xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision a8d9bd3fa5855fe7583ed05946296ab6b9937d69)
1  //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  ///
9  /// \file
10  /// This is the LLVM vectorization plan. It represents a candidate for
11  /// vectorization, allowing to plan and optimize how to vectorize a given loop
12  /// before generating LLVM-IR.
13  /// The vectorizer uses vectorization plans to estimate the costs of potential
14  /// candidates and if profitable to execute the desired plan, generating vector
15  /// LLVM-IR code.
16  ///
17  //===----------------------------------------------------------------------===//
18  
19  #include "VPlan.h"
20  #include "LoopVectorizationPlanner.h"
21  #include "VPlanCFG.h"
22  #include "VPlanDominatorTree.h"
23  #include "VPlanPatternMatch.h"
24  #include "llvm/ADT/PostOrderIterator.h"
25  #include "llvm/ADT/STLExtras.h"
26  #include "llvm/ADT/SmallVector.h"
27  #include "llvm/ADT/StringExtras.h"
28  #include "llvm/ADT/Twine.h"
29  #include "llvm/Analysis/DomTreeUpdater.h"
30  #include "llvm/Analysis/LoopInfo.h"
31  #include "llvm/IR/BasicBlock.h"
32  #include "llvm/IR/CFG.h"
33  #include "llvm/IR/IRBuilder.h"
34  #include "llvm/IR/Instruction.h"
35  #include "llvm/IR/Instructions.h"
36  #include "llvm/IR/Type.h"
37  #include "llvm/IR/Value.h"
38  #include "llvm/Support/Casting.h"
39  #include "llvm/Support/CommandLine.h"
40  #include "llvm/Support/Debug.h"
41  #include "llvm/Support/GenericDomTreeConstruction.h"
42  #include "llvm/Support/GraphWriter.h"
43  #include "llvm/Support/raw_ostream.h"
44  #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45  #include "llvm/Transforms/Utils/LoopVersioning.h"
46  #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
47  #include <cassert>
48  #include <string>
49  #include <vector>
50  
51  using namespace llvm;
52  using namespace llvm::VPlanPatternMatch;
53  
54  namespace llvm {
55  extern cl::opt<bool> EnableVPlanNativePath;
56  }
57  
58  #define DEBUG_TYPE "vplan"
59  
60  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
61  raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
62    const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
63    VPSlotTracker SlotTracker(
64        (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
65    V.print(OS, SlotTracker);
66    return OS;
67  }
68  #endif
69  
70  Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
71                                  const ElementCount &VF) const {
72    switch (LaneKind) {
73    case VPLane::Kind::ScalableLast:
74      // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
75      return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
76                               Builder.getInt32(VF.getKnownMinValue() - Lane));
77    case VPLane::Kind::First:
78      return Builder.getInt32(Lane);
79    }
80    llvm_unreachable("Unknown lane kind");
81  }
82  
83  VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
84      : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
85    if (Def)
86      Def->addDefinedValue(this);
87  }
88  
89  VPValue::~VPValue() {
90    assert(Users.empty() && "trying to delete a VPValue with remaining users");
91    if (Def)
92      Def->removeDefinedValue(this);
93  }
94  
95  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
96  void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
97    if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
98      R->print(OS, "", SlotTracker);
99    else
100      printAsOperand(OS, SlotTracker);
101  }
102  
103  void VPValue::dump() const {
104    const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
105    VPSlotTracker SlotTracker(
106        (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
107    print(dbgs(), SlotTracker);
108    dbgs() << "\n";
109  }
110  
111  void VPDef::dump() const {
112    const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
113    VPSlotTracker SlotTracker(
114        (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
115    print(dbgs(), "", SlotTracker);
116    dbgs() << "\n";
117  }
118  #endif
119  
120  VPRecipeBase *VPValue::getDefiningRecipe() {
121    return cast_or_null<VPRecipeBase>(Def);
122  }
123  
124  const VPRecipeBase *VPValue::getDefiningRecipe() const {
125    return cast_or_null<VPRecipeBase>(Def);
126  }
127  
128  // Get the top-most entry block of \p Start. This is the entry block of the
129  // containing VPlan. This function is templated to support both const and non-const blocks
130  template <typename T> static T *getPlanEntry(T *Start) {
131    T *Next = Start;
132    T *Current = Start;
133    while ((Next = Next->getParent()))
134      Current = Next;
135  
136    SmallSetVector<T *, 8> WorkList;
137    WorkList.insert(Current);
138  
139    for (unsigned i = 0; i < WorkList.size(); i++) {
140      T *Current = WorkList[i];
141      if (Current->getNumPredecessors() == 0)
142        return Current;
143      auto &Predecessors = Current->getPredecessors();
144      WorkList.insert(Predecessors.begin(), Predecessors.end());
145    }
146  
147    llvm_unreachable("VPlan without any entry node without predecessors");
148  }
149  
150  VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
151  
152  const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
153  
154  /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
155  const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
156    const VPBlockBase *Block = this;
157    while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
158      Block = Region->getEntry();
159    return cast<VPBasicBlock>(Block);
160  }
161  
162  VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
163    VPBlockBase *Block = this;
164    while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
165      Block = Region->getEntry();
166    return cast<VPBasicBlock>(Block);
167  }
168  
169  void VPBlockBase::setPlan(VPlan *ParentPlan) {
170    assert(
171        (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
172        "Can only set plan on its entry or preheader block.");
173    Plan = ParentPlan;
174  }
175  
176  /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
177  const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
178    const VPBlockBase *Block = this;
179    while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
180      Block = Region->getExiting();
181    return cast<VPBasicBlock>(Block);
182  }
183  
184  VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
185    VPBlockBase *Block = this;
186    while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
187      Block = Region->getExiting();
188    return cast<VPBasicBlock>(Block);
189  }
190  
191  VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
192    if (!Successors.empty() || !Parent)
193      return this;
194    assert(Parent->getExiting() == this &&
195           "Block w/o successors not the exiting block of its parent.");
196    return Parent->getEnclosingBlockWithSuccessors();
197  }
198  
199  VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
200    if (!Predecessors.empty() || !Parent)
201      return this;
202    assert(Parent->getEntry() == this &&
203           "Block w/o predecessors not the entry of its parent.");
204    return Parent->getEnclosingBlockWithPredecessors();
205  }
206  
207  void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
208    for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
209      delete Block;
210  }
211  
212  VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
213    iterator It = begin();
214    while (It != end() && It->isPhi())
215      It++;
216    return It;
217  }
218  
219  VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
220                                     DominatorTree *DT, IRBuilderBase &Builder,
221                                     InnerLoopVectorizer *ILV, VPlan *Plan,
222                                     LLVMContext &Ctx)
223      : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan),
224        LVer(nullptr),
225        TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
226  
227  Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
228    if (Def->isLiveIn())
229      return Def->getLiveInIRValue();
230  
231    if (hasScalarValue(Def, Instance)) {
232      return Data
233          .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
234    }
235    if (!Instance.Lane.isFirstLane() &&
236        vputils::isUniformAfterVectorization(Def) &&
237        hasScalarValue(Def, {Instance.Part, VPLane::getFirstLane()})) {
238      return Data.PerPartScalars[Def][Instance.Part][0];
239    }
240  
241    assert(hasVectorValue(Def, Instance.Part));
242    auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
243    if (!VecPart->getType()->isVectorTy()) {
244      assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
245      return VecPart;
246    }
247    // TODO: Cache created scalar values.
248    Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
249    auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
250    // set(Def, Extract, Instance);
251    return Extract;
252  }
253  
254  Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
255    if (NeedsScalar) {
256      assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) ||
257              !vputils::onlyFirstLaneUsed(Def) ||
258              (hasScalarValue(Def, VPIteration(Part, 0)) &&
259               Data.PerPartScalars[Def][Part].size() == 1)) &&
260             "Trying to access a single scalar per part but has multiple scalars "
261             "per part.");
262      return get(Def, VPIteration(Part, 0));
263    }
264  
265    // If Values have been set for this Def return the one relevant for \p Part.
266    if (hasVectorValue(Def, Part))
267      return Data.PerPartOutput[Def][Part];
268  
269    auto GetBroadcastInstrs = [this, Def](Value *V) {
270      bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
271      if (VF.isScalar())
272        return V;
273      // Place the code for broadcasting invariant variables in the new preheader.
274      IRBuilder<>::InsertPointGuard Guard(Builder);
275      if (SafeToHoist) {
276        BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
277            Plan->getVectorLoopRegion()->getSinglePredecessor())];
278        if (LoopVectorPreHeader)
279          Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
280      }
281  
282      // Place the code for broadcasting invariant variables in the new preheader.
283      // Broadcast the scalar into all locations in the vector.
284      Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
285  
286      return Shuf;
287    };
288  
289    if (!hasScalarValue(Def, {Part, 0})) {
290      assert(Def->isLiveIn() && "expected a live-in");
291      if (Part != 0)
292        return get(Def, 0);
293      Value *IRV = Def->getLiveInIRValue();
294      Value *B = GetBroadcastInstrs(IRV);
295      set(Def, B, Part);
296      return B;
297    }
298  
299    Value *ScalarValue = get(Def, {Part, 0});
300    // If we aren't vectorizing, we can just copy the scalar map values over
301    // to the vector map.
302    if (VF.isScalar()) {
303      set(Def, ScalarValue, Part);
304      return ScalarValue;
305    }
306  
307    bool IsUniform = vputils::isUniformAfterVectorization(Def);
308  
309    unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
310    // Check if there is a scalar value for the selected lane.
311    if (!hasScalarValue(Def, {Part, LastLane})) {
312      // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
313      // VPExpandSCEVRecipes can also be uniform.
314      assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
315              isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
316              isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
317             "unexpected recipe found to be invariant");
318      IsUniform = true;
319      LastLane = 0;
320    }
321  
322    auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
323    // Set the insert point after the last scalarized instruction or after the
324    // last PHI, if LastInst is a PHI. This ensures the insertelement sequence
325    // will directly follow the scalar definitions.
326    auto OldIP = Builder.saveIP();
327    auto NewIP =
328        isa<PHINode>(LastInst)
329            ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
330            : std::next(BasicBlock::iterator(LastInst));
331    Builder.SetInsertPoint(&*NewIP);
332  
333    // However, if we are vectorizing, we need to construct the vector values.
334    // If the value is known to be uniform after vectorization, we can just
335    // broadcast the scalar value corresponding to lane zero for each unroll
336    // iteration. Otherwise, we construct the vector values using
337    // insertelement instructions. Since the resulting vectors are stored in
338    // State, we will only generate the insertelements once.
339    Value *VectorValue = nullptr;
340    if (IsUniform) {
341      VectorValue = GetBroadcastInstrs(ScalarValue);
342      set(Def, VectorValue, Part);
343    } else {
344      // Initialize packing with insertelements to start from undef.
345      assert(!VF.isScalable() && "VF is assumed to be non scalable.");
346      Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
347      set(Def, Undef, Part);
348      for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
349        packScalarIntoVectorValue(Def, {Part, Lane});
350      VectorValue = get(Def, Part);
351    }
352    Builder.restoreIP(OldIP);
353    return VectorValue;
354  }
355  
356  BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
357    VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
358    return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
359  }
360  
361  void VPTransformState::addNewMetadata(Instruction *To,
362                                        const Instruction *Orig) {
363    // If the loop was versioned with memchecks, add the corresponding no-alias
364    // metadata.
365    if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
366      LVer->annotateInstWithNoAlias(To, Orig);
367  }
368  
369  void VPTransformState::addMetadata(Value *To, Instruction *From) {
370    // No source instruction to transfer metadata from?
371    if (!From)
372      return;
373  
374    if (Instruction *ToI = dyn_cast<Instruction>(To)) {
375      propagateMetadata(ToI, From);
376      addNewMetadata(ToI, From);
377    }
378  }
379  
380  void VPTransformState::setDebugLocFrom(DebugLoc DL) {
381    const DILocation *DIL = DL;
382    // When a FSDiscriminator is enabled, we don't need to add the multiply
383    // factors to the discriminators.
384    if (DIL &&
385        Builder.GetInsertBlock()
386            ->getParent()
387            ->shouldEmitDebugInfoForProfiling() &&
388        !EnableFSDiscriminator) {
389      // FIXME: For scalable vectors, assume vscale=1.
390      auto NewDIL =
391          DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
392      if (NewDIL)
393        Builder.SetCurrentDebugLocation(*NewDIL);
394      else
395        LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
396                          << DIL->getFilename() << " Line: " << DIL->getLine());
397    } else
398      Builder.SetCurrentDebugLocation(DIL);
399  }
400  
401  void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
402                                                   const VPIteration &Instance) {
403    Value *ScalarInst = get(Def, Instance);
404    Value *VectorValue = get(Def, Instance.Part);
405    VectorValue = Builder.CreateInsertElement(
406        VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
407    set(Def, VectorValue, Instance.Part);
408  }
409  
410  BasicBlock *
411  VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
412    // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
413    // Pred stands for Predessor. Prev stands for Previous - last visited/created.
414    BasicBlock *PrevBB = CFG.PrevBB;
415    BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
416                                           PrevBB->getParent(), CFG.ExitBB);
417    LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
418  
419    // Hook up the new basic block to its predecessors.
420    for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
421      VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
422      auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
423      BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
424  
425      assert(PredBB && "Predecessor basic-block not found building successor.");
426      auto *PredBBTerminator = PredBB->getTerminator();
427      LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
428  
429      auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
430      if (isa<UnreachableInst>(PredBBTerminator)) {
431        assert(PredVPSuccessors.size() == 1 &&
432               "Predecessor ending w/o branch must have single successor.");
433        DebugLoc DL = PredBBTerminator->getDebugLoc();
434        PredBBTerminator->eraseFromParent();
435        auto *Br = BranchInst::Create(NewBB, PredBB);
436        Br->setDebugLoc(DL);
437      } else if (TermBr && !TermBr->isConditional()) {
438        TermBr->setSuccessor(0, NewBB);
439      } else {
440        // Set each forward successor here when it is created, excluding
441        // backedges. A backward successor is set when the branch is created.
442        unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
443        assert(!TermBr->getSuccessor(idx) &&
444               "Trying to reset an existing successor block.");
445        TermBr->setSuccessor(idx, NewBB);
446      }
447      CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, NewBB}});
448    }
449    return NewBB;
450  }
451  
452  void VPIRBasicBlock::execute(VPTransformState *State) {
453    assert(getHierarchicalSuccessors().size() <= 2 &&
454           "VPIRBasicBlock can have at most two successors at the moment!");
455    State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator());
456    executeRecipes(State, getIRBasicBlock());
457    if (getSingleSuccessor()) {
458      assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator()));
459      auto *Br = State->Builder.CreateBr(getIRBasicBlock());
460      Br->setOperand(0, nullptr);
461      getIRBasicBlock()->getTerminator()->eraseFromParent();
462    }
463  
464    for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
465      VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
466      BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB];
467      assert(PredBB && "Predecessor basic-block not found building successor.");
468      LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
469  
470      auto *PredBBTerminator = PredBB->getTerminator();
471      auto *TermBr = cast<BranchInst>(PredBBTerminator);
472      // Set each forward successor here when it is created, excluding
473      // backedges. A backward successor is set when the branch is created.
474      const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
475      unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
476      assert(!TermBr->getSuccessor(idx) &&
477             "Trying to reset an existing successor block.");
478      TermBr->setSuccessor(idx, IRBB);
479      State->CFG.DTU.applyUpdates({{DominatorTree::Insert, PredBB, IRBB}});
480    }
481  }
482  
483  void VPBasicBlock::execute(VPTransformState *State) {
484    bool Replica = State->Instance && !State->Instance->isFirstIteration();
485    VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
486    VPBlockBase *SingleHPred = nullptr;
487    BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
488  
489    auto IsLoopRegion = [](VPBlockBase *BB) {
490      auto *R = dyn_cast<VPRegionBlock>(BB);
491      return R && !R->isReplicator();
492    };
493  
494    // 1. Create an IR basic block.
495    if (PrevVPBB && /* A */
496        !((SingleHPred = getSingleHierarchicalPredecessor()) &&
497          SingleHPred->getExitingBasicBlock() == PrevVPBB &&
498          PrevVPBB->getSingleHierarchicalSuccessor() &&
499          (SingleHPred->getParent() == getEnclosingLoopRegion() &&
500           !IsLoopRegion(SingleHPred))) &&         /* B */
501        !(Replica && getPredecessors().empty())) { /* C */
502      // The last IR basic block is reused, as an optimization, in three cases:
503      // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
504      // B. when the current VPBB has a single (hierarchical) predecessor which
505      //    is PrevVPBB and the latter has a single (hierarchical) successor which
506      //    both are in the same non-replicator region; and
507      // C. when the current VPBB is an entry of a region replica - where PrevVPBB
508      //    is the exiting VPBB of this region from a previous instance, or the
509      //    predecessor of this region.
510  
511      NewBB = createEmptyBasicBlock(State->CFG);
512      State->Builder.SetInsertPoint(NewBB);
513      // Temporarily terminate with unreachable until CFG is rewired.
514      UnreachableInst *Terminator = State->Builder.CreateUnreachable();
515      // Register NewBB in its loop. In innermost loops its the same for all
516      // BB's.
517      if (State->CurrentVectorLoop)
518        State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
519      State->Builder.SetInsertPoint(Terminator);
520      State->CFG.PrevBB = NewBB;
521    }
522  
523    // 2. Fill the IR basic block with IR instructions.
524    executeRecipes(State, NewBB);
525  }
526  
527  void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
528    for (VPRecipeBase &R : Recipes) {
529      for (auto *Def : R.definedValues())
530        Def->replaceAllUsesWith(NewValue);
531  
532      for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
533        R.setOperand(I, NewValue);
534    }
535  }
536  
537  void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) {
538    LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
539                      << " in BB:" << BB->getName() << '\n');
540  
541    State->CFG.VPBB2IRBB[this] = BB;
542    State->CFG.PrevVPBB = this;
543  
544    for (VPRecipeBase &Recipe : Recipes)
545      Recipe.execute(*State);
546  
547    LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB);
548  }
549  
550  VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
551    assert((SplitAt == end() || SplitAt->getParent() == this) &&
552           "can only split at a position in the same block");
553  
554    SmallVector<VPBlockBase *, 2> Succs(successors());
555    // First, disconnect the current block from its successors.
556    for (VPBlockBase *Succ : Succs)
557      VPBlockUtils::disconnectBlocks(this, Succ);
558  
559    // Create new empty block after the block to split.
560    auto *SplitBlock = new VPBasicBlock(getName() + ".split");
561    VPBlockUtils::insertBlockAfter(SplitBlock, this);
562  
563    // Add successors for block to split to new block.
564    for (VPBlockBase *Succ : Succs)
565      VPBlockUtils::connectBlocks(SplitBlock, Succ);
566  
567    // Finally, move the recipes starting at SplitAt to new block.
568    for (VPRecipeBase &ToMove :
569         make_early_inc_range(make_range(SplitAt, this->end())))
570      ToMove.moveBefore(*SplitBlock, SplitBlock->end());
571  
572    return SplitBlock;
573  }
574  
575  VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
576    VPRegionBlock *P = getParent();
577    if (P && P->isReplicator()) {
578      P = P->getParent();
579      assert(!cast<VPRegionBlock>(P)->isReplicator() &&
580             "unexpected nested replicate regions");
581    }
582    return P;
583  }
584  
585  static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
586    if (VPBB->empty()) {
587      assert(
588          VPBB->getNumSuccessors() < 2 &&
589          "block with multiple successors doesn't have a recipe as terminator");
590      return false;
591    }
592  
593    const VPRecipeBase *R = &VPBB->back();
594    bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
595                        match(R, m_BranchOnCond(m_VPValue())) ||
596                        match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
597    (void)IsCondBranch;
598  
599    if (VPBB->getNumSuccessors() >= 2 ||
600        (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
601      assert(IsCondBranch && "block with multiple successors not terminated by "
602                             "conditional branch recipe");
603  
604      return true;
605    }
606  
607    assert(
608        !IsCondBranch &&
609        "block with 0 or 1 successors terminated by conditional branch recipe");
610    return false;
611  }
612  
613  VPRecipeBase *VPBasicBlock::getTerminator() {
614    if (hasConditionalTerminator(this))
615      return &back();
616    return nullptr;
617  }
618  
619  const VPRecipeBase *VPBasicBlock::getTerminator() const {
620    if (hasConditionalTerminator(this))
621      return &back();
622    return nullptr;
623  }
624  
625  bool VPBasicBlock::isExiting() const {
626    return getParent() && getParent()->getExitingBasicBlock() == this;
627  }
628  
629  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
630  void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
631    if (getSuccessors().empty()) {
632      O << Indent << "No successors\n";
633    } else {
634      O << Indent << "Successor(s): ";
635      ListSeparator LS;
636      for (auto *Succ : getSuccessors())
637        O << LS << Succ->getName();
638      O << '\n';
639    }
640  }
641  
642  void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
643                           VPSlotTracker &SlotTracker) const {
644    O << Indent << getName() << ":\n";
645  
646    auto RecipeIndent = Indent + "  ";
647    for (const VPRecipeBase &Recipe : *this) {
648      Recipe.print(O, RecipeIndent, SlotTracker);
649      O << '\n';
650    }
651  
652    printSuccessors(O, Indent);
653  }
654  #endif
655  
656  static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry);
657  
658  // Clone the CFG for all nodes reachable from \p Entry, this includes cloning
659  // the blocks and their recipes. Operands of cloned recipes will NOT be updated.
660  // Remapping of operands must be done separately. Returns a pair with the new
661  // entry and exiting blocks of the cloned region. If \p Entry isn't part of a
662  // region, return nullptr for the exiting block.
663  static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) {
664    DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
665    VPBlockBase *Exiting = nullptr;
666    bool InRegion = Entry->getParent();
667    // First, clone blocks reachable from Entry.
668    for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
669      VPBlockBase *NewBB = BB->clone();
670      Old2NewVPBlocks[BB] = NewBB;
671      if (InRegion && BB->getNumSuccessors() == 0) {
672        assert(!Exiting && "Multiple exiting blocks?");
673        Exiting = BB;
674      }
675    }
676    assert((!InRegion || Exiting) && "regions must have a single exiting block");
677  
678    // Second, update the predecessors & successors of the cloned blocks.
679    for (VPBlockBase *BB : vp_depth_first_shallow(Entry)) {
680      VPBlockBase *NewBB = Old2NewVPBlocks[BB];
681      SmallVector<VPBlockBase *> NewPreds;
682      for (VPBlockBase *Pred : BB->getPredecessors()) {
683        NewPreds.push_back(Old2NewVPBlocks[Pred]);
684      }
685      NewBB->setPredecessors(NewPreds);
686      SmallVector<VPBlockBase *> NewSuccs;
687      for (VPBlockBase *Succ : BB->successors()) {
688        NewSuccs.push_back(Old2NewVPBlocks[Succ]);
689      }
690      NewBB->setSuccessors(NewSuccs);
691    }
692  
693  #if !defined(NDEBUG)
694    // Verify that the order of predecessors and successors matches in the cloned
695    // version.
696    for (const auto &[OldBB, NewBB] :
697         zip(vp_depth_first_shallow(Entry),
698             vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) {
699      for (const auto &[OldPred, NewPred] :
700           zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
701        assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
702  
703      for (const auto &[OldSucc, NewSucc] :
704           zip(OldBB->successors(), NewBB->successors()))
705        assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
706    }
707  #endif
708  
709    return std::make_pair(Old2NewVPBlocks[Entry],
710                          Exiting ? Old2NewVPBlocks[Exiting] : nullptr);
711  }
712  
713  VPRegionBlock *VPRegionBlock::clone() {
714    const auto &[NewEntry, NewExiting] = cloneFrom(getEntry());
715    auto *NewRegion =
716        new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
717    for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
718      Block->setParent(NewRegion);
719    return NewRegion;
720  }
721  
722  void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
723    for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
724      // Drop all references in VPBasicBlocks and replace all uses with
725      // DummyValue.
726      Block->dropAllReferences(NewValue);
727  }
728  
729  void VPRegionBlock::execute(VPTransformState *State) {
730    ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
731        RPOT(Entry);
732  
733    if (!isReplicator()) {
734      // Create and register the new vector loop.
735      Loop *PrevLoop = State->CurrentVectorLoop;
736      State->CurrentVectorLoop = State->LI->AllocateLoop();
737      BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
738      Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
739  
740      // Insert the new loop into the loop nest and register the new basic blocks
741      // before calling any utilities such as SCEV that require valid LoopInfo.
742      if (ParentLoop)
743        ParentLoop->addChildLoop(State->CurrentVectorLoop);
744      else
745        State->LI->addTopLevelLoop(State->CurrentVectorLoop);
746  
747      // Visit the VPBlocks connected to "this", starting from it.
748      for (VPBlockBase *Block : RPOT) {
749        LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
750        Block->execute(State);
751      }
752  
753      State->CurrentVectorLoop = PrevLoop;
754      return;
755    }
756  
757    assert(!State->Instance && "Replicating a Region with non-null instance.");
758  
759    // Enter replicating mode.
760    State->Instance = VPIteration(0, 0);
761  
762    for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
763      State->Instance->Part = Part;
764      assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
765      for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
766           ++Lane) {
767        State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
768        // Visit the VPBlocks connected to \p this, starting from it.
769        for (VPBlockBase *Block : RPOT) {
770          LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
771          Block->execute(State);
772        }
773      }
774    }
775  
776    // Exit replicating mode.
777    State->Instance.reset();
778  }
779  
780  InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) {
781    InstructionCost Cost = 0;
782    for (VPRecipeBase &R : Recipes)
783      Cost += R.cost(VF, Ctx);
784    return Cost;
785  }
786  
787  InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) {
788    if (!isReplicator()) {
789      InstructionCost Cost = 0;
790      for (VPBlockBase *Block : vp_depth_first_shallow(getEntry()))
791        Cost += Block->cost(VF, Ctx);
792      InstructionCost BackedgeCost =
793          Ctx.TTI.getCFInstrCost(Instruction::Br, TTI::TCK_RecipThroughput);
794      LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF
795                        << ": vector loop backedge\n");
796      Cost += BackedgeCost;
797      return Cost;
798    }
799  
800    // Compute the cost of a replicate region. Replicating isn't supported for
801    // scalable vectors, return an invalid cost for them.
802    // TODO: Discard scalable VPlans with replicate recipes earlier after
803    // construction.
804    if (VF.isScalable())
805      return InstructionCost::getInvalid();
806  
807    // First compute the cost of the conditionally executed recipes, followed by
808    // account for the branching cost, except if the mask is a header mask or
809    // uniform condition.
810    using namespace llvm::VPlanPatternMatch;
811    VPBasicBlock *Then = cast<VPBasicBlock>(getEntry()->getSuccessors()[0]);
812    InstructionCost ThenCost = Then->cost(VF, Ctx);
813  
814    // For the scalar case, we may not always execute the original predicated
815    // block, Thus, scale the block's cost by the probability of executing it.
816    if (VF.isScalar())
817      return ThenCost / getReciprocalPredBlockProb();
818  
819    return ThenCost;
820  }
821  
822  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
823  void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
824                            VPSlotTracker &SlotTracker) const {
825    O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
826    auto NewIndent = Indent + "  ";
827    for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
828      O << '\n';
829      BlockBase->print(O, NewIndent, SlotTracker);
830    }
831    O << Indent << "}\n";
832  
833    printSuccessors(O, Indent);
834  }
835  #endif
836  
837  VPlan::~VPlan() {
838    for (auto &KV : LiveOuts)
839      delete KV.second;
840    LiveOuts.clear();
841  
842    if (Entry) {
843      VPValue DummyValue;
844      for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
845        Block->dropAllReferences(&DummyValue);
846  
847      VPBlockBase::deleteCFG(Entry);
848  
849      Preheader->dropAllReferences(&DummyValue);
850      delete Preheader;
851    }
852    for (VPValue *VPV : VPLiveInsToFree)
853      delete VPV;
854    if (BackedgeTakenCount)
855      delete BackedgeTakenCount;
856  }
857  
858  VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE,
859                                     bool RequiresScalarEpilogueCheck,
860                                     bool TailFolded, Loop *TheLoop) {
861    VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader());
862    VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
863    auto Plan = std::make_unique<VPlan>(Entry, VecPreheader);
864    Plan->TripCount =
865        vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
866    // Create VPRegionBlock, with empty header and latch blocks, to be filled
867    // during processing later.
868    VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body");
869    VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch");
870    VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB);
871    auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop",
872                                        false /*isReplicator*/);
873  
874    VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
875    VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
876    VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
877  
878    VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph");
879    if (!RequiresScalarEpilogueCheck) {
880      VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
881      return Plan;
882    }
883  
884    // If needed, add a check in the middle block to see if we have completed
885    // all of the iterations in the first vector loop.  Three cases:
886    // 1) If (N - N%VF) == N, then we *don't* need to run the remainder.
887    //    Thus if tail is to be folded, we know we don't need to run the
888    //    remainder and we can set the condition to true.
889    // 2) If we require a scalar epilogue, there is no conditional branch as
890    //    we unconditionally branch to the scalar preheader.  Do nothing.
891    // 3) Otherwise, construct a runtime check.
892    BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock();
893    auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock);
894    // The connection order corresponds to the operands of the conditional branch.
895    VPBlockUtils::insertBlockAfter(VPExitBlock, MiddleVPBB);
896    VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
897  
898    auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator();
899    // Here we use the same DebugLoc as the scalar loop latch terminator instead
900    // of the corresponding compare because they may have ended up with
901    // different line numbers and we want to avoid awkward line stepping while
902    // debugging. Eg. if the compare has got a line number inside the loop.
903    VPBuilder Builder(MiddleVPBB);
904    VPValue *Cmp =
905        TailFolded
906            ? Plan->getOrAddLiveIn(ConstantInt::getTrue(
907                  IntegerType::getInt1Ty(TripCount->getType()->getContext())))
908            : Builder.createICmp(CmpInst::ICMP_EQ, Plan->getTripCount(),
909                                 &Plan->getVectorTripCount(),
910                                 ScalarLatchTerm->getDebugLoc(), "cmp.n");
911    Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp},
912                         ScalarLatchTerm->getDebugLoc());
913    return Plan;
914  }
915  
916  void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
917                               Value *CanonicalIVStartValue,
918                               VPTransformState &State) {
919    // Check if the backedge taken count is needed, and if so build it.
920    if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
921      IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
922      auto *TCMO = Builder.CreateSub(TripCountV,
923                                     ConstantInt::get(TripCountV->getType(), 1),
924                                     "trip.count.minus.1");
925      BackedgeTakenCount->setUnderlyingValue(TCMO);
926    }
927  
928    VectorTripCount.setUnderlyingValue(VectorTripCountV);
929  
930    IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
931    // FIXME: Model VF * UF computation completely in VPlan.
932    VFxUF.setUnderlyingValue(
933        createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF));
934  
935    // When vectorizing the epilogue loop, the canonical induction start value
936    // needs to be changed from zero to the value after the main vector loop.
937    // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
938    if (CanonicalIVStartValue) {
939      VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
940      auto *IV = getCanonicalIV();
941      assert(all_of(IV->users(),
942                    [](const VPUser *U) {
943                      return isa<VPScalarIVStepsRecipe>(U) ||
944                             isa<VPScalarCastRecipe>(U) ||
945                             isa<VPDerivedIVRecipe>(U) ||
946                             cast<VPInstruction>(U)->getOpcode() ==
947                                 Instruction::Add;
948                    }) &&
949             "the canonical IV should only be used by its increment or "
950             "ScalarIVSteps when resetting the start value");
951      IV->setOperand(0, VPV);
952    }
953  }
954  
955  /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p
956  /// VPBB are moved to the newly created VPIRBasicBlock.  VPBB must have a single
957  /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of
958  /// VPBB, if any, are rewired to the new VPIRBasicBlock.
959  static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) {
960    VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB);
961    for (auto &R : make_early_inc_range(*VPBB))
962      R.moveBefore(*IRMiddleVPBB, IRMiddleVPBB->end());
963    VPBlockBase *PredVPBB = VPBB->getSinglePredecessor();
964    VPBlockUtils::disconnectBlocks(PredVPBB, VPBB);
965    VPBlockUtils::connectBlocks(PredVPBB, IRMiddleVPBB);
966    for (auto *Succ : to_vector(VPBB->getSuccessors())) {
967      VPBlockUtils::connectBlocks(IRMiddleVPBB, Succ);
968      VPBlockUtils::disconnectBlocks(VPBB, Succ);
969    }
970    delete VPBB;
971  }
972  
973  /// Generate the code inside the preheader and body of the vectorized loop.
974  /// Assumes a single pre-header basic-block was created for this. Introduce
975  /// additional basic-blocks as needed, and fill them all.
976  void VPlan::execute(VPTransformState *State) {
977    // Initialize CFG state.
978    State->CFG.PrevVPBB = nullptr;
979    State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
980    BasicBlock *VectorPreHeader = State->CFG.PrevBB;
981    State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
982  
983    // Disconnect VectorPreHeader from ExitBB in both the CFG and DT.
984    cast<BranchInst>(VectorPreHeader->getTerminator())->setSuccessor(0, nullptr);
985    State->CFG.DTU.applyUpdates(
986        {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}});
987  
988    // Replace regular VPBB's for the middle and scalar preheader blocks with
989    // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during
990    // skeleton creation, so we can only create the VPIRBasicBlocks now during
991    // VPlan execution rather than earlier during VPlan construction.
992    BasicBlock *MiddleBB = State->CFG.ExitBB;
993    VPBasicBlock *MiddleVPBB =
994        cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
995    // Find the VPBB for the scalar preheader, relying on the current structure
996    // when creating the middle block and its successrs: if there's a single
997    // predecessor, it must be the scalar preheader. Otherwise, the second
998    // successor is the scalar preheader.
999    BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor();
1000    auto &MiddleSuccs = MiddleVPBB->getSuccessors();
1001    assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) &&
1002           "middle block has unexpected successors");
1003    VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>(
1004        MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]);
1005    assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) &&
1006           "scalar preheader cannot be wrapped already");
1007    replaceVPBBWithIRVPBB(ScalarPhVPBB, ScalarPh);
1008    replaceVPBBWithIRVPBB(MiddleVPBB, MiddleBB);
1009  
1010    // Disconnect the middle block from its single successor (the scalar loop
1011    // header) in both the CFG and DT. The branch will be recreated during VPlan
1012    // execution.
1013    auto *BrInst = new UnreachableInst(MiddleBB->getContext());
1014    BrInst->insertBefore(MiddleBB->getTerminator());
1015    MiddleBB->getTerminator()->eraseFromParent();
1016    State->CFG.DTU.applyUpdates({{DominatorTree::Delete, MiddleBB, ScalarPh}});
1017  
1018    // Generate code in the loop pre-header and body.
1019    for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
1020      Block->execute(State);
1021  
1022    VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
1023    BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
1024  
1025    // Fix the latch value of canonical, reduction and first-order recurrences
1026    // phis in the vector loop.
1027    VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
1028    for (VPRecipeBase &R : Header->phis()) {
1029      // Skip phi-like recipes that generate their backedege values themselves.
1030      if (isa<VPWidenPHIRecipe>(&R))
1031        continue;
1032  
1033      if (isa<VPWidenPointerInductionRecipe>(&R) ||
1034          isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1035        PHINode *Phi = nullptr;
1036        if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
1037          Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
1038        } else {
1039          auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
1040          assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
1041                 "recipe generating only scalars should have been replaced");
1042          auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
1043          Phi = cast<PHINode>(GEP->getPointerOperand());
1044        }
1045  
1046        Phi->setIncomingBlock(1, VectorLatchBB);
1047  
1048        // Move the last step to the end of the latch block. This ensures
1049        // consistent placement of all induction updates.
1050        Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
1051        Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
1052        continue;
1053      }
1054  
1055      auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
1056      // For  canonical IV, first-order recurrences and in-order reduction phis,
1057      // only a single part is generated, which provides the last part from the
1058      // previous iteration. For non-ordered reductions all UF parts are
1059      // generated.
1060      bool SinglePartNeeded =
1061          isa<VPCanonicalIVPHIRecipe>(PhiR) ||
1062          isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1063          (isa<VPReductionPHIRecipe>(PhiR) &&
1064           cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
1065      bool NeedsScalar =
1066          isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
1067          (isa<VPReductionPHIRecipe>(PhiR) &&
1068           cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
1069      unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
1070  
1071      for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
1072        Value *Phi = State->get(PhiR, Part, NeedsScalar);
1073        Value *Val =
1074            State->get(PhiR->getBackedgeValue(),
1075                       SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
1076        cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
1077      }
1078    }
1079  
1080    State->CFG.DTU.flush();
1081    assert(State->CFG.DTU.getDomTree().verify(
1082               DominatorTree::VerificationLevel::Fast) &&
1083           "DT not preserved correctly");
1084  }
1085  
1086  InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) {
1087    // For now only return the cost of the vector loop region, ignoring any other
1088    // blocks, like the preheader or middle blocks.
1089    return getVectorLoopRegion()->cost(VF, Ctx);
1090  }
1091  
1092  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1093  void VPlan::printLiveIns(raw_ostream &O) const {
1094    VPSlotTracker SlotTracker(this);
1095  
1096    if (VFxUF.getNumUsers() > 0) {
1097      O << "\nLive-in ";
1098      VFxUF.printAsOperand(O, SlotTracker);
1099      O << " = VF * UF";
1100    }
1101  
1102    if (VectorTripCount.getNumUsers() > 0) {
1103      O << "\nLive-in ";
1104      VectorTripCount.printAsOperand(O, SlotTracker);
1105      O << " = vector-trip-count";
1106    }
1107  
1108    if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
1109      O << "\nLive-in ";
1110      BackedgeTakenCount->printAsOperand(O, SlotTracker);
1111      O << " = backedge-taken count";
1112    }
1113  
1114    O << "\n";
1115    if (TripCount->isLiveIn())
1116      O << "Live-in ";
1117    TripCount->printAsOperand(O, SlotTracker);
1118    O << " = original trip-count";
1119    O << "\n";
1120  }
1121  
1122  LLVM_DUMP_METHOD
1123  void VPlan::print(raw_ostream &O) const {
1124    VPSlotTracker SlotTracker(this);
1125  
1126    O << "VPlan '" << getName() << "' {";
1127  
1128    printLiveIns(O);
1129  
1130    if (!getPreheader()->empty()) {
1131      O << "\n";
1132      getPreheader()->print(O, "", SlotTracker);
1133    }
1134  
1135    for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
1136      O << '\n';
1137      Block->print(O, "", SlotTracker);
1138    }
1139  
1140    if (!LiveOuts.empty())
1141      O << "\n";
1142    for (const auto &KV : LiveOuts) {
1143      KV.second->print(O, SlotTracker);
1144    }
1145  
1146    O << "}\n";
1147  }
1148  
1149  std::string VPlan::getName() const {
1150    std::string Out;
1151    raw_string_ostream RSO(Out);
1152    RSO << Name << " for ";
1153    if (!VFs.empty()) {
1154      RSO << "VF={" << VFs[0];
1155      for (ElementCount VF : drop_begin(VFs))
1156        RSO << "," << VF;
1157      RSO << "},";
1158    }
1159  
1160    if (UFs.empty()) {
1161      RSO << "UF>=1";
1162    } else {
1163      RSO << "UF={" << UFs[0];
1164      for (unsigned UF : drop_begin(UFs))
1165        RSO << "," << UF;
1166      RSO << "}";
1167    }
1168  
1169    return Out;
1170  }
1171  
1172  LLVM_DUMP_METHOD
1173  void VPlan::printDOT(raw_ostream &O) const {
1174    VPlanPrinter Printer(O, *this);
1175    Printer.dump();
1176  }
1177  
1178  LLVM_DUMP_METHOD
1179  void VPlan::dump() const { print(dbgs()); }
1180  #endif
1181  
1182  void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
1183    assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
1184    LiveOuts.insert({PN, new VPLiveOut(PN, V)});
1185  }
1186  
1187  static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
1188                            DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
1189    // Update the operands of all cloned recipes starting at NewEntry. This
1190    // traverses all reachable blocks. This is done in two steps, to handle cycles
1191    // in PHI recipes.
1192    ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1193        OldDeepRPOT(Entry);
1194    ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
1195        NewDeepRPOT(NewEntry);
1196    // First, collect all mappings from old to new VPValues defined by cloned
1197    // recipes.
1198    for (const auto &[OldBB, NewBB] :
1199         zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
1200             VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
1201      assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
1202             "blocks must have the same number of recipes");
1203      for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
1204        assert(OldR.getNumOperands() == NewR.getNumOperands() &&
1205               "recipes must have the same number of operands");
1206        assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
1207               "recipes must define the same number of operands");
1208        for (const auto &[OldV, NewV] :
1209             zip(OldR.definedValues(), NewR.definedValues()))
1210          Old2NewVPValues[OldV] = NewV;
1211      }
1212    }
1213  
1214    // Update all operands to use cloned VPValues.
1215    for (VPBasicBlock *NewBB :
1216         VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
1217      for (VPRecipeBase &NewR : *NewBB)
1218        for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
1219          VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
1220          NewR.setOperand(I, NewOp);
1221        }
1222    }
1223  }
1224  
1225  VPlan *VPlan::duplicate() {
1226    // Clone blocks.
1227    VPBasicBlock *NewPreheader = Preheader->clone();
1228    const auto &[NewEntry, __] = cloneFrom(Entry);
1229  
1230    // Create VPlan, clone live-ins and remap operands in the cloned blocks.
1231    auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
1232    DenseMap<VPValue *, VPValue *> Old2NewVPValues;
1233    for (VPValue *OldLiveIn : VPLiveInsToFree) {
1234      Old2NewVPValues[OldLiveIn] =
1235          NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
1236    }
1237    Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
1238    Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
1239    if (BackedgeTakenCount) {
1240      NewPlan->BackedgeTakenCount = new VPValue();
1241      Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
1242    }
1243    assert(TripCount && "trip count must be set");
1244    if (TripCount->isLiveIn())
1245      Old2NewVPValues[TripCount] =
1246          NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
1247    // else NewTripCount will be created and inserted into Old2NewVPValues when
1248    // TripCount is cloned. In any case NewPlan->TripCount is updated below.
1249  
1250    remapOperands(Preheader, NewPreheader, Old2NewVPValues);
1251    remapOperands(Entry, NewEntry, Old2NewVPValues);
1252  
1253    // Clone live-outs.
1254    for (const auto &[_, LO] : LiveOuts)
1255      NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
1256  
1257    // Initialize remaining fields of cloned VPlan.
1258    NewPlan->VFs = VFs;
1259    NewPlan->UFs = UFs;
1260    // TODO: Adjust names.
1261    NewPlan->Name = Name;
1262    assert(Old2NewVPValues.contains(TripCount) &&
1263           "TripCount must have been added to Old2NewVPValues");
1264    NewPlan->TripCount = Old2NewVPValues[TripCount];
1265    return NewPlan;
1266  }
1267  
1268  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1269  
1270  Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
1271    return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
1272           Twine(getOrCreateBID(Block));
1273  }
1274  
1275  Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
1276    const std::string &Name = Block->getName();
1277    if (!Name.empty())
1278      return Name;
1279    return "VPB" + Twine(getOrCreateBID(Block));
1280  }
1281  
1282  void VPlanPrinter::dump() {
1283    Depth = 1;
1284    bumpIndent(0);
1285    OS << "digraph VPlan {\n";
1286    OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
1287    if (!Plan.getName().empty())
1288      OS << "\\n" << DOT::EscapeString(Plan.getName());
1289  
1290    {
1291      // Print live-ins.
1292    std::string Str;
1293    raw_string_ostream SS(Str);
1294    Plan.printLiveIns(SS);
1295    SmallVector<StringRef, 0> Lines;
1296    StringRef(Str).rtrim('\n').split(Lines, "\n");
1297    for (auto Line : Lines)
1298      OS << DOT::EscapeString(Line.str()) << "\\n";
1299    }
1300  
1301    OS << "\"]\n";
1302    OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
1303    OS << "edge [fontname=Courier, fontsize=30]\n";
1304    OS << "compound=true\n";
1305  
1306    dumpBlock(Plan.getPreheader());
1307  
1308    for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
1309      dumpBlock(Block);
1310  
1311    OS << "}\n";
1312  }
1313  
1314  void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
1315    if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
1316      dumpBasicBlock(BasicBlock);
1317    else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1318      dumpRegion(Region);
1319    else
1320      llvm_unreachable("Unsupported kind of VPBlock.");
1321  }
1322  
1323  void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
1324                              bool Hidden, const Twine &Label) {
1325    // Due to "dot" we print an edge between two regions as an edge between the
1326    // exiting basic block and the entry basic of the respective regions.
1327    const VPBlockBase *Tail = From->getExitingBasicBlock();
1328    const VPBlockBase *Head = To->getEntryBasicBlock();
1329    OS << Indent << getUID(Tail) << " -> " << getUID(Head);
1330    OS << " [ label=\"" << Label << '\"';
1331    if (Tail != From)
1332      OS << " ltail=" << getUID(From);
1333    if (Head != To)
1334      OS << " lhead=" << getUID(To);
1335    if (Hidden)
1336      OS << "; splines=none";
1337    OS << "]\n";
1338  }
1339  
1340  void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
1341    auto &Successors = Block->getSuccessors();
1342    if (Successors.size() == 1)
1343      drawEdge(Block, Successors.front(), false, "");
1344    else if (Successors.size() == 2) {
1345      drawEdge(Block, Successors.front(), false, "T");
1346      drawEdge(Block, Successors.back(), false, "F");
1347    } else {
1348      unsigned SuccessorNumber = 0;
1349      for (auto *Successor : Successors)
1350        drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
1351    }
1352  }
1353  
1354  void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
1355    // Implement dot-formatted dump by performing plain-text dump into the
1356    // temporary storage followed by some post-processing.
1357    OS << Indent << getUID(BasicBlock) << " [label =\n";
1358    bumpIndent(1);
1359    std::string Str;
1360    raw_string_ostream SS(Str);
1361    // Use no indentation as we need to wrap the lines into quotes ourselves.
1362    BasicBlock->print(SS, "", SlotTracker);
1363  
1364    // We need to process each line of the output separately, so split
1365    // single-string plain-text dump.
1366    SmallVector<StringRef, 0> Lines;
1367    StringRef(Str).rtrim('\n').split(Lines, "\n");
1368  
1369    auto EmitLine = [&](StringRef Line, StringRef Suffix) {
1370      OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
1371    };
1372  
1373    // Don't need the "+" after the last line.
1374    for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
1375      EmitLine(Line, " +\n");
1376    EmitLine(Lines.back(), "\n");
1377  
1378    bumpIndent(-1);
1379    OS << Indent << "]\n";
1380  
1381    dumpEdges(BasicBlock);
1382  }
1383  
1384  void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
1385    OS << Indent << "subgraph " << getUID(Region) << " {\n";
1386    bumpIndent(1);
1387    OS << Indent << "fontname=Courier\n"
1388       << Indent << "label=\""
1389       << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
1390       << DOT::EscapeString(Region->getName()) << "\"\n";
1391    // Dump the blocks of the region.
1392    assert(Region->getEntry() && "Region contains no inner blocks.");
1393    for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
1394      dumpBlock(Block);
1395    bumpIndent(-1);
1396    OS << Indent << "}\n";
1397    dumpEdges(Region);
1398  }
1399  
1400  void VPlanIngredient::print(raw_ostream &O) const {
1401    if (auto *Inst = dyn_cast<Instruction>(V)) {
1402      if (!Inst->getType()->isVoidTy()) {
1403        Inst->printAsOperand(O, false);
1404        O << " = ";
1405      }
1406      O << Inst->getOpcodeName() << " ";
1407      unsigned E = Inst->getNumOperands();
1408      if (E > 0) {
1409        Inst->getOperand(0)->printAsOperand(O, false);
1410        for (unsigned I = 1; I < E; ++I)
1411          Inst->getOperand(I)->printAsOperand(O << ", ", false);
1412      }
1413    } else // !Inst
1414      V->printAsOperand(O, false);
1415  }
1416  
1417  #endif
1418  
1419  template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1420  
1421  void VPValue::replaceAllUsesWith(VPValue *New) {
1422    replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
1423  }
1424  
1425  void VPValue::replaceUsesWithIf(
1426      VPValue *New,
1427      llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
1428    // Note that this early exit is required for correctness; the implementation
1429    // below relies on the number of users for this VPValue to decrease, which
1430    // isn't the case if this == New.
1431    if (this == New)
1432      return;
1433  
1434    for (unsigned J = 0; J < getNumUsers();) {
1435      VPUser *User = Users[J];
1436      bool RemovedUser = false;
1437      for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
1438        if (User->getOperand(I) != this || !ShouldReplace(*User, I))
1439          continue;
1440  
1441        RemovedUser = true;
1442        User->setOperand(I, New);
1443      }
1444      // If a user got removed after updating the current user, the next user to
1445      // update will be moved to the current position, so we only need to
1446      // increment the index if the number of users did not change.
1447      if (!RemovedUser)
1448        J++;
1449    }
1450  }
1451  
1452  #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1453  void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1454    OS << Tracker.getOrCreateName(this);
1455  }
1456  
1457  void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1458    interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1459      Op->printAsOperand(O, SlotTracker);
1460    });
1461  }
1462  #endif
1463  
1464  void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1465                                            Old2NewTy &Old2New,
1466                                            InterleavedAccessInfo &IAI) {
1467    ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1468        RPOT(Region->getEntry());
1469    for (VPBlockBase *Base : RPOT) {
1470      visitBlock(Base, Old2New, IAI);
1471    }
1472  }
1473  
1474  void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1475                                           InterleavedAccessInfo &IAI) {
1476    if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1477      for (VPRecipeBase &VPI : *VPBB) {
1478        if (isa<VPWidenPHIRecipe>(&VPI))
1479          continue;
1480        assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1481        auto *VPInst = cast<VPInstruction>(&VPI);
1482  
1483        auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1484        if (!Inst)
1485          continue;
1486        auto *IG = IAI.getInterleaveGroup(Inst);
1487        if (!IG)
1488          continue;
1489  
1490        auto NewIGIter = Old2New.find(IG);
1491        if (NewIGIter == Old2New.end())
1492          Old2New[IG] = new InterleaveGroup<VPInstruction>(
1493              IG->getFactor(), IG->isReverse(), IG->getAlign());
1494  
1495        if (Inst == IG->getInsertPos())
1496          Old2New[IG]->setInsertPos(VPInst);
1497  
1498        InterleaveGroupMap[VPInst] = Old2New[IG];
1499        InterleaveGroupMap[VPInst]->insertMember(
1500            VPInst, IG->getIndex(Inst),
1501            Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1502                                  : IG->getFactor()));
1503      }
1504    } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1505      visitRegion(Region, Old2New, IAI);
1506    else
1507      llvm_unreachable("Unsupported kind of VPBlock.");
1508  }
1509  
1510  VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1511                                                   InterleavedAccessInfo &IAI) {
1512    Old2NewTy Old2New;
1513    visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1514  }
1515  
1516  void VPSlotTracker::assignName(const VPValue *V) {
1517    assert(!VPValue2Name.contains(V) && "VPValue already has a name!");
1518    auto *UV = V->getUnderlyingValue();
1519    if (!UV) {
1520      VPValue2Name[V] = (Twine("vp<%") + Twine(NextSlot) + ">").str();
1521      NextSlot++;
1522      return;
1523    }
1524  
1525    // Use the name of the underlying Value, wrapped in "ir<>", and versioned by
1526    // appending ".Number" to the name if there are multiple uses.
1527    std::string Name;
1528    raw_string_ostream S(Name);
1529    UV->printAsOperand(S, false);
1530    assert(!Name.empty() && "Name cannot be empty.");
1531    std::string BaseName = (Twine("ir<") + Name + Twine(">")).str();
1532  
1533    // First assign the base name for V.
1534    const auto &[A, _] = VPValue2Name.insert({V, BaseName});
1535    // Integer or FP constants with different types will result in he same string
1536    // due to stripping types.
1537    if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(UV))
1538      return;
1539  
1540    // If it is already used by C > 0 other VPValues, increase the version counter
1541    // C and use it for V.
1542    const auto &[C, UseInserted] = BaseName2Version.insert({BaseName, 0});
1543    if (!UseInserted) {
1544      C->second++;
1545      A->second = (BaseName + Twine(".") + Twine(C->second)).str();
1546    }
1547  }
1548  
1549  void VPSlotTracker::assignNames(const VPlan &Plan) {
1550    if (Plan.VFxUF.getNumUsers() > 0)
1551      assignName(&Plan.VFxUF);
1552    assignName(&Plan.VectorTripCount);
1553    if (Plan.BackedgeTakenCount)
1554      assignName(Plan.BackedgeTakenCount);
1555    for (VPValue *LI : Plan.VPLiveInsToFree)
1556      assignName(LI);
1557    assignNames(Plan.getPreheader());
1558  
1559    ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1560        RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1561    for (const VPBasicBlock *VPBB :
1562         VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1563      assignNames(VPBB);
1564  }
1565  
1566  void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) {
1567    for (const VPRecipeBase &Recipe : *VPBB)
1568      for (VPValue *Def : Recipe.definedValues())
1569        assignName(Def);
1570  }
1571  
1572  std::string VPSlotTracker::getOrCreateName(const VPValue *V) const {
1573    std::string Name = VPValue2Name.lookup(V);
1574    if (!Name.empty())
1575      return Name;
1576  
1577    // If no name was assigned, no VPlan was provided when creating the slot
1578    // tracker or it is not reachable from the provided VPlan. This can happen,
1579    // e.g. when trying to print a recipe that has not been inserted into a VPlan
1580    // in a debugger.
1581    // TODO: Update VPSlotTracker constructor to assign names to recipes &
1582    // VPValues not associated with a VPlan, instead of constructing names ad-hoc
1583    // here.
1584    const VPRecipeBase *DefR = V->getDefiningRecipe();
1585    (void)DefR;
1586    assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) &&
1587           "VPValue defined by a recipe in a VPlan?");
1588  
1589    // Use the underlying value's name, if there is one.
1590    if (auto *UV = V->getUnderlyingValue()) {
1591      std::string Name;
1592      raw_string_ostream S(Name);
1593      UV->printAsOperand(S, false);
1594      return (Twine("ir<") + Name + ">").str();
1595    }
1596  
1597    return "<badref>";
1598  }
1599  
1600  bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
1601    return all_of(Def->users(),
1602                  [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1603  }
1604  
1605  bool vputils::onlyFirstPartUsed(const VPValue *Def) {
1606    return all_of(Def->users(),
1607                  [Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
1608  }
1609  
1610  VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1611                                                  ScalarEvolution &SE) {
1612    if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1613      return Expanded;
1614    VPValue *Expanded = nullptr;
1615    if (auto *E = dyn_cast<SCEVConstant>(Expr))
1616      Expanded = Plan.getOrAddLiveIn(E->getValue());
1617    else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1618      Expanded = Plan.getOrAddLiveIn(E->getValue());
1619    else {
1620      Expanded = new VPExpandSCEVRecipe(Expr, SE);
1621      Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1622    }
1623    Plan.addSCEVExpansion(Expr, Expanded);
1624    return Expanded;
1625  }
1626  
1627  bool vputils::isHeaderMask(VPValue *V, VPlan &Plan) {
1628    if (isa<VPActiveLaneMaskPHIRecipe>(V))
1629      return true;
1630  
1631    auto IsWideCanonicalIV = [](VPValue *A) {
1632      return isa<VPWidenCanonicalIVRecipe>(A) ||
1633             (isa<VPWidenIntOrFpInductionRecipe>(A) &&
1634              cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
1635    };
1636  
1637    VPValue *A, *B;
1638    if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
1639      return B == Plan.getTripCount() &&
1640             (match(A, m_ScalarIVSteps(m_CanonicalIV(), m_SpecificInt(1))) ||
1641              IsWideCanonicalIV(A));
1642  
1643    return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
1644           IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
1645  }
1646