNumUsers();) { 1435 VPUser *User = Users[J]; 1436 bool RemovedUser = false; 1437 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 1438 if (User->getOperand(I) != this || !ShouldReplace(*User, I)) 1439 continue; 1440 1441 RemovedUser = true; 1442 User->setOperand(I, New); 1443 } 1444 // If a user got removed after updating the current user, the next user to 1445 // update will be moved to the current position, so we only need to 1446 // increment the index if the number of users did not change. 1447 if (!RemovedUser) 1448 J++; 1449 } 1450 } 1451 1452 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1453 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1454 OS << Tracker.getOrCreateName(this); 1455 } 1456 1457 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1458 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1459 Op->printAsOperand(O, SlotTracker); 1460 }); 1461 } 1462 #endif 1463 1464 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1465 Old2NewTy &Old2New, 1466 InterleavedAccessInfo &IAI) { 1467 ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> 1468 RPOT(Region->getEntry()); 1469 for (VPBlockBase *Base : RPOT) { 1470 visitBlock(Base, Old2New, IAI); 1471 } 1472 } 1473 1474 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1475 InterleavedAccessInfo &IAI) { 1476 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1477 for (VPRecipeBase &VPI : *VPBB) { 1478 if (isa<VPWidenPHIRecipe>(&VPI)) 1479 continue; 1480 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1481 auto *VPInst = cast<VPInstruction>(&VPI); 1482 1483 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1484 if (!Inst) 1485 continue; 1486 auto *IG = IAI.getInterleaveGroup(Inst); 1487 if (!IG) 1488 continue; 1489 1490 auto NewIGIter = Old2New.find(IG); 1491 if (NewIGIter == Old2New.end()) 1492 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1493 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1494 1495 if (Inst == IG->getInsertPos()) 1496 Old2New[IG]->setInsertPos(VPInst); 1497 1498 InterleaveGroupMap[VPInst] = Old2New[IG]; 1499 InterleaveGroupMap[VPInst]->insertMember( 1500 VPInst, IG->getIndex(Inst), 1501 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1502 : IG->getFactor())); 1503 } 1504 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1505 visitRegion(Region, Old2New, IAI); 1506 else 1507 llvm_unreachable("Unsupported kind of VPBlock."); 1508 } 1509 1510 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1511 InterleavedAccessInfo &IAI) { 1512 Old2NewTy Old2New; 1513 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1514 } 1515 1516 void VPSlotTracker::assignName(const VPValue *V) { 1517 assert(!VPValue2Name.contains(V) && "VPValue already has a name!"); 1518 auto *UV = V->getUnderlyingValue(); 1519 if (!UV) { 1520 VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str(); 1521 NextSlot++; 1522 return; 1523 } 1524 1525 // Use the name of the underlying Value, wrapped in "ir<>", and versioned by 1526 // appending ".Number" to the name if there are multiple uses. 1527 std::string Name; 1528 raw_string_ostream S(Name); 1529 UV->printAsOperand(S, false); 1530 assert(!Name.empty() && "Name cannot be empty."); 1531 std::string BaseName = (Twine("ir<") + Name + Twine(">")).str(); 1532 1533 // First assign the base name for V. 1534 const auto &[A, _] = VPValue2Name.insert({V, BaseName}); 1535 // Integer or FP constants with different types will result in he same string 1536 // due to stripping types. 1537 if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV)) 1538 return; 1539 1540 // If it is already used by C > 0 other VPValues, increase the version counter 1541 // C and use it for V. 1542 const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0}); 1543 if (!UseInserted) { 1544 C->second++; 1545 A->second = (BaseName + Twine(".") + Twine(C->second)).str(); 1546 } 1547 } 1548 1549 void VPSlotTracker::assignNames(const VPlan &Plan) { 1550 if (Plan.VFxUF.getNumUsers() > 0) 1551 assignName(&Plan.VFxUF); 1552 assignName(&Plan.VectorTripCount); 1553 if (Plan.BackedgeTakenCount) 1554 assignName(Plan.BackedgeTakenCount); 1555 for (VPValue *LI : Plan.VPLiveInsToFree) 1556 assignName(LI); 1557 assignNames(Plan.getPreheader()); 1558 1559 ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> 1560 RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); 1561 for (const VPBasicBlock *VPBB : 1562 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1563 assignNames(VPBB); 1564 } 1565 1566 void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { 1567 for (const VPRecipeBase &Recipe : *VPBB) 1568 for (VPValue *Def : Recipe.definedValues()) 1569 assignName(Def); 1570 } 1571 1572 std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { 1573 std::string Name = VPValue2Name.lookup(V); 1574 if (!Name.empty()) 1575 return Name; 1576 1577 // If no name was assigned, no VPlan was provided when creating the slot 1578 // tracker or it is not reachable from the provided VPlan. This can happen, 1579 // e.g. when trying to print a recipe that has not been inserted into a VPlan 1580 // in a debugger. 1581 // TODO: Update VPSlotTracker constructor to assign names to recipes & 1582 // VPValues not associated with a VPlan, instead of constructing names ad-hoc 1583 // here. 1584 const VPRecipeBase *DefR = V->getDefiningRecipe(); 1585 (void)DefR; 1586 assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && 1587 "VPValue defined by a recipe in a VPlan?"); 1588 1589 // Use the underlying value's name, if there is one. 1590 if (auto *UV = V->getUnderlyingValue()) { 1591 std::string Name; 1592 raw_string_ostream S(Name); 1593 UV->printAsOperand(S, false); 1594 return (Twine("ir<") + Name + ">").str(); 1595 } 1596 1597 return "<badref>"; 1598 } 1599 1600 bool vputils::onlyFirstLaneUsed(const VPValue *Def) { 1601 return all_of(Def->users(), 1602 [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1603 } 1604 1605 bool vputils::onlyFirstPartUsed(const VPValue *Def) { 1606 return all_of(Def->users(), 1607 [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); }); 1608 } 1609 1610 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1611 ScalarEvolution &SE) { 1612 if (auto *Expanded = Plan.getSCEVExpansion(Expr)) 1613 return Expanded; 1614 VPValue *Expanded = nullptr; 1615 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1616 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1617 else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1618 Expanded = Plan.getOrAddLiveIn(E->getValue()); 1619 else { 1620 Expanded = new VPExpandSCEVRecipe(Expr, SE); 1621 Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); 1622 } 1623 Plan.addSCEVExpansion(Expr, Expanded); 1624 return Expanded; 1625 } 1626 1627 bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) { 1628 if (isa<VPActiveLaneMaskPHIRecipe>(V)) 1629 return true; 1630 1631 auto IsWideCanonicalIV = [](VPValue *A) { 1632 return isa<VPWidenCanonicalIVRecipe>(A) || 1633 (isa<VPWidenIntOrFpInductionRecipe>(A) && 1634 cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical()); 1635 }; 1636 1637 VPValue *A, *B; 1638 if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B)))) 1639 return B == Plan.getTripCount() && 1640 (match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) || 1641 IsWideCanonicalIV(A)); 1642 1643 return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) && 1644 IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount(); 1645 } 1646