1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/Instruction.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Value.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/LoopVersioning.h" 42 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 43 #include <cassert> 44 #include <string> 45 #include <vector> 46 47 using namespace llvm; 48 extern cl::opt<bool> EnableVPlanNativePath; 49 50 #define DEBUG_TYPE "vplan" 51 52 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 #endif 61 62 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, 63 const ElementCount &VF) const { 64 switch (LaneKind) { 65 case VPLane::Kind::ScalableLast: 66 // Lane = RuntimeVF - VF.getKnownMinValue() + Lane 67 return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), 68 Builder.getInt32(VF.getKnownMinValue() - Lane)); 69 case VPLane::Kind::First: 70 return Builder.getInt32(Lane); 71 } 72 llvm_unreachable("Unknown lane kind"); 73 } 74 75 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 76 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 77 if (Def) 78 Def->addDefinedValue(this); 79 } 80 81 VPValue::~VPValue() { 82 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 83 if (Def) 84 Def->removeDefinedValue(this); 85 } 86 87 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 88 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 89 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 90 R->print(OS, "", SlotTracker); 91 else 92 printAsOperand(OS, SlotTracker); 93 } 94 95 void VPValue::dump() const { 96 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 97 VPSlotTracker SlotTracker( 98 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 99 print(dbgs(), SlotTracker); 100 dbgs() << "\n"; 101 } 102 103 void VPDef::dump() const { 104 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 105 VPSlotTracker SlotTracker( 106 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 107 print(dbgs(), "", SlotTracker); 108 dbgs() << "\n"; 109 } 110 #endif 111 112 // Get the top-most entry block of \p Start. This is the entry block of the 113 // containing VPlan. This function is templated to support both const and non-const blocks 114 template <typename T> static T *getPlanEntry(T *Start) { 115 T *Next = Start; 116 T *Current = Start; 117 while ((Next = Next->getParent())) 118 Current = Next; 119 120 SmallSetVector<T *, 8> WorkList; 121 WorkList.insert(Current); 122 123 for (unsigned i = 0; i < WorkList.size(); i++) { 124 T *Current = WorkList[i]; 125 if (Current->getNumPredecessors() == 0) 126 return Current; 127 auto &Predecessors = Current->getPredecessors(); 128 WorkList.insert(Predecessors.begin(), Predecessors.end()); 129 } 130 131 llvm_unreachable("VPlan without any entry node without predecessors"); 132 } 133 134 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 135 136 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 137 138 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 139 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 140 const VPBlockBase *Block = this; 141 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 142 Block = Region->getEntry(); 143 return cast<VPBasicBlock>(Block); 144 } 145 146 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 147 VPBlockBase *Block = this; 148 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 149 Block = Region->getEntry(); 150 return cast<VPBasicBlock>(Block); 151 } 152 153 void VPBlockBase::setPlan(VPlan *ParentPlan) { 154 assert(ParentPlan->getEntry() == this && 155 "Can only set plan on its entry block."); 156 Plan = ParentPlan; 157 } 158 159 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 160 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { 161 const VPBlockBase *Block = this; 162 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 163 Block = Region->getExiting(); 164 return cast<VPBasicBlock>(Block); 165 } 166 167 VPBasicBlock *VPBlockBase::getExitingBasicBlock() { 168 VPBlockBase *Block = this; 169 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 170 Block = Region->getExiting(); 171 return cast<VPBasicBlock>(Block); 172 } 173 174 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 175 if (!Successors.empty() || !Parent) 176 return this; 177 assert(Parent->getExiting() == this && 178 "Block w/o successors not the exiting block of its parent."); 179 return Parent->getEnclosingBlockWithSuccessors(); 180 } 181 182 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 183 if (!Predecessors.empty() || !Parent) 184 return this; 185 assert(Parent->getEntry() == this && 186 "Block w/o predecessors not the entry of its parent."); 187 return Parent->getEnclosingBlockWithPredecessors(); 188 } 189 190 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 191 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 192 193 for (VPBlockBase *Block : Blocks) 194 delete Block; 195 } 196 197 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 198 iterator It = begin(); 199 while (It != end() && It->isPhi()) 200 It++; 201 return It; 202 } 203 204 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 205 if (!Def->getDef()) 206 return Def->getLiveInIRValue(); 207 208 if (hasScalarValue(Def, Instance)) { 209 return Data 210 .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; 211 } 212 213 assert(hasVectorValue(Def, Instance.Part)); 214 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 215 if (!VecPart->getType()->isVectorTy()) { 216 assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); 217 return VecPart; 218 } 219 // TODO: Cache created scalar values. 220 Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); 221 auto *Extract = Builder.CreateExtractElement(VecPart, Lane); 222 // set(Def, Extract, Instance); 223 return Extract; 224 } 225 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { 226 VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); 227 return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; 228 } 229 230 void VPTransformState::addNewMetadata(Instruction *To, 231 const Instruction *Orig) { 232 // If the loop was versioned with memchecks, add the corresponding no-alias 233 // metadata. 234 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 235 LVer->annotateInstWithNoAlias(To, Orig); 236 } 237 238 void VPTransformState::addMetadata(Instruction *To, Instruction *From) { 239 propagateMetadata(To, From); 240 addNewMetadata(To, From); 241 } 242 243 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { 244 for (Value *V : To) { 245 if (Instruction *I = dyn_cast<Instruction>(V)) 246 addMetadata(I, From); 247 } 248 } 249 250 void VPTransformState::setDebugLocFromInst(const Value *V) { 251 const Instruction *Inst = dyn_cast<Instruction>(V); 252 if (!Inst) { 253 Builder.SetCurrentDebugLocation(DebugLoc()); 254 return; 255 } 256 257 const DILocation *DIL = Inst->getDebugLoc(); 258 // When a FSDiscriminator is enabled, we don't need to add the multiply 259 // factors to the discriminators. 260 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 261 !isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) { 262 // FIXME: For scalable vectors, assume vscale=1. 263 auto NewDIL = 264 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 265 if (NewDIL) 266 Builder.SetCurrentDebugLocation(*NewDIL); 267 else 268 LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " 269 << DIL->getFilename() << " Line: " << DIL->getLine()); 270 } else 271 Builder.SetCurrentDebugLocation(DIL); 272 } 273 274 BasicBlock * 275 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 276 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 277 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 278 BasicBlock *PrevBB = CFG.PrevBB; 279 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 280 PrevBB->getParent(), CFG.ExitBB); 281 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 282 283 // Hook up the new basic block to its predecessors. 284 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 285 VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); 286 auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); 287 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 288 289 assert(PredBB && "Predecessor basic-block not found building successor."); 290 auto *PredBBTerminator = PredBB->getTerminator(); 291 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 292 293 auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); 294 if (isa<UnreachableInst>(PredBBTerminator)) { 295 assert(PredVPSuccessors.size() == 1 && 296 "Predecessor ending w/o branch must have single successor."); 297 DebugLoc DL = PredBBTerminator->getDebugLoc(); 298 PredBBTerminator->eraseFromParent(); 299 auto *Br = BranchInst::Create(NewBB, PredBB); 300 Br->setDebugLoc(DL); 301 } else if (TermBr && !TermBr->isConditional()) { 302 TermBr->setSuccessor(0, NewBB); 303 } else { 304 // Set each forward successor here when it is created, excluding 305 // backedges. A backward successor is set when the branch is created. 306 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 307 assert(!TermBr->getSuccessor(idx) && 308 "Trying to reset an existing successor block."); 309 TermBr->setSuccessor(idx, NewBB); 310 } 311 } 312 return NewBB; 313 } 314 315 void VPBasicBlock::execute(VPTransformState *State) { 316 bool Replica = State->Instance && !State->Instance->isFirstIteration(); 317 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 318 VPBlockBase *SingleHPred = nullptr; 319 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 320 321 auto IsLoopRegion = [](VPBlockBase *BB) { 322 auto *R = dyn_cast<VPRegionBlock>(BB); 323 return R && !R->isReplicator(); 324 }; 325 326 // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. 327 if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { 328 // ExitBB can be re-used for the exit block of the Plan. 329 NewBB = State->CFG.ExitBB; 330 State->CFG.PrevBB = NewBB; 331 332 // Update the branch instruction in the predecessor to branch to ExitBB. 333 VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); 334 VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); 335 assert(PredVPB->getSingleSuccessor() == this && 336 "predecessor must have the current block as only successor"); 337 BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; 338 // The Exit block of a loop is always set to be successor 0 of the Exiting 339 // block. 340 cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); 341 } else if (PrevVPBB && /* A */ 342 !((SingleHPred = getSingleHierarchicalPredecessor()) && 343 SingleHPred->getExitingBasicBlock() == PrevVPBB && 344 PrevVPBB->getSingleHierarchicalSuccessor() && 345 (SingleHPred->getParent() == getEnclosingLoopRegion() && 346 !IsLoopRegion(SingleHPred))) && /* B */ 347 !(Replica && getPredecessors().empty())) { /* C */ 348 // The last IR basic block is reused, as an optimization, in three cases: 349 // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; 350 // B. when the current VPBB has a single (hierarchical) predecessor which 351 // is PrevVPBB and the latter has a single (hierarchical) successor which 352 // both are in the same non-replicator region; and 353 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 354 // is the exiting VPBB of this region from a previous instance, or the 355 // predecessor of this region. 356 357 NewBB = createEmptyBasicBlock(State->CFG); 358 State->Builder.SetInsertPoint(NewBB); 359 // Temporarily terminate with unreachable until CFG is rewired. 360 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 361 // Register NewBB in its loop. In innermost loops its the same for all 362 // BB's. 363 if (State->CurrentVectorLoop) 364 State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); 365 State->Builder.SetInsertPoint(Terminator); 366 State->CFG.PrevBB = NewBB; 367 } 368 369 // 2. Fill the IR basic block with IR instructions. 370 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 371 << " in BB:" << NewBB->getName() << '\n'); 372 373 State->CFG.VPBB2IRBB[this] = NewBB; 374 State->CFG.PrevVPBB = this; 375 376 for (VPRecipeBase &Recipe : Recipes) 377 Recipe.execute(*State); 378 379 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 380 } 381 382 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 383 for (VPRecipeBase &R : Recipes) { 384 for (auto *Def : R.definedValues()) 385 Def->replaceAllUsesWith(NewValue); 386 387 for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) 388 R.setOperand(I, NewValue); 389 } 390 } 391 392 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { 393 assert((SplitAt == end() || SplitAt->getParent() == this) && 394 "can only split at a position in the same block"); 395 396 SmallVector<VPBlockBase *, 2> Succs(successors()); 397 // First, disconnect the current block from its successors. 398 for (VPBlockBase *Succ : Succs) 399 VPBlockUtils::disconnectBlocks(this, Succ); 400 401 // Create new empty block after the block to split. 402 auto *SplitBlock = new VPBasicBlock(getName() + ".split"); 403 VPBlockUtils::insertBlockAfter(SplitBlock, this); 404 405 // Add successors for block to split to new block. 406 for (VPBlockBase *Succ : Succs) 407 VPBlockUtils::connectBlocks(SplitBlock, Succ); 408 409 // Finally, move the recipes starting at SplitAt to new block. 410 for (VPRecipeBase &ToMove : 411 make_early_inc_range(make_range(SplitAt, this->end()))) 412 ToMove.moveBefore(*SplitBlock, SplitBlock->end()); 413 414 return SplitBlock; 415 } 416 417 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { 418 VPRegionBlock *P = getParent(); 419 if (P && P->isReplicator()) { 420 P = P->getParent(); 421 assert(!cast<VPRegionBlock>(P)->isReplicator() && 422 "unexpected nested replicate regions"); 423 } 424 return P; 425 } 426 427 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { 428 if (VPBB->empty()) { 429 assert( 430 VPBB->getNumSuccessors() < 2 && 431 "block with multiple successors doesn't have a recipe as terminator"); 432 return false; 433 } 434 435 const VPRecipeBase *R = &VPBB->back(); 436 auto *VPI = dyn_cast<VPInstruction>(R); 437 bool IsCondBranch = 438 isa<VPBranchOnMaskRecipe>(R) || 439 (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || 440 VPI->getOpcode() == VPInstruction::BranchOnCount)); 441 (void)IsCondBranch; 442 443 if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { 444 assert(IsCondBranch && "block with multiple successors not terminated by " 445 "conditional branch recipe"); 446 447 return true; 448 } 449 450 assert( 451 !IsCondBranch && 452 "block with 0 or 1 successors terminated by conditional branch recipe"); 453 return false; 454 } 455 456 VPRecipeBase *VPBasicBlock::getTerminator() { 457 if (hasConditionalTerminator(this)) 458 return &back(); 459 return nullptr; 460 } 461 462 const VPRecipeBase *VPBasicBlock::getTerminator() const { 463 if (hasConditionalTerminator(this)) 464 return &back(); 465 return nullptr; 466 } 467 468 bool VPBasicBlock::isExiting() const { 469 return getParent()->getExitingBasicBlock() == this; 470 } 471 472 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 473 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { 474 if (getSuccessors().empty()) { 475 O << Indent << "No successors\n"; 476 } else { 477 O << Indent << "Successor(s): "; 478 ListSeparator LS; 479 for (auto *Succ : getSuccessors()) 480 O << LS << Succ->getName(); 481 O << '\n'; 482 } 483 } 484 485 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, 486 VPSlotTracker &SlotTracker) const { 487 O << Indent << getName() << ":\n"; 488 489 auto RecipeIndent = Indent + " "; 490 for (const VPRecipeBase &Recipe : *this) { 491 Recipe.print(O, RecipeIndent, SlotTracker); 492 O << '\n'; 493 } 494 495 printSuccessors(O, Indent); 496 } 497 #endif 498 499 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 500 for (VPBlockBase *Block : depth_first(Entry)) 501 // Drop all references in VPBasicBlocks and replace all uses with 502 // DummyValue. 503 Block->dropAllReferences(NewValue); 504 } 505 506 void VPRegionBlock::execute(VPTransformState *State) { 507 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 508 509 if (!isReplicator()) { 510 // Create and register the new vector loop. 511 Loop *PrevLoop = State->CurrentVectorLoop; 512 State->CurrentVectorLoop = State->LI->AllocateLoop(); 513 BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; 514 Loop *ParentLoop = State->LI->getLoopFor(VectorPH); 515 516 // Insert the new loop into the loop nest and register the new basic blocks 517 // before calling any utilities such as SCEV that require valid LoopInfo. 518 if (ParentLoop) 519 ParentLoop->addChildLoop(State->CurrentVectorLoop); 520 else 521 State->LI->addTopLevelLoop(State->CurrentVectorLoop); 522 523 // Visit the VPBlocks connected to "this", starting from it. 524 for (VPBlockBase *Block : RPOT) { 525 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 526 Block->execute(State); 527 } 528 529 State->CurrentVectorLoop = PrevLoop; 530 return; 531 } 532 533 assert(!State->Instance && "Replicating a Region with non-null instance."); 534 535 // Enter replicating mode. 536 State->Instance = VPIteration(0, 0); 537 538 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 539 State->Instance->Part = Part; 540 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 541 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 542 ++Lane) { 543 State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); 544 // Visit the VPBlocks connected to \p this, starting from it. 545 for (VPBlockBase *Block : RPOT) { 546 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 547 Block->execute(State); 548 } 549 } 550 } 551 552 // Exit replicating mode. 553 State->Instance.reset(); 554 } 555 556 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 557 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, 558 VPSlotTracker &SlotTracker) const { 559 O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; 560 auto NewIndent = Indent + " "; 561 for (auto *BlockBase : depth_first(Entry)) { 562 O << '\n'; 563 BlockBase->print(O, NewIndent, SlotTracker); 564 } 565 O << Indent << "}\n"; 566 567 printSuccessors(O, Indent); 568 } 569 #endif 570 571 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() { 572 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 573 for (VPRecipeBase &R : Header->phis()) { 574 if (isa<VPActiveLaneMaskPHIRecipe>(&R)) 575 return cast<VPActiveLaneMaskPHIRecipe>(&R); 576 } 577 return nullptr; 578 } 579 580 static bool canSimplifyBranchOnCond(VPInstruction *Term) { 581 VPInstruction *Not = dyn_cast<VPInstruction>(Term->getOperand(0)); 582 if (!Not || Not->getOpcode() != VPInstruction::Not) 583 return false; 584 585 VPInstruction *ALM = dyn_cast<VPInstruction>(Not->getOperand(0)); 586 return ALM && ALM->getOpcode() == VPInstruction::ActiveLaneMask; 587 } 588 589 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, 590 Value *CanonicalIVStartValue, 591 VPTransformState &State, 592 bool IsEpilogueVectorization) { 593 594 VPBasicBlock *ExitingVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 595 auto *Term = dyn_cast<VPInstruction>(&ExitingVPBB->back()); 596 // Try to simplify the branch condition if TC <= VF * UF when preparing to 597 // execute the plan for the main vector loop. We only do this if the 598 // terminator is: 599 // 1. BranchOnCount, or 600 // 2. BranchOnCond where the input is Not(ActiveLaneMask). 601 if (!IsEpilogueVectorization && Term && isa<ConstantInt>(TripCountV) && 602 (Term->getOpcode() == VPInstruction::BranchOnCount || 603 (Term->getOpcode() == VPInstruction::BranchOnCond && 604 canSimplifyBranchOnCond(Term)))) { 605 ConstantInt *C = cast<ConstantInt>(TripCountV); 606 uint64_t TCVal = C->getZExtValue(); 607 if (TCVal && TCVal <= State.VF.getKnownMinValue() * State.UF) { 608 auto *BOC = 609 new VPInstruction(VPInstruction::BranchOnCond, 610 {getOrAddExternalDef(State.Builder.getTrue())}); 611 Term->eraseFromParent(); 612 ExitingVPBB->appendRecipe(BOC); 613 // TODO: Further simplifications are possible 614 // 1. Replace inductions with constants. 615 // 2. Replace vector loop region with VPBasicBlock. 616 } 617 } 618 619 // Check if the trip count is needed, and if so build it. 620 if (TripCount && TripCount->getNumUsers()) { 621 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 622 State.set(TripCount, TripCountV, Part); 623 } 624 625 // Check if the backedge taken count is needed, and if so build it. 626 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 627 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 628 auto *TCMO = Builder.CreateSub(TripCountV, 629 ConstantInt::get(TripCountV->getType(), 1), 630 "trip.count.minus.1"); 631 auto VF = State.VF; 632 Value *VTCMO = 633 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 634 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 635 State.set(BackedgeTakenCount, VTCMO, Part); 636 } 637 638 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) 639 State.set(&VectorTripCount, VectorTripCountV, Part); 640 641 // When vectorizing the epilogue loop, the canonical induction start value 642 // needs to be changed from zero to the value after the main vector loop. 643 if (CanonicalIVStartValue) { 644 VPValue *VPV = getOrAddExternalDef(CanonicalIVStartValue); 645 auto *IV = getCanonicalIV(); 646 assert(all_of(IV->users(), 647 [](const VPUser *U) { 648 if (isa<VPScalarIVStepsRecipe>(U)) 649 return true; 650 auto *VPI = cast<VPInstruction>(U); 651 return VPI->getOpcode() == 652 VPInstruction::CanonicalIVIncrement || 653 VPI->getOpcode() == 654 VPInstruction::CanonicalIVIncrementNUW; 655 }) && 656 "the canonical IV should only be used by its increments or " 657 "ScalarIVSteps when " 658 "resetting the start value"); 659 IV->setOperand(0, VPV); 660 } 661 } 662 663 /// Generate the code inside the preheader and body of the vectorized loop. 664 /// Assumes a single pre-header basic-block was created for this. Introduce 665 /// additional basic-blocks as needed, and fill them all. 666 void VPlan::execute(VPTransformState *State) { 667 // Set the reverse mapping from VPValues to Values for code generation. 668 for (auto &Entry : Value2VPValue) 669 State->VPValue2Value[Entry.second] = Entry.first; 670 671 // Initialize CFG state. 672 State->CFG.PrevVPBB = nullptr; 673 State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); 674 BasicBlock *VectorPreHeader = State->CFG.PrevBB; 675 State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); 676 677 // Generate code in the loop pre-header and body. 678 for (VPBlockBase *Block : depth_first(Entry)) 679 Block->execute(State); 680 681 VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); 682 BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; 683 684 // Fix the latch value of canonical, reduction and first-order recurrences 685 // phis in the vector loop. 686 VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); 687 for (VPRecipeBase &R : Header->phis()) { 688 // Skip phi-like recipes that generate their backedege values themselves. 689 if (isa<VPWidenPHIRecipe>(&R)) 690 continue; 691 692 if (isa<VPWidenPointerInductionRecipe>(&R) || 693 isa<VPWidenIntOrFpInductionRecipe>(&R)) { 694 PHINode *Phi = nullptr; 695 if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { 696 Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); 697 } else { 698 auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); 699 // TODO: Split off the case that all users of a pointer phi are scalar 700 // from the VPWidenPointerInductionRecipe. 701 if (WidenPhi->onlyScalarsGenerated(State->VF)) 702 continue; 703 704 auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); 705 Phi = cast<PHINode>(GEP->getPointerOperand()); 706 } 707 708 Phi->setIncomingBlock(1, VectorLatchBB); 709 710 // Move the last step to the end of the latch block. This ensures 711 // consistent placement of all induction updates. 712 Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); 713 Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); 714 continue; 715 } 716 717 auto *PhiR = cast<VPHeaderPHIRecipe>(&R); 718 // For canonical IV, first-order recurrences and in-order reduction phis, 719 // only a single part is generated, which provides the last part from the 720 // previous iteration. For non-ordered reductions all UF parts are 721 // generated. 722 bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || 723 isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || 724 (isa<VPReductionPHIRecipe>(PhiR) && 725 cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); 726 unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; 727 728 for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { 729 Value *Phi = State->get(PhiR, Part); 730 Value *Val = State->get(PhiR->getBackedgeValue(), 731 SinglePartNeeded ? State->UF - 1 : Part); 732 cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); 733 } 734 } 735 736 // We do not attempt to preserve DT for outer loop vectorization currently. 737 if (!EnableVPlanNativePath) { 738 BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; 739 State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); 740 updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, 741 State->CFG.ExitBB); 742 } 743 } 744 745 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 746 LLVM_DUMP_METHOD 747 void VPlan::print(raw_ostream &O) const { 748 VPSlotTracker SlotTracker(this); 749 750 O << "VPlan '" << Name << "' {"; 751 752 if (VectorTripCount.getNumUsers() > 0) { 753 O << "\nLive-in "; 754 VectorTripCount.printAsOperand(O, SlotTracker); 755 O << " = vector-trip-count\n"; 756 } 757 758 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 759 O << "\nLive-in "; 760 BackedgeTakenCount->printAsOperand(O, SlotTracker); 761 O << " = backedge-taken count\n"; 762 } 763 764 for (const VPBlockBase *Block : depth_first(getEntry())) { 765 O << '\n'; 766 Block->print(O, "", SlotTracker); 767 } 768 769 if (!LiveOuts.empty()) 770 O << "\n"; 771 for (auto &KV : LiveOuts) { 772 O << "Live-out "; 773 KV.second->getPhi()->printAsOperand(O); 774 O << " = "; 775 KV.second->getOperand(0)->printAsOperand(O, SlotTracker); 776 O << "\n"; 777 } 778 779 O << "}\n"; 780 } 781 782 LLVM_DUMP_METHOD 783 void VPlan::printDOT(raw_ostream &O) const { 784 VPlanPrinter Printer(O, *this); 785 Printer.dump(); 786 } 787 788 LLVM_DUMP_METHOD 789 void VPlan::dump() const { print(dbgs()); } 790 #endif 791 792 void VPlan::addLiveOut(PHINode *PN, VPValue *V) { 793 assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); 794 LiveOuts.insert({PN, new VPLiveOut(PN, V)}); 795 } 796 797 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, 798 BasicBlock *LoopLatchBB, 799 BasicBlock *LoopExitBB) { 800 // The vector body may be more than a single basic-block by this point. 801 // Update the dominator tree information inside the vector body by propagating 802 // it from header to latch, expecting only triangular control-flow, if any. 803 BasicBlock *PostDomSucc = nullptr; 804 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 805 // Get the list of successors of this block. 806 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 807 assert(Succs.size() <= 2 && 808 "Basic block in vector loop has more than 2 successors."); 809 PostDomSucc = Succs[0]; 810 if (Succs.size() == 1) { 811 assert(PostDomSucc->getSinglePredecessor() && 812 "PostDom successor has more than one predecessor."); 813 DT->addNewBlock(PostDomSucc, BB); 814 continue; 815 } 816 BasicBlock *InterimSucc = Succs[1]; 817 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 818 PostDomSucc = Succs[1]; 819 InterimSucc = Succs[0]; 820 } 821 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 822 "One successor of a basic block does not lead to the other."); 823 assert(InterimSucc->getSinglePredecessor() && 824 "Interim successor has more than one predecessor."); 825 assert(PostDomSucc->hasNPredecessors(2) && 826 "PostDom successor has more than two predecessors."); 827 DT->addNewBlock(InterimSucc, BB); 828 DT->addNewBlock(PostDomSucc, BB); 829 } 830 // Latch block is a new dominator for the loop exit. 831 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 832 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 833 } 834 835 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 836 837 Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 838 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 839 Twine(getOrCreateBID(Block)); 840 } 841 842 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 843 const std::string &Name = Block->getName(); 844 if (!Name.empty()) 845 return Name; 846 return "VPB" + Twine(getOrCreateBID(Block)); 847 } 848 849 void VPlanPrinter::dump() { 850 Depth = 1; 851 bumpIndent(0); 852 OS << "digraph VPlan {\n"; 853 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 854 if (!Plan.getName().empty()) 855 OS << "\\n" << DOT::EscapeString(Plan.getName()); 856 if (Plan.BackedgeTakenCount) { 857 OS << ", where:\\n"; 858 Plan.BackedgeTakenCount->print(OS, SlotTracker); 859 OS << " := BackedgeTakenCount"; 860 } 861 OS << "\"]\n"; 862 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 863 OS << "edge [fontname=Courier, fontsize=30]\n"; 864 OS << "compound=true\n"; 865 866 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 867 dumpBlock(Block); 868 869 OS << "}\n"; 870 } 871 872 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 873 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 874 dumpBasicBlock(BasicBlock); 875 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 876 dumpRegion(Region); 877 else 878 llvm_unreachable("Unsupported kind of VPBlock."); 879 } 880 881 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 882 bool Hidden, const Twine &Label) { 883 // Due to "dot" we print an edge between two regions as an edge between the 884 // exiting basic block and the entry basic of the respective regions. 885 const VPBlockBase *Tail = From->getExitingBasicBlock(); 886 const VPBlockBase *Head = To->getEntryBasicBlock(); 887 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 888 OS << " [ label=\"" << Label << '\"'; 889 if (Tail != From) 890 OS << " ltail=" << getUID(From); 891 if (Head != To) 892 OS << " lhead=" << getUID(To); 893 if (Hidden) 894 OS << "; splines=none"; 895 OS << "]\n"; 896 } 897 898 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 899 auto &Successors = Block->getSuccessors(); 900 if (Successors.size() == 1) 901 drawEdge(Block, Successors.front(), false, ""); 902 else if (Successors.size() == 2) { 903 drawEdge(Block, Successors.front(), false, "T"); 904 drawEdge(Block, Successors.back(), false, "F"); 905 } else { 906 unsigned SuccessorNumber = 0; 907 for (auto *Successor : Successors) 908 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 909 } 910 } 911 912 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 913 // Implement dot-formatted dump by performing plain-text dump into the 914 // temporary storage followed by some post-processing. 915 OS << Indent << getUID(BasicBlock) << " [label =\n"; 916 bumpIndent(1); 917 std::string Str; 918 raw_string_ostream SS(Str); 919 // Use no indentation as we need to wrap the lines into quotes ourselves. 920 BasicBlock->print(SS, "", SlotTracker); 921 922 // We need to process each line of the output separately, so split 923 // single-string plain-text dump. 924 SmallVector<StringRef, 0> Lines; 925 StringRef(Str).rtrim('\n').split(Lines, "\n"); 926 927 auto EmitLine = [&](StringRef Line, StringRef Suffix) { 928 OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; 929 }; 930 931 // Don't need the "+" after the last line. 932 for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) 933 EmitLine(Line, " +\n"); 934 EmitLine(Lines.back(), "\n"); 935 936 bumpIndent(-1); 937 OS << Indent << "]\n"; 938 939 dumpEdges(BasicBlock); 940 } 941 942 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 943 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 944 bumpIndent(1); 945 OS << Indent << "fontname=Courier\n" 946 << Indent << "label=\"" 947 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 948 << DOT::EscapeString(Region->getName()) << "\"\n"; 949 // Dump the blocks of the region. 950 assert(Region->getEntry() && "Region contains no inner blocks."); 951 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 952 dumpBlock(Block); 953 bumpIndent(-1); 954 OS << Indent << "}\n"; 955 dumpEdges(Region); 956 } 957 958 void VPlanIngredient::print(raw_ostream &O) const { 959 if (auto *Inst = dyn_cast<Instruction>(V)) { 960 if (!Inst->getType()->isVoidTy()) { 961 Inst->printAsOperand(O, false); 962 O << " = "; 963 } 964 O << Inst->getOpcodeName() << " "; 965 unsigned E = Inst->getNumOperands(); 966 if (E > 0) { 967 Inst->getOperand(0)->printAsOperand(O, false); 968 for (unsigned I = 1; I < E; ++I) 969 Inst->getOperand(I)->printAsOperand(O << ", ", false); 970 } 971 } else // !Inst 972 V->printAsOperand(O, false); 973 } 974 975 #endif 976 977 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 978 979 void VPValue::replaceAllUsesWith(VPValue *New) { 980 for (unsigned J = 0; J < getNumUsers();) { 981 VPUser *User = Users[J]; 982 unsigned NumUsers = getNumUsers(); 983 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 984 if (User->getOperand(I) == this) 985 User->setOperand(I, New); 986 // If a user got removed after updating the current user, the next user to 987 // update will be moved to the current position, so we only need to 988 // increment the index if the number of users did not change. 989 if (NumUsers == getNumUsers()) 990 J++; 991 } 992 } 993 994 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 995 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 996 if (const Value *UV = getUnderlyingValue()) { 997 OS << "ir<"; 998 UV->printAsOperand(OS, false); 999 OS << ">"; 1000 return; 1001 } 1002 1003 unsigned Slot = Tracker.getSlot(this); 1004 if (Slot == unsigned(-1)) 1005 OS << "<badref>"; 1006 else 1007 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1008 } 1009 1010 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1011 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1012 Op->printAsOperand(O, SlotTracker); 1013 }); 1014 } 1015 #endif 1016 1017 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1018 Old2NewTy &Old2New, 1019 InterleavedAccessInfo &IAI) { 1020 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1021 for (VPBlockBase *Base : RPOT) { 1022 visitBlock(Base, Old2New, IAI); 1023 } 1024 } 1025 1026 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1027 InterleavedAccessInfo &IAI) { 1028 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1029 for (VPRecipeBase &VPI : *VPBB) { 1030 if (isa<VPHeaderPHIRecipe>(&VPI)) 1031 continue; 1032 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1033 auto *VPInst = cast<VPInstruction>(&VPI); 1034 1035 auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); 1036 if (!Inst) 1037 continue; 1038 auto *IG = IAI.getInterleaveGroup(Inst); 1039 if (!IG) 1040 continue; 1041 1042 auto NewIGIter = Old2New.find(IG); 1043 if (NewIGIter == Old2New.end()) 1044 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1045 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1046 1047 if (Inst == IG->getInsertPos()) 1048 Old2New[IG]->setInsertPos(VPInst); 1049 1050 InterleaveGroupMap[VPInst] = Old2New[IG]; 1051 InterleaveGroupMap[VPInst]->insertMember( 1052 VPInst, IG->getIndex(Inst), 1053 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1054 : IG->getFactor())); 1055 } 1056 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1057 visitRegion(Region, Old2New, IAI); 1058 else 1059 llvm_unreachable("Unsupported kind of VPBlock."); 1060 } 1061 1062 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1063 InterleavedAccessInfo &IAI) { 1064 Old2NewTy Old2New; 1065 visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); 1066 } 1067 1068 void VPSlotTracker::assignSlot(const VPValue *V) { 1069 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1070 Slots[V] = NextSlot++; 1071 } 1072 1073 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1074 1075 for (const auto &P : Plan.VPExternalDefs) 1076 assignSlot(P.second); 1077 1078 assignSlot(&Plan.VectorTripCount); 1079 if (Plan.BackedgeTakenCount) 1080 assignSlot(Plan.BackedgeTakenCount); 1081 1082 ReversePostOrderTraversal< 1083 VPBlockRecursiveTraversalWrapper<const VPBlockBase *>> 1084 RPOT(VPBlockRecursiveTraversalWrapper<const VPBlockBase *>( 1085 Plan.getEntry())); 1086 for (const VPBasicBlock *VPBB : 1087 VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) 1088 for (const VPRecipeBase &Recipe : *VPBB) 1089 for (VPValue *Def : Recipe.definedValues()) 1090 assignSlot(Def); 1091 } 1092 1093 bool vputils::onlyFirstLaneUsed(VPValue *Def) { 1094 return all_of(Def->users(), 1095 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); 1096 } 1097 1098 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, 1099 ScalarEvolution &SE) { 1100 if (auto *E = dyn_cast<SCEVConstant>(Expr)) 1101 return Plan.getOrAddExternalDef(E->getValue()); 1102 if (auto *E = dyn_cast<SCEVUnknown>(Expr)) 1103 return Plan.getOrAddExternalDef(E->getValue()); 1104 1105 VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); 1106 VPValue *Step = new VPExpandSCEVRecipe(Expr, SE); 1107 Preheader->appendRecipe(cast<VPRecipeBase>(Step->getDef())); 1108 return Step; 1109 } 1110