xref: /freebsd/contrib/llvm-project/llvm/lib/Transforms/Vectorize/VPlan.cpp (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This is the LLVM vectorization plan. It represents a candidate for
11 /// vectorization, allowing to plan and optimize how to vectorize a given loop
12 /// before generating LLVM-IR.
13 /// The vectorizer uses vectorization plans to estimate the costs of potential
14 /// candidates and if profitable to execute the desired plan, generating vector
15 /// LLVM-IR code.
16 ///
17 //===----------------------------------------------------------------------===//
18 
19 #include "VPlan.h"
20 #include "VPlanCFG.h"
21 #include "VPlanDominatorTree.h"
22 #include "llvm/ADT/DepthFirstIterator.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/GenericDomTreeConstruction.h"
40 #include "llvm/Support/GraphWriter.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/Transforms/Utils/LoopVersioning.h"
44 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
45 #include <cassert>
46 #include <string>
47 #include <vector>
48 
49 using namespace llvm;
50 
51 namespace llvm {
52 extern cl::opt<bool> EnableVPlanNativePath;
53 }
54 
55 #define DEBUG_TYPE "vplan"
56 
57 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
58 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
59   const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
60   VPSlotTracker SlotTracker(
61       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
62   V.print(OS, SlotTracker);
63   return OS;
64 }
65 #endif
66 
67 Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
68                                 const ElementCount &VF) const {
69   switch (LaneKind) {
70   case VPLane::Kind::ScalableLast:
71     // Lane = RuntimeVF - VF.getKnownMinValue() + Lane
72     return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
73                              Builder.getInt32(VF.getKnownMinValue() - Lane));
74   case VPLane::Kind::First:
75     return Builder.getInt32(Lane);
76   }
77   llvm_unreachable("Unknown lane kind");
78 }
79 
80 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
81     : SubclassID(SC), UnderlyingVal(UV), Def(Def) {
82   if (Def)
83     Def->addDefinedValue(this);
84 }
85 
86 VPValue::~VPValue() {
87   assert(Users.empty() && "trying to delete a VPValue with remaining users");
88   if (Def)
89     Def->removeDefinedValue(this);
90 }
91 
92 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
93 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
94   if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
95     R->print(OS, "", SlotTracker);
96   else
97     printAsOperand(OS, SlotTracker);
98 }
99 
100 void VPValue::dump() const {
101   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
102   VPSlotTracker SlotTracker(
103       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
104   print(dbgs(), SlotTracker);
105   dbgs() << "\n";
106 }
107 
108 void VPDef::dump() const {
109   const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
110   VPSlotTracker SlotTracker(
111       (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
112   print(dbgs(), "", SlotTracker);
113   dbgs() << "\n";
114 }
115 #endif
116 
117 VPRecipeBase *VPValue::getDefiningRecipe() {
118   return cast_or_null<VPRecipeBase>(Def);
119 }
120 
121 const VPRecipeBase *VPValue::getDefiningRecipe() const {
122   return cast_or_null<VPRecipeBase>(Def);
123 }
124 
125 // Get the top-most entry block of \p Start. This is the entry block of the
126 // containing VPlan. This function is templated to support both const and non-const blocks
127 template <typename T> static T *getPlanEntry(T *Start) {
128   T *Next = Start;
129   T *Current = Start;
130   while ((Next = Next->getParent()))
131     Current = Next;
132 
133   SmallSetVector<T *, 8> WorkList;
134   WorkList.insert(Current);
135 
136   for (unsigned i = 0; i < WorkList.size(); i++) {
137     T *Current = WorkList[i];
138     if (Current->getNumPredecessors() == 0)
139       return Current;
140     auto &Predecessors = Current->getPredecessors();
141     WorkList.insert(Predecessors.begin(), Predecessors.end());
142   }
143 
144   llvm_unreachable("VPlan without any entry node without predecessors");
145 }
146 
147 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
148 
149 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
150 
151 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
152 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
153   const VPBlockBase *Block = this;
154   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
155     Block = Region->getEntry();
156   return cast<VPBasicBlock>(Block);
157 }
158 
159 VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
160   VPBlockBase *Block = this;
161   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
162     Block = Region->getEntry();
163   return cast<VPBasicBlock>(Block);
164 }
165 
166 void VPBlockBase::setPlan(VPlan *ParentPlan) {
167   assert(
168       (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
169       "Can only set plan on its entry or preheader block.");
170   Plan = ParentPlan;
171 }
172 
173 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
174 const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
175   const VPBlockBase *Block = this;
176   while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
177     Block = Region->getExiting();
178   return cast<VPBasicBlock>(Block);
179 }
180 
181 VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
182   VPBlockBase *Block = this;
183   while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
184     Block = Region->getExiting();
185   return cast<VPBasicBlock>(Block);
186 }
187 
188 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
189   if (!Successors.empty() || !Parent)
190     return this;
191   assert(Parent->getExiting() == this &&
192          "Block w/o successors not the exiting block of its parent.");
193   return Parent->getEnclosingBlockWithSuccessors();
194 }
195 
196 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
197   if (!Predecessors.empty() || !Parent)
198     return this;
199   assert(Parent->getEntry() == this &&
200          "Block w/o predecessors not the entry of its parent.");
201   return Parent->getEnclosingBlockWithPredecessors();
202 }
203 
204 void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
205   for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
206     delete Block;
207 }
208 
209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
210   iterator It = begin();
211   while (It != end() && It->isPhi())
212     It++;
213   return It;
214 }
215 
216 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
217   if (Def->isLiveIn())
218     return Def->getLiveInIRValue();
219 
220   if (hasScalarValue(Def, Instance)) {
221     return Data
222         .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
223   }
224 
225   assert(hasVectorValue(Def, Instance.Part));
226   auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
227   if (!VecPart->getType()->isVectorTy()) {
228     assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
229     return VecPart;
230   }
231   // TODO: Cache created scalar values.
232   Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
233   auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
234   // set(Def, Extract, Instance);
235   return Extract;
236 }
237 BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
238   VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
239   return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
240 }
241 
242 void VPTransformState::addNewMetadata(Instruction *To,
243                                       const Instruction *Orig) {
244   // If the loop was versioned with memchecks, add the corresponding no-alias
245   // metadata.
246   if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
247     LVer->annotateInstWithNoAlias(To, Orig);
248 }
249 
250 void VPTransformState::addMetadata(Instruction *To, Instruction *From) {
251   // No source instruction to transfer metadata from?
252   if (!From)
253     return;
254 
255   propagateMetadata(To, From);
256   addNewMetadata(To, From);
257 }
258 
259 void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) {
260   // No source instruction to transfer metadata from?
261   if (!From)
262     return;
263 
264   for (Value *V : To) {
265     if (Instruction *I = dyn_cast<Instruction>(V))
266       addMetadata(I, From);
267   }
268 }
269 
270 void VPTransformState::setDebugLocFromInst(const Value *V) {
271   const Instruction *Inst = dyn_cast<Instruction>(V);
272   if (!Inst) {
273     Builder.SetCurrentDebugLocation(DebugLoc());
274     return;
275   }
276 
277   const DILocation *DIL = Inst->getDebugLoc();
278   // When a FSDiscriminator is enabled, we don't need to add the multiply
279   // factors to the discriminators.
280   if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() &&
281       !Inst->isDebugOrPseudoInst() && !EnableFSDiscriminator) {
282     // FIXME: For scalable vectors, assume vscale=1.
283     auto NewDIL =
284         DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
285     if (NewDIL)
286       Builder.SetCurrentDebugLocation(*NewDIL);
287     else
288       LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
289                         << DIL->getFilename() << " Line: " << DIL->getLine());
290   } else
291     Builder.SetCurrentDebugLocation(DIL);
292 }
293 
294 BasicBlock *
295 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
296   // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
297   // Pred stands for Predessor. Prev stands for Previous - last visited/created.
298   BasicBlock *PrevBB = CFG.PrevBB;
299   BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
300                                          PrevBB->getParent(), CFG.ExitBB);
301   LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
302 
303   // Hook up the new basic block to its predecessors.
304   for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
305     VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
306     auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
307     BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
308 
309     assert(PredBB && "Predecessor basic-block not found building successor.");
310     auto *PredBBTerminator = PredBB->getTerminator();
311     LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
312 
313     auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
314     if (isa<UnreachableInst>(PredBBTerminator)) {
315       assert(PredVPSuccessors.size() == 1 &&
316              "Predecessor ending w/o branch must have single successor.");
317       DebugLoc DL = PredBBTerminator->getDebugLoc();
318       PredBBTerminator->eraseFromParent();
319       auto *Br = BranchInst::Create(NewBB, PredBB);
320       Br->setDebugLoc(DL);
321     } else if (TermBr && !TermBr->isConditional()) {
322       TermBr->setSuccessor(0, NewBB);
323     } else {
324       // Set each forward successor here when it is created, excluding
325       // backedges. A backward successor is set when the branch is created.
326       unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
327       assert(!TermBr->getSuccessor(idx) &&
328              "Trying to reset an existing successor block.");
329       TermBr->setSuccessor(idx, NewBB);
330     }
331   }
332   return NewBB;
333 }
334 
335 void VPBasicBlock::execute(VPTransformState *State) {
336   bool Replica = State->Instance && !State->Instance->isFirstIteration();
337   VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
338   VPBlockBase *SingleHPred = nullptr;
339   BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
340 
341   auto IsLoopRegion = [](VPBlockBase *BB) {
342     auto *R = dyn_cast<VPRegionBlock>(BB);
343     return R && !R->isReplicator();
344   };
345 
346   // 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
347   if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
348     // ExitBB can be re-used for the exit block of the Plan.
349     NewBB = State->CFG.ExitBB;
350     State->CFG.PrevBB = NewBB;
351 
352     // Update the branch instruction in the predecessor to branch to ExitBB.
353     VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
354     VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
355     assert(PredVPB->getSingleSuccessor() == this &&
356            "predecessor must have the current block as only successor");
357     BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
358     // The Exit block of a loop is always set to be successor 0 of the Exiting
359     // block.
360     cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
361   } else if (PrevVPBB && /* A */
362              !((SingleHPred = getSingleHierarchicalPredecessor()) &&
363                SingleHPred->getExitingBasicBlock() == PrevVPBB &&
364                PrevVPBB->getSingleHierarchicalSuccessor() &&
365                (SingleHPred->getParent() == getEnclosingLoopRegion() &&
366                 !IsLoopRegion(SingleHPred))) &&         /* B */
367              !(Replica && getPredecessors().empty())) { /* C */
368     // The last IR basic block is reused, as an optimization, in three cases:
369     // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
370     // B. when the current VPBB has a single (hierarchical) predecessor which
371     //    is PrevVPBB and the latter has a single (hierarchical) successor which
372     //    both are in the same non-replicator region; and
373     // C. when the current VPBB is an entry of a region replica - where PrevVPBB
374     //    is the exiting VPBB of this region from a previous instance, or the
375     //    predecessor of this region.
376 
377     NewBB = createEmptyBasicBlock(State->CFG);
378     State->Builder.SetInsertPoint(NewBB);
379     // Temporarily terminate with unreachable until CFG is rewired.
380     UnreachableInst *Terminator = State->Builder.CreateUnreachable();
381     // Register NewBB in its loop. In innermost loops its the same for all
382     // BB's.
383     if (State->CurrentVectorLoop)
384       State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
385     State->Builder.SetInsertPoint(Terminator);
386     State->CFG.PrevBB = NewBB;
387   }
388 
389   // 2. Fill the IR basic block with IR instructions.
390   LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
391                     << " in BB:" << NewBB->getName() << '\n');
392 
393   State->CFG.VPBB2IRBB[this] = NewBB;
394   State->CFG.PrevVPBB = this;
395 
396   for (VPRecipeBase &Recipe : Recipes)
397     Recipe.execute(*State);
398 
399   LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
400 }
401 
402 void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
403   for (VPRecipeBase &R : Recipes) {
404     for (auto *Def : R.definedValues())
405       Def->replaceAllUsesWith(NewValue);
406 
407     for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
408       R.setOperand(I, NewValue);
409   }
410 }
411 
412 VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
413   assert((SplitAt == end() || SplitAt->getParent() == this) &&
414          "can only split at a position in the same block");
415 
416   SmallVector<VPBlockBase *, 2> Succs(successors());
417   // First, disconnect the current block from its successors.
418   for (VPBlockBase *Succ : Succs)
419     VPBlockUtils::disconnectBlocks(this, Succ);
420 
421   // Create new empty block after the block to split.
422   auto *SplitBlock = new VPBasicBlock(getName() + ".split");
423   VPBlockUtils::insertBlockAfter(SplitBlock, this);
424 
425   // Add successors for block to split to new block.
426   for (VPBlockBase *Succ : Succs)
427     VPBlockUtils::connectBlocks(SplitBlock, Succ);
428 
429   // Finally, move the recipes starting at SplitAt to new block.
430   for (VPRecipeBase &ToMove :
431        make_early_inc_range(make_range(SplitAt, this->end())))
432     ToMove.moveBefore(*SplitBlock, SplitBlock->end());
433 
434   return SplitBlock;
435 }
436 
437 VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
438   VPRegionBlock *P = getParent();
439   if (P && P->isReplicator()) {
440     P = P->getParent();
441     assert(!cast<VPRegionBlock>(P)->isReplicator() &&
442            "unexpected nested replicate regions");
443   }
444   return P;
445 }
446 
447 static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
448   if (VPBB->empty()) {
449     assert(
450         VPBB->getNumSuccessors() < 2 &&
451         "block with multiple successors doesn't have a recipe as terminator");
452     return false;
453   }
454 
455   const VPRecipeBase *R = &VPBB->back();
456   auto *VPI = dyn_cast<VPInstruction>(R);
457   bool IsCondBranch =
458       isa<VPBranchOnMaskRecipe>(R) ||
459       (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond ||
460                VPI->getOpcode() == VPInstruction::BranchOnCount));
461   (void)IsCondBranch;
462 
463   if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) {
464     assert(IsCondBranch && "block with multiple successors not terminated by "
465                            "conditional branch recipe");
466 
467     return true;
468   }
469 
470   assert(
471       !IsCondBranch &&
472       "block with 0 or 1 successors terminated by conditional branch recipe");
473   return false;
474 }
475 
476 VPRecipeBase *VPBasicBlock::getTerminator() {
477   if (hasConditionalTerminator(this))
478     return &back();
479   return nullptr;
480 }
481 
482 const VPRecipeBase *VPBasicBlock::getTerminator() const {
483   if (hasConditionalTerminator(this))
484     return &back();
485   return nullptr;
486 }
487 
488 bool VPBasicBlock::isExiting() const {
489   return getParent()->getExitingBasicBlock() == this;
490 }
491 
492 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
493 void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
494   if (getSuccessors().empty()) {
495     O << Indent << "No successors\n";
496   } else {
497     O << Indent << "Successor(s): ";
498     ListSeparator LS;
499     for (auto *Succ : getSuccessors())
500       O << LS << Succ->getName();
501     O << '\n';
502   }
503 }
504 
505 void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
506                          VPSlotTracker &SlotTracker) const {
507   O << Indent << getName() << ":\n";
508 
509   auto RecipeIndent = Indent + "  ";
510   for (const VPRecipeBase &Recipe : *this) {
511     Recipe.print(O, RecipeIndent, SlotTracker);
512     O << '\n';
513   }
514 
515   printSuccessors(O, Indent);
516 }
517 #endif
518 
519 void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
520   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
521     // Drop all references in VPBasicBlocks and replace all uses with
522     // DummyValue.
523     Block->dropAllReferences(NewValue);
524 }
525 
526 void VPRegionBlock::execute(VPTransformState *State) {
527   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
528       RPOT(Entry);
529 
530   if (!isReplicator()) {
531     // Create and register the new vector loop.
532     Loop *PrevLoop = State->CurrentVectorLoop;
533     State->CurrentVectorLoop = State->LI->AllocateLoop();
534     BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
535     Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
536 
537     // Insert the new loop into the loop nest and register the new basic blocks
538     // before calling any utilities such as SCEV that require valid LoopInfo.
539     if (ParentLoop)
540       ParentLoop->addChildLoop(State->CurrentVectorLoop);
541     else
542       State->LI->addTopLevelLoop(State->CurrentVectorLoop);
543 
544     // Visit the VPBlocks connected to "this", starting from it.
545     for (VPBlockBase *Block : RPOT) {
546       LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
547       Block->execute(State);
548     }
549 
550     State->CurrentVectorLoop = PrevLoop;
551     return;
552   }
553 
554   assert(!State->Instance && "Replicating a Region with non-null instance.");
555 
556   // Enter replicating mode.
557   State->Instance = VPIteration(0, 0);
558 
559   for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
560     State->Instance->Part = Part;
561     assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
562     for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
563          ++Lane) {
564       State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
565       // Visit the VPBlocks connected to \p this, starting from it.
566       for (VPBlockBase *Block : RPOT) {
567         LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
568         Block->execute(State);
569       }
570     }
571   }
572 
573   // Exit replicating mode.
574   State->Instance.reset();
575 }
576 
577 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
578 void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
579                           VPSlotTracker &SlotTracker) const {
580   O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
581   auto NewIndent = Indent + "  ";
582   for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
583     O << '\n';
584     BlockBase->print(O, NewIndent, SlotTracker);
585   }
586   O << Indent << "}\n";
587 
588   printSuccessors(O, Indent);
589 }
590 #endif
591 
592 VPlan::~VPlan() {
593   for (auto &KV : LiveOuts)
594     delete KV.second;
595   LiveOuts.clear();
596 
597   if (Entry) {
598     VPValue DummyValue;
599     for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
600       Block->dropAllReferences(&DummyValue);
601 
602     VPBlockBase::deleteCFG(Entry);
603 
604     Preheader->dropAllReferences(&DummyValue);
605     delete Preheader;
606   }
607   for (VPValue *VPV : VPLiveInsToFree)
608     delete VPV;
609   if (BackedgeTakenCount)
610     delete BackedgeTakenCount;
611 }
612 
613 VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
614   VPBasicBlock *Preheader = new VPBasicBlock("ph");
615   VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
616   auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
617   Plan->TripCount =
618       vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
619   return Plan;
620 }
621 
622 VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() {
623   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
624   for (VPRecipeBase &R : Header->phis()) {
625     if (isa<VPActiveLaneMaskPHIRecipe>(&R))
626       return cast<VPActiveLaneMaskPHIRecipe>(&R);
627   }
628   return nullptr;
629 }
630 
631 void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
632                              Value *CanonicalIVStartValue,
633                              VPTransformState &State,
634                              bool IsEpilogueVectorization) {
635   // Check if the backedge taken count is needed, and if so build it.
636   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
637     IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
638     auto *TCMO = Builder.CreateSub(TripCountV,
639                                    ConstantInt::get(TripCountV->getType(), 1),
640                                    "trip.count.minus.1");
641     auto VF = State.VF;
642     Value *VTCMO =
643         VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast");
644     for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
645       State.set(BackedgeTakenCount, VTCMO, Part);
646   }
647 
648   for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part)
649     State.set(&VectorTripCount, VectorTripCountV, Part);
650 
651   // When vectorizing the epilogue loop, the canonical induction start value
652   // needs to be changed from zero to the value after the main vector loop.
653   // FIXME: Improve modeling for canonical IV start values in the epilogue loop.
654   if (CanonicalIVStartValue) {
655     VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue);
656     auto *IV = getCanonicalIV();
657     assert(all_of(IV->users(),
658                   [](const VPUser *U) {
659                     if (isa<VPScalarIVStepsRecipe>(U) ||
660                         isa<VPDerivedIVRecipe>(U))
661                       return true;
662                     auto *VPI = cast<VPInstruction>(U);
663                     return VPI->getOpcode() ==
664                                VPInstruction::CanonicalIVIncrement ||
665                            VPI->getOpcode() ==
666                                VPInstruction::CanonicalIVIncrementNUW;
667                   }) &&
668            "the canonical IV should only be used by its increments or "
669            "ScalarIVSteps when resetting the start value");
670     IV->setOperand(0, VPV);
671   }
672 }
673 
674 /// Generate the code inside the preheader and body of the vectorized loop.
675 /// Assumes a single pre-header basic-block was created for this. Introduce
676 /// additional basic-blocks as needed, and fill them all.
677 void VPlan::execute(VPTransformState *State) {
678   // Set the reverse mapping from VPValues to Values for code generation.
679   for (auto &Entry : Value2VPValue)
680     State->VPValue2Value[Entry.second] = Entry.first;
681 
682   // Initialize CFG state.
683   State->CFG.PrevVPBB = nullptr;
684   State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
685   BasicBlock *VectorPreHeader = State->CFG.PrevBB;
686   State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
687 
688   // Generate code in the loop pre-header and body.
689   for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
690     Block->execute(State);
691 
692   VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
693   BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
694 
695   // Fix the latch value of canonical, reduction and first-order recurrences
696   // phis in the vector loop.
697   VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
698   for (VPRecipeBase &R : Header->phis()) {
699     // Skip phi-like recipes that generate their backedege values themselves.
700     if (isa<VPWidenPHIRecipe>(&R))
701       continue;
702 
703     if (isa<VPWidenPointerInductionRecipe>(&R) ||
704         isa<VPWidenIntOrFpInductionRecipe>(&R)) {
705       PHINode *Phi = nullptr;
706       if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
707         Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
708       } else {
709         auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
710         // TODO: Split off the case that all users of a pointer phi are scalar
711         // from the VPWidenPointerInductionRecipe.
712         if (WidenPhi->onlyScalarsGenerated(State->VF))
713           continue;
714 
715         auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
716         Phi = cast<PHINode>(GEP->getPointerOperand());
717       }
718 
719       Phi->setIncomingBlock(1, VectorLatchBB);
720 
721       // Move the last step to the end of the latch block. This ensures
722       // consistent placement of all induction updates.
723       Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
724       Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
725       continue;
726     }
727 
728     auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
729     // For  canonical IV, first-order recurrences and in-order reduction phis,
730     // only a single part is generated, which provides the last part from the
731     // previous iteration. For non-ordered reductions all UF parts are
732     // generated.
733     bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) ||
734                             isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) ||
735                             (isa<VPReductionPHIRecipe>(PhiR) &&
736                              cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
737     unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
738 
739     for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
740       Value *Phi = State->get(PhiR, Part);
741       Value *Val = State->get(PhiR->getBackedgeValue(),
742                               SinglePartNeeded ? State->UF - 1 : Part);
743       cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
744     }
745   }
746 
747   // We do not attempt to preserve DT for outer loop vectorization currently.
748   if (!EnableVPlanNativePath) {
749     BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
750     State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
751     updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
752                         State->CFG.ExitBB);
753   }
754 }
755 
756 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
757 LLVM_DUMP_METHOD
758 void VPlan::print(raw_ostream &O) const {
759   VPSlotTracker SlotTracker(this);
760 
761   O << "VPlan '" << getName() << "' {";
762 
763   if (VectorTripCount.getNumUsers() > 0) {
764     O << "\nLive-in ";
765     VectorTripCount.printAsOperand(O, SlotTracker);
766     O << " = vector-trip-count";
767   }
768 
769   if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
770     O << "\nLive-in ";
771     BackedgeTakenCount->printAsOperand(O, SlotTracker);
772     O << " = backedge-taken count";
773   }
774 
775   O << "\n";
776   if (TripCount->isLiveIn())
777     O << "Live-in ";
778   TripCount->printAsOperand(O, SlotTracker);
779   O << " = original trip-count";
780   O << "\n";
781 
782   if (!getPreheader()->empty()) {
783     O << "\n";
784     getPreheader()->print(O, "", SlotTracker);
785   }
786 
787   for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
788     O << '\n';
789     Block->print(O, "", SlotTracker);
790   }
791 
792   if (!LiveOuts.empty())
793     O << "\n";
794   for (const auto &KV : LiveOuts) {
795     KV.second->print(O, SlotTracker);
796   }
797 
798   O << "}\n";
799 }
800 
801 std::string VPlan::getName() const {
802   std::string Out;
803   raw_string_ostream RSO(Out);
804   RSO << Name << " for ";
805   if (!VFs.empty()) {
806     RSO << "VF={" << VFs[0];
807     for (ElementCount VF : drop_begin(VFs))
808       RSO << "," << VF;
809     RSO << "},";
810   }
811 
812   if (UFs.empty()) {
813     RSO << "UF>=1";
814   } else {
815     RSO << "UF={" << UFs[0];
816     for (unsigned UF : drop_begin(UFs))
817       RSO << "," << UF;
818     RSO << "}";
819   }
820 
821   return Out;
822 }
823 
824 LLVM_DUMP_METHOD
825 void VPlan::printDOT(raw_ostream &O) const {
826   VPlanPrinter Printer(O, *this);
827   Printer.dump();
828 }
829 
830 LLVM_DUMP_METHOD
831 void VPlan::dump() const { print(dbgs()); }
832 #endif
833 
834 void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
835   assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
836   LiveOuts.insert({PN, new VPLiveOut(PN, V)});
837 }
838 
839 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
840                                 BasicBlock *LoopLatchBB,
841                                 BasicBlock *LoopExitBB) {
842   // The vector body may be more than a single basic-block by this point.
843   // Update the dominator tree information inside the vector body by propagating
844   // it from header to latch, expecting only triangular control-flow, if any.
845   BasicBlock *PostDomSucc = nullptr;
846   for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
847     // Get the list of successors of this block.
848     std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
849     assert(Succs.size() <= 2 &&
850            "Basic block in vector loop has more than 2 successors.");
851     PostDomSucc = Succs[0];
852     if (Succs.size() == 1) {
853       assert(PostDomSucc->getSinglePredecessor() &&
854              "PostDom successor has more than one predecessor.");
855       DT->addNewBlock(PostDomSucc, BB);
856       continue;
857     }
858     BasicBlock *InterimSucc = Succs[1];
859     if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
860       PostDomSucc = Succs[1];
861       InterimSucc = Succs[0];
862     }
863     assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
864            "One successor of a basic block does not lead to the other.");
865     assert(InterimSucc->getSinglePredecessor() &&
866            "Interim successor has more than one predecessor.");
867     assert(PostDomSucc->hasNPredecessors(2) &&
868            "PostDom successor has more than two predecessors.");
869     DT->addNewBlock(InterimSucc, BB);
870     DT->addNewBlock(PostDomSucc, BB);
871   }
872   // Latch block is a new dominator for the loop exit.
873   DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
874   assert(DT->verify(DominatorTree::VerificationLevel::Fast));
875 }
876 
877 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
878 
879 Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
880   return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
881          Twine(getOrCreateBID(Block));
882 }
883 
884 Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
885   const std::string &Name = Block->getName();
886   if (!Name.empty())
887     return Name;
888   return "VPB" + Twine(getOrCreateBID(Block));
889 }
890 
891 void VPlanPrinter::dump() {
892   Depth = 1;
893   bumpIndent(0);
894   OS << "digraph VPlan {\n";
895   OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
896   if (!Plan.getName().empty())
897     OS << "\\n" << DOT::EscapeString(Plan.getName());
898   if (Plan.BackedgeTakenCount) {
899     OS << ", where:\\n";
900     Plan.BackedgeTakenCount->print(OS, SlotTracker);
901     OS << " := BackedgeTakenCount";
902   }
903   OS << "\"]\n";
904   OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
905   OS << "edge [fontname=Courier, fontsize=30]\n";
906   OS << "compound=true\n";
907 
908   dumpBlock(Plan.getPreheader());
909 
910   for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
911     dumpBlock(Block);
912 
913   OS << "}\n";
914 }
915 
916 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
917   if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
918     dumpBasicBlock(BasicBlock);
919   else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
920     dumpRegion(Region);
921   else
922     llvm_unreachable("Unsupported kind of VPBlock.");
923 }
924 
925 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
926                             bool Hidden, const Twine &Label) {
927   // Due to "dot" we print an edge between two regions as an edge between the
928   // exiting basic block and the entry basic of the respective regions.
929   const VPBlockBase *Tail = From->getExitingBasicBlock();
930   const VPBlockBase *Head = To->getEntryBasicBlock();
931   OS << Indent << getUID(Tail) << " -> " << getUID(Head);
932   OS << " [ label=\"" << Label << '\"';
933   if (Tail != From)
934     OS << " ltail=" << getUID(From);
935   if (Head != To)
936     OS << " lhead=" << getUID(To);
937   if (Hidden)
938     OS << "; splines=none";
939   OS << "]\n";
940 }
941 
942 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
943   auto &Successors = Block->getSuccessors();
944   if (Successors.size() == 1)
945     drawEdge(Block, Successors.front(), false, "");
946   else if (Successors.size() == 2) {
947     drawEdge(Block, Successors.front(), false, "T");
948     drawEdge(Block, Successors.back(), false, "F");
949   } else {
950     unsigned SuccessorNumber = 0;
951     for (auto *Successor : Successors)
952       drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
953   }
954 }
955 
956 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
957   // Implement dot-formatted dump by performing plain-text dump into the
958   // temporary storage followed by some post-processing.
959   OS << Indent << getUID(BasicBlock) << " [label =\n";
960   bumpIndent(1);
961   std::string Str;
962   raw_string_ostream SS(Str);
963   // Use no indentation as we need to wrap the lines into quotes ourselves.
964   BasicBlock->print(SS, "", SlotTracker);
965 
966   // We need to process each line of the output separately, so split
967   // single-string plain-text dump.
968   SmallVector<StringRef, 0> Lines;
969   StringRef(Str).rtrim('\n').split(Lines, "\n");
970 
971   auto EmitLine = [&](StringRef Line, StringRef Suffix) {
972     OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
973   };
974 
975   // Don't need the "+" after the last line.
976   for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
977     EmitLine(Line, " +\n");
978   EmitLine(Lines.back(), "\n");
979 
980   bumpIndent(-1);
981   OS << Indent << "]\n";
982 
983   dumpEdges(BasicBlock);
984 }
985 
986 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
987   OS << Indent << "subgraph " << getUID(Region) << " {\n";
988   bumpIndent(1);
989   OS << Indent << "fontname=Courier\n"
990      << Indent << "label=\""
991      << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
992      << DOT::EscapeString(Region->getName()) << "\"\n";
993   // Dump the blocks of the region.
994   assert(Region->getEntry() && "Region contains no inner blocks.");
995   for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
996     dumpBlock(Block);
997   bumpIndent(-1);
998   OS << Indent << "}\n";
999   dumpEdges(Region);
1000 }
1001 
1002 void VPlanIngredient::print(raw_ostream &O) const {
1003   if (auto *Inst = dyn_cast<Instruction>(V)) {
1004     if (!Inst->getType()->isVoidTy()) {
1005       Inst->printAsOperand(O, false);
1006       O << " = ";
1007     }
1008     O << Inst->getOpcodeName() << " ";
1009     unsigned E = Inst->getNumOperands();
1010     if (E > 0) {
1011       Inst->getOperand(0)->printAsOperand(O, false);
1012       for (unsigned I = 1; I < E; ++I)
1013         Inst->getOperand(I)->printAsOperand(O << ", ", false);
1014     }
1015   } else // !Inst
1016     V->printAsOperand(O, false);
1017 }
1018 
1019 #endif
1020 
1021 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
1022 
1023 void VPValue::replaceAllUsesWith(VPValue *New) {
1024   for (unsigned J = 0; J < getNumUsers();) {
1025     VPUser *User = Users[J];
1026     unsigned NumUsers = getNumUsers();
1027     for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I)
1028       if (User->getOperand(I) == this)
1029         User->setOperand(I, New);
1030     // If a user got removed after updating the current user, the next user to
1031     // update will be moved to the current position, so we only need to
1032     // increment the index if the number of users did not change.
1033     if (NumUsers == getNumUsers())
1034       J++;
1035   }
1036 }
1037 
1038 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1039 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
1040   if (const Value *UV = getUnderlyingValue()) {
1041     OS << "ir<";
1042     UV->printAsOperand(OS, false);
1043     OS << ">";
1044     return;
1045   }
1046 
1047   unsigned Slot = Tracker.getSlot(this);
1048   if (Slot == unsigned(-1))
1049     OS << "<badref>";
1050   else
1051     OS << "vp<%" << Tracker.getSlot(this) << ">";
1052 }
1053 
1054 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
1055   interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
1056     Op->printAsOperand(O, SlotTracker);
1057   });
1058 }
1059 #endif
1060 
1061 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
1062                                           Old2NewTy &Old2New,
1063                                           InterleavedAccessInfo &IAI) {
1064   ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
1065       RPOT(Region->getEntry());
1066   for (VPBlockBase *Base : RPOT) {
1067     visitBlock(Base, Old2New, IAI);
1068   }
1069 }
1070 
1071 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
1072                                          InterleavedAccessInfo &IAI) {
1073   if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
1074     for (VPRecipeBase &VPI : *VPBB) {
1075       if (isa<VPHeaderPHIRecipe>(&VPI))
1076         continue;
1077       assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
1078       auto *VPInst = cast<VPInstruction>(&VPI);
1079 
1080       auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
1081       if (!Inst)
1082         continue;
1083       auto *IG = IAI.getInterleaveGroup(Inst);
1084       if (!IG)
1085         continue;
1086 
1087       auto NewIGIter = Old2New.find(IG);
1088       if (NewIGIter == Old2New.end())
1089         Old2New[IG] = new InterleaveGroup<VPInstruction>(
1090             IG->getFactor(), IG->isReverse(), IG->getAlign());
1091 
1092       if (Inst == IG->getInsertPos())
1093         Old2New[IG]->setInsertPos(VPInst);
1094 
1095       InterleaveGroupMap[VPInst] = Old2New[IG];
1096       InterleaveGroupMap[VPInst]->insertMember(
1097           VPInst, IG->getIndex(Inst),
1098           Align(IG->isReverse() ? (-1) * int(IG->getFactor())
1099                                 : IG->getFactor()));
1100     }
1101   } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
1102     visitRegion(Region, Old2New, IAI);
1103   else
1104     llvm_unreachable("Unsupported kind of VPBlock.");
1105 }
1106 
1107 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
1108                                                  InterleavedAccessInfo &IAI) {
1109   Old2NewTy Old2New;
1110   visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
1111 }
1112 
1113 void VPSlotTracker::assignSlot(const VPValue *V) {
1114   assert(!Slots.contains(V) && "VPValue already has a slot!");
1115   Slots[V] = NextSlot++;
1116 }
1117 
1118 void VPSlotTracker::assignSlots(const VPlan &Plan) {
1119   assignSlot(&Plan.VectorTripCount);
1120   if (Plan.BackedgeTakenCount)
1121     assignSlot(Plan.BackedgeTakenCount);
1122   assignSlots(Plan.getPreheader());
1123 
1124   ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
1125       RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
1126   for (const VPBasicBlock *VPBB :
1127        VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
1128     assignSlots(VPBB);
1129 }
1130 
1131 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
1132   for (const VPRecipeBase &Recipe : *VPBB)
1133     for (VPValue *Def : Recipe.definedValues())
1134       assignSlot(Def);
1135 }
1136 
1137 bool vputils::onlyFirstLaneUsed(VPValue *Def) {
1138   return all_of(Def->users(),
1139                 [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); });
1140 }
1141 
1142 VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
1143                                                 ScalarEvolution &SE) {
1144   if (auto *Expanded = Plan.getSCEVExpansion(Expr))
1145     return Expanded;
1146   VPValue *Expanded = nullptr;
1147   if (auto *E = dyn_cast<SCEVConstant>(Expr))
1148     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1149   else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
1150     Expanded = Plan.getVPValueOrAddLiveIn(E->getValue());
1151   else {
1152     Expanded = new VPExpandSCEVRecipe(Expr, SE);
1153     Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
1154   }
1155   Plan.addSCEVExpansion(Expr, Expanded);
1156   return Expanded;
1157 }
1158