1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/GenericDomTreeConstruction.h" 38 #include "llvm/Support/GraphWriter.h" 39 #include "llvm/Support/raw_ostream.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include <cassert> 42 #include <iterator> 43 #include <string> 44 #include <vector> 45 46 using namespace llvm; 47 extern cl::opt<bool> EnableVPlanNativePath; 48 49 #define DEBUG_TYPE "vplan" 50 51 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 52 const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); 53 VPSlotTracker SlotTracker( 54 (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); 55 V.print(OS, SlotTracker); 56 return OS; 57 } 58 59 void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { 60 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(this)) 61 Instr->print(OS, SlotTracker); 62 else 63 printAsOperand(OS, SlotTracker); 64 } 65 66 // Get the top-most entry block of \p Start. This is the entry block of the 67 // containing VPlan. This function is templated to support both const and non-const blocks 68 template <typename T> static T *getPlanEntry(T *Start) { 69 T *Next = Start; 70 T *Current = Start; 71 while ((Next = Next->getParent())) 72 Current = Next; 73 74 SmallSetVector<T *, 8> WorkList; 75 WorkList.insert(Current); 76 77 for (unsigned i = 0; i < WorkList.size(); i++) { 78 T *Current = WorkList[i]; 79 if (Current->getNumPredecessors() == 0) 80 return Current; 81 auto &Predecessors = Current->getPredecessors(); 82 WorkList.insert(Predecessors.begin(), Predecessors.end()); 83 } 84 85 llvm_unreachable("VPlan without any entry node without predecessors"); 86 } 87 88 VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } 89 90 const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } 91 92 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 93 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 94 const VPBlockBase *Block = this; 95 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 96 Block = Region->getEntry(); 97 return cast<VPBasicBlock>(Block); 98 } 99 100 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 101 VPBlockBase *Block = this; 102 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 103 Block = Region->getEntry(); 104 return cast<VPBasicBlock>(Block); 105 } 106 107 void VPBlockBase::setPlan(VPlan *ParentPlan) { 108 assert(ParentPlan->getEntry() == this && 109 "Can only set plan on its entry block."); 110 Plan = ParentPlan; 111 } 112 113 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 114 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 115 const VPBlockBase *Block = this; 116 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 117 Block = Region->getExit(); 118 return cast<VPBasicBlock>(Block); 119 } 120 121 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 122 VPBlockBase *Block = this; 123 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 124 Block = Region->getExit(); 125 return cast<VPBasicBlock>(Block); 126 } 127 128 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 129 if (!Successors.empty() || !Parent) 130 return this; 131 assert(Parent->getExit() == this && 132 "Block w/o successors not the exit of its parent."); 133 return Parent->getEnclosingBlockWithSuccessors(); 134 } 135 136 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 137 if (!Predecessors.empty() || !Parent) 138 return this; 139 assert(Parent->getEntry() == this && 140 "Block w/o predecessors not the entry of its parent."); 141 return Parent->getEnclosingBlockWithPredecessors(); 142 } 143 144 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 145 SmallVector<VPBlockBase *, 8> Blocks; 146 for (VPBlockBase *Block : depth_first(Entry)) 147 Blocks.push_back(Block); 148 149 for (VPBlockBase *Block : Blocks) 150 delete Block; 151 } 152 153 BasicBlock * 154 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 155 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 156 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 157 BasicBlock *PrevBB = CFG.PrevBB; 158 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 159 PrevBB->getParent(), CFG.LastBB); 160 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 161 162 // Hook up the new basic block to its predecessors. 163 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 164 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 165 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 166 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 167 168 // In outer loop vectorization scenario, the predecessor BBlock may not yet 169 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 170 // vectorization. We do not encounter this case in inner loop vectorization 171 // as we start out by building a loop skeleton with the vector loop header 172 // and latch blocks. As a result, we never enter this function for the 173 // header block in the non VPlan-native path. 174 if (!PredBB) { 175 assert(EnableVPlanNativePath && 176 "Unexpected null predecessor in non VPlan-native path"); 177 CFG.VPBBsToFix.push_back(PredVPBB); 178 continue; 179 } 180 181 assert(PredBB && "Predecessor basic-block not found building successor."); 182 auto *PredBBTerminator = PredBB->getTerminator(); 183 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 184 if (isa<UnreachableInst>(PredBBTerminator)) { 185 assert(PredVPSuccessors.size() == 1 && 186 "Predecessor ending w/o branch must have single successor."); 187 PredBBTerminator->eraseFromParent(); 188 BranchInst::Create(NewBB, PredBB); 189 } else { 190 assert(PredVPSuccessors.size() == 2 && 191 "Predecessor ending with branch must have two successors."); 192 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 193 assert(!PredBBTerminator->getSuccessor(idx) && 194 "Trying to reset an existing successor block."); 195 PredBBTerminator->setSuccessor(idx, NewBB); 196 } 197 } 198 return NewBB; 199 } 200 201 void VPBasicBlock::execute(VPTransformState *State) { 202 bool Replica = State->Instance && 203 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 204 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 205 VPBlockBase *SingleHPred = nullptr; 206 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 207 208 // 1. Create an IR basic block, or reuse the last one if possible. 209 // The last IR basic block is reused, as an optimization, in three cases: 210 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 211 // B. when the current VPBB has a single (hierarchical) predecessor which 212 // is PrevVPBB and the latter has a single (hierarchical) successor; and 213 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 214 // is the exit of this region from a previous instance, or the predecessor 215 // of this region. 216 if (PrevVPBB && /* A */ 217 !((SingleHPred = getSingleHierarchicalPredecessor()) && 218 SingleHPred->getExitBasicBlock() == PrevVPBB && 219 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 220 !(Replica && getPredecessors().empty())) { /* C */ 221 NewBB = createEmptyBasicBlock(State->CFG); 222 State->Builder.SetInsertPoint(NewBB); 223 // Temporarily terminate with unreachable until CFG is rewired. 224 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 225 State->Builder.SetInsertPoint(Terminator); 226 // Register NewBB in its loop. In innermost loops its the same for all BB's. 227 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 228 L->addBasicBlockToLoop(NewBB, *State->LI); 229 State->CFG.PrevBB = NewBB; 230 } 231 232 // 2. Fill the IR basic block with IR instructions. 233 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 234 << " in BB:" << NewBB->getName() << '\n'); 235 236 State->CFG.VPBB2IRBB[this] = NewBB; 237 State->CFG.PrevVPBB = this; 238 239 for (VPRecipeBase &Recipe : Recipes) 240 Recipe.execute(*State); 241 242 VPValue *CBV; 243 if (EnableVPlanNativePath && (CBV = getCondBit())) { 244 Value *IRCBV = CBV->getUnderlyingValue(); 245 assert(IRCBV && "Unexpected null underlying value for condition bit"); 246 247 // Condition bit value in a VPBasicBlock is used as the branch selector. In 248 // the VPlan-native path case, since all branches are uniform we generate a 249 // branch instruction using the condition value from vector lane 0 and dummy 250 // successors. The successors are fixed later when the successor blocks are 251 // visited. 252 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 253 NewCond = State->Builder.CreateExtractElement(NewCond, 254 State->Builder.getInt32(0)); 255 256 // Replace the temporary unreachable terminator with the new conditional 257 // branch. 258 auto *CurrentTerminator = NewBB->getTerminator(); 259 assert(isa<UnreachableInst>(CurrentTerminator) && 260 "Expected to replace unreachable terminator with conditional " 261 "branch."); 262 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 263 CondBr->setSuccessor(0, nullptr); 264 ReplaceInstWithInst(CurrentTerminator, CondBr); 265 } 266 267 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 268 } 269 270 void VPRegionBlock::execute(VPTransformState *State) { 271 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 272 273 if (!isReplicator()) { 274 // Visit the VPBlocks connected to "this", starting from it. 275 for (VPBlockBase *Block : RPOT) { 276 if (EnableVPlanNativePath) { 277 // The inner loop vectorization path does not represent loop preheader 278 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 279 // vectorizing loop preheader block. In future, we may replace this 280 // check with the check for loop preheader. 281 if (Block->getNumPredecessors() == 0) 282 continue; 283 284 // Skip vectorizing loop exit block. In future, we may replace this 285 // check with the check for loop exit. 286 if (Block->getNumSuccessors() == 0) 287 continue; 288 } 289 290 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 291 Block->execute(State); 292 } 293 return; 294 } 295 296 assert(!State->Instance && "Replicating a Region with non-null instance."); 297 298 // Enter replicating mode. 299 State->Instance = {0, 0}; 300 301 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 302 State->Instance->Part = Part; 303 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 304 State->Instance->Lane = Lane; 305 // Visit the VPBlocks connected to \p this, starting from it. 306 for (VPBlockBase *Block : RPOT) { 307 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 308 Block->execute(State); 309 } 310 } 311 } 312 313 // Exit replicating mode. 314 State->Instance.reset(); 315 } 316 317 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 318 assert(!Parent && "Recipe already in some VPBasicBlock"); 319 assert(InsertPos->getParent() && 320 "Insertion position not in any VPBasicBlock"); 321 Parent = InsertPos->getParent(); 322 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 323 } 324 325 void VPRecipeBase::insertAfter(VPRecipeBase *InsertPos) { 326 assert(!Parent && "Recipe already in some VPBasicBlock"); 327 assert(InsertPos->getParent() && 328 "Insertion position not in any VPBasicBlock"); 329 Parent = InsertPos->getParent(); 330 Parent->getRecipeList().insertAfter(InsertPos->getIterator(), this); 331 } 332 333 void VPRecipeBase::removeFromParent() { 334 assert(getParent() && "Recipe not in any VPBasicBlock"); 335 getParent()->getRecipeList().remove(getIterator()); 336 Parent = nullptr; 337 } 338 339 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 340 assert(getParent() && "Recipe not in any VPBasicBlock"); 341 return getParent()->getRecipeList().erase(getIterator()); 342 } 343 344 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 345 removeFromParent(); 346 insertAfter(InsertPos); 347 } 348 349 void VPInstruction::generateInstruction(VPTransformState &State, 350 unsigned Part) { 351 IRBuilder<> &Builder = State.Builder; 352 353 if (Instruction::isBinaryOp(getOpcode())) { 354 Value *A = State.get(getOperand(0), Part); 355 Value *B = State.get(getOperand(1), Part); 356 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 357 State.set(this, V, Part); 358 return; 359 } 360 361 switch (getOpcode()) { 362 case VPInstruction::Not: { 363 Value *A = State.get(getOperand(0), Part); 364 Value *V = Builder.CreateNot(A); 365 State.set(this, V, Part); 366 break; 367 } 368 case VPInstruction::ICmpULE: { 369 Value *IV = State.get(getOperand(0), Part); 370 Value *TC = State.get(getOperand(1), Part); 371 Value *V = Builder.CreateICmpULE(IV, TC); 372 State.set(this, V, Part); 373 break; 374 } 375 case Instruction::Select: { 376 Value *Cond = State.get(getOperand(0), Part); 377 Value *Op1 = State.get(getOperand(1), Part); 378 Value *Op2 = State.get(getOperand(2), Part); 379 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 380 State.set(this, V, Part); 381 break; 382 } 383 case VPInstruction::ActiveLaneMask: { 384 // Get first lane of vector induction variable. 385 Value *VIVElem0 = State.get(getOperand(0), {Part, 0}); 386 // Get first lane of backedge-taken-count. 387 Value *ScalarBTC = State.get(getOperand(1), {Part, 0}); 388 389 auto *Int1Ty = Type::getInt1Ty(Builder.getContext()); 390 auto *PredTy = FixedVectorType::get(Int1Ty, State.VF); 391 Instruction *Call = Builder.CreateIntrinsic( 392 Intrinsic::get_active_lane_mask, {PredTy, ScalarBTC->getType()}, 393 {VIVElem0, ScalarBTC}, nullptr, "active.lane.mask"); 394 State.set(this, Call, Part); 395 break; 396 } 397 default: 398 llvm_unreachable("Unsupported opcode for instruction"); 399 } 400 } 401 402 void VPInstruction::execute(VPTransformState &State) { 403 assert(!State.Instance && "VPInstruction executing an Instance"); 404 for (unsigned Part = 0; Part < State.UF; ++Part) 405 generateInstruction(State, Part); 406 } 407 408 void VPInstruction::print(raw_ostream &O, const Twine &Indent, 409 VPSlotTracker &SlotTracker) const { 410 O << "\"EMIT "; 411 print(O, SlotTracker); 412 } 413 414 void VPInstruction::print(raw_ostream &O) const { 415 VPSlotTracker SlotTracker(getParent()->getPlan()); 416 print(O, SlotTracker); 417 } 418 419 void VPInstruction::print(raw_ostream &O, VPSlotTracker &SlotTracker) const { 420 if (hasResult()) { 421 printAsOperand(O, SlotTracker); 422 O << " = "; 423 } 424 425 switch (getOpcode()) { 426 case VPInstruction::Not: 427 O << "not"; 428 break; 429 case VPInstruction::ICmpULE: 430 O << "icmp ule"; 431 break; 432 case VPInstruction::SLPLoad: 433 O << "combined load"; 434 break; 435 case VPInstruction::SLPStore: 436 O << "combined store"; 437 break; 438 case VPInstruction::ActiveLaneMask: 439 O << "active lane mask"; 440 break; 441 442 default: 443 O << Instruction::getOpcodeName(getOpcode()); 444 } 445 446 for (const VPValue *Operand : operands()) { 447 O << " "; 448 Operand->printAsOperand(O, SlotTracker); 449 } 450 } 451 452 /// Generate the code inside the body of the vectorized loop. Assumes a single 453 /// LoopVectorBody basic-block was created for this. Introduce additional 454 /// basic-blocks as needed, and fill them all. 455 void VPlan::execute(VPTransformState *State) { 456 // -1. Check if the backedge taken count is needed, and if so build it. 457 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 458 Value *TC = State->TripCount; 459 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 460 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 461 "trip.count.minus.1"); 462 auto VF = State->VF; 463 Value *VTCMO = 464 VF == 1 ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); 465 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) 466 State->set(BackedgeTakenCount, VTCMO, Part); 467 } 468 469 // 0. Set the reverse mapping from VPValues to Values for code generation. 470 for (auto &Entry : Value2VPValue) 471 State->VPValue2Value[Entry.second] = Entry.first; 472 473 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 474 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 475 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 476 477 // 1. Make room to generate basic-blocks inside loop body if needed. 478 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 479 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 480 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 481 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 482 // Remove the edge between Header and Latch to allow other connections. 483 // Temporarily terminate with unreachable until CFG is rewired. 484 // Note: this asserts the generated code's assumption that 485 // getFirstInsertionPt() can be dereferenced into an Instruction. 486 VectorHeaderBB->getTerminator()->eraseFromParent(); 487 State->Builder.SetInsertPoint(VectorHeaderBB); 488 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 489 State->Builder.SetInsertPoint(Terminator); 490 491 // 2. Generate code in loop body. 492 State->CFG.PrevVPBB = nullptr; 493 State->CFG.PrevBB = VectorHeaderBB; 494 State->CFG.LastBB = VectorLatchBB; 495 496 for (VPBlockBase *Block : depth_first(Entry)) 497 Block->execute(State); 498 499 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 500 // VPBB's successors. 501 for (auto VPBB : State->CFG.VPBBsToFix) { 502 assert(EnableVPlanNativePath && 503 "Unexpected VPBBsToFix in non VPlan-native path"); 504 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 505 assert(BB && "Unexpected null basic block for VPBB"); 506 507 unsigned Idx = 0; 508 auto *BBTerminator = BB->getTerminator(); 509 510 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 511 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 512 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 513 ++Idx; 514 } 515 } 516 517 // 3. Merge the temporary latch created with the last basic-block filled. 518 BasicBlock *LastBB = State->CFG.PrevBB; 519 // Connect LastBB to VectorLatchBB to facilitate their merge. 520 assert((EnableVPlanNativePath || 521 isa<UnreachableInst>(LastBB->getTerminator())) && 522 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 523 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 524 "Expected VPlan CFG to terminate with branch in NativePath"); 525 LastBB->getTerminator()->eraseFromParent(); 526 BranchInst::Create(VectorLatchBB, LastBB); 527 528 // Merge LastBB with Latch. 529 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 530 (void)Merged; 531 assert(Merged && "Could not merge last basic block with latch."); 532 VectorLatchBB = LastBB; 533 534 // We do not attempt to preserve DT for outer loop vectorization currently. 535 if (!EnableVPlanNativePath) 536 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB, 537 L->getExitBlock()); 538 } 539 540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 541 LLVM_DUMP_METHOD 542 void VPlan::dump() const { dbgs() << *this << '\n'; } 543 #endif 544 545 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 546 BasicBlock *LoopLatchBB, 547 BasicBlock *LoopExitBB) { 548 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 549 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 550 // The vector body may be more than a single basic-block by this point. 551 // Update the dominator tree information inside the vector body by propagating 552 // it from header to latch, expecting only triangular control-flow, if any. 553 BasicBlock *PostDomSucc = nullptr; 554 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 555 // Get the list of successors of this block. 556 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 557 assert(Succs.size() <= 2 && 558 "Basic block in vector loop has more than 2 successors."); 559 PostDomSucc = Succs[0]; 560 if (Succs.size() == 1) { 561 assert(PostDomSucc->getSinglePredecessor() && 562 "PostDom successor has more than one predecessor."); 563 DT->addNewBlock(PostDomSucc, BB); 564 continue; 565 } 566 BasicBlock *InterimSucc = Succs[1]; 567 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 568 PostDomSucc = Succs[1]; 569 InterimSucc = Succs[0]; 570 } 571 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 572 "One successor of a basic block does not lead to the other."); 573 assert(InterimSucc->getSinglePredecessor() && 574 "Interim successor has more than one predecessor."); 575 assert(PostDomSucc->hasNPredecessors(2) && 576 "PostDom successor has more than two predecessors."); 577 DT->addNewBlock(InterimSucc, BB); 578 DT->addNewBlock(PostDomSucc, BB); 579 } 580 // Latch block is a new dominator for the loop exit. 581 DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); 582 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 583 } 584 585 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 586 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 587 Twine(getOrCreateBID(Block)); 588 } 589 590 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 591 const std::string &Name = Block->getName(); 592 if (!Name.empty()) 593 return Name; 594 return "VPB" + Twine(getOrCreateBID(Block)); 595 } 596 597 void VPlanPrinter::dump() { 598 Depth = 1; 599 bumpIndent(0); 600 OS << "digraph VPlan {\n"; 601 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 602 if (!Plan.getName().empty()) 603 OS << "\\n" << DOT::EscapeString(Plan.getName()); 604 if (Plan.BackedgeTakenCount) { 605 OS << ", where:\\n"; 606 Plan.BackedgeTakenCount->print(OS, SlotTracker); 607 OS << " := BackedgeTakenCount"; 608 } 609 OS << "\"]\n"; 610 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 611 OS << "edge [fontname=Courier, fontsize=30]\n"; 612 OS << "compound=true\n"; 613 614 for (const VPBlockBase *Block : depth_first(Plan.getEntry())) 615 dumpBlock(Block); 616 617 OS << "}\n"; 618 } 619 620 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 621 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 622 dumpBasicBlock(BasicBlock); 623 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 624 dumpRegion(Region); 625 else 626 llvm_unreachable("Unsupported kind of VPBlock."); 627 } 628 629 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 630 bool Hidden, const Twine &Label) { 631 // Due to "dot" we print an edge between two regions as an edge between the 632 // exit basic block and the entry basic of the respective regions. 633 const VPBlockBase *Tail = From->getExitBasicBlock(); 634 const VPBlockBase *Head = To->getEntryBasicBlock(); 635 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 636 OS << " [ label=\"" << Label << '\"'; 637 if (Tail != From) 638 OS << " ltail=" << getUID(From); 639 if (Head != To) 640 OS << " lhead=" << getUID(To); 641 if (Hidden) 642 OS << "; splines=none"; 643 OS << "]\n"; 644 } 645 646 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 647 auto &Successors = Block->getSuccessors(); 648 if (Successors.size() == 1) 649 drawEdge(Block, Successors.front(), false, ""); 650 else if (Successors.size() == 2) { 651 drawEdge(Block, Successors.front(), false, "T"); 652 drawEdge(Block, Successors.back(), false, "F"); 653 } else { 654 unsigned SuccessorNumber = 0; 655 for (auto *Successor : Successors) 656 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 657 } 658 } 659 660 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 661 OS << Indent << getUID(BasicBlock) << " [label =\n"; 662 bumpIndent(1); 663 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 664 bumpIndent(1); 665 666 // Dump the block predicate. 667 const VPValue *Pred = BasicBlock->getPredicate(); 668 if (Pred) { 669 OS << " +\n" << Indent << " \"BlockPredicate: "; 670 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 671 PredI->printAsOperand(OS, SlotTracker); 672 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 673 << ")\\l\""; 674 } else 675 Pred->printAsOperand(OS, SlotTracker); 676 } 677 678 for (const VPRecipeBase &Recipe : *BasicBlock) { 679 OS << " +\n" << Indent; 680 Recipe.print(OS, Indent, SlotTracker); 681 OS << "\\l\""; 682 } 683 684 // Dump the condition bit. 685 const VPValue *CBV = BasicBlock->getCondBit(); 686 if (CBV) { 687 OS << " +\n" << Indent << " \"CondBit: "; 688 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 689 CBI->printAsOperand(OS, SlotTracker); 690 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 691 } else { 692 CBV->printAsOperand(OS, SlotTracker); 693 OS << "\""; 694 } 695 } 696 697 bumpIndent(-2); 698 OS << "\n" << Indent << "]\n"; 699 dumpEdges(BasicBlock); 700 } 701 702 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 703 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 704 bumpIndent(1); 705 OS << Indent << "fontname=Courier\n" 706 << Indent << "label=\"" 707 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 708 << DOT::EscapeString(Region->getName()) << "\"\n"; 709 // Dump the blocks of the region. 710 assert(Region->getEntry() && "Region contains no inner blocks."); 711 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 712 dumpBlock(Block); 713 bumpIndent(-1); 714 OS << Indent << "}\n"; 715 dumpEdges(Region); 716 } 717 718 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 719 std::string IngredientString; 720 raw_string_ostream RSO(IngredientString); 721 if (auto *Inst = dyn_cast<Instruction>(V)) { 722 if (!Inst->getType()->isVoidTy()) { 723 Inst->printAsOperand(RSO, false); 724 RSO << " = "; 725 } 726 RSO << Inst->getOpcodeName() << " "; 727 unsigned E = Inst->getNumOperands(); 728 if (E > 0) { 729 Inst->getOperand(0)->printAsOperand(RSO, false); 730 for (unsigned I = 1; I < E; ++I) 731 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 732 } 733 } else // !Inst 734 V->printAsOperand(RSO, false); 735 RSO.flush(); 736 O << DOT::EscapeString(IngredientString); 737 } 738 739 void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent, 740 VPSlotTracker &SlotTracker) const { 741 O << "\"WIDEN-CALL " << VPlanIngredient(&Ingredient); 742 } 743 744 void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent, 745 VPSlotTracker &SlotTracker) const { 746 O << "\"WIDEN-SELECT" << VPlanIngredient(&Ingredient) 747 << (InvariantCond ? " (condition is loop invariant)" : ""); 748 } 749 750 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent, 751 VPSlotTracker &SlotTracker) const { 752 O << "\"WIDEN\\l\""; 753 O << "\" " << VPlanIngredient(&Ingredient); 754 } 755 756 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, const Twine &Indent, 757 VPSlotTracker &SlotTracker) const { 758 O << "\"WIDEN-INDUCTION"; 759 if (Trunc) { 760 O << "\\l\""; 761 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 762 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc); 763 } else 764 O << " " << VPlanIngredient(IV); 765 } 766 767 void VPWidenGEPRecipe::print(raw_ostream &O, const Twine &Indent, 768 VPSlotTracker &SlotTracker) const { 769 O << "\"WIDEN-GEP "; 770 O << (IsPtrLoopInvariant ? "Inv" : "Var"); 771 size_t IndicesNumber = IsIndexLoopInvariant.size(); 772 for (size_t I = 0; I < IndicesNumber; ++I) 773 O << "[" << (IsIndexLoopInvariant[I] ? "Inv" : "Var") << "]"; 774 O << "\\l\""; 775 O << " +\n" << Indent << "\" " << VPlanIngredient(GEP); 776 } 777 778 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent, 779 VPSlotTracker &SlotTracker) const { 780 O << "\"WIDEN-PHI " << VPlanIngredient(Phi); 781 } 782 783 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent, 784 VPSlotTracker &SlotTracker) const { 785 O << "\"BLEND "; 786 Phi->printAsOperand(O, false); 787 O << " ="; 788 if (getNumIncomingValues() == 1) { 789 // Not a User of any mask: not really blending, this is a 790 // single-predecessor phi. 791 O << " "; 792 getIncomingValue(0)->printAsOperand(O, SlotTracker); 793 } else { 794 for (unsigned I = 0, E = getNumIncomingValues(); I < E; ++I) { 795 O << " "; 796 getIncomingValue(I)->printAsOperand(O, SlotTracker); 797 O << "/"; 798 getMask(I)->printAsOperand(O, SlotTracker); 799 } 800 } 801 } 802 803 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent, 804 VPSlotTracker &SlotTracker) const { 805 O << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 806 << VPlanIngredient(Ingredient); 807 if (AlsoPack) 808 O << " (S->V)"; 809 } 810 811 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent, 812 VPSlotTracker &SlotTracker) const { 813 O << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst); 814 } 815 816 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, const Twine &Indent, 817 VPSlotTracker &SlotTracker) const { 818 O << "\"WIDEN " << VPlanIngredient(&Instr); 819 O << ", "; 820 getAddr()->printAsOperand(O, SlotTracker); 821 VPValue *Mask = getMask(); 822 if (Mask) { 823 O << ", "; 824 Mask->printAsOperand(O, SlotTracker); 825 } 826 } 827 828 void VPWidenCanonicalIVRecipe::execute(VPTransformState &State) { 829 Value *CanonicalIV = State.CanonicalIV; 830 Type *STy = CanonicalIV->getType(); 831 IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); 832 auto VF = State.VF; 833 Value *VStart = VF == 1 834 ? CanonicalIV 835 : Builder.CreateVectorSplat(VF, CanonicalIV, "broadcast"); 836 for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) { 837 SmallVector<Constant *, 8> Indices; 838 for (unsigned Lane = 0; Lane < VF; ++Lane) 839 Indices.push_back(ConstantInt::get(STy, Part * VF + Lane)); 840 // If VF == 1, there is only one iteration in the loop above, thus the 841 // element pushed back into Indices is ConstantInt::get(STy, Part) 842 Constant *VStep = VF == 1 ? Indices.back() : ConstantVector::get(Indices); 843 // Add the consecutive indices to the vector value. 844 Value *CanonicalVectorIV = Builder.CreateAdd(VStart, VStep, "vec.iv"); 845 State.set(getVPValue(), CanonicalVectorIV, Part); 846 } 847 } 848 849 void VPWidenCanonicalIVRecipe::print(raw_ostream &O, const Twine &Indent, 850 VPSlotTracker &SlotTracker) const { 851 O << "\"EMIT "; 852 getVPValue()->printAsOperand(O, SlotTracker); 853 O << " = WIDEN-CANONICAL-INDUCTION"; 854 } 855 856 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 857 858 void VPValue::replaceAllUsesWith(VPValue *New) { 859 for (VPUser *User : users()) 860 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 861 if (User->getOperand(I) == this) 862 User->setOperand(I, New); 863 } 864 865 void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { 866 if (const Value *UV = getUnderlyingValue()) { 867 OS << "ir<"; 868 UV->printAsOperand(OS, false); 869 OS << ">"; 870 return; 871 } 872 873 unsigned Slot = Tracker.getSlot(this); 874 if (Slot == unsigned(-1)) 875 OS << "<badref>"; 876 else 877 OS << "vp<%" << Tracker.getSlot(this) << ">"; 878 } 879 880 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 881 Old2NewTy &Old2New, 882 InterleavedAccessInfo &IAI) { 883 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 884 for (VPBlockBase *Base : RPOT) { 885 visitBlock(Base, Old2New, IAI); 886 } 887 } 888 889 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 890 InterleavedAccessInfo &IAI) { 891 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 892 for (VPRecipeBase &VPI : *VPBB) { 893 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 894 auto *VPInst = cast<VPInstruction>(&VPI); 895 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 896 auto *IG = IAI.getInterleaveGroup(Inst); 897 if (!IG) 898 continue; 899 900 auto NewIGIter = Old2New.find(IG); 901 if (NewIGIter == Old2New.end()) 902 Old2New[IG] = new InterleaveGroup<VPInstruction>( 903 IG->getFactor(), IG->isReverse(), IG->getAlign()); 904 905 if (Inst == IG->getInsertPos()) 906 Old2New[IG]->setInsertPos(VPInst); 907 908 InterleaveGroupMap[VPInst] = Old2New[IG]; 909 InterleaveGroupMap[VPInst]->insertMember( 910 VPInst, IG->getIndex(Inst), 911 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 912 : IG->getFactor())); 913 } 914 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 915 visitRegion(Region, Old2New, IAI); 916 else 917 llvm_unreachable("Unsupported kind of VPBlock."); 918 } 919 920 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 921 InterleavedAccessInfo &IAI) { 922 Old2NewTy Old2New; 923 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 924 } 925 926 void VPSlotTracker::assignSlot(const VPValue *V) { 927 assert(Slots.find(V) == Slots.end() && "VPValue already has a slot!"); 928 const Value *UV = V->getUnderlyingValue(); 929 if (UV) 930 return; 931 const auto *VPI = dyn_cast<VPInstruction>(V); 932 if (VPI && !VPI->hasResult()) 933 return; 934 935 Slots[V] = NextSlot++; 936 } 937 938 void VPSlotTracker::assignSlots(const VPBlockBase *VPBB) { 939 if (auto *Region = dyn_cast<VPRegionBlock>(VPBB)) 940 assignSlots(Region); 941 else 942 assignSlots(cast<VPBasicBlock>(VPBB)); 943 } 944 945 void VPSlotTracker::assignSlots(const VPRegionBlock *Region) { 946 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Region->getEntry()); 947 for (const VPBlockBase *Block : RPOT) 948 assignSlots(Block); 949 } 950 951 void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { 952 for (const VPRecipeBase &Recipe : *VPBB) { 953 if (const auto *VPI = dyn_cast<VPInstruction>(&Recipe)) 954 assignSlot(VPI); 955 else if (const auto *VPIV = dyn_cast<VPWidenCanonicalIVRecipe>(&Recipe)) 956 assignSlot(VPIV->getVPValue()); 957 } 958 } 959 960 void VPSlotTracker::assignSlots(const VPlan &Plan) { 961 962 for (const VPValue *V : Plan.VPExternalDefs) 963 assignSlot(V); 964 965 for (auto &E : Plan.Value2VPValue) 966 if (!isa<VPInstruction>(E.second)) 967 assignSlot(E.second); 968 969 for (const VPValue *V : Plan.VPCBVs) 970 assignSlot(V); 971 972 if (Plan.BackedgeTakenCount) 973 assignSlot(Plan.BackedgeTakenCount); 974 975 ReversePostOrderTraversal<const VPBlockBase *> RPOT(Plan.getEntry()); 976 for (const VPBlockBase *Block : RPOT) 977 assignSlots(Block); 978 } 979