1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/IVDescriptors.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/IR/Value.h" 35 #include "llvm/Support/Casting.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/GenericDomTreeConstruction.h" 40 #include "llvm/Support/GraphWriter.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 43 #include <cassert> 44 #include <iterator> 45 #include <string> 46 #include <vector> 47 48 using namespace llvm; 49 extern cl::opt<bool> EnableVPlanNativePath; 50 51 #define DEBUG_TYPE "vplan" 52 53 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 54 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 55 VPSlotTracker SlotTracker( 56 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 57 V.print(OS, SlotTracker); 58 return OS; 59 } 60 61 VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) 62 : SubclassID(SC), UnderlyingVal(UV), Def(Def) { 63 if (Def) 64 Def->addDefinedValue(this); 65 } 66 67 VPValue::~VPValue() { 68 assert(Users.empty() && "trying to delete a VPValue with remaining users"); 69 if (Def) 70 Def->removeDefinedValue(this); 71 } 72 73 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 74 if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) 75 R->print(OS, "", SlotTracker); 76 else 77 printAsOperand(OS, SlotTracker); 78 } 79 80 void VPValue::dump() const { 81 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); 82 VPSlotTracker SlotTracker( 83 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 84 print(dbgs(), SlotTracker); 85 dbgs() << "\n"; 86 } 87 88 void VPDef::dump() const { 89 const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); 90 VPSlotTracker SlotTracker( 91 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 92 print(dbgs(), "", SlotTracker); 93 dbgs() << "\n"; 94 } 95 96 VPUser *VPRecipeBase::toVPUser() { 97 if (auto *U = dyn_cast<VPInstruction>(this)) 98 return U; 99 if (auto *U = dyn_cast<VPWidenRecipe>(this)) 100 return U; 101 if (auto *U = dyn_cast<VPWidenCallRecipe>(this)) 102 return U; 103 if (auto *U = dyn_cast<VPWidenSelectRecipe>(this)) 104 return U; 105 if (auto *U = dyn_cast<VPWidenGEPRecipe>(this)) 106 return U; 107 if (auto *U = dyn_cast<VPBlendRecipe>(this)) 108 return U; 109 if (auto *U = dyn_cast<VPInterleaveRecipe>(this)) 110 return U; 111 if (auto *U = dyn_cast<VPReplicateRecipe>(this)) 112 return U; 113 if (auto *U = dyn_cast<VPBranchOnMaskRecipe>(this)) 114 return U; 115 if (auto *U = dyn_cast<VPWidenMemoryInstructionRecipe>(this)) 116 return U; 117 if (auto *U = dyn_cast<VPReductionRecipe>(this)) 118 return U; 119 if (auto *U = dyn_cast<VPPredInstPHIRecipe>(this)) 120 return U; 121 return nullptr; 122 } 123 124 // Get the top-most entry block of \p Start. This is the entry block of the 125 // containing VPlan. This function is templated to support both const and non-const blocks 126 template <typename T> static T *getPlanEntry(T *Start) { 127 T *Next = Start; 128 T *Current = Start; 129 while ((Next = Next->getParent())) 130 Current = Next; 131 132 SmallSetVector<T *, 8> WorkList; 133 WorkList.insert(Current); 134 135 for (unsigned i = 0; i < WorkList.size(); i++) { 136 T *Current = WorkList[i]; 137 if (Current->getNumPredecessors() == 0) 138 return Current; 139 auto &Predecessors = Current->getPredecessors(); 140 WorkList.insert(Predecessors.begin(), Predecessors.end()); 141 } 142 143 llvm_unreachable("VPlan without any entry node without predecessors"); 144 } 145 146 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 147 148 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 149 150 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 151 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 152 const VPBlockBase *Block = this; 153 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 154 Block = Region->getEntry(); 155 return cast<VPBasicBlock>(Block); 156 } 157 158 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 159 VPBlockBase *Block = this; 160 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 161 Block = Region->getEntry(); 162 return cast<VPBasicBlock>(Block); 163 } 164 165 void VPBlockBase::setPlan(VPlan *ParentPlan) { 166 assert(ParentPlan->getEntry() == this && 167 "Can only set plan on its entry block."); 168 Plan = ParentPlan; 169 } 170 171 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 172 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 173 const VPBlockBase *Block = this; 174 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 175 Block = Region->getExit(); 176 return cast<VPBasicBlock>(Block); 177 } 178 179 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 180 VPBlockBase *Block = this; 181 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 182 Block = Region->getExit(); 183 return cast<VPBasicBlock>(Block); 184 } 185 186 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 187 if (!Successors.empty() || !Parent) 188 return this; 189 assert(Parent->getExit() == this && 190 "Block w/o successors not the exit of its parent."); 191 return Parent->getEnclosingBlockWithSuccessors(); 192 } 193 194 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 195 if (!Predecessors.empty() || !Parent) 196 return this; 197 assert(Parent->getEntry() == this && 198 "Block w/o predecessors not the entry of its parent."); 199 return Parent->getEnclosingBlockWithPredecessors(); 200 } 201 202 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 203 SmallVector<VPBlockBase *, 8> Blocks(depth_first(Entry)); 204 205 for (VPBlockBase *Block : Blocks) 206 delete Block; 207 } 208 209 VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { 210 iterator It = begin(); 211 while (It != end() && (isa<VPWidenPHIRecipe>(&*It) || 212 isa<VPWidenIntOrFpInductionRecipe>(&*It) || 213 isa<VPPredInstPHIRecipe>(&*It) || 214 isa<VPWidenCanonicalIVRecipe>(&*It))) 215 It++; 216 return It; 217 } 218 219 Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { 220 if (!Def->getDef() && OrigLoop->isLoopInvariant(Def->getLiveInIRValue())) 221 return Def->getLiveInIRValue(); 222 223 if (hasScalarValue(Def, Instance)) 224 return Data.PerPartScalars[Def][Instance.Part][Instance.Lane]; 225 226 if (hasVectorValue(Def, Instance.Part)) { 227 assert(Data.PerPartOutput.count(Def)); 228 auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; 229 if (!VecPart->getType()->isVectorTy()) { 230 assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar"); 231 return VecPart; 232 } 233 // TODO: Cache created scalar values. 234 return Builder.CreateExtractElement(VecPart, 235 Builder.getInt32(Instance.Lane)); 236 } 237 return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance); 238 } 239 240 BasicBlock * 241 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 242 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 243 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 244 BasicBlock *PrevBB = CFG.PrevBB; 245 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 246 PrevBB->getParent(), CFG.LastBB); 247 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 248 249 // Hook up the new basic block to its predecessors. 250 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 251 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 252 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 253 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 254 255 // In outer loop vectorization scenario, the predecessor BBlock may not yet 256 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 257 // vectorization. We do not encounter this case in inner loop vectorization 258 // as we start out by building a loop skeleton with the vector loop header 259 // and latch blocks. As a result, we never enter this function for the 260 // header block in the non VPlan-native path. 261 if (!PredBB) { 262 assert(EnableVPlanNativePath && 263 "Unexpected null predecessor in non VPlan-native path"); 264 CFG.VPBBsToFix.push_back(PredVPBB); 265 continue; 266 } 267 268 assert(PredBB && "Predecessor basic-block not found building successor."); 269 auto *PredBBTerminator = PredBB->getTerminator(); 270 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 271 if (isa<UnreachableInst>(PredBBTerminator)) { 272 assert(PredVPSuccessors.size() == 1 && 273 "Predecessor ending w/o branch must have single successor."); 274 PredBBTerminator->eraseFromParent(); 275 BranchInst::Create(NewBB, PredBB); 276 } else { 277 assert(PredVPSuccessors.size() == 2 && 278 "Predecessor ending with branch must have two successors."); 279 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 280 assert(!PredBBTerminator->getSuccessor(idx) && 281 "Trying to reset an existing successor block."); 282 PredBBTerminator->setSuccessor(idx, NewBB); 283 } 284 } 285 return NewBB; 286 } 287 288 void VPBasicBlock::execute(VPTransformState *State) { 289 bool Replica = State->Instance && 290 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 291 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 292 VPBlockBase *SingleHPred = nullptr; 293 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 294 295 // 1. Create an IR basic block, or reuse the last one if possible. 296 // The last IR basic block is reused, as an optimization, in three cases: 297 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 298 // B. when the current VPBB has a single (hierarchical) predecessor which 299 // is PrevVPBB and the latter has a single (hierarchical) successor; and 300 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 301 // is the exit of this region from a previous instance, or the predecessor 302 // of this region. 303 if (PrevVPBB && /* A */ 304 !((SingleHPred = getSingleHierarchicalPredecessor()) && 305 SingleHPred->getExitBasicBlock() == PrevVPBB && 306 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 307 !(Replica && getPredecessors().empty())) { /* C */ 308 NewBB = createEmptyBasicBlock(State->CFG); 309 State->Builder.SetInsertPoint(NewBB); 310 // Temporarily terminate with unreachable until CFG is rewired. 311 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 312 State->Builder.SetInsertPoint(Terminator); 313 // Register NewBB in its loop. In innermost loops its the same for all BB's. 314 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 315 L->addBasicBlockToLoop(NewBB, *State->LI); 316 State->CFG.PrevBB = NewBB; 317 } 318 319 // 2. Fill the IR basic block with IR instructions. 320 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 321 << " in BB:" << NewBB->getName() << '\n'); 322 323 State->CFG.VPBB2IRBB[this] = NewBB; 324 State->CFG.PrevVPBB = this; 325 326 for (VPRecipeBase &Recipe : Recipes) 327 Recipe.execute(*State); 328 329 VPValue *CBV; 330 if (EnableVPlanNativePath && (CBV = getCondBit())) { 331 Value *IRCBV = CBV->getUnderlyingValue(); 332 assert(IRCBV && "Unexpected null underlying value for condition bit"); 333 334 // Condition bit value in a VPBasicBlock is used as the branch selector. In 335 // the VPlan-native path case, since all branches are uniform we generate a 336 // branch instruction using the condition value from vector lane 0 and dummy 337 // successors. The successors are fixed later when the successor blocks are 338 // visited. 339 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 340 NewCond = State->Builder.CreateExtractElement(NewCond, 341 State->Builder.getInt32(0)); 342 343 // Replace the temporary unreachable terminator with the new conditional 344 // branch. 345 auto *CurrentTerminator = NewBB->getTerminator(); 346 assert(isa<UnreachableInst>(CurrentTerminator) && 347 "Expected to replace unreachable terminator with conditional " 348 "branch."); 349 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 350 CondBr->setSuccessor(0, nullptr); 351 ReplaceInstWithInst(CurrentTerminator, CondBr); 352 } 353 354 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 355 } 356 357 void VPBasicBlock::dropAllReferences(VPValue *NewValue) { 358 for (VPRecipeBase &R : Recipes) { 359 for (auto *Def : R.definedValues()) 360 Def->replaceAllUsesWith(NewValue); 361 362 if (auto *User = R.toVPUser()) 363 for (unsigned I = 0, E = User->getNumOperands(); I != E; I++) 364 User->setOperand(I, NewValue); 365 } 366 } 367 368 void VPRegionBlock::dropAllReferences(VPValue *NewValue) { 369 for (VPBlockBase *Block : depth_first(Entry)) 370 // Drop all references in VPBasicBlocks and replace all uses with 371 // DummyValue. 372 Block->dropAllReferences(NewValue); 373 } 374 375 void VPRegionBlock::execute(VPTransformState *State) { 376 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 377 378 if (!isReplicator()) { 379 // Visit the VPBlocks connected to "this", starting from it. 380 for (VPBlockBase *Block : RPOT) { 381 if (EnableVPlanNativePath) { 382 // The inner loop vectorization path does not represent loop preheader 383 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 384 // vectorizing loop preheader block. In future, we may replace this 385 // check with the check for loop preheader. 386 if (Block->getNumPredecessors() == 0) 387 continue; 388 389 // Skip vectorizing loop exit block. In future, we may replace this 390 // check with the check for loop exit. 391 if (Block->getNumSuccessors() == 0) 392 continue; 393 } 394 395 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 396 Block->execute(State); 397 } 398 return; 399 } 400 401 assert(!State->Instance && "Replicating a Region with non-null instance."); 402 403 // Enter replicating mode. 404 State->Instance = {0, 0}; 405 406 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 407 State->Instance->Part = Part; 408 assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); 409 for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; 410 ++Lane) { 411 State->Instance->Lane = Lane; 412 // Visit the VPBlocks connected to \p this, starting from it. 413 for (VPBlockBase *Block : RPOT) { 414 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 415 Block->execute(State); 416 } 417 } 418 } 419 420 // Exit replicating mode. 421 State->Instance.reset(); 422 } 423 424 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 425 assert(!Parent && "Recipe already in some VPBasicBlock"); 426 assert(InsertPos->getParent() && 427 "Insertion position not in any VPBasicBlock"); 428 Parent = InsertPos->getParent(); 429 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 430 } 431 432 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 433 assert(!Parent && "Recipe already in some VPBasicBlock"); 434 assert(InsertPos->getParent() && 435 "Insertion position not in any VPBasicBlock"); 436 Parent = InsertPos->getParent(); 437 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 438 } 439 440 void VPRecipeBase::removeFromParent() { 441 assert(getParent() && "Recipe not in any VPBasicBlock"); 442 getParent()->getRecipeList().remove(getIterator()); 443 Parent = nullptr; 444 } 445 446 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 447 assert(getParent() && "Recipe not in any VPBasicBlock"); 448 return getParent()->getRecipeList().erase(getIterator()); 449 } 450 451 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 452 removeFromParent(); 453 insertAfter(InsertPos); 454 } 455 456 void VPRecipeBase::moveBefore(VPBasicBlock &BB, 457 iplist<VPRecipeBase>::iterator I) { 458 assert(I == BB.end() || I->getParent() == &BB); 459 removeFromParent(); 460 Parent = &BB; 461 BB.getRecipeList().insert(I, this); 462 } 463 464 void VPInstruction::generateInstruction(VPTransformState &State, 465 unsigned Part) { 466 IRBuilder<> &Builder = State.Builder; 467 468 if (Instruction::isBinaryOp(getOpcode())) { 469 Value *A = State.get(getOperand(0), Part); 470 Value *B = State.get(getOperand(1), Part); 471 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 472 State.set(this, V, Part); 473 return; 474 } 475 476 switch (getOpcode()) { 477 case VPInstruction::Not: { 478 Value *A = State.get(getOperand(0), Part); 479 Value *V = Builder.CreateNot(A); 480 State.set(this, V, Part); 481 break; 482 } 483 case VPInstruction::ICmpULE: { 484 Value *IV = State.get(getOperand(0), Part); 485 Value *TC = State.get(getOperand(1), Part); 486 Value *V = Builder.CreateICmpULE(IV, TC); 487 State.set(this, V, Part); 488 break; 489 } 490 case Instruction::Select: { 491 Value *Cond = State.get(getOperand(0), Part); 492 Value *Op1 = State.get(getOperand(1), Part); 493 Value *Op2 = State.get(getOperand(2), Part); 494 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 495 State.set(this, V, Part); 496 break; 497 } 498 case VPInstruction::ActiveLaneMask: { 499 // Get first lane of vector induction variable. 500 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 501 // Get the original loop tripcount. 502 Value *ScalarTC = State.TripCount; 503 504 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 505 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF.getKnownMinValue()); 506 Instruction *Call = Builder.CreateIntrinsic( 507 Intrinsic::get_active_lane_mask, {PredTy, ScalarTC->getType()}, 508 {VIVElem0, ScalarTC}, nullptr, "active.lane.mask"); 509 State.set(this, Call, Part); 510 break; 511 } 512 default: 513 llvm_unreachable("Unsupported opcode for instruction"); 514 } 515 } 516 517 void VPInstruction::execute(VPTransformState &State) { 518 assert(!State.Instance && "VPInstruction executing an Instance"); 519 for (unsigned Part = 0; Part < State.UF; ++Part) 520 generateInstruction(State, Part); 521 } 522 523 void VPInstruction::dump() const { 524 VPSlotTracker SlotTracker(getParent()->getPlan()); 525 print(dbgs(), "", SlotTracker); 526 } 527 528 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 529 VPSlotTracker &SlotTracker) const { 530 O << "EMIT "; 531 532 if (hasResult()) { 533 printAsOperand(O, SlotTracker); 534 O << " = "; 535 } 536 537 switch (getOpcode()) { 538 case VPInstruction::Not: 539 O << "not"; 540 break; 541 case VPInstruction::ICmpULE: 542 O << "icmp ule"; 543 break; 544 case VPInstruction::SLPLoad: 545 O << "combined load"; 546 break; 547 case VPInstruction::SLPStore: 548 O << "combined store"; 549 break; 550 case VPInstruction::ActiveLaneMask: 551 O << "active lane mask"; 552 break; 553 554 default: 555 O << Instruction::getOpcodeName(getOpcode()); 556 } 557 558 for (const VPValue *Operand : operands()) { 559 O << " "; 560 Operand->printAsOperand(O, SlotTracker); 561 } 562 } 563 564 /// Generate the code inside the body of the vectorized loop. Assumes a single 565 /// LoopVectorBody basic-block was created for this. Introduce additional 566 /// basic-blocks as needed, and fill them all. 567 void VPlan::execute(VPTransformState *State) { 568 // -1. Check if the backedge taken count is needed, and if so build it. 569 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 570 Value *TC = State->TripCount; 571 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 572 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 573 "trip.count.minus.1"); 574 auto VF = State->VF; 575 Value *VTCMO = 576 VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 577 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 578 State->set(BackedgeTakenCount, VTCMO, Part); 579 } 580 581 // 0. Set the reverse mapping from VPValues to Values for code generation. 582 for (auto &Entry : Value2VPValue) 583 State->VPValue2Value[Entry.second] = Entry.first; 584 585 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 586 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 587 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 588 589 // 1. Make room to generate basic-blocks inside loop body if needed. 590 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 591 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 592 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 593 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 594 // Remove the edge between Header and Latch to allow other connections. 595 // Temporarily terminate with unreachable until CFG is rewired. 596 // Note: this asserts the generated code's assumption that 597 // getFirstInsertionPt() can be dereferenced into an Instruction. 598 VectorHeaderBB->getTerminator()->eraseFromParent(); 599 State->Builder.SetInsertPoint(VectorHeaderBB); 600 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 601 State->Builder.SetInsertPoint(Terminator); 602 603 // 2. Generate code in loop body. 604 State->CFG.PrevVPBB = nullptr; 605 State->CFG.PrevBB = VectorHeaderBB; 606 State->CFG.LastBB = VectorLatchBB; 607 608 for (VPBlockBase *Block : depth_first(Entry)) 609 Block->execute(State); 610 611 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 612 // VPBB's successors. 613 for (auto VPBB : State->CFG.VPBBsToFix) { 614 assert(EnableVPlanNativePath && 615 "Unexpected VPBBsToFix in non VPlan-native path"); 616 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 617 assert(BB && "Unexpected null basic block for VPBB"); 618 619 unsigned Idx = 0; 620 auto *BBTerminator = BB->getTerminator(); 621 622 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 623 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 624 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 625 ++Idx; 626 } 627 } 628 629 // 3. Merge the temporary latch created with the last basic-block filled. 630 BasicBlock *LastBB = State->CFG.PrevBB; 631 // Connect LastBB to VectorLatchBB to facilitate their merge. 632 assert((EnableVPlanNativePath || 633 isa<UnreachableInst>(LastBB->getTerminator())) && 634 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 635 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 636 "Expected VPlan CFG to terminate with branch in NativePath"); 637 LastBB->getTerminator()->eraseFromParent(); 638 BranchInst::Create(VectorLatchBB, LastBB); 639 640 // Merge LastBB with Latch. 641 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 642 (void)Merged; 643 assert(Merged && "Could not merge last basic block with latch."); 644 VectorLatchBB = LastBB; 645 646 // We do not attempt to preserve DT for outer loop vectorization currently. 647 if (!EnableVPlanNativePath) 648 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 649 L->getExitBlock()); 650 } 651 652 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 653 LLVM_DUMP_METHOD 654 void VPlan::dump() const { dbgs() << *this << '\n'; } 655 #endif 656 657 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 658 BasicBlock *LoopLatchBB, 659 BasicBlock *LoopExitBB) { 660 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 661 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 662 // The vector body may be more than a single basic-block by this point. 663 // Update the dominator tree information inside the vector body by propagating 664 // it from header to latch, expecting only triangular control-flow, if any. 665 BasicBlock *PostDomSucc = nullptr; 666 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 667 // Get the list of successors of this block. 668 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 669 assert(Succs.size() <= 2 && 670 "Basic block in vector loop has more than 2 successors."); 671 PostDomSucc = Succs[0]; 672 if (Succs.size() == 1) { 673 assert(PostDomSucc->getSinglePredecessor() && 674 "PostDom successor has more than one predecessor."); 675 DT->addNewBlock(PostDomSucc, BB); 676 continue; 677 } 678 BasicBlock *InterimSucc = Succs[1]; 679 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 680 PostDomSucc = Succs[1]; 681 InterimSucc = Succs[0]; 682 } 683 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 684 "One successor of a basic block does not lead to the other."); 685 assert(InterimSucc->getSinglePredecessor() && 686 "Interim successor has more than one predecessor."); 687 assert(PostDomSucc->hasNPredecessors(2) && 688 "PostDom successor has more than two predecessors."); 689 DT->addNewBlock(InterimSucc, BB); 690 DT->addNewBlock(PostDomSucc, BB); 691 } 692 // Latch block is a new dominator for the loop exit. 693 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 694 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 695 } 696 697 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 698 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 699 Twine(getOrCreateBID(Block)); 700 } 701 702 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 703 const std::string &Name = Block->getName(); 704 if (!Name.empty()) 705 return Name; 706 return "VPB" + Twine(getOrCreateBID(Block)); 707 } 708 709 void VPlanPrinter::dump() { 710 Depth = 1; 711 bumpIndent(0); 712 OS << "digraph VPlan {\n"; 713 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 714 if (!Plan.getName().empty()) 715 OS << "\\n" << DOT::EscapeString(Plan.getName()); 716 if (Plan.BackedgeTakenCount) { 717 OS << ", where:\\n"; 718 Plan.BackedgeTakenCount->print(OS, SlotTracker); 719 OS << " := BackedgeTakenCount"; 720 } 721 OS << "\"]\n"; 722 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 723 OS << "edge [fontname=Courier, fontsize=30]\n"; 724 OS << "compound=true\n"; 725 726 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 727 dumpBlock(Block); 728 729 OS << "}\n"; 730 } 731 732 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 733 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 734 dumpBasicBlock(BasicBlock); 735 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 736 dumpRegion(Region); 737 else 738 llvm_unreachable("Unsupported kind of VPBlock."); 739 } 740 741 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 742 bool Hidden, const Twine &Label) { 743 // Due to "dot" we print an edge between two regions as an edge between the 744 // exit basic block and the entry basic of the respective regions. 745 const VPBlockBase *Tail = From->getExitBasicBlock(); 746 const VPBlockBase *Head = To->getEntryBasicBlock(); 747 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 748 OS << " [ label=\"" << Label << '\"'; 749 if (Tail != From) 750 OS << " ltail=" << getUID(From); 751 if (Head != To) 752 OS << " lhead=" << getUID(To); 753 if (Hidden) 754 OS << "; splines=none"; 755 OS << "]\n"; 756 } 757 758 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 759 auto &Successors = Block->getSuccessors(); 760 if (Successors.size() == 1) 761 drawEdge(Block, Successors.front(), false, ""); 762 else if (Successors.size() == 2) { 763 drawEdge(Block, Successors.front(), false, "T"); 764 drawEdge(Block, Successors.back(), false, "F"); 765 } else { 766 unsigned SuccessorNumber = 0; 767 for (auto *Successor : Successors) 768 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 769 } 770 } 771 772 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 773 OS << Indent << getUID(BasicBlock) << " [label =\n"; 774 bumpIndent(1); 775 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 776 bumpIndent(1); 777 778 // Dump the block predicate. 779 const VPValue *Pred = BasicBlock->getPredicate(); 780 if (Pred) { 781 OS << " +\n" << Indent << " \"BlockPredicate: \""; 782 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 783 PredI->printAsOperand(OS, SlotTracker); 784 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 785 << ")\\l\""; 786 } else 787 Pred->printAsOperand(OS, SlotTracker); 788 } 789 790 for (const VPRecipeBase &Recipe : *BasicBlock) { 791 OS << " +\n" << Indent << "\""; 792 Recipe.print(OS, Indent, SlotTracker); 793 OS << "\\l\""; 794 } 795 796 // Dump the condition bit. 797 const VPValue *CBV = BasicBlock->getCondBit(); 798 if (CBV) { 799 OS << " +\n" << Indent << " \"CondBit: "; 800 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 801 CBI->printAsOperand(OS, SlotTracker); 802 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 803 } else { 804 CBV->printAsOperand(OS, SlotTracker); 805 OS << "\""; 806 } 807 } 808 809 bumpIndent(-2); 810 OS << "\n" << Indent << "]\n"; 811 dumpEdges(BasicBlock); 812 } 813 814 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 815 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 816 bumpIndent(1); 817 OS << Indent << "fontname=Courier\n" 818 << Indent << "label=\"" 819 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 820 << DOT::EscapeString(Region->getName()) << "\"\n"; 821 // Dump the blocks of the region. 822 assert(Region->getEntry() && "Region contains no inner blocks."); 823 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 824 dumpBlock(Block); 825 bumpIndent(-1); 826 OS << Indent << "}\n"; 827 dumpEdges(Region); 828 } 829 830 void VPlanPrinter::printAsIngredient(raw_ostream &O, const Value *V) { 831 std::string IngredientString; 832 raw_string_ostream RSO(IngredientString); 833 if (auto *Inst = dyn_cast<Instruction>(V)) { 834 if (!Inst->getType()->isVoidTy()) { 835 Inst->printAsOperand(RSO, false); 836 RSO << " = "; 837 } 838 RSO << Inst->getOpcodeName() << " "; 839 unsigned E = Inst->getNumOperands(); 840 if (E > 0) { 841 Inst->getOperand(0)->printAsOperand(RSO, false); 842 for (unsigned I = 1; I < E; ++I) 843 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 844 } 845 } else // !Inst 846 V->printAsOperand(RSO, false); 847 RSO.flush(); 848 O << DOT::EscapeString(IngredientString); 849 } 850 851 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 852 VPSlotTracker &SlotTracker) const { 853 O << "WIDEN-CALL "; 854 855 auto *CI = cast<CallInst>(getUnderlyingInstr()); 856 if (CI->getType()->isVoidTy()) 857 O << "void "; 858 else { 859 printAsOperand(O, SlotTracker); 860 O << " = "; 861 } 862 863 O << "call @" << CI->getCalledFunction()->getName() << "("; 864 printOperands(O, SlotTracker); 865 O << ")"; 866 } 867 868 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 869 VPSlotTracker &SlotTracker) const { 870 O << "WIDEN-SELECT "; 871 printAsOperand(O, SlotTracker); 872 O << " = select "; 873 getOperand(0)->printAsOperand(O, SlotTracker); 874 O << ", "; 875 getOperand(1)->printAsOperand(O, SlotTracker); 876 O << ", "; 877 getOperand(2)->printAsOperand(O, SlotTracker); 878 O << (InvariantCond ? " (condition is loop invariant)" : ""); 879 } 880 881 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 882 VPSlotTracker &SlotTracker) const { 883 O << "WIDEN "; 884 printAsOperand(O, SlotTracker); 885 O << " = " << getUnderlyingInstr()->getOpcodeName() << " "; 886 printOperands(O, SlotTracker); 887 } 888 889 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 890 VPSlotTracker &SlotTracker) const { 891 O << "WIDEN-INDUCTION"; 892 if (Trunc) { 893 O << "\\l\""; 894 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 895 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 896 } else 897 O << " " << VPlanIngredient(IV); 898 } 899 900 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 901 VPSlotTracker &SlotTracker) const { 902 O << "WIDEN-GEP "; 903 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 904 size_t IndicesNumber = IsIndexLoopInvariant.size(); 905 for (size_t I = 0; I < IndicesNumber; ++I) 906 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 907 908 O << " "; 909 printAsOperand(O, SlotTracker); 910 O << " = getelementptr "; 911 printOperands(O, SlotTracker); 912 } 913 914 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 915 VPSlotTracker &SlotTracker) const { 916 O << "WIDEN-PHI " << VPlanIngredient(Phi); 917 } 918 919 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 920 VPSlotTracker &SlotTracker) const { 921 O << "BLEND "; 922 Phi->printAsOperand(O, false); 923 O << " ="; 924 if (getNumIncomingValues() == 1) { 925 // Not a User of any mask: not really blending, this is a 926 // single-predecessor phi. 927 O << " "; 928 getIncomingValue(0)->printAsOperand(O, SlotTracker); 929 } else { 930 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 931 O << " "; 932 getIncomingValue(I)->printAsOperand(O, SlotTracker); 933 O << "/"; 934 getMask(I)->printAsOperand(O, SlotTracker); 935 } 936 } 937 } 938 939 void VPReductionRecipe::print(raw_ostream &O, const Twine &Indent, 940 VPSlotTracker &SlotTracker) const { 941 O << "REDUCE "; 942 printAsOperand(O, SlotTracker); 943 O << " = "; 944 getChainOp()->printAsOperand(O, SlotTracker); 945 O << " + reduce." << Instruction::getOpcodeName(RdxDesc->getOpcode()) 946 << " ("; 947 getVecOp()->printAsOperand(O, SlotTracker); 948 if (getCondOp()) { 949 O << ", "; 950 getCondOp()->printAsOperand(O, SlotTracker); 951 } 952 O << ")"; 953 } 954 955 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 956 VPSlotTracker &SlotTracker) const { 957 O << (IsUniform ? "CLONE " : "REPLICATE "); 958 959 if (!getUnderlyingInstr()->getType()->isVoidTy()) { 960 printAsOperand(O, SlotTracker); 961 O << " = "; 962 } 963 O << Instruction::getOpcodeName(getUnderlyingInstr()->getOpcode()) << " "; 964 printOperands(O, SlotTracker); 965 966 if (AlsoPack) 967 O << " (S->V)"; 968 } 969 970 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 971 VPSlotTracker &SlotTracker) const { 972 O << "PHI-PREDICATED-INSTRUCTION "; 973 printOperands(O, SlotTracker); 974 } 975 976 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 977 VPSlotTracker &SlotTracker) const { 978 O << "WIDEN "; 979 980 if (!isStore()) { 981 getVPValue()->printAsOperand(O, SlotTracker); 982 O << " = "; 983 } 984 O << Instruction::getOpcodeName(Ingredient.getOpcode()) << " "; 985 986 printOperands(O, SlotTracker); 987 } 988 989 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 990 Value *CanonicalIV = State.CanonicalIV; 991 Type *STy = CanonicalIV->getType(); 992 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 993 ElementCount VF = State.VF; 994 assert(!VF.isScalable() && "the code following assumes non scalables ECs"); 995 Value *VStart = VF.isScalar() 996 ? CanonicalIV 997 : Builder.CreateVectorSplat(VF.getKnownMinValue(), 998 CanonicalIV, "broadcast"); 999 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 1000 SmallVector<Constant *, 8> Indices; 1001 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 1002 Indices.push_back( 1003 ConstantInt::get(STy, Part * VF.getKnownMinValue() + Lane)); 1004 // If VF == 1, there is only one iteration in the loop above, thus the 1005 // element pushed back into Indices is ConstantInt::get(STy, Part) 1006 Constant *VStep = 1007 VF.isScalar() ? Indices.back() : ConstantVector::get(Indices); 1008 // Add the consecutive indices to the vector value. 1009 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 1010 State.set(getVPValue(), CanonicalVectorIV, Part); 1011 } 1012 } 1013 1014 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 1015 VPSlotTracker &SlotTracker) const { 1016 O << "EMIT "; 1017 getVPValue()->printAsOperand(O, SlotTracker); 1018 O << " = WIDEN-CANONICAL-INDUCTION"; 1019 } 1020 1021 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 1022 1023 void VPValue::replaceAllUsesWith(VPValue *New) { 1024 for (unsigned J = 0; J < getNumUsers();) { 1025 VPUser *User = Users[J]; 1026 unsigned NumUsers = getNumUsers(); 1027 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 1028 if (User->getOperand(I) == this) 1029 User->setOperand(I, New); 1030 // If a user got removed after updating the current user, the next user to 1031 // update will be moved to the current position, so we only need to 1032 // increment the index if the number of users did not change. 1033 if (NumUsers == getNumUsers()) 1034 J++; 1035 } 1036 } 1037 1038 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 1039 if (const Value *UV = getUnderlyingValue()) { 1040 OS << "ir<"; 1041 UV->printAsOperand(OS, false); 1042 OS << ">"; 1043 return; 1044 } 1045 1046 unsigned Slot = Tracker.getSlot(this); 1047 if (Slot == unsigned(-1)) 1048 OS << "<badref>"; 1049 else 1050 OS << "vp<%" << Tracker.getSlot(this) << ">"; 1051 } 1052 1053 void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { 1054 interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { 1055 Op->printAsOperand(O, SlotTracker); 1056 }); 1057 } 1058 1059 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 1060 Old2NewTy &Old2New, 1061 InterleavedAccessInfo &IAI) { 1062 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 1063 for (VPBlockBase *Base : RPOT) { 1064 visitBlock(Base, Old2New, IAI); 1065 } 1066 } 1067 1068 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 1069 InterleavedAccessInfo &IAI) { 1070 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 1071 for (VPRecipeBase &VPI : *VPBB) { 1072 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 1073 auto *VPInst = cast<VPInstruction>(&VPI); 1074 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 1075 auto *IG = IAI.getInterleaveGroup(Inst); 1076 if (!IG) 1077 continue; 1078 1079 auto NewIGIter = Old2New.find(IG); 1080 if (NewIGIter == Old2New.end()) 1081 Old2New[IG] = new InterleaveGroup<VPInstruction>( 1082 IG->getFactor(), IG->isReverse(), IG->getAlign()); 1083 1084 if (Inst == IG->getInsertPos()) 1085 Old2New[IG]->setInsertPos(VPInst); 1086 1087 InterleaveGroupMap[VPInst] = Old2New[IG]; 1088 InterleaveGroupMap[VPInst]->insertMember( 1089 VPInst, IG->getIndex(Inst), 1090 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 1091 : IG->getFactor())); 1092 } 1093 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 1094 visitRegion(Region, Old2New, IAI); 1095 else 1096 llvm_unreachable("Unsupported kind of VPBlock."); 1097 } 1098 1099 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 1100 InterleavedAccessInfo &IAI) { 1101 Old2NewTy Old2New; 1102 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 1103 } 1104 1105 void VPSlotTracker::assignSlot(const VPValue *V) { 1106 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 1107 Slots[V] = NextSlot++; 1108 } 1109 1110 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 1111 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 1112 assignSlots(Region); 1113 else 1114 assignSlots(cast<VPBasicBlock>(VPBB)); 1115 } 1116 1117 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 1118 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 1119 for (const VPBlockBase *Block : RPOT) 1120 assignSlots(Block); 1121 } 1122 1123 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 1124 for (const VPRecipeBase &Recipe : *VPBB) { 1125 for (VPValue *Def : Recipe.definedValues()) 1126 assignSlot(Def); 1127 } 1128 } 1129 1130 void VPSlotTracker::assignSlots(const VPlan &Plan) { 1131 1132 for (const VPValue *V : Plan.VPExternalDefs) 1133 assignSlot(V); 1134 1135 for (const VPValue *V : Plan.VPCBVs) 1136 assignSlot(V); 1137 1138 if (Plan.BackedgeTakenCount) 1139 assignSlot(Plan.BackedgeTakenCount); 1140 1141 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 1142 for (const VPBlockBase *Block : RPOT) 1143 assignSlots(Block); 1144 } 1145